code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
#! /usr/bin/env python3 """ Copyright 2021 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # # Classify applications into 104 classes given their raw code. # # The representation (graph) is created from IR. # import os import sys import glob import numpy as np from absl import app, flags, logging from yacos.info import compy as R from yacos.info.compy.extractors import LLVMDriver def execute(argv): """Extract a graph representation.""" del argv FLAGS = flags.FLAGS # Instantiate the LLVM driver. driver = LLVMDriver([]) # Instantiate the builder. builder = R.LLVMIR2VecBuilder(driver) # Verify datset directory. if not os.path.isdir(FLAGS.dataset_directory): logging.error('Dataset directory {} does not exist.'.format( FLAGS.dataset_directory) ) sys.exit(1) folders = [ os.path.join(FLAGS.dataset_directory, subdir) for subdir in os.listdir(FLAGS.dataset_directory) if os.path.isdir(os.path.join(FLAGS.dataset_directory, subdir)) ] idx = FLAGS.dataset_directory.rfind('/') last_folder = FLAGS.dataset_directory[idx+1:] # Load data from all folders for folder in folders: # Create the output directory. outdir = os.path.join(folder.replace(last_folder, '{}_ir2vec'.format(last_folder))) os.makedirs(outdir, exist_ok=True) # Extract "ir2vec" from the file sources = glob.glob('{}/*.ll'.format(folder)) for source in sources: try: extractionInfo = builder.ir_to_info(source) except Exception: logging.error('Error {}.'.format(source)) continue filename = source.replace(folder, outdir) filename = filename[:-3] np.savez_compressed(filename, values=extractionInfo.moduleInfo.ir2vec) # Execute if __name__ == '__main__': # app flags.DEFINE_string('dataset_directory', None, 'Dataset directory') flags.mark_flag_as_required('dataset_directory') app.run(execute)
[ "os.makedirs", "os.path.isdir", "absl.flags.mark_flag_as_required", "yacos.info.compy.LLVMIR2VecBuilder", "absl.flags.DEFINE_string", "numpy.savez_compressed", "absl.app.run", "yacos.info.compy.extractors.LLVMDriver", "os.path.join", "os.listdir", "sys.exit" ]
[((1023, 1037), 'yacos.info.compy.extractors.LLVMDriver', 'LLVMDriver', (['[]'], {}), '([])\n', (1033, 1037), False, 'from yacos.info.compy.extractors import LLVMDriver\n'), ((1083, 1110), 'yacos.info.compy.LLVMIR2VecBuilder', 'R.LLVMIR2VecBuilder', (['driver'], {}), '(driver)\n', (1102, 1110), True, 'from yacos.info import compy as R\n'), ((2511, 2578), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""dataset_directory"""', 'None', '"""Dataset directory"""'], {}), "('dataset_directory', None, 'Dataset directory')\n", (2530, 2578), False, 'from absl import app, flags, logging\n'), ((2631, 2679), 'absl.flags.mark_flag_as_required', 'flags.mark_flag_as_required', (['"""dataset_directory"""'], {}), "('dataset_directory')\n", (2658, 2679), False, 'from absl import app, flags, logging\n'), ((2685, 2701), 'absl.app.run', 'app.run', (['execute'], {}), '(execute)\n', (2692, 2701), False, 'from absl import app, flags, logging\n'), ((1154, 1192), 'os.path.isdir', 'os.path.isdir', (['FLAGS.dataset_directory'], {}), '(FLAGS.dataset_directory)\n', (1167, 1192), False, 'import os\n'), ((1318, 1329), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1326, 1329), False, 'import sys\n'), ((1363, 1408), 'os.path.join', 'os.path.join', (['FLAGS.dataset_directory', 'subdir'], {}), '(FLAGS.dataset_directory, subdir)\n', (1375, 1408), False, 'import os\n'), ((1898, 1932), 'os.makedirs', 'os.makedirs', (['outdir'], {'exist_ok': '(True)'}), '(outdir, exist_ok=True)\n', (1909, 1932), False, 'import os\n'), ((1439, 1474), 'os.listdir', 'os.listdir', (['FLAGS.dataset_directory'], {}), '(FLAGS.dataset_directory)\n', (1449, 1474), False, 'import os\n'), ((2355, 2425), 'numpy.savez_compressed', 'np.savez_compressed', (['filename'], {'values': 'extractionInfo.moduleInfo.ir2vec'}), '(filename, values=extractionInfo.moduleInfo.ir2vec)\n', (2374, 2425), True, 'import numpy as np\n'), ((1508, 1553), 'os.path.join', 'os.path.join', (['FLAGS.dataset_directory', 'subdir'], {}), '(FLAGS.dataset_directory, subdir)\n', (1520, 1553), False, 'import os\n')]
# -*- coding: utf-8 -*- #!/usr/bin/python # # Author <NAME> # E-mail <EMAIL> # License MIT # Created 03/11/2016 # Updated 11/12/2016 # Version 1.0.0 # """ Description of classify.py ====================== save train & test in files read train & test for list of classifier train/test gather results prec/rec/f print best clf and results :Example: source activate py27 ipython run classify.py Only for 100 percent precision run classify.py --train /media/sf_DATA/Datasets/Simbals/yann/train.csv --test /media/sf_DATA/Datasets/Simbals/yann/test.csv notes RandomForest complexity https://www.quora.com/What-is-in-general-time-complexity-of-random-forest-What-are-the-important-parameters-that-affect-this-complexity n instances and m attributes computational cost of building a tree is O(mn log n). RandomForest done in 135939ms (3mn) for 13 attributes and 192 instances mn log n = 13*192*math.log(192) = 13122 ( 135939ms) mn log n = 39*186*math.log(186) = 37907 (~ms) To know the element available print((clf.get_params().keys()) ..todo:: Add AdaBoostClassifier BaggingClassifier BernoulliNB CalibratedClassifierCV DPGMM http://scikit-learn.org/stable/modules/generated/sklearn.mixture.DPGMM.html Deprecated since version 0.18: This class will be removed in 0.20. Use sklearn.mixture.BayesianGaussianMixture with parameter weight_concentration_prior_type='dirichlet_process' instead. DecisionTreeClassifier ExtraTreeClassifier ExtraTreesClassifier GMM GaussianNB GradientBoostingClassifier KNeighborsClassifier LDA LabelPropagation LabelSpreading LinearDiscriminantAnalysis LogisticRegression LogisticRegressionCV MultinomialNB NuSVC QDA QuadraticDiscriminantAnalysis RandomForestClassifier SGDClassifier SVC VBGMM _ConstantPredictor """ import os import sys import time import json import utils import joblib import argparse import webbrowser import multiprocessing import numpy as np import matplotlib.pyplot as plt from statistics import stdev from functools import partial from sklearn import metrics from sklearn.cross_validation import KFold, cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score from sklearn.utils.testing import all_estimators from sklearn import linear_model from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_curve, average_precision_score def list_clf(): """ ..todo:: Do the same for: class_weight predict predict_log_proba """ estimators = all_estimators() for name, class_ in estimators: if hasattr(class_, 'predict_proba'): print(name) def plot_clf(indir="res/"): indir = utils.abs_path_dir(indir) + "/" algos = [] measure = [] with open(indir + "global.csv", "r") as filep: for line in filep: line = line.split(",") algos.append(line[0]) measure.append(tuple(map(float, line[1:4]))) n_groups = 3 fig, ax = plt.subplots(figsize=(10, 6)) index = np.arange(n_groups) bar_width = 0.2 opacity = 0.4 error_config = {'ecolor': '0.3'} color = utils.rand_color(len(algos)) rects = {} offset = 0.15 for ind, algo in enumerate(algos): print(ind) print(tuple(measure[ind])) rects[ind] = plt.bar(index + bar_width*ind + offset, tuple(measure[ind]), bar_width, alpha=opacity, color=color[ind], label=algo) plt.ylabel('Scores (in %)') plt.xticks(index + bar_width*ind + offset, ('Precision', 'Recall', 'F-Measure')) plt.legend() plt.ylim(0, 1) # spines & axis ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') art = [] lgd = ax.legend(loc=9, bbox_to_anchor=(1.1, 1.), frameon=False) # lgd = pylab.legend(loc=9, bbox_to_anchor=(0.5, -0.1), ncol=2) art.append(lgd) # ax.legend() plt.tight_layout() img_name = "global.png" plt.savefig(img_name, dpi=200, additional_artists=art, bbox_inches="tight") # webbrowser.open(img_name) # plt.show() def read_file(filename): """Description of read_file train/test example line: filename,feat1,feat2,...,featn,tag """ filename = utils.abs_path_file(filename) groundtruths = [] features = [] with open(filename, "r") as filep: for row in filep: line = row.split(",") groundtruths.append(line[-1][:-1]) features.append([float(i) for i in line[1:-1]]) return features, groundtruths def read_preds(filename): """Description of read_file ex file: ISRC,tag """ filename = utils.abs_path_file(filename) isrcs = {} with open(filename, "r") as filep: for row in filep: line = row.split(",") # print(line) isrcs[line[0]] = float(line[1]) # isrcs[line[0]] = 1.0-float(line[1]) return isrcs def read_item_tag(filename): """Description of read_file example line: filename,tag """ filename = utils.abs_path_file(filename) groundtruths = {} with open(filename, "r") as filep: for row in filep: line = row.split(",") groundtruths[line[0]] = line[1][:-1] return groundtruths def precision_100percent(train, test): """Description of precision_100percent ..todo:: 1 Find best clf with default param 2 vary param of best clf and find best param 3 use best param and best clf to find recall for 100 percent precision """ utils.print_success("Find Recall for best Precision for each tag") train = utils.abs_path_file(train) test = utils.abs_path_file(test) train_features, train_groundtruths = read_file(train) test_features, test_groundtruths = read_file(test) classifiers = { # "RandomForest": RandomForestClassifier(),#n_estimators=5 "DecisionTree":DecisionTreeClassifier()#,#max_depth=10 # "SVM":SVC(kernel="linear", C=0.0205), # "ExtraTreesClassifier":ExtraTreesClassifier(n_estimators=5, criterion="entropy", max_features="log2", max_depth=9), # "LogisticRegression":LogisticRegression() } tags = list(set(test_groundtruths)) nb_tag = len(tags) step = 0.01 # for index, tag in enumerate(["i"]): for index, tag in enumerate(tags): utils.print_success("Tag " + tag) max_precision = 0 max_recall = 0 max_f_measure = 0 max_clf = "" max_weight = 0 for key in classifiers: clf = classifiers[key] # for weight in np.arange(0., 0.01, 0.000001): # for weight in np.arange(step, 1-step, step): for weight in np.arange(0.0, 1.0, step): print("Classifier " + key + " & Weight " + str(weight)) sys.stdout.write("\033[F") sys.stdout.write("\033[K") clf.set_params(class_weight={"i":weight, "s":1-weight}) clf.fit(train_features, train_groundtruths) predictions = clf.predict(test_features) precision = precision_score(test_groundtruths, predictions, average=None)[index] if precision >= max_precision: recall = recall_score(test_groundtruths, predictions, average=None)[index] # if recall > max_recall: max_precision = precision max_recall = recall max_f_measure = f1_score(test_groundtruths, predictions, average=None)[index] max_weight = weight max_clf = key sys.stdout.write("\033[K") utils.print_info("\tClassifier " + str(max_clf)) utils.print_info("\tPrecision " + str(max_precision)) utils.print_info("\tRecall " + str(max_recall)) utils.print_info("\tF-Measure " + str(max_f_measure)) utils.print_info("\tWeight " + str(max_weight)) def train_test(train, test, res_dir="res/", disp=True, outfilename=None): """Description of compare compare multiple classifier and display the best one """ utils.print_success("Comparison of differents classifiers") if train is not None and test is not None: train_features = [] test_features = [] train_groundtruths = [] test_groundtruths = [] for elem in train: train_groundtruths.append(elem) train_features.append(train[elem]) for elem in test: test_groundtruths.append(elem) test_features.append(test[elem]) else: utils.print_error("No valid data provided.") res_dir = utils.create_dir(res_dir) classifiers = { # "RandomForest": RandomForestClassifier(n_estimators=5), "KNeighbors":KNeighborsClassifier(1), # "GaussianProcess":GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True), # "DecisionTree":DecisionTreeClassifier(max_depth=5), # "MLP":MLPClassifier(), # "AdaBoost":AdaBoostClassifier(), # "GaussianNB":GaussianNB(), # "QDA":QuadraticDiscriminantAnalysis(), # "SVM":SVC(kernel="linear", C=0.025), # "GradientBoosting":GradientBoostingClassifier(), # "ExtraTrees":ExtraTreesClassifier(), # "LogisticRegression":LogisticRegression(), # "LinearDiscriminantAnalysis":LinearDiscriminantAnalysis() } for key in classifiers: utils.print_success(key) clf = classifiers[key] utils.print_info("\tFit") clf.fit(train_features, train_groundtruths) utils.print_info("\tPredict") predictions = clf.predict(test_features) print("Precision weighted\t" + str(precision_score(test_groundtruths, predictions, average='weighted'))) print("Recall weighted\t" + str(recall_score(test_groundtruths, predictions, average='weighted'))) print("F1 weighted\t" + str(f1_score(test_groundtruths, predictions, average='weighted'))) # print("Precision weighted\t" + str(precision_score(test_groundtruths, predictions, average=None))) # print("Recall weighted\t" + str(recall_score(test_groundtruths, predictions, average=None))) # print("f1 weighted\t" + str(f1_score(test_groundtruths, predictions, average=None))) def classify(train=None, test=None, data=None, res_dir="res/", disp=True, outfilename=None): """Description of compare compare multiple classifier and display the best one """ utils.print_success("Comparison of differents classifiers") if data is not None: train_features = data["train_features"] train_groundtruths = data["train_groundtruths"] test_features = data["test_features"] test_groundtruths = data["test_groundtruths"] else: train = utils.abs_path_file(train) test = utils.abs_path_file(test) train_features, train_groundtruths = read_file(train) test_features, test_groundtruths = read_file(test) if not utils.create_dir(res_dir): res_dir = utils.abs_path_dir(res_dir) classifiers = { "RandomForest": RandomForestClassifier(n_jobs=-1) # "RandomForest": RandomForestClassifier(n_estimators=5), # "KNeighbors":KNeighborsClassifier(3), # "GaussianProcess":GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True), # "DecisionTree":DecisionTreeClassifier(max_depth=5), # "MLP":MLPClassifier(), # "AdaBoost":AdaBoostClassifier(), # "GaussianNB":GaussianNB(), # "QDA":QuadraticDiscriminantAnalysis(), # "SVM":SVC(kernel="linear", C=0.025), # "GradientBoosting":GradientBoostingClassifier(), # "ExtraTrees":ExtraTreesClassifier(), # "LogisticRegression":LogisticRegression(), # "LinearDiscriminantAnalysis":LinearDiscriminantAnalysis() } for key in classifiers: utils.print_success(key) clf = classifiers[key] utils.print_info("\tFit") clf.fit(train_features, train_groundtruths) utils.print_info("\tPredict") predictions = clf.predict(test_features) if outfilename is not None: with open(outfilename, "w") as filep: for gt, pred in zip(test_groundtruths, predictions): filep.write(gt + "," + pred + "\n") # Global data = [key] data.append(str(precision_score(test_groundtruths, predictions, average='weighted'))) data.append(str(recall_score(test_groundtruths, predictions, average='weighted'))) data.append(str(f1_score(test_groundtruths, predictions, average='weighted'))) data = ",".join(data) if disp: print(data) else: with open(res_dir + "global.csv", "a") as filep: filep.write(data + ",\n") # Local for index, tag in enumerate(list(set(train_groundtruths))): precision = precision_score(test_groundtruths, predictions, average=None) recall = recall_score(test_groundtruths, predictions, average=None) f1 = f1_score(test_groundtruths, predictions, average=None) line = key + "," + str(precision[index]) + "," + str(recall[index]) + "," + str(f1[index]) if disp: print(line) else: with open(res_dir + "tag_" + tag + ".csv", "a") as filep: filep.write(line + ",\n") return predictions def read_train_files(indir, separator=" "): """Description of read_train_files Gather local features and GT from every individual train songs """ utils.print_success("Reading multiple train files") indir = utils.abs_path_dir(indir) + "/" groundtruths = [] features = [] included_extenstions = ["csv"] filenames = [fn for fn in os.listdir(indir) if any(fn.endswith(ext) for ext in included_extenstions)] for index, filename in enumerate(filenames): print(str(index + 1) + "/" + str(len(filenames)) + " " + filename) sys.stdout.write("\033[F") # Cursor up one line sys.stdout.write("\033[K") # Clear line with open(indir + filename, "r") as filep: for row in filep: line = row.split(separator) features.append([float(i) for i in line[:-1]]) groundtruths.append(line[-1][:-1]) sys.stdout.write("\033[K") # Clear line return features, groundtruths def read_train_file(filename): """ Read ONE train file """ groundtruths = [] features = [] filename = utils.abs_path_file(filename) with open(filename, "r") as filep: for line in filep: line = line.split(",") groundtruths.append(line[-1][:-1]) features.append(line[1:-1]) return features, groundtruths def create_model(clf_name, features, groundtruths, outdir, classifiers): begin = int(round(time.time() * 1000)) utils.print_success("Starting " + clf_name) clf_dir = outdir + clf_name + "/" utils.create_dir(clf_dir) clf = classifiers[clf_name] clf.fit(features, groundtruths) joblib.dump(clf, clf_dir + clf_name + ".pkl") utils.print_info(clf_name + " done in " + str(int(round(time.time() * 1000)) - begin) + "ms") def create_models(outdir, train_features=None, train_groundtruths=None, train_file=None, train_dir=None, separator=" ", classifiers=None): """Description of create_models Generate models for train data for different clf In order to test later ..notes:: train_file must be formatted like: item_name_1,feat1,feat2,...,featN,tag_or_class item_name_2,feat1,feat2,...,featN,tag_or_class ... item_name_N,feat1,feat2,...,featN,tag_or_class ..todo:: Manage when Provide train feat and gts or train_file Find why commented clf cannot be used pour train dir = /media/sf_github/yann/train/ 20h04m49s Creating models 20h04m49s Reading multiple train files 20h05m04s Starting SVM 20h05m07s Starting RandomForest 20h05m11s Starting GradientBoosting 20h05m16s Starting DecisionTree 20h05m22s Starting ExtraTrees 20h05m27s Starting AdaBoost 20h05m34s Starting KNeighbors 20h05m50s KNeighbors done in 60836ms 20h06m18s ExtraTrees done in 89147ms 20h06m29s DecisionTree done in 100211ms 20h07m05s RandomForest done in 135939ms 20h08m56s AdaBoost done in 246550ms 20h13m40s GradientBoosting done in 530909ms 00h43m29s SVM done in 16719954ms """ utils.print_success("Creating models") outdir = utils.abs_path_dir(outdir) + "/" if train_file is not None: features, groundtruths = read_train_file(train_file) elif train_dir is not None: features, groundtruths = read_train_files(train_dir, separator=separator) else: utils.print_warning("TODO Manage train feat and gts") if classifiers is None: classifiers = { "RandomForest": RandomForestClassifier(), "LogisticRegression":LogisticRegression(), "KNeighbors":KNeighborsClassifier(), "DecisionTree":DecisionTreeClassifier(), "AdaBoost":AdaBoostClassifier(), "GradientBoosting":GradientBoostingClassifier(), "ExtraTrees":ExtraTreesClassifier(), "SVM":SVC(kernel="linear", C=0.025, probability=True) # "GaussianProcess":GaussianProcessClassifier(), # "MLP":MLPClassifier(), # "GaussianNB":GaussianNB(), # "QDA":QuadraticDiscriminantAnalysis(), # "LinearDiscriminantAnalysis":LinearDiscriminantAnalysis() } else: if "RandomForest" in classifiers: clf_name = "RandomForest" begin = int(round(time.time() * 1000)) utils.print_success("Starting " + clf_name) clf_dir = outdir + clf_name + "/" utils.create_dir(clf_dir) clf = RandomForestClassifier(n_jobs=-1) # clf = RandomForestClassifier(verbose=100) clf.fit(features, groundtruths) joblib.dump(clf, clf_dir + clf_name + ".pkl") utils.print_info(clf_name + " done in " + str(int(round(time.time() * 1000)) - begin) + "ms") # # Parallel computing # clf = [] # for key in classifiers: # clf.append(key) # partial_create_model = partial(create_model, features=features, groundtruths=groundtruths, outdir=outdir, classifiers=classifiers) # # pool = multiprocessing.Pool(4) # pool = multiprocessing.Pool(len(classifiers)) # pool.map(partial_create_model, clf) #make our results with a map call # pool.close() #we are not adding any more processes # pool.join() #tell it to wait until all threads are done before going on def read_test_file(filename): """ Read ONE test file with content like: feat1 feat2 ... featN feat1 feat2 ... featN ... feat1 feat2 ... featN """ features = [] filename = utils.abs_path_file(filename) with open(filename, "r") as filep: for line in filep: line = line.split(" ") line[-1] = line[-1][:-1] feat = [] for tmp_feat in line: feat.append(float(tmp_feat)) features.append(feat) return features def column(matrix, i): return [row[i] for row in matrix] def test_models(models_dir, test_dir, out_dir): models_dir = utils.abs_path_dir(models_dir) + "/" test_dir = utils.abs_path_dir(test_dir) + "/" utils.create_dir(out_dir) test_files = os.listdir(test_dir) models = os.listdir(models_dir) for model in models: utils.print_success(model) pred_dir = out_dir + model + "/" utils.create_dir(pred_dir) clf = joblib.load(models_dir + model + "/" + model + ".pkl") for index, test_file in enumerate(test_files): print(str(index) + "\t" + test_file) sys.stdout.write("\033[F") sys.stdout.write("\033[K") test_features = read_test_file(test_dir + test_file) predictions = clf.predict_proba(test_features) with open(pred_dir + test_file, "w") as filep: for pred in predictions: filep.write(str(pred[0]) + "\n") sys.stdout.write("\033[K") def test_model(model, models_dir, test_dir, out_dir, test_files=None, test_file=None): """Description of test_model Use one model previously fitted in order to predict_proba() or predict() the tag for a bunch of test_files ..todo:: To enhance computation time: only compute file which are in groundtruths if file already computed, do not recompute """ begin = int(round(time.time() * 1000)) utils.print_success("Testing " + model) pred_dir = out_dir + model clf = joblib.load(models_dir + model + "/" + model + ".pkl") if test_files is not None: pred_dir = pred_dir + "/" utils.create_dir(pred_dir) for index, test_file in enumerate(test_files): # Check if isrc is in groundtruths to speed up computation time if test_file[:12] in groundtruths: test_features = read_test_file(test_dir + test_file) try: predictions = clf.predict_proba(test_features) except AttributeError: utils.print_warning("predict_proba does not exists for " + model + "\nRegular predict function is used.") predictions = clf.predict(test_features) with open(pred_dir + test_file, "w") as filep: for pred in predictions: filep.write(str(pred[0]) + "\n") elif test_file is not None: pred_dir = pred_dir + "_" test_features = [] filename = [] with open(test_file, "r") as filep: for index, line in enumerate(filep): line = line.split(",") # print(str(index) + " " + line[0]) test_features.append(line[1:-1]) filename.append(line[0]) try: predictions = clf.predict_proba(test_features) with open(pred_dir + "predict_proba.csv", "a") as filep2: for filen, pred in zip(filename, predictions): filep2.write(filen + "," + str(pred[0]) + "\n") except: pass predictions = clf.predict(test_features) with open(pred_dir + "predict.csv", "a") as filep2: for filen, pred in zip(filename, predictions): filep2.write(filen + "," + str(pred[0]) + "\n") else: utils.print_error("Error in arg for test_model() function") utils.print_info(model + " done in " + str(int(round(time.time() * 1000)) - begin) + "ms") def test_models_parallel(models_dir, out_dir, test_dir=None, test_file=None): """Description of test_models_parallel 17h16m12s DecisionTree done in 16135373ms 17h25m08s GradientBoosting done in 16671109ms 18h59m05s RandomForest done in 22307811ms 18h59m07s AdaBoost done in 22310633ms 19h18m12s ExtraTrees done in 23455779ms """ models_dir = utils.abs_path_dir(models_dir) + "/" models = os.listdir(models_dir) utils.create_dir(out_dir) if test_dir is not None: test_dir = utils.abs_path_dir(test_dir) + "/" test_files = os.listdir(test_dir) test_file = None elif test_file is not None: test_files = None else: utils.print_warning("TODO Error in arg for test_models_parallel() function") partial_test_model = partial(test_model, models_dir=models_dir, test_dir=test_dir, out_dir=out_dir, test_files=test_files, test_file=test_file) pool = multiprocessing.Pool(len(models)) pool.map(partial_test_model, models) #make our results with a map call pool.close() #we are not adding any more processes pool.join() #tell it to wait until all threads are done before going on def cross_validation(train_filename, n_folds, outfilename): filename = utils.abs_path_file(train_filename) features = [] groundtruths = [] with open(filename, "r") as filep: for line in filep: line = line.split(",") features.append([float(x) for x in line[1:-1]]) groundtruths.append(line[-1][:-1]) features = np.array(features) groundtruths = np.array(groundtruths) # Init # if os.path.exists(outfilename): try: with open(outfilename, "r") as filep: data = json.load(filep) except: data = {} # else: # data = {} algo_name = "Method 1" data[algo_name] = {} data[algo_name]["uneven"] = {} data[algo_name]["balanced"] = {} for distribution in data[algo_name]: data[algo_name][distribution]["precision"] = {} data[algo_name][distribution]["recall"] = {} data[algo_name][distribution]["f1"] = {} for tmp in data[algo_name][distribution]: data[algo_name][distribution][tmp]["instru"] = [] data[algo_name][distribution][tmp]["song"] = [] skf = StratifiedKFold(n_splits=n_folds) for i in range(0, 10): utils.print_warning("TODO for i in range") song_precis = [] song_recall = [] song_fmeasu = [] inst_precis = [] inst_recall = [] inst_fmeasu = [] cur_fold = 0 for train, test in skf.split(features, groundtruths): cur_fold += 1 utils.print_success("Iteration " + str(i) + "\tFold " + str(cur_fold)) dataset = {} dataset["train_features"] = features[train] dataset["train_groundtruths"] = groundtruths[train] dataset["test_features"] = features[test] dataset["test_groundtruths"] = groundtruths[test] predictions = classify(data=dataset) song_precis.append(precision_score(dataset["test_groundtruths"], predictions, average=None)[1]) song_recall.append(recall_score(dataset["test_groundtruths"], predictions, average=None)[1]) song_fmeasu.append(f1_score(dataset["test_groundtruths"], predictions, average=None)[1]) inst_precis.append(precision_score(dataset["test_groundtruths"], predictions, average=None)[0]) inst_recall.append(recall_score(dataset["test_groundtruths"], predictions, average=None)[0]) inst_fmeasu.append(f1_score(dataset["test_groundtruths"], predictions, average=None)[0]) song_precis = sum(song_precis) / float(len(song_precis)) song_recall = sum(song_recall) / float(len(song_recall)) song_fmeasu = sum(song_fmeasu) / float(len(song_fmeasu)) inst_precis = sum(inst_precis) / float(len(inst_precis)) inst_recall = sum(inst_recall) / float(len(inst_recall)) inst_fmeasu = sum(inst_fmeasu) / float(len(inst_fmeasu)) # Song data[algo_name]["balanced"]["precision"]["song"].append(song_precis) data[algo_name]["balanced"]["recall"]["song"].append(song_recall) data[algo_name]["balanced"]["f1"]["song"].append(song_fmeasu) # Instru data[algo_name]["balanced"]["precision"]["instru"].append(inst_precis) data[algo_name]["balanced"]["recall"]["instru"].append(inst_recall) data[algo_name]["balanced"]["f1"]["instru"].append(inst_fmeasu) with open(outfilename, "w") as outfile: json.dump(data, outfile, indent=2) def split(features, groundtruths, n_split): """Description of split 1 tmp array containing all item for each tag 2 random split of array for each tag ..todo:: manage possible errors randomize split selection """ if n_split == 1: return features, groundtruths tags = list(set(groundtruths)) new_index = {} for tag in tags: new_index[tag] = [] for index, gt in enumerate(groundtruths): new_index[gt].append(index) new_feats = [] new_gts = [] for i in range(0, n_split): indexes = [] for tag in tags: ref = len(new_index[tag])/n_split indexes.append(new_index[tag][ref*i:ref*(i+1)]) """ ..todo:: manage multiple tags! """ indexes = indexes[0] + indexes[1] # print(features[:5]) # print(len(indexes)) # print(len(indexes[0])) # print(len(indexes[1])) # sys.exit() indexes.sort() new_gts.append([groundtruths[j] for j in indexes]) new_feats.append([features[j] for j in indexes]) return new_feats, new_gts def increasing_test(groundtruths_file, predictions_file, metric, tag): gts = read_item_tag(groundtruths_file) preds = read_item_tag(predictions_file) test_groundtruths = [] predictions = [] for isrc in preds: if isrc in gts: test_groundtruths.append(gts[isrc]) predictions.append(preds[isrc]) res = [] if "accuracy" in metric: res.append(accuracy_score(test_groundtruths, predictions)) elif "precision" in metric: res.append(precision_score(test_groundtruths, predictions, average=None)[tag]) elif "recall" in metric: res.append(recall_score(test_groundtruths, predictions, average=None)[tag]) elif "f1_score" in metric: res.append(f1_score(test_groundtruths, predictions, average=None)[tag]) else: utils.print_error("classify.py line 735 metric argument error") # print("Accuracy : " + str(accuracy_score(test_groundtruths, predictions))) # print("Precision: " + str(precision_score(test_groundtruths, predictions, average=None))) # print("Recall : " + str(recall_score(test_groundtruths, predictions, average=None))) # print("F-score : " + str(f1_score(test_groundtruths, predictions, average=None))) n_splits = 10 # for n_split in range(2, n_splits+1): for n_split in [2, 10, 100]: print("\t" + str(n_split)) feats_array, gts_array = split(predictions, test_groundtruths, n_split) tmp_acc = [] for feats, gts in zip(feats_array, gts_array): if "accuracy" in metric: cur_acc = accuracy_score(gts, feats) elif "precision" in metric: cur_acc = precision_score(gts, feats, average=None)[tag] elif "recall" in metric: cur_acc = recall_score(gts, feats, average=None)[tag] elif "f1_score" in metric: cur_acc = f1_score(gts, feats, average=None)[tag] tmp_acc.append(cur_acc) print("\t\t" + str(stdev(tmp_acc))) accuracy = sum(tmp_acc) / float(len(tmp_acc)) res.append(accuracy) return res def growing_testset(train_filename, test_filename, clf, clf_name=None): """Description of growing_testset 1 Generate accuracy graph for global 2 Create precision / recall / f-measure figures for each tag ..todo:: intermediate file which stores predictions for each ISRC param for number of steps repet N times division problem ! it does N N/2 ... N/10 but we want : 1*N/10 2*N/10 ... 10*N/10 """ train_features, train_groundtruths = read_file(train_filename) test_features, test_groundtruths = read_file(test_filename) if clf_name is not None and "RANSAC" in clf_name: train_groundtruths = [True if i =="s" else False for i in train_groundtruths] test_groundtruths = [True if i =="s" else False for i in test_groundtruths] clf.fit(train_features, train_groundtruths) if clf_name is not None and "RANSAC" in clf_name: preds_float = clf.predict(test_features) predictions = [True if i > 0.5 else False for i in preds_float] else: predictions = clf.predict(test_features) test_acc = [] # test_acc.append(accuracy_score(test_groundtruths, predictions)) test_acc.append(precision_score(test_groundtruths, predictions, average=None)[0]) print("Accuracy : " + str(test_acc)) print("Precision: " + str(precision_score(test_groundtruths, predictions, average=None))) print("Recall : " + str(recall_score(test_groundtruths, predictions, average=None))) print("F-score : " + str(f1_score(test_groundtruths, predictions, average=None))) n_splits = 10 for n_split in range(2, n_splits+1): print(n_split) feats_array, gts_array = split(test_features, test_groundtruths, n_split) tmp_acc = [] for feats, gts in zip(feats_array, gts_array): if clf_name is not None and "RANSAC" in clf_name: preds_float = clf.predict(feats) predictions = [True if i > 0.5 else False for i in preds_float] else: predictions = clf.predict(feats) # cur_acc = accuracy_score(gts, predictions) cur_acc = precision_score(gts, predictions, average=None)[0] tmp_acc.append(cur_acc) print("\t" + str(cur_acc)) accuracy = sum(tmp_acc) / float(len(tmp_acc)) test_acc.append(accuracy) return test_acc def plot_roc(indir, gts_file, outdir): groundtruths = read_item_tag(gts_file) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--', label="Random (0.5)") indir = utils.abs_path_dir(indir) for item in os.listdir(indir): if ".csv" in item: isrcs = read_preds(indir + "/" + item) test_groundtruths = [] predictions = [] for isrc in isrcs: if isrc in groundtruths: test_groundtruths.append(groundtruths[isrc]) predictions.append(isrcs[isrc]) test_groundtruths = [tag=="s" for tag in test_groundtruths] fpr_rf, tpr_rf, _ = roc_curve(test_groundtruths, predictions) label = item[:-4] + " (" + str(round(roc_auc_score(test_groundtruths, predictions), 3)) + ")" color = "" if "VQMM" in item: color = "ro" elif "SVMBFF" in item: color = "g-" elif "GA" in item: color = "b:" plt.plot(fpr_rf, tpr_rf, color, label=label) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') plt.xlabel('False positive rate') plt.ylabel('True positive rate') # plt.title('ROC curve for Algo (AUC)') plt.legend(loc='best') outdir = utils.abs_path_dir(outdir) roc_fn = outdir + "Figure_3_ROC.png" plt.savefig(roc_fn, dpi=200, bbox_inches="tight") plt.savefig(outdir + "Figure_3_ROC.eps") # plt.show() plt.close() utils.print_success("ROC curve successfully created in " + roc_fn) def plot_precision_recall(indir, gts_file, outdir): groundtruths = read_item_tag(gts_file) plt.figure(1) indir = utils.abs_path_dir(indir) for item in os.listdir(indir): if ".csv" in item: isrcs = read_preds(indir + "/" + item) test_groundtruths = [] predictions = [] for isrc in isrcs: if isrc in groundtruths: test_groundtruths.append(groundtruths[isrc]) predictions.append(isrcs[isrc]) test_groundtruths = [tag=="s" for tag in test_groundtruths] precision, recall, _ = precision_recall_curve(test_groundtruths, predictions) plt.plot(recall, precision, label=item[:-4] + " (" + str(round(average_precision_score(test_groundtruths, predictions), 3)) + ")") plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([-0.05, 1.05]) plt.title('Precision-Recall curve for Algo (AUC)') plt.legend(loc='best') plt.savefig(outdir + "precision_recall.png", dpi=200, bbox_inches="tight") # plt.show() plt.close() utils.print_success("Precision-Recall curve created in " + outdir) if __name__ == "__main__": PARSER = argparse.ArgumentParser(description="Compare classifiers") PARSER.add_argument( "--train", help="path to train file", type=str, default="data/proba_hist_train.csv", metavar="train") PARSER.add_argument( "--test", help="path to test file", type=str, default="data/proba_hist_test.csv", metavar="test") PARSER.add_argument( "-o", "--outdir", help="path to output directory", type=str, default="res/", metavar="outdir") plot_roc("roc_curve/") # plot_precision_recall("/media/sf_github/classifiers/roc_curve/") # # models_dir = "models_paral/" # # utils.create_dir(models_dir) # # train_file_1 = "/media/sf_DATA/Datasets/Simbals/yann/train.csv" # # train_dir_1 = "/media/sf_github/yann/train/" # # create_models(train_file=train_file_1) # # create_models(outdir=models_dir, train_dir=train_dir_1) # # test_models_parallel(models_dir, "/media/sf_DATA/Datasets/Simbals/yaafe/results/processed/", "/media/sf_DATA/Datasets/Simbals/yaafe/proba_preds/") # # classify(PARSER.parse_args().train, PARSER.parse_args().test, PARSER.parse_args().outdir) # # precision_100percent(PARSER.parse_args().train, PARSER.parse_args().test) # #  plot_clf() # """ # Samedi 26 Novembre 2016 test finaux pour mon algo # demandé par <NAME> Matthias # """ # train_file = "/media/sf_github/yann/2_local_predictions/method_3_trainset_normalized.txt" # models_dir = "final_models/" # utils.create_dir(models_dir) # # create_models(outdir=models_dir, train_file=train_file) # out_dir = "/media/sf_DATA/Datasets/Simbals/yann/algo_final/" # utils.create_dir(out_dir) # test_file="/media/sf_github/yann/2_local_predictions/method_3_testset_normalized_with_tag.txt" # # test_models_parallel( # # models_dir=models_dir, # # test_file=test_file, # # out_dir=out_dir) # test_features = [] # isrc_order = [] # utils.print_info("Loading clf") # clf = joblib.load("/media/sf_github/classifiers/final_modelsRandomForest/RandomForest.pkl") # with open(test_file, "r") as filep: # for index, line in enumerate(filep): # line = line.split(",") # utils.print_info(str(index) + "\t" + line[0]) # test_features.append(line[1:-1]) # isrc_order.append(line[0]) # utils.print_info("Predict_proba") # predictions = clf.predict(test_features) # # predictions = clf.predict_proba(test_features) # utils.print_info("Writing results") # with open("/media/sf_DATA/Datasets/Simbals/yann/algo_final/RF.txt" , "w") as filep2: # for index, pred in enumerate(predictions): # filep2.write(isrc_order[index] + "," + str(pred[0]) + "\n") # utils.print_info("Done") # test_groundtruths = {} # with open("/media/sf_github/repro/groundtruths.csv", "r") as filep: # for row in filep: # line = row.split(",") # test_groundtruths[line[0]] = line[1][:-1] # for i in np.arange(0.1, 1.0, 0.1): # outfile = open("results/Bayle2_"+str(i)+".csv", "w") # utils.print_progress_start(str(i)) # with open("/media/sf_DATA/Datasets/Simbals/yann/algo_final/RFproba.txt", "r") as filep: # for line in filep: # line = line.split(",") # if line[0] in test_groundtruths: # if float(line[-1][:-1]) > i: # prediction = "i" # else: # prediction = "s" # outfile.write(line[0] + "," + prediction + "\n") # utils.print_progress_end() # outfile.close() # # groundtruths = [] # # predictions = [] # outfile = open("results/Bayle.csv", "w") # with open("/media/sf_DATA/Datasets/Simbals/yann/algo_final/RF.txt", "r") as filep: # for line in filep: # line = line.split(",") # if line[0] in test_groundtruths: # outfile.write(line[0] + "," + line[-1][:-1] + "\n") # # groundtruths.append(test_groundtruths[line[0]]) # # predictions.append(line[-1][:-1]) # outfile.close() # # utils.scores("bayle", predictions, groundtruths)
[ "sys.stdout.write", "matplotlib.pyplot.title", "utils.print_info", "argparse.ArgumentParser", "sklearn.metrics.accuracy_score", "joblib.dump", "sklearn.tree.DecisionTreeClassifier", "matplotlib.pyplot.figure", "sklearn.metrics.f1_score", "numpy.arange", "matplotlib.pyplot.gca", "sklearn.svm.SVC", "matplotlib.pyplot.tight_layout", "utils.create_dir", "matplotlib.pyplot.close", "utils.abs_path_dir", "sklearn.ensemble.ExtraTreesClassifier", "sklearn.metrics.average_precision_score", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "sklearn.ensemble.RandomForestClassifier", "functools.partial", "json.dump", "sklearn.ensemble.AdaBoostClassifier", "matplotlib.pyplot.ylim", "sklearn.utils.testing.all_estimators", "utils.print_error", "matplotlib.pyplot.legend", "statistics.stdev", "utils.print_success", "sklearn.metrics.recall_score", "sklearn.metrics.roc_auc_score", "sklearn.metrics.precision_recall_curve", "sklearn.linear_model.LogisticRegression", "utils.print_warning", "utils.abs_path_file", "matplotlib.pyplot.ylabel", "os.listdir", "matplotlib.pyplot.xlim", "json.load", "matplotlib.pyplot.plot", "sklearn.metrics.roc_curve", "time.time", "sklearn.ensemble.GradientBoostingClassifier", "sklearn.neighbors.KNeighborsClassifier", "numpy.array", "sklearn.model_selection.StratifiedKFold", "sklearn.metrics.precision_score", "joblib.load", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((3293, 3309), 'sklearn.utils.testing.all_estimators', 'all_estimators', ([], {}), '()\n', (3307, 3309), False, 'from sklearn.utils.testing import all_estimators\n'), ((3757, 3786), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (3769, 3786), True, 'import matplotlib.pyplot as plt\n'), ((3800, 3819), 'numpy.arange', 'np.arange', (['n_groups'], {}), '(n_groups)\n', (3809, 3819), True, 'import numpy as np\n'), ((4270, 4297), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scores (in %)"""'], {}), "('Scores (in %)')\n", (4280, 4297), True, 'import matplotlib.pyplot as plt\n'), ((4302, 4388), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(index + bar_width * ind + offset)', "('Precision', 'Recall', 'F-Measure')"], {}), "(index + bar_width * ind + offset, ('Precision', 'Recall',\n 'F-Measure'))\n", (4312, 4388), True, 'import matplotlib.pyplot as plt\n'), ((4387, 4399), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4397, 4399), True, 'import matplotlib.pyplot as plt\n'), ((4404, 4418), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (4412, 4418), True, 'import matplotlib.pyplot as plt\n'), ((4449, 4458), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4456, 4458), True, 'import matplotlib.pyplot as plt\n'), ((4814, 4832), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4830, 4832), True, 'import matplotlib.pyplot as plt\n'), ((4865, 4940), 'matplotlib.pyplot.savefig', 'plt.savefig', (['img_name'], {'dpi': '(200)', 'additional_artists': 'art', 'bbox_inches': '"""tight"""'}), "(img_name, dpi=200, additional_artists=art, bbox_inches='tight')\n", (4876, 4940), True, 'import matplotlib.pyplot as plt\n'), ((5140, 5169), 'utils.abs_path_file', 'utils.abs_path_file', (['filename'], {}), '(filename)\n', (5159, 5169), False, 'import utils\n'), ((5559, 5588), 'utils.abs_path_file', 'utils.abs_path_file', (['filename'], {}), '(filename)\n', (5578, 5588), False, 'import utils\n'), ((5962, 5991), 'utils.abs_path_file', 'utils.abs_path_file', (['filename'], {}), '(filename)\n', (5981, 5991), False, 'import utils\n'), ((6470, 6536), 'utils.print_success', 'utils.print_success', (['"""Find Recall for best Precision for each tag"""'], {}), "('Find Recall for best Precision for each tag')\n", (6489, 6536), False, 'import utils\n'), ((6549, 6575), 'utils.abs_path_file', 'utils.abs_path_file', (['train'], {}), '(train)\n', (6568, 6575), False, 'import utils\n'), ((6587, 6612), 'utils.abs_path_file', 'utils.abs_path_file', (['test'], {}), '(test)\n', (6606, 6612), False, 'import utils\n'), ((9069, 9128), 'utils.print_success', 'utils.print_success', (['"""Comparison of differents classifiers"""'], {}), "('Comparison of differents classifiers')\n", (9088, 9128), False, 'import utils\n'), ((9603, 9628), 'utils.create_dir', 'utils.create_dir', (['res_dir'], {}), '(res_dir)\n', (9619, 9628), False, 'import utils\n'), ((11438, 11497), 'utils.print_success', 'utils.print_success', (['"""Comparison of differents classifiers"""'], {}), "('Comparison of differents classifiers')\n", (11457, 11497), False, 'import utils\n'), ((14585, 14636), 'utils.print_success', 'utils.print_success', (['"""Reading multiple train files"""'], {}), "('Reading multiple train files')\n", (14604, 14636), False, 'import utils\n'), ((15352, 15378), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (15368, 15378), False, 'import sys\n'), ((15553, 15582), 'utils.abs_path_file', 'utils.abs_path_file', (['filename'], {}), '(filename)\n', (15572, 15582), False, 'import utils\n'), ((15926, 15969), 'utils.print_success', 'utils.print_success', (["('Starting ' + clf_name)"], {}), "('Starting ' + clf_name)\n", (15945, 15969), False, 'import utils\n'), ((16012, 16037), 'utils.create_dir', 'utils.create_dir', (['clf_dir'], {}), '(clf_dir)\n', (16028, 16037), False, 'import utils\n'), ((16110, 16155), 'joblib.dump', 'joblib.dump', (['clf', "(clf_dir + clf_name + '.pkl')"], {}), "(clf, clf_dir + clf_name + '.pkl')\n", (16121, 16155), False, 'import joblib\n'), ((17583, 17621), 'utils.print_success', 'utils.print_success', (['"""Creating models"""'], {}), "('Creating models')\n", (17602, 17621), False, 'import utils\n'), ((20069, 20098), 'utils.abs_path_file', 'utils.abs_path_file', (['filename'], {}), '(filename)\n', (20088, 20098), False, 'import utils\n'), ((20611, 20636), 'utils.create_dir', 'utils.create_dir', (['out_dir'], {}), '(out_dir)\n', (20627, 20636), False, 'import utils\n'), ((20654, 20674), 'os.listdir', 'os.listdir', (['test_dir'], {}), '(test_dir)\n', (20664, 20674), False, 'import os\n'), ((20688, 20710), 'os.listdir', 'os.listdir', (['models_dir'], {}), '(models_dir)\n', (20698, 20710), False, 'import os\n'), ((21847, 21886), 'utils.print_success', 'utils.print_success', (["('Testing ' + model)"], {}), "('Testing ' + model)\n", (21866, 21886), False, 'import utils\n'), ((21928, 21982), 'joblib.load', 'joblib.load', (["(models_dir + model + '/' + model + '.pkl')"], {}), "(models_dir + model + '/' + model + '.pkl')\n", (21939, 21982), False, 'import joblib\n'), ((24336, 24358), 'os.listdir', 'os.listdir', (['models_dir'], {}), '(models_dir)\n', (24346, 24358), False, 'import os\n'), ((24363, 24388), 'utils.create_dir', 'utils.create_dir', (['out_dir'], {}), '(out_dir)\n', (24379, 24388), False, 'import utils\n'), ((24719, 24846), 'functools.partial', 'partial', (['test_model'], {'models_dir': 'models_dir', 'test_dir': 'test_dir', 'out_dir': 'out_dir', 'test_files': 'test_files', 'test_file': 'test_file'}), '(test_model, models_dir=models_dir, test_dir=test_dir, out_dir=\n out_dir, test_files=test_files, test_file=test_file)\n', (24726, 24846), False, 'from functools import partial\n'), ((25174, 25209), 'utils.abs_path_file', 'utils.abs_path_file', (['train_filename'], {}), '(train_filename)\n', (25193, 25209), False, 'import utils\n'), ((25473, 25491), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (25481, 25491), True, 'import numpy as np\n'), ((25511, 25533), 'numpy.array', 'np.array', (['groundtruths'], {}), '(groundtruths)\n', (25519, 25533), True, 'import numpy as np\n'), ((26250, 26283), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'n_folds'}), '(n_splits=n_folds)\n', (26265, 26283), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((34342, 34355), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (34352, 34355), True, 'import matplotlib.pyplot as plt\n'), ((34360, 34413), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]', '"""k--"""'], {'label': '"""Random (0.5)"""'}), "([0, 1], [0, 1], 'k--', label='Random (0.5)')\n", (34368, 34413), True, 'import matplotlib.pyplot as plt\n'), ((34431, 34456), 'utils.abs_path_dir', 'utils.abs_path_dir', (['indir'], {}), '(indir)\n', (34449, 34456), False, 'import utils\n'), ((34473, 34490), 'os.listdir', 'os.listdir', (['indir'], {}), '(indir)\n', (34483, 34490), False, 'import os\n'), ((35362, 35371), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (35369, 35371), True, 'import matplotlib.pyplot as plt\n'), ((35538, 35571), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False positive rate"""'], {}), "('False positive rate')\n", (35548, 35571), True, 'import matplotlib.pyplot as plt\n'), ((35576, 35608), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True positive rate"""'], {}), "('True positive rate')\n", (35586, 35608), True, 'import matplotlib.pyplot as plt\n'), ((35657, 35679), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (35667, 35679), True, 'import matplotlib.pyplot as plt\n'), ((35693, 35719), 'utils.abs_path_dir', 'utils.abs_path_dir', (['outdir'], {}), '(outdir)\n', (35711, 35719), False, 'import utils\n'), ((35765, 35814), 'matplotlib.pyplot.savefig', 'plt.savefig', (['roc_fn'], {'dpi': '(200)', 'bbox_inches': '"""tight"""'}), "(roc_fn, dpi=200, bbox_inches='tight')\n", (35776, 35814), True, 'import matplotlib.pyplot as plt\n'), ((35819, 35859), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(outdir + 'Figure_3_ROC.eps')"], {}), "(outdir + 'Figure_3_ROC.eps')\n", (35830, 35859), True, 'import matplotlib.pyplot as plt\n'), ((35881, 35892), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (35890, 35892), True, 'import matplotlib.pyplot as plt\n'), ((35897, 35963), 'utils.print_success', 'utils.print_success', (["('ROC curve successfully created in ' + roc_fn)"], {}), "('ROC curve successfully created in ' + roc_fn)\n", (35916, 35963), False, 'import utils\n'), ((36064, 36077), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (36074, 36077), True, 'import matplotlib.pyplot as plt\n'), ((36095, 36120), 'utils.abs_path_dir', 'utils.abs_path_dir', (['indir'], {}), '(indir)\n', (36113, 36120), False, 'import utils\n'), ((36137, 36154), 'os.listdir', 'os.listdir', (['indir'], {}), '(indir)\n', (36147, 36154), False, 'import os\n'), ((36797, 36817), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall"""'], {}), "('Recall')\n", (36807, 36817), True, 'import matplotlib.pyplot as plt\n'), ((36822, 36845), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Precision"""'], {}), "('Precision')\n", (36832, 36845), True, 'import matplotlib.pyplot as plt\n'), ((36850, 36871), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (36858, 36871), True, 'import matplotlib.pyplot as plt\n'), ((36876, 36899), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.05, 1.05]'], {}), '([-0.05, 1.05])\n', (36884, 36899), True, 'import matplotlib.pyplot as plt\n'), ((36904, 36954), 'matplotlib.pyplot.title', 'plt.title', (['"""Precision-Recall curve for Algo (AUC)"""'], {}), "('Precision-Recall curve for Algo (AUC)')\n", (36913, 36954), True, 'import matplotlib.pyplot as plt\n'), ((36959, 36981), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (36969, 36981), True, 'import matplotlib.pyplot as plt\n'), ((36986, 37060), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(outdir + 'precision_recall.png')"], {'dpi': '(200)', 'bbox_inches': '"""tight"""'}), "(outdir + 'precision_recall.png', dpi=200, bbox_inches='tight')\n", (36997, 37060), True, 'import matplotlib.pyplot as plt\n'), ((37082, 37093), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (37091, 37093), True, 'import matplotlib.pyplot as plt\n'), ((37098, 37164), 'utils.print_success', 'utils.print_success', (["('Precision-Recall curve created in ' + outdir)"], {}), "('Precision-Recall curve created in ' + outdir)\n", (37117, 37164), False, 'import utils\n'), ((37206, 37264), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compare classifiers"""'}), "(description='Compare classifiers')\n", (37229, 37264), False, 'import argparse\n'), ((3457, 3482), 'utils.abs_path_dir', 'utils.abs_path_dir', (['indir'], {}), '(indir)\n', (3475, 3482), False, 'import utils\n'), ((6836, 6860), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (6858, 6860), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((7276, 7309), 'utils.print_success', 'utils.print_success', (["('Tag ' + tag)"], {}), "('Tag ' + tag)\n", (7295, 7309), False, 'import utils\n'), ((8565, 8591), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (8581, 8591), False, 'import sys\n'), ((9544, 9588), 'utils.print_error', 'utils.print_error', (['"""No valid data provided."""'], {}), "('No valid data provided.')\n", (9561, 9588), False, 'import utils\n'), ((9736, 9759), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', (['(1)'], {}), '(1)\n', (9756, 9759), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((10389, 10413), 'utils.print_success', 'utils.print_success', (['key'], {}), '(key)\n', (10408, 10413), False, 'import utils\n'), ((10453, 10478), 'utils.print_info', 'utils.print_info', (['"""\tFit"""'], {}), "('\\tFit')\n", (10469, 10478), False, 'import utils\n'), ((10539, 10568), 'utils.print_info', 'utils.print_info', (['"""\tPredict"""'], {}), "('\\tPredict')\n", (10555, 10568), False, 'import utils\n'), ((11753, 11779), 'utils.abs_path_file', 'utils.abs_path_file', (['train'], {}), '(train)\n', (11772, 11779), False, 'import utils\n'), ((11795, 11820), 'utils.abs_path_file', 'utils.abs_path_file', (['test'], {}), '(test)\n', (11814, 11820), False, 'import utils\n'), ((11953, 11978), 'utils.create_dir', 'utils.create_dir', (['res_dir'], {}), '(res_dir)\n', (11969, 11978), False, 'import utils\n'), ((11998, 12025), 'utils.abs_path_dir', 'utils.abs_path_dir', (['res_dir'], {}), '(res_dir)\n', (12016, 12025), False, 'import utils\n'), ((12070, 12103), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_jobs': '(-1)'}), '(n_jobs=-1)\n', (12092, 12103), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((12846, 12870), 'utils.print_success', 'utils.print_success', (['key'], {}), '(key)\n', (12865, 12870), False, 'import utils\n'), ((12910, 12935), 'utils.print_info', 'utils.print_info', (['"""\tFit"""'], {}), "('\\tFit')\n", (12926, 12935), False, 'import utils\n'), ((12996, 13025), 'utils.print_info', 'utils.print_info', (['"""\tPredict"""'], {}), "('\\tPredict')\n", (13012, 13025), False, 'import utils\n'), ((14649, 14674), 'utils.abs_path_dir', 'utils.abs_path_dir', (['indir'], {}), '(indir)\n', (14667, 14674), False, 'import utils\n'), ((15006, 15032), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[F"""'], {}), "('\\x1b[F')\n", (15022, 15032), False, 'import sys\n'), ((15069, 15095), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (15085, 15095), False, 'import sys\n'), ((17636, 17662), 'utils.abs_path_dir', 'utils.abs_path_dir', (['outdir'], {}), '(outdir)\n', (17654, 17662), False, 'import utils\n'), ((20520, 20550), 'utils.abs_path_dir', 'utils.abs_path_dir', (['models_dir'], {}), '(models_dir)\n', (20538, 20550), False, 'import utils\n'), ((20572, 20600), 'utils.abs_path_dir', 'utils.abs_path_dir', (['test_dir'], {}), '(test_dir)\n', (20590, 20600), False, 'import utils\n'), ((20744, 20770), 'utils.print_success', 'utils.print_success', (['model'], {}), '(model)\n', (20763, 20770), False, 'import utils\n'), ((20820, 20846), 'utils.create_dir', 'utils.create_dir', (['pred_dir'], {}), '(pred_dir)\n', (20836, 20846), False, 'import utils\n'), ((20861, 20915), 'joblib.load', 'joblib.load', (["(models_dir + model + '/' + model + '.pkl')"], {}), "(models_dir + model + '/' + model + '.pkl')\n", (20872, 20915), False, 'import joblib\n'), ((21383, 21409), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (21399, 21409), False, 'import sys\n'), ((22056, 22082), 'utils.create_dir', 'utils.create_dir', (['pred_dir'], {}), '(pred_dir)\n', (22072, 22082), False, 'import utils\n'), ((24286, 24316), 'utils.abs_path_dir', 'utils.abs_path_dir', (['models_dir'], {}), '(models_dir)\n', (24304, 24316), False, 'import utils\n'), ((24494, 24514), 'os.listdir', 'os.listdir', (['test_dir'], {}), '(test_dir)\n', (24504, 24514), False, 'import os\n'), ((26319, 26361), 'utils.print_warning', 'utils.print_warning', (['"""TODO for i in range"""'], {}), "('TODO for i in range')\n", (26338, 26361), False, 'import utils\n'), ((28568, 28602), 'json.dump', 'json.dump', (['data', 'outfile'], {'indent': '(2)'}), '(data, outfile, indent=2)\n', (28577, 28602), False, 'import json\n'), ((7640, 7665), 'numpy.arange', 'np.arange', (['(0.0)', '(1.0)', 'step'], {}), '(0.0, 1.0, step)\n', (7649, 7665), True, 'import numpy as np\n'), ((13894, 13955), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (13909, 13955), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((13977, 14035), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (13989, 14035), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((14053, 14107), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (14061, 14107), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((14786, 14803), 'os.listdir', 'os.listdir', (['indir'], {}), '(indir)\n', (14796, 14803), False, 'import os\n'), ((17894, 17947), 'utils.print_warning', 'utils.print_warning', (['"""TODO Manage train feat and gts"""'], {}), "('TODO Manage train feat and gts')\n", (17913, 17947), False, 'import utils\n'), ((18029, 18053), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (18051, 18053), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((18088, 18108), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (18106, 18108), False, 'from sklearn.linear_model import LogisticRegression\n'), ((18135, 18157), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (18155, 18157), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((18186, 18210), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (18208, 18210), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((18235, 18255), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {}), '()\n', (18253, 18255), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((18288, 18316), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {}), '()\n', (18314, 18316), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((18343, 18365), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {}), '()\n', (18363, 18365), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((18385, 18432), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""linear"""', 'C': '(0.025)', 'probability': '(True)'}), "(kernel='linear', C=0.025, probability=True)\n", (18388, 18432), False, 'from sklearn.svm import SVC\n'), ((18861, 18904), 'utils.print_success', 'utils.print_success', (["('Starting ' + clf_name)"], {}), "('Starting ' + clf_name)\n", (18880, 18904), False, 'import utils\n'), ((18963, 18988), 'utils.create_dir', 'utils.create_dir', (['clf_dir'], {}), '(clf_dir)\n', (18979, 18988), False, 'import utils\n'), ((19007, 19040), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_jobs': '(-1)'}), '(n_jobs=-1)\n', (19029, 19040), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, GradientBoostingClassifier\n'), ((19153, 19198), 'joblib.dump', 'joblib.dump', (['clf', "(clf_dir + clf_name + '.pkl')"], {}), "(clf, clf_dir + clf_name + '.pkl')\n", (19164, 19198), False, 'import joblib\n'), ((21032, 21058), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[F"""'], {}), "('\\x1b[F')\n", (21048, 21058), False, 'import sys\n'), ((21071, 21097), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (21087, 21097), False, 'import sys\n'), ((23754, 23813), 'utils.print_error', 'utils.print_error', (['"""Error in arg for test_model() function"""'], {}), "('Error in arg for test_model() function')\n", (23771, 23813), False, 'import utils\n'), ((24438, 24466), 'utils.abs_path_dir', 'utils.abs_path_dir', (['test_dir'], {}), '(test_dir)\n', (24456, 24466), False, 'import utils\n'), ((24616, 24692), 'utils.print_warning', 'utils.print_warning', (['"""TODO Error in arg for test_models_parallel() function"""'], {}), "('TODO Error in arg for test_models_parallel() function')\n", (24635, 24692), False, 'import utils\n'), ((25665, 25681), 'json.load', 'json.load', (['filep'], {}), '(filep)\n', (25674, 25681), False, 'import json\n'), ((30150, 30196), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['test_groundtruths', 'predictions'], {}), '(test_groundtruths, predictions)\n', (30164, 30196), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((33064, 33125), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (33079, 33125), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((34927, 34968), 'sklearn.metrics.roc_curve', 'roc_curve', (['test_groundtruths', 'predictions'], {}), '(test_groundtruths, predictions)\n', (34936, 34968), False, 'from sklearn.metrics import roc_curve\n'), ((35307, 35351), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr_rf', 'tpr_rf', 'color'], {'label': 'label'}), '(fpr_rf, tpr_rf, color, label=label)\n', (35315, 35351), True, 'import matplotlib.pyplot as plt\n'), ((36594, 36648), 'sklearn.metrics.precision_recall_curve', 'precision_recall_curve', (['test_groundtruths', 'predictions'], {}), '(test_groundtruths, predictions)\n', (36616, 36648), False, 'from sklearn.metrics import precision_recall_curve, average_precision_score\n'), ((7755, 7781), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[F"""'], {}), "('\\x1b[F')\n", (7771, 7781), False, 'import sys\n'), ((7798, 7824), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[K"""'], {}), "('\\x1b[K')\n", (7814, 7824), False, 'import sys\n'), ((13350, 13417), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (13365, 13417), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((13444, 13508), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (13456, 13508), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((13535, 13595), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (13543, 13595), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((15901, 15912), 'time.time', 'time.time', ([], {}), '()\n', (15910, 15912), False, 'import time\n'), ((21822, 21833), 'time.time', 'time.time', ([], {}), '()\n', (21831, 21833), False, 'import time\n'), ((31331, 31357), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['gts', 'feats'], {}), '(gts, feats)\n', (31345, 31357), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((33201, 33262), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (33216, 33262), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((33295, 33353), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (33307, 33353), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((33386, 33440), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (33394, 33440), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((34021, 34068), 'sklearn.metrics.precision_score', 'precision_score', (['gts', 'predictions'], {'average': 'None'}), '(gts, predictions, average=None)\n', (34036, 34068), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((8042, 8103), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (8057, 8103), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((10662, 10729), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (10677, 10729), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((10772, 10836), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (10784, 10836), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((10875, 10935), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': '"""weighted"""'}), "(test_groundtruths, predictions, average='weighted')\n", (10883, 10935), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27046, 27118), 'sklearn.metrics.precision_score', 'precision_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27061, 27118), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27154, 27223), 'sklearn.metrics.recall_score', 'recall_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27166, 27223), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27259, 27324), 'sklearn.metrics.f1_score', 'f1_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27267, 27324), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27360, 27432), 'sklearn.metrics.precision_score', 'precision_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27375, 27432), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27468, 27537), 'sklearn.metrics.recall_score', 'recall_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27480, 27537), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((27573, 27638), 'sklearn.metrics.f1_score', 'f1_score', (["dataset['test_groundtruths']", 'predictions'], {'average': 'None'}), "(dataset['test_groundtruths'], predictions, average=None)\n", (27581, 27638), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((30249, 30310), 'sklearn.metrics.precision_score', 'precision_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (30264, 30310), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((30559, 30622), 'utils.print_error', 'utils.print_error', (['"""classify.py line 735 metric argument error"""'], {}), "('classify.py line 735 metric argument error')\n", (30576, 30622), False, 'import utils\n'), ((31746, 31760), 'statistics.stdev', 'stdev', (['tmp_acc'], {}), '(tmp_acc)\n', (31751, 31760), False, 'from statistics import stdev\n'), ((8187, 8245), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (8199, 8245), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((8421, 8475), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (8429, 8475), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((18828, 18839), 'time.time', 'time.time', ([], {}), '()\n', (18837, 18839), False, 'import time\n'), ((22477, 22589), 'utils.print_warning', 'utils.print_warning', (['(\'predict_proba does not exists for \' + model +\n """\nRegular predict function is used.""")'], {}), '(\'predict_proba does not exists for \' + model +\n """\nRegular predict function is used.""")\n', (22496, 22589), False, 'import utils\n'), ((30365, 30423), 'sklearn.metrics.recall_score', 'recall_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (30377, 30423), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((31424, 31465), 'sklearn.metrics.precision_score', 'precision_score', (['gts', 'feats'], {'average': 'None'}), '(gts, feats, average=None)\n', (31439, 31465), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((30480, 30534), 'sklearn.metrics.f1_score', 'f1_score', (['test_groundtruths', 'predictions'], {'average': 'None'}), '(test_groundtruths, predictions, average=None)\n', (30488, 30534), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((31534, 31572), 'sklearn.metrics.recall_score', 'recall_score', (['gts', 'feats'], {'average': 'None'}), '(gts, feats, average=None)\n', (31546, 31572), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((35018, 35063), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['test_groundtruths', 'predictions'], {}), '(test_groundtruths, predictions)\n', (35031, 35063), False, 'from sklearn.metrics import roc_auc_score\n'), ((31643, 31677), 'sklearn.metrics.f1_score', 'f1_score', (['gts', 'feats'], {'average': 'None'}), '(gts, feats, average=None)\n', (31651, 31677), False, 'from sklearn.metrics import precision_recall_curve, precision_score, recall_score, classification_report, f1_score, accuracy_score\n'), ((16216, 16227), 'time.time', 'time.time', ([], {}), '()\n', (16225, 16227), False, 'import time\n'), ((23871, 23882), 'time.time', 'time.time', ([], {}), '()\n', (23880, 23882), False, 'import time\n'), ((36724, 36779), 'sklearn.metrics.average_precision_score', 'average_precision_score', (['test_groundtruths', 'predictions'], {}), '(test_groundtruths, predictions)\n', (36747, 36779), False, 'from sklearn.metrics import precision_recall_curve, average_precision_score\n'), ((19267, 19278), 'time.time', 'time.time', ([], {}), '()\n', (19276, 19278), False, 'import time\n')]
import numpy as np import pandas as pd from .nlp_utils.classifier import NaiveBayesClassifier from .nlp_utils.tokenizer import NGramTokenizer DATASET_PATH = 'spam_filter/data/spam.csv' def preprocess_data(): dataset = pd.read_csv(DATASET_PATH, encoding='latin-1') dataset.rename(columns={'v1': 'labels', 'v2': 'message'}, inplace=True) dataset['label'] = dataset['labels'].map({'ham': 0, 'spam': 1}) dataset.drop(['labels'], axis=1, inplace=True) train_indices, test_indices = [], [] for i in range(dataset.shape[0]): if np.random.uniform(0, 1) < 0.75: train_indices += [i] else: test_indices += [i] train_dataset = dataset.loc[train_indices] test_dataset = dataset.loc[test_indices] train_dataset.reset_index(inplace=True) train_dataset.drop(['index'], axis=1, inplace=True) test_dataset.reset_index(inplace=True) test_dataset.drop(['index'], axis=1, inplace=True) return train_dataset, test_dataset def metrics(labels, predictions): true_pos, true_neg, false_pos, false_neg = 0, 0, 0, 0 for i in range(len(labels)): true_pos += int(labels[i] == 1 and predictions[i] == 1) true_neg += int(labels[i] == 0 and predictions[i] == 0) false_pos += int(labels[i] == 0 and predictions[i] == 1) false_neg += int(labels[i] == 1 and predictions[i] == 0) precision = true_pos / (true_pos + false_pos) recall = true_pos / (true_pos + false_neg) f_score = 2 * precision * recall / (precision + recall) accuracy = (true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg) print("Precision: ", precision) print("Recall: ", recall) print("F-score: ", f_score) print("Accuracy: ", accuracy) if __name__ == '__main__': train_dataset, test_dataset = preprocess_data() classifier = NaiveBayesClassifier() classifier.train(train_dataset) prediction_list = classifier.predict(test_dataset['message']) metrics(test_dataset['label'], prediction_list)
[ "pandas.read_csv", "numpy.random.uniform" ]
[((226, 271), 'pandas.read_csv', 'pd.read_csv', (['DATASET_PATH'], {'encoding': '"""latin-1"""'}), "(DATASET_PATH, encoding='latin-1')\n", (237, 271), True, 'import pandas as pd\n'), ((558, 581), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (575, 581), True, 'import numpy as np\n')]
import numpy as np import cv2 # Translation is the shifting of objects location. If you know the shift in # (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix # M as follows: # # M = | 1 0 t_x | # | 0 1 t_y | # # You'll need to make it into a Numpy array of type np.float32 and pass it into # cv2.warpAffine() function. img = cv2.imread('images/saturn.png', 0) rows, cols = img.shape translate_x = -150 translate_y = 50 M = np.float32([[1, 0, translate_x], [0, 1, translate_y]]) img_translated = cv2.warpAffine(img, M, (cols, rows)) cv2.imshow('Translated Image', img_translated) cv2.waitKey(0) cv2.destroyAllWindows() # WARNING: Third argument of the cv2.warpAffine() function is the size of the # output image, which should be in the form of (width, height). # Remember width = number of columns, and height = number of rows.
[ "cv2.waitKey", "cv2.destroyAllWindows", "numpy.float32", "cv2.imread", "cv2.warpAffine", "cv2.imshow" ]
[((377, 411), 'cv2.imread', 'cv2.imread', (['"""images/saturn.png"""', '(0)'], {}), "('images/saturn.png', 0)\n", (387, 411), False, 'import cv2\n'), ((475, 529), 'numpy.float32', 'np.float32', (['[[1, 0, translate_x], [0, 1, translate_y]]'], {}), '([[1, 0, translate_x], [0, 1, translate_y]])\n', (485, 529), True, 'import numpy as np\n'), ((548, 584), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'M', '(cols, rows)'], {}), '(img, M, (cols, rows))\n', (562, 584), False, 'import cv2\n'), ((585, 631), 'cv2.imshow', 'cv2.imshow', (['"""Translated Image"""', 'img_translated'], {}), "('Translated Image', img_translated)\n", (595, 631), False, 'import cv2\n'), ((632, 646), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (643, 646), False, 'import cv2\n'), ((647, 670), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (668, 670), False, 'import cv2\n')]
import os import pandas as pd import pdb import seaborn as sns import matplotlib.pyplot as plt #import pymrmr from scipy.stats import kendalltau, pearsonr, spearmanr from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE import numpy as np # Feature Importance Sklearn # https://machinelearningmastery.com/calculate-feature-importance-with-python/ class Feature_Selection(object): """ Class with preprocessments to apply in dataframe """ def __init__(self): super().__init__() self.correlation_matrix = Correlation_Matrix() def select_features(self,df,columns): raise NotImplementedError() def get_missing_values_df(self,df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_df = pd.DataFrame({'column_name': df.columns,'percent_missing': percent_missing}) return missing_value_df def get_correlation_matrix(self,df,method): return self.correlation_matrix.get_correlation_matrix(df,method) def plot_correlation_matrix(self,df_corr,plot=True): return self.correlation_matrix.plot_correlation_matrix(df_corr,plot) def get_correlation_with_target(self,df,target_column,method,num_feats=10): return self.correlation_matrix.get_correlation_with_target(df,target_column,method,num_feats) def get_IG_feature_scores(self,df,n_features_to_select): """ IG calculates the importance of each feature by measuring the increase in entropy when the feature is given vs. absent. """ bestfeatures = SelectKBest(score_func=mutual_info_classif, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(xs,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores # def get_mRMR_feature_scores(self,df,n_features_to_select): # # https://medium.com/subex-ai-labs/feature-selection-techniques-for-machine-learning-in-python-455dadcd3869 # """ # (Minimal Redundancy and Maximal Relevance) # Intuition: It selects the features, based on their relevancy with the target variable, as well as their redundancy with the other features. # """ # selected_features = pymrmr.mRMR(df, 'MIQ',n_features_to_select) # return selected_features def get_chisquare_feature_scores(self,df,target_column,n_features_to_select): """ It calculates the correlation between the feature and target and selects the best k features according to their chi square score calculated using following chi square test. """ X,y = self._split_df_in_xy(df,target_column) import pdb;pdb.set_trace() bestfeatures = SelectKBest(score_func=chi2, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(X,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores def get_anova_feature_scores(self,df,n_features_to_select): """ We perform Anova between features and target to check if they belong to same population. """ bestfeatures = SelectKBest(score_func=f_classif, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(xs,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores def get_features_by_RFE(self,df,model): """ It is a greedy optimization algorithm which aims to find the best performing feature subset. It repeatedly creates models and keeps aside the best or the worst performing feature at each iteration. It constructs the next model with the left features until all the features are exhausted. It then ranks the features based on the order of their elimination. """ #model = LogisticRegression(max_iter=1000) rfe_model = RFE(model, 20) rfe_fit = rfe_model.fit(x, y) selected = df[df.columns[rfe_fit.get_support(indices=True)]] return selected def get_feature_selection_summary(self,df): # https://towardsdatascience.com/the-5-feature-selection-algorithms-every-data-scientist-need-to-know-3a6b566efd2 # put all selection together feature_selection_df = pd.DataFrame({'Feature':feature_name, 'Pearson':cor_support, 'Chi-2':chi_support, 'RFE':rfe_support, 'Logistics':embeded_lr_support, 'Random Forest':embeded_rf_support, 'LightGBM':embeded_lgb_support}) # count the selected times for each feature feature_selection_df['Total'] = np.sum(feature_selection_df, axis=1) # display the top 100 feature_selection_df = feature_selection_df.sort_values(['Total','Feature'] , ascending=False) feature_selection_df.index = range(1, len(feature_selection_df)+1) feature_selection_df.head(num_feats) class Correlation_Matrix(object): def __init__(self): super().__init__() def get_correlation_with_target(self,df,target_column,method,num_feats): corr_dict = self.get_correlation_matrix(df,method) df_k,df_p = corr_dict['df_k'],corr_dict['df_p'] correlations_with_target = df_k[target_column] correlations_with_target = correlations_with_target.fillna(0) correlations_with_target = correlations_with_target[correlations_with_target.index.difference([target_column])] correlations_with_target = correlations_with_target.map(lambda x : x).abs().sort_values(ascending = False) correlations_with_target = correlations_with_target[:num_feats] return correlations_with_target def plot_correlation_matrix(self,df_corr,plot=True): plt.figure(figsize=(16, 6)) heatmap = sns.heatmap(df_corr, vmin=-1, vmax=1, annot=True, cmap='coolwarm') heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':18}, pad=12) if plot: plt.show() else: return heatmap def get_correlation_matrix(self,df,method): accpedted_correlations = ['pearson','spearman','kendall'] if method not in accpedted_correlations: raise ValueError(f"O método deve ser um entre {accpedted_correlations}") if method == 'pearson': method_k = self._pearsonr_rval method_p = self._pearsonr_pval elif method == 'spearman': method_k = self._spearmanr_rval method_p = self._spearmanr_pval elif method == 'kendall': method_k = self._kendall_rval method_p = self._kendall_pval df_k = df.corr(method=method_k) df_p = df.corr(method=method_p) return {'df_k':df_k,'df_p':df_p} def _kendall_rval(self,x,y): return np.round(kendalltau(x,y)[0],6) def _pearsonr_rval(self,x,y): return np.round(pearsonr(x,y)[0],6) def _spearmanr_rval(self,x,y): return np.round(spearmanr(x,y)[0],6) def _kendall_pval(self,x,y): return np.round(kendalltau(x,y)[1],6) def _pearsonr_pval(self,x,y): return np.round(pearsonr(x,y)[1],6) def _spearmanr_pval(self,x,y): return np.round(spearmanr(x,y)[1],6)
[ "pandas.DataFrame", "numpy.sum", "seaborn.heatmap", "matplotlib.pyplot.show", "sklearn.feature_selection.RFE", "scipy.stats.spearmanr", "scipy.stats.pearsonr", "matplotlib.pyplot.figure", "pdb.set_trace", "scipy.stats.kendalltau", "sklearn.feature_selection.SelectKBest", "pandas.concat" ]
[((804, 881), 'pandas.DataFrame', 'pd.DataFrame', (["{'column_name': df.columns, 'percent_missing': percent_missing}"], {}), "({'column_name': df.columns, 'percent_missing': percent_missing})\n", (816, 881), True, 'import pandas as pd\n'), ((1598, 1665), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'score_func': 'mutual_info_classif', 'k': 'n_features_to_select'}), '(score_func=mutual_info_classif, k=n_features_to_select)\n', (1609, 1665), False, 'from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE\n'), ((1767, 1792), 'pandas.DataFrame', 'pd.DataFrame', (['fit.scores_'], {}), '(fit.scores_)\n', (1779, 1792), True, 'import pandas as pd\n'), ((1813, 1837), 'pandas.DataFrame', 'pd.DataFrame', (['xs.columns'], {}), '(xs.columns)\n', (1825, 1837), True, 'import pandas as pd\n'), ((1862, 1902), 'pandas.concat', 'pd.concat', (['[dfcolumns, dfscores]'], {'axis': '(1)'}), '([dfcolumns, dfscores], axis=1)\n', (1871, 1902), True, 'import pandas as pd\n'), ((2891, 2906), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (2904, 2906), False, 'import pdb\n'), ((2930, 2982), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'score_func': 'chi2', 'k': 'n_features_to_select'}), '(score_func=chi2, k=n_features_to_select)\n', (2941, 2982), False, 'from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE\n'), ((3083, 3108), 'pandas.DataFrame', 'pd.DataFrame', (['fit.scores_'], {}), '(fit.scores_)\n', (3095, 3108), True, 'import pandas as pd\n'), ((3129, 3153), 'pandas.DataFrame', 'pd.DataFrame', (['xs.columns'], {}), '(xs.columns)\n', (3141, 3153), True, 'import pandas as pd\n'), ((3178, 3218), 'pandas.concat', 'pd.concat', (['[dfcolumns, dfscores]'], {'axis': '(1)'}), '([dfcolumns, dfscores], axis=1)\n', (3187, 3218), True, 'import pandas as pd\n'), ((3507, 3564), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'score_func': 'f_classif', 'k': 'n_features_to_select'}), '(score_func=f_classif, k=n_features_to_select)\n', (3518, 3564), False, 'from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE\n'), ((3666, 3691), 'pandas.DataFrame', 'pd.DataFrame', (['fit.scores_'], {}), '(fit.scores_)\n', (3678, 3691), True, 'import pandas as pd\n'), ((3712, 3736), 'pandas.DataFrame', 'pd.DataFrame', (['xs.columns'], {}), '(xs.columns)\n', (3724, 3736), True, 'import pandas as pd\n'), ((3761, 3801), 'pandas.concat', 'pd.concat', (['[dfcolumns, dfscores]'], {'axis': '(1)'}), '([dfcolumns, dfscores], axis=1)\n', (3770, 3801), True, 'import pandas as pd\n'), ((4386, 4400), 'sklearn.feature_selection.RFE', 'RFE', (['model', '(20)'], {}), '(model, 20)\n', (4389, 4400), False, 'from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE\n'), ((4771, 4987), 'pandas.DataFrame', 'pd.DataFrame', (["{'Feature': feature_name, 'Pearson': cor_support, 'Chi-2': chi_support,\n 'RFE': rfe_support, 'Logistics': embeded_lr_support, 'Random Forest':\n embeded_rf_support, 'LightGBM': embeded_lgb_support}"], {}), "({'Feature': feature_name, 'Pearson': cor_support, 'Chi-2':\n chi_support, 'RFE': rfe_support, 'Logistics': embeded_lr_support,\n 'Random Forest': embeded_rf_support, 'LightGBM': embeded_lgb_support})\n", (4783, 4987), True, 'import pandas as pd\n'), ((5109, 5145), 'numpy.sum', 'np.sum', (['feature_selection_df'], {'axis': '(1)'}), '(feature_selection_df, axis=1)\n', (5115, 5145), True, 'import numpy as np\n'), ((6226, 6253), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 6)'}), '(figsize=(16, 6))\n', (6236, 6253), True, 'import matplotlib.pyplot as plt\n'), ((6272, 6338), 'seaborn.heatmap', 'sns.heatmap', (['df_corr'], {'vmin': '(-1)', 'vmax': '(1)', 'annot': '(True)', 'cmap': '"""coolwarm"""'}), "(df_corr, vmin=-1, vmax=1, annot=True, cmap='coolwarm')\n", (6283, 6338), True, 'import seaborn as sns\n'), ((6451, 6461), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6459, 6461), True, 'import matplotlib.pyplot as plt\n'), ((7307, 7323), 'scipy.stats.kendalltau', 'kendalltau', (['x', 'y'], {}), '(x, y)\n', (7317, 7323), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n'), ((7388, 7402), 'scipy.stats.pearsonr', 'pearsonr', (['x', 'y'], {}), '(x, y)\n', (7396, 7402), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n'), ((7468, 7483), 'scipy.stats.spearmanr', 'spearmanr', (['x', 'y'], {}), '(x, y)\n', (7477, 7483), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n'), ((7547, 7563), 'scipy.stats.kendalltau', 'kendalltau', (['x', 'y'], {}), '(x, y)\n', (7557, 7563), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n'), ((7628, 7642), 'scipy.stats.pearsonr', 'pearsonr', (['x', 'y'], {}), '(x, y)\n', (7636, 7642), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n'), ((7708, 7723), 'scipy.stats.spearmanr', 'spearmanr', (['x', 'y'], {}), '(x, y)\n', (7717, 7723), False, 'from scipy.stats import kendalltau, pearsonr, spearmanr\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 30 07:05:07 2018 @author: massimo """ from brightway2 import * import pandas as pd import numpy as np from matplotlib import pyplot as plt from scipy import stats projects projects.set_current('bw2_import_ecoinvent_3.4') databases db = Database("ecoinvent 3.4 conseq") ipcc = ('IPCC 2013', 'climate change', 'GTP 100a') # Simple montecarlo on ecoinvent process as we know it. mydemand = {db.random(): 1} # select a random process lca = LCA(mydemand, ipcc) lca.lci() lca.lcia() lca.score mc = MonteCarloLCA(mydemand, ipcc) mc_results = [next(mc) for x in range(500)] plt.hist(mc_results, density=True) plt.ylabel("Probability") plt.xlabel(methods[ipcc]["unit"]) pd.DataFrame(mc_results).describe() lca.score np.exp(np.mean(np.log(mc_results))) # geometric mean # Now comparative analysis db.search('lorry transport euro5') # look at the names activity_name = 'transport, freight, lorry >32 metric ton, EURO5' for activity in Database("ecoinvent 3.4 conseq"): if activity['name'] == activity_name: truckE5 = Database("ecoinvent 3.4 conseq").get(activity['code']) activity_name = 'transport, freight, lorry >32 metric ton, EURO6' for activity in Database("ecoinvent 3.4 conseq"): if activity['name'] == activity_name: truckE6 = Database("ecoinvent 3.4 conseq").get(activity['code']) truckE5.as_dict() truckE6.as_dict() # make a list with the alternatives demands = [{truckE5: 1}, {truckE6: 1}] mc = MonteCarloLCA(demands[0], ipcc) next(mc) # look at this first mc.redo_lcia(demands[0]) mc.score mc.redo_lcia(demands[1]) mc.score mc.redo_lcia(demands[0]) mc.score # Now for several iterations iterations = 100 simulations = [] for _ in range(iterations): print(_) next(mc) mcresults = [] for i in demands: mc.redo_lcia(i) mcresults.append(mc.score) simulations.append(mcresults) simulations df = pd.DataFrame(simulations, columns = ['truckE5','truckE6']) df.to_csv('ComparativeMCsimulation.csv') # to save it #plot stuff (using the matplotlib package) df.plot(kind = 'box') #df.T.melt() plt.plot(df.truckE5, df.truckE6, 'o') plt.xlabel('truckE5 - kg CO2-eq') plt.ylabel('truckE6 - kg CO2-eq') # You can see how many times the difference is positive. This is what Simapro does df.diffe = df.truckE5 - df.truckE6 plt.hist(df.diffe.values) len(df.diffe[df.diffe < 0]) len(df.diffe[df.diffe > 0]) len(df.diffe[df.diffe == 0]) # Statistical testing (using the stats package) # I can use a paired t-test t_value, p_value = stats.ttest_rel(df.truckE5,df.truckE6) t_value p_value # But wait! did we check for normality? plt.hist(df.truckE5.values) plt.xlabel('truckE5 - kg CO2-eq') SW_value, SW_p_value = stats.shapiro(df.truckE5) SW_p_value # Not normally distributed... plt.hist(df.truckE6.values) SW_value, SW_p_value = stats.shapiro(df.truckE6) SW_p_value # Normally distributed if alpha = 0.05...Not strong though if we hasd say 1000 samples # Alright need a non-parametric test. Wilcox sign rank test s_value, p_value = stats.wilcoxon(df.truckE5, df.truckE6) s_value p_value # Not bad, significant difference! # What if we had done the MC on the processes independently. mc1 = MonteCarloLCA({truckE5: 1}, ipcc) mc1_results = [next(mc1) for x in range(100)] mc2 = MonteCarloLCA({truckE5: 1}, ipcc) # it's still truckE5! mc2_results = [next(mc2) for x in range(100)] df_ind = pd.DataFrame({'mc1': mc1_results, 'mc2' : mc2_results}) # compare to this demands = [{truckE5: 1}, {truckE5: 1}] # I am using the smae process two times. mc = MonteCarloLCA(demands[0], ipcc) iterations = 100 simulations = [] for _ in range(iterations): print(_) next(mc) mcresults = [] for i in demands: mc.redo_lcia(i) mcresults.append(mc.score) simulations.append(mcresults) simulations df_dep = pd.DataFrame(simulations, columns = ['mc1','mc2']) # Plot stuff df_dep.plot(kind = 'box') df_ind.plot(kind = 'box') plt.plot(df_dep.mc1, df_dep.mc2, 'o') plt.plot(df_ind.mc1, df_ind.mc2, 'o') # see? # and of course: t_value, p_value = stats.ttest_rel(df_dep.mc1, df_dep.mc2) t_value p_value # no difference AT ALL (as expected) t_value, p_value = stats.ttest_rel(df_ind.mc1, df_ind.mc2) t_value p_value # no difference (as expected! But still some variance!) s_value, p_value = stats.wilcoxon(df_ind.mc1, df_ind.mc2) s_value p_value
[ "pandas.DataFrame", "numpy.log", "matplotlib.pyplot.plot", "matplotlib.pyplot.hist", "scipy.stats.ttest_rel", "scipy.stats.shapiro", "matplotlib.pyplot.ylabel", "scipy.stats.wilcoxon", "matplotlib.pyplot.xlabel" ]
[((646, 680), 'matplotlib.pyplot.hist', 'plt.hist', (['mc_results'], {'density': '(True)'}), '(mc_results, density=True)\n', (654, 680), True, 'from matplotlib import pyplot as plt\n'), ((681, 706), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability"""'], {}), "('Probability')\n", (691, 706), True, 'from matplotlib import pyplot as plt\n'), ((707, 740), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["methods[ipcc]['unit']"], {}), "(methods[ipcc]['unit'])\n", (717, 740), True, 'from matplotlib import pyplot as plt\n'), ((1969, 2026), 'pandas.DataFrame', 'pd.DataFrame', (['simulations'], {'columns': "['truckE5', 'truckE6']"}), "(simulations, columns=['truckE5', 'truckE6'])\n", (1981, 2026), True, 'import pandas as pd\n'), ((2163, 2200), 'matplotlib.pyplot.plot', 'plt.plot', (['df.truckE5', 'df.truckE6', '"""o"""'], {}), "(df.truckE5, df.truckE6, 'o')\n", (2171, 2200), True, 'from matplotlib import pyplot as plt\n'), ((2201, 2234), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""truckE5 - kg CO2-eq"""'], {}), "('truckE5 - kg CO2-eq')\n", (2211, 2234), True, 'from matplotlib import pyplot as plt\n'), ((2235, 2268), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""truckE6 - kg CO2-eq"""'], {}), "('truckE6 - kg CO2-eq')\n", (2245, 2268), True, 'from matplotlib import pyplot as plt\n'), ((2389, 2414), 'matplotlib.pyplot.hist', 'plt.hist', (['df.diffe.values'], {}), '(df.diffe.values)\n', (2397, 2414), True, 'from matplotlib import pyplot as plt\n'), ((2597, 2636), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['df.truckE5', 'df.truckE6'], {}), '(df.truckE5, df.truckE6)\n', (2612, 2636), False, 'from scipy import stats\n'), ((2693, 2720), 'matplotlib.pyplot.hist', 'plt.hist', (['df.truckE5.values'], {}), '(df.truckE5.values)\n', (2701, 2720), True, 'from matplotlib import pyplot as plt\n'), ((2721, 2754), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""truckE5 - kg CO2-eq"""'], {}), "('truckE5 - kg CO2-eq')\n", (2731, 2754), True, 'from matplotlib import pyplot as plt\n'), ((2779, 2804), 'scipy.stats.shapiro', 'stats.shapiro', (['df.truckE5'], {}), '(df.truckE5)\n', (2792, 2804), False, 'from scipy import stats\n'), ((2847, 2874), 'matplotlib.pyplot.hist', 'plt.hist', (['df.truckE6.values'], {}), '(df.truckE6.values)\n', (2855, 2874), True, 'from matplotlib import pyplot as plt\n'), ((2898, 2923), 'scipy.stats.shapiro', 'stats.shapiro', (['df.truckE6'], {}), '(df.truckE6)\n', (2911, 2923), False, 'from scipy import stats\n'), ((3102, 3140), 'scipy.stats.wilcoxon', 'stats.wilcoxon', (['df.truckE5', 'df.truckE6'], {}), '(df.truckE5, df.truckE6)\n', (3116, 3140), False, 'from scipy import stats\n'), ((3462, 3516), 'pandas.DataFrame', 'pd.DataFrame', (["{'mc1': mc1_results, 'mc2': mc2_results}"], {}), "({'mc1': mc1_results, 'mc2': mc2_results})\n", (3474, 3516), True, 'import pandas as pd\n'), ((3913, 3962), 'pandas.DataFrame', 'pd.DataFrame', (['simulations'], {'columns': "['mc1', 'mc2']"}), "(simulations, columns=['mc1', 'mc2'])\n", (3925, 3962), True, 'import pandas as pd\n'), ((4031, 4068), 'matplotlib.pyplot.plot', 'plt.plot', (['df_dep.mc1', 'df_dep.mc2', '"""o"""'], {}), "(df_dep.mc1, df_dep.mc2, 'o')\n", (4039, 4068), True, 'from matplotlib import pyplot as plt\n'), ((4069, 4106), 'matplotlib.pyplot.plot', 'plt.plot', (['df_ind.mc1', 'df_ind.mc2', '"""o"""'], {}), "(df_ind.mc1, df_ind.mc2, 'o')\n", (4077, 4106), True, 'from matplotlib import pyplot as plt\n'), ((4151, 4190), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['df_dep.mc1', 'df_dep.mc2'], {}), '(df_dep.mc1, df_dep.mc2)\n', (4166, 4190), False, 'from scipy import stats\n'), ((4265, 4304), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['df_ind.mc1', 'df_ind.mc2'], {}), '(df_ind.mc1, df_ind.mc2)\n', (4280, 4304), False, 'from scipy import stats\n'), ((4398, 4436), 'scipy.stats.wilcoxon', 'stats.wilcoxon', (['df_ind.mc1', 'df_ind.mc2'], {}), '(df_ind.mc1, df_ind.mc2)\n', (4412, 4436), False, 'from scipy import stats\n'), ((742, 766), 'pandas.DataFrame', 'pd.DataFrame', (['mc_results'], {}), '(mc_results)\n', (754, 766), True, 'import pandas as pd\n'), ((805, 823), 'numpy.log', 'np.log', (['mc_results'], {}), '(mc_results)\n', (811, 823), True, 'import numpy as np\n')]
from network import Regressor, Loss_gamma_0_6 import numpy as np import skorch from skorch import NeuralNetRegressor from torch import optim def load_model(load_cp, n_in=106,device='cuda'): cp = skorch.callbacks.Checkpoint(dirname=load_cp) net = NeuralNetRegressor( Regressor(n_in=n_in), criterion=Loss_gamma_0_6, max_epochs=2000, optimizer=optim.Adam, optimizer__amsgrad=True, optimizer__weight_decay=0.1, lr=0.0003, iterator_train__shuffle=True, iterator_train__num_workers=32, iterator_train__pin_memory=True, device=device, batch_size=50000, iterator_train__batch_size=50000, ) net.initialize() net.load_params(checkpoint=cp) return net def save_model_para(model_cp): ''' convert trained model paras(saved at checkpoint model_cp) to numpy format :param model_cp: :return: ''' model = load_model(model_cp, n_in=106,device='cpu') paras = [] for para in model.get_params()['module'].parameters(): paras.append(para.data.cpu().numpy()) np.save("model_paras.npy", paras) save_model_para('cp_gamma_0_6')
[ "skorch.callbacks.Checkpoint", "numpy.save", "network.Regressor" ]
[((201, 245), 'skorch.callbacks.Checkpoint', 'skorch.callbacks.Checkpoint', ([], {'dirname': 'load_cp'}), '(dirname=load_cp)\n', (228, 245), False, 'import skorch\n'), ((1112, 1145), 'numpy.save', 'np.save', (['"""model_paras.npy"""', 'paras'], {}), "('model_paras.npy', paras)\n", (1119, 1145), True, 'import numpy as np\n'), ((284, 304), 'network.Regressor', 'Regressor', ([], {'n_in': 'n_in'}), '(n_in=n_in)\n', (293, 304), False, 'from network import Regressor, Loss_gamma_0_6\n')]
import numpy as np from gensim.models import Word2Vec from src.utils import io def run( random_walk_files, output_file, dimensions=128, context_size=10, epochs=1, workers=1 ): """Generates node vector embeddings from a list of files containing random walks performed on different layers of a multilayer network. Parameters ---------- random_walk_files: list List of files containing random walks. Each file should correspond to random walks perform on a different layer of the network of interest. output_file: str The file in which the node embeddings will be saved. dimensions: int (default: 128) Number of dimensions of the generated vector embeddings. context_size: int (default: 10) Context size in Word2Vec. epochs: int (default: 1) Number of epochs in stochastic gradient descent. workers: int (default: 1) Number of worker threads used to train the model. """ walks = np.concatenate([io.read_random_walks(file) for file in random_walk_files]) #print(walks.shape) walks_trim = np.split(walks, walks.shape[0]) walks_trim = [walk[walk!=0].astype(str).tolist() for walk in walks] #print(walks_trim) model = Word2Vec( walks_trim, size=dimensions, window=context_size, min_count=0, sg=1, # use skip-gram workers=workers, iter=epochs, ) model.wv.save_word2vec_format(output_file)
[ "src.utils.io.read_random_walks", "gensim.models.Word2Vec", "numpy.split" ]
[((1109, 1140), 'numpy.split', 'np.split', (['walks', 'walks.shape[0]'], {}), '(walks, walks.shape[0])\n', (1117, 1140), True, 'import numpy as np\n'), ((1248, 1360), 'gensim.models.Word2Vec', 'Word2Vec', (['walks_trim'], {'size': 'dimensions', 'window': 'context_size', 'min_count': '(0)', 'sg': '(1)', 'workers': 'workers', 'iter': 'epochs'}), '(walks_trim, size=dimensions, window=context_size, min_count=0, sg=\n 1, workers=workers, iter=epochs)\n', (1256, 1360), False, 'from gensim.models import Word2Vec\n'), ((1009, 1035), 'src.utils.io.read_random_walks', 'io.read_random_walks', (['file'], {}), '(file)\n', (1029, 1035), False, 'from src.utils import io\n')]
import numpy as np import abc class ProbabilityDistribution(abc.ABC): """ Class representing the interface for a probability distribution """ @abc.abstractmethod def sample(self, size): """ This method must return an array with length "size", sampling the distribution # Arguments: size: Size of the sampling """ class NormalDistribution(ProbabilityDistribution): """ Implements Normal Distribution # Arguments: mean: Mean of the normal distribution. std: Standard deviation of the normal distribution """ def __init__(self, mean, std): self._mean = mean self._std = std def sample(self, size): """ This method provides a sample of the given size of a gaussian distributions # Arguments: size: size of the sample # Returns: Sample of a gaussian distribution of a given size """ return np.random.normal(self._mean, self._std, size) class GaussianMixture(ProbabilityDistribution): """ Implements the combination of Normal Distributions # Arguments: params: Array of arrays with mean and std for every gaussian distribution. weights: Array of weights for every distribution with sum 1. # Example: ```python # Parameters for two Gaussian mu_M = 178 mu_F = 162 sigma_M = 7 sigma_F = 7 # Parameters norm_params = np.array([[mu_M, sigma_M], [mu_F, sigma_F]]) weights = np.ones(2) / 2.0 # Creating combination of gaussian distribution = GaussianMixture(norm_params, weights) ``` """ def __init__(self, params, weights): self._gaussian_distributions = [] for param in params: self._gaussian_distributions.append(NormalDistribution(param[0], param[1])) self._weights = weights def sample(self, size): """ This method provides a sample of the given size of a mixture of gaussian distributions # Arguments: size: size of the sample # Returns: Sample of a mixture of gaussian distributions of a given size """ mixture_idx = np.random.choice(len(self._weights), size=size, replace=True, p=self._weights) values = [] for i in mixture_idx: gaussian_distributions = self._gaussian_distributions[i] values.append(gaussian_distributions.sample(1)) return np.fromiter(values, dtype=np.float64)
[ "numpy.random.normal", "numpy.fromiter" ]
[((987, 1032), 'numpy.random.normal', 'np.random.normal', (['self._mean', 'self._std', 'size'], {}), '(self._mean, self._std, size)\n', (1003, 1032), True, 'import numpy as np\n'), ((2570, 2607), 'numpy.fromiter', 'np.fromiter', (['values'], {'dtype': 'np.float64'}), '(values, dtype=np.float64)\n', (2581, 2607), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import copy from morphodynamics.landscapes.utils import get_meshgrid from morphodynamics.landscapes.analysis.get_fields import * from morphodynamics.landscapes.analysis.sde_forward import * class Save_Ims(): """ Save losses during training and the potential as an array """ def __init__(self, model, save_dir): """ - model: this is the physics-informed neural network (PINN) - save_dir: where to save the plot and potential to """ self.model = model self.save_dir = save_dir x_test, y_test = get_meshgrid(model.xlims, model.ylims, model.dims, flatBool = True) self.x_test , self.y_test = tf.convert_to_tensor(x_test), tf.convert_to_tensor(y_test) self.fig = plt.figure(figsize = (30, 20)) self.gs = gridspec.GridSpec(nrows = 15, ncols = 17) def __call__(self): self._plot_losses() self._plot_pdfs_getUandD() self._plot_and_save_U() #plt.savefig(self.save_dir + 'View_{}_{}.png'.format(self.model.save_append, self.model.idx_save)) #plt.close() def _setup_ax(self, ax): ax.set_aspect('equal', adjustable = 'box') ax.set_xlim(self.model.xlims) ax.set_ylim(self.model.ylims) def _plot_losses(self): """ Plot how each of the loss terms changes in time """ ax = self.fig.add_subplot(self.gs[2:5, :7]) losses = [self.model.data_losses, self.model.BC_losses, self.model.pde_losses, self.model.total_losses, self.model.norm_losses] labels = ['pdf', 'BC', 'pde', 'total', 'norm'] zipped = zip(losses, labels) for loss_list, label in zipped: ax.plot(np.log10(loss_list), label = label) ax.legend() def _plot_pdfs_getUandD(self): """ Run inference to get the pdf, potential (U) and diffusivity (D) """ p_max = 0 D_max = 0 for idx_t, test_time in enumerate(np.linspace(self.model.tlims[0], self.model.tlims[1], 7)): # test for a range of unseen times t_test = np.tile(np.array([test_time]), (self.x_test.shape[0], 1)) t_test = tf.convert_to_tensor(t_test) xyt_test = tf.concat((self.x_test, self.y_test, t_test), axis = 1) p_out, D_out, U_out = self.model.predict(xyt_test) D_out = D_out.numpy() p_max = max(p_max, np.max(p_out)) D_max = max(D_max, np.max(D_out)) for idx_t, test_time in enumerate(np.linspace(self.model.tlims[0], self.model.tlims[1], 7)): # test for a range of unseen times t_test = np.tile(np.array([test_time]), (self.x_test.shape[0], 1)) t_test = tf.convert_to_tensor(t_test) xyt_test = tf.concat((self.x_test, self.y_test, t_test), axis = 1) p_out, D_out, U_out = self.model.predict(xyt_test) p_out = p_out.numpy() D_out = D_out.numpy() U_out = U_out.numpy() ax_p = self.fig.add_subplot(self.gs[6, idx_t]) p_out[p_out<1e-7] = np.nan ax_p.scatter(self.x_test, self.y_test, c = np.log10(p_out), vmin = -7, vmax = max(np.log10(p_max), -7)) self._setup_ax(ax_p) ax_D = self.fig.add_subplot(self.gs[6, 8+idx_t]) ax_D.scatter(self.x_test, self.y_test, c = D_out, vmin = 0, vmax = D_max) self._setup_ax(ax_D) for idx_t, arr in enumerate(self.model.pdf_list): ax = self.fig.add_subplot(self.gs[14, idx_t]) to_log = copy.deepcopy(arr) to_log[to_log<1e-7] = np.nan ax.imshow(np.log10(to_log.reshape((200, 200))[::-1, :])) self.U_out = U_out def _plot_and_save_U(self): """ Plot and save the potential as an array """ U = np.reshape(self.U_out, (self.model.dims, self.model.dims)) path = self.save_dir + 'potential.pickle' dump_pickle(U, path) ax = self.fig.add_subplot(self.gs[:4, 10:14]) gx, gy = np.gradient(U) ax.imshow(np.log10(np.sqrt(gx**2 + gy**2))[::-1, :]) ax.set_aspect('equal', adjustable = 'box')
[ "copy.deepcopy", "tensorflow.convert_to_tensor", "tensorflow.concat", "numpy.log10", "matplotlib.pyplot.figure", "matplotlib.use", "numpy.array", "morphodynamics.landscapes.utils.get_meshgrid", "numpy.reshape", "numpy.linspace", "numpy.max", "matplotlib.gridspec.GridSpec", "numpy.gradient", "numpy.sqrt" ]
[((61, 82), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (75, 82), False, 'import matplotlib\n'), ((725, 790), 'morphodynamics.landscapes.utils.get_meshgrid', 'get_meshgrid', (['model.xlims', 'model.ylims', 'model.dims'], {'flatBool': '(True)'}), '(model.xlims, model.ylims, model.dims, flatBool=True)\n', (737, 790), False, 'from morphodynamics.landscapes.utils import get_meshgrid\n'), ((908, 936), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(30, 20)'}), '(figsize=(30, 20))\n', (918, 936), True, 'import matplotlib.pyplot as plt\n'), ((957, 994), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', ([], {'nrows': '(15)', 'ncols': '(17)'}), '(nrows=15, ncols=17)\n', (974, 994), True, 'import matplotlib.gridspec as gridspec\n'), ((3971, 4029), 'numpy.reshape', 'np.reshape', (['self.U_out', '(self.model.dims, self.model.dims)'], {}), '(self.U_out, (self.model.dims, self.model.dims))\n', (3981, 4029), True, 'import numpy as np\n'), ((4182, 4196), 'numpy.gradient', 'np.gradient', (['U'], {}), '(U)\n', (4193, 4196), True, 'import numpy as np\n'), ((829, 857), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x_test'], {}), '(x_test)\n', (849, 857), True, 'import tensorflow as tf\n'), ((859, 887), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['y_test'], {}), '(y_test)\n', (879, 887), True, 'import tensorflow as tf\n'), ((2124, 2180), 'numpy.linspace', 'np.linspace', (['self.model.tlims[0]', 'self.model.tlims[1]', '(7)'], {}), '(self.model.tlims[0], self.model.tlims[1], 7)\n', (2135, 2180), True, 'import numpy as np\n'), ((2318, 2346), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['t_test'], {}), '(t_test)\n', (2338, 2346), True, 'import tensorflow as tf\n'), ((2370, 2423), 'tensorflow.concat', 'tf.concat', (['(self.x_test, self.y_test, t_test)'], {'axis': '(1)'}), '((self.x_test, self.y_test, t_test), axis=1)\n', (2379, 2423), True, 'import tensorflow as tf\n'), ((2659, 2715), 'numpy.linspace', 'np.linspace', (['self.model.tlims[0]', 'self.model.tlims[1]', '(7)'], {}), '(self.model.tlims[0], self.model.tlims[1], 7)\n', (2670, 2715), True, 'import numpy as np\n'), ((2854, 2882), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['t_test'], {}), '(t_test)\n', (2874, 2882), True, 'import tensorflow as tf\n'), ((2906, 2959), 'tensorflow.concat', 'tf.concat', (['(self.x_test, self.y_test, t_test)'], {'axis': '(1)'}), '((self.x_test, self.y_test, t_test), axis=1)\n', (2915, 2959), True, 'import tensorflow as tf\n'), ((3695, 3713), 'copy.deepcopy', 'copy.deepcopy', (['arr'], {}), '(arr)\n', (3708, 3713), False, 'import copy\n'), ((1857, 1876), 'numpy.log10', 'np.log10', (['loss_list'], {}), '(loss_list)\n', (1865, 1876), True, 'import numpy as np\n'), ((2247, 2268), 'numpy.array', 'np.array', (['[test_time]'], {}), '([test_time])\n', (2255, 2268), True, 'import numpy as np\n'), ((2554, 2567), 'numpy.max', 'np.max', (['p_out'], {}), '(p_out)\n', (2560, 2567), True, 'import numpy as np\n'), ((2600, 2613), 'numpy.max', 'np.max', (['D_out'], {}), '(D_out)\n', (2606, 2613), True, 'import numpy as np\n'), ((2783, 2804), 'numpy.array', 'np.array', (['[test_time]'], {}), '([test_time])\n', (2791, 2804), True, 'import numpy as np\n'), ((3282, 3297), 'numpy.log10', 'np.log10', (['p_out'], {}), '(p_out)\n', (3290, 3297), True, 'import numpy as np\n'), ((4224, 4250), 'numpy.sqrt', 'np.sqrt', (['(gx ** 2 + gy ** 2)'], {}), '(gx ** 2 + gy ** 2)\n', (4231, 4250), True, 'import numpy as np\n'), ((3321, 3336), 'numpy.log10', 'np.log10', (['p_max'], {}), '(p_max)\n', (3329, 3336), True, 'import numpy as np\n')]
import numpy as np import inspect from scipy.linalg import qr as qr_factorization from copy import deepcopy from pyapprox.utilities import cartesian_product, outer_product from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D from pyapprox.barycentric_interpolation import ( compute_barycentric_weights_1d, multivariate_barycentric_lagrange_interpolation ) from pyapprox.models.wrappers import ( evaluate_1darray_function_on_2d_array ) from pyapprox.utilities import qr_solve def kronecker_product_2d(matrix1, matrix2): """ TODO: I can store kroneker as a sparse matrix see ( scipy.kron ) """ assert matrix1.shape == matrix2.shape assert matrix1.ndim == 2 block_num_rows = matrix1.shape[0] matrix_num_rows = block_num_rows**2 matrix = np.empty((matrix_num_rows, matrix_num_rows), float) # loop through blocks start_col = 0 for jj in range(block_num_rows): start_row = 0 for ii in range(block_num_rows): matrix[start_row:start_row+block_num_rows, start_col:start_col+block_num_rows] = \ matrix2*matrix1[ii, jj] start_row += block_num_rows start_col += block_num_rows return matrix def chebyshev_derivative_matrix(order): if order == 0: pts = np.array([1], float) derivative_matrix = np.array([0], float) else: # this is reverse order used by matlab cheb function pts = -np.cos(np.linspace(0., np.pi, order+1)) scalars = np.ones((order+1), float) scalars[0] = 2. scalars[order] = 2. scalars[1:order+1:2] *= -1 derivative_matrix = np.empty((order+1, order+1), float) for ii in range(order+1): row_sum = 0. for jj in range(order+1): if (ii == jj): denominator = 1. else: denominator = pts[ii]-pts[jj] numerator = scalars[ii] / scalars[jj] derivative_matrix[ii, jj] = numerator / denominator row_sum += derivative_matrix[ii, jj] derivative_matrix[ii, ii] -= row_sum # I return points and calculate derivatives using reverse order of points # compared to what is used by Matlab cheb function thus the # derivative matrix I return will be the negative of the matlab version return pts, derivative_matrix class SteadyStateDiffusionEquation1D(object): """ solve (a(x)*u_x)_x = f; x in [0,1]; subject to u(0)=a; u(1)=b """ def __init__(self): self.diffusivity = None self.forcing_function = None self.bndry_cond = [0., 0.] self.xlim = [0, 1] self.adjoint_derivative_matrix = None self.adjoint_mesh_pts = None self.num_time_steps = 0 self.time_step_size = None self.initial_sol = None self.num_stored_timesteps = 1 self.time_step_method = 'crank-nicholson' # default qoi functional is integral of solution over entire domain self.qoi_functional = self.integrate self.qoi_functional_deriv = lambda x: x*0.+1. def scale_canonical_pts(self, pts): return (self.xlim[1]-self.xlim[0])*(pts+1.)/2.+self.xlim[0] def initialize(self, order, bndry_cond=None, xlim=None): self.order = order if xlim is not None: self.xlim = xlim if bndry_cond is not None: self.bndry_cond = bndry_cond mesh_pts, self.derivative_matrix = chebyshev_derivative_matrix(order) # scale mesh points to from [-1,1] to [a,b] self.mesh_pts_1d = self.scale_canonical_pts(mesh_pts) self.mesh_pts = self.mesh_pts_1d # scale derivative matrix from [-1,1] to [a,b] self.derivative_matrix *= 2./(self.xlim[1]-self.xlim[0]) def set_diffusivity(self, func): assert callable(func) assert len(inspect.getargspec(func)[0]) == 2 self.diffusivity = func def set_forcing(self, func): assert callable(func) assert len(inspect.getargspec(func)[0]) == 2 self.forcing_function = func def form_collocation_matrix(self, derivative_matrix, diagonal): scaled_matrix = np.empty(derivative_matrix.shape) for i in range(scaled_matrix.shape[0]): scaled_matrix[i, :] = derivative_matrix[i, :] * diagonal[i] matrix = np.dot(derivative_matrix, scaled_matrix) return matrix def apply_boundary_conditions_to_matrix(self, matrix): matrix[0, :] = 0 matrix[-1, :] = 0 matrix[0, 0] = 1 matrix[-1, -1] = 1 return matrix def apply_boundary_conditions_to_rhs(self, rhs): rhs[0] = self.bndry_cond[0] rhs[-1] = self.bndry_cond[1] return rhs def apply_boundary_conditions(self, matrix, forcing): assert len(self.bndry_cond) == 2 matrix = self.apply_boundary_conditions_to_matrix(matrix) forcing = self.apply_boundary_conditions_to_rhs(forcing) return matrix, forcing def explicit_runge_kutta(self, rhs, sol, time, time_step_size): assert callable(rhs) dt2 = time_step_size/2. k1 = rhs(time, sol) k2 = rhs(time+dt2, sol+dt2*k1) k3 = rhs(time+dt2, sol+dt2*k2) k4 = rhs(time+time_step_size, sol+time_step_size*k3) new_sol = sol+time_step_size/6.*(k1+2.*k2+2.*k3+k4) new_sol[0] = self.bndry_cond[0] new_sol[-1] = self.bndry_cond[1] return new_sol def form_adams_moulton_3rd_order_system(self, matrix, current_sol, current_forcing, future_forcing, prev_forcing, prev_sol, time_step_size): """ 3rd order Adams-Moultobn method WARNING: seems to be unstable (at least my implementation) y_{n+2} = y_{n+1}+h(c_0y_{n+2}+c_1y_{n+1}+c_3y_{n}) c = (5/12,2/3,-1./12) """ dt12 = time_step_size/12. dt12matrix = dt12*matrix identity = np.eye(matrix.shape[0]) matrix = identity-5.*dt12matrix forcing = np.dot(identity+8.*dt12matrix, current_sol) forcing += dt12*(5.*future_forcing+8.*current_forcing-prev_forcing) forcing -= np.dot(dt12matrix, prev_sol) # currently I do not support time varying boundary conditions return self.apply_boundary_conditions(matrix, forcing) def get_implicit_time_step_rhs(self, current_sol, time, sample): future_forcing = self.forcing_function( self.mesh_pts, time+self.time_step_size, sample) if (self.time_step_method == "backward-euler"): forcing = current_sol + self.time_step_size*future_forcing elif (self.time_step_method == "crank-nicholson"): identity = np.eye(self.collocation_matrix.shape[0]) forcing = np.dot( identity+0.5*self.time_step_size*self.collocation_matrix, current_sol) current_forcing = self.forcing_function( self.mesh_pts, time, sample) forcing += 0.5*self.time_step_size*(current_forcing+future_forcing) else: raise Exception('incorrect timestepping method specified') # apply boundary conditions forcing[0] = self.bndry_cond[0] forcing[-1] = self.bndry_cond[1] return forcing def get_implicit_timestep_matrix_inverse_factors(self, matrix): identity = np.eye(matrix.shape[0]) if (self.time_step_method == "backward-euler"): matrix = identity-self.time_step_size*matrix elif (self.time_step_method == "crank-nicholson"): matrix = identity-self.time_step_size/2.*matrix else: raise Exception('incorrect timestepping method specified') self.apply_boundary_conditions_to_matrix(matrix) return qr_factorization(matrix) def time_step(self, current_sol, time, sample): if self.time_step_method == 'RK4': def rhs_func(t, u): return np.dot( self.collocation_matrix, u) +\ self.forcing_function(self.mesh_pts, t, sample) current_sol = self.explicit_runge_kutta( rhs_func, current_sol, time, self.time_step_size) else: rhs = self.get_implicit_time_step_rhs(current_sol, time, sample) current_sol = qr_solve( self.implicit_matrix_factors[0], self.implicit_matrix_factors[1], rhs[:, None])[:, 0] #current_sol = np.linalg.solve( matrix, rhs ) return current_sol def transient_solve(self, sample): # in future consider supporting time varying diffusivity. This would # require updating collocation matrix at each time-step # for now make diffusivity time-independent # assert self.diffusivity_function.__code__.co_argcount == 3 diffusivity = self.diffusivity_function(self.mesh_pts, sample) self.collocation_matrix = self.form_collocation_matrix( self.derivative_matrix, diffusivity) # consider replacing time = 0 with time = self.initial_time time = 0. assert self.forcing_function.__code__.co_argcount == 3 current_forcing = self.forcing_function(self.mesh_pts, time, sample) if self.num_time_steps > 0: assert self.initial_sol is not None assert self.time_step_size is not None current_sol = self.initial_sol.copy() assert self.num_stored_timesteps <= self.num_time_steps # num_time_steps is number of steps taken after initial time self.times = np.empty((self.num_stored_timesteps), float) sols = np.empty((self.initial_sol.shape[0], self.num_stored_timesteps), float) sol_cntr = 0 sol_storage_stride = self.num_time_steps/self.num_stored_timesteps if self.time_step_method != 'RK4': self.implicit_matrix_factors = \ self.get_implicit_timestep_matrix_inverse_factors( self.collocation_matrix) for i in range(1, self.num_time_steps+1): # Construct linear system current_sol = self.time_step(current_sol, time, sample) time += self.time_step_size # Store history if requested if i % sol_storage_stride == 0: sols[:, sol_cntr] = current_sol self.times[sol_cntr] = time sol_cntr += 1 assert sol_cntr == self.num_stored_timesteps return sols else: current_forcing = self.forcing_function( self.mesh_pts, time, sample) matrix, rhs = self.apply_boundary_conditions( self.collocation_matrix.copy(), current_forcing) return np.linalg.solve(matrix, rhs) def solve(self, diffusivity, forcing): assert diffusivity.ndim == 1 assert forcing.ndim == 1 # forcing will be overwritten with bounary values so must take a # deep copy forcing = forcing.copy() # we need another copy so that forcing can be used when solving adjoint self.forcing_vals = forcing.copy() assert not np.any(diffusivity <= 0.) self.collocation_matrix = self.form_collocation_matrix( self.derivative_matrix, diffusivity) matrix, forcing = self.apply_boundary_conditions( self.collocation_matrix.copy(), forcing) solution = np.linalg.solve(matrix, forcing) # store solution for use with adjoints self.fwd_solution = solution.copy() return solution def run(self, sample): assert sample.ndim == 1 diffusivity = self.diffusivity_function(self.mesh_pts, sample) forcing = self.forcing_function(self.mesh_pts, sample) solution = self.solve(diffusivity, forcing) return solution def solve_adjoint(self, sample, order): """ Typically with FEM we solve Ax=b and the discrete adjoint equation is A'y=z. But with collocation this does not work. Instead of taking the adjoint of the discrete system as the aforemntioned approach does. We discretize continuous adjoint equation. Which for the ellipic diffusion equation is just Ay=z. That is the adjoint of A is A. """ if order == self.order: # used when computing gradient from adjoint solution matrix = self.collocation_matrix.copy() else: # used when computing error estimate from adjoint solution if self.adjoint_derivative_matrix is None: adjoint_mesh_pts, self.adjoint_derivative_matrix = \ chebyshev_derivative_matrix(order) self.adjoint_mesh_pts = self.scale_canonical_pts( adjoint_mesh_pts) # scale derivative matrix from [-1,1] to [a,b] self.adjoint_derivative_matrix *= 2. / \ (self.xlim[1]-self.xlim[0]) diffusivity = self.diffusivity_function( self.adjoint_mesh_pts, sample) matrix = self.form_collocation_matrix( self.adjoint_derivative_matrix, diffusivity) self.adjoint_collocation_matrix = matrix.copy() # regardless of whether computing error estimate or # computing gradient, rhs is always derivative (with respect to the # solution) of the qoi_functional qoi_deriv = self.qoi_functional_deriv(self.fwd_solution) matrix = self.apply_boundary_conditions_to_matrix(matrix) qoi_deriv = self.apply_adjoint_boundary_conditions_to_rhs(qoi_deriv) adj_solution = np.linalg.solve(matrix, qoi_deriv) return adj_solution def apply_adjoint_boundary_conditions_to_rhs(self, qoi_deriv): # adjoint always has zero Dirichlet BC qoi_deriv[0] = 0 qoi_deriv[-1] = 0 return qoi_deriv def compute_residual(self, matrix, solution, forcing): matrix, forcing = self.apply_boundary_conditions(matrix, forcing) return forcing - np.dot(matrix, solution) def compute_residual_derivative(self, solution, diagonal, forcing_deriv): matrix = self.form_collocation_matrix(self.derivative_matrix, diagonal) # Todo: check if boundary conditions need to be applied to both # matrix and forcing_derivs or just matrix. If the former # what boundary conditions to I impose on the focing deriv matrix = self.apply_boundary_conditions_to_matrix( matrix) # the values here are the derivative of the boundary conditions # with respect to the random parameters. I assume that # this is always zero forcing_deriv[0] = 0 forcing_deriv[-1] = 0 return forcing_deriv.squeeze() - np.dot(matrix, solution) def compute_error_estimate(self, sample): raise NotImplementedError("Not passing tests") # must solve adjoint with a higher order grid adj_solution = self.solve_adjoint(sample, self.order*2) # interpolate forward solution onto higher-order grid interp_fwd_solution = self.interpolate( self.fwd_solution, self.adjoint_mesh_pts) # compute residual of forward solution using higher-order grid forcing_vals = self.forcing_function(self.adjoint_mesh_pts, sample) # compute residual residual = self.compute_residual(self.adjoint_collocation_matrix, interp_fwd_solution, forcing_vals) # self.plot(interp_fwd_solution+adj_solution, # plot_mesh_coords=self.adjoint_mesh_pts ) # self.plot(residual, plot_mesh_coords=self.adjoint_mesh_pts, # color='r') # pylab.show() # print self.integrate((adj_solution+interp_fwd_solution )**2) # print(np.dot(residual, adj_solution )/self.integrate( # residual * adj_solution) print('cond', np.linalg.cond(self.adjoint_collocation_matrix)) error_estimate = self.integrate(residual * adj_solution, self.order*2) return error_estimate def evaluate_gradient(self, sample): assert sample.ndim == 1 num_stoch_dims = sample.shape[0] # qoi_deriv = self.qoi_functional_deriv(self.mesh_pts) adj_solution = self.solve_adjoint(sample, self.order) gradient = np.empty((num_stoch_dims), float) for i in range(num_stoch_dims): diffusivity_deriv_vals_i = self.diffusivity_derivs_function( self.mesh_pts.squeeze(), sample, i) forcing_deriv_vals_i = self.forcing_derivs_function( self.mesh_pts.squeeze(), sample, i) residual_deriv = self.compute_residual_derivative( self.fwd_solution, diffusivity_deriv_vals_i, forcing_deriv_vals_i) gradient[i] = self.integrate(residual_deriv * adj_solution) return gradient def value(self, sample): assert sample.ndim == 1 solution = self.run(sample) qoi = self.qoi_functional(solution) if np.isscalar(qoi) or qoi.ndim == 0: qoi = np.array([qoi]) return qoi def integrate(self, mesh_values, order=None): if order is None: order = self.order # Get Gauss-Legendre rule gl_pts, gl_wts = gauss_jacobi_pts_wts_1D(order, 0, 0) # Scale points from [-1,1] to to physical domain x_range = self.xlim[1]-self.xlim[0] gl_pts = x_range*(gl_pts+1.)/2.+self.xlim[0] # Remove factor of 0.5 from weights gl_wts *= x_range # Interpolate mesh values onto quadrature nodes gl_vals = self.interpolate(mesh_values, gl_pts) # Compute and return integral return np.dot(gl_vals[:, 0], gl_wts) def interpolate(self, mesh_values, eval_samples): if eval_samples.ndim == 1: eval_samples = eval_samples[None, :] if mesh_values.ndim == 1: mesh_values = mesh_values[:, None] assert mesh_values.ndim == 2 num_dims = eval_samples.shape[0] abscissa_1d = [self.mesh_pts_1d]*num_dims weights_1d = [compute_barycentric_weights_1d(xx) for xx in abscissa_1d] interp_vals = multivariate_barycentric_lagrange_interpolation( eval_samples, abscissa_1d, weights_1d, mesh_values, np.arange(num_dims)) return interp_vals def plot(self, mesh_values, num_plot_pts_1d=None, plot_mesh_coords=None, color='k'): import pylab if num_plot_pts_1d is not None: # interpolate values onto plot points plot_mesh = np.linspace( self.xlim[0], self.xlim[1], num_plot_pts_1d) interp_vals = self.interpolate(mesh_values, plot_mesh) pylab.plot(plot_mesh, interp_vals, color+'-') elif plot_mesh_coords is not None: assert mesh_values.shape[0] == plot_mesh_coords.squeeze().shape[0] pylab.plot(plot_mesh_coords, mesh_values, 'o-'+color) else: # just plot values on mesh points pylab.plot(self.mesh_pts, mesh_values, color) def get_collocation_points(self): return np.atleast_2d(self.mesh_pts) def get_derivative_matrix(self): return self.derivative_matrix def __call__(self, samples): return evaluate_1darray_function_on_2d_array( self.value, samples, None) class SteadyStateDiffusionEquation2D(SteadyStateDiffusionEquation1D): """ solve (a(x)*u_x)_x = f; x in [0,1]x[0,1]; subject to u(0,:)=a(x); u(:,0)=b(x), u(1,:)=c(x), u(:,1)=d(x) """ def __init__(self): self.diffusivity = None self.forcing_function = None self.bndry_cond = [0., 0., 0., 0.] self.xlim = [0, 1] self.ylim = [0, 1] self.left_bc, self.right_bc = None, None self.top_bc, self.bottom_bc = None, None # default qoi functional is integral of solution over entire domain self.qoi_functional = self.integrate self.qoi_functional_deriv = lambda x: x*0.+1. def determine_boundary_indices(self): # boundary edges are stored with the following order, # left, right, bottom, top self.boundary_edges = [[], [], [], []] self.boundary_indices = np.empty((4*self.order), int) # To avoid double counting the bottom and upper boundaries # will not include the edge indices cntr = 0 for i in range(self.mesh_pts.shape[1]): if (self.mesh_pts[0, i] == self.xlim[0]): self.boundary_indices[cntr] = i self.boundary_edges[0].append(cntr) cntr += 1 elif (self.mesh_pts[0, i] == self.xlim[1]): self.boundary_indices[cntr] = i self.boundary_edges[1].append(cntr) cntr += 1 elif (self.mesh_pts[1, i] == self.ylim[0]): self.boundary_indices[cntr] = i self.boundary_edges[2].append(cntr) cntr += 1 elif (self.mesh_pts[1, i] == self.ylim[1]): self.boundary_indices[cntr] = i self.boundary_edges[3].append(cntr) cntr += 1 def initialize(self, order, bndry_cond=None, lims=None): # 1d model transforms mesh pts 1d from are on [-1,1] to [a,b] # I will asssume that second physical dimension is also [a,b] super(SteadyStateDiffusionEquation2D, self).initialize(order, bndry_cond[:2], lims[:2]) self.ylim = lims[2:] self.bndry_cond = bndry_cond self.order = order self.mesh_pts_1d = self.mesh_pts self.mesh_pts = cartesian_product([self.mesh_pts_1d]*2, 1) # note scaling of self.derivative_matrix to [a,b] happens at base class self.determine_boundary_indices() # form derivative (in x1-direction) matrix of a 2d polynomial # this assumes that 2d-mesh_pts varies in x1 faster than x2, # e.g. points are # [[x11,x21],[x12,x21],[x13,x12],[x11,x22],[x12,x22],...] Ident = np.eye(self.order+1) derivative_matrix_1d = self.get_derivative_matrix() self.derivative_matrix_1 = np.kron(Ident, derivative_matrix_1d) # form derivative (in x2-direction) matrix of a 2d polynomial self.derivative_matrix_2 = np.kron(derivative_matrix_1d, Ident) def form_collocation_matrix(self, derivative_matrix, diagonal): scaled_matrix_1 = np.empty(self.derivative_matrix_1.shape) scaled_matrix_2 = np.empty(self.derivative_matrix_2.shape) for i in range(scaled_matrix_1.shape[0]): scaled_matrix_1[i, :] = self.derivative_matrix_1[i, :]*diagonal[i] scaled_matrix_2[i, :] = self.derivative_matrix_2[i, :]*diagonal[i] matrix_1 = np.dot(self.derivative_matrix_1, scaled_matrix_1) matrix_2 = np.dot(self.derivative_matrix_2, scaled_matrix_2) return matrix_1 + matrix_2 def apply_boundary_conditions_to_matrix(self, matrix): # apply default homogeenous zero value direchlet conditions if # necessary if self.left_bc is None: self.left_bc = lambda x: 0. if self.right_bc is None: self.right_bc = lambda x: 0. if self.bottom_bc is None: self.bottom_bc = lambda x: 0. if self.top_bc is None: self.top_bc = lambda x: 0. # adjust collocation matrix matrix[self.boundary_indices, :] = 0. for i in range(self.boundary_indices.shape[0]): index = self.boundary_indices[i] matrix[index, index] = 1. return matrix def apply_boundary_conditions_to_rhs(self, forcing): # apply left boundary condition indices = self.boundary_indices[self.boundary_edges[0]] forcing[indices] = self.left_bc(self.mesh_pts[0, indices]) # apply right boundary condition indices = self.boundary_indices[self.boundary_edges[1]] forcing[indices] = self.right_bc(self.mesh_pts[0, indices]) # apply bottom boundary condition indices = self.boundary_indices[self.boundary_edges[2]] forcing[indices] = self.bottom_bc(self.mesh_pts[1, indices]) # apply top boundary condition indices = self.boundary_indices[self.boundary_edges[3]] forcing[indices] = self.top_bc(self.mesh_pts[1, indices]) return forcing def plot(self, mesh_values, num_plot_pts_1d=100): if num_plot_pts_1d is not None: # interpolate values onto plot points def func(x): return self.interpolate(mesh_values, x) from utilities.visualisation import plot_surface_from_function plot_surface_from_function(func, [self.xlim[0], self.xlim[1], self.ylim[0], self.ylim[1]], num_plot_pts_1d, False) def apply_adjoint_boundary_conditions_to_rhs(self, qoi_deriv): # adjoint always has zero Dirichlet BC # apply left boundary condition for ii in range(4): indices = self.boundary_indices[self.boundary_edges[ii]] qoi_deriv[indices] = 0 return qoi_deriv def integrate(self, mesh_values, order=None): if order is None: order = self.order # Get Gauss-Legendre rule gl_pts, gl_wts = gauss_jacobi_pts_wts_1D(order, 0, 0) pts_1d, wts_1d = [], [] lims = self.xlim+self.ylim for ii in range(2): # Scale points from [-1,1] to to physical domain x_range = lims[2*ii+1]-lims[2*ii] # Remove factor of 0.5 from weights and shift to [a,b] wts_1d.append(gl_wts*x_range) pts_1d.append(x_range*(gl_pts+1.)/2.+lims[2*ii]) # Interpolate mesh values onto quadrature nodes pts = cartesian_product(pts_1d) wts = outer_product(wts_1d) gl_vals = self.interpolate(mesh_values, pts) # Compute and return integral return np.dot(gl_vals[:, 0], wts)
[ "numpy.empty", "pyapprox.utilities.qr_solve", "numpy.ones", "numpy.linalg.cond", "pyapprox.barycentric_interpolation.compute_barycentric_weights_1d", "numpy.arange", "pyapprox.utilities.cartesian_product", "numpy.linalg.solve", "numpy.atleast_2d", "pylab.plot", "numpy.kron", "numpy.linspace", "utilities.visualisation.plot_surface_from_function", "scipy.linalg.qr", "numpy.dot", "pyapprox.univariate_polynomials.quadrature.gauss_jacobi_pts_wts_1D", "pyapprox.models.wrappers.evaluate_1darray_function_on_2d_array", "numpy.isscalar", "numpy.any", "numpy.array", "inspect.getargspec", "numpy.eye", "pyapprox.utilities.outer_product" ]
[((807, 858), 'numpy.empty', 'np.empty', (['(matrix_num_rows, matrix_num_rows)', 'float'], {}), '((matrix_num_rows, matrix_num_rows), float)\n', (815, 858), True, 'import numpy as np\n'), ((1327, 1347), 'numpy.array', 'np.array', (['[1]', 'float'], {}), '([1], float)\n', (1335, 1347), True, 'import numpy as np\n'), ((1376, 1396), 'numpy.array', 'np.array', (['[0]', 'float'], {}), '([0], float)\n', (1384, 1396), True, 'import numpy as np\n'), ((1541, 1566), 'numpy.ones', 'np.ones', (['(order + 1)', 'float'], {}), '(order + 1, float)\n', (1548, 1566), True, 'import numpy as np\n'), ((1682, 1721), 'numpy.empty', 'np.empty', (['(order + 1, order + 1)', 'float'], {}), '((order + 1, order + 1), float)\n', (1690, 1721), True, 'import numpy as np\n'), ((4251, 4284), 'numpy.empty', 'np.empty', (['derivative_matrix.shape'], {}), '(derivative_matrix.shape)\n', (4259, 4284), True, 'import numpy as np\n'), ((4422, 4462), 'numpy.dot', 'np.dot', (['derivative_matrix', 'scaled_matrix'], {}), '(derivative_matrix, scaled_matrix)\n', (4428, 4462), True, 'import numpy as np\n'), ((6117, 6140), 'numpy.eye', 'np.eye', (['matrix.shape[0]'], {}), '(matrix.shape[0])\n', (6123, 6140), True, 'import numpy as np\n'), ((6199, 6247), 'numpy.dot', 'np.dot', (['(identity + 8.0 * dt12matrix)', 'current_sol'], {}), '(identity + 8.0 * dt12matrix, current_sol)\n', (6205, 6247), True, 'import numpy as np\n'), ((6338, 6366), 'numpy.dot', 'np.dot', (['dt12matrix', 'prev_sol'], {}), '(dt12matrix, prev_sol)\n', (6344, 6366), True, 'import numpy as np\n'), ((7538, 7561), 'numpy.eye', 'np.eye', (['matrix.shape[0]'], {}), '(matrix.shape[0])\n', (7544, 7561), True, 'import numpy as np\n'), ((7951, 7975), 'scipy.linalg.qr', 'qr_factorization', (['matrix'], {}), '(matrix)\n', (7967, 7975), True, 'from scipy.linalg import qr as qr_factorization\n'), ((11685, 11717), 'numpy.linalg.solve', 'np.linalg.solve', (['matrix', 'forcing'], {}), '(matrix, forcing)\n', (11700, 11717), True, 'import numpy as np\n'), ((13926, 13960), 'numpy.linalg.solve', 'np.linalg.solve', (['matrix', 'qoi_deriv'], {}), '(matrix, qoi_deriv)\n', (13941, 13960), True, 'import numpy as np\n'), ((16789, 16820), 'numpy.empty', 'np.empty', (['num_stoch_dims', 'float'], {}), '(num_stoch_dims, float)\n', (16797, 16820), True, 'import numpy as np\n'), ((17771, 17807), 'pyapprox.univariate_polynomials.quadrature.gauss_jacobi_pts_wts_1D', 'gauss_jacobi_pts_wts_1D', (['order', '(0)', '(0)'], {}), '(order, 0, 0)\n', (17794, 17807), False, 'from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D\n'), ((18197, 18226), 'numpy.dot', 'np.dot', (['gl_vals[:, 0]', 'gl_wts'], {}), '(gl_vals[:, 0], gl_wts)\n', (18203, 18226), True, 'import numpy as np\n'), ((19684, 19712), 'numpy.atleast_2d', 'np.atleast_2d', (['self.mesh_pts'], {}), '(self.mesh_pts)\n', (19697, 19712), True, 'import numpy as np\n'), ((19838, 19902), 'pyapprox.models.wrappers.evaluate_1darray_function_on_2d_array', 'evaluate_1darray_function_on_2d_array', (['self.value', 'samples', 'None'], {}), '(self.value, samples, None)\n', (19875, 19902), False, 'from pyapprox.models.wrappers import evaluate_1darray_function_on_2d_array\n'), ((20802, 20831), 'numpy.empty', 'np.empty', (['(4 * self.order)', 'int'], {}), '(4 * self.order, int)\n', (20810, 20831), True, 'import numpy as np\n'), ((22316, 22360), 'pyapprox.utilities.cartesian_product', 'cartesian_product', (['([self.mesh_pts_1d] * 2)', '(1)'], {}), '([self.mesh_pts_1d] * 2, 1)\n', (22333, 22360), False, 'from pyapprox.utilities import cartesian_product, outer_product\n'), ((22729, 22751), 'numpy.eye', 'np.eye', (['(self.order + 1)'], {}), '(self.order + 1)\n', (22735, 22751), True, 'import numpy as np\n'), ((22845, 22881), 'numpy.kron', 'np.kron', (['Ident', 'derivative_matrix_1d'], {}), '(Ident, derivative_matrix_1d)\n', (22852, 22881), True, 'import numpy as np\n'), ((22987, 23023), 'numpy.kron', 'np.kron', (['derivative_matrix_1d', 'Ident'], {}), '(derivative_matrix_1d, Ident)\n', (22994, 23023), True, 'import numpy as np\n'), ((23119, 23159), 'numpy.empty', 'np.empty', (['self.derivative_matrix_1.shape'], {}), '(self.derivative_matrix_1.shape)\n', (23127, 23159), True, 'import numpy as np\n'), ((23186, 23226), 'numpy.empty', 'np.empty', (['self.derivative_matrix_2.shape'], {}), '(self.derivative_matrix_2.shape)\n', (23194, 23226), True, 'import numpy as np\n'), ((23454, 23503), 'numpy.dot', 'np.dot', (['self.derivative_matrix_1', 'scaled_matrix_1'], {}), '(self.derivative_matrix_1, scaled_matrix_1)\n', (23460, 23503), True, 'import numpy as np\n'), ((23523, 23572), 'numpy.dot', 'np.dot', (['self.derivative_matrix_2', 'scaled_matrix_2'], {}), '(self.derivative_matrix_2, scaled_matrix_2)\n', (23529, 23572), True, 'import numpy as np\n'), ((26044, 26080), 'pyapprox.univariate_polynomials.quadrature.gauss_jacobi_pts_wts_1D', 'gauss_jacobi_pts_wts_1D', (['order', '(0)', '(0)'], {}), '(order, 0, 0)\n', (26067, 26080), False, 'from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D\n'), ((26523, 26548), 'pyapprox.utilities.cartesian_product', 'cartesian_product', (['pts_1d'], {}), '(pts_1d)\n', (26540, 26548), False, 'from pyapprox.utilities import cartesian_product, outer_product\n'), ((26563, 26584), 'pyapprox.utilities.outer_product', 'outer_product', (['wts_1d'], {}), '(wts_1d)\n', (26576, 26584), False, 'from pyapprox.utilities import cartesian_product, outer_product\n'), ((26691, 26717), 'numpy.dot', 'np.dot', (['gl_vals[:, 0]', 'wts'], {}), '(gl_vals[:, 0], wts)\n', (26697, 26717), True, 'import numpy as np\n'), ((9745, 9787), 'numpy.empty', 'np.empty', (['self.num_stored_timesteps', 'float'], {}), '(self.num_stored_timesteps, float)\n', (9753, 9787), True, 'import numpy as np\n'), ((9809, 9880), 'numpy.empty', 'np.empty', (['(self.initial_sol.shape[0], self.num_stored_timesteps)', 'float'], {}), '((self.initial_sol.shape[0], self.num_stored_timesteps), float)\n', (9817, 9880), True, 'import numpy as np\n'), ((11005, 11033), 'numpy.linalg.solve', 'np.linalg.solve', (['matrix', 'rhs'], {}), '(matrix, rhs)\n', (11020, 11033), True, 'import numpy as np\n'), ((11416, 11442), 'numpy.any', 'np.any', (['(diffusivity <= 0.0)'], {}), '(diffusivity <= 0.0)\n', (11422, 11442), True, 'import numpy as np\n'), ((14339, 14363), 'numpy.dot', 'np.dot', (['matrix', 'solution'], {}), '(matrix, solution)\n', (14345, 14363), True, 'import numpy as np\n'), ((15154, 15178), 'numpy.dot', 'np.dot', (['matrix', 'solution'], {}), '(matrix, solution)\n', (15160, 15178), True, 'import numpy as np\n'), ((16371, 16418), 'numpy.linalg.cond', 'np.linalg.cond', (['self.adjoint_collocation_matrix'], {}), '(self.adjoint_collocation_matrix)\n', (16385, 16418), True, 'import numpy as np\n'), ((17516, 17532), 'numpy.isscalar', 'np.isscalar', (['qoi'], {}), '(qoi)\n', (17527, 17532), True, 'import numpy as np\n'), ((17569, 17584), 'numpy.array', 'np.array', (['[qoi]'], {}), '([qoi])\n', (17577, 17584), True, 'import numpy as np\n'), ((18597, 18631), 'pyapprox.barycentric_interpolation.compute_barycentric_weights_1d', 'compute_barycentric_weights_1d', (['xx'], {}), '(xx)\n', (18627, 18631), False, 'from pyapprox.barycentric_interpolation import compute_barycentric_weights_1d, multivariate_barycentric_lagrange_interpolation\n'), ((18838, 18857), 'numpy.arange', 'np.arange', (['num_dims'], {}), '(num_dims)\n', (18847, 18857), True, 'import numpy as np\n'), ((19124, 19180), 'numpy.linspace', 'np.linspace', (['self.xlim[0]', 'self.xlim[1]', 'num_plot_pts_1d'], {}), '(self.xlim[0], self.xlim[1], num_plot_pts_1d)\n', (19135, 19180), True, 'import numpy as np\n'), ((19277, 19324), 'pylab.plot', 'pylab.plot', (['plot_mesh', 'interp_vals', "(color + '-')"], {}), "(plot_mesh, interp_vals, color + '-')\n", (19287, 19324), False, 'import pylab\n'), ((25365, 25483), 'utilities.visualisation.plot_surface_from_function', 'plot_surface_from_function', (['func', '[self.xlim[0], self.xlim[1], self.ylim[0], self.ylim[1]]', 'num_plot_pts_1d', '(False)'], {}), '(func, [self.xlim[0], self.xlim[1], self.ylim[0],\n self.ylim[1]], num_plot_pts_1d, False)\n', (25391, 25483), False, 'from utilities.visualisation import plot_surface_from_function\n'), ((1490, 1524), 'numpy.linspace', 'np.linspace', (['(0.0)', 'np.pi', '(order + 1)'], {}), '(0.0, np.pi, order + 1)\n', (1501, 1524), True, 'import numpy as np\n'), ((6888, 6928), 'numpy.eye', 'np.eye', (['self.collocation_matrix.shape[0]'], {}), '(self.collocation_matrix.shape[0])\n', (6894, 6928), True, 'import numpy as np\n'), ((6951, 7038), 'numpy.dot', 'np.dot', (['(identity + 0.5 * self.time_step_size * self.collocation_matrix)', 'current_sol'], {}), '(identity + 0.5 * self.time_step_size * self.collocation_matrix,\n current_sol)\n', (6957, 7038), True, 'import numpy as np\n'), ((8466, 8558), 'pyapprox.utilities.qr_solve', 'qr_solve', (['self.implicit_matrix_factors[0]', 'self.implicit_matrix_factors[1]', 'rhs[:, None]'], {}), '(self.implicit_matrix_factors[0], self.implicit_matrix_factors[1],\n rhs[:, None])\n', (8474, 8558), False, 'from pyapprox.utilities import qr_solve\n'), ((19458, 19513), 'pylab.plot', 'pylab.plot', (['plot_mesh_coords', 'mesh_values', "('o-' + color)"], {}), "(plot_mesh_coords, mesh_values, 'o-' + color)\n", (19468, 19513), False, 'import pylab\n'), ((19584, 19629), 'pylab.plot', 'pylab.plot', (['self.mesh_pts', 'mesh_values', 'color'], {}), '(self.mesh_pts, mesh_values, color)\n', (19594, 19629), False, 'import pylab\n'), ((3938, 3962), 'inspect.getargspec', 'inspect.getargspec', (['func'], {}), '(func)\n', (3956, 3962), False, 'import inspect\n'), ((4087, 4111), 'inspect.getargspec', 'inspect.getargspec', (['func'], {}), '(func)\n', (4105, 4111), False, 'import inspect\n'), ((8111, 8145), 'numpy.dot', 'np.dot', (['self.collocation_matrix', 'u'], {}), '(self.collocation_matrix, u)\n', (8117, 8145), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.image as img from sklearn.decomposition import TruncatedSVD """ 打个比方说一张女人图片,我们如何判定这个女人是不是美女呢。我们会看比较关键的一些特征,比如说脸好不好看,胸好不好看,屁股怎么样,腿怎么样,至于衣服上是某个花纹还是手臂上有一个小痔还是,这些特征我们都是不关心的,就可以过滤掉。我们关心的是主成分,也就是对结果贡献系数较大的特征。SVD算法的作用就是来告诉你哪些特征是重要的,有多重要,哪些特征是不重要的,是可以忽略的。 接下来我们使用sklearn提供的TruncatedSVD模块来对美女图片进行压缩。 首先我们使用matplotlib显示一张美女png图片,png图片的格式非常简单,每一个像素有三个维度的颜色值RGB,整个图片就是一个「height x width x 3」维的矩阵。 """ # 加载png数据矩阵 img_array = img.imread('test2.png') shape = img_array.shape print(shape) # 高度、宽度、RGB通道数=3 height, width, channels = shape[0], shape[1], shape[2] # 转换成numpy array img_matrix = np.array(img_array) # 存储RGB三个通道转换后的数据 planes = [] # RGB三个通道分别处理 for idx in range(channels): # 提取通道 plane = img_matrix[:, :, idx] # 转成二维矩阵 plane = np.reshape(plane, (height, width)) # 保留10个主成分 svd = TruncatedSVD(n_components=10) # 拟合数据,进行矩阵分解,生成特征空间,剔去无关紧要的成分 svd.fit(plane) # 将输入数据转换到特征空间 new_plane = svd.transform(plane) # 再将特征空间的数据转换会数据空间 plane = svd.inverse_transform(new_plane) # 存起来 planes.append(plane) # 合并三个通道平面数据 img_matrix = np.dstack(planes) # 显示处理后的图像 plt.imshow(img_matrix) plt.show()
[ "numpy.dstack", "matplotlib.image.imread", "matplotlib.pyplot.show", "sklearn.decomposition.TruncatedSVD", "matplotlib.pyplot.imshow", "numpy.array", "numpy.reshape" ]
[((511, 534), 'matplotlib.image.imread', 'img.imread', (['"""test2.png"""'], {}), "('test2.png')\n", (521, 534), True, 'import matplotlib.image as img\n'), ((676, 695), 'numpy.array', 'np.array', (['img_array'], {}), '(img_array)\n', (684, 695), True, 'import numpy as np\n'), ((1170, 1187), 'numpy.dstack', 'np.dstack', (['planes'], {}), '(planes)\n', (1179, 1187), True, 'import numpy as np\n'), ((1199, 1221), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img_matrix'], {}), '(img_matrix)\n', (1209, 1221), True, 'import matplotlib.pyplot as plt\n'), ((1223, 1233), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1231, 1233), True, 'import matplotlib.pyplot as plt\n'), ((840, 874), 'numpy.reshape', 'np.reshape', (['plane', '(height, width)'], {}), '(plane, (height, width))\n', (850, 874), True, 'import numpy as np\n'), ((900, 929), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': '(10)'}), '(n_components=10)\n', (912, 929), False, 'from sklearn.decomposition import TruncatedSVD\n')]
from scipy.stats import uniform import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize from scipy.stats import exponweib def calculate_parameters(interarrivals): sample = np.array(interarrivals) x = np.linspace(0, 1 - 1 / sample.shape[0], sample.shape[0]) x = x[sample > 0] sample = sample[sample > 0] sample = sample[x > 0] x = x[x > 0] m, c = minimize(lambda t: np.mean((np.log(sample) - (t[0] * np.log(-np.log(1 - x)) + t[1])) ** 2), [1, 0]).x return 1 / m, np.exp(-c - m) def main(): step = 4 interarrivals = exponweib(size=10000) print(calculate_parameters(interarrivals)) hours = [] hour = [] params = [] time = 0 last_time = 0 for arrival in interarrivals: if time + arrival > last_time + 1000 * 60 * 60 * step: params.append(calculate_parameters(hour)) hours.append(hour) hour = [] last_time = time = last_time + 1000 * 60 * 60 * step time = time + arrival hour.append(arrival) fig, ax1 = plt.subplots() ax2 = plt.twinx() ax1.plot([p[0] for p in params]) ax2.plot([p[1] for p in params], color='orange') plt.show() if __name__ == '__main__': main()
[ "matplotlib.pyplot.show", "numpy.log", "matplotlib.pyplot.twinx", "numpy.array", "numpy.exp", "numpy.linspace", "scipy.stats.exponweib", "matplotlib.pyplot.subplots" ]
[((211, 234), 'numpy.array', 'np.array', (['interarrivals'], {}), '(interarrivals)\n', (219, 234), True, 'import numpy as np\n'), ((243, 299), 'numpy.linspace', 'np.linspace', (['(0)', '(1 - 1 / sample.shape[0])', 'sample.shape[0]'], {}), '(0, 1 - 1 / sample.shape[0], sample.shape[0])\n', (254, 299), True, 'import numpy as np\n'), ((591, 612), 'scipy.stats.exponweib', 'exponweib', ([], {'size': '(10000)'}), '(size=10000)\n', (600, 612), False, 'from scipy.stats import exponweib\n'), ((1084, 1098), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1096, 1098), True, 'import matplotlib.pyplot as plt\n'), ((1110, 1121), 'matplotlib.pyplot.twinx', 'plt.twinx', ([], {}), '()\n', (1119, 1121), True, 'import matplotlib.pyplot as plt\n'), ((1219, 1229), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1227, 1229), True, 'import matplotlib.pyplot as plt\n'), ((529, 543), 'numpy.exp', 'np.exp', (['(-c - m)'], {}), '(-c - m)\n', (535, 543), True, 'import numpy as np\n'), ((437, 451), 'numpy.log', 'np.log', (['sample'], {}), '(sample)\n', (443, 451), True, 'import numpy as np\n'), ((470, 483), 'numpy.log', 'np.log', (['(1 - x)'], {}), '(1 - x)\n', (476, 483), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: import networkx as nx import numpy as np import matplotlib.pyplot as plt import time # In[2]: def createGraph(depotNodes ,requiredEdges, numNodes, show=True): G = nx.Graph() edges = [] pos = {} reqPos = {} s = [1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 7] t = [2, 3, 4, 6, 4, 5, 5, 7, 6, 8, 7, 8] weights = [2.3, 2, 3, 1.5, 3.2, 2.2, 3.8, 2.6, 2.2, 2.8, 1.8, 0.8] xData = [-2, -0.5, -1, 0, 1, 1.5, 2, 2.5]; yData = [ 0, -2, 2.5, 0, 3, -2, 0.3, 1.5]; for i in range(len(s)): edges.append((s[i], t[i], weights[i])) for i in range(1, numNodes+1): G.add_node(i) pos[i] =(xData[i-1], yData[i-1]) node_color = ['y']*int(G.number_of_nodes()) depot_node_color = node_color for i in range(1, len(node_color)+1): if i in depotNodes: depot_node_color[i-1] = 'g' G.add_weighted_edges_from(edges) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx(G,pos, node_color = node_color) nx.draw_networkx(G,pos, node_color = depot_node_color) nx.draw_networkx_edges(G, pos, edgelist=requiredEdges, width=3, alpha=0.5, edge_color="r") nx.draw_networkx_edge_labels(G, pos, edge_labels=labels) if show: plt.figure(1) plt.show() return G,pos, depot_node_color # In[3]: # Allocating task based on distance between base station and desired edge and UAV availability def taskAllocation(G, depotNodes, requiredNodes, numrequiredEdges, uavsInDepotNodes): depotNodesCost = np.zeros((len(depotNodes), numrequiredEdges)) depotPath = [] bestPathTillDesiredEdge = [] bestCostTillDesiredEdge = [] for j in range(numrequiredEdges): for i in range(len(depotNodes)): c1 = nx.dijkstra_path_length(G, source=depotNodes[i], target=requiredNodes[j][0]) c2 = nx.dijkstra_path_length(G, source=depotNodes[i], target=requiredNodes[j][1]) l = [] if c1 <= c2: l = nx.dijkstra_path(G, source=depotNodes[i], target=requiredNodes[j][0]) l.append(requiredNodes[j][1]) else: l = nx.dijkstra_path(G, source=depotNodes[i], target=requiredNodes[j][1]) l.append(requiredNodes[j][0]) depotNodesCost[i,j] = min(c1,c2) depotNodesCost[i,j] += G.get_edge_data(requiredNodes[j][0], requiredNodes[j][1])['weight'] depotPath.append(l) if uavsInDepotNodes[np.argmin(depotNodesCost[:,j])] > 0: uavsInDepotNodes[np.argmin(depotNodesCost[:,j])] -= 1 else: depotNodesCost[np.argmin(depotNodesCost[:,j]),j] = np.inf depotPath = np.transpose(np.array(depotPath, dtype=object).reshape((len(depotNodes), numrequiredEdges))) taskAllocatedtoBaseStations = [] print("Task Allocation Algorithm Output: ") for i in range(numrequiredEdges): taskAllocatedtoBaseStations.append(np.argmin(depotNodesCost[:,i])) bestCostTillDesiredEdge.append(depotNodesCost[taskAllocatedtoBaseStations[i],i]) bestPathTillDesiredEdge.append(depotPath[taskAllocatedtoBaseStations[i],i]) print('Allocating arc ' + str(requiredNodes[i][0]) + ' - ' + str(requiredNodes[i][1]) + ' to base station - node ' + str(depotNodes[taskAllocatedtoBaseStations[i]])) return bestPathTillDesiredEdge, bestCostTillDesiredEdge # In[4]: def pathScanningAlgorithm(G, numrequiredEdges,depotNodes, bestPathTillDesiredEdge, bestCostTillDesiredEdge, vehicleCapacity): bestRoute = [] bestRouteCost = [] minCost = np.inf for j in range(numrequiredEdges): minCost = np.inf l = [] for i in range(len(depotNodes)): c1 = nx.dijkstra_path_length(G, source=bestPathTillDesiredEdge[j][-1], target=depotNodes[i]) if c1 <= minCost: l = nx.dijkstra_path(G, source=bestPathTillDesiredEdge[j][-1], target=depotNodes[i])[1:] minCost = c1 bestRoute.append(bestPathTillDesiredEdge[j] + l) bestRouteCost.append(bestCostTillDesiredEdge[j] + minCost) if bestRouteCost[j] > vehicleCapacity: bestRoute[j] = None bestRouteCost[j] = np.inf print("Path Scanning Algorithm Output: ") return bestRoute, bestRouteCost # In[5]: def visualizePath(depotNodes, requiredNodes, numNodes, path, pathType="solution"): plt.figure(1) for j in range(len(path)): if path[j] != None: # plt.figure(j+1) G, pos, depot_node_color = createGraph(depotNodes, requiredNodes , numNodes, show=False) G1 = nx.DiGraph() pos1 = {} node_color = [] edges = [] for i in range(len(path[j])-1): edges.append((path[j][i], path[j][i+1], G.get_edge_data(path[j][i], path[j][i+1])['weight'])) pos1[path[j][i]] = pos[path[j][i]] if i == len(path[j])-2: pos1[path[j][i+1]] = pos[path[j][i+1]] for key in pos1.keys(): node_color.append(depot_node_color[key-1]) G1.add_weighted_edges_from(edges) nx.draw_networkx(G1,pos1, arrows=True, node_color = node_color, edge_color='b', arrowsize=12, width=1, arrowstyle='simple') if pathType == "solution": plt.legend(["Solution Path"], loc ="upper left") else: plt.legend(["Path"], loc ="upper left") plt.show() # In[6]: def main(): # Initializing Parameters vehicleCapacity = 14 numNodes = 8 requiredNodes = [[2, 4], [6, 7]]; uavsInDepotNodes = [0, 2]; totalUavs = sum(uavsInDepotNodes); numrequiredEdges = 2; depotNodes = [1, 5]; taskAllocatedtoBaseStations = []; start = time.time() G,pos, depot_node_color = createGraph(depotNodes, requiredNodes, numNodes, show=False) bestPathTillDesiredEdge, bestCostTillDesiredEdge = taskAllocation(G, depotNodes, requiredNodes, numrequiredEdges, uavsInDepotNodes) visualizePath(depotNodes, requiredNodes, numNodes, bestPathTillDesiredEdge, pathType="normal") bestRoute, bestRouteCost = pathScanningAlgorithm(G, numrequiredEdges, depotNodes, bestPathTillDesiredEdge, bestCostTillDesiredEdge, vehicleCapacity) visualizePath(depotNodes, requiredNodes, numNodes, bestRoute) end = time.time() print("Execution took "+ str(end-start) + " seconds.") if __name__ == "__main__": # execute only if run as a script main() # In[ ]: # In[ ]: # In[ ]:
[ "matplotlib.pyplot.show", "networkx.draw_networkx_edges", "networkx.dijkstra_path_length", "matplotlib.pyplot.legend", "networkx.get_edge_attributes", "networkx.draw_networkx", "time.time", "numpy.argmin", "networkx.dijkstra_path", "matplotlib.pyplot.figure", "networkx.Graph", "numpy.array", "networkx.draw_networkx_edge_labels", "networkx.DiGraph" ]
[((221, 231), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (229, 231), True, 'import networkx as nx\n'), ((979, 1014), 'networkx.get_edge_attributes', 'nx.get_edge_attributes', (['G', '"""weight"""'], {}), "(G, 'weight')\n", (1001, 1014), True, 'import networkx as nx\n'), ((1018, 1065), 'networkx.draw_networkx', 'nx.draw_networkx', (['G', 'pos'], {'node_color': 'node_color'}), '(G, pos, node_color=node_color)\n', (1034, 1065), True, 'import networkx as nx\n'), ((1071, 1124), 'networkx.draw_networkx', 'nx.draw_networkx', (['G', 'pos'], {'node_color': 'depot_node_color'}), '(G, pos, node_color=depot_node_color)\n', (1087, 1124), True, 'import networkx as nx\n'), ((1130, 1224), 'networkx.draw_networkx_edges', 'nx.draw_networkx_edges', (['G', 'pos'], {'edgelist': 'requiredEdges', 'width': '(3)', 'alpha': '(0.5)', 'edge_color': '"""r"""'}), "(G, pos, edgelist=requiredEdges, width=3, alpha=0.5,\n edge_color='r')\n", (1152, 1224), True, 'import networkx as nx\n'), ((1265, 1321), 'networkx.draw_networkx_edge_labels', 'nx.draw_networkx_edge_labels', (['G', 'pos'], {'edge_labels': 'labels'}), '(G, pos, edge_labels=labels)\n', (1293, 1321), True, 'import networkx as nx\n'), ((4508, 4521), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (4518, 4521), True, 'import matplotlib.pyplot as plt\n'), ((5905, 5916), 'time.time', 'time.time', ([], {}), '()\n', (5914, 5916), False, 'import time\n'), ((6472, 6483), 'time.time', 'time.time', ([], {}), '()\n', (6481, 6483), False, 'import time\n'), ((1343, 1356), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (1353, 1356), True, 'import matplotlib.pyplot as plt\n'), ((1365, 1375), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1373, 1375), True, 'import matplotlib.pyplot as plt\n'), ((1854, 1930), 'networkx.dijkstra_path_length', 'nx.dijkstra_path_length', (['G'], {'source': 'depotNodes[i]', 'target': 'requiredNodes[j][0]'}), '(G, source=depotNodes[i], target=requiredNodes[j][0])\n', (1877, 1930), True, 'import networkx as nx\n'), ((1948, 2024), 'networkx.dijkstra_path_length', 'nx.dijkstra_path_length', (['G'], {'source': 'depotNodes[i]', 'target': 'requiredNodes[j][1]'}), '(G, source=depotNodes[i], target=requiredNodes[j][1])\n', (1971, 2024), True, 'import networkx as nx\n'), ((3051, 3082), 'numpy.argmin', 'np.argmin', (['depotNodesCost[:, i]'], {}), '(depotNodesCost[:, i])\n', (3060, 3082), True, 'import numpy as np\n'), ((3833, 3925), 'networkx.dijkstra_path_length', 'nx.dijkstra_path_length', (['G'], {'source': 'bestPathTillDesiredEdge[j][-1]', 'target': 'depotNodes[i]'}), '(G, source=bestPathTillDesiredEdge[j][-1], target=\n depotNodes[i])\n', (3856, 3925), True, 'import networkx as nx\n'), ((4729, 4741), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (4739, 4741), True, 'import networkx as nx\n'), ((5274, 5401), 'networkx.draw_networkx', 'nx.draw_networkx', (['G1', 'pos1'], {'arrows': '(True)', 'node_color': 'node_color', 'edge_color': '"""b"""', 'arrowsize': '(12)', 'width': '(1)', 'arrowstyle': '"""simple"""'}), "(G1, pos1, arrows=True, node_color=node_color, edge_color=\n 'b', arrowsize=12, width=1, arrowstyle='simple')\n", (5290, 5401), True, 'import networkx as nx\n'), ((5588, 5598), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5596, 5598), True, 'import matplotlib.pyplot as plt\n'), ((2089, 2158), 'networkx.dijkstra_path', 'nx.dijkstra_path', (['G'], {'source': 'depotNodes[i]', 'target': 'requiredNodes[j][0]'}), '(G, source=depotNodes[i], target=requiredNodes[j][0])\n', (2105, 2158), True, 'import networkx as nx\n'), ((2243, 2312), 'networkx.dijkstra_path', 'nx.dijkstra_path', (['G'], {'source': 'depotNodes[i]', 'target': 'requiredNodes[j][1]'}), '(G, source=depotNodes[i], target=requiredNodes[j][1])\n', (2259, 2312), True, 'import networkx as nx\n'), ((2580, 2611), 'numpy.argmin', 'np.argmin', (['depotNodesCost[:, j]'], {}), '(depotNodesCost[:, j])\n', (2589, 2611), True, 'import numpy as np\n'), ((2650, 2681), 'numpy.argmin', 'np.argmin', (['depotNodesCost[:, j]'], {}), '(depotNodesCost[:, j])\n', (2659, 2681), True, 'import numpy as np\n'), ((2805, 2838), 'numpy.array', 'np.array', (['depotPath'], {'dtype': 'object'}), '(depotPath, dtype=object)\n', (2813, 2838), True, 'import numpy as np\n'), ((5453, 5500), 'matplotlib.pyplot.legend', 'plt.legend', (["['Solution Path']"], {'loc': '"""upper left"""'}), "(['Solution Path'], loc='upper left')\n", (5463, 5500), True, 'import matplotlib.pyplot as plt\n'), ((5536, 5574), 'matplotlib.pyplot.legend', 'plt.legend', (["['Path']"], {'loc': '"""upper left"""'}), "(['Path'], loc='upper left')\n", (5546, 5574), True, 'import matplotlib.pyplot as plt\n'), ((2728, 2759), 'numpy.argmin', 'np.argmin', (['depotNodesCost[:, j]'], {}), '(depotNodesCost[:, j])\n', (2737, 2759), True, 'import numpy as np\n'), ((3971, 4056), 'networkx.dijkstra_path', 'nx.dijkstra_path', (['G'], {'source': 'bestPathTillDesiredEdge[j][-1]', 'target': 'depotNodes[i]'}), '(G, source=bestPathTillDesiredEdge[j][-1], target=depotNodes[i]\n )\n', (3987, 4056), True, 'import networkx as nx\n')]
import numpy as np import pandas as pd import xarray as xr from shape import BBox from .mot import Mot class BboxMot(Mot): def __init__(self, **kwargs): """ Ground truth stored in xarray.Dataset with frame and id coordinates (frames are 0-indexed). Example: <xarray.Dataset> Dimensions: (frame: 5928, id: 5) Coordinates: * frame (frame) int64 0 1 2 3 4 5 6 ... 5922 5923 5924 5925 5926 5927 * id (id) int64 1 2 3 4 5 Data variables: x (frame, id) float64 434.5 277.7 179.2 180.0 ... nan nan nan nan y (frame, id) float64 279.0 293.6 407.9 430.0 ... nan nan nan nan width (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan height (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan confidence (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 """ super(Mot, self).__init__(**kwargs) def init_blank(self, frames, ids): """ Initialize blank ground truth. :param frames: list of frames :param ids: list of identities """ self.ds = xr.Dataset( data_vars={ "x": (["frame", "id"], np.nan * np.ones((len(frames), len(ids)))), "y": (["frame", "id"], np.nan * np.ones((len(frames), len(ids)))), "width": (["frame", "id"], np.nan * np.ones((len(frames), len(ids)))), "height": (["frame", "id"], np.nan * np.ones((len(frames), len(ids)))), "confidence": ( ["frame", "id"], np.nan * np.ones((len(frames), len(ids))), ), }, coords={"frame": frames, "id": ids}, ) def load(self, filename): """ Load Multiple Object Tacking Challenge trajectories file. Format described in https://arxiv.org/abs/1603.00831, section 3.3 Data Format Loads trajectories into a DataFrame, columns frame and id start with 1 (MATLAB indexing). :param filename: mot filename_or_buffer or buffer """ df = pd.read_csv( filename, index_col=["frame", "id"], names=["frame", "id", "x", "y", "width", "height", "confidence"], converters={ "frame": lambda x: int(x) - 1, "id": lambda x: int(x) - 1, }, ) df[df == -1] = np.nan ds = df.to_xarray() # ensure that all frames are in the Dataset self.init_blank(list(range(ds.frame.min(), ds.frame.max())), ds.id) self.ds = ds.merge(self.ds) def save(self, filename, make_backup=False): import datetime import os if make_backup and os.path.exists(filename): dt = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") os.rename(filename, filename[:-4] + "_" + dt + ".txt") df = self.ds.to_dataframe().reset_index() df[df.isna()] = -1 df["frame"] += 1 df["id"] += 1 df.to_csv(filename, index=False, header=False) def get_bboxes(self, frame): """ Get GT bounding boxes in a frame. The returned BBoxes include obj_id attribute. :param frame: frame number :return: list of bounding boxes (BBox) """ bboxes = [] for obj_id, obj in self.get_positions_dataframe(frame).iterrows(): if not ( np.isnan(obj.x) or np.isnan(obj.y) or np.isnan(obj.width) or np.isnan(obj.height) ): bbox = BBox.from_xywh(obj.x, obj.y, obj.width, obj.height, frame) bbox.obj_id = obj_id bboxes.append(bbox) return bboxes def get_object_distance(self, frame, obj_id, other): """ TODO bbox iou :param frame: :param obj_id: :param other: :return: """ assert False, "not implemented" def draw_frame(self, img, frame, mapping=None): """ Draw objects on an image. :param img: ndarray :param frame: frame :param mapping: mapping of ids, dict :return: image """ if frame in self.ds.frame: if self.colors is None: self._init_draw() if mapping is None: mapping = dict(list(zip(self.ds.id.data, self.ds.id.data))) for bbox in self.get_bboxes(frame): bbox.draw_to_image(img, color=self.colors[mapping[bbox.obj_id]]) return img
[ "shape.BBox.from_xywh", "os.rename", "os.path.exists", "numpy.isnan", "datetime.datetime.now" ]
[((2848, 2872), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (2862, 2872), False, 'import os\n'), ((2957, 3011), 'os.rename', 'os.rename', (['filename', "(filename[:-4] + '_' + dt + '.txt')"], {}), "(filename, filename[:-4] + '_' + dt + '.txt')\n", (2966, 3011), False, 'import os\n'), ((3730, 3788), 'shape.BBox.from_xywh', 'BBox.from_xywh', (['obj.x', 'obj.y', 'obj.width', 'obj.height', 'frame'], {}), '(obj.x, obj.y, obj.width, obj.height, frame)\n', (3744, 3788), False, 'from shape import BBox\n'), ((2891, 2914), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2912, 2914), False, 'import datetime\n'), ((3562, 3577), 'numpy.isnan', 'np.isnan', (['obj.x'], {}), '(obj.x)\n', (3570, 3577), True, 'import numpy as np\n'), ((3597, 3612), 'numpy.isnan', 'np.isnan', (['obj.y'], {}), '(obj.y)\n', (3605, 3612), True, 'import numpy as np\n'), ((3632, 3651), 'numpy.isnan', 'np.isnan', (['obj.width'], {}), '(obj.width)\n', (3640, 3651), True, 'import numpy as np\n'), ((3671, 3691), 'numpy.isnan', 'np.isnan', (['obj.height'], {}), '(obj.height)\n', (3679, 3691), True, 'import numpy as np\n')]
from __future__ import print_function from __future__ import division from builtins import range from past.utils import old_div import os import numpy as num from anuga.file.netcdf import NetCDFFile import pylab as P import anuga from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular from anuga.shallow_water.shallow_water_domain import Domain from anuga.shallow_water.boundaries import Reflective_boundary from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.shallow_water.forcing import * from anuga.utilities.numerical_tools import ensure_numeric from anuga.file.sww import Write_sww from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ netcdf_float def sts2sww_mesh(basename_in, basename_out=None, spatial_thinning=1, verbose=False): from anuga.mesh_engine.mesh_engine import NoTrianglesError from anuga.pmesh.mesh import Mesh if verbose: print("Starting sts2sww_mesh") mean_stage=0. zscale=1. if (basename_in[:-4]=='.sts'): stsname = basename_in else: stsname = basename_in + '.sts' if verbose: print("Reading sts NetCDF file: %s" %stsname) infile = NetCDFFile(stsname, netcdf_mode_r) cellsize = infile.cellsize ncols = infile.ncols nrows = infile.nrows no_data = infile.no_data refzone = infile.zone x_origin = infile.xllcorner y_origin = infile.yllcorner origin = num.array([x_origin, y_origin]) x = infile.variables['x'][:] y = infile.variables['y'][:] times = infile.variables['time'][:] wind_speed_full = infile.variables['wind_speed'][:] wind_angle_full = infile.variables['wind_angle'][:] pressure_full = infile.variables['barometric_pressure'][:] infile.close() number_of_points = nrows*ncols points_utm = num.zeros((number_of_points,2),num.float) points_utm[:,0]=x+x_origin points_utm[:,1]=y+y_origin thinned_indices=[] for i in range(number_of_points): if (old_div(i,ncols)==0 or old_div(i,ncols)==ncols-1 or (old_div(i,ncols))%(spatial_thinning)==0): if ( i%(spatial_thinning)==0 or i%nrows==0 or i%nrows==nrows-1 ): thinned_indices.append(i) #Spatial thinning points_utm=points_utm[thinned_indices] number_of_points = points_utm.shape[0] number_of_timesteps = wind_speed_full.shape[0] wind_speed = num.empty((number_of_timesteps,number_of_points),dtype=float) wind_angle = num.empty((number_of_timesteps,number_of_points),dtype=float) barometric_pressure = num.empty((number_of_timesteps,number_of_points),dtype=float) if verbose: print("Total number of points: ", nrows*ncols) print("Number of thinned points: ", number_of_points) for i in range(number_of_timesteps): wind_speed[i] = wind_speed_full[i,thinned_indices] wind_angle[i] = wind_angle_full[i,thinned_indices] barometric_pressure[i] = pressure_full[i,thinned_indices] #P.plot(points_utm[:,0],points_utm[:,1],'ro') #P.show() if verbose: print("Generating sww triangulation of gems data") mesh = Mesh() mesh.add_vertices(points_utm) mesh.auto_segment(smooth_indents=True, expand_pinch=True) mesh.auto_segment(mesh.shape.get_alpha() * 1.1) try: mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False) except NoTrianglesError: # This is a bit of a hack, going in and changing the data structure. mesh.holes = [] mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False) mesh_dic = mesh.Mesh2MeshList() points_utm=ensure_numeric(points_utm) assert num.alltrue(ensure_numeric(mesh_dic['generatedpointlist']) == ensure_numeric(points_utm)) volumes = mesh_dic['generatedtrianglelist'] # Write sww intro and grid stuff. if (basename_out is not None and basename_out[:-4]=='.sww'): swwname = basename_out else: swwname = basename_in + '.sww' if verbose: 'Output to %s' % swwname if verbose: print("Writing sww wind and pressure field file") outfile = NetCDFFile(swwname, netcdf_mode_w) sww = Write_sww([], ['wind_speed','wind_angle','barometric_pressure']) sww.store_header(outfile, times, len(volumes), len(points_utm), verbose=verbose, sww_precision='d') outfile.mean_stage = mean_stage outfile.zscale = zscale sww.store_triangulation(outfile, points_utm, volumes, refzone, new_origin=origin, #check effect of this line verbose=verbose) if verbose: print('Converting quantities') # Read in a time slice from the sts file and write it to the SWW file #print wind_angle[0,:10] for i in range(len(times)): sww.store_quantities(outfile, slice_index=i, verbose=verbose, wind_speed=wind_speed[i,:], wind_angle=wind_angle[i,:], barometric_pressure=barometric_pressure[i,:], sww_precision=num.float) if verbose: sww.verbose_quantities(outfile) outfile.close()
[ "builtins.range", "anuga.utilities.numerical_tools.ensure_numeric", "past.utils.old_div", "numpy.empty", "anuga.file.sww.Write_sww", "numpy.zeros", "numpy.array", "anuga.pmesh.mesh.Mesh", "anuga.file.netcdf.NetCDFFile" ]
[((1240, 1274), 'anuga.file.netcdf.NetCDFFile', 'NetCDFFile', (['stsname', 'netcdf_mode_r'], {}), '(stsname, netcdf_mode_r)\n', (1250, 1274), False, 'from anuga.file.netcdf import NetCDFFile\n'), ((1488, 1519), 'numpy.array', 'num.array', (['[x_origin, y_origin]'], {}), '([x_origin, y_origin])\n', (1497, 1519), True, 'import numpy as num\n'), ((1877, 1920), 'numpy.zeros', 'num.zeros', (['(number_of_points, 2)', 'num.float'], {}), '((number_of_points, 2), num.float)\n', (1886, 1920), True, 'import numpy as num\n'), ((2018, 2041), 'builtins.range', 'range', (['number_of_points'], {}), '(number_of_points)\n', (2023, 2041), False, 'from builtins import range\n'), ((2449, 2512), 'numpy.empty', 'num.empty', (['(number_of_timesteps, number_of_points)'], {'dtype': 'float'}), '((number_of_timesteps, number_of_points), dtype=float)\n', (2458, 2512), True, 'import numpy as num\n'), ((2528, 2591), 'numpy.empty', 'num.empty', (['(number_of_timesteps, number_of_points)'], {'dtype': 'float'}), '((number_of_timesteps, number_of_points), dtype=float)\n', (2537, 2591), True, 'import numpy as num\n'), ((2618, 2681), 'numpy.empty', 'num.empty', (['(number_of_timesteps, number_of_points)'], {'dtype': 'float'}), '((number_of_timesteps, number_of_points), dtype=float)\n', (2627, 2681), True, 'import numpy as num\n'), ((2826, 2852), 'builtins.range', 'range', (['number_of_timesteps'], {}), '(number_of_timesteps)\n', (2831, 2852), False, 'from builtins import range\n'), ((3193, 3199), 'anuga.pmesh.mesh.Mesh', 'Mesh', ([], {}), '()\n', (3197, 3199), False, 'from anuga.pmesh.mesh import Mesh\n'), ((3680, 3706), 'anuga.utilities.numerical_tools.ensure_numeric', 'ensure_numeric', (['points_utm'], {}), '(points_utm)\n', (3694, 3706), False, 'from anuga.utilities.numerical_tools import ensure_numeric\n'), ((4197, 4231), 'anuga.file.netcdf.NetCDFFile', 'NetCDFFile', (['swwname', 'netcdf_mode_w'], {}), '(swwname, netcdf_mode_w)\n', (4207, 4231), False, 'from anuga.file.netcdf import NetCDFFile\n'), ((4242, 4308), 'anuga.file.sww.Write_sww', 'Write_sww', (['[]', "['wind_speed', 'wind_angle', 'barometric_pressure']"], {}), "([], ['wind_speed', 'wind_angle', 'barometric_pressure'])\n", (4251, 4308), False, 'from anuga.file.sww import Write_sww\n'), ((3730, 3776), 'anuga.utilities.numerical_tools.ensure_numeric', 'ensure_numeric', (["mesh_dic['generatedpointlist']"], {}), "(mesh_dic['generatedpointlist'])\n", (3744, 3776), False, 'from anuga.utilities.numerical_tools import ensure_numeric\n'), ((3803, 3829), 'anuga.utilities.numerical_tools.ensure_numeric', 'ensure_numeric', (['points_utm'], {}), '(points_utm)\n', (3817, 3829), False, 'from anuga.utilities.numerical_tools import ensure_numeric\n'), ((2055, 2072), 'past.utils.old_div', 'old_div', (['i', 'ncols'], {}), '(i, ncols)\n', (2062, 2072), False, 'from past.utils import old_div\n'), ((2078, 2095), 'past.utils.old_div', 'old_div', (['i', 'ncols'], {}), '(i, ncols)\n', (2085, 2095), False, 'from past.utils import old_div\n'), ((2108, 2125), 'past.utils.old_div', 'old_div', (['i', 'ncols'], {}), '(i, ncols)\n', (2115, 2125), False, 'from past.utils import old_div\n')]
import pathlib import pandas as pd from palmnet.visualization.utils import get_palminized_model_and_df, get_df import matplotlib.pyplot as plt import numpy as np import logging import plotly.graph_objects as go import plotly.io as pio from pprint import pprint as pprint mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.ERROR) pio.templates.default = "plotly_white" dataset = { "Cifar10": "--cifar10", "Cifar100": "--cifar100", # "SVHN": "--svhn", "MNIST": "--mnist" } models_data = { "Cifar10": ["--cifar10-vgg19"], # "Cifar100": ["--cifar100-resnet20", "--cifar100-resnet50"], "Cifar100": ["--cifar100-vgg19", "--cifar100-resnet20", "--cifar100-resnet50"], "SVHN": ["--svhn-vgg19"], "MNIST":["--mnist-lenet"], } color_bars_sparsity = { 2: "g", 3: "c", 4: "b", 5: "y" } tasks = { "nb-param-compressed-total", "finetuned-score", "param-compression-rate-total" } ylabel_task = { "nb-param-compressed-total": "log(# non-zero value)", "finetuned-score": "Accuracy", "param-compression-rate-total": "Compression Rate" } scale_tasks = { "nb-param-compressed-total": "log", "finetuned-score": "linear", "param-compression-rate-total": "linear" } def get_palm_results(): results_path = "2020/03/9_10_finetune_palminized_no_useless" results_path_2 = "2020/04/9_10_finetune_palminized_no_useless" src_results_path = root_source_dir / results_path / "results.csv" src_results_path_2 = root_source_dir / results_path_2 / "results.csv" df = pd.read_csv(src_results_path, header=0) df_2 = pd.read_csv(src_results_path_2, header=0) df = pd.concat([df, df_2]) df = df.fillna("None") df = df.drop(columns=["Unnamed: 0", "idx-expe"]).drop_duplicates() df = df[df["keep-last-layer"] == 0] df = df[df["use-clr"] == 1] df = df.assign(**{"only-dense": False, "keep-first-layer": False}) return df def get_faust_results(): results_path = "2020/05/3_4_finetune_faust_no_hierarchical_only_cifar_mnist" src_results_path = root_source_dir / results_path / "results.csv" df = pd.read_csv(src_results_path, header=0) df = df.fillna("None") df = df[df["hierarchical"] == False] df = df.drop(columns=["Unnamed: 0", "idx-expe"]).drop_duplicates() df = df[df["keep-last-layer"] == 0] df = df.assign(**{"only-dense": False, "keep-first-layer": False}) return df def get_tucker_results(): results_path_tucker = "2020/04/0_1_compression_tucker_tensortrain" src_results_path_tucker = root_source_dir / results_path_tucker / "results.csv" df_tucker_tt = pd.read_csv(src_results_path_tucker, header=0) df_tucker_tt = df_tucker_tt.fillna("None") df_tucker_tt = df_tucker_tt.assign(**{"only-dense": False, "use-pretrained": False}) df_tucker_tt = df_tucker_tt[df_tucker_tt["compression"] == "tucker"] return df_tucker_tt def get_tensortrain_results(): results_path_tucker = "2020/05/2_3_compression_tensortrain" src_results_path_tucker = root_source_dir / results_path_tucker / "results.csv" df_tucker_tt = pd.read_csv(src_results_path_tucker, header=0) df_tucker_tt = df_tucker_tt.fillna("None") # df_tucker_tt = df_tucker_tt[df_tucker_tt["use-pretrained"] == True] # df_tucker_tt = df_tucker_tt[df_tucker_tt["only-dense"] == False] return df_tucker_tt def get_tucker_tensortrain_only_denseresults(): results_path_tucker = "2020/05/2_3_compression_tucker_tensortrain_only_dense" src_results_path_tucker = root_source_dir / results_path_tucker / "results.csv" df_tucker_tt = pd.read_csv(src_results_path_tucker, header=0) df_tucker_tt = df_tucker_tt.fillna("None") # df_tucker_tt = df_tucker_tt[df_tucker_tt["use-pretrained"] == True] # df_tucker_tt = df_tucker_tt[df_tucker_tt["only-dense"] == True] return df_tucker_tt def get_palm_results_only_dense_keep_first(): results_path = "2020/05/5_6_finetune_sparse_facto_no_hierarchical_keep_first_layer_only_dense" src_results_path = root_source_dir / results_path / "results.csv" df = pd.read_csv(src_results_path, header=0) df = df.fillna("None") df = df.drop(columns=["Unnamed: 0", "idx-expe"]).drop_duplicates() # df = df[df["only-dense"] == False] return df def get_deepfried_results(): results_path_tucker = "2020/05/5_6_compression_baselines" src_results_path_tucker = root_source_dir / results_path_tucker / "results.csv" df_tucker_tt = pd.read_csv(src_results_path_tucker, header=0) df_tucker_tt = df_tucker_tt.fillna("None") # df_tucker_tt = df_tucker_tt.assign(**{"only-dense": True, "use-pretrained": False}) df_tucker_tt = df_tucker_tt[df_tucker_tt["compression"] == "deepfried"] return df_tucker_tt def get_magnitude_results(): results_path_tucker = "2020/05/5_6_compression_baselines" src_results_path_tucker = root_source_dir / results_path_tucker / "results.csv" df_tucker_tt = pd.read_csv(src_results_path_tucker, header=0) df_tucker_tt = df_tucker_tt.fillna("None") # df_tucker_tt = df_tucker_tt.assign(**{"only-dense": True, "use-pretrained": False}) df_tucker_tt = df_tucker_tt[df_tucker_tt["compression"] == "magnitude"] return df_tucker_tt if __name__ == "__main__": root_source_dir = pathlib.Path("/home/luc/PycharmProjects/palmnet/results/processed") SHOW_FAUST = False SHOW_KEEP_FIRST_ONLY = False SHOW_PRETRAINED_ONLY = True results_path = "2020/05/5_6_finetune_sparse_facto_perf_vs_param" df_tucker = get_tucker_results() df_tt = get_tensortrain_results() df_deepfried = get_deepfried_results() df_tucker_tt_only_dense = get_tucker_tensortrain_only_denseresults() df_magnitude = get_magnitude_results() df_tucker_tt_deepfried = pd.concat([df_tucker, df_tt, df_tucker_tt_only_dense, df_deepfried, df_magnitude]) df_palm = get_palm_results() df_palm_bis = get_palm_results_only_dense_keep_first() df_palm = pd.concat([df_palm, df_palm_bis]) # ONLY_DENSE = False # df_tucker_tt = df_tucker_tt[df_tucker_tt["only-dense"] == ONLY_DENSE] # df_palm = df_palm[df_palm["only-dense"] == ONLY_DENSE] root_output_dir = pathlib.Path("/home/luc/PycharmProjects/palmnet/reports/figures/") output_dir = root_output_dir / results_path / "histogrammes" output_dir.mkdir(parents=True, exist_ok=True) # sparsity_factors = sorted(set(df_palminized["--sparsity-factor"])) # nb_factors = set(df_palm["nb-factor"].values) hue_by_sparsity= { 2: 10, 3: 60, 4: 110, 5: 180 } saturation_by_perm = { 1: 50, 0: 75 } saturation_by_hier = { 1: 50, 0: 75 } lum_by_clr = { 1: 20, 0: 30 } lum_by_keep = { 1: 40, 0: 50 } dct_symbol = { "FAUST Q=2": "square", "FAUST Q=3": "diamond", "FAUST Q=None": "square-x", "FAUST Q=None H": "star-square", "PYQALM Q=2": "square-open", "PYQALM Q=3": "diamond-open", "PYQALM Q=None": "hash-open", "PYQALM Q=None H": "star-square-open", "PYQALM Q=2 -1": "square-open-dot", "PYQALM Q=3 -1": "diamond-open-dot", "PYQALM Q=None -1": "hash-open-dot", "PYQALM Q=None H -1": "star-square-open-dot", "PYQALM Q=2 -1 M": "square", "PYQALM Q=3 -1 M": "diamond", "PYQALM Q=None -1 M": "hash", "PYQALM Q=None H -1 M": "star-square", "Base": "x", "Tucker": "circle", "Tucker -1": "circle-dot", "TT": "triangle-up", "TT -1": "triangle-up-dot", "TT -1 pretrained": "triangle-up-open-dot", "Deepfried": "hexagram", "Magnitude ": "square", "Magnitude -1": "square", } dct_colors = { "PALM K=2": "dodgerblue", "PALM K=3": "darkorchid", "PALM K=4": "green", "PALM K=6": "aqua", "PALM K=8": "cadetblue", "TT R=2": "orange", "TT R=6": "gold", "TT R=10": "red", "TT R=12": "darkred", "TT R=14": "indianred", "Base": "grey", "Tucker": "pink", "Tucker + Low Rank 10%": "orange", "Tucker + Low Rank 20%": "gold", "Tucker + Low Rank 30%": "red", "Deepfried": "blueviolet", "Magnitude 50%": "red", "Magnitude 70%": "red", "Magnitude 90%": "red", } SIZE_MARKERS = 15 WIDTH_MARKER_LINES = 2 datasets = set(df_palm["dataset"].values) dct_table = dict() for dataname in datasets: dct_table[dataname] = dict() df_data_palm = df_palm[df_palm["dataset"] == dataname] df_tucker_tt_data = df_tucker_tt_deepfried[df_tucker_tt_deepfried["dataset"] == dataname] df_model_values = set(df_data_palm["model"].values) for modelname in df_model_values: dct_table[dataname][modelname] = dict() df_model_palm = df_data_palm[df_data_palm["model"] == modelname] df_tucker_tt_model = df_tucker_tt_data[df_tucker_tt_data["model"] == modelname] for ONLY_DENSE in [True, False]: df_tucker_tt_model_dense = df_tucker_tt_model[df_tucker_tt_model["only-dense"] == ONLY_DENSE] df_model_palm_dense = df_model_palm[df_model_palm["only-dense"] == ONLY_DENSE] if ONLY_DENSE: str_nb_param_compressed = "nb-param-compressed-dense" str_nb_param_base = "nb-param-base-dense" str_only_dense = " only dense" else: str_nb_param_compressed = "nb-param-compressed-total" str_nb_param_base = "nb-param-base-total" str_only_dense = "" dct_entry_only_dense = "Dense" if ONLY_DENSE else "Conv+Dense" dct_table[dataname][modelname][dct_entry_only_dense] = list() fig = go.Figure() base_score = None base_nb_param = None palm_algo = "PYQALM" for idx_row, row in df_model_palm_dense.iterrows(): hierarchical_value = row["hierarchical"] str_hierarchical = ' H' if hierarchical_value is True else '' try: nb_factor = int(row["nb-factor"]) except: nb_factor = None sparsity_factor = int(row["sparsity-factor"]) keep_first = row["keep-first-layer"] str_keep_first = ' -1' if keep_first is True else '' if SHOW_KEEP_FIRST_ONLY and not keep_first and not ONLY_DENSE: continue only_mask = row["only-mask"] str_only_mask = " M" if only_mask is True else "" name_trace = f"{palm_algo} Q={nb_factor} K={sparsity_factor}{str_hierarchical}{str_keep_first}{str_only_mask}" finetuned_score = row["finetuned-score"] nb_param = row[str_nb_param_compressed] dct_row = dict() dct_row["method"] = name_trace dct_row["perf"] = finetuned_score dct_row["nb_param"] = nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) base_score_tmp = row["base-model-score"] assert base_score == base_score_tmp or base_score is None base_nb_param_tmp = row[str_nb_param_base] assert base_nb_param == base_nb_param_tmp or base_nb_param is None base_score = base_score_tmp base_nb_param = base_nb_param_tmp fig.add_trace( go.Scatter( x=[nb_param], y=[finetuned_score], mode='markers', name=name_trace, hovertext=name_trace, legendgroup=f"{palm_algo} K={sparsity_factor}{str_only_mask}", marker=dict( color=dct_colors[f"PALM K={sparsity_factor}"], symbol=dct_symbol[f"{palm_algo} Q={nb_factor}{str_hierarchical}{str_keep_first}{str_only_mask}"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES ) ) )) dct_row = dict() dct_row["method"] = "Base" dct_row["perf"] = base_score dct_row["nb_param"] = base_nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) ############# # base data # ############# fig.add_trace( go.Scatter( x=[base_nb_param], y=[base_score], mode='markers', name="Base", hovertext="Base", legendgroup=f"Base", marker=dict( color=dct_colors[f"Base"], symbol=dct_symbol[f"Base"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES, ) ) )) ############### # tucker data # ############### df_tucker = df_tucker_tt_model_dense[df_tucker_tt_model_dense["compression"] == "tucker"] for idx_row, row in df_tucker.iterrows(): keep_first = row["keep-first-layer"] str_keep_first = ' -1' if keep_first is True else '' if SHOW_KEEP_FIRST_ONLY and not keep_first and not ONLY_DENSE: continue try: rank_percentage = int(float(row["rank-percentage-dense"]) * 100) except: try: rank_percentage = int(float(row["rank-percentage"]) * 100) except: rank_percentage = None str_percentage = f' + Low Rank {rank_percentage}%' if rank_percentage is not None else '' name_trace = f"Tucker{str_keep_first}{str_percentage}" finetuned_score = row["finetuned-score"] nb_param = row[str_nb_param_compressed] dct_row = dict() dct_row["method"] = name_trace dct_row["perf"] = finetuned_score dct_row["nb_param"] = nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) base_score_tmp = row["base-model-score"] assert base_score == base_score_tmp or base_score is None base_nb_param_tmp = row[str_nb_param_base] assert base_nb_param == base_nb_param_tmp or base_nb_param is None or base_nb_param_tmp == 0, f"{base_nb_param}!={base_nb_param_tmp}" fig.add_trace( go.Scatter( x=[nb_param], y=[finetuned_score], mode='markers', name=name_trace, hovertext=name_trace, legendgroup=f"Tucker{str_percentage}", marker=dict( color=dct_colors[f"Tucker{str_percentage}"], symbol=dct_symbol[f"Tucker{str_keep_first}"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES ) ) )) ############### # magnitude data # ############### df_magnitude = df_tucker_tt_model_dense[df_tucker_tt_model_dense["compression"] == "magnitude"] for idx_row, row in df_magnitude.iterrows(): keep_first = row["keep-first-layer"] str_keep_first = ' -1' if keep_first is True else '' if SHOW_KEEP_FIRST_ONLY and not keep_first and not ONLY_DENSE: continue # try: sparsity_percentage = int(float(row["final-sparsity"]) * 100) # except: # try: # rank_percentage = int(float(row["rank-percentage"]) * 100) # except: # rank_percentage = None str_percentage = f' {sparsity_percentage}%' #if sparsity_percentage is not None else '' name_trace = f"Magnitude {str_keep_first}{str_percentage}" finetuned_score = row["finetuned-score"] nb_param = row[str_nb_param_compressed] dct_row = dict() dct_row["method"] = name_trace dct_row["perf"] = finetuned_score dct_row["nb_param"] = nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) print(finetuned_score) base_score_tmp = row["base-model-score"] assert np.isclose(base_score, base_score_tmp) or base_score is None, f"{base_score}!={base_score_tmp}" base_nb_param_tmp = row[str_nb_param_base] assert base_nb_param == base_nb_param_tmp or base_nb_param is None or base_nb_param_tmp == 0, f"{base_nb_param}!={base_nb_param_tmp}" fig.add_trace( go.Scatter( x=[nb_param], y=[finetuned_score], mode='markers', name=name_trace, hovertext=name_trace, legendgroup=f"Magnitude", marker=dict( color=dct_colors[f"Magnitude {str_percentage}"], symbol=dct_symbol[f"Magnitude {str_keep_first}"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES ) ) )) ############### # deepfried data # ############### df_deepfried = df_tucker_tt_model_dense[df_tucker_tt_model_dense["compression"] == "deepfried"] for idx_row, row in df_deepfried.iterrows(): keep_first = row["keep-first-layer"] str_keep_first = ' -1' if keep_first is True else '' if SHOW_KEEP_FIRST_ONLY and not keep_first and not ONLY_DENSE: continue # try: # sparsity_percentage = int(float(row["final-sparsity"]) * 100) # except: # try: # rank_percentage = int(float(row["rank-percentage"]) * 100) # except: # rank_percentage = None # str_percentage = f' {sparsity_percentage}%' #if sparsity_percentage is not None else '' name_trace = f"Deepfried {str_keep_first}" finetuned_score = row["finetuned-score"] nb_param = row[str_nb_param_compressed] if nb_param == 0: conv_nb_weights = row["nb-param-base-total"] - base_nb_param nb_param = row["nb-param-compressed-total"] - conv_nb_weights dct_row = dict() dct_row["method"] = name_trace dct_row["perf"] = finetuned_score dct_row["nb_param"] = nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) print(finetuned_score) base_score_tmp = row["base-model-score"] assert np.isclose(base_score, base_score_tmp) or base_score is None, f"{base_score}!={base_score_tmp}" base_nb_param_tmp = row[str_nb_param_base] assert base_nb_param == base_nb_param_tmp or base_nb_param is None or base_nb_param_tmp == 0, f"{base_nb_param}!={base_nb_param_tmp}" fig.add_trace( go.Scatter( x=[nb_param], y=[finetuned_score], mode='markers', name=name_trace, hovertext=name_trace, legendgroup=f"Deepfried", marker=dict( color=dct_colors[f"Deepfried"], symbol=dct_symbol[f"Deepfried"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES ) ) )) #################### # tensortrain data # #################### df_tt = df_tucker_tt_model_dense[df_tucker_tt_model_dense["compression"] == "tensortrain"] for idx_row, row in df_tt.iterrows(): keep_first = row["keep-first-layer"] str_keep_first = ' -1' if keep_first is True else '' if SHOW_KEEP_FIRST_ONLY and not keep_first and not ONLY_DENSE: continue order = int(row["order"]) rank_value = int(row["rank-value"]) if not np.isnan(row["use-pretrained"]): use_petrained = bool(row["use-pretrained"]) str_pretrained = " pretrained" if use_petrained else "" else: use_petrained = False str_pretrained = "" if SHOW_PRETRAINED_ONLY and not use_petrained and not ONLY_DENSE: continue name_trace = f"Tensortrain{str_keep_first} K={order} R={rank_value}{str_pretrained}" finetuned_score = row["finetuned-score"] nb_param = row[str_nb_param_compressed] dct_row = dict() dct_row["method"] = name_trace dct_row["perf"] = finetuned_score dct_row["nb_param"] = nb_param dct_table[dataname][modelname][dct_entry_only_dense].append(dct_row) base_score_tmp = row["base-model-score"] assert base_score == base_score_tmp or base_score is None base_nb_param_tmp = row[str_nb_param_base] assert base_nb_param == base_nb_param_tmp or base_nb_param is None fig.add_trace( go.Scatter( x=[nb_param], y=[finetuned_score], mode='markers', name=name_trace, hovertext=name_trace, legendgroup=f"TT R={rank_value}", marker=dict( color=dct_colors[f"TT R={rank_value}"], symbol=dct_symbol[f"TT{str_keep_first}{str_pretrained}"], size=SIZE_MARKERS, line=dict( color='Black', width=WIDTH_MARKER_LINES ) ) )) title = "Performance = f(# Param); " + dataname + " " + modelname + str_only_dense fig.update_layout(title=title, xaxis_title="# Parameter in Dense and Conv Layers", yaxis_title="Accuracy (%)", xaxis_type="log", ) fig.show() fig.write_image(str((output_dir / title).absolute()) + ".png") pprint(dct_table) # string_table = """ # \begin{tabular}{lcccccccccccccccccccccc} # \toprule # # {} & \multicolumn{2}{c}{ \thead{ Ensemble } } & \multicolumn{2}{c}{ \thead{ Kmeans } } & \multicolumn{2}{c}{ \thead{ NN-OMP\\w/o weights } } & \multicolumn{2}{c}{ \thead{ NN-OMP } } & \multicolumn{2}{c}{ \thead{ OMP\\w/o weights } } & \multicolumn{2}{c}{ \thead{ OMP } } & \multicolumn{2}{c}{ \thead{ Random } } & \multicolumn{2}{c}{ \thead{ Zhang\\Predictions } } & \multicolumn{2}{c}{ \thead{ Zhang\\Similarities } }\\ # \midrule # Diam. & 3.032E+05 & 86 & \underline{3.024E+05} & \underline{143} & \textbf{3.024E+05} & \textbf{86} & 3.033E+05 & 86 & 3.025E+05 & 143 & \textit{3.087E+05} & \textit{29} & 3.025E+05 & 114 & 3.047E+05 & 143 & 3.032E+05 & 143\\ # Diab. & 3.431E+03 & 32 & \underline{3.281E+03} & \underline{36} & 3.317E+03 & 36 & 3.549E+03 & 36 & 3.324E+03 & 36 & \textit{3.607E+03} & \textit{25} & 3.303E+03 & 32 & 3.282E+03 & 36 & \textbf{3.241E+03} & \textbf{32}\\ # Kin. & 1.892E-02 & 200 & \textit{2.024E-02} & \textit{33} & 1.921E-02 & 133 & \underline{1.809E-02} & \underline{133} & 1.931E-02 & 67 & \textbf{1.776E-02} & \textbf{333} & 2.002E-02 & 333 & 2.089E-02 & 333 & 2.017E-02 & 333\\ # <NAME>. & \underline{2.187E-01} & \underline{267} & \textit{2.449E-01} & \textit{33} & 2.239E-01 & 100 & \textbf{2.180E-01} & \textbf{133} & \textit{2.267E-01} & \textit{33} & 2.197E-01 & 133 & 2.390E-01 & 333 & 2.536E-01 & 333 & 2.452E-01 & 333\\ # Bos. & 1.267E+01 & 30 & \textit{1.278E+01} & \textit{13} & \textbf{1.214E+01} & \textbf{33} & 1.253E+01 & 33 & \underline{1.247E+01} & \underline{27} & \textit{1.293E+01} & \textit{13} & 1.253E+01 & 33 & 1.430E+01 & 33 & 1.283E+01 & 33\\ # \midrule # Sp. B. & 94.27\% & 133 & 95.52\% & 167 & \textit{95.57\%} & \textit{100} & \underline{\textit{95.59\%}} & \underline{\textit{100}} & 95.56\% & 167 & 95.39\% & 133 & \textbf{95.59\%} & \textbf{167} & 95.45\% & 333 & 95.46\% & 167\\ # St. P. & 98.69\% & 233 & 99.05\% & 267 & \underline{\textit{99.95\%}} & \underline{\textit{67}} & \textbf{99.95\%} & \textbf{100} & \textit{99.64\%} & \textit{67} & 99.90\% & 333 & \textit{99.41\%} & \textit{67} & 99.43\% & 167 & 98.92\% & 300\\ # KR-KP & \textit{98.22\%} & \textit{33} & 99.00\% & 333 & \underline{99.42\%} & \underline{100} & 99.39\% & 100 & 99.22\% & 100 & \textbf{99.48\%} & \textbf{100} & 99.14\% & 267 & 99.14\% & 133 & 98.94\% & 333\\ # B. C. & 95.09\% & 100 & \textbf{\textit{96.58\%}} & \textbf{\textit{33}} & \underline{96.49\%} & \underline{67} & \textbf{96.58\%} & \textbf{67} & 95.79\% & 133 & 95.35\% & 67 & 95.88\% & 300 & \textit{95.70\%} & \textit{33} & 95.61\% & 333\\ # LFW P. & \textit{56.00\%} & \textit{67} & 65.25\% & 333 & \textbf{66.02\%} & \textbf{333} & 65.73\% & 233 & 65.32\% & 133 & 65.55\% & 167 & \underline{65.98\%} & \underline{267} & 65.43\% & 333 & 65.27\% & 333\\ # Gam. & \textit{80.78\%} & \textit{3} & 87.68\% & 33 & \underline{87.75\%} & \underline{33} & \underline{87.75\%} & \underline{33} & \underline{87.75\%} & \underline{33} & \underline{87.75\%} & \underline{33} & \textbf{87.76\%} & \textbf{33} & 87.72\% & 33 & 87.68\% & 33\\ # # \bottomrule # \end{tabular} # """ tab_headers = [ "Dataset", "Architecture", "Compressed layers", "Method", "Performance", "# Parameters" ] str_table = """\\begin{{tabular}}{{cccccc}} \\toprule {} \\bottomrule \end{{tabular}} """ lst_lines_tabular = ["&".join(tab_headers)] for dataname in dct_table: for model in dct_table[dataname]: for layers in dct_table[dataname][model]: if layers != "Conv+Dense": continue for lin in dct_table[dataname][model][layers]: if "PYQALM Q=None" in str(lin["method"]): continue lst_line = [dataname, model, layers] lst_line.append(str(lin["method"])) lst_line.append("{:.2f}".format(lin["perf"])) lst_line.append(str(int(lin["nb_param"]))) str_line = "&".join(lst_line).replace("%", "\%").replace("#", "\#") lst_lines_tabular.append(str_line) final_string = str_table.format("\\\\ \n".join(lst_lines_tabular) + "\\\\") with open(str((output_dir / "table.tex").absolute()), 'w') as wf: wf.write(final_string) print(final_string)
[ "pandas.read_csv", "plotly.graph_objects.Figure", "numpy.isnan", "pathlib.Path", "numpy.isclose", "pprint.pprint", "pandas.concat", "logging.getLogger" ]
[((285, 316), 'logging.getLogger', 'logging.getLogger', (['"""matplotlib"""'], {}), "('matplotlib')\n", (302, 316), False, 'import logging\n'), ((1573, 1612), 'pandas.read_csv', 'pd.read_csv', (['src_results_path'], {'header': '(0)'}), '(src_results_path, header=0)\n', (1584, 1612), True, 'import pandas as pd\n'), ((1624, 1665), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_2'], {'header': '(0)'}), '(src_results_path_2, header=0)\n', (1635, 1665), True, 'import pandas as pd\n'), ((1675, 1696), 'pandas.concat', 'pd.concat', (['[df, df_2]'], {}), '([df, df_2])\n', (1684, 1696), True, 'import pandas as pd\n'), ((2143, 2182), 'pandas.read_csv', 'pd.read_csv', (['src_results_path'], {'header': '(0)'}), '(src_results_path, header=0)\n', (2154, 2182), True, 'import pandas as pd\n'), ((2650, 2696), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_tucker'], {'header': '(0)'}), '(src_results_path_tucker, header=0)\n', (2661, 2696), True, 'import pandas as pd\n'), ((3132, 3178), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_tucker'], {'header': '(0)'}), '(src_results_path_tucker, header=0)\n', (3143, 3178), True, 'import pandas as pd\n'), ((3632, 3678), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_tucker'], {'header': '(0)'}), '(src_results_path_tucker, header=0)\n', (3643, 3678), True, 'import pandas as pd\n'), ((4123, 4162), 'pandas.read_csv', 'pd.read_csv', (['src_results_path'], {'header': '(0)'}), '(src_results_path, header=0)\n', (4134, 4162), True, 'import pandas as pd\n'), ((4514, 4560), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_tucker'], {'header': '(0)'}), '(src_results_path_tucker, header=0)\n', (4525, 4560), True, 'import pandas as pd\n'), ((4996, 5042), 'pandas.read_csv', 'pd.read_csv', (['src_results_path_tucker'], {'header': '(0)'}), '(src_results_path_tucker, header=0)\n', (5007, 5042), True, 'import pandas as pd\n'), ((5332, 5399), 'pathlib.Path', 'pathlib.Path', (['"""/home/luc/PycharmProjects/palmnet/results/processed"""'], {}), "('/home/luc/PycharmProjects/palmnet/results/processed')\n", (5344, 5399), False, 'import pathlib\n'), ((5824, 5910), 'pandas.concat', 'pd.concat', (['[df_tucker, df_tt, df_tucker_tt_only_dense, df_deepfried, df_magnitude]'], {}), '([df_tucker, df_tt, df_tucker_tt_only_dense, df_deepfried,\n df_magnitude])\n', (5833, 5910), True, 'import pandas as pd\n'), ((6014, 6047), 'pandas.concat', 'pd.concat', (['[df_palm, df_palm_bis]'], {}), '([df_palm, df_palm_bis])\n', (6023, 6047), True, 'import pandas as pd\n'), ((6234, 6300), 'pathlib.Path', 'pathlib.Path', (['"""/home/luc/PycharmProjects/palmnet/reports/figures/"""'], {}), "('/home/luc/PycharmProjects/palmnet/reports/figures/')\n", (6246, 6300), False, 'import pathlib\n'), ((25628, 25645), 'pprint.pprint', 'pprint', (['dct_table'], {}), '(dct_table)\n', (25634, 25645), True, 'from pprint import pprint as pprint\n'), ((9998, 10009), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (10007, 10009), True, 'import plotly.graph_objects as go\n'), ((18241, 18279), 'numpy.isclose', 'np.isclose', (['base_score', 'base_score_tmp'], {}), '(base_score, base_score_tmp)\n', (18251, 18279), True, 'import numpy as np\n'), ((21201, 21239), 'numpy.isclose', 'np.isclose', (['base_score', 'base_score_tmp'], {}), '(base_score, base_score_tmp)\n', (21211, 21239), True, 'import numpy as np\n'), ((22987, 23018), 'numpy.isnan', 'np.isnan', (["row['use-pretrained']"], {}), "(row['use-pretrained'])\n", (22995, 23018), True, 'import numpy as np\n')]
#****************************************************# # This file is part of OPTALG. # # # # Copyright (c) 2019, <NAME>. # # # # OPTALG is released under the BSD 2-clause license. # #****************************************************# from __future__ import print_function import os import numpy as np import tempfile import subprocess from . import utils from .opt_solver_error import * from .opt_solver import OptSolver from .problem import OptProblem from multiprocessing import cpu_count class OptSolverCplexCMD(OptSolver): parameters = {'quiet' : False, 'mipgap': None, 'feasibility': None, 'debug': False} def __init__(self): """ CPLEX solver interface (via command-line interface). """ # Check if not utils.cmd_exists('cplex'): raise ImportError('cplex cmd not available') OptSolver.__init__(self) self.parameters = OptSolverCplexCMD.parameters.copy() def supports_properties(self, properties): for p in properties: if p not in [OptProblem.PROP_CURV_LINEAR, OptProblem.PROP_VAR_CONTINUOUS, OptProblem.PROP_VAR_INTEGER, OptProblem.PROP_TYPE_FEASIBILITY, OptProblem.PROP_TYPE_OPTIMIZATION]: return False return True def read_solution(self, filename, problem): import xml.etree.ElementTree as ET x = np.zeros(problem.c.size) lam = np.zeros(problem.A.shape[0]) nu = np.zeros(0) mu = np.zeros(x.size) pi = np.zeros(x.size) tree = ET.parse(filename) root = tree.getroot() header = root.find('header') status = header.get('solutionStatusString') for var in root.find('variables'): name = var.get('name') value = float(var.get('value')) index = int(name.split('_')[1]) x[index] = value rcost = var.get('reducedCost') if rcost is not None: if float(rcost) > 0.: pi[index] = float(rcost) else: mu[index] = -float(rcost) for c in root.find('linearConstraints'): name = c.get('name') index = int(name.split('_')[1]) dual = c.get('dual') if dual is not None: lam[index] = float(dual) return status, x, lam, nu, mu, pi def solve(self, problem): # Local vars params = self.parameters # Parameters quiet = params['quiet'] mipgap = params['mipgap'] feasibility = params['feasibility'] debug = params['debug'] # Problem try: self.problem = problem.to_mixintlin() except: raise OptSolverError_BadProblemType(self) # Solve status = '' try: base_name = next(tempfile._get_candidate_names()) input_filename = base_name+'.lp' output_filename = base_name+'.sol' self.problem.write_to_lp_file(input_filename) cmd = ['cplex'] cmd += ['-c', 'read', input_filename] if mipgap is not None: cmd += ['set mip tolerances mipgap %.2e' %mipgap] if feasibility is not None: cmd += ['set simplex tolerances feasibility %.2e' %feasibility] cmd += ['optimize'] cmd += ['write', output_filename] cmd += ['quit'] if not quiet: code = subprocess.call(cmd) else: code = subprocess.call(cmd, stdout=open(os.devnull, 'w'), stderr=subprocess.STDOUT) assert(code == 0) status, self.x, self.lam, self.nu, self.mu, self.pi = self.read_solution(output_filename, self.problem) except Exception as e: raise OptSolverError_CplexCMDCall(self) finally: if os.path.isfile(input_filename) and not debug: os.remove(input_filename) if os.path.isfile(output_filename) and not debug: os.remove(output_filename) if os.path.isfile('cplex.log') and not debug: os.remove('cplex.log') for i in range(cpu_count()): if os.path.isfile('clone%d.log' %i) and not debug: os.remove('clone%d.log' %i) if 'optimal' in status.lower(): self.set_status(self.STATUS_SOLVED) self.set_error_msg('') else: raise OptSolverError_CplexCMD(self)
[ "xml.etree.ElementTree.parse", "tempfile._get_candidate_names", "os.remove", "numpy.zeros", "os.path.isfile", "subprocess.call", "multiprocessing.cpu_count" ]
[((1648, 1672), 'numpy.zeros', 'np.zeros', (['problem.c.size'], {}), '(problem.c.size)\n', (1656, 1672), True, 'import numpy as np\n'), ((1687, 1715), 'numpy.zeros', 'np.zeros', (['problem.A.shape[0]'], {}), '(problem.A.shape[0])\n', (1695, 1715), True, 'import numpy as np\n'), ((1729, 1740), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (1737, 1740), True, 'import numpy as np\n'), ((1754, 1770), 'numpy.zeros', 'np.zeros', (['x.size'], {}), '(x.size)\n', (1762, 1770), True, 'import numpy as np\n'), ((1784, 1800), 'numpy.zeros', 'np.zeros', (['x.size'], {}), '(x.size)\n', (1792, 1800), True, 'import numpy as np\n'), ((1817, 1835), 'xml.etree.ElementTree.parse', 'ET.parse', (['filename'], {}), '(filename)\n', (1825, 1835), True, 'import xml.etree.ElementTree as ET\n'), ((3138, 3169), 'tempfile._get_candidate_names', 'tempfile._get_candidate_names', ([], {}), '()\n', (3167, 3169), False, 'import tempfile\n'), ((3775, 3795), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (3790, 3795), False, 'import subprocess\n'), ((4253, 4283), 'os.path.isfile', 'os.path.isfile', (['input_filename'], {}), '(input_filename)\n', (4267, 4283), False, 'import os\n'), ((4315, 4340), 'os.remove', 'os.remove', (['input_filename'], {}), '(input_filename)\n', (4324, 4340), False, 'import os\n'), ((4356, 4387), 'os.path.isfile', 'os.path.isfile', (['output_filename'], {}), '(output_filename)\n', (4370, 4387), False, 'import os\n'), ((4419, 4445), 'os.remove', 'os.remove', (['output_filename'], {}), '(output_filename)\n', (4428, 4445), False, 'import os\n'), ((4461, 4488), 'os.path.isfile', 'os.path.isfile', (['"""cplex.log"""'], {}), "('cplex.log')\n", (4475, 4488), False, 'import os\n'), ((4520, 4542), 'os.remove', 'os.remove', (['"""cplex.log"""'], {}), "('cplex.log')\n", (4529, 4542), False, 'import os\n'), ((4570, 4581), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (4579, 4581), False, 'from multiprocessing import cpu_count\n'), ((4603, 4636), 'os.path.isfile', 'os.path.isfile', (["('clone%d.log' % i)"], {}), "('clone%d.log' % i)\n", (4617, 4636), False, 'import os\n'), ((4671, 4699), 'os.remove', 'os.remove', (["('clone%d.log' % i)"], {}), "('clone%d.log' % i)\n", (4680, 4699), False, 'import os\n')]
import copy import os from functools import reduce from pathlib import Path import chainer import chainer.functions as F import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import six from chainer import configuration, cuda, function from chainer import reporter as reporter_module from chainer.dataset import convert from chainer.training.extensions import Evaluator from chainermn import CommunicatorBase from sklearn import metrics from tqdm import tqdm def _to_list(a): """convert value `a` to list Args: a: value to be convert to `list` Returns (list): """ if isinstance(a, (int, float)): return [a, ] else: # expected to be list or some iterable class return a def plot_roc(y_true, y_score, out_name): fpr, tpr, thresholds = metrics.roc_curve(y_true=y_true, y_score=y_score) auc = metrics.auc(fpr, tpr) plt.clf() plt.plot(fpr, tpr, label='ROC curve (area = %.3f)' % auc) plt.legend() plt.title('ROC curve', fontsize=16) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.grid(True) plt.savefig(out_name) class Classification_Evaluator(Evaluator): """Evaluator which calculates auc and correlation Note that this Evaluator is only applicable to binary classification task. Args: iterator: Dataset iterator for the dataset to calculate pearson. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name ``'main'``. target: Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name ``'main'``. converter: Converter function to build input arrays and true label. :func:`~chainer.dataset.concat_examples` is used by default. It is expected to return input arrays of the form `[x_0, ..., x_n, t]`, where `x_0, ..., x_n` are the inputs to the evaluation function and `t` is the true label. device: Device to which the training data is sent. Negative value indicates the host memory (CPU). eval_hook: Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call. eval_func: Evaluation function called at each iteration. The target link to evaluate as a callable is used by default. name (str): name of this extension. When `name` is None, `default_name='validation'` which is defined in super class `Evaluator` is used as extension name. This name affects to the reported key name. pos_labels (int or list): labels of the positive class, other classes are considered as negative. ignore_labels (int or list or None): labels to be ignored. `None` is used to not ignore all labels. Attributes: converter: Converter function. device: Device to which the training data is sent. eval_hook: Function to prepare for each evaluation process. eval_func: Evaluation function called at each iteration. pos_labels (list): labels of the positive class ignore_labels (list): labels to be ignored. """ def __init__(self, iterator, target, comm, label_name, converter=convert.concat_examples, device=None, eval_hook=None, eval_func=None, name=None, pos_labels=1, ignore_labels=None, path_data=None): super(Classification_Evaluator, self).__init__( iterator, target, converter=converter, device=device, eval_hook=eval_hook, eval_func=eval_func) self.rank = comm.rank self.name = name self.pos_labels = _to_list(pos_labels) self.ignore_labels = _to_list(ignore_labels) self.comm = comm self.label_name = label_name self.path_data = path_data def __call__(self, trainer=None): """Executes the evaluator extension. Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the :func:`~chainer.report` function. Thus, users can use this extension independently from any trainer by manually configuring a :class:`~chainer.Reporter` object. Args: trainer (~chainer.training.Trainer): Trainer object that invokes this extension. It can be omitted in case of calling this extension manually. Returns: dict: Result dictionary that contains mean statistics of values reported by the evaluation function. """ # set up a reporter reporter = reporter_module.Reporter() if self.name is not None: prefix = self.name + '/' else: prefix = '' for name, target in six.iteritems(self._targets): reporter.add_observer(prefix + name, target) reporter.add_observers(prefix + name, target.namedlinks(skipself=True)) with reporter: with configuration.using_config('train', False): result = self.evaluate_roc_corr(trainer=trainer) reporter_module.report(result) return result def evaluate_roc_corr(self, trainer): iterator = self._iterators['main'] eval_func = self.eval_func or self._targets['main'] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, 'reset'): iterator.reset() it = iterator else: it = copy.copy(iterator) y_total = np.array([]).reshape([0, len(self.label_name)]) t_total = np.array([]).reshape([0, len(self.label_name)]) protein_id_total = np.array([]).reshape([0, len(self.label_name)]) for batch in it: in_arrays = self.converter(batch, self.device) with chainer.no_backprop_mode(), chainer.using_config('train', False): y = eval_func(*in_arrays[:-2]) t = in_arrays[-2] protein_id = in_arrays[-1] # y = F.sigmoid(y) y_data = cuda.to_cpu(y.data) t_data = cuda.to_cpu(t) protein_id = cuda.to_cpu(protein_id) y_total = np.vstack([y_total, y_data]) t_total = np.vstack([t_total, t_data]) protein_id_total = np.vstack([protein_id_total, protein_id]) updater = trainer.updater epoch = str(updater.epoch) out_dir = Path(trainer.out) observation = {} for label_index, label in enumerate(self.label_name): y = y_total[:, label_index] t = t_total[:, label_index] protein_id = protein_id_total[:, label_index] index = np.where(t != -1)[0] y = y[index] t = t[index] protein_id = protein_id[index] gather_data = self.comm.gather(np.vstack([t, y, protein_id])) if self.rank == 0: gather_data = np.concatenate(gather_data, axis=1) gather_t = np.array(gather_data[0], dtype=np.int) gather_y = np.array(gather_data[1], dtype=np.float32) gather_protein_id = np.array(gather_data[2], dtype=np.int) global_score = [] global_label = [] target_name = [] model_path = [] for row, item in self.path_data.iterrows(): model_index = np.where(gather_protein_id==row)[0] if len(model_index) > 0: global_score.append(np.mean(F.sigmoid(gather_y[model_index]).data)) global_label.append(item['gdtts']) target_name.append(item['dir_name']) model_path.append(item['path']) df = pd.DataFrame({'global_score':global_score, 'global_label':global_label, 'target_name':target_name, 'model_path': model_path}) pearson = df.groupby('target_name').corr(method='pearson')['global_score'].mean(level=1)['global_label'] spearman = df.groupby('target_name').corr(method='spearman')['global_score'].mean(level=1)['global_label'] csv_out_name = out_dir/(epoch+label+'_df.csv') df.to_csv(csv_out_name) roc_out_name = out_dir/(epoch+'iteration_'+label+'_roc.png') y_score = F.sigmoid(gather_y).data plot_roc(y_true=gather_t, y_score=y_score, out_name=roc_out_name) roc_auc = metrics.roc_auc_score(gather_t, y_score) np.savez((out_dir/epoch).with_suffix('.npz'), local_label=gather_t, local_score=y_score, protein_id=gather_protein_id) with reporter.report_scope(observation): reporter.report({'roc_auc_'+label: roc_auc}, self._targets['main']) reporter.report({'loss': F.sigmoid_cross_entropy(gather_y, gather_t).data}, self._targets['main']) reporter.report({'accuracy': F.binary_accuracy(gather_y, gather_t).data}, self._targets['main']) reporter.report({'pearson': pearson}, self._targets['main']) reporter.report({'spearman': spearman}, self._targets['main']) return observation class MultiClassification_Evaluator(Evaluator): """Evaluator which calculates auc and correlation Note that this Evaluator is only applicable to binary classification task. Args: iterator: Dataset iterator for the dataset to calculate pearson. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name ``'main'``. target: Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name ``'main'``. converter: Converter function to build input arrays and true label. :func:`~chainer.dataset.concat_examples` is used by default. It is expected to return input arrays of the form `[x_0, ..., x_n, t]`, where `x_0, ..., x_n` are the inputs to the evaluation function and `t` is the true label. device: Device to which the training data is sent. Negative value indicates the host memory (CPU). eval_hook: Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call. eval_func: Evaluation function called at each iteration. The target link to evaluate as a callable is used by default. name (str): name of this extension. When `name` is None, `default_name='validation'` which is defined in super class `Evaluator` is used as extension name. This name affects to the reported key name. pos_labels (int or list): labels of the positive class, other classes are considered as negative. ignore_labels (int or list or None): labels to be ignored. `None` is used to not ignore all labels. Attributes: converter: Converter function. device: Device to which the training data is sent. eval_hook: Function to prepare for each evaluation process. eval_func: Evaluation function called at each iteration. pos_labels (list): labels of the positive class ignore_labels (list): labels to be ignored. """ def __init__(self, iterator, target, comm, label_name, class_num, converter=convert.concat_examples, device=None, eval_hook=None, eval_func=None, name=None, pos_labels=1, ignore_labels=None, path_data=None): super(MultiClassification_Evaluator, self).__init__( iterator, target, converter=converter, device=device, eval_hook=eval_hook, eval_func=eval_func) self.rank = comm.rank self.class_num = class_num self.name = name self.pos_labels = _to_list(pos_labels) self.ignore_labels = _to_list(ignore_labels) self.comm = comm self.label_name = label_name self.path_data = path_data def __call__(self, trainer=None): """Executes the evaluator extension. Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the :func:`~chainer.report` function. Thus, users can use this extension independently from any trainer by manually configuring a :class:`~chainer.Reporter` object. Args: trainer (~chainer.training.Trainer): Trainer object that invokes this extension. It can be omitted in case of calling this extension manually. Returns: dict: Result dictionary that contains mean statistics of values reported by the evaluation function. """ # set up a reporter reporter = reporter_module.Reporter() if self.name is not None: prefix = self.name + '/' else: prefix = '' for name, target in six.iteritems(self._targets): reporter.add_observer(prefix + name, target) reporter.add_observers(prefix + name, target.namedlinks(skipself=True)) with reporter: with configuration.using_config('train', False): result = self.evaluate_corr(trainer=trainer) reporter_module.report(result) return result def evaluate_corr(self, trainer): iterator = self._iterators['main'] eval_func = self.eval_func or self._targets['main'] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, 'reset'): iterator.reset() it = iterator else: it = copy.copy(iterator) y_total = np.array([]).reshape([0, self.class_num]) t_total = np.array([], dtype=np.int) protein_id_total = np.array([], dtype=np.int) for batch in it: in_arrays = self.converter(batch, self.device) with chainer.no_backprop_mode(), chainer.using_config('train', False): y = eval_func(*in_arrays[:-2]) t = in_arrays[-2] protein_id = in_arrays[-1] # y = F.sigmoid(y) y_data = cuda.to_cpu(y.data) t_data = cuda.to_cpu(t) protein_id = cuda.to_cpu(protein_id) y_total = np.vstack([y_total, y_data]) t_total = np.concatenate([t_total, t_data]) protein_id_total = np.concatenate([protein_id_total, protein_id]) updater = trainer.updater epoch = str(updater.epoch) out_dir = Path(trainer.out) observation = {} gather_data = self.comm.gather(np.hstack([t_total.reshape(-1,1), y_total, protein_id_total.reshape(-1,1)])) if self.rank == 0: gather_data = np.concatenate(gather_data) gather_t = gather_data[:, 0].astype(np.int) gather_y = gather_data[:, 1:-1].astype(np.float32) gather_protein_id = gather_data[:, -1].astype(np.int) global_score = [] global_label = [] target_name = [] model_path = [] for row, item in self.path_data.iterrows(): model_index = np.where(gather_protein_id==row)[0] if len(model_index) > 0: local_score = np.argmax(gather_y[model_index], axis=1)/self.class_num global_score.append(np.mean(local_score)) global_label.append(item['gdtts']) target_name.append(item['dir_name']) model_path.append(item['path']) df = pd.DataFrame({'global_score':global_score, 'global_label':global_label, 'target_name':target_name, 'model_path': model_path}) pearson = df.groupby('target_name').corr(method='pearson')['global_score'].mean(level=1)['global_label'] spearman = df.groupby('target_name').corr(method='spearman')['global_score'].mean(level=1)['global_label'] csv_out_name = out_dir/(epoch+'_df.csv') df.to_csv(csv_out_name) np.savez((out_dir/epoch).with_suffix('.npz'), local_label=gather_t, local_score=y_score, protein_id=gather_protein_id) with reporter.report_scope(observation): reporter.report({'loss': F.softmax_cross_entropy(gather_y, gather_t).data}, self._targets['main']) reporter.report({'accuracy': F.accuracy(gather_y, gather_t).data}, self._targets['main']) reporter.report({'pearson': pearson}, self._targets['main']) reporter.report({'spearman': spearman}, self._targets['main']) return observation class Regression_Evaluator(Evaluator): """Evaluator which calculates correlation Args: iterator: Dataset iterator for the dataset to calculate pearson. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name ``'main'``. target: Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name ``'main'``. converter: Converter function to build input arrays and true label. :func:`~chainer.dataset.concat_examples` is used by default. It is expected to return input arrays of the form `[x_0, ..., x_n, t]`, where `x_0, ..., x_n` are the inputs to the evaluation function and `t` is the true label. device: Device to which the training data is sent. Negative value indicates the host memory (CPU). eval_hook: Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call. eval_func: Evaluation function called at each iteration. The target link to evaluate as a callable is used by default. name (str): name of this extension. When `name` is None, `default_name='validation'` which is defined in super class `Evaluator` is used as extension name. This name affects to the reported key name. pos_labels (int or list): labels of the positive class, other classes are considered as negative. ignore_labels (int or list or None): labels to be ignored. `None` is used to not ignore all labels. Attributes: converter: Converter function. device: Device to which the training data is sent. eval_hook: Function to prepare for each evaluation process. eval_func: Evaluation function called at each iteration. pos_labels (list): labels of the positive class ignore_labels (list): labels to be ignored. """ def __init__(self, iterator, target, comm, label_name, converter=convert.concat_examples, device=None, eval_hook=None, eval_func=None, name=None, pos_labels=1, ignore_labels=None, path_data=None): super(Regression_Evaluator, self).__init__( iterator, target, converter=converter, device=device, eval_hook=eval_hook, eval_func=eval_func) self.rank = comm.rank self.name = name self.pos_labels = _to_list(pos_labels) self.ignore_labels = _to_list(ignore_labels) self.comm = comm self.label_name = label_name self.path_data = path_data def __call__(self, trainer=None): """Executes the evaluator extension. Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the :func:`~chainer.report` function. Thus, users can use this extension independently from any trainer by manually configuring a :class:`~chainer.Reporter` object. Args: trainer (~chainer.training.Trainer): Trainer object that invokes this extension. It can be omitted in case of calling this extension manually. Returns: dict: Result dictionary that contains mean statistics of values reported by the evaluation function. """ # set up a reporter reporter = reporter_module.Reporter() if self.name is not None: prefix = self.name + '/' else: prefix = '' for name, target in six.iteritems(self._targets): reporter.add_observer(prefix + name, target) reporter.add_observers(prefix + name, target.namedlinks(skipself=True)) with reporter: with configuration.using_config('train', False): result = self.evaluate_corr(trainer=trainer) reporter_module.report(result) return result def evaluate_corr(self, trainer): iterator = self._iterators['main'] eval_func = self.eval_func or self._targets['main'] if self.eval_hook: self.eval_hook(self) if hasattr(iterator, 'reset'): iterator.reset() it = iterator else: it = copy.copy(iterator) y_total = np.array([]).reshape([0, len(self.label_name)]) t_total = np.array([]).reshape([0, len(self.label_name)]) protein_id_total = np.array([]).reshape([0, len(self.label_name)]) for batch in it: in_arrays = self.converter(batch, self.device) with chainer.no_backprop_mode(), chainer.using_config('train', False): y = eval_func(*in_arrays[:-2]) t = in_arrays[-2] protein_id = in_arrays[-1] # y = F.sigmoid(y) y_data = cuda.to_cpu(y.data) t_data = cuda.to_cpu(t) protein_id = cuda.to_cpu(protein_id) y_total = np.vstack([y_total, y_data]) t_total = np.vstack([t_total, t_data]) protein_id_total = np.vstack([protein_id_total, protein_id]) updater = trainer.updater epoch = str(updater.epoch) out_dir = Path(trainer.out) observation = {} for label_index, label in enumerate(self.label_name): y = y_total[:, label_index] t = t_total[:, label_index] protein_id = protein_id_total[:, label_index] index = np.where(t != -1)[0] y = y[index] t = t[index] protein_id = protein_id[index] gather_data = self.comm.gather(np.vstack([t, y, protein_id])) if self.rank == 0: gather_data = np.concatenate(gather_data, axis=1) gather_t = np.array(gather_data[0], dtype=np.float32) gather_y = np.array(gather_data[1], dtype=np.float32) gather_protein_id = np.array(gather_data[2], dtype=np.int) global_score = [] global_label = [] target_name = [] model_path = [] for row, item in self.path_data.iterrows(): model_index = np.where(gather_protein_id==row)[0] if len(model_index) > 0: global_score.append(np.mean(gather_y[model_index])) global_label.append(item['gdtts']) target_name.append(item['dir_name']) model_path.append(item['path']) df = pd.DataFrame({'global_score':global_score, 'global_label':global_label, 'target_name':target_name, 'model_path': model_path}) pearson = df.groupby('target_name').corr(method='pearson')['global_score'].mean(level=1)['global_label'] spearman = df.groupby('target_name').corr(method='spearman')['global_score'].mean(level=1)['global_label'] csv_out_name = out_dir/(epoch+label+'_df.csv') df.to_csv(csv_out_name) np.savez((out_dir/epoch).with_suffix('.npz'), local_label=gather_t, local_score=y_score, protein_id=gather_protein_id) with reporter.report_scope(observation): reporter.report({'loss': F.mean_squared_error(gather_y, gather_t).data}, self._targets['main']) reporter.report({'accuracy': F.r2_score(gather_y, gather_t).data}, self._targets['main']) reporter.report({'pearson': pearson}, self._targets['main']) reporter.report({'spearman': spearman}, self._targets['main']) return observation
[ "matplotlib.pyplot.title", "matplotlib.pyplot.clf", "numpy.argmax", "chainer.reporter.Reporter", "pathlib.Path", "chainer.no_backprop_mode", "numpy.mean", "six.iteritems", "pandas.DataFrame", "chainer.functions.softmax_cross_entropy", "chainer.functions.sigmoid_cross_entropy", "chainer.cuda.to_cpu", "chainer.functions.mean_squared_error", "chainer.functions.r2_score", "matplotlib.pyplot.legend", "sklearn.metrics.roc_auc_score", "matplotlib.use", "chainer.functions.sigmoid", "chainer.configuration.using_config", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "chainer.functions.accuracy", "numpy.vstack", "numpy.concatenate", "chainer.functions.binary_accuracy", "matplotlib.pyplot.plot", "sklearn.metrics.roc_curve", "chainer.reporter.report", "copy.copy", "sklearn.metrics.auc", "numpy.where", "numpy.array", "chainer.using_config", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((140, 161), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (154, 161), False, 'import matplotlib\n'), ((855, 904), 'sklearn.metrics.roc_curve', 'metrics.roc_curve', ([], {'y_true': 'y_true', 'y_score': 'y_score'}), '(y_true=y_true, y_score=y_score)\n', (872, 904), False, 'from sklearn import metrics\n'), ((915, 936), 'sklearn.metrics.auc', 'metrics.auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (926, 936), False, 'from sklearn import metrics\n'), ((941, 950), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (948, 950), True, 'import matplotlib.pyplot as plt\n'), ((955, 1012), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr'], {'label': "('ROC curve (area = %.3f)' % auc)"}), "(fpr, tpr, label='ROC curve (area = %.3f)' % auc)\n", (963, 1012), True, 'import matplotlib.pyplot as plt\n'), ((1017, 1029), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1027, 1029), True, 'import matplotlib.pyplot as plt\n'), ((1034, 1069), 'matplotlib.pyplot.title', 'plt.title', (['"""ROC curve"""'], {'fontsize': '(16)'}), "('ROC curve', fontsize=16)\n", (1043, 1069), True, 'import matplotlib.pyplot as plt\n'), ((1074, 1120), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {'fontsize': '(16)'}), "('False Positive Rate', fontsize=16)\n", (1084, 1120), True, 'import matplotlib.pyplot as plt\n'), ((1125, 1170), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {'fontsize': '(16)'}), "('True Positive Rate', fontsize=16)\n", (1135, 1170), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1189), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1183, 1189), True, 'import matplotlib.pyplot as plt\n'), ((1194, 1215), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_name'], {}), '(out_name)\n', (1205, 1215), True, 'import matplotlib.pyplot as plt\n'), ((4944, 4970), 'chainer.reporter.Reporter', 'reporter_module.Reporter', ([], {}), '()\n', (4968, 4970), True, 'from chainer import reporter as reporter_module\n'), ((5108, 5136), 'six.iteritems', 'six.iteritems', (['self._targets'], {}), '(self._targets)\n', (5121, 5136), False, 'import six\n'), ((5438, 5468), 'chainer.reporter.report', 'reporter_module.report', (['result'], {}), '(result)\n', (5460, 5468), True, 'from chainer import reporter as reporter_module\n'), ((6780, 6797), 'pathlib.Path', 'Path', (['trainer.out'], {}), '(trainer.out)\n', (6784, 6797), False, 'from pathlib import Path\n'), ((13436, 13462), 'chainer.reporter.Reporter', 'reporter_module.Reporter', ([], {}), '()\n', (13460, 13462), True, 'from chainer import reporter as reporter_module\n'), ((13600, 13628), 'six.iteritems', 'six.iteritems', (['self._targets'], {}), '(self._targets)\n', (13613, 13628), False, 'import six\n'), ((13926, 13956), 'chainer.reporter.report', 'reporter_module.report', (['result'], {}), '(result)\n', (13948, 13956), True, 'from chainer import reporter as reporter_module\n'), ((14415, 14441), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int'}), '([], dtype=np.int)\n', (14423, 14441), True, 'import numpy as np\n'), ((14469, 14495), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int'}), '([], dtype=np.int)\n', (14477, 14495), True, 'import numpy as np\n'), ((15226, 15243), 'pathlib.Path', 'Path', (['trainer.out'], {}), '(trainer.out)\n', (15230, 15243), False, 'from pathlib import Path\n'), ((20979, 21005), 'chainer.reporter.Reporter', 'reporter_module.Reporter', ([], {}), '()\n', (21003, 21005), True, 'from chainer import reporter as reporter_module\n'), ((21143, 21171), 'six.iteritems', 'six.iteritems', (['self._targets'], {}), '(self._targets)\n', (21156, 21171), False, 'import six\n'), ((21469, 21499), 'chainer.reporter.report', 'reporter_module.report', (['result'], {}), '(result)\n', (21491, 21499), True, 'from chainer import reporter as reporter_module\n'), ((22807, 22824), 'pathlib.Path', 'Path', (['trainer.out'], {}), '(trainer.out)\n', (22811, 22824), False, 'from pathlib import Path\n'), ((5832, 5851), 'copy.copy', 'copy.copy', (['iterator'], {}), '(iterator)\n', (5841, 5851), False, 'import copy\n'), ((6404, 6423), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['y.data'], {}), '(y.data)\n', (6415, 6423), False, 'from chainer import configuration, cuda, function\n'), ((6445, 6459), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['t'], {}), '(t)\n', (6456, 6459), False, 'from chainer import configuration, cuda, function\n'), ((6485, 6508), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['protein_id'], {}), '(protein_id)\n', (6496, 6508), False, 'from chainer import configuration, cuda, function\n'), ((6531, 6559), 'numpy.vstack', 'np.vstack', (['[y_total, y_data]'], {}), '([y_total, y_data])\n', (6540, 6559), True, 'import numpy as np\n'), ((6582, 6610), 'numpy.vstack', 'np.vstack', (['[t_total, t_data]'], {}), '([t_total, t_data])\n', (6591, 6610), True, 'import numpy as np\n'), ((6642, 6683), 'numpy.vstack', 'np.vstack', (['[protein_id_total, protein_id]'], {}), '([protein_id_total, protein_id])\n', (6651, 6683), True, 'import numpy as np\n'), ((14316, 14335), 'copy.copy', 'copy.copy', (['iterator'], {}), '(iterator)\n', (14325, 14335), False, 'import copy\n'), ((14840, 14859), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['y.data'], {}), '(y.data)\n', (14851, 14859), False, 'from chainer import configuration, cuda, function\n'), ((14881, 14895), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['t'], {}), '(t)\n', (14892, 14895), False, 'from chainer import configuration, cuda, function\n'), ((14921, 14944), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['protein_id'], {}), '(protein_id)\n', (14932, 14944), False, 'from chainer import configuration, cuda, function\n'), ((14967, 14995), 'numpy.vstack', 'np.vstack', (['[y_total, y_data]'], {}), '([y_total, y_data])\n', (14976, 14995), True, 'import numpy as np\n'), ((15018, 15051), 'numpy.concatenate', 'np.concatenate', (['[t_total, t_data]'], {}), '([t_total, t_data])\n', (15032, 15051), True, 'import numpy as np\n'), ((15083, 15129), 'numpy.concatenate', 'np.concatenate', (['[protein_id_total, protein_id]'], {}), '([protein_id_total, protein_id])\n', (15097, 15129), True, 'import numpy as np\n'), ((15439, 15466), 'numpy.concatenate', 'np.concatenate', (['gather_data'], {}), '(gather_data)\n', (15453, 15466), True, 'import numpy as np\n'), ((16266, 16398), 'pandas.DataFrame', 'pd.DataFrame', (["{'global_score': global_score, 'global_label': global_label, 'target_name':\n target_name, 'model_path': model_path}"], {}), "({'global_score': global_score, 'global_label': global_label,\n 'target_name': target_name, 'model_path': model_path})\n", (16278, 16398), True, 'import pandas as pd\n'), ((21859, 21878), 'copy.copy', 'copy.copy', (['iterator'], {}), '(iterator)\n', (21868, 21878), False, 'import copy\n'), ((22431, 22450), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['y.data'], {}), '(y.data)\n', (22442, 22450), False, 'from chainer import configuration, cuda, function\n'), ((22472, 22486), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['t'], {}), '(t)\n', (22483, 22486), False, 'from chainer import configuration, cuda, function\n'), ((22512, 22535), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['protein_id'], {}), '(protein_id)\n', (22523, 22535), False, 'from chainer import configuration, cuda, function\n'), ((22558, 22586), 'numpy.vstack', 'np.vstack', (['[y_total, y_data]'], {}), '([y_total, y_data])\n', (22567, 22586), True, 'import numpy as np\n'), ((22609, 22637), 'numpy.vstack', 'np.vstack', (['[t_total, t_data]'], {}), '([t_total, t_data])\n', (22618, 22637), True, 'import numpy as np\n'), ((22669, 22710), 'numpy.vstack', 'np.vstack', (['[protein_id_total, protein_id]'], {}), '([protein_id_total, protein_id])\n', (22678, 22710), True, 'import numpy as np\n'), ((5320, 5362), 'chainer.configuration.using_config', 'configuration.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (5346, 5362), False, 'from chainer import configuration, cuda, function\n'), ((5871, 5883), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5879, 5883), True, 'import numpy as np\n'), ((5937, 5949), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5945, 5949), True, 'import numpy as np\n'), ((6012, 6024), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (6020, 6024), True, 'import numpy as np\n'), ((6162, 6188), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (6186, 6188), False, 'import chainer\n'), ((6190, 6226), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (6210, 6226), False, 'import chainer\n'), ((7044, 7061), 'numpy.where', 'np.where', (['(t != -1)'], {}), '(t != -1)\n', (7052, 7061), True, 'import numpy as np\n'), ((7201, 7230), 'numpy.vstack', 'np.vstack', (['[t, y, protein_id]'], {}), '([t, y, protein_id])\n', (7210, 7230), True, 'import numpy as np\n'), ((7293, 7328), 'numpy.concatenate', 'np.concatenate', (['gather_data'], {'axis': '(1)'}), '(gather_data, axis=1)\n', (7307, 7328), True, 'import numpy as np\n'), ((7356, 7394), 'numpy.array', 'np.array', (['gather_data[0]'], {'dtype': 'np.int'}), '(gather_data[0], dtype=np.int)\n', (7364, 7394), True, 'import numpy as np\n'), ((7422, 7464), 'numpy.array', 'np.array', (['gather_data[1]'], {'dtype': 'np.float32'}), '(gather_data[1], dtype=np.float32)\n', (7430, 7464), True, 'import numpy as np\n'), ((7501, 7539), 'numpy.array', 'np.array', (['gather_data[2]'], {'dtype': 'np.int'}), '(gather_data[2], dtype=np.int)\n', (7509, 7539), True, 'import numpy as np\n'), ((8138, 8270), 'pandas.DataFrame', 'pd.DataFrame', (["{'global_score': global_score, 'global_label': global_label, 'target_name':\n target_name, 'model_path': model_path}"], {}), "({'global_score': global_score, 'global_label': global_label,\n 'target_name': target_name, 'model_path': model_path})\n", (8150, 8270), True, 'import pandas as pd\n'), ((8848, 8888), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['gather_t', 'y_score'], {}), '(gather_t, y_score)\n', (8869, 8888), False, 'from sklearn import metrics\n'), ((13812, 13854), 'chainer.configuration.using_config', 'configuration.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (13838, 13854), False, 'from chainer import configuration, cuda, function\n'), ((14355, 14367), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (14363, 14367), True, 'import numpy as np\n'), ((14598, 14624), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (14622, 14624), False, 'import chainer\n'), ((14626, 14662), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (14646, 14662), False, 'import chainer\n'), ((21355, 21397), 'chainer.configuration.using_config', 'configuration.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (21381, 21397), False, 'from chainer import configuration, cuda, function\n'), ((21898, 21910), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (21906, 21910), True, 'import numpy as np\n'), ((21964, 21976), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (21972, 21976), True, 'import numpy as np\n'), ((22039, 22051), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (22047, 22051), True, 'import numpy as np\n'), ((22189, 22215), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (22213, 22215), False, 'import chainer\n'), ((22217, 22253), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (22237, 22253), False, 'import chainer\n'), ((23071, 23088), 'numpy.where', 'np.where', (['(t != -1)'], {}), '(t != -1)\n', (23079, 23088), True, 'import numpy as np\n'), ((23228, 23257), 'numpy.vstack', 'np.vstack', (['[t, y, protein_id]'], {}), '([t, y, protein_id])\n', (23237, 23257), True, 'import numpy as np\n'), ((23320, 23355), 'numpy.concatenate', 'np.concatenate', (['gather_data'], {'axis': '(1)'}), '(gather_data, axis=1)\n', (23334, 23355), True, 'import numpy as np\n'), ((23383, 23425), 'numpy.array', 'np.array', (['gather_data[0]'], {'dtype': 'np.float32'}), '(gather_data[0], dtype=np.float32)\n', (23391, 23425), True, 'import numpy as np\n'), ((23453, 23495), 'numpy.array', 'np.array', (['gather_data[1]'], {'dtype': 'np.float32'}), '(gather_data[1], dtype=np.float32)\n', (23461, 23495), True, 'import numpy as np\n'), ((23532, 23570), 'numpy.array', 'np.array', (['gather_data[2]'], {'dtype': 'np.int'}), '(gather_data[2], dtype=np.int)\n', (23540, 23570), True, 'import numpy as np\n'), ((24153, 24285), 'pandas.DataFrame', 'pd.DataFrame', (["{'global_score': global_score, 'global_label': global_label, 'target_name':\n target_name, 'model_path': model_path}"], {}), "({'global_score': global_score, 'global_label': global_label,\n 'target_name': target_name, 'model_path': model_path})\n", (24165, 24285), True, 'import pandas as pd\n'), ((8715, 8734), 'chainer.functions.sigmoid', 'F.sigmoid', (['gather_y'], {}), '(gather_y)\n', (8724, 8734), True, 'import chainer.functions as F\n'), ((15856, 15890), 'numpy.where', 'np.where', (['(gather_protein_id == row)'], {}), '(gather_protein_id == row)\n', (15864, 15890), True, 'import numpy as np\n'), ((7768, 7802), 'numpy.where', 'np.where', (['(gather_protein_id == row)'], {}), '(gather_protein_id == row)\n', (7776, 7802), True, 'import numpy as np\n'), ((15967, 16007), 'numpy.argmax', 'np.argmax', (['gather_y[model_index]'], {'axis': '(1)'}), '(gather_y[model_index], axis=1)\n', (15976, 16007), True, 'import numpy as np\n'), ((16063, 16083), 'numpy.mean', 'np.mean', (['local_score'], {}), '(local_score)\n', (16070, 16083), True, 'import numpy as np\n'), ((23799, 23833), 'numpy.where', 'np.where', (['(gather_protein_id == row)'], {}), '(gather_protein_id == row)\n', (23807, 23833), True, 'import numpy as np\n'), ((16942, 16985), 'chainer.functions.softmax_cross_entropy', 'F.softmax_cross_entropy', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (16965, 16985), True, 'import chainer.functions as F\n'), ((17097, 17127), 'chainer.functions.accuracy', 'F.accuracy', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (17107, 17127), True, 'import chainer.functions as F\n'), ((23924, 23954), 'numpy.mean', 'np.mean', (['gather_y[model_index]'], {}), '(gather_y[model_index])\n', (23931, 23954), True, 'import numpy as np\n'), ((9214, 9257), 'chainer.functions.sigmoid_cross_entropy', 'F.sigmoid_cross_entropy', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (9237, 9257), True, 'import chainer.functions as F\n'), ((9373, 9410), 'chainer.functions.binary_accuracy', 'F.binary_accuracy', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (9390, 9410), True, 'import chainer.functions as F\n'), ((24863, 24903), 'chainer.functions.mean_squared_error', 'F.mean_squared_error', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (24883, 24903), True, 'import chainer.functions as F\n'), ((25019, 25049), 'chainer.functions.r2_score', 'F.r2_score', (['gather_y', 'gather_t'], {}), '(gather_y, gather_t)\n', (25029, 25049), True, 'import chainer.functions as F\n'), ((7901, 7933), 'chainer.functions.sigmoid', 'F.sigmoid', (['gather_y[model_index]'], {}), '(gather_y[model_index])\n', (7910, 7933), True, 'import chainer.functions as F\n')]
from __future__ import print_function import numpy OPENOPT = SCIPY = True try: from openopt import NLP except ImportError: OPENOPT = False try: from scipy.optimize import minimize except ImportError: SCIPY = False SCIPY_LOCAL_SOLVERS = ['Nelder-Mead', 'Powell', 'L-BFGS-B', 'TNC', 'SLSQP'] OPENOPT_LOCAL_SOLVERS = ['bobyqa', 'ptn', 'slmvm2', 'ralg', 'mma', 'auglag', 'sqlcp'] def AMPGO(objfun, x0, args=(), local='L-BFGS-B', local_opts=None, bounds=None, maxfunevals=None, totaliter=20, maxiter=5, glbtol=1e-5, eps1=0.02, eps2=0.1, tabulistsize=5, tabustrategy='farthest', fmin=-numpy.inf, disp=None): """ Finds the global minimum of a function using the AMPGO (Adaptive Memory Programming for Global Optimization) algorithm. :param `objfun`: Function to be optimized, in the form ``f(x, *args)``. :type `objfun`: callable :param `args`: Additional arguments passed to `objfun`. :type `args`: tuple :param `local`: The local minimization method (e.g. ``"L-BFGS-B"``). It can be one of the available `scipy` local solvers or `OpenOpt` solvers. :type `local`: string :param `bounds`: A list of tuples specifying the lower and upper bound for each independent variable [(`xl0`, `xu0`), (`xl1`, `xu1`), ...] :type `bounds`: list :param `maxfunevals`: The maximum number of function evaluations allowed. :type `maxfunevals`: integer :param `totaliter`: The maximum number of global iterations allowed. :type `totaliter`: integer :param `maxiter`: The maximum number of `Tabu Tunnelling` iterations allowed during each global iteration. :type `maxiter`: integer :param `glbtol`: The optimization will stop if the absolute difference between the current minimum objective function value and the provided global optimum (`fmin`) is less than `glbtol`. :type `glbtol`: float :param `eps1`: A constant used to define an aspiration value for the objective function during the Tunnelling phase. :type `eps1`: float :param `eps2`: Perturbation factor used to move away from the latest local minimum at the start of a Tunnelling phase. :type `eps2`: float :param `tabulistsize`: The size of the tabu search list (a circular list). :type `tabulistsize`: integer :param `tabustrategy`: The strategy to use when the size of the tabu list exceeds `tabulistsize`. It can be 'oldest' to drop the oldest point from the tabu list or 'farthest' to drop the element farthest from the last local minimum found. :type `tabustrategy`: string :param `fmin`: If known, the objective function global optimum value. :type `fmin`: float :param `disp`: If zero or defaulted, then no output is printed on screen. If a positive number, then status messages are printed. :type `disp`: integer :returns: A tuple of 5 elements, in the following order: 1. **best_x** (`array_like`): the estimated position of the global minimum. 2. **best_f** (`float`): the value of `objfun` at the minimum. 3. **evaluations** (`integer`): the number of function evaluations. 4. **msg** (`string`): a message describes the cause of the termination. 5. **tunnel_info** (`tuple`): a tuple containing the total number of Tunnelling phases performed and the successful ones. :rtype: `tuple` The detailed implementation of AMPGO is described in the paper "Adaptive Memory Programming for Constrained Global Optimization" located here: http://leeds-faculty.colorado.edu/glover/fred%20pubs/416%20-%20AMP%20(TS)%20for%20Constrained%20Global%20Opt%20w%20Lasdon%20et%20al%20.pdf Copyright 2014 <NAME> """ if local not in SCIPY_LOCAL_SOLVERS + OPENOPT_LOCAL_SOLVERS: raise Exception('Invalid local solver selected: %s'%local) if local in SCIPY_LOCAL_SOLVERS and not SCIPY: raise Exception('The selected solver %s is not available as there is no scipy installation'%local) if local in OPENOPT_LOCAL_SOLVERS and not OPENOPT: raise Exception('The selected solver %s is not available as there is no OpenOpt installation'%local) x0 = numpy.atleast_1d(x0) n = len(x0) if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') low = [0]*n up = [0]*n for i in range(n): if bounds[i] is None: l, u = -numpy.inf, numpy.inf else: l, u = bounds[i] if l is None: low[i] = -numpy.inf else: low[i] = l if u is None: up[i] = numpy.inf else: up[i] = u if maxfunevals is None: maxfunevals = max(100, 10*len(x0)) if tabulistsize < 1: raise Exception('Invalid tabulistsize specified: %s. It should be an integer greater than zero.'%tabulistsize) if tabustrategy not in ['oldest', 'farthest']: raise Exception('Invalid tabustrategy specified: %s. It must be one of "oldest" or "farthest"'%tabustrategy) iprint = 50 if disp is None or disp <= 0: disp = 0 iprint = -1 low = numpy.asarray(low) up = numpy.asarray(up) tabulist = [] best_f = numpy.inf best_x = x0 global_iter = 0 all_tunnel = success_tunnel = 0 evaluations = 0 if glbtol < 1e-8: local_tol = glbtol else: local_tol = 1e-8 while 1: if disp > 0: print('\n') print('='*72) print('Starting MINIMIZATION Phase %-3d'%(global_iter+1)) print('='*72) if local in OPENOPT_LOCAL_SOLVERS: problem = NLP(objfun, x0, lb=low, ub=up, maxFunEvals=max(1, maxfunevals), ftol=local_tol, iprint=iprint) problem.args = args results = problem.solve(local) xf, yf, num_fun = results.xf, results.ff, results.evals['f'] else: options = {'maxiter': max(1, maxfunevals), 'disp': disp} if local_opts is not None: options.update(local_opts) res = minimize(objfun, x0, args=args, method=local, bounds=bounds, tol=local_tol, options=options) xf, yf, num_fun = res['x'], res['fun'], res['nfev'] maxfunevals -= num_fun evaluations += num_fun if yf < best_f: best_f = yf best_x = xf if disp > 0: print('\n\n ==> Reached local minimum: %s\n'%yf) if best_f < fmin + glbtol: if disp > 0: print('='*72) return best_x, best_f, evaluations, 'Optimization terminated successfully', (all_tunnel, success_tunnel) if maxfunevals <= 0: if disp > 0: print('='*72) return best_x, best_f, evaluations, 'Maximum number of function evaluations exceeded', (all_tunnel, success_tunnel) tabulist = drop_tabu_points(xf, tabulist, tabulistsize, tabustrategy) tabulist.append(xf) i = improve = 0 while i < maxiter and improve == 0: if disp > 0: print('-'*72) print('Starting TUNNELLING Phase (%3d-%3d)'%(global_iter+1, i+1)) print('-'*72) all_tunnel += 1 r = numpy.random.uniform(-1.0, 1.0, size=(n, )) beta = eps2*numpy.linalg.norm(xf)/numpy.linalg.norm(r) if numpy.abs(beta) < 1e-8: beta = eps2 x0 = xf + beta*r x0 = numpy.where(x0 < low, low, x0) x0 = numpy.where(x0 > up , up , x0) aspiration = best_f - eps1*(1.0 + numpy.abs(best_f)) tunnel_args = tuple([objfun, aspiration, tabulist] + list(args)) if local in OPENOPT_LOCAL_SOLVERS: problem = NLP(tunnel, x0, lb=low, ub=up, maxFunEvals=max(1, maxfunevals), ftol=local_tol, iprint=iprint) problem.args = tunnel_args results = problem.solve(local) xf, yf, num_fun = results.xf, results.ff, results.evals['f'] else: options = {'maxiter': max(1, maxfunevals), 'disp': disp} if local_opts is not None: options.update(local_opts) res = minimize(tunnel, x0, args=tunnel_args, method=local, bounds=bounds, tol=local_tol, options=options) xf, yf, num_fun = res['x'], res['fun'], res['nfev'] maxfunevals -= num_fun evaluations += num_fun yf = inverse_tunnel(xf, yf, aspiration, tabulist) if yf <= best_f + glbtol: oldf = best_f best_f = yf best_x = xf improve = 1 success_tunnel += 1 if disp > 0: print('\n\n ==> Successful tunnelling phase. Reached local minimum: %s < %s\n'%(yf, oldf)) if best_f < fmin + glbtol: return best_x, best_f, evaluations, 'Optimization terminated successfully', (all_tunnel, success_tunnel) i += 1 if maxfunevals <= 0: return best_x, best_f, evaluations, 'Maximum number of function evaluations exceeded', (all_tunnel, success_tunnel) tabulist = drop_tabu_points(xf, tabulist, tabulistsize, tabustrategy) tabulist.append(xf) if disp > 0: print('='*72) global_iter += 1 x0 = xf.copy() if global_iter >= totaliter: return best_x, best_f, evaluations, 'Maximum number of global iterations exceeded', (all_tunnel, success_tunnel) if best_f < fmin + glbtol: return best_x, best_f, evaluations, 'Optimization terminated successfully', (all_tunnel, success_tunnel) def drop_tabu_points(xf, tabulist, tabulistsize, tabustrategy): if len(tabulist) < tabulistsize: return tabulist if tabustrategy == 'oldest': tabulist.pop(0) else: distance = numpy.sqrt(numpy.sum((tabulist-xf)**2, axis=1)) index = numpy.argmax(distance) tabulist.pop(index) return tabulist def tunnel(x0, *args): objfun, aspiration, tabulist = args[0:3] fun_args = () if len(args) > 3: fun_args = tuple(args[3:]) numerator = (objfun(x0, *fun_args) - aspiration)**2 denominator = 1.0 for tabu in tabulist: denominator = denominator*numpy.sqrt(numpy.sum((x0 - tabu)**2)) ytf = numerator/denominator return ytf def inverse_tunnel(xtf, ytf, aspiration, tabulist): denominator = 1.0 for tabu in tabulist: denominator = denominator*numpy.sqrt(numpy.sum((xtf - tabu)**2)) numerator = ytf*denominator yf = aspiration + numpy.sqrt(ytf*denominator) return yf if __name__ == '__main__': import os import go_benchmark os.system('cls') for tests in ['Bird']: klass = getattr(go_benchmark, tests)() x0 = klass.generator() fmin = klass.fglob bounds = klass.bounds tolfun = 1e-6 xf, yf, fun_evals, msg, tt = AMPGO(klass.evaluator, x0, args=(), local='L-BFGS-B', bounds=bounds, maxfunevals=20000, totaliter=2000, maxiter=5, eps1=0.02, eps2=0.1, tabulistsize=5, tabustrategy='farthest', fmin=fmin, disp=1, glbtol=tolfun) xb = numpy.asarray(klass.global_optimum) if xb.ndim == 2: xb = xb[0, :] print('\n\n') print('F_glob :', klass.evaluator(xb)) print('F_best :', yf) print('X_best :', xf) print('F_evals:', fun_evals) print('Message:', msg) print('Tunnels:', tt)
[ "numpy.random.uniform", "scipy.optimize.minimize", "numpy.sum", "numpy.abs", "numpy.argmax", "numpy.asarray", "os.system", "numpy.where", "numpy.linalg.norm", "numpy.atleast_1d", "numpy.sqrt" ]
[((4282, 4302), 'numpy.atleast_1d', 'numpy.atleast_1d', (['x0'], {}), '(x0)\n', (4298, 4302), False, 'import numpy\n'), ((5366, 5384), 'numpy.asarray', 'numpy.asarray', (['low'], {}), '(low)\n', (5379, 5384), False, 'import numpy\n'), ((5395, 5412), 'numpy.asarray', 'numpy.asarray', (['up'], {}), '(up)\n', (5408, 5412), False, 'import numpy\n'), ((11382, 11398), 'os.system', 'os.system', (['"""cls"""'], {}), "('cls')\n", (11391, 11398), False, 'import os\n'), ((10537, 10559), 'numpy.argmax', 'numpy.argmax', (['distance'], {}), '(distance)\n', (10549, 10559), False, 'import numpy\n'), ((11258, 11287), 'numpy.sqrt', 'numpy.sqrt', (['(ytf * denominator)'], {}), '(ytf * denominator)\n', (11268, 11287), False, 'import numpy\n'), ((11950, 11985), 'numpy.asarray', 'numpy.asarray', (['klass.global_optimum'], {}), '(klass.global_optimum)\n', (11963, 11985), False, 'import numpy\n'), ((6357, 6453), 'scipy.optimize.minimize', 'minimize', (['objfun', 'x0'], {'args': 'args', 'method': 'local', 'bounds': 'bounds', 'tol': 'local_tol', 'options': 'options'}), '(objfun, x0, args=args, method=local, bounds=bounds, tol=local_tol,\n options=options)\n', (6365, 6453), False, 'from scipy.optimize import minimize\n'), ((7610, 7652), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1.0)', '(1.0)'], {'size': '(n,)'}), '(-1.0, 1.0, size=(n,))\n', (7630, 7652), False, 'import numpy\n'), ((7874, 7904), 'numpy.where', 'numpy.where', (['(x0 < low)', 'low', 'x0'], {}), '(x0 < low, low, x0)\n', (7885, 7904), False, 'import numpy\n'), ((7923, 7951), 'numpy.where', 'numpy.where', (['(x0 > up)', 'up', 'x0'], {}), '(x0 > up, up, x0)\n', (7934, 7951), False, 'import numpy\n'), ((10483, 10522), 'numpy.sum', 'numpy.sum', (['((tabulist - xf) ** 2)'], {'axis': '(1)'}), '((tabulist - xf) ** 2, axis=1)\n', (10492, 10522), False, 'import numpy\n'), ((7701, 7721), 'numpy.linalg.norm', 'numpy.linalg.norm', (['r'], {}), '(r)\n', (7718, 7721), False, 'import numpy\n'), ((7752, 7767), 'numpy.abs', 'numpy.abs', (['beta'], {}), '(beta)\n', (7761, 7767), False, 'import numpy\n'), ((8672, 8776), 'scipy.optimize.minimize', 'minimize', (['tunnel', 'x0'], {'args': 'tunnel_args', 'method': 'local', 'bounds': 'bounds', 'tol': 'local_tol', 'options': 'options'}), '(tunnel, x0, args=tunnel_args, method=local, bounds=bounds, tol=\n local_tol, options=options)\n', (8680, 8776), False, 'from scipy.optimize import minimize\n'), ((10929, 10956), 'numpy.sum', 'numpy.sum', (['((x0 - tabu) ** 2)'], {}), '((x0 - tabu) ** 2)\n', (10938, 10956), False, 'import numpy\n'), ((11166, 11194), 'numpy.sum', 'numpy.sum', (['((xtf - tabu) ** 2)'], {}), '((xtf - tabu) ** 2)\n', (11175, 11194), False, 'import numpy\n'), ((7679, 7700), 'numpy.linalg.norm', 'numpy.linalg.norm', (['xf'], {}), '(xf)\n', (7696, 7700), False, 'import numpy\n'), ((8003, 8020), 'numpy.abs', 'numpy.abs', (['best_f'], {}), '(best_f)\n', (8012, 8020), False, 'import numpy\n')]
# @PascalPuchtler # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import math import sys import time import numpy as np from planar import Polygon from Controller.AreaMap.MapPoint import MapPoint from Controller.MoveController.CarModel import CarModel from .NearestNeighbor import NearestNeighbor from .SupportPointChain import SupportPointChain class TrajectoryPlanning: def __init__(self, areaMap, emergencyStopQueue): self.areaMap = areaMap self.emergencyStopQueue = emergencyStopQueue self.carModel = CarModel() self.nearestNeighbor = NearestNeighbor() self.supportPointChain = SupportPointChain() self.reset() self.maxDriveableSlope = 3 self.normalMode = True self.minImageCount = 6 self.imageCount = 0 def reset(self): self.newestSupportChain = [] self.callculatedNextMove = None def nextMove(self): self.imageCount +=1 if self.minImageCount > self.imageCount: self.callculatedNextMove = {'x': 0, 'y': 0, 'm': 0} return self.callculatedNextMove nextMove = self.handleNextMove() if not self.emergencyStopQueue.empty(): print('emergeny mode') self.emergencyStopQueue.get() self.normalMode = False elif self.normalMode is False and nextMove is not None: self.normalMode = True print('reset Mode') return {'command': 'resetSavety'} if self.normalMode: if nextMove is not None: self.callculatedNextMove = nextMove return nextMove self.callculatedNextMove = {'x': 0, 'y': 0, 'm': 0} return {'x': 0, 'y': 0, 'm': 0} else: self.callculatedNextMove = {'x': 0, 'y': 0, 'm': 0} self.areaMap.reset() self.imageCount=0 return {'x': 0, 'y': 0, 'm': 0} def handleNextMove(self): if not self.areaMap.isBorderAvailable(): # print('no border available') return None supportPoints = self.nearestNeighbor.getNearestNeighbor(self.areaMap.left, self.areaMap.right) supportPointChain = self.supportPointChain.getSupportPointChain(supportPoints, self.areaMap.robotPosition) self.newestSupportChain = supportPointChain if len(supportPointChain)<=1: print('no possible target in drive direction') return None nextMove = self.callculateNextTarget(self.areaMap.robotPosition, supportPointChain) return nextMove def callculateNextTarget(self,robotPosition, supportPointChain): nextPoint = supportPointChain[1] offsetNextPoint = robotPosition.getRelativeOffsetsToPoint(nextPoint[0],nextPoint[1]) if len(supportPointChain) >= 3: secondPoint = supportPointChain[2] offsetSecondPoint = robotPosition.getRelativeOffsetsToPoint(secondPoint[0],secondPoint[1]) slope = self.slope(offsetNextPoint, offsetSecondPoint) if offsetNextPoint[1] < offsetSecondPoint[1]: slope = -slope else: slope = 0 return {'x': offsetNextPoint[1], 'y': -offsetNextPoint[0], 'm': slope/2} def slope(self, point1, point2): m = (point2[0]-point1[0])/(point2[1]-point1[1]) m= np.clip(m, -self.maxDriveableSlope,self.maxDriveableSlope) return m
[ "Controller.MoveController.CarModel.CarModel", "numpy.clip" ]
[((1120, 1130), 'Controller.MoveController.CarModel.CarModel', 'CarModel', ([], {}), '()\n', (1128, 1130), False, 'from Controller.MoveController.CarModel import CarModel\n'), ((3953, 4012), 'numpy.clip', 'np.clip', (['m', '(-self.maxDriveableSlope)', 'self.maxDriveableSlope'], {}), '(m, -self.maxDriveableSlope, self.maxDriveableSlope)\n', (3960, 4012), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 27 00:52:19 2018 @author: xavier.qiu """ from common.load import * from common.pd_util import * from common.preprocess import * from common.util import * from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import numpy as np import gc import pickle from tqdm import tqdm class DataSet: def __init__(self, embedding='glove', voc_len=105000, max_ques_len=72, cache=True): """ :param embedding: """ self.config = load_config() self.embedding_type = embedding self.voc_len = voc_len self.max_ques_len = max_ques_len if cache and os.path.exists(os.path.join(self.config["data_dir"], "y_train.pickle")): with open(os.path.join(self.config["data_dir"], "x_train.pickle"), 'rb') as handle: self.x_train = pickle.load(handle) with open(os.path.join(self.config["data_dir"], "x_test.pickle"), 'rb') as handle: self.x_test = pickle.load(handle) with open(os.path.join(self.config["data_dir"], "y_train.pickle"), 'rb') as handle: self.y_train = pickle.load(handle) with open(os.path.join(self.config["data_dir"], "embedding_matrix.pickle"), 'rb') as handle: self.embedding_matrix = pickle.load(handle) return print("Loading Train df") self.train_df = pd.read_csv(os.path.join(self.config["data_dir"], "train.csv")) print("Loading Test df") self.test_df = pd.read_csv(os.path.join(self.config["data_dir"], "test.csv")) self.preprocess("train") self.preprocess("test") self.word_index = None # convert question_text to question_ids_list self.word2indices() print("Loading Embedding - {}".format(embedding)) self.embedding_index = load_embedding(self.embedding_type, word_index=self.word_index, voc_len = self.voc_len) if self.embedding_type != "mix": self.embedding_matrix = self.make_embed_matrix(self.embedding_index, self.word_index, self.voc_len) else: self.embedding_matrix = self.embedding_index del self.word_index del self.embedding_index send_msg("Load Done") gc.collect() with open(os.path.join(self.config["data_dir"], "x_train.pickle"), 'wb') as handle: pickle.dump(self.x_train, handle, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(self.config["data_dir"], "x_test.pickle"), 'wb') as handle: pickle.dump(self.x_test, handle, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(self.config["data_dir"], "y_train.pickle"), 'wb') as handle: pickle.dump(self.y_train, handle, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(self.config["data_dir"], "embedding_matrix.pickle"), 'wb') as handle: pickle.dump(self.embedding_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL) def make_embed_matrix(self, embeddings_index, word_index, len_voc): all_embs = np.stack(embeddings_index.values()) emb_mean, emb_std = all_embs.mean(), all_embs.std() embed_size = all_embs.shape[1] word_index = word_index embedding_matrix = np.random.normal(emb_mean, emb_std, (len_voc, embed_size)) for word, i in tqdm(word_index.items()): if i >= len_voc: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector return embedding_matrix def word2indices(self): t = Tokenizer(num_words=self.voc_len, filters='') x_train = self.train_df["treated_question"].fillna("_na_").values x_test = self.test_df["treated_question"].fillna("_na_").values t.fit_on_texts(list(x_train)) self.word_index = t.word_index # Tokenize the sentences x_train = t.texts_to_sequences(x_train) x_test = t.texts_to_sequences(x_test) # Pad the sentences x_train = pad_sequences(x_train, maxlen=self.max_ques_len) x_test = pad_sequences(x_test, maxlen=self.max_ques_len) # Get the target values y_train = self.train_df['target'].values self.x_train = x_train self.x_test = x_test self.y_train = y_train def preprocess(self, data_set, filters=["punct", "contraction", "special characters", "misspell"]): """ :param filters: :param data_set: :return: """ if data_set == "train": df = self.train_df else: df = self.test_df print("Pre-processing {}".format(data_set)) df["treated_question"] = df["question_text"] if "numbers" in filters: print("Clean number ing ... ") df["treated_question"] = df["treated_question"].apply(lambda x: deal_with_numbers(x)) if "punct" in filters: print("Clean punct ing ... ") df['treated_question'] = df['treated_question'].apply(lambda x: deal_with_punct(x)) if "lower" in filters: print("Lowering ... ") df['treated_question'] = df['treated_question'].apply(lambda x: x.lower()) if "special characters" in filters: print("Clean special chars ing ... ") df['treated_question'] = df['treated_question'].apply(lambda x: deal_with_special_characters(x)) if "misspell" in filters: print("Clean misspell ing ...") df['treated_question'] = df['treated_question'].apply(lambda x: deal_with_misspell(x))
[ "pickle.dump", "keras.preprocessing.sequence.pad_sequences", "gc.collect", "keras.preprocessing.text.Tokenizer", "pickle.load", "numpy.random.normal" ]
[((2340, 2352), 'gc.collect', 'gc.collect', ([], {}), '()\n', (2350, 2352), False, 'import gc\n'), ((3345, 3403), 'numpy.random.normal', 'np.random.normal', (['emb_mean', 'emb_std', '(len_voc, embed_size)'], {}), '(emb_mean, emb_std, (len_voc, embed_size))\n', (3361, 3403), True, 'import numpy as np\n'), ((3741, 3786), 'keras.preprocessing.text.Tokenizer', 'Tokenizer', ([], {'num_words': 'self.voc_len', 'filters': '""""""'}), "(num_words=self.voc_len, filters='')\n", (3750, 3786), False, 'from keras.preprocessing.text import Tokenizer\n'), ((4188, 4236), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['x_train'], {'maxlen': 'self.max_ques_len'}), '(x_train, maxlen=self.max_ques_len)\n', (4201, 4236), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((4254, 4301), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['x_test'], {'maxlen': 'self.max_ques_len'}), '(x_test, maxlen=self.max_ques_len)\n', (4267, 4301), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((2459, 2526), 'pickle.dump', 'pickle.dump', (['self.x_train', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(self.x_train, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (2470, 2526), False, 'import pickle\n'), ((2630, 2696), 'pickle.dump', 'pickle.dump', (['self.x_test', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(self.x_test, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (2641, 2696), False, 'import pickle\n'), ((2801, 2868), 'pickle.dump', 'pickle.dump', (['self.y_train', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(self.y_train, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (2812, 2868), False, 'import pickle\n'), ((2982, 3058), 'pickle.dump', 'pickle.dump', (['self.embedding_matrix', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(self.embedding_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (2993, 3058), False, 'import pickle\n'), ((920, 939), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (931, 939), False, 'import pickle\n'), ((1065, 1084), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1076, 1084), False, 'import pickle\n'), ((1212, 1231), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1223, 1231), False, 'import pickle\n'), ((1377, 1396), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1388, 1396), False, 'import pickle\n')]
import numpy as np # Sizes relevant to default camera frame ASPECT_RATIO = 16.0 / 9.0 FRAME_HEIGHT = 8.0 FRAME_WIDTH = FRAME_HEIGHT * ASPECT_RATIO FRAME_Y_RADIUS = FRAME_HEIGHT / 2 FRAME_X_RADIUS = FRAME_WIDTH / 2 DEFAULT_PIXEL_HEIGHT = 1080 DEFAULT_PIXEL_WIDTH = 1920 DEFAULT_FRAME_RATE = 30 SMALL_BUFF = 0.1 MED_SMALL_BUFF = 0.25 MED_LARGE_BUFF = 0.5 LARGE_BUFF = 1 DEFAULT_MOBJECT_TO_EDGE_BUFFER = MED_LARGE_BUFF DEFAULT_MOBJECT_TO_MOBJECT_BUFFER = MED_SMALL_BUFF # All in seconds DEFAULT_POINTWISE_FUNCTION_RUN_TIME = 3.0 DEFAULT_WAIT_TIME = 1.0 ORIGIN = np.array((0., 0., 0.)) UP = np.array((0., 1., 0.)) DOWN = np.array((0., -1., 0.)) RIGHT = np.array((1., 0., 0.)) LEFT = np.array((-1., 0., 0.)) IN = np.array((0., 0., -1.)) OUT = np.array((0., 0., 1.)) X_AXIS = np.array((1., 0., 0.)) Y_AXIS = np.array((0., 1., 0.)) Z_AXIS = np.array((0., 0., 1.)) # Useful abbreviations for diagonals UL = UP + LEFT UR = UP + RIGHT DL = DOWN + LEFT DR = DOWN + RIGHT TOP = FRAME_Y_RADIUS * UP BOTTOM = FRAME_Y_RADIUS * DOWN LEFT_SIDE = FRAME_X_RADIUS * LEFT RIGHT_SIDE = FRAME_X_RADIUS * RIGHT PI = np.pi TAU = 2 * PI DEGREES = TAU / 360 FFMPEG_BIN = "ffmpeg" JOINT_TYPE_MAP = { "auto": 0, "round": 1, "bevel": 2, "miter": 3, } # Related to Text START_X = 30 START_Y = 20 NORMAL = "NORMAL" ITALIC = "ITALIC" OBLIQUE = "OBLIQUE" BOLD = "BOLD" DEFAULT_STROKE_WIDTH = 4 # Colors COLOR_MAP = { "BLUE_E": "#1C758A", "BLUE_D": "#29ABCA", "BLUE_C": "#58C4DD", "BLUE_B": "#9CDCEB", "BLUE_A": "#C7E9F1", "TEAL_E": "#49A88F", "TEAL_D": "#55C1A7", "TEAL_C": "#5CD0B3", "TEAL_B": "#76DDC0", "TEAL_A": "#ACEAD7", "GREEN_E": "#699C52", "GREEN_D": "#77B05D", "GREEN_C": "#83C167", "GREEN_B": "#A6CF8C", "GREEN_A": "#C9E2AE", "YELLOW_E": "#E8C11C", "YELLOW_D": "#F4D345", "YELLOW_C": "#FFFF00", "YELLOW_B": "#FFEA94", "YELLOW_A": "#FFF1B6", "GOLD_E": "#C78D46", "GOLD_D": "#E1A158", "GOLD_C": "#F0AC5F", "GOLD_B": "#F9B775", "GOLD_A": "#F7C797", "RED_E": "#CF5044", "RED_D": "#E65A4C", "RED_C": "#FC6255", "RED_B": "#FF8080", "RED_A": "#F7A1A3", "MAROON_E": "#94424F", "MAROON_D": "#A24D61", "MAROON_C": "#C55F73", "MAROON_B": "#EC92AB", "MAROON_A": "#ECABC1", "PURPLE_E": "#644172", "PURPLE_D": "#715582", "PURPLE_C": "#9A72AC", "PURPLE_B": "#B189C6", "PURPLE_A": "#CAA3E8", "GREY_E": "#222222", "GREY_D": "#444444", "GREY_C": "#888888", "GREY_B": "#BBBBBB", "GREY_A": "#DDDDDD", "WHITE": "#FFFFFF", "BLACK": "#000000", "GREY_BROWN": "#736357", "DARK_BROWN": "#8B4513", "LIGHT_BROWN": "#CD853F", "PINK": "#D147BD", "LIGHT_PINK": "#DC75CD", "GREEN_SCREEN": "#00FF00", "ORANGE": "#FF862F", } PALETTE = list(COLOR_MAP.values()) locals().update(COLOR_MAP) for name in [s for s in list(COLOR_MAP.keys()) if s.endswith("_C")]: locals()[name.replace("_C", "")] = locals()[name]
[ "numpy.array" ]
[((567, 592), 'numpy.array', 'np.array', (['(0.0, 0.0, 0.0)'], {}), '((0.0, 0.0, 0.0))\n', (575, 592), True, 'import numpy as np\n'), ((595, 620), 'numpy.array', 'np.array', (['(0.0, 1.0, 0.0)'], {}), '((0.0, 1.0, 0.0))\n', (603, 620), True, 'import numpy as np\n'), ((625, 651), 'numpy.array', 'np.array', (['(0.0, -1.0, 0.0)'], {}), '((0.0, -1.0, 0.0))\n', (633, 651), True, 'import numpy as np\n'), ((657, 682), 'numpy.array', 'np.array', (['(1.0, 0.0, 0.0)'], {}), '((1.0, 0.0, 0.0))\n', (665, 682), True, 'import numpy as np\n'), ((687, 713), 'numpy.array', 'np.array', (['(-1.0, 0.0, 0.0)'], {}), '((-1.0, 0.0, 0.0))\n', (695, 713), True, 'import numpy as np\n'), ((716, 742), 'numpy.array', 'np.array', (['(0.0, 0.0, -1.0)'], {}), '((0.0, 0.0, -1.0))\n', (724, 742), True, 'import numpy as np\n'), ((746, 771), 'numpy.array', 'np.array', (['(0.0, 0.0, 1.0)'], {}), '((0.0, 0.0, 1.0))\n', (754, 771), True, 'import numpy as np\n'), ((778, 803), 'numpy.array', 'np.array', (['(1.0, 0.0, 0.0)'], {}), '((1.0, 0.0, 0.0))\n', (786, 803), True, 'import numpy as np\n'), ((810, 835), 'numpy.array', 'np.array', (['(0.0, 1.0, 0.0)'], {}), '((0.0, 1.0, 0.0))\n', (818, 835), True, 'import numpy as np\n'), ((842, 867), 'numpy.array', 'np.array', (['(0.0, 0.0, 1.0)'], {}), '((0.0, 0.0, 1.0))\n', (850, 867), True, 'import numpy as np\n')]
import numpy as np from net import Net from functional import * from os import remove temp_path = "./model/param" def save_model(net: Net, name: str): ''' 将网络信息保存 parameters ---------- net : 神经网络类 name : 文件名,文件将被保存到model文件夹中的指定名称文件中 return ------ 1 : 表示保存成功 ''' path = "./model/{}".format(name) args = net.args layer_info = "layer info:\n" for layer in args: layer_info += "{} {}\n".format(*layer) criterion = "criterion : {}\n".format("ce" if net.criterion == ce_loss else "mse") regualarize = "regularize : " + ("{} with alpha={}\n".format( net.regularize, net.alpha) if net.regularize else "None\n") with open(path, "w") as f: f.write(layer_info) f.write(criterion) f.write(regualarize) for param in net.parameters(): np.savetxt(temp_path, param) with open(temp_path, "r") as fa: f.write(fa.read()) remove(temp_path) return 1 def load_model(name: str): ''' 指定文件名,函数将读取文件,生成文件中描述的神经网络模型 return ------ net : 模型文件所描述的网络 ''' path = "./model/{}".format(name) parameters = [] with open(path, "r") as f: f.readline() # 读掉第一行 layer_info = [] while True: s = f.readline()[:-1] if "criterion" in s: break n, act = s.split() layer_info.append((eval(n), act)) criterion = s.split(" : ")[-1] s = f.readline() if "alpha" in s: # 有正则化设置 regualarize = s[:2] alpha = eval(s.split("=")[-1]) else: regualarize = None alpha = 0.01 net = Net( *layer_info, criterion=criterion, regularize=regualarize, alpha=alpha, ) for l in range(len(layer_info) - 1): i, o = layer_info[l][0], layer_info[l + 1][0] str_W = "".join([f.readline() for l in range(i)]) str_b = f.readline() with open(temp_path, "w") as fw: fw.writelines(str_W) W = np.loadtxt(temp_path).reshape(i, o) with open(temp_path, "w") as fb: fb.writelines(str_b) b = np.loadtxt(temp_path).reshape(1, o) parameters.extend((W, b)) net.reset_net(parameters) remove(temp_path) return net def random_init(net: Net, path="./data/random.npy"): '''用指定数组来初始化参数''' n_layer = net.ct_layer n_weight_list = [ n_layer[i] * n_layer[i + 1] for i in range(len(n_layer) - 1) ] parameters = [] x = np.load(path)[:sum(n_weight_list)] ptr = 0 for i in range(len(n_layer) - 1): W = x[ptr:ptr + n_weight_list[i]].reshape((n_layer[i], n_layer[i + 1])) b = np.zeros((1, n_layer[i + 1])) parameters.extend((W, b)) ptr += n_weight_list[i] net.reset_net(parameters, net.xavier, net.he) return net
[ "os.remove", "numpy.load", "numpy.savetxt", "numpy.zeros", "net.Net", "numpy.loadtxt" ]
[((1013, 1030), 'os.remove', 'remove', (['temp_path'], {}), '(temp_path)\n', (1019, 1030), False, 'from os import remove\n'), ((2430, 2447), 'os.remove', 'remove', (['temp_path'], {}), '(temp_path)\n', (2436, 2447), False, 'from os import remove\n'), ((1754, 1828), 'net.Net', 'Net', (['*layer_info'], {'criterion': 'criterion', 'regularize': 'regualarize', 'alpha': 'alpha'}), '(*layer_info, criterion=criterion, regularize=regualarize, alpha=alpha)\n', (1757, 1828), False, 'from net import Net\n'), ((2692, 2705), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (2699, 2705), True, 'import numpy as np\n'), ((2869, 2898), 'numpy.zeros', 'np.zeros', (['(1, n_layer[i + 1])'], {}), '((1, n_layer[i + 1]))\n', (2877, 2898), True, 'import numpy as np\n'), ((900, 928), 'numpy.savetxt', 'np.savetxt', (['temp_path', 'param'], {}), '(temp_path, param)\n', (910, 928), True, 'import numpy as np\n'), ((2186, 2207), 'numpy.loadtxt', 'np.loadtxt', (['temp_path'], {}), '(temp_path)\n', (2196, 2207), True, 'import numpy as np\n'), ((2320, 2341), 'numpy.loadtxt', 'np.loadtxt', (['temp_path'], {}), '(temp_path)\n', (2330, 2341), True, 'import numpy as np\n')]
import unittest import numpy as np from gradient_checker import GradientChecker, create_op from op_test_util import OpTestMeta class MinusOpTest(unittest.TestCase): __metaclass__ = OpTestMeta def setUp(self): self.type = "minus" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((32, 84)).astype("float32") } self.outputs = {'Out': (self.inputs['X'] - self.inputs['Y'])} class MinusGradTest(GradientChecker): def test_left(self): op = create_op("minus") inputs = { "X": np.random.random((10, 10)).astype("float32"), "Y": np.random.random((10, 10)).astype("float32") } self.check_grad(op, inputs, ["X", 'Y'], "Out") if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.random.random", "gradient_checker.create_op" ]
[((816, 831), 'unittest.main', 'unittest.main', ([], {}), '()\n', (829, 831), False, 'import unittest\n'), ((555, 573), 'gradient_checker.create_op', 'create_op', (['"""minus"""'], {}), "('minus')\n", (564, 573), False, 'from gradient_checker import GradientChecker, create_op\n'), ((289, 315), 'numpy.random.random', 'np.random.random', (['(32, 84)'], {}), '((32, 84))\n', (305, 315), True, 'import numpy as np\n'), ((352, 378), 'numpy.random.random', 'np.random.random', (['(32, 84)'], {}), '((32, 84))\n', (368, 378), True, 'import numpy as np\n'), ((610, 636), 'numpy.random.random', 'np.random.random', (['(10, 10)'], {}), '((10, 10))\n', (626, 636), True, 'import numpy as np\n'), ((673, 699), 'numpy.random.random', 'np.random.random', (['(10, 10)'], {}), '((10, 10))\n', (689, 699), True, 'import numpy as np\n')]
"""Seek behaviour in Pygame""" import pygame import numpy as np import math WIDTH,HEIGHT = 700,400 screen = pygame.display.set_mode((WIDTH,HEIGHT)) class Seeker(): def __init__(self,x,y): super().__init__() self.pos=np.array([x,y]) self.vel=np.array([0,0]) self.acc=np.array([0,0]) self.max_speed=0.1 def Draw(self): #pygame.draw.polygon(screen, (0,255,255), ((self.pos),(self.pos+(8,-20)),(self.pos+(18,0)))) pygame.draw.circle(screen, (0,255,255), self.pos, 10) def Update(self): self.vel = np.add(self.vel, self.acc) self.pos = np.subtract(self.pos, self.vel) self.acc = np.multiply(self.acc,[0,0]) def Apply(self,force): self.acc = np.add(self.acc,force) def Seek(self,target): desired_vel = self.pos - target desired_vel = desired_vel/math.sqrt(desired_vel[0]*desired_vel[0]+desired_vel[1]*desired_vel[1]) desired_vel = desired_vel * self.max_speed steering_vel = desired_vel - self.vel self.Apply(steering_vel) def Snitch(pos): pygame.draw.circle(screen, (255,215,0), pos,10) pygame.init() agents=[] for i in range(20): agents.append(Seeker(i*100,i*100)) running = True while running: screen.fill((0,0,0)) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False #Get target position target_pos= np.array(pygame.mouse.get_pos()) Snitch(target_pos) for agent in agents: agent.Seek(target_pos) agent.Update() agent.Draw() pygame.display.update() #pygame.time.Clock().tick(30)
[ "numpy.multiply", "pygame.draw.circle", "numpy.subtract", "math.sqrt", "pygame.event.get", "pygame.display.set_mode", "pygame.init", "pygame.mouse.get_pos", "pygame.display.update", "numpy.array", "numpy.add" ]
[((117, 157), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WIDTH, HEIGHT)'], {}), '((WIDTH, HEIGHT))\n', (140, 157), False, 'import pygame\n'), ((1196, 1209), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1207, 1209), False, 'import pygame\n'), ((1145, 1195), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(255, 215, 0)', 'pos', '(10)'], {}), '(screen, (255, 215, 0), pos, 10)\n', (1163, 1195), False, 'import pygame\n'), ((1362, 1380), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1378, 1380), False, 'import pygame\n'), ((1673, 1696), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (1694, 1696), False, 'import pygame\n'), ((251, 267), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (259, 267), True, 'import numpy as np\n'), ((285, 301), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (293, 301), True, 'import numpy as np\n'), ((319, 335), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (327, 335), True, 'import numpy as np\n'), ((497, 552), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 255, 255)', 'self.pos', '(10)'], {}), '(screen, (0, 255, 255), self.pos, 10)\n', (515, 552), False, 'import pygame\n'), ((600, 626), 'numpy.add', 'np.add', (['self.vel', 'self.acc'], {}), '(self.vel, self.acc)\n', (606, 626), True, 'import numpy as np\n'), ((647, 678), 'numpy.subtract', 'np.subtract', (['self.pos', 'self.vel'], {}), '(self.pos, self.vel)\n', (658, 678), True, 'import numpy as np\n'), ((699, 728), 'numpy.multiply', 'np.multiply', (['self.acc', '[0, 0]'], {}), '(self.acc, [0, 0])\n', (710, 728), True, 'import numpy as np\n'), ((777, 800), 'numpy.add', 'np.add', (['self.acc', 'force'], {}), '(self.acc, force)\n', (783, 800), True, 'import numpy as np\n'), ((1504, 1526), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (1524, 1526), False, 'import pygame\n'), ((906, 982), 'math.sqrt', 'math.sqrt', (['(desired_vel[0] * desired_vel[0] + desired_vel[1] * desired_vel[1])'], {}), '(desired_vel[0] * desired_vel[0] + desired_vel[1] * desired_vel[1])\n', (915, 982), False, 'import math\n')]
import os import collections import pdb import gym import gym.envs.mujoco import time import csv import json import shutil import numpy as np import random from . import ant_env from . import proprioceptive_humanoid_env from . import maze_ant from . import maze_humanoid # Wrapper that records everything we might care about in our environment # All rewards (clipped and raw), states, actions, time and steps # Copied originally from https://github.com/openai/baselines/blob/master/baselines/bench/monitor.py class SmartMonitor(gym.Wrapper): def __init__(self, env, log_dir, rank, opt, verbose=True, allow_early_resets=False): super(SmartMonitor, self).__init__(env) self.tstart = time.time() self.episode_count = -1 # Get the rewards we want to log # Got to be a better way to get the names of the subpart rewards, but it seems to be hardcoded in the mujoco envs self.reward_list = ['reward_env'] if opt['model']['mode'] in ['baseline', 'baseline_reverse', 'baselinewtheta', 'baseline_lowlevel']: self.baseline = True elif opt['model']['mode'] in ['phasesimple', 'phasewstate', 'phasewtheta', 'phase_lowlevel']: self.baseline = False self.reward_list.append('reward_exp') if opt['model']['mode'] != 'phase_lowlevel': self.reward_list.append('reward_move') if opt['env']['state_cycle_weight'] > 0 or opt['env']['action_cycle_weight'] > 0: self.reward_list.append('reward_cycle') self.reward_list.append('reward_cycle_s') self.reward_list.append('reward_cycle_a') elif opt['model']['mode'] == 'interpolate': self.baseline = False self.reward_list.append('reward_interpolate') elif opt['model']['mode'] == 'cyclic': self.baseline = False self.reward_list.append('reward_cycle') self.reward_list.append('reward_thresh') elif opt['model']['mode'] in ['hierarchical', 'hierarchical_many']: self.baseline = True self.reward_list.append('reward_velocity') self.reward_list.append('reward_goal') elif opt['model']['mode'] in [ 'maze_baseline', 'maze_baseline_wphase']: self.baseline = True self.reward_list.append('reward_velocity') self.reward_list.append('reward_goal') else: raise NotImplementedError # This is currently hardcoded to Mujoco envs if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv): self.reward_list += ['reward_forward', 'reward_ctrl', 'reward_contact', 'reward_survive'] elif isinstance(env.unwrapped, gym.envs.mujoco.AntEnv): self.reward_list += ['reward_forward', 'reward_ctrl', 'reward_contact', 'reward_survive'] else: raise NotImplementedError # Data structure that holds all the values we want to log self.episode_struct = collections.OrderedDict() all_keys = self.reward_list + ['obs', 'action', 'env_count', 'episode_count'] if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(env.unwrapped, gym.envs.mujoco.MujocoEnv): all_keys += ['state'] # Log the distances if opt['model']['mode'] in ['hierarchical', 'hierarchical_many', 'maze_baseline', 'maze_baseline_wphase']: if isinstance(env.unwrapped, maze_humanoid.ProprioceptiveHumanoidMazeEnv) or isinstance(env.unwrapped, maze_ant.AntMazeEnv): all_keys += ['goal_distance', 'goal_distance_radius'] for key in all_keys: self.episode_struct[key] = [] # Create and initialize our csv files # File to store entire episode information (rather than every single step) # Prints total reward (for all rewards), overall obs and state displacements, episode length, and episode time episode_filename = os.path.join(log_dir, str(rank) + '.Episode.Monitor.csv') self.ep_f = open(episode_filename, "wt") self.ep_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : env.spec and env.spec.id, 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})) ep_fields = self.reward_list + ['delta_obs', 'mean_action', 'episode_len', 'episode_dt', 'episode_count'] if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(env.unwrapped, gym.envs.mujoco.MujocoEnv): ep_fields += ['delta_state'] if opt['model']['mode'] in ['hierarchical', 'hierarchical_many', 'maze_baseline', 'maze_baseline_wphase']: if isinstance(env.unwrapped, maze_humanoid.ProprioceptiveHumanoidMazeEnv) or isinstance(env.unwrapped, maze_ant.AntMazeEnv): ep_fields += ['goal_distance', 'goal_distance_radius'] self.ep_logger = csv.DictWriter(self.ep_f, fieldnames=ep_fields) self.ep_logger.writeheader() self.ep_f.flush() # If in super verbose mode if verbose: # File to store every step # Prints everything in episode_struct plus episode count step_filename = os.path.join(log_dir, str(rank) + '.Step.Monitor.csv') self.st_f = open(step_filename, "wt") self.st_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : env.spec and env.spec.id, 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})) st_fields = list(self.episode_struct.keys()) self.st_logger = csv.DictWriter(self.st_f, fieldnames=st_fields) self.st_logger.writeheader() self.st_f.flush() else: self.st_f = None self.verbose = verbose self.rank = rank self.opt = opt self.log_dir = log_dir # Other bookkeeping self.allow_early_resets = allow_early_resets self.needs_reset = True self.total_steps = 0 self.current_reset_info = {} # extra info about the current episode, that was passed in during reset() # Reset environment, record initial values def reset(self, **kwargs): if not self.allow_early_resets and not self.needs_reset: raise RuntimeError("Tried to reset an environment before done. If you want to allow early resets, wrap your env with Monitor(env, path, allow_early_resets=True)") # Reset all the values in self.episode_struct for key in self.episode_struct: self.episode_struct[key] = [] # Update episode count self.episode_count += 1 # Update values and return obs = self.env.reset(**kwargs) self.record_info(obs, 0) self.needs_reset = False return obs # Take a step, update all the values def step(self, action): if self.needs_reset: raise RuntimeError("Tried to step environment that needs reset") # Do step obs, rew, done, info = self.env.step(action) # Record new info self.record_info(obs, rew, action, info) # If done with episode, get summary info for episode and dump values to episode and step files if done: self.needs_reset = True # For rewards, get sums epinfo = {} for key in self.reward_list: reward_val = sum(self.episode_struct[key]) epinfo[key] = reward_val # For obs and state, get delta change epinfo['delta_obs'] = self.episode_struct['obs'][-1] - self.episode_struct['obs'][0] if 'state' in self.episode_struct: epinfo['delta_state'] = self.episode_struct['state'][-1] - self.episode_struct['state'][0] # For action, get average value epinfo['mean_action'] = np.mean(self.episode_struct['action'], axis=0) # Update episode_len, episode_dt and episode_count epinfo['episode_len'] = len(self.episode_struct['env_count']) epinfo['episode_dt'] = round(time.time() - self.tstart, 6) epinfo['episode_count'] = self.episode_count # Update goal distances if 'goal_distance' in self.episode_struct: epinfo['goal_distance'] = self.episode_struct['goal_distance'][-1] epinfo['goal_distance_radius'] = self.episode_struct['goal_distance_radius'][-1] elif 'key_distance' in self.episode_struct: epinfo['key_distance'] = self.episode_struct['key_distance'][-1] epinfo['key_distance_radius'] = self.episode_struct['key_distance_radius'][-1] epinfo['lock_distance'] = self.episode_struct['lock_distance'][-1] epinfo['lock_distance_radius'] = self.episode_struct['lock_distance_radius'][-1] # Do string conversion for k in epinfo: epinfo[k] = str(epinfo[k]).replace('\n', '') # Update episode file if self.ep_logger: self.ep_logger.writerow(epinfo) self.ep_f.flush() # If in super verbose mode if self.verbose: # Make and update a temp step file with just the last episode (and only rank 0, and only every 100) if self.rank == 0: #and self.episode_count % 100 == 0: # Setup temp file tmp_step_filename = os.path.join(self.log_dir, 'Tmp.Last.Step.Monitor.csv') tmp_f = open(tmp_step_filename, "wt") tmp_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : self.env.spec and self.env.spec.id, 'mode': self.opt['model']['mode'], 'name': self.opt['logs']['exp_name']})) st_fields = list(self.episode_struct.keys()) tmp_logger = csv.DictWriter(tmp_f, fieldnames=st_fields) tmp_logger.writeheader() tmp_f.flush() else: tmp_f = None # Update step file assert(self.episode_struct['env_count'][-1]+1 == len(self.episode_struct['env_count'])) for step in range(len(self.episode_struct['env_count'])): stepinfo = {} for key in self.episode_struct: stepinfo[key] = self.episode_struct[key][step] # Do string conversion for k in stepinfo: stepinfo[k] = str(stepinfo[k]).replace('\n', '') # Update loggers self.st_logger.writerow(stepinfo) if tmp_f is not None: tmp_logger.writerow(stepinfo) self.st_f.flush() # Write tmp file and close, copy tmp to last if tmp_f is not None: tmp_f.flush() tmp_f.close() # Copy tmp to last last_step_filename = os.path.join(self.log_dir, 'Last.Step.Monitor.csv') shutil.copyfile(tmp_step_filename, last_step_filename) # Update info info['episode'] = epinfo self.total_steps += 1 return (obs, rew, done, info) # Record step info def record_info(self, obs, rew, action=None, info=None): # Update all of our values # Reward values for key in self.reward_list: # If reset, all 0 if info is None: self.episode_struct[key].append(0) else: # For baseline, reward_env is reward if key == 'reward_env' and self.baseline: self.episode_struct[key].append(rew) else: self.episode_struct[key].append(info[key]) # Observation values self.episode_struct['obs'].append(obs) # State values, right now just Mujoco if isinstance(self.env.unwrapped, ant_env.BaseAntEnv) or isinstance(self.env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(self.env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(self.env.unwrapped, gym.envs.mujoco.MujocoEnv): state = self.env.unwrapped.state_vector() self.episode_struct['state'].append(state) # Update actions if action is None: action = np.zeros(self.env.action_space.shape) self.episode_struct['action'].append(action) # Update step and episode counts env_count = self.env._elapsed_steps self.episode_struct['env_count'].append(env_count) self.episode_struct['episode_count'].append(self.episode_count) # Update distances if 'goal_distance' in self.episode_struct: if info is None: self.episode_struct['goal_distance'].append(0) self.episode_struct['goal_distance_radius'].append(0) else: self.episode_struct['goal_distance'].append(info['goal_distance']) self.episode_struct['goal_distance_radius'].append(info['goal_distance_radius']) # Close file handles def close(self): if self.ep_f is not None: self.ep_f.close() if self.st_f is not None: self.st_f.close() # Get total number of steps def get_total_steps(self): return self.total_steps
[ "numpy.zeros", "json.dumps", "time.time", "numpy.mean", "collections.OrderedDict", "shutil.copyfile", "os.path.join", "csv.DictWriter" ]
[((702, 713), 'time.time', 'time.time', ([], {}), '()\n', (711, 713), False, 'import time\n'), ((3162, 3187), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (3185, 3187), False, 'import collections\n'), ((5319, 5366), 'csv.DictWriter', 'csv.DictWriter', (['self.ep_f'], {'fieldnames': 'ep_fields'}), '(self.ep_f, fieldnames=ep_fields)\n', (5333, 5366), False, 'import csv\n'), ((6016, 6063), 'csv.DictWriter', 'csv.DictWriter', (['self.st_f'], {'fieldnames': 'st_fields'}), '(self.st_f, fieldnames=st_fields)\n', (6030, 6063), False, 'import csv\n'), ((8452, 8498), 'numpy.mean', 'np.mean', (["self.episode_struct['action']"], {'axis': '(0)'}), "(self.episode_struct['action'], axis=0)\n", (8459, 8498), True, 'import numpy as np\n'), ((13095, 13132), 'numpy.zeros', 'np.zeros', (['self.env.action_space.shape'], {}), '(self.env.action_space.shape)\n', (13103, 13132), True, 'import numpy as np\n'), ((4419, 4558), 'json.dumps', 'json.dumps', (["{'t_start': self.tstart, 'env_id': env.spec and env.spec.id, 'mode': opt[\n 'model']['mode'], 'name': opt['logs']['exp_name']}"], {}), "({'t_start': self.tstart, 'env_id': env.spec and env.spec.id,\n 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})\n", (4429, 4558), False, 'import json\n'), ((5792, 5931), 'json.dumps', 'json.dumps', (["{'t_start': self.tstart, 'env_id': env.spec and env.spec.id, 'mode': opt[\n 'model']['mode'], 'name': opt['logs']['exp_name']}"], {}), "({'t_start': self.tstart, 'env_id': env.spec and env.spec.id,\n 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})\n", (5802, 5931), False, 'import json\n'), ((8678, 8689), 'time.time', 'time.time', ([], {}), '()\n', (8687, 8689), False, 'import time\n'), ((10058, 10113), 'os.path.join', 'os.path.join', (['self.log_dir', '"""Tmp.Last.Step.Monitor.csv"""'], {}), "(self.log_dir, 'Tmp.Last.Step.Monitor.csv')\n", (10070, 10113), False, 'import os\n'), ((10485, 10528), 'csv.DictWriter', 'csv.DictWriter', (['tmp_f'], {'fieldnames': 'st_fields'}), '(tmp_f, fieldnames=st_fields)\n', (10499, 10528), False, 'import csv\n'), ((11677, 11728), 'os.path.join', 'os.path.join', (['self.log_dir', '"""Last.Step.Monitor.csv"""'], {}), "(self.log_dir, 'Last.Step.Monitor.csv')\n", (11689, 11728), False, 'import os\n'), ((11749, 11803), 'shutil.copyfile', 'shutil.copyfile', (['tmp_step_filename', 'last_step_filename'], {}), '(tmp_step_filename, last_step_filename)\n', (11764, 11803), False, 'import shutil\n'), ((10229, 10394), 'json.dumps', 'json.dumps', (["{'t_start': self.tstart, 'env_id': self.env.spec and self.env.spec.id,\n 'mode': self.opt['model']['mode'], 'name': self.opt['logs']['exp_name']}"], {}), "({'t_start': self.tstart, 'env_id': self.env.spec and self.env.\n spec.id, 'mode': self.opt['model']['mode'], 'name': self.opt['logs'][\n 'exp_name']})\n", (10239, 10394), False, 'import json\n')]
import json from sklearn.metrics import mean_squared_error, mean_absolute_error import numpy as np from model import Dfembeding from sklearn.kernel_ridge import KernelRidge import torch from PIL import Image from utils import * import csv import torch.utils.data as data import pandas as pd def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 # class Dataset(data.Dataset): # def __init__(self, file, transfrom): # self.Pic_Names = os.listdir(file) # self.file = file # self.transfrom = transfrom # # def __len__(self): # return len(self.Pic_Names) # # def __getitem__(self, idx): # img_name = self.Pic_Names[idx] # Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) # Pic = self.transfrom(Pic) # try: # ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) # BMI = (int(ret.group(4)) / 100000) / (int(ret.group(3)) / 100000) ** 2 # Pic_name = os.path.join(self.file, self.Pic_Names[idx]) # return (Pic, Pic_name), BMI # except: # return (Pic, ''), 10000 class Dataset(data.Dataset): def __init__(self, file, transfrom): self.Pic_Names = os.listdir(file) self.file = file self.transfrom = transfrom def __len__(self): return len(self.Pic_Names) def __getitem__(self, idx): img_name = self.Pic_Names[idx] Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) Pic = self.transfrom(Pic) ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) sex = 0 if (ret.group(1) == 'F' or ret.group(1) == 'f') else 1 age = int(ret.group(2)) height = int(ret.group(3)) / 100000 weight = int(ret.group(4)) / 100000 BMI = weight / (height ** 2) # BMI = (int(ret.group(4))/100000) / (int(ret.group(3))/100000)**2 Pic_name = os.path.join(self.file, self.Pic_Names[idx]) return (Pic, Pic_name, img_name, sex, age, height, weight), BMI def CombineDFBF(model, BodyFeatures, df, loader_test, loader_train): # test(model, DEVICE, loader_test) loaders = [ loader_test, loader_train,] files = [ 'test', 'train',] for loader, file in zip(loaders, files): with open('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_{}.csv'.format(file), 'w', newline='') as fp: writer = csv.writer(fp) model.eval() pred = [] targ = [] for (img, name, img_name, sex, age, height, weight), target in loader: values = [] img, target = img.to(DEVICE), target.to(DEVICE) img_name = img_name[0] # print('Processing IMage :', img_name) values.append(img_name) values.append(target.cpu().numpy()[0]) values.append(sex.numpy()[0]) values.append(BodyFeatures[img_name]['WSR']) values.append(BodyFeatures[img_name]['WTR']) values.append(BodyFeatures[img_name]['WHpR']) values.append(BodyFeatures[img_name]['WHdR']) values.append(BodyFeatures[img_name]['HpHdR']) values.append(BodyFeatures[img_name]['Area']) values.append(BodyFeatures[img_name]['H2W']) conv_out = LayerActivations(model.fc, 1) out = model(img) pred.append(out.item()) targ.append(target.item()) conv_out.remove() xs = torch.squeeze(conv_out.features.detach()).numpy() # print(xs.shape) for x in xs: values.append(float(x)) values.append(age.numpy()[0]) values.append(height.numpy()[0]) values.append(weight.numpy()[0]) writer.writerow(values) MAE = mean_absolute_error(targ, pred) print(file,' ',MAE) def Pre(raw_data, name): if (name != 'vgg16'): raw_data = raw_data.iloc[:, 1:] raw_data = raw_data.replace([np.inf, -np.inf], np.nan) # raw_data = raw_data.fillna(raw_data.mean()) raw_data = raw_data.replace(np.nan, 0) raw_data = raw_data.values.astype(np.float64) return raw_data def Feature(data, df, name): if (name == 'author'): x_5f = data[:, 0:5] y = data[:, 9] return x_5f, y elif (name == 'vgg16'): x_df = data[:, 2:] y = data[:, 0] return x_df, y elif (name == 'ours'): x_5f = data[:, 3:8] x_7f = data[:, 2:9] x_df = data[:, 9:9 + df] y = data[:, 0] return x_5f, x_7f, x_df, y def Stdm(x): Mean = np.mean(x, axis=0) Std = np.std(x, axis=0) return Mean, Std def Regression(df=20, file='test'): # raw_data_train = pd.read_csv('/home/benkesheng/BMI_DETECT/ReDone_CSV/Ours/Image_train.csv') # raw_data_test = pd.read_csv('/home/benkesheng/BMI_DETECT/ReDone_CSV/Ours/Image_test.csv') raw_data_train = pd.read_csv('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_train.csv') raw_data_test = pd.read_csv('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_test.csv') raw_data_name = raw_data_test.values raw_data_train = Pre(raw_data_train, 'ours') raw_data_test = Pre(raw_data_test, 'ours') x_5f_train, x_7f_train, x_df_train, y_train = Feature(raw_data_train, df, 'ours') x_5f_test, x_7f_test, x_df_test, y_test = Feature(raw_data_test, df, 'ours') x_body_train = x_7f_train Mean, Std = Stdm(x_body_train) x_body_train = (x_body_train - Mean) / Std x_train = np.append(x_body_train, x_df_train, axis=1) y_train = y_train x_body_test = x_7f_test x_body_test = (x_body_test - Mean) / Std x_test = np.append(x_body_test, x_df_test, axis=1) y_test = y_test print(x_test.shape) print(x_train.shape) krr = KernelRidge() krr.fit(x_train, y_train) y_krr = krr.predict(x_test) print('KRR: MAE: ', mean_absolute_error(y_test, y_krr), ' MAPE: ', mean_absolute_percentage_error(y_test, y_krr)) if file == 'demo': for i, data in enumerate(x_test): y_pred = krr.predict(data[None,:]) print('Name: ', raw_data_name[i][0], ' y_pred:', y_pred[0], ' y_ture:', y_test[i]) if __name__ == '__main__': IMG_SIZE = 224 IMG_MEAN = [0.485, 0.456, 0.406] IMG_STD = [0.229, 0.224, 0.225] transform = transforms.Compose([ Resize(IMG_SIZE), transforms.Pad(IMG_SIZE), transforms.CenterCrop(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) DEVICE = torch.device("cuda:0") dataset_train = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_train', transform) dataset_test = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_test', transform) loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=1, shuffle=True) loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, shuffle=True) df = 20 model = Dfembeding() # model.load_state_dict(torch.load('/home/benkesheng/BMI_DETECT/ReDone_CSV/model/Ours.pkl'.format(df))) model.load_state_dict(torch.load('/home/benkesheng/BMI_DETECT/MODEL/9-1reexperiment/MIN_RESNET101_BMI_20-1fc.pkl')) model.to(DEVICE) Path = '/home/benkesheng/BMI_DETECT/Deep_Learning_Method/datasets_bodyfeature/BodyFeature.json' with open(Path, 'r') as f: BodyFeatures = json.load(f) # CombineDFBF(model, BodyFeatures, df, loader_test, loader_train) Regression(df)
[ "json.load", "numpy.abs", "csv.writer", "torch.utils.data.DataLoader", "numpy.std", "sklearn.kernel_ridge.KernelRidge", "pandas.read_csv", "torch.load", "model.Dfembeding", "sklearn.metrics.mean_absolute_error", "numpy.append", "numpy.mean", "numpy.array", "torch.device" ]
[((5043, 5061), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (5050, 5061), True, 'import numpy as np\n'), ((5073, 5090), 'numpy.std', 'np.std', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (5079, 5090), True, 'import numpy as np\n'), ((5374, 5472), 'pandas.read_csv', 'pd.read_csv', (['"""/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_train.csv"""'], {}), "(\n '/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_train.csv'\n )\n", (5385, 5472), True, 'import pandas as pd\n'), ((5484, 5576), 'pandas.read_csv', 'pd.read_csv', (['"""/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_test.csv"""'], {}), "(\n '/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_test.csv')\n", (5495, 5576), True, 'import pandas as pd\n'), ((6015, 6058), 'numpy.append', 'np.append', (['x_body_train', 'x_df_train'], {'axis': '(1)'}), '(x_body_train, x_df_train, axis=1)\n', (6024, 6058), True, 'import numpy as np\n'), ((6173, 6214), 'numpy.append', 'np.append', (['x_body_test', 'x_df_test'], {'axis': '(1)'}), '(x_body_test, x_df_test, axis=1)\n', (6182, 6214), True, 'import numpy as np\n'), ((6302, 6315), 'sklearn.kernel_ridge.KernelRidge', 'KernelRidge', ([], {}), '()\n', (6313, 6315), False, 'from sklearn.kernel_ridge import KernelRidge\n'), ((7083, 7105), 'torch.device', 'torch.device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (7095, 7105), False, 'import torch\n'), ((7308, 7378), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset_train'], {'batch_size': '(1)', 'shuffle': '(True)'}), '(dataset_train, batch_size=1, shuffle=True)\n', (7335, 7378), False, 'import torch\n'), ((7398, 7467), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset_test'], {'batch_size': '(1)', 'shuffle': '(True)'}), '(dataset_test, batch_size=1, shuffle=True)\n', (7425, 7467), False, 'import torch\n'), ((7496, 7508), 'model.Dfembeding', 'Dfembeding', ([], {}), '()\n', (7506, 7508), False, 'from model import Dfembeding\n'), ((380, 396), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (388, 396), True, 'import numpy as np\n'), ((398, 414), 'numpy.array', 'np.array', (['y_pred'], {}), '(y_pred)\n', (406, 414), True, 'import numpy as np\n'), ((6405, 6439), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['y_test', 'y_krr'], {}), '(y_test, y_krr)\n', (6424, 6439), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n'), ((7647, 7749), 'torch.load', 'torch.load', (['"""/home/benkesheng/BMI_DETECT/MODEL/9-1reexperiment/MIN_RESNET101_BMI_20-1fc.pkl"""'], {}), "(\n '/home/benkesheng/BMI_DETECT/MODEL/9-1reexperiment/MIN_RESNET101_BMI_20-1fc.pkl'\n )\n", (7657, 7749), False, 'import torch\n'), ((7924, 7936), 'json.load', 'json.load', (['f'], {}), '(f)\n', (7933, 7936), False, 'import json\n'), ((435, 469), 'numpy.abs', 'np.abs', (['((y_true - y_pred) / y_true)'], {}), '((y_true - y_pred) / y_true)\n', (441, 469), True, 'import numpy as np\n'), ((2645, 2659), 'csv.writer', 'csv.writer', (['fp'], {}), '(fp)\n', (2655, 2659), False, 'import csv\n'), ((4197, 4228), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['targ', 'pred'], {}), '(targ, pred)\n', (4216, 4228), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n')]
import numpy as np from scipy import sparse def fit_glove_bias(A, emb): N = A.shape[0] row_sum = np.array(A.sum(axis=1)).reshape(-1).astype(float) col_sum = np.array(A.sum(axis=0)).reshape(-1).astype(float) emb_sum = np.array(emb @ np.array(np.sum(emb, axis=0)).reshape((-1, 1))).reshape(-1) row_sum -= emb_sum col_sum -= emb_sum a = np.zeros(N) b = np.zeros(N) adam_a = ADAM() adam_b = ADAM() for it in range(1000): grad_a = row_sum - np.sum(b) * a grad_b = col_sum - np.sum(a) * b anew = adam_a.update(a, grad_a, 0) bnew = adam_b.update(b, grad_b, 0) if it % 20 == 0: dif = np.mean(np.abs(a - anew) + np.abs(b - bnew)) / 2 dif /= np.maximum(np.mean(np.abs(a) + np.abs(b)) / 2, 1e-8) if dif < 1e-2: break a = anew.copy() b = bnew.copy() return a, b class ADAM: def __init__(self): self.beta1 = 0.9 self.beta2 = 0.999 self.eta = 0.001 self.t = 0 self.mt = None self.vt = None self.eps = 1e-8 def update(self, theta, grad, lasso_penalty, positiveConstraint=False): """Ascending.""" if self.mt is None: self.mt = np.zeros(grad.shape) self.vt = np.zeros(grad.shape) self.t = self.t + 1 self.mt = self.beta1 * self.mt + (1 - self.beta1) * grad self.vt = self.beta2 * self.vt + (1 - self.beta2) * np.multiply(grad, grad) mthat = self.mt / (1 - np.power(self.beta1, self.t)) vthat = self.vt / (1 - np.power(self.beta2, self.t)) new_grad = mthat / (np.sqrt(vthat) + self.eps) return self._prox( theta + self.eta * new_grad, lasso_penalty * self.eta, positiveConstraint ) def _prox(self, x, lam, positiveConstraint): """Soft thresholding operator. Parameters ---------- x : float Variable. lam : float Lasso penalty. Returns ------- y : float Thresholded value of x. """ if positiveConstraint: b = ((lam) > 0).astype(int) return np.multiply(b, np.maximum(x - lam, np.zeros(x.shape))) + np.multiply( 1 - b, np.multiply(np.sign(x), np.maximum(np.abs(x) - lam, np.zeros(x.shape))), ) else: return np.multiply( np.sign(x), np.maximum(np.abs(x) - lam, np.zeros(x.shape)) )
[ "numpy.multiply", "numpy.sum", "numpy.abs", "numpy.power", "numpy.zeros", "numpy.sign", "numpy.sqrt" ]
[((366, 377), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (374, 377), True, 'import numpy as np\n'), ((386, 397), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (394, 397), True, 'import numpy as np\n'), ((1272, 1292), 'numpy.zeros', 'np.zeros', (['grad.shape'], {}), '(grad.shape)\n', (1280, 1292), True, 'import numpy as np\n'), ((1315, 1335), 'numpy.zeros', 'np.zeros', (['grad.shape'], {}), '(grad.shape)\n', (1323, 1335), True, 'import numpy as np\n'), ((494, 503), 'numpy.sum', 'np.sum', (['b'], {}), '(b)\n', (500, 503), True, 'import numpy as np\n'), ((535, 544), 'numpy.sum', 'np.sum', (['a'], {}), '(a)\n', (541, 544), True, 'import numpy as np\n'), ((1491, 1514), 'numpy.multiply', 'np.multiply', (['grad', 'grad'], {}), '(grad, grad)\n', (1502, 1514), True, 'import numpy as np\n'), ((1547, 1575), 'numpy.power', 'np.power', (['self.beta1', 'self.t'], {}), '(self.beta1, self.t)\n', (1555, 1575), True, 'import numpy as np\n'), ((1608, 1636), 'numpy.power', 'np.power', (['self.beta2', 'self.t'], {}), '(self.beta2, self.t)\n', (1616, 1636), True, 'import numpy as np\n'), ((1667, 1681), 'numpy.sqrt', 'np.sqrt', (['vthat'], {}), '(vthat)\n', (1674, 1681), True, 'import numpy as np\n'), ((2480, 2490), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (2487, 2490), True, 'import numpy as np\n'), ((2520, 2537), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (2528, 2537), True, 'import numpy as np\n'), ((688, 704), 'numpy.abs', 'np.abs', (['(a - anew)'], {}), '(a - anew)\n', (694, 704), True, 'import numpy as np\n'), ((707, 723), 'numpy.abs', 'np.abs', (['(b - bnew)'], {}), '(b - bnew)\n', (713, 723), True, 'import numpy as np\n'), ((2257, 2274), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (2265, 2274), True, 'import numpy as np\n'), ((2343, 2353), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (2350, 2353), True, 'import numpy as np\n'), ((2503, 2512), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (2509, 2512), True, 'import numpy as np\n'), ((767, 776), 'numpy.abs', 'np.abs', (['a'], {}), '(a)\n', (773, 776), True, 'import numpy as np\n'), ((779, 788), 'numpy.abs', 'np.abs', (['b'], {}), '(b)\n', (785, 788), True, 'import numpy as np\n'), ((2383, 2400), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (2391, 2400), True, 'import numpy as np\n'), ((260, 279), 'numpy.sum', 'np.sum', (['emb'], {'axis': '(0)'}), '(emb, axis=0)\n', (266, 279), True, 'import numpy as np\n'), ((2366, 2375), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (2372, 2375), True, 'import numpy as np\n')]
import numpy as np from scipy.linalg import cho_solve, inv from scipy.stats import norm from scipy.interpolate import InterpolatedUnivariateSpline from sklearn.mixture import GaussianMixture as GMM from .utils import custom_KDE import time class Acq(object): ''' The base acq class. ''' def __init__(self, inputs): self.inputs = inputs def compute_value(self, x): raise NotImplementedError def update_prior_search(self, model): raise NotImplementedError class AcqLW(Acq): ''' Select the next sample for estimating extreme event statistics. This acquisition can be used in both single and multi-fidelity contexts. parameters: --------- inputs: instance of Input class Input of the problem including pdf information and a sampling method. ll_type: string the type of the weights, must be one of (1) rare: w(x)=p(x)/p(y(x)) (2) extreme: w(x)=p(x)|y(x)-z|^n (3) plain: no weights (4) input: w(x)=p(x) load_pts: bool whether load the input samples from a txt file ll_kwargs: key words for extreme ll_type attributes: ---------- model: instance of gpr.GaussianProcessRegressor The surrogate model based on current dataset DX: array The inputs of current samples gmm: instance of sklearn.GMM The gmm to approximate likelihood, including gmm.means_, gmm.covariances_, and gmm.scores_. ''' def __init__(self, inputs, ll_type='rare', load_pts=False, **ll_kwargs): self.inputs = inputs self.ll_type = ll_type self.load_pts = load_pts self.ll_kwargs = ll_kwargs if load_pts: smpl = np.loadtxt('map_samples.txt') self.pts = smpl[:,0:-1] # mc points self.fx = smpl[:,-1] # pdf of mc points def compute_value_tf_cost(self, pos, fidelity, cost): ''' Compute the benefit per cost of adding a sample (pos, fidelity) ''' x = np.append(pos, fidelity) value, gradient = self.compute_value(x) return value/cost, gradient/cost def compute_value(self, x): ''' Compute the benefit of adding a sample x For single fidelity, x = pos, while for multi-fidelity, x = {pos, fidelity}. ''' x = np.atleast_2d(x) integral, integral_derivative = self.compute_integral(x) cov, cov_deriv = self.model.post_cov(x) value = (integral / cov).item() gradient = 1/cov**2 * (cov*integral_derivative - integral*cov_deriv) gradient = gradient.reshape(-1) return -value, -gradient def compute_integral(self, x): ''' \int cov^2(f_i(pos), f_h(x'))*w(x')dx', x = {pos, i=fidelity} Eq.(15) in paper. and d \int cov^2(f_i(pos), f_h(x'))*w(x')dx' d pos, x = {pos, i=fidelity} Eq.(49) in paper. ''' # compute value kernel = self.model.kernel_ integral = self.compute_mixed_kappa(x,x) alpha = cho_solve((self.model.L_, True), kernel(self.X, x)) integral += alpha.T.dot(np.dot(self.kappaXX, alpha) - 2*self.compute_mixed_kappa(self.X, x)) # compute derivative term1 = 2*self.compute_mixed_dkappa_dx(x,x) dalpha_dx = cho_solve((self.model.L_, True), kernel.gradient_x(x, self.X)) term2 = 2 * alpha.T.dot(np.dot(self.kappaXX, dalpha_dx)) term3 = 2 * alpha.T.dot(self.compute_mixed_dkappa_dx(x,self.X)) term3 += 2 * self.compute_mixed_kappa(x, self.X).dot(dalpha_dx) return integral, term1 + term2 - term3 def update_prior_search(self, model): ''' Update the model(gpr), data(X), compute the gmm of weights and kappa(X,X). ''' self.model = model self.X = self.model.X_train_ # generate GMM approximation of the likelihood self._prepare_likelihood(self.ll_type, **self.ll_kwargs) # constant for all hypothetical point self.kappaXX = self.compute_mixed_kappa(self.X, self.X) def compute_mixed_kappa(self, X1, X2): ''' compute averaged kappa w.r.t gmm components. Eq. (18) in paper. The 'G' function relies on kernel properties. ''' kernel = self.model.kernel_ mixed_kappa = 0 for i in range(self.gmm.n_components): # the number of gmm component mixed_kappa += self.gmm.weights_[i] * kernel.intKKNorm(X1, X2, self.gmm.means_[i], self.gmm.covariances_[i]) return mixed_kappa def compute_mixed_dkappa_dx(self, x, X): ''' Compute the averaged kappa derivatives. Eq.(53) in paper. ''' kernel = self.model.kernel_ mixed_kappa = 0 for i in range(self.gmm.n_components): mixed_kappa += self.gmm.weights_[i] * kernel.dintKKNorm_dx(x, X, self.gmm.means_[i], self.gmm.covariances_[i]) return mixed_kappa def _prepare_likelihood(self, ll_type, n_components=2, power=6, center=0, depressed_side=None): '''Compute gmm components of w(x'). ''' if self.load_pts: pts = self.pts fx = self.fx n_samples = pts.shape[0] else: if self.inputs.dim <= 2: n_samples = int(1e5) else: n_samples = int(1e6) pts = self.inputs.sampling(n_samples) # input-samples fx = self.inputs.pdf(pts) # weights if ll_type =='input': w_raw = fx elif ll_type == 'plain': w_raw = 1 else: # compute the mean prediction for input-samples if self.X.shape[1] != self.inputs.dim: aug_pts = np.concatenate((pts, [[1]] * n_samples), axis = 1) else: aug_pts = pts if ll_type == 'rare': if n_samples > 4*1e5: aug_pts_list = np.array_split(aug_pts, 10) mu = np.empty(0) for iii in range(10): mu = np.concatenate((mu, self.model.predict(aug_pts_list[iii]).flatten())) else: mu = self.model.predict(aug_pts).flatten() x, y = custom_KDE(mu, weights=fx).evaluate() self.fy_interp = InterpolatedUnivariateSpline(x, y, k=1) w_raw = fx/self.fy_interp(mu) elif ll_type == 'extreme': mu = self.model.predict(aug_pts).flatten() if center == 'mean': center = np.average(mu, fx) if depressed_side == 'negative': w_raw = fx*abs(mu - center) ** (power*np.sign(mu - center)) elif depressed_side == 'positive': w_raw = fx*abs(mu - center) ** (-power*np.sign(mu - center)) else: w_raw = fx*abs(mu - center)**power elif ll_type == 'failure': # P(X)(1-P(X)) * p(X) / var(X) mu, std = self.model.predict(aug_pts, return_std=True) # failure probability as a Bernoulli RV p = norm.cdf(mu.flatten()/std.flatten()) vb = p*(1-p) # var of the Bernoulli vf = std**2 # var of the predictions w_raw = vb * fx / vf self.gmm = self._fit_gmm(pts, w_raw, n_components) return self @staticmethod def _fit_gmm(pts, w_raw, n_components): '''Fit gmm with weighted samples ''' sca = np.sum(w_raw) rng = np.random.default_rng() aa = rng.choice(pts, size=50000, p=w_raw/sca) gmm = GMM(n_components=n_components, covariance_type="full") gmm = gmm.fit(X=aa) return gmm
[ "numpy.sum", "scipy.interpolate.InterpolatedUnivariateSpline", "numpy.average", "numpy.empty", "sklearn.mixture.GaussianMixture", "numpy.random.default_rng", "numpy.append", "numpy.loadtxt", "numpy.sign", "numpy.array_split", "numpy.dot", "numpy.concatenate", "numpy.atleast_2d" ]
[((2119, 2143), 'numpy.append', 'np.append', (['pos', 'fidelity'], {}), '(pos, fidelity)\n', (2128, 2143), True, 'import numpy as np\n'), ((2464, 2480), 'numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (2477, 2480), True, 'import numpy as np\n'), ((8341, 8354), 'numpy.sum', 'np.sum', (['w_raw'], {}), '(w_raw)\n', (8347, 8354), True, 'import numpy as np\n'), ((8370, 8393), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (8391, 8393), True, 'import numpy as np\n'), ((8464, 8518), 'sklearn.mixture.GaussianMixture', 'GMM', ([], {'n_components': 'n_components', 'covariance_type': '"""full"""'}), "(n_components=n_components, covariance_type='full')\n", (8467, 8518), True, 'from sklearn.mixture import GaussianMixture as GMM\n'), ((1818, 1847), 'numpy.loadtxt', 'np.loadtxt', (['"""map_samples.txt"""'], {}), "('map_samples.txt')\n", (1828, 1847), True, 'import numpy as np\n'), ((3321, 3348), 'numpy.dot', 'np.dot', (['self.kappaXX', 'alpha'], {}), '(self.kappaXX, alpha)\n', (3327, 3348), True, 'import numpy as np\n'), ((3657, 3688), 'numpy.dot', 'np.dot', (['self.kappaXX', 'dalpha_dx'], {}), '(self.kappaXX, dalpha_dx)\n', (3663, 3688), True, 'import numpy as np\n'), ((6399, 6447), 'numpy.concatenate', 'np.concatenate', (['(pts, [[1]] * n_samples)'], {'axis': '(1)'}), '((pts, [[1]] * n_samples), axis=1)\n', (6413, 6447), True, 'import numpy as np\n'), ((7060, 7099), 'scipy.interpolate.InterpolatedUnivariateSpline', 'InterpolatedUnivariateSpline', (['x', 'y'], {'k': '(1)'}), '(x, y, k=1)\n', (7088, 7099), False, 'from scipy.interpolate import InterpolatedUnivariateSpline\n'), ((6613, 6640), 'numpy.array_split', 'np.array_split', (['aug_pts', '(10)'], {}), '(aug_pts, 10)\n', (6627, 6640), True, 'import numpy as np\n'), ((6667, 6678), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (6675, 6678), True, 'import numpy as np\n'), ((7318, 7336), 'numpy.average', 'np.average', (['mu', 'fx'], {}), '(mu, fx)\n', (7328, 7336), True, 'import numpy as np\n'), ((7446, 7466), 'numpy.sign', 'np.sign', (['(mu - center)'], {}), '(mu - center)\n', (7453, 7466), True, 'import numpy as np\n'), ((7580, 7600), 'numpy.sign', 'np.sign', (['(mu - center)'], {}), '(mu - center)\n', (7587, 7600), True, 'import numpy as np\n')]
import numpy as np # class for 3D points in an image frame class Point(object): # class constructor def __init__(self, img_map, location, color): self.point = location self.frames = [] self.idx = [] self.color = np.copy(color) self.id = img_map.max_point img_map.max_point += 1 img_map.points.append(self) def orb(self): des = [] for f in self.frames: des.append(f.des[f.pts.index(self)]) return des # class method to add a frame and index from video # feed to the Point object def add_observation(self, frame, index): frame.pts[index] = self self.frames.append(frame) self.idx.append(index) # class method to delete a point from a frame def delete_point(self): for f in self.frames: f.pts[f.pts.index(self)] = None del self def homogenous(self): return np.array([self.point[0], self.point[1], self.point[2], 1.0])
[ "numpy.array", "numpy.copy" ]
[((253, 267), 'numpy.copy', 'np.copy', (['color'], {}), '(color)\n', (260, 267), True, 'import numpy as np\n'), ((948, 1008), 'numpy.array', 'np.array', (['[self.point[0], self.point[1], self.point[2], 1.0]'], {}), '([self.point[0], self.point[1], self.point[2], 1.0])\n', (956, 1008), True, 'import numpy as np\n')]
# -*- coding:utf-8 -*- import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Remove unnecessary information import numpy as np # cpu_count = 4 # 因为服务器没有图形界面,所以必须这样弄 import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt # 好看的打印格式 def fancy_print(n = None, c = None, s = '#'): print(s * 40) print(n) print(c) print(s * 40) print() # 空一行避免混淆 # 拿到所有模型 from model import * # 图片读取生成器 from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf import keras from keras.optimizers import Adam from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.callbacks import Callback from sklearn.metrics import roc_auc_score, average_precision_score from sklearn.model_selection import train_test_split from sklearn import metrics most_epoches = 500 # 最大训练次数 500 测试时 2-10 def train_cnn_dense_resnet(gen_name, model_name, gene_length): # 打印说明,方便检查 fancy_print('gen_name', gen_name) fancy_print('model_name', model_name) ############################## # # png reader in iterator # ############################## # 训练集:验证集:测试集 = 8:1:1 train_datagen = ImageDataGenerator(rescale = 1./255, validation_split = 0.11) # set validation split BATCH_SIZE = 32 # 一次大小 train_generator = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/png_train/', target_size = (gene_length*2, 5), color_mode = 'grayscale', class_mode = 'categorical', batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, # must shuffle seed = 42, ) val_generator = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/png_train/', # same directory as training data target_size = (gene_length*2, 5), color_mode = 'grayscale', class_mode = 'categorical', batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle = True, # must shuffle seed = 42, ) ############################## # # loss数据可视化 # ############################## class PlotProgress(keras.callbacks.Callback): def __init__(self, entity = ['loss', 'accuracy']): self.entity = entity def on_train_begin(self, logs={}): self.i = 0 self.x = [] self.losses = [] self.val_losses = [] self.accs = [] self.val_accs = [] self.fig = plt.figure() self.logs = [] def on_epoch_end(self, epoch, logs={}): self.logs.append(logs) self.x.append(self.i) # 损失函数 self.losses.append(logs.get('{}'.format(self.entity[0]))) self.val_losses.append(logs.get('val_{}'.format(self.entity[0]))) # 准确率 self.accs.append(logs.get('{}'.format(self.entity[1]))) self.val_accs.append(logs.get('val_{}'.format(self.entity[1]))) self.i += 1 # clear_output(wait=True) plt.figure(0) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.losses, label="{}".format(self.entity[0])) plt.plot(self.x, self.val_losses, label="val_{}".format(self.entity[0])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/loss.png') # plt.pause(0.01) # plt.show() plt.figure(1) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.accs, label="{}".format(self.entity[1])) plt.plot(self.x, self.val_accs, label="val_{}".format(self.entity[1])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/acc.png') # plt.pause(0.01) # plt.show() ############################## # # Model building # ############################## if model_name == 'onehot_cnn_one_branch': clf = model_onehot_cnn_one_branch(gene_length) if model_name == 'onehot_embedding_dense': clf = model_onehot_embedding_dense(gene_length) if model_name == 'onehot_dense': clf = model_onehot_dense(gene_length) if model_name == 'onehot_resnet18': clf = model_onehot_resnet18(gene_length) if model_name == 'onehot_resnet34': clf = model_onehot_resnet34(gene_length) clf.summary() # Print model structure early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 10, restore_best_weights = True) # 绘图函数 plot_progress = PlotProgress(entity = ['loss', 'accuracy']) ############################## # # Model training # ############################## # No need to count how many epochs, keras can count history = clf.fit_generator(generator = train_generator, epochs = most_epoches, validation_data = val_generator, steps_per_epoch = train_generator.samples // BATCH_SIZE, validation_steps = val_generator.samples // BATCH_SIZE, callbacks = [plot_progress, early_stopping], # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2 # 一次训练就显示一行 ) clf.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') def train_cnn_separate(gen_name, model_name, gene_length): ############################## # # 构建迭代器 # ############################## from keras.preprocessing.image import ImageDataGenerator # train_datagen = ImageDataGenerator(horizontal_flip = True, vertical_flip = True, rescale = 1. / 255) # 上下翻转 左右翻转 train_datagen = ImageDataGenerator(rescale = 1. / 255, validation_split = 0.11) BATCH_SIZE = 32 # 每次大小 def generator_two_train(): train_generator1 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_en/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, seed = 42) # 相同方式打散 train_generator2 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_pr/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, seed = 42) # 相同方式打散 while True: out1 = train_generator1.next() out2 = train_generator2.next() yield [out1[0], out2[0]], out1[1] # 返回两个的组合和结果 def generator_two_val(): val_generator1 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_en/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle =True, seed = 42) # 相同方式打散 val_generator2 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_pr/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle = True, seed = 42) # 相同方式打散 while True: out1 = val_generator1.next() out2 = val_generator2.next() yield [out1[0], out2[0]], out1[1] # 返回两个的组合和结果 ############################## # # 模型搭建 # ############################## # 如果出现版本不兼容,那么就用这两句代码,否则会报警告 # import tensorflow.compat.v1 as tf # tf.disable_v2_behavior() from sklearn import metrics from keras.callbacks import ModelCheckpoint ############################## # # Model building # ############################## if model_name == 'onehot_cnn_two_branch': clf = model_onehot_cnn_two_branch(gene_length) clf.summary() # 打印模型结构 ''' filename = 'best_model.h5' modelCheckpoint = ModelCheckpoint(filename, monitor = 'val_accuracy', save_best_only = True, mode = 'max') ''' from keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 10, restore_best_weights = True) ''' fancy_print('train_generator.next()[0]', train_generator.next()[0], '+') fancy_print('train_generator.next()[1]', train_generator.next()[1], '+') fancy_print('train_generator.next()[0].shape', train_generator.next()[0].shape, '+') fancy_print('train_generator.next()[1].shape', train_generator.next()[1].shape, '+') fancy_print('val_generator.next()[0]', val_generator.next()[0], '-') fancy_print('val_generator.next()[1]', val_generator.next()[1], '-') fancy_print('val_generator.next()[0].shape', val_generator.next()[0].shape, '-') fancy_print('val_generator.next()[1].shape', val_generator.next()[1].shape, '-') ''' ############################## # # 模型训练 # ############################## # 不需要再算多少个epoch了,自己会算 history = clf.fit_generator(generator = generator_two_train(), epochs = most_epoches, validation_data = generator_two_val(), steps_per_epoch = 24568 * 2 // BATCH_SIZE, # 全部训练 validation_steps = 3071 * 2 // BATCH_SIZE, # 全部验证 callbacks = [early_stopping], shuffle = True, # 再次 shuffle # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2) # 一次训练就显示一行 clf.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') def train_embedding(gen_name, model_name): # 打印说明,方便检查 fancy_print('gen_name', gen_name) fancy_print('model_name', model_name) ''' 2021-04-11 16:53:06.007063: E tensorflow/stream_executor/dnn.cc:616] CUDNN_STATUS_INTERNAL_ERROR in tensorflow/stream_executor/cuda/cuda_dnn.cc(2011): 'cudnnRNNBackwardData( cudnn.handle(), rnn_desc.handle(), model_dims.max_seq_length, output_desc.handles(), output_data.opaque(), output_desc.handles(), output_backprop_data.opaque(), output_h_desc.handle(), output_h_backprop_data.opaque(), output_c_desc.handle(), output_c_backprop_data.opaque(), rnn_desc.params_handle(), params.opaque(), input_h_desc.handle(), input_h_data.opaque(), input_c_desc.handle(), input_c_data.opaque(), input_desc.handles(), input_backprop_data->opaque(), input_h_desc.handle(), input_h_backprop_data->opaque(), input_c_desc.handle(), input_c_backprop_data->opaque(), workspace.opaque(), workspace.size(), reserve_space_data->opaque(), reserve_space_data->size())' 2021-04-11 16:53:06.007530: W tensorflow/core/framework/op_kernel.cc:1767] OP_REQUIRES failed at cudnn_rnn_ops.cc:1922: Internal: Failed to call ThenRnnBackward with model config: [rnn_mode, rnn_input_mode, rnn_direction_mode]: 3, 0, 0 , [num_layers, input_size, num_units, dir_count, max_seq_length, batch_size, cell_num_units]: [1, 64, 50, 1, 100, 32, 0] 2021-04-11 16:53:06.007077: F tensorflow/stream_executor/cuda/cuda_dnn.cc:190] Check failed: status == CUDNN_STATUS_SUCCESS (7 vs. 0)Failed to set cuDNN stream. 解决方案 ''' os.environ["CUDA_VISIBLE_DEVICES"] = "0" physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) ############################## # # loss数据可视化 # ############################## class PlotProgress(keras.callbacks.Callback): def __init__(self, entity = ['loss', 'accuracy']): self.entity = entity def on_train_begin(self, logs={}): self.i = 0 self.x = [] self.losses = [] self.val_losses = [] self.accs = [] self.val_accs = [] self.fig = plt.figure() self.logs = [] def on_epoch_end(self, epoch, logs={}): self.logs.append(logs) self.x.append(self.i) # 损失函数 self.losses.append(logs.get('{}'.format(self.entity[0]))) self.val_losses.append(logs.get('val_{}'.format(self.entity[0]))) # 准确率 self.accs.append(logs.get('{}'.format(self.entity[1]))) self.val_accs.append(logs.get('val_{}'.format(self.entity[1]))) self.i += 1 plt.figure(0) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.losses, label="{}".format(self.entity[0])) plt.plot(self.x, self.val_losses, label="val_{}".format(self.entity[0])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/loss.png') # plt.pause(0.01) # plt.show() plt.figure(1) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.accs, label="{}".format(self.entity[1])) plt.plot(self.x, self.val_accs, label="val_{}".format(self.entity[1])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/acc.png') # plt.pause(0.01) # plt.show() train = np.load('data/'+gen_name+'/embedding_train.npz') X_en_tra, X_pr_tra, y_tra = train['X_en_tra'], train['X_pr_tra'], train['y_tra'] ############################## # # Model building # ############################## if model_name == 'embedding_cnn_one_branch': model = model_embedding_cnn_one_branch() if model_name == 'embedding_cnn_two_branch': model = model_embedding_cnn_two_branch() if model_name == 'embedding_dense': model = model_embedding_dense() if model_name == 'onehot_embedding_cnn_one_branch': model = model_onehot_embedding_cnn_one_branch() if model_name == 'onehot_embedding_cnn_two_branch': model = model_onehot_embedding_cnn_two_branch() model.summary() early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 20, restore_best_weights = True) # 绘图函数 plot_progress = PlotProgress(entity = ['loss', 'accuracy']) history = model.fit([X_en_tra, X_pr_tra], y_tra, epochs=most_epoches, batch_size=32, validation_split=0.11, callbacks=[early_stopping, plot_progress], # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2 # 一次训练就显示一行 ) model.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') ######################################## # # 本模块没有代码运行 # ######################################## if __name__ == '__main__': pass
[ "keras.preprocessing.image.ImageDataGenerator", "numpy.load", "matplotlib.pyplot.clf", "matplotlib.pyplot.legend", "tensorflow.config.experimental.set_memory_growth", "matplotlib.pyplot.figure", "matplotlib.use", "keras.callbacks.EarlyStopping", "tensorflow.config.experimental.list_physical_devices", "matplotlib.pyplot.savefig" ]
[((205, 226), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (219, 226), False, 'import matplotlib\n'), ((1274, 1334), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)', 'validation_split': '(0.11)'}), '(rescale=1.0 / 255, validation_split=0.11)\n', (1292, 1334), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((5417, 5494), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_accuracy"""', 'patience': '(10)', 'restore_best_weights': '(True)'}), "(monitor='val_accuracy', patience=10, restore_best_weights=True)\n", (5430, 5494), False, 'from keras.callbacks import EarlyStopping\n'), ((7054, 7114), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)', 'validation_split': '(0.11)'}), '(rescale=1.0 / 255, validation_split=0.11)\n', (7072, 7114), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((11269, 11346), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_accuracy"""', 'patience': '(10)', 'restore_best_weights': '(True)'}), "(monitor='val_accuracy', patience=10, restore_best_weights=True)\n", (11282, 11346), False, 'from keras.callbacks import EarlyStopping\n'), ((14817, 14868), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (14861, 14868), True, 'import tensorflow as tf\n'), ((14874, 14941), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (14914, 14941), True, 'import tensorflow as tf\n'), ((16747, 16799), 'numpy.load', 'np.load', (["('data/' + gen_name + '/embedding_train.npz')"], {}), "('data/' + gen_name + '/embedding_train.npz')\n", (16754, 16799), True, 'import numpy as np\n'), ((17569, 17646), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_accuracy"""', 'patience': '(20)', 'restore_best_weights': '(True)'}), "(monitor='val_accuracy', patience=20, restore_best_weights=True)\n", (17582, 17646), False, 'from keras.callbacks import EarlyStopping\n'), ((3429, 3441), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3439, 3441), True, 'from matplotlib import pyplot as plt\n'), ((4010, 4023), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (4020, 4023), True, 'from matplotlib import pyplot as plt\n'), ((4037, 4046), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4044, 4046), True, 'from matplotlib import pyplot as plt\n'), ((4233, 4245), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4243, 4245), True, 'from matplotlib import pyplot as plt\n'), ((4259, 4325), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('result/' + gen_name + '/' + model_name + '/loss.png')"], {}), "('result/' + gen_name + '/' + model_name + '/loss.png')\n", (4270, 4325), True, 'from matplotlib import pyplot as plt\n'), ((4390, 4403), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (4400, 4403), True, 'from matplotlib import pyplot as plt\n'), ((4417, 4426), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4424, 4426), True, 'from matplotlib import pyplot as plt\n'), ((4610, 4622), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4620, 4622), True, 'from matplotlib import pyplot as plt\n'), ((4636, 4701), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('result/' + gen_name + '/' + model_name + '/acc.png')"], {}), "('result/' + gen_name + '/' + model_name + '/acc.png')\n", (4647, 4701), True, 'from matplotlib import pyplot as plt\n'), ((15443, 15455), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15453, 15455), True, 'from matplotlib import pyplot as plt\n'), ((15987, 16000), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (15997, 16000), True, 'from matplotlib import pyplot as plt\n'), ((16014, 16023), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (16021, 16023), True, 'from matplotlib import pyplot as plt\n'), ((16210, 16222), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (16220, 16222), True, 'from matplotlib import pyplot as plt\n'), ((16236, 16302), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('result/' + gen_name + '/' + model_name + '/loss.png')"], {}), "('result/' + gen_name + '/' + model_name + '/loss.png')\n", (16247, 16302), True, 'from matplotlib import pyplot as plt\n'), ((16367, 16380), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (16377, 16380), True, 'from matplotlib import pyplot as plt\n'), ((16394, 16403), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (16401, 16403), True, 'from matplotlib import pyplot as plt\n'), ((16587, 16599), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (16597, 16599), True, 'from matplotlib import pyplot as plt\n'), ((16613, 16678), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('result/' + gen_name + '/' + model_name + '/acc.png')"], {}), "('result/' + gen_name + '/' + model_name + '/acc.png')\n", (16624, 16678), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np import cv2 import pdb # https://github.com/zju3dv/clean-pvnet/blob/master/lib/datasets/augmentation.py def debug_visualize(image, mask, pts2d, sym_cor, name_prefix='debug'): from random import sample cv2.imwrite('{}_image.png'.format(name_prefix), image * 255) cv2.imwrite('{}_mask.png'.format(name_prefix), mask * 255) img_pts = image.copy() * 255 for i in range(pts2d.shape[0]): x = int(round(pts2d[i, 0])) y = int(round(pts2d[i, 1])) img_pts = cv2.circle(img_pts, (x, y), 2, (0, 0, 255), thickness=-1) cv2.imwrite('{}_pts.png'.format(name_prefix), img_pts) img_sym = image.copy() * 255 ys, xs = np.nonzero(mask) for i_pt in sample([i for i in range(len(ys))], min(100, len(ys))): y = int(round(ys[i_pt])) x = int(round(xs[i_pt])) x_cor, y_cor = sym_cor[y, x] x_cor = int(round(x + x_cor)) y_cor = int(round(y + y_cor)) img_sym = cv2.line(img_sym, (x, y), (x_cor, y_cor), (0, 0, 255), 1) cv2.imwrite('{}_sym.png'.format(name_prefix), img_sym) def rotate_sym_cor(sym_cor, mask, R): h, w = sym_cor.shape[:2] ys, xs = np.nonzero(mask) source = np.float32(np.stack([xs, ys], axis=-1)) delta = np.float32(sym_cor[ys, xs]) target = source + delta last_col = np.ones((source.shape[0], 1), dtype=np.float32) source = np.concatenate([source, last_col], axis=-1) target = np.concatenate([target, last_col], axis=-1) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() source = np.matmul(source, R)[:, :2] target = np.matmul(target, R)[:, :2] source = np.uint32(np.round(source)) delta = target - source # remove invalid indices xs, ys = source[:, 0], source[:, 1] valid = (xs > 0) & (xs < w) & (ys > 0) & (ys < h) xs, ys, delta = xs[valid], ys[valid], delta[valid] sym_cor = np.zeros_like(sym_cor) sym_cor[ys, xs] = delta return sym_cor def rotate_instance(img, mask, hcoords, sym_cor, rot_ang_min, rot_ang_max): h, w = img.shape[0], img.shape[1] degree = np.random.uniform(rot_ang_min, rot_ang_max) hs, ws = np.nonzero(mask) R = cv2.getRotationMatrix2D((np.mean(ws), np.mean(hs)), degree, 1) sym_cor = rotate_sym_cor(sym_cor, mask, R) mask = cv2.warpAffine(mask, R, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) img = cv2.warpAffine(img, R, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, last_col], axis=1) hcoords = np.float32(np.matmul(hcoords, R)) hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_resize_instance_v1(img, mask, hcoords, sym_cor, imheight, imwidth, overlap_ratio=0.5, ratio_min=0.8, ratio_max=1.2): ''' crop a region with [imheight*resize_ratio,imwidth*resize_ratio] which at least overlap with foreground bbox with overlap ''' hcoords_last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, hcoords_last_col], axis=1) resize_ratio = np.random.uniform(ratio_min, ratio_max) target_height = int(imheight * resize_ratio) target_width = int(imwidth * resize_ratio) img, mask, hcoords, sym_cor = crop_or_padding_to_fixed_size_instance( img, mask, hcoords, sym_cor, target_height, target_width, overlap_ratio) img = cv2.resize(img, (imwidth, imheight), interpolation=cv2.INTER_LINEAR) mask = cv2.resize(mask, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor = cv2.resize(sym_cor, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor /= resize_ratio hcoords[:, 0] = hcoords[:, 0] / resize_ratio hcoords[:, 1] = hcoords[:, 1] / resize_ratio hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size_instance(img, mask, hcoords, sym_cor, th, tw, overlap_ratio=0.5): h, w, _ = img.shape hs, ws = np.nonzero(mask) hmin, hmax = np.min(hs), np.max(hs) wmin, wmax = np.min(ws), np.max(ws) fh, fw = hmax - hmin, wmax - wmin hpad, wpad = th >= h, tw >= w hrmax = int(min(hmin + overlap_ratio * fh, h - th)) # h must > target_height else hrmax<0 hrmin = int(max(hmin + overlap_ratio * fh - th, 0)) wrmax = int(min(wmin + overlap_ratio * fw, w - tw)) # w must > target_width else wrmax<0 wrmin = int(max(wmin + overlap_ratio * fw - tw, 0)) hbeg = 0 if (hpad or hrmin == hrmax) else np.random.randint(hrmin, hrmax) hend = hbeg + th wbeg = 0 if (wpad or wrmin == wrmax) else np.random.randint(wrmin, wrmax) # if pad then [0,wend] will larger than [0,w], indexing it is safe wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] hcoords[:, 0] -= wbeg * hcoords[:, 2] hcoords[:, 1] -= hbeg * hcoords[:, 2] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor hcoords[:, 0] += wbeg * hcoords[:, 2] hcoords[:, 1] += hbeg * hcoords[:, 2] img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size(img, mask, sym_cor, th, tw): h, w, _ = img.shape hpad, wpad = th >= h, tw >= w hbeg = 0 if hpad else np.random.randint(0, h - th) wbeg = 0 if wpad else np.random.randint(0, w - tw) # if pad then [0,wend] will larger than [0,w], indexing it is safe hend = hbeg + th wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, sym_cor
[ "numpy.ones", "cv2.warpAffine", "numpy.random.randint", "numpy.mean", "numpy.round", "cv2.line", "numpy.zeros_like", "numpy.max", "cv2.resize", "numpy.stack", "cv2.circle", "numpy.asarray", "numpy.min", "numpy.concatenate", "numpy.random.uniform", "numpy.float32", "numpy.zeros", "numpy.nonzero", "numpy.matmul" ]
[((675, 691), 'numpy.nonzero', 'np.nonzero', (['mask'], {}), '(mask)\n', (685, 691), True, 'import numpy as np\n'), ((1159, 1175), 'numpy.nonzero', 'np.nonzero', (['mask'], {}), '(mask)\n', (1169, 1175), True, 'import numpy as np\n'), ((1241, 1268), 'numpy.float32', 'np.float32', (['sym_cor[ys, xs]'], {}), '(sym_cor[ys, xs])\n', (1251, 1268), True, 'import numpy as np\n'), ((1312, 1359), 'numpy.ones', 'np.ones', (['(source.shape[0], 1)'], {'dtype': 'np.float32'}), '((source.shape[0], 1), dtype=np.float32)\n', (1319, 1359), True, 'import numpy as np\n'), ((1373, 1416), 'numpy.concatenate', 'np.concatenate', (['[source, last_col]'], {'axis': '(-1)'}), '([source, last_col], axis=-1)\n', (1387, 1416), True, 'import numpy as np\n'), ((1430, 1473), 'numpy.concatenate', 'np.concatenate', (['[target, last_col]'], {'axis': '(-1)'}), '([target, last_col], axis=-1)\n', (1444, 1473), True, 'import numpy as np\n'), ((1489, 1530), 'numpy.asarray', 'np.asarray', (['[[0, 0, 1]]'], {'dtype': 'np.float32'}), '([[0, 0, 1]], dtype=np.float32)\n', (1499, 1530), True, 'import numpy as np\n'), ((1932, 1954), 'numpy.zeros_like', 'np.zeros_like', (['sym_cor'], {}), '(sym_cor)\n', (1945, 1954), True, 'import numpy as np\n'), ((2130, 2173), 'numpy.random.uniform', 'np.random.uniform', (['rot_ang_min', 'rot_ang_max'], {}), '(rot_ang_min, rot_ang_max)\n', (2147, 2173), True, 'import numpy as np\n'), ((2187, 2203), 'numpy.nonzero', 'np.nonzero', (['mask'], {}), '(mask)\n', (2197, 2203), True, 'import numpy as np\n'), ((2333, 2441), 'cv2.warpAffine', 'cv2.warpAffine', (['mask', 'R', '(w, h)'], {'flags': 'cv2.INTER_NEAREST', 'borderMode': 'cv2.BORDER_CONSTANT', 'borderValue': '(0)'}), '(mask, R, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.\n BORDER_CONSTANT, borderValue=0)\n', (2347, 2441), False, 'import cv2\n'), ((2447, 2553), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'R', '(w, h)'], {'flags': 'cv2.INTER_LINEAR', 'borderMode': 'cv2.BORDER_CONSTANT', 'borderValue': '(0)'}), '(img, R, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.\n BORDER_CONSTANT, borderValue=0)\n', (2461, 2553), False, 'import cv2\n'), ((2564, 2605), 'numpy.asarray', 'np.asarray', (['[[0, 0, 1]]'], {'dtype': 'np.float32'}), '([[0, 0, 1]], dtype=np.float32)\n', (2574, 2605), True, 'import numpy as np\n'), ((2679, 2727), 'numpy.ones', 'np.ones', (['(hcoords.shape[0], 1)'], {'dtype': 'np.float32'}), '((hcoords.shape[0], 1), dtype=np.float32)\n', (2686, 2727), True, 'import numpy as np\n'), ((2742, 2785), 'numpy.concatenate', 'np.concatenate', (['[hcoords, last_col]'], {'axis': '(1)'}), '([hcoords, last_col], axis=1)\n', (2756, 2785), True, 'import numpy as np\n'), ((3225, 3273), 'numpy.ones', 'np.ones', (['(hcoords.shape[0], 1)'], {'dtype': 'np.float32'}), '((hcoords.shape[0], 1), dtype=np.float32)\n', (3232, 3273), True, 'import numpy as np\n'), ((3288, 3339), 'numpy.concatenate', 'np.concatenate', (['[hcoords, hcoords_last_col]'], {'axis': '(1)'}), '([hcoords, hcoords_last_col], axis=1)\n', (3302, 3339), True, 'import numpy as np\n'), ((3360, 3399), 'numpy.random.uniform', 'np.random.uniform', (['ratio_min', 'ratio_max'], {}), '(ratio_min, ratio_max)\n', (3377, 3399), True, 'import numpy as np\n'), ((3663, 3731), 'cv2.resize', 'cv2.resize', (['img', '(imwidth, imheight)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(img, (imwidth, imheight), interpolation=cv2.INTER_LINEAR)\n', (3673, 3731), False, 'import cv2\n'), ((3743, 3813), 'cv2.resize', 'cv2.resize', (['mask', '(imwidth, imheight)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(mask, (imwidth, imheight), interpolation=cv2.INTER_NEAREST)\n', (3753, 3813), False, 'import cv2\n'), ((3828, 3901), 'cv2.resize', 'cv2.resize', (['sym_cor', '(imwidth, imheight)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(sym_cor, (imwidth, imheight), interpolation=cv2.INTER_NEAREST)\n', (3838, 3901), False, 'import cv2\n'), ((4278, 4294), 'numpy.nonzero', 'np.nonzero', (['mask'], {}), '(mask)\n', (4288, 4294), True, 'import numpy as np\n'), ((512, 569), 'cv2.circle', 'cv2.circle', (['img_pts', '(x, y)', '(2)', '(0, 0, 255)'], {'thickness': '(-1)'}), '(img_pts, (x, y), 2, (0, 0, 255), thickness=-1)\n', (522, 569), False, 'import cv2\n'), ((961, 1018), 'cv2.line', 'cv2.line', (['img_sym', '(x, y)', '(x_cor, y_cor)', '(0, 0, 255)', '(1)'], {}), '(img_sym, (x, y), (x_cor, y_cor), (0, 0, 255), 1)\n', (969, 1018), False, 'import cv2\n'), ((1200, 1227), 'numpy.stack', 'np.stack', (['[xs, ys]'], {'axis': '(-1)'}), '([xs, ys], axis=-1)\n', (1208, 1227), True, 'import numpy as np\n'), ((1602, 1622), 'numpy.matmul', 'np.matmul', (['source', 'R'], {}), '(source, R)\n', (1611, 1622), True, 'import numpy as np\n'), ((1643, 1663), 'numpy.matmul', 'np.matmul', (['target', 'R'], {}), '(target, R)\n', (1652, 1663), True, 'import numpy as np\n'), ((1694, 1710), 'numpy.round', 'np.round', (['source'], {}), '(source)\n', (1702, 1710), True, 'import numpy as np\n'), ((2811, 2832), 'numpy.matmul', 'np.matmul', (['hcoords', 'R'], {}), '(hcoords, R)\n', (2820, 2832), True, 'import numpy as np\n'), ((4313, 4323), 'numpy.min', 'np.min', (['hs'], {}), '(hs)\n', (4319, 4323), True, 'import numpy as np\n'), ((4325, 4335), 'numpy.max', 'np.max', (['hs'], {}), '(hs)\n', (4331, 4335), True, 'import numpy as np\n'), ((4353, 4363), 'numpy.min', 'np.min', (['ws'], {}), '(ws)\n', (4359, 4363), True, 'import numpy as np\n'), ((4365, 4375), 'numpy.max', 'np.max', (['ws'], {}), '(ws)\n', (4371, 4375), True, 'import numpy as np\n'), ((4797, 4828), 'numpy.random.randint', 'np.random.randint', (['hrmin', 'hrmax'], {}), '(hrmin, hrmax)\n', (4814, 4828), True, 'import numpy as np\n'), ((4896, 4927), 'numpy.random.randint', 'np.random.randint', (['wrmin', 'wrmax'], {}), '(wrmin, wrmax)\n', (4913, 4927), True, 'import numpy as np\n'), ((5291, 5329), 'numpy.zeros', 'np.zeros', (['[th, tw, 3]'], {'dtype': 'img.dtype'}), '([th, tw, 3], dtype=img.dtype)\n', (5299, 5329), True, 'import numpy as np\n'), ((5349, 5385), 'numpy.zeros', 'np.zeros', (['[th, tw]'], {'dtype': 'mask.dtype'}), '([th, tw], dtype=mask.dtype)\n', (5357, 5385), True, 'import numpy as np\n'), ((5408, 5450), 'numpy.zeros', 'np.zeros', (['[th, tw, 2]'], {'dtype': 'sym_cor.dtype'}), '([th, tw, 2], dtype=sym_cor.dtype)\n', (5416, 5450), True, 'import numpy as np\n'), ((6063, 6091), 'numpy.random.randint', 'np.random.randint', (['(0)', '(h - th)'], {}), '(0, h - th)\n', (6080, 6091), True, 'import numpy as np\n'), ((6118, 6146), 'numpy.random.randint', 'np.random.randint', (['(0)', '(w - tw)'], {}), '(0, w - tw)\n', (6135, 6146), True, 'import numpy as np\n'), ((6490, 6528), 'numpy.zeros', 'np.zeros', (['[th, tw, 3]'], {'dtype': 'img.dtype'}), '([th, tw, 3], dtype=img.dtype)\n', (6498, 6528), True, 'import numpy as np\n'), ((6548, 6584), 'numpy.zeros', 'np.zeros', (['[th, tw]'], {'dtype': 'mask.dtype'}), '([th, tw], dtype=mask.dtype)\n', (6556, 6584), True, 'import numpy as np\n'), ((6607, 6649), 'numpy.zeros', 'np.zeros', (['[th, tw, 2]'], {'dtype': 'sym_cor.dtype'}), '([th, tw, 2], dtype=sym_cor.dtype)\n', (6615, 6649), True, 'import numpy as np\n'), ((1539, 1576), 'numpy.concatenate', 'np.concatenate', (['[R, last_row]'], {'axis': '(0)'}), '([R, last_row], axis=0)\n', (1553, 1576), True, 'import numpy as np\n'), ((2237, 2248), 'numpy.mean', 'np.mean', (['ws'], {}), '(ws)\n', (2244, 2248), True, 'import numpy as np\n'), ((2250, 2261), 'numpy.mean', 'np.mean', (['hs'], {}), '(hs)\n', (2257, 2261), True, 'import numpy as np\n'), ((2614, 2651), 'numpy.concatenate', 'np.concatenate', (['[R, last_row]'], {'axis': '(0)'}), '([R, last_row], axis=0)\n', (2628, 2651), True, 'import numpy as np\n')]
import numpy as np import os import gym import torch import torch.nn as nn import collections import copy import random # hype-params learn_freq = 5 #经验池攒一些经验再开启训练 buffer_size = 20000 #经验池大小 buffer_init_size = 200 #开启训练最低经验条数 batch_size = 32 #每次sample的数量 learning_rate = 0.001 #学习率 GAMMA = 0.99 # reward折扣因子 class Model(nn.Module): def __init__(self, act_dim, state_dim): super(Model, self).__init__() hidden1_size = 128 hidden2_size = 128 self.input_layer = nn.Linear(state_dim, hidden1_size) self.input_layer.weight.data.normal_(0, 0.1) self.hidden_layer = nn.Linear(hidden1_size, hidden2_size) self.hidden_layer.weight.data.normal_(0, 0.1) self.output_layer = nn.Linear(hidden2_size, act_dim) self.output_layer.weight.data.normal_(0, 0.1) def forward(self, state): h1 = nn.functional.relu(self.input_layer(state)) h2 = nn.functional.relu(self.hidden_layer(h1)) Q = self.output_layer(h2) return Q class DQN: def __init__(self, model, act_dim=None, gamma=None, lr=None): self.model = model self.target_model = copy.deepcopy(model) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=learning_rate) self.loss = nn.MSELoss() self.act_dim = act_dim self.lr = lr self.gamma = gamma def predict(self, state): return self.model.forward(state) # shape: batch_size x act_dim def learn(self, state, action, reward, state_next, done): # shape: batch_size x 1 # 根据target网络求target Q next_values = self.target_model.forward(state_next).detach() # 阻断target梯度, shape: batch_size x act_dim target_value = reward + (1.0 - done)*self.gamma*next_values.max(1)[0] # shape: batch_size x 1 # 根据当前网络获取Q(s, a) curr_value = self.model.forward(state) action = action.unsqueeze(1) pred_value = torch.gather(curr_value, 1, action.long()) # batch_size x act_dim中以第二维取action对应的Q值成为batch_size x 1 cost = self.loss(pred_value, target_value) self.optimizer.zero_grad() cost.backward() self.optimizer.step() return cost def update_target(self): self.target_model.load_state_dict(self.model.state_dict()) # 更新target网络参数 class ReplayMemory(object): def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) def append(self, exp): self.buffer.append(exp) def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state_batch, action_batch, reward_batch, state_netx_batch, done_batch = [], [], [], [], [] for exp in batch: s, a, r, s_next, done = exp state_batch.append(s) action_batch.append(a) reward_batch.append(r) state_netx_batch.append(s_next) done_batch.append(done) return torch.from_numpy(np.array(state_batch).astype('float32')), \ torch.from_numpy(np.array(action_batch).astype('int32')), \ torch.from_numpy(np.array(reward_batch).astype('float32')), \ torch.from_numpy(np.array(state_netx_batch).astype('float32')), \ torch.from_numpy(np.array(done_batch).astype('float32')) def __len__(self): return len(self.buffer) class Agent: def __init__(self, algorithm, state_dim, act_dim, epsilon=0.1, epsilon_fade=0.0): self.dqn = algorithm self.state_dim = state_dim self.act_dim = act_dim self.steps = 0 self.update_target_steps = 200 self.epsilon = epsilon self.epsilon_fade = epsilon_fade def explore(self, state): sample = np.random.rand() if sample < self.epsilon: action = np.random.randint(self.act_dim) else: action = self.greedy(state) self.epsilon = max(0.01, self.epsilon - self.epsilon_fade) return action def greedy(self, state): state = torch.from_numpy(state) state = torch.tensor(state, dtype=torch.float32) pred_value = self.dqn.target_model.forward(state) values = pred_value.detach().numpy() values = np.squeeze(values, axis=None) action = np.argmax(values) # 选择值最大的下标 return action def learn(self, state, action, reward, state_next, done): if self.steps % self.update_target_steps == 0: self.dqn.update_target() self.steps += 1 cost = self.dqn.learn(state, action, reward, state_next, done) return cost def evaluate(env, agent, render=True): eval_reward = [] for i in range(10): state = env.reset() episode_reward = 0 while True: action = agent.greedy(state) state, reward, done, _ = env.step(action) episode_reward += reward if render: env.render() if done: break eval_reward.append(episode_reward) return np.mean(eval_reward) if __name__ == '__main__': env = gym.make('CartPole-v0') action_dim = env.action_space.n state_dim = env.observation_space.shape[0] exp_buffer = ReplayMemory(buffer_size) model = Model(act_dim=action_dim, state_dim=state_dim) algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=learning_rate) agent = Agent(algorithm, state_dim=state_dim, act_dim=action_dim, epsilon=0.1, epsilon_fade=1e-6) state = env.reset() while(len(exp_buffer)<buffer_init_size): action = agent.explore(state) state_next, reward, done, _ = env.step(action) exp_buffer.append((state, action, reward, state_next, done)) state = state_next if done: state = env.reset() episode = 0 while episode < 20000: for i in range(0, 100): episode += 1 total_reward = 0 state = env.reset() step = 0 while True: step += 1 action = agent.explore(state) state_next, reward, done, _ = env.step(action) # env.render() exp_buffer.append((state, action, reward, state_next, done)) # train if len(exp_buffer) > buffer_init_size and step%learn_freq == 0: (state_batch, action_batch, reward_batch, state_next_batch, done_batch) = exp_buffer.sample(batch_size) loss = agent.learn(state_batch, action_batch, reward_batch, state_next_batch, done_batch) total_reward += reward state = state_next if done: break eval_reward = evaluate(env, agent, render=True) print('episode: %d e_greed: %.5f test_reward: %.1f' %(episode, agent.epsilon, eval_reward)) torch.save(agent.dqn.target_model, './dqn.pkl')
[ "copy.deepcopy", "torch.nn.MSELoss", "gym.make", "numpy.argmax", "random.sample", "torch.save", "numpy.mean", "numpy.random.randint", "numpy.array", "torch.nn.Linear", "numpy.random.rand", "torch.tensor", "numpy.squeeze", "collections.deque", "torch.from_numpy" ]
[((5045, 5065), 'numpy.mean', 'np.mean', (['eval_reward'], {}), '(eval_reward)\n', (5052, 5065), True, 'import numpy as np\n'), ((5104, 5127), 'gym.make', 'gym.make', (['"""CartPole-v0"""'], {}), "('CartPole-v0')\n", (5112, 5127), False, 'import gym\n'), ((6878, 6925), 'torch.save', 'torch.save', (['agent.dqn.target_model', '"""./dqn.pkl"""'], {}), "(agent.dqn.target_model, './dqn.pkl')\n", (6888, 6925), False, 'import torch\n'), ((497, 531), 'torch.nn.Linear', 'nn.Linear', (['state_dim', 'hidden1_size'], {}), '(state_dim, hidden1_size)\n', (506, 531), True, 'import torch.nn as nn\n'), ((613, 650), 'torch.nn.Linear', 'nn.Linear', (['hidden1_size', 'hidden2_size'], {}), '(hidden1_size, hidden2_size)\n', (622, 650), True, 'import torch.nn as nn\n'), ((733, 765), 'torch.nn.Linear', 'nn.Linear', (['hidden2_size', 'act_dim'], {}), '(hidden2_size, act_dim)\n', (742, 765), True, 'import torch.nn as nn\n'), ((1148, 1168), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (1161, 1168), False, 'import copy\n'), ((1274, 1286), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (1284, 1286), True, 'import torch.nn as nn\n'), ((2391, 2425), 'collections.deque', 'collections.deque', ([], {'maxlen': 'max_size'}), '(maxlen=max_size)\n', (2408, 2425), False, 'import collections\n'), ((2537, 2575), 'random.sample', 'random.sample', (['self.buffer', 'batch_size'], {}), '(self.buffer, batch_size)\n', (2550, 2575), False, 'import random\n'), ((3740, 3756), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3754, 3756), True, 'import numpy as np\n'), ((4033, 4056), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (4049, 4056), False, 'import torch\n'), ((4073, 4113), 'torch.tensor', 'torch.tensor', (['state'], {'dtype': 'torch.float32'}), '(state, dtype=torch.float32)\n', (4085, 4113), False, 'import torch\n'), ((4234, 4263), 'numpy.squeeze', 'np.squeeze', (['values'], {'axis': 'None'}), '(values, axis=None)\n', (4244, 4263), True, 'import numpy as np\n'), ((4281, 4298), 'numpy.argmax', 'np.argmax', (['values'], {}), '(values)\n', (4290, 4298), True, 'import numpy as np\n'), ((3812, 3843), 'numpy.random.randint', 'np.random.randint', (['self.act_dim'], {}), '(self.act_dim)\n', (3829, 3843), True, 'import numpy as np\n'), ((2958, 2979), 'numpy.array', 'np.array', (['state_batch'], {}), '(state_batch)\n', (2966, 2979), True, 'import numpy as np\n'), ((3034, 3056), 'numpy.array', 'np.array', (['action_batch'], {}), '(action_batch)\n', (3042, 3056), True, 'import numpy as np\n'), ((3109, 3131), 'numpy.array', 'np.array', (['reward_batch'], {}), '(reward_batch)\n', (3117, 3131), True, 'import numpy as np\n'), ((3186, 3212), 'numpy.array', 'np.array', (['state_netx_batch'], {}), '(state_netx_batch)\n', (3194, 3212), True, 'import numpy as np\n'), ((3267, 3287), 'numpy.array', 'np.array', (['done_batch'], {}), '(done_batch)\n', (3275, 3287), True, 'import numpy as np\n')]
## # @file electric_overflow.py # @author <NAME> # @date Aug 2018 # import math import numpy as np import torch from torch import nn from torch.autograd import Function from torch.nn import functional as F import dreamplace.ops.electric_potential.electric_potential_cpp as electric_potential_cpp import dreamplace.configure as configure if configure.compile_configurations["CUDA_FOUND"] == "TRUE": import dreamplace.ops.electric_potential.electric_potential_cuda as electric_potential_cuda import pdb import matplotlib matplotlib.use('Agg') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt class ElectricDensityMapFunction(Function): """ @brief compute density overflow. @param ctx pytorch API to store data for backward proporgation @param pos location of cells, x and then y @param node_size_x_clamped stretched size, max(bin_size*sqrt2, node_size) @param node_size_y_clamped stretched size, max(bin_size*sqrt2, node_size) @param offset_x (stretched size - node_size) / 2 @param offset_y (stretched size - node_size) / 2 @param ratio original area / stretched area @param initial_density_map density_map for fixed cells @param target_density target density @param xl left boundary @param yl lower boundary @param xh right boundary @param yh upper boundary @param bin_size_x bin width @param bin_size_x bin height @param num_movable_nodes number of movable cells @param num_filler_nodes number of filler cells @param padding bin padding to boundary of placement region @param padding_mask padding mask with 0 and 1 to indicate padding bins with padding regions to be 1 @param num_bins_x number of bins in horizontal direction @param num_bins_y number of bins in vertical direction @param num_movable_impacted_bins_x number of impacted bins for any movable cell in x direction @param num_movable_impacted_bins_y number of impacted bins for any movable cell in y direction @param num_filler_impacted_bins_x number of impacted bins for any filler cell in x direction @param num_filler_impacted_bins_y number of impacted bins for any filler cell in y direction @param sorted_node_map the indices of the movable node map """ @staticmethod def forward( pos, node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, padding_mask, # same dimensions as density map, with padding regions to be 1 num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag, sorted_node_map): if pos.is_cuda: output = electric_potential_cuda.density_map( pos.view(pos.numel()), node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag, sorted_node_map) else: output = electric_potential_cpp.density_map( pos.view(pos.numel()), node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag) density_map = output.view([num_bins_x, num_bins_y]) # set padding density if padding > 0: density_map.masked_fill_(padding_mask, target_density * bin_size_x * bin_size_y) return density_map class ElectricOverflow(nn.Module): def __init__( self, node_size_x, node_size_y, bin_center_x, bin_center_y, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes, padding, deterministic_flag, # control whether to use deterministic routine sorted_node_map, movable_macro_mask=None): super(ElectricOverflow, self).__init__() self.node_size_x = node_size_x self.node_size_y = node_size_y self.bin_center_x = bin_center_x self.bin_center_y = bin_center_y self.target_density = target_density self.xl = xl self.yl = yl self.xh = xh self.yh = yh self.bin_size_x = bin_size_x self.bin_size_y = bin_size_y self.num_movable_nodes = num_movable_nodes self.num_terminals = num_terminals self.num_filler_nodes = num_filler_nodes self.padding = padding self.sorted_node_map = sorted_node_map self.movable_macro_mask = movable_macro_mask self.deterministic_flag = deterministic_flag self.reset() def reset(self): sqrt2 = math.sqrt(2) # clamped means stretch a cell to bin size # clamped = max(bin_size*sqrt2, node_size) # offset means half of the stretch size # ratio means the original area over the stretched area self.node_size_x_clamped = self.node_size_x.clamp(min=self.bin_size_x * sqrt2) self.offset_x = (self.node_size_x - self.node_size_x_clamped).mul(0.5) self.node_size_y_clamped = self.node_size_y.clamp(min=self.bin_size_y * sqrt2) self.offset_y = (self.node_size_y - self.node_size_y_clamped).mul(0.5) node_areas = self.node_size_x * self.node_size_y self.ratio = node_areas / (self.node_size_x_clamped * self.node_size_y_clamped) # detect movable macros and scale down the density to avoid halos # the definition of movable macros should be different according to algorithms self.num_movable_macros = 0 if self.target_density < 1 and self.movable_macro_mask is not None: self.num_movable_macros = self.movable_macro_mask.sum().data.item() self.ratio[:self.num_movable_nodes][ self.movable_macro_mask] = self.target_density # compute maximum impacted bins self.num_bins_x = int(math.ceil((self.xh - self.xl) / self.bin_size_x)) self.num_bins_y = int(math.ceil((self.yh - self.yl) / self.bin_size_y)) if self.num_movable_nodes: self.num_movable_impacted_bins_x = int( ((self.node_size_x[:self.num_movable_nodes].max() + 2 * sqrt2 * self.bin_size_x) / self.bin_size_x).ceil().clamp(max=self.num_bins_x)) self.num_movable_impacted_bins_y = int( ((self.node_size_y[:self.num_movable_nodes].max() + 2 * sqrt2 * self.bin_size_y) / self.bin_size_y).ceil().clamp(max=self.num_bins_y)) else: self.num_movable_impacted_bins_x = 0 self.num_movable_impacted_bins_y = 0 if self.num_filler_nodes: self.num_filler_impacted_bins_x = ( (self.node_size_x[-self.num_filler_nodes:].max() + 2 * sqrt2 * self.bin_size_x) / self.bin_size_x).ceil().clamp(max=self.num_bins_x) self.num_filler_impacted_bins_y = ( (self.node_size_y[-self.num_filler_nodes:].max() + 2 * sqrt2 * self.bin_size_y) / self.bin_size_y).ceil().clamp(max=self.num_bins_y) else: self.num_filler_impacted_bins_x = 0 self.num_filler_impacted_bins_y = 0 if self.padding > 0: self.padding_mask = torch.ones(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=self.node_size_x.device) self.padding_mask[self.padding:self.num_bins_x - self.padding, self.padding:self.num_bins_y - self.padding].fill_(0) else: self.padding_mask = torch.zeros(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=self.node_size_x.device) # initial density_map due to fixed cells self.initial_density_map = None def compute_initial_density_map(self, pos): if self.num_terminals == 0: num_fixed_impacted_bins_x = 0 num_fixed_impacted_bins_y = 0 else: max_size_x = self.node_size_x[self.num_movable_nodes:self. num_movable_nodes + self.num_terminals].max() max_size_y = self.node_size_y[self.num_movable_nodes:self. num_movable_nodes + self.num_terminals].max() num_fixed_impacted_bins_x = ((max_size_x + self.bin_size_x) / self.bin_size_x).ceil().clamp( max=self.num_bins_x) num_fixed_impacted_bins_y = ((max_size_y + self.bin_size_y) / self.bin_size_y).ceil().clamp( max=self.num_bins_y) if pos.is_cuda: func = electric_potential_cuda.fixed_density_map else: func = electric_potential_cpp.fixed_density_map self.initial_density_map = func( pos, self.node_size_x, self.node_size_y, self.bin_center_x, self.bin_center_y, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_terminals, self.num_bins_x, self.num_bins_y, num_fixed_impacted_bins_x, num_fixed_impacted_bins_y, self.deterministic_flag) # scale density of fixed macros self.initial_density_map.mul_(self.target_density) def forward(self, pos): if self.initial_density_map is None: self.compute_initial_density_map(pos) density_map = ElectricDensityMapFunction.forward( pos, self.node_size_x_clamped, self.node_size_y_clamped, self.offset_x, self.offset_y, self.ratio, self.bin_center_x, self.bin_center_y, self.initial_density_map, self.target_density, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_filler_nodes, self.padding, self.padding_mask, self.num_bins_x, self.num_bins_y, self.num_movable_impacted_bins_x, self.num_movable_impacted_bins_y, self.num_filler_impacted_bins_x, self.num_filler_impacted_bins_y, self.deterministic_flag, self.sorted_node_map) bin_area = self.bin_size_x * self.bin_size_y density_cost = (density_map - self.target_density * bin_area).clamp_(min=0.0).sum().unsqueeze(0) return density_cost, density_map.max().unsqueeze(0) / bin_area def plot(plot_count, density_map, padding, name): """ density map contour and heat map """ density_map = density_map[padding:density_map.shape[0] - padding, padding:density_map.shape[1] - padding] print("max density = %g @ %s" % (np.amax(density_map), np.unravel_index(np.argmax(density_map), density_map.shape))) print("mean density = %g" % (np.mean(density_map))) fig = plt.figure() ax = fig.gca(projection='3d') x = np.arange(density_map.shape[0]) y = np.arange(density_map.shape[1]) x, y = np.meshgrid(x, y) # looks like x and y should be swapped ax.plot_surface(y, x, density_map, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('density') # plt.tight_layout() plt.savefig(name + ".3d.png") plt.close() # plt.clf() #fig, ax = plt.subplots() # ax.pcolor(density_map) # Loop over data dimensions and create text annotations. # for i in range(density_map.shape[0]): # for j in range(density_map.shape[1]): # text = ax.text(j, i, density_map[i, j], # ha="center", va="center", color="w") # fig.tight_layout() #plt.savefig(name+".2d.%d.png" % (plot_count)) # plt.close()
[ "torch.ones", "numpy.meshgrid", "math.sqrt", "math.ceil", "numpy.argmax", "matplotlib.pyplot.close", "numpy.amax", "matplotlib.pyplot.figure", "matplotlib.use", "numpy.arange", "numpy.mean", "torch.zeros", "matplotlib.pyplot.savefig" ]
[((530, 551), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (544, 551), False, 'import matplotlib\n'), ((12631, 12643), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (12641, 12643), True, 'import matplotlib.pyplot as plt\n'), ((12687, 12718), 'numpy.arange', 'np.arange', (['density_map.shape[0]'], {}), '(density_map.shape[0])\n', (12696, 12718), True, 'import numpy as np\n'), ((12727, 12758), 'numpy.arange', 'np.arange', (['density_map.shape[1]'], {}), '(density_map.shape[1])\n', (12736, 12758), True, 'import numpy as np\n'), ((12771, 12788), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (12782, 12788), True, 'import numpy as np\n'), ((12988, 13017), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(name + '.3d.png')"], {}), "(name + '.3d.png')\n", (12999, 13017), True, 'import matplotlib.pyplot as plt\n'), ((13022, 13033), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (13031, 13033), True, 'import matplotlib.pyplot as plt\n'), ((5809, 5821), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (5818, 5821), False, 'import math\n'), ((7201, 7249), 'math.ceil', 'math.ceil', (['((self.xh - self.xl) / self.bin_size_x)'], {}), '((self.xh - self.xl) / self.bin_size_x)\n', (7210, 7249), False, 'import math\n'), ((7281, 7329), 'math.ceil', 'math.ceil', (['((self.yh - self.yl) / self.bin_size_y)'], {}), '((self.yh - self.yl) / self.bin_size_y)\n', (7290, 7329), False, 'import math\n'), ((8619, 8719), 'torch.ones', 'torch.ones', (['self.num_bins_x', 'self.num_bins_y'], {'dtype': 'torch.uint8', 'device': 'self.node_size_x.device'}), '(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=self\n .node_size_x.device)\n', (8629, 8719), False, 'import torch\n'), ((9079, 9180), 'torch.zeros', 'torch.zeros', (['self.num_bins_x', 'self.num_bins_y'], {'dtype': 'torch.uint8', 'device': 'self.node_size_x.device'}), '(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=\n self.node_size_x.device)\n', (9090, 9180), False, 'import torch\n'), ((12597, 12617), 'numpy.mean', 'np.mean', (['density_map'], {}), '(density_map)\n', (12604, 12617), True, 'import numpy as np\n'), ((12469, 12489), 'numpy.amax', 'np.amax', (['density_map'], {}), '(density_map)\n', (12476, 12489), True, 'import numpy as np\n'), ((12519, 12541), 'numpy.argmax', 'np.argmax', (['density_map'], {}), '(density_map)\n', (12528, 12541), True, 'import numpy as np\n')]
""" Dependencies: tensorflow: 1.2.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) np.random.seed(1) #fake data n_data = np.ones((100,2)) x0 = np.random.normal(2*n_data, 1) #class0 x shape = (100, 2)) y0 = np.zeros(100) #class0 y shape = (100, 1)) x1 = np.random.normal(-2*n_data, 1) # class1 x shape=(100, 2) y1 = np.ones(100) # class1 y shape=(100, 1) x = np.vstack((x0, x1)) #shape (200, 2)) + some noise y = np.hstack((y0,y1)) #shape (200, ) #plot data plt.scatter(x[:, 0], x[:, 1], c=y, s=100, lw=0, cmap='RdYlGn') plt.show() tf_x = tf.placeholder(tf.float32, x.shape) #input x tf_y = tf.placeholder(tf.int32, y.shape) #neural network layers l1 = tf.layers.dense(tf_x, 10, tf.nn.relu) output = tf.layers.dense(l1, 2) loss = tf.losses.sparse_softmax_cross_entropy(labels = tf_y, logits =output) #compute cost accuracy = tf.metrics.accuracy(labels = tf.squeeze(tf_y), predictions = tf.argmax(output, axis=1), )[1] optimizer = tf.train.GradientDescentOptimizer(learning_rate= 0.05) train_op = optimizer.minimize(loss) sess = tf.Session() init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) plt.ion() for step in range(100): #train and net output _, acc, pred = sess.run([train_op, accuracy, output], {tf_x: x, tf_y:y }) if step %2 == 0: #plot and show learning process plt.cla() plt.scatter(x[:, 0], x[:, 1], c = pred.argmax(1), s = 100, lw = 0, cmap = 'RdYlGn') plt.text(1.5, -4, 'Accuracy = %.2f'% acc, fontdict = {'size':20, 'color':'red'}) plt.pause(0.1) plt.ioff() plt.show()
[ "numpy.random.seed", "numpy.ones", "tensorflow.local_variables_initializer", "numpy.random.normal", "tensorflow.set_random_seed", "tensorflow.placeholder", "matplotlib.pyplot.cla", "tensorflow.squeeze", "matplotlib.pyplot.pause", "matplotlib.pyplot.show", "tensorflow.global_variables_initializer", "tensorflow.Session", "numpy.hstack", "matplotlib.pyplot.text", "matplotlib.pyplot.ion", "tensorflow.train.GradientDescentOptimizer", "numpy.vstack", "tensorflow.losses.sparse_softmax_cross_entropy", "matplotlib.pyplot.ioff", "tensorflow.argmax", "matplotlib.pyplot.scatter", "tensorflow.layers.dense", "numpy.zeros" ]
[((134, 155), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1)'], {}), '(1)\n', (152, 155), True, 'import tensorflow as tf\n'), ((156, 173), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (170, 173), True, 'import numpy as np\n'), ((195, 212), 'numpy.ones', 'np.ones', (['(100, 2)'], {}), '((100, 2))\n', (202, 212), True, 'import numpy as np\n'), ((217, 248), 'numpy.random.normal', 'np.random.normal', (['(2 * n_data)', '(1)'], {}), '(2 * n_data, 1)\n', (233, 248), True, 'import numpy as np\n'), ((289, 302), 'numpy.zeros', 'np.zeros', (['(100)'], {}), '(100)\n', (297, 302), True, 'import numpy as np\n'), ((361, 393), 'numpy.random.normal', 'np.random.normal', (['(-2 * n_data)', '(1)'], {}), '(-2 * n_data, 1)\n', (377, 393), True, 'import numpy as np\n'), ((431, 443), 'numpy.ones', 'np.ones', (['(100)'], {}), '(100)\n', (438, 443), True, 'import numpy as np\n'), ((500, 519), 'numpy.vstack', 'np.vstack', (['(x0, x1)'], {}), '((x0, x1))\n', (509, 519), True, 'import numpy as np\n'), ((575, 594), 'numpy.hstack', 'np.hstack', (['(y0, y1)'], {}), '((y0, y1))\n', (584, 594), True, 'import numpy as np\n'), ((643, 705), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x[:, 0]', 'x[:, 1]'], {'c': 'y', 's': '(100)', 'lw': '(0)', 'cmap': '"""RdYlGn"""'}), "(x[:, 0], x[:, 1], c=y, s=100, lw=0, cmap='RdYlGn')\n", (654, 705), True, 'import matplotlib.pyplot as plt\n'), ((706, 716), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (714, 716), True, 'import matplotlib.pyplot as plt\n'), ((725, 760), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'x.shape'], {}), '(tf.float32, x.shape)\n', (739, 760), True, 'import tensorflow as tf\n'), ((782, 815), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'y.shape'], {}), '(tf.int32, y.shape)\n', (796, 815), True, 'import tensorflow as tf\n'), ((846, 883), 'tensorflow.layers.dense', 'tf.layers.dense', (['tf_x', '(10)', 'tf.nn.relu'], {}), '(tf_x, 10, tf.nn.relu)\n', (861, 883), True, 'import tensorflow as tf\n'), ((893, 915), 'tensorflow.layers.dense', 'tf.layers.dense', (['l1', '(2)'], {}), '(l1, 2)\n', (908, 915), True, 'import tensorflow as tf\n'), ((924, 990), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'labels': 'tf_y', 'logits': 'output'}), '(labels=tf_y, logits=output)\n', (962, 990), True, 'import tensorflow as tf\n'), ((1135, 1188), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': '(0.05)'}), '(learning_rate=0.05)\n', (1168, 1188), True, 'import tensorflow as tf\n'), ((1234, 1246), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1244, 1246), True, 'import tensorflow as tf\n'), ((1354, 1363), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (1361, 1363), True, 'import matplotlib.pyplot as plt\n'), ((1793, 1803), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (1801, 1803), True, 'import matplotlib.pyplot as plt\n'), ((1804, 1814), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1812, 1814), True, 'import matplotlib.pyplot as plt\n'), ((1266, 1299), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1297, 1299), True, 'import tensorflow as tf\n'), ((1301, 1333), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (1331, 1333), True, 'import tensorflow as tf\n'), ((1561, 1570), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (1568, 1570), True, 'import matplotlib.pyplot as plt\n'), ((1671, 1756), 'matplotlib.pyplot.text', 'plt.text', (['(1.5)', '(-4)', "('Accuracy = %.2f' % acc)"], {'fontdict': "{'size': 20, 'color': 'red'}"}), "(1.5, -4, 'Accuracy = %.2f' % acc, fontdict={'size': 20, 'color':\n 'red'})\n", (1679, 1756), True, 'import matplotlib.pyplot as plt\n'), ((1760, 1774), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (1769, 1774), True, 'import matplotlib.pyplot as plt\n'), ((1059, 1075), 'tensorflow.squeeze', 'tf.squeeze', (['tf_y'], {}), '(tf_y)\n', (1069, 1075), True, 'import tensorflow as tf\n'), ((1091, 1116), 'tensorflow.argmax', 'tf.argmax', (['output'], {'axis': '(1)'}), '(output, axis=1)\n', (1100, 1116), True, 'import tensorflow as tf\n')]
import numpy as N import win32com.client # generate and import apogee ActiveX module apogee_module = win32com.client.gencache.EnsureModule( '{A2882C73-7CFB-11D4-9155-0060676644C1}', 0, 1, 0) if apogee_module is None: raise ImportError # prevent plugin from being imported from win32com.client import constants as Constants from traits.api import Str, Int, Enum, Float, Bool from traitsui.api import View, Item from Camera import Camera, CameraError class ApogeeCam(Camera): '''Apogee Alta or Ascent camera''' plugin_info = { 'name': 'Apogee', 'description': 'Apogee Alta or Ascent camera', 'author': '<NAME>', 'copyright year': '2011', } camera_num2 = Int(0) camera_model = Str() driver_version = Str() interface = Enum('usb', 'net') expose_time = Float(0.05) open_shutter = Bool(True) view = View( Item('interface'), Item('camera_number'), Item('camera_num2'), Item('expose_time'), Item('open_shutter')) def __init__(self, **traits): super(ApogeeCam, self).__init__(camera_number=0, **traits) self._cam = win32com.client.Dispatch('Apogee.Camera2') self._interface_constants = { 'usb': Constants.Apn_Interface_USB, 'net': Constants.Apn_Interface_NET} self._reverse_constants = dict((v, k) for k, v in self._interface_constants.iteritems()) self._buffer = None def open(self): self._cam.Init(self._interface_constants[self.interface], self.camera_number, self.camera_num2, 0) self._buffer = N.zeros(self.roi[-1:-3:-1], dtype=N.uint16) def close(self): self._cam.Close() def query_frame(self, expose_time=None, open_shutter=None): """ Start an exposure and wait for it to finish. Pass @expose_time or @open_shutter to override the camera object's default parameters. """ if expose_time is None: expose_time = self.expose_time if open_shutter is None: open_shutter = self.open_shutter try: self._cam.Expose(expose_time, open_shutter) while self._cam.ImagingStatus != Constants.Apn_Status_ImageReady: pass self._cam.GetImage(self._buffer.ctypes.data) finally: if self._cam.ImagingStatus < 0: self.reset() self.frame = N.copy(self._buffer) def choose_camera(self): discover = win32com.client.Dispatch('Apogee.CamDiscover') discover.DlgCheckUsb = True discover.ShowDialog(True) if not discover.ValidSelection: raise ValueError('No camera selected') self.interface = self._reverse_constants[discover.SelectedInterface] self.camera_number = discover.SelectedCamIdOne self.camera_num2 = discover.SelectedCamIdTwo def reset(self): self._cam.ResetState() # if error status persists, raise an exception if self._cam.ImagingStatus < 0: raise CameraError('Error not cleared by reset', self.camera_number) def _resolution_default(self): return self._cam.ImagingColumns, self._cam.ImagingRows def _camera_model_default(self): return self._cam.CameraModel def _driver_version_default(self): return self._cam.DriverVersion def _id_string_default(self): return 'Apogee {} Driver version: {}'.format( self.camera_model, self.driver_version) def _roi_default(self): return (self._cam.RoiStartX, self._cam.RoiStartY, self._cam.RoiPixelsH, self._cam.RoiPixelsV) def _roi_changed(self, value): x, y, w, h = value self._cam.RoiStartX = x self._cam.RoiStartY = y self._cam.RoiPixelsH = w self._cam.RoiPixelsV = h self._buffer = N.zeros((h, w), dtype=N.uint16)
[ "traits.api.Float", "Camera.CameraError", "numpy.copy", "traits.api.Int", "numpy.zeros", "traits.api.Bool", "traits.api.Str", "traitsui.api.Item", "traits.api.Enum" ]
[((715, 721), 'traits.api.Int', 'Int', (['(0)'], {}), '(0)\n', (718, 721), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((741, 746), 'traits.api.Str', 'Str', ([], {}), '()\n', (744, 746), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((768, 773), 'traits.api.Str', 'Str', ([], {}), '()\n', (771, 773), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((790, 808), 'traits.api.Enum', 'Enum', (['"""usb"""', '"""net"""'], {}), "('usb', 'net')\n", (794, 808), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((827, 838), 'traits.api.Float', 'Float', (['(0.05)'], {}), '(0.05)\n', (832, 838), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((858, 868), 'traits.api.Bool', 'Bool', (['(True)'], {}), '(True)\n', (862, 868), False, 'from traits.api import Str, Int, Enum, Float, Bool\n'), ((895, 912), 'traitsui.api.Item', 'Item', (['"""interface"""'], {}), "('interface')\n", (899, 912), False, 'from traitsui.api import View, Item\n'), ((922, 943), 'traitsui.api.Item', 'Item', (['"""camera_number"""'], {}), "('camera_number')\n", (926, 943), False, 'from traitsui.api import View, Item\n'), ((953, 972), 'traitsui.api.Item', 'Item', (['"""camera_num2"""'], {}), "('camera_num2')\n", (957, 972), False, 'from traitsui.api import View, Item\n'), ((982, 1001), 'traitsui.api.Item', 'Item', (['"""expose_time"""'], {}), "('expose_time')\n", (986, 1001), False, 'from traitsui.api import View, Item\n'), ((1011, 1031), 'traitsui.api.Item', 'Item', (['"""open_shutter"""'], {}), "('open_shutter')\n", (1015, 1031), False, 'from traitsui.api import View, Item\n'), ((1642, 1685), 'numpy.zeros', 'N.zeros', (['self.roi[-1:-3:-1]'], {'dtype': 'N.uint16'}), '(self.roi[-1:-3:-1], dtype=N.uint16)\n', (1649, 1685), True, 'import numpy as N\n'), ((2468, 2488), 'numpy.copy', 'N.copy', (['self._buffer'], {}), '(self._buffer)\n', (2474, 2488), True, 'import numpy as N\n'), ((3948, 3979), 'numpy.zeros', 'N.zeros', (['(h, w)'], {'dtype': 'N.uint16'}), '((h, w), dtype=N.uint16)\n', (3955, 3979), True, 'import numpy as N\n'), ((3097, 3158), 'Camera.CameraError', 'CameraError', (['"""Error not cleared by reset"""', 'self.camera_number'], {}), "('Error not cleared by reset', self.camera_number)\n", (3108, 3158), False, 'from Camera import Camera, CameraError\n')]
""" The pypositioning.system.load_files.py module contains functions allowing to load measurement results from various types of files. The currently available functions allow to load **.psd** files collected with TI Packet Sniffer and results obtained using IONIS localization system. Copyright (C) 2020 <NAME> """ import numpy as np import pandas as pd def load_ionis_file(filepath, normalize_ts=False): """ Load measurement file from IONIS system Parameters ---------- filepath: str path to measurement file normalize_ts: bool if True set ts base to 0 (rounds ts to full seconds) Returns ------- ble_df: DataFrame data frame with ble rssi results (contains whole ble packets received by the anchors) uwb_df: Dataframe data frame with uwb-based toa results ts_0: float timestamp of the first received packet """ # open psd file f = open(filepath, 'r') ble_res = [] uwb_res = [] # split and decode each line for line in f: s = line.split('\t') # if int(s[3]) == 19: # ... # the packet is empty if int(s[5]) * 12 + int(s[6]) * 8 + 19 > int(s[3]): print("faulty packet, ts: " + s[0]) else: # get ble and uwb packets number ble_n = int(s[5]) uwb_n = int(s[6]) # for each ble packet for k in range(ble_n): bps = 6 + k * 8 # append array [ts, an_id, an_sqn, an_pressure, BLE packet contents] ble_res.append(s[:3] + [s[4]] + s[bps + 1:bps + 9]) for j in range(uwb_n): ups = 6 + ble_n * 8 + j * 4 # append array [ts, an_id, an_sqn, an_pressure, BLE packet contents] uwb_res.append(s[:3] + s[ups + 1:ups + 5]) # reshape the arrays ble_res = np.array(ble_res) uwb_res = np.array(uwb_res) if ble_res.size > 0: ble_df = pd.DataFrame(data=ble_res, columns=['ts', 'an_id', 'an_sqn', 'an_p', 'rx_id', 'tag_id', 'ble_ts', 'rssi', 'pres', 'volt', 'steps', 'alert']) ble_df = ble_df.astype(dtype={'ts': 'float', 'an_id': 'int32', 'an_sqn': 'int32', 'an_p': 'int32', 'rx_id': 'int32', 'tag_id': 'int32', 'ble_ts': 'int32', 'rssi': 'float', 'pres': 'int32', 'volt': 'int32', 'steps': 'int32', 'alert': 'int32'}) ble_df.loc[ble_df['rssi'] == 0, 'rssi'] = np.nan else: ble_df = None if uwb_res.size > 0: uwb_df = pd.DataFrame(data=uwb_res, columns=['ts', 'an_id', 'an_sqn', 'rx_id', 'tag_id', 'uwb_sqn', 'toa']) uwb_df = uwb_df.astype({'ts': 'float', 'an_id': 'int32', 'an_sqn': 'int32', 'rx_id': 'int32', 'tag_id': 'int32', 'uwb_sqn': 'int32', 'toa': 'float'}) uwb_df['toa'] = uwb_df['toa'].values * 15.65e-12 else: uwb_df = None if normalize_ts: ts_min = 0 if (uwb_res.size > 0 and ble_res.size > 0): ts_min = np.minimum(ble_df.ts.min(), uwb_df.ts.min()) ble_df.ts = np.rint((ble_df.ts - ts_min).values / 1000) uwb_df.ts = np.rint((uwb_df.ts - ts_min).values / 1000) elif uwb_res.size > 0: ts_min = uwb_df.ts.min() uwb_df.ts = np.rint((uwb_df.ts - ts_min).values / 1000) print('no ble results in a file - normalizing uwb ts only') elif ble_res.size > 0: ts_min = ble_df.ts.min() ble_df.ts = np.rint((ble_df.ts - ts_min).values / 1000) print('no uwb results in a file - normalizing ble ts only') return ble_df, uwb_df, ts_min / 1000 return ble_df, uwb_df, 0 def synchronize_toa_ionis(m_uwb, an, an_r): """ Synchronize toa values according to IONIS synchronization scheme Parameters ---------- m_uwb: DataFrame data frame with uwb measurement results an: ndarray anchor nodes coordinates [id,x,y,z] an_r: ndarray reference anchor node coordinates [x,y,z] Returns ------- m_uwb: DataFrame m_uwb data frame with toa values synchronized """ # initialize array with empty rows for missing anchors an_f = np.empty((int(an[:, 0].max()), 3)) an_f[:] = np.NaN for a in an: an_f[int(a[0]) - 1, :] = a[1:] m_uwb["toa"] = m_uwb.toa + np.linalg.norm(an_f[m_uwb.an_id - 1] - an_r, axis=1) / 3e8 return m_uwb def distribute_packets_ionis(df): """ Distribute packets that could be delayed and came to the system controller at the same time Parameters ---------- df: DataFrame dataframe containing measurement results with timestamps and sqns. It must include columns: [ts, an_sqn, an_id]. Timestamp must be rounded to full seconds (might be float) Returns ------- df_d: DataFrame dataframe, where the packet ts were corrected to the reception times, which would occur without the delay """ # copy the dataframe df_d = df.copy() # get unique anchor ids anchor_ids = df.an_id.unique() # for each anchor search for delayed packets and distribute them for an_id in anchor_ids: mask_an_id = df.an_id == an_id uts = df[mask_an_id].ts.unique() for i in range(uts.size): ts = df[mask_an_id & (df.ts == uts[i])] an_sqns = ts.an_sqn.unique() # if the results if an_sqns.size > 1: # find last properly received packet pi = 1 while df[mask_an_id & (df.ts == uts[i - pi])].an_sqn.unique().size > 1: pi = pi + 1 prev_ts = uts[i - pi] prev_an_sqn = df_d[(df_d.an_id == an_id) & (df_d.ts == uts[i - pi])].an_sqn.values[0] # correct timestamps tse = distribute_packet_batch(ts.ts, ts.an_sqn, prev_ts, prev_an_sqn) df_d.ts[(df_d.an_id == an_id) & (df_d.ts == uts[i])] = tse return df_d def distribute_packet_batch(ts, an_sqn, ts_p, an_sqn_p): """Correct timestamps of the packets, which were received in a batch due to delay introduced in the WiFi interface. Parameters ---------- ts: array_like timestamps of packets received in a batch [in seconds] an_sqn: array_like anchor sqns of packets received in a batch [0-255] ts_p: float the timestamp of the last properly received packet an_sqn_p: int the anchor sqn of the last properly received packet Returns ------- tse: ndarray timestamps corrected to the reception times, which would occur without the delay """ # empty list for collected packets tse = [] for t, ans in zip(ts, an_sqn): # check if anchor sqn is higher than the previous one or the counter has turned if ans >= an_sqn_p: te = ts_p + ans - an_sqn_p else: te = ts_p + (256 + ans - an_sqn_p) tse.append(te) return np.array(tse) def rearrange_timestamps_ble(m_ble, tag_id, packet_rate, distribute_delayed=False): """Change timestamps values so that the consecutive packets sent at different times do not have the same ts. The timestamps are changed as follows: \ new_ts = ts + 1/packet_rate * N \ where N is the sequential number of BLE packet inside WiFi frame. Parameters ---------- m_ble: DataFrame dataframe with measurement results tag_id: int tag identifier packet_rate: float packet rate set in the systems [packets per second] distribute_delayed: bool, optional if True call distribute_packets_ionis Returns ------- m_b: DataFrame Input m_ble DataFrame with rearranged timestamps. """ # filter tag id m_b = m_ble[m_ble.tag_id == tag_id] if distribute_delayed: # distribute delayed packets m_b = distribute_packets_ionis(m_b) # group and bin by BLE ts grouped = m_b.groupby(by=['ts', 'an_id', 'an_sqn', 'tag_id']) bins = [] for n, g in grouped: bins.append(pd.cut(g.ble_ts, packet_rate, labels=False)) m_b['bin'] = pd.concat(bins) # group and average power per BLE receiver grouped = m_b.groupby(by=['ts', 'an_id', 'tag_id', 'bin']) m_b = grouped.agg({'rssi': log_mean}) m_b = m_b.reset_index() # get ts with 1/rate m_b['ts'] = m_b['ts'] + m_b['bin'] / packet_rate return m_b def rearrange_timestamps_uwb(m_uwb, tag_id, packet_rate, distribute_delayed=False): """Change timestamps values so that the consecutive packets sent at different times do not have the same ts. The timestamps are changed as follows: \ new_ts = ts + 1/packet_rate * N \ where N is the sequential number of UWB packet inside WiFi frame. Parameters ---------- m_uwb: DataFrame dataframe with measurement results tag_id: int tag identifier packet_rate: float packet rate set in the systems [packets per second] distribute_delayed: bool, optional if True call distribute_packets_ionis Returns ------- m_u: DataFrame Input m_uwb DataFrame with rearranged timestamps. """ # filter tag id m_u = m_uwb[m_uwb.tag_id == tag_id].copy() if distribute_delayed: # distribute delayed packets m_u = distribute_packets_ionis(m_u) # group and bin by reception ts (in this case toa value) grouped = m_u.groupby(by=['ts', 'an_sqn']) bins = [] for n, g in grouped: bins.append(pd.cut(g.toa, packet_rate, labels=False)) m_u['bin'] = pd.concat(bins) # get ts with 1/rate m_u['ts'] = m_u['ts'] + m_u['bin'] / packet_rate return m_u def measurement_array(m_df, mtype, data_frame=False): """Create measurement array [ts, meas values...] Parameters ---------- m_df: DataFrame measurement dataframe mtype: str measurement type: 'ble', 'uwb' data_frame: bool return dataframe, None tuple if true Returns ------- array: ndarray measurement array in format [ts, mx, my, mz ...] an_ids: ndarray anchor_ids: [x,y,z ...] df: DataFrame, optional measurement array stored as dataframe (returned when data_frame==True) """ if mtype == 'uwb': m = m_df[['ts', 'uwb_sqn', 'toa', 'an_id']].copy() elif mtype == 'ble': m = m_df[['ts', 'rssi', 'an_id']].copy() else: print("Unknown type") return None, None df = None # get unique anchor ids anchor_ids = np.sort(m.an_id.unique()) # create array if mtype == 'uwb': for i in anchor_ids: mp = m[m.an_id == i].rename(columns={'toa': 'toa_' + str(i)}).drop(columns='an_id') if df is None: df = mp else: df = df.merge(mp, how='outer', on=['ts', 'uwb_sqn']) df = df.sort_values(['ts', 'uwb_sqn'], ascending=[True, True]).reset_index(drop=True) df = df.drop(columns='uwb_sqn') elif mtype == 'ble': for i in anchor_ids: mp = m[m.an_id == i].rename(columns={'rssi': 'rssi_' + str(i)}).drop(columns='an_id') if df is None: df = mp else: df = df.merge(mp, how='outer', on=['ts']) df = df.sort_values(['ts'], ascending=[True]).reset_index(drop=True) array = df.values anchor_ids = np.r_[0, anchor_ids] # add 0 for ts column if data_frame: return array, anchor_ids, df return array, anchor_ids def hybrid_array(dfs, on='ts', how='outer'): """ Create a hybrid measurement array Parameters ---------- dfs: iterable DataFrames which would be merged into a hybrid frame on: str, default: 'ts' on which column the frames will be merged how: str, default: 'outer' how the frames will be merged Returns ------- m: ndarray measurement array in format [ts, results...] m_type: ndarray type of data in each of the columns e.g. ['ts', 'rssi', 'toa] m_id: ndarray anchor ids of the columns df. Default id is 0 - for 'ts' and other parameter not associated with any particular anchor. df: DataFrame hybrid DataFrame """ df = dfs[0] for d in dfs[1:]: df = df.merge(d, on=on, how=how) m_type= np.array([x.split('_')[0] for x in df.columns[:]]) m_id= np.array([x.split('_')[1] if '_' in x else 0 for x in df.columns[:] ]).astype('int') return df.values, m_type, m_id, df def log_mean(v_db, axis=None): """ Calculate average for values in log scale by converting to linear and back to log. Parameters ---------- v_db: ndarray values in log scale axis: {int, None}, optional axis along which the mean will be calculated Returns ------- avg: {ndarray, double} mean value """ v_lin = 10 ** (v_db / 10) # Power in mW l_mean = np.nanmean(v_lin, axis=axis) db_mean = 10 * np.log10(l_mean) return db_mean
[ "pandas.DataFrame", "pandas.cut", "numpy.rint", "numpy.array", "numpy.linalg.norm", "numpy.log10", "pandas.concat", "numpy.nanmean" ]
[((1886, 1903), 'numpy.array', 'np.array', (['ble_res'], {}), '(ble_res)\n', (1894, 1903), True, 'import numpy as np\n'), ((1918, 1935), 'numpy.array', 'np.array', (['uwb_res'], {}), '(uwb_res)\n', (1926, 1935), True, 'import numpy as np\n'), ((7188, 7201), 'numpy.array', 'np.array', (['tse'], {}), '(tse)\n', (7196, 7201), True, 'import numpy as np\n'), ((8358, 8373), 'pandas.concat', 'pd.concat', (['bins'], {}), '(bins)\n', (8367, 8373), True, 'import pandas as pd\n'), ((9834, 9849), 'pandas.concat', 'pd.concat', (['bins'], {}), '(bins)\n', (9843, 9849), True, 'import pandas as pd\n'), ((13234, 13262), 'numpy.nanmean', 'np.nanmean', (['v_lin'], {'axis': 'axis'}), '(v_lin, axis=axis)\n', (13244, 13262), True, 'import numpy as np\n'), ((1979, 2123), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'ble_res', 'columns': "['ts', 'an_id', 'an_sqn', 'an_p', 'rx_id', 'tag_id', 'ble_ts', 'rssi',\n 'pres', 'volt', 'steps', 'alert']"}), "(data=ble_res, columns=['ts', 'an_id', 'an_sqn', 'an_p',\n 'rx_id', 'tag_id', 'ble_ts', 'rssi', 'pres', 'volt', 'steps', 'alert'])\n", (1991, 2123), True, 'import pandas as pd\n'), ((2687, 2789), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'uwb_res', 'columns': "['ts', 'an_id', 'an_sqn', 'rx_id', 'tag_id', 'uwb_sqn', 'toa']"}), "(data=uwb_res, columns=['ts', 'an_id', 'an_sqn', 'rx_id',\n 'tag_id', 'uwb_sqn', 'toa'])\n", (2699, 2789), True, 'import pandas as pd\n'), ((13282, 13298), 'numpy.log10', 'np.log10', (['l_mean'], {}), '(l_mean)\n', (13290, 13298), True, 'import numpy as np\n'), ((3249, 3292), 'numpy.rint', 'np.rint', (['((ble_df.ts - ts_min).values / 1000)'], {}), '((ble_df.ts - ts_min).values / 1000)\n', (3256, 3292), True, 'import numpy as np\n'), ((3317, 3360), 'numpy.rint', 'np.rint', (['((uwb_df.ts - ts_min).values / 1000)'], {}), '((uwb_df.ts - ts_min).values / 1000)\n', (3324, 3360), True, 'import numpy as np\n'), ((4524, 4576), 'numpy.linalg.norm', 'np.linalg.norm', (['(an_f[m_uwb.an_id - 1] - an_r)'], {'axis': '(1)'}), '(an_f[m_uwb.an_id - 1] - an_r, axis=1)\n', (4538, 4576), True, 'import numpy as np\n'), ((8296, 8339), 'pandas.cut', 'pd.cut', (['g.ble_ts', 'packet_rate'], {'labels': '(False)'}), '(g.ble_ts, packet_rate, labels=False)\n', (8302, 8339), True, 'import pandas as pd\n'), ((9757, 9797), 'pandas.cut', 'pd.cut', (['g.toa', 'packet_rate'], {'labels': '(False)'}), '(g.toa, packet_rate, labels=False)\n', (9763, 9797), True, 'import pandas as pd\n'), ((3454, 3497), 'numpy.rint', 'np.rint', (['((uwb_df.ts - ts_min).values / 1000)'], {}), '((uwb_df.ts - ts_min).values / 1000)\n', (3461, 3497), True, 'import numpy as np\n'), ((3663, 3706), 'numpy.rint', 'np.rint', (['((ble_df.ts - ts_min).values / 1000)'], {}), '((ble_df.ts - ts_min).values / 1000)\n', (3670, 3706), True, 'import numpy as np\n')]
# A collection of various tools to help estimate and analyze the tail exponent. import pandas as pd import numpy as np import matplotlib.pyplot as plt from FatTailedTools.plotting import plot_survival_function from FatTailedTools.survival import get_survival_function def fit_alpha_linear(series, tail_start_mad=2.5, plot=True, return_loc=False): ''' Estimates the tail parameter by fitting a linear function to the log-log tail of the survival function. 'tail_start_mad' defines where the tail starts in terms of the mean absolute deviation (typically between 2-4 MADs). The estimated location of the Pareto (with the estimated tail exponent) will also re returned if 'return_loc' is True. ''' # Get survival function values if plot: survival, ax = plot_survival_function(series, tail_zoom=False) else: survival = get_survival_function(series) # Estimate tail start (= everything beyond 'tail_start_mad' mean absolute deviations) tail_start = get_tail_start(series, tail_start_mad) # Get tail survival_tail = np.log10(survival.loc[survival['Values'] >= tail_start].iloc[:-1]) # Fit the tail tail_fit = np.polyfit(survival_tail['Values'], survival_tail['P'], 1) lin_func = np.poly1d(tail_fit) # Get tail parameter and location/scale tail = -tail_fit[0] location = (1 - tail_fit[1]) / tail_fit[0] # Get MSE (mean squared error) mse_error = np.mean(np.square(np.subtract(lin_func(survival_tail['Values']), survival_tail['Values']))) # Plot the fit if plot: ax.plot(10**survival_tail['Values'], 10**lin_func(survival_tail['Values']), 'r'); ax.legend(['Fit (MSE = {:.2f})'.format(mse_error), 'Data']); plt.title('Tail exponent fitted to tail (alpha = {:.2f}, loc = {:.2f})'.format(tail, location)); # Construct result result = tail, location if return_loc else tail return result def get_tail_start(series, tail_start_mad): ''' Returns the start of the tail of 'series' based on 'tail_start_mad'. 'tail_start_mad' defines where the tail starts in terms of the mean absolute deviation (typically between 2-4 MADs). ''' return tail_start_mad * series.abs().mad() from scipy.stats import t def fit_alpha(series, plot=True): ''' Estimates the tail parameter by fitting a Studend-T to the data. If the passed data is from a one-sided distribution, it will first be mirrored at 0 to make it symmetrical. ''' # Is the data only one-sided? if (series.dropna() < 0).sum() * (series.dropna() > 0).sum() == 0: # ... then construct a two-sided distribution series = pd.concat([-series.dropna().abs(), series.dropna().abs()]) # Fit the distribution params = t.fit(series.dropna()) if plot: _, ax = plot_survival_function(series, distribution=(t, params)); plt.title('Tail exponent estimated from fitting (alpha = {:.2f})'.format(params[0])); return params[0] import seaborn as sns def fit_alpha_subsampling(series, frac=0.7, n_subsets=100, n_tail_start_samples=1, plot=True, return_loc=False): ''' Estimates the tail parameter by fitting a linear function to the log-log tail of the survival function. Uses 'n_subsets' subsamples to average results over subsets with a fraction 'frac' of samples kept. If return_loc is True, also returns where the tail of the distribution is assumed to start (using random subsampling with 'n_tail_start_samples' samples per subset). ''' # Set up lists _results_both = [] _results_left = [] _results_right = [] # Subsample and fit for subsample in [series.sample(frac=frac) for i in range(n_subsets)]: for tail_start_mad in np.random.normal(2.5, 0.5, n_tail_start_samples): _results_both.append(subsample.abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) _results_left.append(subsample.where(subsample < 0).abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) _results_right.append(subsample.where(subsample >= 0).abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) # Assemble into DataFrame alphas = pd.DataFrame.from_records(np.hstack([_results_both, _results_left, _results_right]), columns=pd.MultiIndex.from_product([['Both', 'Left', 'Right'], ['Tail Exponent', 'Location']])) # Plot if plot: fig, ax = plt.subplots(1, 3, figsize=(15, 5)) fig.suptitle('Tail exponents for {} with random subsamples'.format(series.name)) for idx, name in enumerate(['Both', 'Left', 'Right']): sns.histplot(data=alphas[(name, 'Tail Exponent')], color=['C7', 'C3', 'C0'][idx], stat='probability', bins=10, ax=ax[idx]); ax[idx].set_title('Median = {:.1f} | Mean = {:.1f} ({})'.format(alphas[(name, 'Tail Exponent')].median(), alphas[(name, 'Tail Exponent')].mean(), ['both', 'left', 'right'][idx])); ax[idx].set_xlabel('Tail exponent ({})'.format(['both', 'left', 'right'][idx])); plt.show(); # Also plot locations if return_loc if return_loc: fig, ax = plt.subplots(1, 3, figsize=(15, 5)) fig.suptitle('Locations for {} with random subsamples'.format(series.name)) for idx, name in enumerate(['Both', 'Left', 'Right']): sns.histplot(data=alphas[(name, 'Location')], color=['C7', 'C3', 'C0'][idx], stat='probability', bins=10, ax=ax[idx]); ax[idx].set_title('Median = {:.1f} | Mean = {:.1f} ({})'.format(alphas[(name, 'Location')].median(), alphas[(name, 'Location')].mean(), ['both', 'left', 'right'][idx])); ax[idx].set_xlabel('Location ({})'.format(['both', 'left', 'right'][idx])); plt.show(); # Construct result result = alphas if return_loc else alphas.loc[:, (slice(None), 'Tail Exponent')] return result
[ "numpy.poly1d", "seaborn.histplot", "matplotlib.pyplot.show", "numpy.polyfit", "FatTailedTools.survival.get_survival_function", "numpy.hstack", "pandas.MultiIndex.from_product", "FatTailedTools.plotting.plot_survival_function", "numpy.random.normal", "numpy.log10", "matplotlib.pyplot.subplots" ]
[((1093, 1159), 'numpy.log10', 'np.log10', (["survival.loc[survival['Values'] >= tail_start].iloc[:-1]"], {}), "(survival.loc[survival['Values'] >= tail_start].iloc[:-1])\n", (1101, 1159), True, 'import numpy as np\n'), ((1199, 1257), 'numpy.polyfit', 'np.polyfit', (["survival_tail['Values']", "survival_tail['P']", '(1)'], {}), "(survival_tail['Values'], survival_tail['P'], 1)\n", (1209, 1257), True, 'import numpy as np\n'), ((1273, 1292), 'numpy.poly1d', 'np.poly1d', (['tail_fit'], {}), '(tail_fit)\n', (1282, 1292), True, 'import numpy as np\n'), ((795, 842), 'FatTailedTools.plotting.plot_survival_function', 'plot_survival_function', (['series'], {'tail_zoom': '(False)'}), '(series, tail_zoom=False)\n', (817, 842), False, 'from FatTailedTools.plotting import plot_survival_function\n'), ((872, 901), 'FatTailedTools.survival.get_survival_function', 'get_survival_function', (['series'], {}), '(series)\n', (893, 901), False, 'from FatTailedTools.survival import get_survival_function\n'), ((2873, 2929), 'FatTailedTools.plotting.plot_survival_function', 'plot_survival_function', (['series'], {'distribution': '(t, params)'}), '(series, distribution=(t, params))\n', (2895, 2929), False, 'from FatTailedTools.plotting import plot_survival_function\n'), ((3831, 3879), 'numpy.random.normal', 'np.random.normal', (['(2.5)', '(0.5)', 'n_tail_start_samples'], {}), '(2.5, 0.5, n_tail_start_samples)\n', (3847, 3879), True, 'import numpy as np\n'), ((4419, 4476), 'numpy.hstack', 'np.hstack', (['[_results_both, _results_left, _results_right]'], {}), '([_results_both, _results_left, _results_right])\n', (4428, 4476), True, 'import numpy as np\n'), ((4638, 4673), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(15, 5)'}), '(1, 3, figsize=(15, 5))\n', (4650, 4673), True, 'import matplotlib.pyplot as plt\n'), ((5299, 5309), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5307, 5309), True, 'import matplotlib.pyplot as plt\n'), ((4486, 4576), 'pandas.MultiIndex.from_product', 'pd.MultiIndex.from_product', (["[['Both', 'Left', 'Right'], ['Tail Exponent', 'Location']]"], {}), "([['Both', 'Left', 'Right'], ['Tail Exponent',\n 'Location']])\n", (4512, 4576), True, 'import pandas as pd\n'), ((4869, 4994), 'seaborn.histplot', 'sns.histplot', ([], {'data': "alphas[name, 'Tail Exponent']", 'color': "['C7', 'C3', 'C0'][idx]", 'stat': '"""probability"""', 'bins': '(10)', 'ax': 'ax[idx]'}), "(data=alphas[name, 'Tail Exponent'], color=['C7', 'C3', 'C0'][\n idx], stat='probability', bins=10, ax=ax[idx])\n", (4881, 4994), True, 'import seaborn as sns\n'), ((5418, 5453), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(15, 5)'}), '(1, 3, figsize=(15, 5))\n', (5430, 5453), True, 'import matplotlib.pyplot as plt\n'), ((6090, 6100), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6098, 6100), True, 'import matplotlib.pyplot as plt\n'), ((5664, 5783), 'seaborn.histplot', 'sns.histplot', ([], {'data': "alphas[name, 'Location']", 'color': "['C7', 'C3', 'C0'][idx]", 'stat': '"""probability"""', 'bins': '(10)', 'ax': 'ax[idx]'}), "(data=alphas[name, 'Location'], color=['C7', 'C3', 'C0'][idx],\n stat='probability', bins=10, ax=ax[idx])\n", (5676, 5783), True, 'import seaborn as sns\n')]
import types import warnings from collections.abc import Iterable from inspect import getfullargspec import numpy as np class _DatasetApply: """ Helper class to apply function to `pysprint.core.bases.dataset.Dataset` objects. """ def __init__( self, obj, func, axis=None, args=None, kwargs=None ): self.obj = obj self.args = args or () self.kwargs = kwargs or {} self.f = func self.axis = axis if self.axis == "x" or self.axis == 0: self.target = "x" elif self.axis == "y" or self.axis == 1: self.target = "y" else: raise ValueError("Axis must be 'x', 'y', '0' or '1'.") self.shape = len(getattr(self.obj, self.target)) def perform(self): """ Apply the specified function. """ if isinstance(self.f, str): func = getattr(self.obj, self.f) sig = getfullargspec(func) if "axis" in sig.args: self.kwargs["axis"] = self.axis # Let's assume we don't mess up the shape internally func(*self.args, **self.kwargs) return self.obj # we need to return this because of `inplacify` deco. elif isinstance(self.f, np.ufunc): target = getattr(self.obj, self.target) retval = self.f(target, *self.args, **self.kwargs) value = self._validate(retval) setattr(self.obj, self.target, value) if self.target == "y": setattr(self.obj, "y_norm", value) return value elif isinstance(self.f, types.FunctionType): sig = getfullargspec(self.f) if "axis" in sig.args: self.kwargs["axis"] = self.axis # we can safely vectorize it here self.f = np.vectorize(self.f) target = getattr(self.obj, self.target) retval = self.f(target, *self.args, **self.kwargs) value = self._validate(retval) setattr(self.obj, self.target, value) if self.target == "y": setattr(self.obj, "y_norm", value) return value def _validate(self, val): if isinstance(val, (Iterable, np.ndarray)): val = np.asarray(val, dtype=np.float64) if val.ndim != 1: val = np.concatenate(val).ravel() warnings.warn("Function return value was flattened.") if len(val) != len(np.unique(val)): if len(np.unique(val)) == self.shape: return val else: if self.target == "x": raise ValueError( f"Function returned duplicated values which is not allowed when" " modifying the x axis. After filtering to unique values " f"a {len(np.unique(val))}-length array was produced, " f"but {self.shape} was expected." ) return val if len(val) != self.shape: retval = self._broadcast(val) return retval return val else: raise TypeError("Function should return a number or Iterable type.") def _broadcast(self, val): if len(val) > self.shape: return val[:self.shape] elif len(val) < self.shape: if not self.shape % len(val) == 0: raise ValueError("Cannot broadcast safely to the desired shape.") else: return np.repeat(val, (self.shape % len(val)))
[ "numpy.vectorize", "inspect.getfullargspec", "numpy.concatenate", "numpy.asarray", "warnings.warn", "numpy.unique" ]
[((1015, 1035), 'inspect.getfullargspec', 'getfullargspec', (['func'], {}), '(func)\n', (1029, 1035), False, 'from inspect import getfullargspec\n'), ((2363, 2396), 'numpy.asarray', 'np.asarray', (['val'], {'dtype': 'np.float64'}), '(val, dtype=np.float64)\n', (2373, 2396), True, 'import numpy as np\n'), ((2494, 2547), 'warnings.warn', 'warnings.warn', (['"""Function return value was flattened."""'], {}), "('Function return value was flattened.')\n", (2507, 2547), False, 'import warnings\n'), ((1748, 1770), 'inspect.getfullargspec', 'getfullargspec', (['self.f'], {}), '(self.f)\n', (1762, 1770), False, 'from inspect import getfullargspec\n'), ((1921, 1941), 'numpy.vectorize', 'np.vectorize', (['self.f'], {}), '(self.f)\n', (1933, 1941), True, 'import numpy as np\n'), ((2580, 2594), 'numpy.unique', 'np.unique', (['val'], {}), '(val)\n', (2589, 2594), True, 'import numpy as np\n'), ((2450, 2469), 'numpy.concatenate', 'np.concatenate', (['val'], {}), '(val)\n', (2464, 2469), True, 'import numpy as np\n'), ((2620, 2634), 'numpy.unique', 'np.unique', (['val'], {}), '(val)\n', (2629, 2634), True, 'import numpy as np\n'), ((3006, 3020), 'numpy.unique', 'np.unique', (['val'], {}), '(val)\n', (3015, 3020), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 28 13:22:41 2022 @author: sampasmann """ import numpy as np from time import process_time def reeds_data(Nx=1000, LB=-8.0, RB=8.0): G = 1 # number of energy groups sigt = np.empty((Nx,G)) sigs = np.empty((Nx,G,G)) source = np.empty((Nx,G)) dx = (RB-LB)/Nx xspan = np.linspace(LB+dx/2, RB-dx/2, Nx) count = 0 for x in xspan: if (x < -6): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 0.0 elif (-6 < x) and (x < -5): sigt[count,:] = 1.0 sigs[count,:] = 0.9 source[count,:] = 1.0 elif (-5 < x < -3): #vacuum region 1 sigt[count,:] = 0.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (-3 < x < -2): sigt[count,:] = 5.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (-2 < x < 2): sigt[count,:] = 50.0 sigs[count,:,:] = 0.0 source[count,:] = 50.0 elif (2 < x < 3): sigt[count,:] = 5.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (3 < x < 5): # vacuum region 2 sigt[count,:] = 0.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (5 < x < 6): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 1.0 elif (6 < x): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 0.0 count += 1 siga = (sigt - sigs) return sigt, sigs, siga, source, G if __name__ == "__main__": """ start = process_time() sigt, sigs, siga, source, G = reeds_data(1) stop = process_time() time1 = stop-start print("Elapsed time with Compliation:", time1) """ start = process_time() sigt, sigs, siga, source, G = reeds_data(100) stop = process_time() time2 = stop-start #print("Elapsed time After Compliation:", time2) # print("A {}x speed up".format(round(time1/time2)))
[ "numpy.empty", "time.process_time", "numpy.linspace" ]
[((251, 268), 'numpy.empty', 'np.empty', (['(Nx, G)'], {}), '((Nx, G))\n', (259, 268), True, 'import numpy as np\n'), ((279, 299), 'numpy.empty', 'np.empty', (['(Nx, G, G)'], {}), '((Nx, G, G))\n', (287, 299), True, 'import numpy as np\n'), ((311, 328), 'numpy.empty', 'np.empty', (['(Nx, G)'], {}), '((Nx, G))\n', (319, 328), True, 'import numpy as np\n'), ((360, 401), 'numpy.linspace', 'np.linspace', (['(LB + dx / 2)', '(RB - dx / 2)', 'Nx'], {}), '(LB + dx / 2, RB - dx / 2, Nx)\n', (371, 401), True, 'import numpy as np\n'), ((1922, 1936), 'time.process_time', 'process_time', ([], {}), '()\n', (1934, 1936), False, 'from time import process_time\n'), ((1998, 2012), 'time.process_time', 'process_time', ([], {}), '()\n', (2010, 2012), False, 'from time import process_time\n')]
# -*- coding: utf-8 -*- """ Created on Wed Feb 6 21:52:54 2019 @author: USER """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn as sk from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, roc_auc_score,f1_score import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from utilities import load_census_data from fairness_metrics import computeEDFforData from DNN_model import NeuralNet,training_fair_model #The function below ensures that we seed all random generators with the same value to get reproducible results def set_random_seed(state=1): gens = (np.random.seed, torch.manual_seed, torch.cuda.manual_seed) for set_state in gens: set_state(state) RANDOM_STATE = 1 set_random_seed(RANDOM_STATE) #%% data loading and pre-processing # load the train dataset X, y, S = load_census_data('data/adult.data',1) # Define all the "intersectional groups" to maintain stochastic update of p(y|S) correctly among different batches intersectionalGroups = np.unique(S,axis=0) # all intersecting groups, i.e. black-women, white-man etc # load the test dataset test_X, test_y, test_S = load_census_data('data/adult.test',0) # scale/normalize train & test data and shuffle train data scaler = StandardScaler().fit(X) scale_df = lambda df, scaler: pd.DataFrame(scaler.transform(df), columns=df.columns, index=df.index) X = X.pipe(scale_df, scaler) test_X = test_X.pipe(scale_df, scaler) X, y, S = sk.utils.shuffle(X, y, S, random_state=0) X = X.values y = y.values S = S.values test_X = test_X.values test_y = test_y.values test_S = test_S.values X, dev_X, y, dev_y, S, dev_S = train_test_split(X, y, S, test_size=0.30,stratify=y, random_state=7) #%% # deep neural network using pytorch trainData = torch.from_numpy(X) trainLabel = torch.from_numpy(y.reshape((-1,1))) #devData = torch.from_numpy(devData) testData = torch.from_numpy(test_X) devData = torch.from_numpy(dev_X) # hyperparameters input_size = trainData.size()[1] hidden1 = 16 hidden2 = 16 hidden3 = 16 output_size = 1 num_epochs = 500 #burnIn = 50 stepSize = 0.1 learning_rate = 0.001 burnIn = 50 epsilonBase = torch.tensor(0.0) # To protect the 80%-rule in intersectional setting, set this variable to: - log(0.8) = 0.2231 #%% import sys sys.stdout=open("batch_DF_EPS0.txt","w") #%% training DNN model with fairness constraint # Train a fair classifier lamda = torch.tensor(0.01) # λ is ahyper-parameter that balances between the prediction loss and fairness. # Select λ for fair learning algorithms via rigorous grid search on the development set. See paper for details. DF_Model = training_fair_model(input_size,hidden1,hidden2,hidden3,output_size,learning_rate,num_epochs,trainData, trainLabel,S,intersectionalGroups,burnIn,stepSize,epsilonBase,lamda) #%% # Validate the model with torch.no_grad(): devData = Variable(devData.float()) predictProb = DF_Model(devData) predicted = ((predictProb>0.5).numpy()).reshape((-1,)) Accuracy = sum(predicted == dev_y)/len(dev_y) # Save results predictProb = (predictProb.numpy()).reshape((-1,)) print(f"DF classifier dev accuracy: {Accuracy: .3f}") aucScore = roc_auc_score(dev_y,predictProb) print(f"DF classifier dev ROC AUC: {aucScore: .3f}") nn_f1 = f1_score(dev_y,predicted) print(f"DF classifier dev F1 score: {nn_f1: .2f}") epsilon_hard,epsilon_soft,gamma_hard,gamma_soft,p_rule_hard,p_rule_soft = computeEDFforData(dev_S,predicted,predictProb,intersectionalGroups) print(f"DF classifier dev epsilon_hard: {epsilon_hard: .3f}") print(f"DF classifier dev epsilon_soft: {epsilon_soft: .3f}") print(f"DF classifier dev gamma_hard: {gamma_hard: .3f}") print(f"DF classifier dev gamma_soft: {gamma_soft: .3f}") print(f"DF classifier dev p_rule_hard: {p_rule_hard: .3f}") print(f"DF classifier dev p_rule_soft: {p_rule_soft: .3f}") #%% # Test the model with torch.no_grad(): testData = Variable(testData.float()) predictProb = DF_Model(testData) predicted = ((predictProb>0.5).numpy()).reshape((-1,)) Accuracy = sum(predicted == test_y)/len(test_y) # Save results predictProb = (predictProb.numpy()).reshape((-1,)) print(f"DF_Classifier accuracy: {Accuracy: .3f}") aucScore = roc_auc_score(test_y,predictProb) print(f"DF_Classifier ROC AUC: {aucScore: .3f}") nn_f1 = f1_score(test_y,predicted) print(f"DF_Classifier F1 score: {nn_f1: .2f}") epsilon_hard,epsilon_soft,gamma_hard,gamma_soft,p_rule_hard,p_rule_soft = computeEDFforData(test_S,predicted,predictProb,intersectionalGroups) print(f"DF_Classifier epsilon_hard: {epsilon_hard: .3f}") print(f"DF_Classifier epsilon_soft: {epsilon_soft: .3f}") print(f"DF_Classifier gamma_hard: {gamma_hard: .3f}") print(f"DF_Classifier gamma_soft: {gamma_soft: .3f}") print(f"DF_Classifier p_rule_hard: {p_rule_hard: .3f}") print(f"DF_Classifier p_rule_soft: {p_rule_soft: .3f}")
[ "torch.tensor", "sklearn.preprocessing.StandardScaler", "sklearn.model_selection.train_test_split", "utilities.load_census_data", "sklearn.metrics.roc_auc_score", "DNN_model.training_fair_model", "sklearn.metrics.f1_score", "fairness_metrics.computeEDFforData", "sklearn.utils.shuffle", "torch.no_grad", "numpy.unique", "torch.from_numpy" ]
[((971, 1009), 'utilities.load_census_data', 'load_census_data', (['"""data/adult.data"""', '(1)'], {}), "('data/adult.data', 1)\n", (987, 1009), False, 'from utilities import load_census_data\n'), ((1148, 1168), 'numpy.unique', 'np.unique', (['S'], {'axis': '(0)'}), '(S, axis=0)\n', (1157, 1168), True, 'import numpy as np\n'), ((1278, 1316), 'utilities.load_census_data', 'load_census_data', (['"""data/adult.test"""', '(0)'], {}), "('data/adult.test', 0)\n", (1294, 1316), False, 'from utilities import load_census_data\n'), ((1591, 1632), 'sklearn.utils.shuffle', 'sk.utils.shuffle', (['X', 'y', 'S'], {'random_state': '(0)'}), '(X, y, S, random_state=0)\n', (1607, 1632), True, 'import sklearn as sk\n'), ((1778, 1846), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y', 'S'], {'test_size': '(0.3)', 'stratify': 'y', 'random_state': '(7)'}), '(X, y, S, test_size=0.3, stratify=y, random_state=7)\n', (1794, 1846), False, 'from sklearn.model_selection import train_test_split\n'), ((1900, 1919), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (1916, 1919), False, 'import torch\n'), ((2041, 2065), 'torch.from_numpy', 'torch.from_numpy', (['test_X'], {}), '(test_X)\n', (2057, 2065), False, 'import torch\n'), ((2076, 2099), 'torch.from_numpy', 'torch.from_numpy', (['dev_X'], {}), '(dev_X)\n', (2092, 2099), False, 'import torch\n'), ((2300, 2317), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (2312, 2317), False, 'import torch\n'), ((2555, 2573), 'torch.tensor', 'torch.tensor', (['(0.01)'], {}), '(0.01)\n', (2567, 2573), False, 'import torch\n'), ((2806, 2998), 'DNN_model.training_fair_model', 'training_fair_model', (['input_size', 'hidden1', 'hidden2', 'hidden3', 'output_size', 'learning_rate', 'num_epochs', 'trainData', 'trainLabel', 'S', 'intersectionalGroups', 'burnIn', 'stepSize', 'epsilonBase', 'lamda'], {}), '(input_size, hidden1, hidden2, hidden3, output_size,\n learning_rate, num_epochs, trainData, trainLabel, S,\n intersectionalGroups, burnIn, stepSize, epsilonBase, lamda)\n', (2825, 2998), False, 'from DNN_model import NeuralNet, training_fair_model\n'), ((3376, 3409), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['dev_y', 'predictProb'], {}), '(dev_y, predictProb)\n', (3389, 3409), False, 'from sklearn.metrics import accuracy_score, roc_auc_score, f1_score\n'), ((3470, 3496), 'sklearn.metrics.f1_score', 'f1_score', (['dev_y', 'predicted'], {}), '(dev_y, predicted)\n', (3478, 3496), False, 'from sklearn.metrics import accuracy_score, roc_auc_score, f1_score\n'), ((3622, 3692), 'fairness_metrics.computeEDFforData', 'computeEDFforData', (['dev_S', 'predicted', 'predictProb', 'intersectionalGroups'], {}), '(dev_S, predicted, predictProb, intersectionalGroups)\n', (3639, 3692), False, 'from fairness_metrics import computeEDFforData\n'), ((4414, 4448), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['test_y', 'predictProb'], {}), '(test_y, predictProb)\n', (4427, 4448), False, 'from sklearn.metrics import accuracy_score, roc_auc_score, f1_score\n'), ((4505, 4532), 'sklearn.metrics.f1_score', 'f1_score', (['test_y', 'predicted'], {}), '(test_y, predicted)\n', (4513, 4532), False, 'from sklearn.metrics import accuracy_score, roc_auc_score, f1_score\n'), ((4654, 4725), 'fairness_metrics.computeEDFforData', 'computeEDFforData', (['test_S', 'predicted', 'predictProb', 'intersectionalGroups'], {}), '(test_S, predicted, predictProb, intersectionalGroups)\n', (4671, 4725), False, 'from fairness_metrics import computeEDFforData\n'), ((3040, 3055), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3053, 3055), False, 'import torch\n'), ((4077, 4092), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4090, 4092), False, 'import torch\n'), ((1385, 1401), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1399, 1401), False, 'from sklearn.preprocessing import StandardScaler\n')]
# -*- coding: utf-8 -*- """ Created on Thu May 2 13:42:37 2019 @author: <NAME> """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as cm from mpl_toolkits.mplot3d import Axes3D import cycler def spectral_decay(case = 4, vname = 'example_0', plot_type = 'val', save = False): ## Parameters & Settings # 0: Barbell # 1: Tree # 2: Gaussian Mix # 3: Hyperuniform Circle # 4: Hyperuniform Ellipse ## Parameters & Settings # case = 4 # 0: Barbell; 1: Tree; 2: Gaussian Mix; 3/4: Hyperuniform Circle/Ellipse # vname = 'example_0' # spectial tag for video file colormap = cm.viridis # cmap for viz # plot_type = 'val' # 'vec': right singular vec embed; 'val': singula val; '3d': 3D # save = False # Save figure? save_type = '.pdf' psi_min = 2 # min right singular vector to plot; 2, 3, ..., 11 psi_max = psi_min + 1 # max right singular vector to plot psi3d_min = 2 # 2, 3, ..., 11 psi3d_mid = psi3d_min + 1 psi3d_max = psi3d_min + 2 for sig in np.arange(2,12): if case == 0: fname = 'barbell' cdir = 'barbell/' plot_title = 'Barbell' elif case == 1: fname = 'tree' cdir = 'tree/' plot_title = 'Tree' elif case == 2: fname = 'gauss' cdir = 'gauss/' plot_title = 'Gauss' elif case == 3: fname = 'hyperuni_circle' cdir = 'h_circle/' plot_title = 'Hyperuniform Circle' elif case == 4: fname = 'hyperuni_ellipse' cdir = 'ellipse/' plot_title = 'Hyperuniform Ellipse' sname = fname + '_' + vname # save name tag fname += vname # load name tag # Get # of Iterations iter_name = 'dm/'+cdir+'iterations_'+fname+'.npy' iterations = np.load(iter_name) # Get Diffusion Maps Spectra eDM_name = 'dm/'+cdir+'E_'+fname+'.npy'; eDM_sig = np.load(eDM_name)[sig - 2] # Initialize Specra Lists ei = []; et = []; eDM = [] # Get Epsilon (shape = (2, #iterations), 0th axis #eps doublings, 1st axis eps) eps_name = 'dm/'+cdir+'epsilon_list_'+fname+'.npy'; eps_adjust = np.load(eps_name) # Get Number of Points in Dataset & Color datasize_name = 'dm/'+cdir+'V_'+fname+'.npy'; N = np.load(datasize_name).shape[0] C_name = 'dm/'+cdir+'C_'+fname+'.npy'; C = np.load(C_name) #%% for i in np.arange(1, 1+iterations): '''Singular Values (DM for Changing Data, TCDM) & Eigenvalues (DM)''' pi_name = 'p_i/'+cdir+'Ei_'+str(i)+'_'+fname+'.npy' pt_name = 'p_t/'+cdir+'Et_'+str(i)+'_'+fname+'.npy' ei.append([i, np.load(pi_name)[sig - 2]]) # Operator P_i et.append([i, np.load(pt_name)[sig - 2]]) # Composed Operator P^((t)) eDM.append([i, eDM_sig**i]) # Diffusion Maps Operator P^{t} if plot_type == 'val': plt.subplot(311) plt.plot(np.asarray(ei).T[0], np.asarray(ei).T[1], marker='o', label=r'$P_{\epsilon,i}$', color = 'c') plt.subplot(312) plt.plot(np.asarray(et).T[0], np.asarray(et).T[1], marker='o', label=r'$P_{\epsilon}^{(t)}$', color = 'purple') plt.ylabel(r"$\sigma_{k}$") plt.subplot(313) plt.plot(np.asarray(eDM).T[0], np.asarray(eDM).T[1], marker='o', label=r'$P_{\epsilon}^{t}$', color = 'g') plt.xlabel("Iteration") # plt.show() save_dir = 'figs/spectral/'+cdir save_name = sname+'_sigma'+str(sig)+'_N-'+str(N) elif plot_type == 'vec': # Set Singular Vectors psiDM_name = 'p_i/'+cdir+'Vi_1_'+fname+'.npy' psiDM = np.load(psiDM_name) # Generate Figure plt.title(r'$\psi_{'+str(psi_min)+'}$ & $\psi_{'+str(psi_max)+'}$ for '+plot_title+' (N = '+str(N)+')') plt.scatter(psiDM[:,psi_min-2], psiDM[:,psi_max-2], c=C, cmap = colormap, vmin=np.amin(C), vmax=np.amax(C), label=r'$P_{\epsilon}^{t}$') plt.xlabel(r'$\psi_{'+str(psi_min)+'}$') plt.ylabel(r'$\psi_{'+str(psi_max)+'}$') plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) plt.show() save_dir = 'figs/embed/'+cdir save_name = sname+'_psi'+str(psi_min)+'_psi'+str(psi_max)+'_N-'+str(N) elif plot_type == '3d': # Set Singular Vectors and Plot from mpl_toolkits.mplot3d import Axes3D psiDM_name = 'p_i/'+cdir+'Vi_1_'+fname+'.npy' psiDM = np.load(psiDM_name) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') plt.title(r'$\psi_{'+str(psi3d_min)+'}$, $\psi_{'+str(psi3d_mid)+ '}$, & $\psi_{'+str(psi3d_max)+'}$ Embedding of ' +plot_title+' (N = '+str(N)+')') ax.scatter(psiDM[:, psi3d_min - 2], psiDM[:, psi3d_mid - 2], psiDM[:, psi3d_max - 2], c=C, cmap=colormap) ax.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) plt.show() save_dir = 'figs/embed/'+cdir save_name = sname+'_psi'+str(psi3d_min)+'_psi'+str( psi3d_mid)+'_psi'+str(psi3d_max)+'_N-'+str(N) # Save Figure if save == True: save_name = save_dir+save_name+save_type plt.savefig(save_name, bbox_inches='tight', transparent=True, dpi=300) return plt.show() if "__name__" == "__main__": spectral_decay() # Save Figure if save == True: save_name = save_dir+save_name+save_type plt.savefig(save_name, bbox_inches='tight', transparent=True, dpi=300)
[ "matplotlib.pyplot.subplot", "numpy.load", "matplotlib.pyplot.show", "numpy.amin", "numpy.asarray", "numpy.amax", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((1133, 1149), 'numpy.arange', 'np.arange', (['(2)', '(12)'], {}), '(2, 12)\n', (1142, 1149), True, 'import numpy as np\n'), ((6195, 6205), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6203, 6205), True, 'import matplotlib.pyplot as plt\n'), ((2010, 2028), 'numpy.load', 'np.load', (['iter_name'], {}), '(iter_name)\n', (2017, 2028), True, 'import numpy as np\n'), ((2409, 2426), 'numpy.load', 'np.load', (['eps_name'], {}), '(eps_name)\n', (2416, 2426), True, 'import numpy as np\n'), ((2627, 2642), 'numpy.load', 'np.load', (['C_name'], {}), '(C_name)\n', (2634, 2642), True, 'import numpy as np\n'), ((2681, 2709), 'numpy.arange', 'np.arange', (['(1)', '(1 + iterations)'], {}), '(1, 1 + iterations)\n', (2690, 2709), True, 'import numpy as np\n'), ((6104, 6174), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_name'], {'bbox_inches': '"""tight"""', 'transparent': '(True)', 'dpi': '(300)'}), "(save_name, bbox_inches='tight', transparent=True, dpi=300)\n", (6115, 6174), True, 'import matplotlib.pyplot as plt\n'), ((6372, 6442), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_name'], {'bbox_inches': '"""tight"""', 'transparent': '(True)', 'dpi': '(300)'}), "(save_name, bbox_inches='tight', transparent=True, dpi=300)\n", (6383, 6442), True, 'import matplotlib.pyplot as plt\n'), ((2134, 2151), 'numpy.load', 'np.load', (['eDM_name'], {}), '(eDM_name)\n', (2141, 2151), True, 'import numpy as np\n'), ((3216, 3232), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (3227, 3232), True, 'import matplotlib.pyplot as plt\n'), ((3360, 3376), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (3371, 3376), True, 'import matplotlib.pyplot as plt\n'), ((3513, 3540), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\sigma_{k}$"""'], {}), "('$\\\\sigma_{k}$')\n", (3523, 3540), True, 'import matplotlib.pyplot as plt\n'), ((3553, 3569), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (3564, 3569), True, 'import matplotlib.pyplot as plt\n'), ((3701, 3724), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (3711, 3724), True, 'import matplotlib.pyplot as plt\n'), ((2544, 2566), 'numpy.load', 'np.load', (['datasize_name'], {}), '(datasize_name)\n', (2551, 2566), True, 'import numpy as np\n'), ((4045, 4064), 'numpy.load', 'np.load', (['psiDM_name'], {}), '(psiDM_name)\n', (4052, 4064), True, 'import numpy as np\n'), ((4547, 4679), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""both"""', 'bottom': '(False)', 'top': '(False)', 'labelbottom': '(False)', 'right': '(False)', 'left': '(False)', 'labelleft': '(False)'}), "(axis='both', which='both', bottom=False, top=False,\n labelbottom=False, right=False, left=False, labelleft=False)\n", (4562, 4679), True, 'import matplotlib.pyplot as plt\n'), ((4725, 4735), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4733, 4735), True, 'import matplotlib.pyplot as plt\n'), ((5118, 5137), 'numpy.load', 'np.load', (['psiDM_name'], {}), '(psiDM_name)\n', (5125, 5137), True, 'import numpy as np\n'), ((5173, 5185), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5183, 5185), True, 'import matplotlib.pyplot as plt\n'), ((5789, 5799), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5797, 5799), True, 'import matplotlib.pyplot as plt\n'), ((2958, 2974), 'numpy.load', 'np.load', (['pi_name'], {}), '(pi_name)\n', (2965, 2974), True, 'import numpy as np\n'), ((3027, 3043), 'numpy.load', 'np.load', (['pt_name'], {}), '(pt_name)\n', (3034, 3043), True, 'import numpy as np\n'), ((3254, 3268), 'numpy.asarray', 'np.asarray', (['ei'], {}), '(ei)\n', (3264, 3268), True, 'import numpy as np\n'), ((3275, 3289), 'numpy.asarray', 'np.asarray', (['ei'], {}), '(ei)\n', (3285, 3289), True, 'import numpy as np\n'), ((3398, 3412), 'numpy.asarray', 'np.asarray', (['et'], {}), '(et)\n', (3408, 3412), True, 'import numpy as np\n'), ((3419, 3433), 'numpy.asarray', 'np.asarray', (['et'], {}), '(et)\n', (3429, 3433), True, 'import numpy as np\n'), ((3591, 3606), 'numpy.asarray', 'np.asarray', (['eDM'], {}), '(eDM)\n', (3601, 3606), True, 'import numpy as np\n'), ((3613, 3628), 'numpy.asarray', 'np.asarray', (['eDM'], {}), '(eDM)\n', (3623, 3628), True, 'import numpy as np\n'), ((4359, 4369), 'numpy.amin', 'np.amin', (['C'], {}), '(C)\n', (4366, 4369), True, 'import numpy as np\n'), ((4376, 4386), 'numpy.amax', 'np.amax', (['C'], {}), '(C)\n', (4383, 4386), True, 'import numpy as np\n')]
import cv2 import numpy as np import mediapipe as mp import glob import os mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_face_mesh = mp.solutions.face_mesh #import os os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp' # wait for process: "W016","W017","W018","W019","W023","W024","W025","W026","W028","W029","W033","W035","W036","W037","W038","W040" # M028 M029 M030 M031 M032 M033 M034 M035 M037 M039 M040 M041 W009 W011 W014 M042 W015 # M012 M013 M022 M026 M027 M031 M037 M041 W014 # W016 W018 W019 W023 W024 W025 W026 W028 W029 W033 W035 W036 # W040 W038 W037 in_path = glob.glob('/data3/MEAD/W036/video/front/*/level_*/0*.mp4') #in_path = glob.glob('/data3/MEAD/M012/video/front/disgusted/level_2/027.mp4') #print(in_path) out_path = [] out_path_initlmk = [] out_path_motion = [] for pid,path in enumerate(in_path): #print(pid,path) p,f = os.path.split(path) na,ext = os.path.splitext(f) #print(p+"/"+na+"_multiland.npy") out_path.append(p+"/"+na+"_multiland.npy") out_path_initlmk.append(p+"/"+na+"_initlmk_multiland.npy") out_path_motion.append(p+"/"+na+"_motion_multiland.npy") drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) def vis_landmark_on_img(img, shape, linewidth=2): ''' Visualize landmark on images. ''' def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): for i in idx_list: cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) if (loop): cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) draw_curve(list(range(0, 16)), color=(255, 144, 25)) # jaw draw_curve(list(range(17, 21)), color=(50, 205, 50)) # eye brow draw_curve(list(range(22, 26)), color=(50, 205, 50)) draw_curve(list(range(27, 35)), color=(208, 224, 63)) # nose draw_curve(list(range(36, 41)), loop=True, color=(71, 99, 255)) # eyes draw_curve(list(range(42, 47)), loop=True, color=(71, 99, 255)) draw_curve(list(range(48, 59)), loop=True, color=(238, 130, 238)) # mouth draw_curve(list(range(60, 67)), loop=True, color=(238, 130, 238)) return img with mp_face_mesh.FaceMesh( min_detection_confidence=0.5, min_tracking_confidence=0.5) as face_mesh: for vid,vpath in enumerate(in_path): videoReader = cv2.VideoCapture(in_path[vid]) fs = videoReader.get(cv2.CAP_PROP_FPS) sz = (int(videoReader.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoReader.get(cv2.CAP_PROP_FRAME_HEIGHT))) #vw = cv2.VideoWriter('./output/video.mp4',cv2.VideoWriter_fourcc('M','P','E','G'), fs, sz) land_res = [] # 帧数 * 3 * landmark数量 motion_res = [] initlmk_res = [] success, frame = videoReader.read() idx = 0 k = 0 while success: #print(success) #print(k) k += 1 image = frame.copy() #cv2.imwrite("./imgs/"+str(k)+"_im.png",image) results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if not results.multi_face_landmarks: success, frame = videoReader.read() #获取下一帧 continue face_landmarks = results.multi_face_landmarks[0] land_loc = [] xlis = [] ylis = [] zlis = [] for lm in face_landmarks.landmark: x = lm.x * sz[0] y = lm.y * sz[1] xlis.append(x) ylis.append(y) zlis.append(lm.z) #print(x,y,lm.z) land_loc.append(xlis) land_loc.append(ylis) land_loc.append(zlis) land_res.append(land_loc) if idx == 0 : initlmk_res.append(land_loc) motion_res.append( list( np.array(land_loc) - np.array(land_res[ len(land_res) - 1 ]) ) ) idx += 1 # for face_landmarks in results.multi_face_landmarks: # mp_drawing.draw_landmarks( # image=image, # landmark_list=face_landmarks, # connections=mp_face_mesh.FACEMESH_CONTOURS, # landmark_drawing_spec=drawing_spec, # connection_drawing_spec=drawing_spec) #cv2.imwrite('./output/video' + str(idx) + '.png', image) #vw.write(image) # 写视频帧 success, frame = videoReader.read() #获取下一帧 videoReader.release() #vw.release() res = np.array(land_res) np.save(out_path[vid],res) #np.save(out_path_initlmk[vid],initlmk_res) #np.save(out_path_motion[vid],motion_res) print("out:"+out_path[vid])
[ "cv2.line", "numpy.save", "cv2.cvtColor", "cv2.VideoCapture", "numpy.array", "os.path.splitext", "glob.glob", "os.path.split" ]
[((612, 670), 'glob.glob', 'glob.glob', (['"""/data3/MEAD/W036/video/front/*/level_*/0*.mp4"""'], {}), "('/data3/MEAD/W036/video/front/*/level_*/0*.mp4')\n", (621, 670), False, 'import glob\n'), ((891, 910), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (904, 910), False, 'import os\n'), ((924, 943), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (940, 943), False, 'import os\n'), ((2471, 2501), 'cv2.VideoCapture', 'cv2.VideoCapture', (['in_path[vid]'], {}), '(in_path[vid])\n', (2487, 2501), False, 'import cv2\n'), ((4695, 4713), 'numpy.array', 'np.array', (['land_res'], {}), '(land_res)\n', (4703, 4713), True, 'import numpy as np\n'), ((4722, 4749), 'numpy.save', 'np.save', (['out_path[vid]', 'res'], {}), '(out_path[vid], res)\n', (4729, 4749), True, 'import numpy as np\n'), ((1445, 1545), 'cv2.line', 'cv2.line', (['img', '(shape[i, 0], shape[i, 1])', '(shape[i + 1, 0], shape[i + 1, 1])', 'color', 'lineWidth'], {}), '(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]\n ), color, lineWidth)\n', (1453, 1545), False, 'import cv2\n'), ((1572, 1714), 'cv2.line', 'cv2.line', (['img', '(shape[idx_list[0], 0], shape[idx_list[0], 1])', '(shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1])', 'color', 'lineWidth'], {}), '(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), (shape[\n idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth)\n', (1580, 1714), False, 'import cv2\n'), ((3157, 3195), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (3169, 3195), False, 'import cv2\n'), ((3971, 3989), 'numpy.array', 'np.array', (['land_loc'], {}), '(land_loc)\n', (3979, 3989), True, 'import numpy as np\n')]
""" Performance Comparision with Commercial APIs like Face++, Google, MS and Amazon """ import sys import os import requests import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score sys.path.append('../') from config.cfg import cfg def prepare_test_imgs(type='basic'): face_with_emt = {} manual_annotation_dir = 'E:\DataSet\CV\TreeCNN\RAF-Face/basic\Annotation\manual' emotion_label_txt_path = os.path.join(cfg['root'], 'RAF-Face', "%s/EmoLabel/list_patition_label.txt" % type) emotion_dict = dict(np.loadtxt(emotion_label_txt_path, dtype=np.str)) for _ in os.listdir(manual_annotation_dir): if _.startswith('test_'): face_fname = _.replace('_manu_attri', '_aligned').replace('.txt', '.jpg') face_with_emt[os.path.join(cfg['root'], 'RAF-Face', '%s/Image/aligned' % type, face_fname)] = int( emotion_dict[face_fname.replace('_aligned', '')].strip()) - 1 return face_with_emt def facepp(img_path): """ Recognition with Face++ Emotion Recognition API :param img_path: :return: """ apikey = '' apisecret = '' url = 'https://api-cn.faceplusplus.com/facepp/v3/detect' files = {'image_file': open(img_path, 'rb')} payload = {'api_key': apikey, 'api_secret': apisecret, # 'return_landmark': 0, 'face_tokens': 'none', 'return_attributes': 'emotion'} response = requests.post(url, data=payload, files=files) if response.status_code == 200: res_json = response.json() max_k = '' max_v = 0 for k, v in res_json['faces'][0]['attributes']['emotion'].items(): if v > max_v: max_v = v max_k = k return max_k else: print(response) return None if __name__ == '__main__': img_files = prepare_test_imgs() print(img_files) basic_emt_map = { 'surprise': 0, 'fear': 1, 'disgust': 2, 'happiness': 3, 'sadness': 4, 'anger': 5, 'neutral': 6 } gt = [] pred = [] for imgf, e in img_files.items(): try: emt = facepp(imgf) print(emt) gt.append(e) pred.append(basic_emt_map[emt]) except: pass print('Accuracy of Emotion Recognition: %s' % str(accuracy_score(gt, pred))) print('Confusion Matrix on FER: ') print(confusion_matrix(np.array(gt).ravel().tolist(), np.array(pred).ravel().tolist()))
[ "sys.path.append", "sklearn.metrics.accuracy_score", "numpy.array", "numpy.loadtxt", "requests.post", "os.path.join", "os.listdir" ]
[((254, 276), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (269, 276), False, 'import sys\n'), ((481, 568), 'os.path.join', 'os.path.join', (["cfg['root']", '"""RAF-Face"""', "('%s/EmoLabel/list_patition_label.txt' % type)"], {}), "(cfg['root'], 'RAF-Face', '%s/EmoLabel/list_patition_label.txt' %\n type)\n", (493, 568), False, 'import os\n'), ((653, 686), 'os.listdir', 'os.listdir', (['manual_annotation_dir'], {}), '(manual_annotation_dir)\n', (663, 686), False, 'import os\n'), ((1480, 1525), 'requests.post', 'requests.post', (['url'], {'data': 'payload', 'files': 'files'}), '(url, data=payload, files=files)\n', (1493, 1525), False, 'import requests\n'), ((589, 637), 'numpy.loadtxt', 'np.loadtxt', (['emotion_label_txt_path'], {'dtype': 'np.str'}), '(emotion_label_txt_path, dtype=np.str)\n', (599, 637), True, 'import numpy as np\n'), ((834, 910), 'os.path.join', 'os.path.join', (["cfg['root']", '"""RAF-Face"""', "('%s/Image/aligned' % type)", 'face_fname'], {}), "(cfg['root'], 'RAF-Face', '%s/Image/aligned' % type, face_fname)\n", (846, 910), False, 'import os\n'), ((2421, 2445), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['gt', 'pred'], {}), '(gt, pred)\n', (2435, 2445), False, 'from sklearn.metrics import accuracy_score\n'), ((2515, 2527), 'numpy.array', 'np.array', (['gt'], {}), '(gt)\n', (2523, 2527), True, 'import numpy as np\n'), ((2546, 2560), 'numpy.array', 'np.array', (['pred'], {}), '(pred)\n', (2554, 2560), True, 'import numpy as np\n')]
from scipy.signal import find_peaks import numpy as np import math def search_peaks(x_data, y_data, height=0.1, distance=10): prominence = np.mean(y_data) peak_list = find_peaks(y_data, height=height, prominence=prominence, distance=distance) peaks = [] for i in peak_list[0]: peak = (x_data[i], y_data[i]) peaks.append(peak) return peaks def search_database_peaks(all_spectrum, height=0.1, distance=10): peaks_database = {} for key in list(all_spectrum.keys()): x_data = all_spectrum[key][0] y_data = all_spectrum[key][1] peaks = search_peaks(x_data, y_data, height=height, distance=distance) peaks_database.update({key: peaks}) return peaks_database def compare_peaks(peaks_database, peaks, abs_tol=5): coincide_information = {} for key in list(peaks_database.keys()): coincide_list = [] for peak_d in peaks_database[key]: for peak in peaks: if math.isclose(peak[0], peak_d[0], abs_tol=abs_tol): coincide_list.append([peak_d[0], peak[0]]) coincide_information.update( {key: {'coincide_list': coincide_list, 'coincide_number': [len(peaks_database[key]), len(coincide_list)]}}) return coincide_information def judge_matter(coincide_information, criterion=0.99): contain_dict = {} for key in list(coincide_information.keys()): coincide_number = coincide_information[key]['coincide_number'] key_criterion = coincide_number[1] / coincide_number[0] if key_criterion >= criterion: contain_dict.update({key: key_criterion}) return contain_dict def classify(x_data, y_data, all_spectrum): peaks = search_peaks(x_data,y_data) database_peaks = search_database_peaks(all_spectrum) print(database_peaks) compare_result = compare_peaks(database_peaks,peaks) # pass # print(compare_result) return compare_result compare_result=judge_matter(compare_result)
[ "numpy.mean", "scipy.signal.find_peaks", "math.isclose" ]
[((144, 159), 'numpy.mean', 'np.mean', (['y_data'], {}), '(y_data)\n', (151, 159), True, 'import numpy as np\n'), ((176, 251), 'scipy.signal.find_peaks', 'find_peaks', (['y_data'], {'height': 'height', 'prominence': 'prominence', 'distance': 'distance'}), '(y_data, height=height, prominence=prominence, distance=distance)\n', (186, 251), False, 'from scipy.signal import find_peaks\n'), ((990, 1039), 'math.isclose', 'math.isclose', (['peak[0]', 'peak_d[0]'], {'abs_tol': 'abs_tol'}), '(peak[0], peak_d[0], abs_tol=abs_tol)\n', (1002, 1039), False, 'import math\n')]
import pandas as pd from transformers import BertTokenizer, RobertaTokenizer, AutoTokenizer import os import numpy as np import re import glob from nltk import sent_tokenize from utils import num_tokens import math def read_generic_file(filepath): """ reads any generic text file into list containing one line as element """ text = [] with open(filepath, 'r') as f: for line in f.read().splitlines(): text.append(line.strip()) return text def offset_str2list(offset): return [[int(start_end) for start_end in offset.split(',')] for offset in offset.split(';')] def offset_decreaseSentOffset(sentOffset, scu_offsets): return [[start_end[0] - sentOffset, start_end[1] - sentOffset] for start_end in scu_offsets] def insert_string(string, index, value): return string[:index] + value + string[index:] # the next *four* functions are taken from PreSumm implementation def _get_ngrams(n, text): """Calcualtes n-grams. Args: n: which n-grams to calculate text: An array of tokens Returns: A set of n-grams """ ngram_set = set() text_length = len(text) max_index_ngram_start = text_length - n for i in range(max_index_ngram_start + 1): ngram_set.add(tuple(text[i:i + n])) return ngram_set def _get_word_ngrams(n, sentences): """Calculates word n-grams for multiple sentences. """ assert len(sentences) > 0 assert n > 0 # words = _split_into_words(sentences) words = sum(sentences, []) # words = [w for w in words if w not in stopwords] return _get_ngrams(n, words) def cal_rouge(evaluated_ngrams, reference_ngrams): reference_count = len(reference_ngrams) evaluated_count = len(evaluated_ngrams) overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) if evaluated_count == 0: precision = 0.0 else: precision = overlapping_count / evaluated_count if reference_count == 0: recall = 0.0 else: recall = overlapping_count / reference_count f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8)) return {"f": f1_score, "p": precision, "r": recall} def greedy_selection(doc_sent_list, abstract_sent_list, summary_size=1000): def _rouge_clean(s): return re.sub(r'[^a-zA-Z0-9 ]', '', s) max_rouge = 0.0 abstract = sum(abstract_sent_list, []) abstract = _rouge_clean(' '.join(abstract)).split() sents = [_rouge_clean(' '.join(s)).split() for s in doc_sent_list] evaluated_1grams = [_get_word_ngrams(1, [sent]) for sent in sents] reference_1grams = _get_word_ngrams(1, [abstract]) evaluated_2grams = [_get_word_ngrams(2, [sent]) for sent in sents] reference_2grams = _get_word_ngrams(2, [abstract]) selected = [] for s in range(summary_size): cur_max_rouge = max_rouge cur_id = -1 for i in range(len(sents)): if (i in selected): continue c = selected + [i] candidates_1 = [evaluated_1grams[idx] for idx in c] candidates_1 = set.union(*map(set, candidates_1)) candidates_2 = [evaluated_2grams[idx] for idx in c] candidates_2 = set.union(*map(set, candidates_2)) rouge_1 = cal_rouge(candidates_1, reference_1grams)['f'] rouge_2 = cal_rouge(candidates_2, reference_2grams)['f'] rouge_score = rouge_1 + rouge_2 if rouge_score > cur_max_rouge: cur_max_rouge = rouge_score cur_id = i if (cur_id == -1): return selected selected.append(cur_id) max_rouge = cur_max_rouge return sorted(selected) def greedy_selection_MDS(doc_sent_list, abstracts, summary_size=1000): def _rouge_clean(s): return re.sub(r'[^a-zA-Z0-9 ]', '', s) max_rouge = 0.0 # abstract = sum(abstract_sent_list, []) abstracts = [_rouge_clean(abstract.lower().replace('...',' ... ')).split() for abstract in abstracts] # abstract = _rouge_clean(' '.join(abstract)).split() sents = [_rouge_clean(s.lower().replace('...',' ... ')).split() for s in doc_sent_list] evaluated_1grams = [_get_word_ngrams(1, [sent]) for sent in sents] evaluated_2grams = [_get_word_ngrams(2, [sent]) for sent in sents] references_1grams = [] references_2grams = [] for abstract in abstracts: references_1grams.append(_get_word_ngrams(1, [abstract])) references_2grams.append(_get_word_ngrams(2, [abstract])) selected = [] for s in range(summary_size): cur_max_rouge = max_rouge cur_id = -1 for i in range(len(sents)): if (i in selected): continue c = selected + [i] candidates_1 = [evaluated_1grams[idx] for idx in c] candidates_1 = set.union(*map(set, candidates_1)) candidates_2 = [evaluated_2grams[idx] for idx in c] candidates_2 = set.union(*map(set, candidates_2)) rouge_1 = np.mean([cal_rouge(candidates_1, reference_1grams)['f'] for reference_1grams in references_1grams]) rouge_2 = np.mean([cal_rouge(candidates_2, reference_2grams)['f'] for reference_2grams in references_2grams]) rouge_score = rouge_1 + rouge_2 if rouge_score > cur_max_rouge: cur_max_rouge = rouge_score cur_id = i if (cur_id == -1): return selected selected.append(cur_id) max_rouge = cur_max_rouge return sorted(selected) def add_sent_special_tok(document, OIE_row = None): doc_sents = sent_tokenize(document)#[:20] if OIE_row is not None: #if main document doc_sents = doc_sents[:MAX_SENT_MAIN_DOC] sent_found_flag = False for sent_idx, sent in enumerate(doc_sents): if sent == OIE_row['docSentText']: sent_found_flag = True doc_sents[sent_idx] = add_OIE_special_tok(OIE_row['docSpanOffsets'], OIE_row['docSentCharIdx'], sent) if num_tokens('<doc-s> ' + '<s> ' + ' </s> <s> '.join(doc_sents[:sent_idx+1]) + ' </s>' + ' </doc-s>', tokenizer, add_special_tokens=True)> MAX_TOKENS: return None break if not sent_found_flag: return None else: #if context document doc_sents = doc_sents[:MAX_SENT_CONTEXT_DOC] document = '<s> ' + ' </s> <s> '.join(doc_sents) + ' </s>' return document def adding_files_context(file_context_combination, data_path, topic_dir): documents = [] for file_context in file_context_combination: text = read_generic_file(os.path.join(data_path, topic_dir, file_context)) document = " ".join(text) document = add_sent_special_tok(document) document = add_doc_special_tok(document) documents.append(document) context = ' '.join(documents) return context def add_special_tok(row, document): document_tmp = document[:]#add_OIE_special_tok(docSpanOffsets, document) document_tmp = add_sent_special_tok(document_tmp, row) if document_tmp is not None: document_tmp = add_doc_special_tok(document_tmp) return document_tmp def add_doc_special_tok(document_tmp): return '<doc-s> ' + document_tmp + ' </doc-s>' def add_OIE_special_tok(docSpanOffsets, docSentCharIdx, sent, special_tokens_for_global_attn = True): # document_tmp = document[:] span_offsets = offset_str2list(docSpanOffsets) offsets = offset_decreaseSentOffset(docSentCharIdx, span_offsets) # assume we have max 2 parts if special_tokens_for_global_attn: for offset in offsets[::-1]: #[::-1] start from the end so the remain offsets won't be shifted sent = insert_string(sent, offset[1], ' <OIE1_END> ') sent = insert_string(sent, offset[0], ' <OIE1_START> ') else: for offset in offsets[::-1]: #[::-1] start from the end so the remain offsets won't be shifted sent = insert_string(sent, offset[1], ' > ') sent = insert_string(sent, offset[0], ' < ') return sent def read_abstracts(DATASET, data_path, topic_dir): abstracts = [] if DATASET.startswith('TAC'): # for summary_path in glob.iglob( # data_path + '/summaries/' + topic_dir[:-3].upper() + topic_dir[-2:].upper() + '.*'): for summary_path in glob.iglob( data_path + '/summaries/' + topic_dir[:-3].upper() + '*'): summary = ' '.join(read_generic_file(summary_path)) abstracts.append(summary) else: for summary_path in glob.iglob(data_path + '/summaries/' + topic_dir[:-1].upper() + '.*'): summary = ' '.join(read_generic_file(summary_path)) abstracts.append(summary) return abstracts def add_instance(full_instance, tokenizer, row, highlights_list, highlights_metadata_list, file_context_combination, alignment_label='alignment_label'): full_instance, global_attention_idx = extract_global_attention_idx(full_instance, tokenizer) print('num tokens:', num_tokens(full_instance, tokenizer, add_special_tokens=False)) highlights_list.append([full_instance, row[alignment_label], global_attention_idx, row['greedyMaxRouge']]) highlights_metadata_list.append(row.tolist()+ [file_context_combination]) def replace_special_token(text, special_token_char_idxes, old_special_token, new_special_token): text = text[:special_token_char_idxes[-1]] + new_special_token + text[special_token_char_idxes[-1] + len( old_special_token):] # replace '<OIE1_START>' with '<' special_token_char_idxes[-1] += 1 # include new special token '<' return text, special_token_char_idxes def extract_global_attention_idx(text, tokenizer, model_max_tokens = None): if model_max_tokens is None: model_max_tokens = MAX_TOKENS #and replace new special tokens with '<' '>' so the model wont have to learn new tokens. special_tokens_idx_list = [] special_token_char_idxes = [] mark_start_idx = text.find('<OIE1_START>') while mark_start_idx > -1: # find special_token_char_idxes special_token_char_idxes.append(mark_start_idx) text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_START>', '<') special_token_char_idxes.append(text.find('<OIE1_END>')) text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_END>', '>') mark_start_idx = text.find('<OIE1_START>') # #find special_token_char_idxes # special_token_char_idxes = [] # special_token_char_idxes.append(text.find('<OIE1_START>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_START>', '<') # special_token_char_idxes.append(text.find('<OIE1_END>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_END>', '>') # start_idx2 = text.find('<OIE2_START>') # if start_idx2 > -1: #if exists # special_token_char_idxes.append(start_idx2) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE2_START>', '<') # special_token_char_idxes.append(text.find('<OIE2_END>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE2_END>', '>') # find special token idxes for special_token_char_idx in special_token_char_idxes: special_token_prev_text = text[:special_token_char_idx] special_token_idx = num_tokens(special_token_prev_text, tokenizer) # special token start sent included as we take len of tokens which is the idx+1 assert(('<' in tokenizer.tokenize(text)[special_token_idx-1]) or ('>' in tokenizer.tokenize(text)[special_token_idx-1])) # check it finds the special token. special_token_idx-1 as we omit special start sent token, as tokemize function doesnt include it. assert(special_token_idx < model_max_tokens) #it shouldnt be longer then 2048 (0-2047), and the last token is special end of sentence token. special_tokens_idx_list.append(special_token_idx) return text, special_tokens_idx_list def createGT_labels(OIEs_topic, data_path, topic_dir, DATASET): labels_column_name = 'greedyMaxRouge' OIEs_topic['original_idx'] = range(len(OIEs_topic)) abstracts = read_abstracts(DATASET, data_path, topic_dir) docFile_summSpan_cands = list(OIEs_topic['docSpanText'].values) positive_summSpan_idx = greedy_selection_MDS(docFile_summSpan_cands, abstracts) positive_summSpan_original_idx = [OIEs_topic['original_idx'].values[cand_idx] for cand_idx in positive_summSpan_idx] scnd_filter_label = np.zeros(len(OIEs_topic), dtype=int) scnd_filter_label[positive_summSpan_original_idx] = 1 if labels_column_name in OIEs_topic.columns: scnd_filter_label = np.array(OIEs_topic[labels_column_name].to_list()) + scnd_filter_label OIEs_topic[labels_column_name] = scnd_filter_label ##validation for correct indexes positive_labeled_spans = OIEs_topic[OIEs_topic[labels_column_name] == 1]['docSpanText'].to_list() positive_labeled_spans_validation = [docFile_summSpan_cands[cand_idx] in positive_labeled_spans for cand_idx in positive_summSpan_idx] assert(all(positive_labeled_spans_validation)) return OIEs_topic def add_sent_in_file_idx(OIEs_topic, data_path, topic_dir): doc_sent_idx = np.zeros(len(OIEs_topic), dtype=int) OIEs_topic['original_idx'] = range(len(OIEs_topic)) topic_files = os.listdir(os.path.join(data_path, topic_dir)) for file_idx, file in enumerate(topic_files): OIEs_topic_file = OIEs_topic[OIEs_topic['documentFile']==file] text = read_generic_file(os.path.join(data_path, topic_dir, file)) document = " ".join(text) doc_sents = sent_tokenize(document) for sent_idx, doc_sent in enumerate(doc_sents): OIEs_topic_file_sent_original_idx = (OIEs_topic_file['original_idx'][OIEs_topic_file['docSentText'] == doc_sent]).values doc_sent_idx[OIEs_topic_file_sent_original_idx] = sent_idx OIEs_topic['inFile_sentIdx'] = doc_sent_idx return OIEs_topic def positive_augmentation(num_negative, num_positive, highlights_df, highlights_metadata_df, label_tag = 'label', SAFE_BUFFER = 100): original_len_highlights_df = len(highlights_df) augmentation_factor = (num_negative- num_positive - SAFE_BUFFER)/num_positive if label_tag != 'label': augmentation_factor = (num_negative - num_positive - SAFE_BUFFER) / len(highlights_df[highlights_df[label_tag]==1]) #threshold = 0.75 augmentation_factor = math.floor(augmentation_factor) #if augmentation_factor < (math.floor(augmentation_factor) + threshold) else math.ceil(augmentation_factor) positive_highlights_df = highlights_df[highlights_df[label_tag] == 1] positive_highlights_metadata_df = highlights_metadata_df.loc[positive_highlights_df.index, :] if augmentation_factor >= 1: for i in range(augmentation_factor): highlights_df = highlights_df.append(positive_highlights_df) highlights_metadata_df = highlights_metadata_df.append(positive_highlights_metadata_df) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) # augmentation_factor = (num_negative - num_positive) / num_positive # if still not equal- add part of positive samples. # if augmentation_factor > 0.5: if num_negative - num_positive > SAFE_BUFFER: selected_index = np.random.choice(positive_highlights_df.index.to_list(),num_negative - num_positive -SAFE_BUFFER,replace=False) selected_positive_highlights_df = highlights_df[:original_len_highlights_df].loc[selected_index, :] #copy from original highlights_df (before augmentation) so rows won't be double augmented by their index selected_positive_highlights_metadata_df = highlights_metadata_df[:original_len_highlights_df].loc[selected_index, :] highlights_df = highlights_df.append(selected_positive_highlights_df) highlights_metadata_df = highlights_metadata_df.append(selected_positive_highlights_metadata_df) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) return highlights_df, highlights_metadata_df ################################## ###### main ############## ################################## if __name__ == "__main__": np.random.seed(42) SET = 'train' DATASETS = ['TAC2008','TAC2009','TAC2010'] NUM_CONTEXT_FILES = 9 MAX_TOKENS = 4096 filter_negative = False FILTER_RATE = 0.4 over_sample_positive = False MAX_SENT_MAIN_DOC = 20 MAX_SENT_CONTEXT_DOC = 9 sentences_level = False if SET == 'train': filter_negative = True over_sample_positive = True positive_label = 'greedyMaxRouge' if filter_negative: filter_negative_label = '_filter_negative' else: filter_negative_label = '' if over_sample_positive: over_sample_positive_label = '_over_sample_positive' else: over_sample_positive_label = '' if sentences_level: sentences_level_label = '_sentence_based' else: sentences_level_label = '' OUTPUT_PATH = 'OIE_highlights/{}_{}_CDLM{}{}{}_fixed_truncated.csv'.format("_".join(DATASETS), SET, filter_negative_label, over_sample_positive_label, sentences_level_label) highlights_list = [] highlights_metadata_list = [] # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # tokenizer = RobertaTokenizer.from_pretrained('roberta-base') tokenizer = AutoTokenizer.from_pretrained('./CDLM/') tokenizer.add_special_tokens( {'additional_special_tokens': ['<OIE1_START>', '<OIE1_END>', '<OIE2_START>', '<OIE2_END>']}) for DATASET in DATASETS: data_path = 'data/{}/'.format(DATASET) OIEs = pd.read_csv('OIE_cands/OIE_cands_{}.csv'.format(DATASET)) if sentences_level: OIEs['docSpanText'] = OIEs['docSentText'] OIEs['docSpanOffsets'] = OIEs['docSentCharIdx'].apply(str) + ', ' + ( OIEs['docSentCharIdx'] + OIEs['docSentText'].apply(len)).apply(str) used_positive_spans = 0 for topic_dir in os.listdir(data_path): print(topic_dir) if topic_dir == 'summaries': continue OIEs_topic = OIEs[OIEs['topic'] == topic_dir] if DATASET.startswith('TAC'): topic_dir_tac2011 = topic_dir[:-3].upper() + topic_dir[-2:].upper() OIEs_topic = OIEs[OIEs['topic'] == topic_dir_tac2011] OIEs_topic = add_sent_in_file_idx(OIEs_topic, data_path, topic_dir) OIEs_topic = OIEs_topic[OIEs_topic['inFile_sentIdx'] < MAX_SENT_MAIN_DOC] OIEs_topic = createGT_labels(OIEs_topic, data_path, topic_dir, DATASET) topic_files = os.listdir(os.path.join(data_path, topic_dir)) topic_dates = [topic[re.search(r"\d", topic).start():] for topic in topic_files]#[topic_file[3:] for topic_file in topic_files] topic_files = [x for _, x in sorted(zip(topic_dates, topic_files))] for file_idx, file in enumerate(topic_files): text = read_generic_file(os.path.join(data_path, topic_dir, file)) document = " ".join(text) post_context_files = topic_files[file_idx + 1:file_idx + 1 + NUM_CONTEXT_FILES] pre_context_files = [] if len(post_context_files) < NUM_CONTEXT_FILES: diff_len = NUM_CONTEXT_FILES - len(post_context_files) pre_context_files = topic_files[max(0, file_idx - diff_len):file_idx] # + context_files assert (len(post_context_files + pre_context_files) == min(NUM_CONTEXT_FILES, len(topic_files) - 1)) # trunced_document = truncated_text_for_openie(document, tokenizer) OIEs_topic_docFile = OIEs_topic[ OIEs_topic['documentFile'] == file] for index, row in OIEs_topic_docFile.iterrows(): main_document = add_special_tok(row, document) if main_document is None: continue if row[positive_label]: used_positive_spans += 1 else: if filter_negative: if np.random.choice([0, 1], p=[FILTER_RATE, 1 - FILTER_RATE]): # 'continue' in random (1 - FILTER_RATE) of negative cases. continue # for file_context_combination in [context_files]:# combinations(topic_files_tmp,NUM_CONTEXT_FILES): # all context combinations of 2 files pre_documents_context = adding_files_context(pre_context_files, data_path, topic_dir) post_documents_context = adding_files_context(post_context_files, data_path, topic_dir) file_context_combination = pre_context_files + post_context_files full_instance = pre_documents_context + ' ' + main_document + ' ' + post_documents_context add_instance(full_instance, tokenizer, row, highlights_list, highlights_metadata_list, file_context_combination, alignment_label=positive_label) print(len(highlights_list)) highlights_df = pd.DataFrame(highlights_list, columns=['', 'label', 'global_attention_idx', 'greedyMaxRouge']) highlights_metadata_df = pd.DataFrame(highlights_metadata_list, columns=OIEs_topic.columns.tolist() + ['doc_context']) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) if over_sample_positive: highlights_df, highlights_metadata_df = positive_augmentation(num_negative, num_positive, highlights_df, highlights_metadata_df) highlights_df = highlights_df[['', 'label', 'global_attention_idx']] highlights_df.to_csv(OUTPUT_PATH, index=False) highlights_metadata_df.to_csv(OUTPUT_PATH[:-4] + '_metadata.csv', index=False)
[ "pandas.DataFrame", "utils.num_tokens", "numpy.random.seed", "os.path.join", "nltk.sent_tokenize", "math.floor", "transformers.AutoTokenizer.from_pretrained", "re.search", "numpy.random.choice", "re.sub", "os.listdir" ]
[((5885, 5908), 'nltk.sent_tokenize', 'sent_tokenize', (['document'], {}), '(document)\n', (5898, 5908), False, 'from nltk import sent_tokenize\n'), ((15283, 15314), 'math.floor', 'math.floor', (['augmentation_factor'], {}), '(augmentation_factor)\n', (15293, 15314), False, 'import math\n'), ((17416, 17434), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (17430, 17434), True, 'import numpy as np\n'), ((18964, 19004), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['"""./CDLM/"""'], {}), "('./CDLM/')\n", (18993, 19004), False, 'from transformers import BertTokenizer, RobertaTokenizer, AutoTokenizer\n'), ((22954, 23052), 'pandas.DataFrame', 'pd.DataFrame', (['highlights_list'], {'columns': "['', 'label', 'global_attention_idx', 'greedyMaxRouge']"}), "(highlights_list, columns=['', 'label', 'global_attention_idx',\n 'greedyMaxRouge'])\n", (22966, 23052), True, 'import pandas as pd\n'), ((2459, 2489), 're.sub', 're.sub', (['"""[^a-zA-Z0-9 ]"""', '""""""', 's'], {}), "('[^a-zA-Z0-9 ]', '', s)\n", (2465, 2489), False, 'import re\n'), ((4016, 4046), 're.sub', 're.sub', (['"""[^a-zA-Z0-9 ]"""', '""""""', 's'], {}), "('[^a-zA-Z0-9 ]', '', s)\n", (4022, 4046), False, 'import re\n'), ((9490, 9552), 'utils.num_tokens', 'num_tokens', (['full_instance', 'tokenizer'], {'add_special_tokens': '(False)'}), '(full_instance, tokenizer, add_special_tokens=False)\n', (9500, 9552), False, 'from utils import num_tokens\n'), ((12071, 12117), 'utils.num_tokens', 'num_tokens', (['special_token_prev_text', 'tokenizer'], {}), '(special_token_prev_text, tokenizer)\n', (12081, 12117), False, 'from utils import num_tokens\n'), ((14149, 14183), 'os.path.join', 'os.path.join', (['data_path', 'topic_dir'], {}), '(data_path, topic_dir)\n', (14161, 14183), False, 'import os\n'), ((14440, 14463), 'nltk.sent_tokenize', 'sent_tokenize', (['document'], {}), '(document)\n', (14453, 14463), False, 'from nltk import sent_tokenize\n'), ((19627, 19648), 'os.listdir', 'os.listdir', (['data_path'], {}), '(data_path)\n', (19637, 19648), False, 'import os\n'), ((6985, 7033), 'os.path.join', 'os.path.join', (['data_path', 'topic_dir', 'file_context'], {}), '(data_path, topic_dir, file_context)\n', (6997, 7033), False, 'import os\n'), ((14342, 14382), 'os.path.join', 'os.path.join', (['data_path', 'topic_dir', 'file'], {}), '(data_path, topic_dir, file)\n', (14354, 14382), False, 'import os\n'), ((20311, 20345), 'os.path.join', 'os.path.join', (['data_path', 'topic_dir'], {}), '(data_path, topic_dir)\n', (20323, 20345), False, 'import os\n'), ((20672, 20712), 'os.path.join', 'os.path.join', (['data_path', 'topic_dir', 'file'], {}), '(data_path, topic_dir, file)\n', (20684, 20712), False, 'import os\n'), ((21883, 21941), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'p': '[FILTER_RATE, 1 - FILTER_RATE]'}), '([0, 1], p=[FILTER_RATE, 1 - FILTER_RATE])\n', (21899, 21941), True, 'import numpy as np\n'), ((20381, 20404), 're.search', 're.search', (['"""\\\\d"""', 'topic'], {}), "('\\\\d', topic)\n", (20390, 20404), False, 'import re\n')]
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conformer utilities.""" import copy from typing import List, Optional from absl import logging import numpy as np import rdkit from rdkit import Chem from rdkit.Chem import AllChem import tensorflow.compat.v2 as tf def generate_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, *, random_seed: int = -1, prune_rms_thresh: float = -1.0, max_iter: int = -1, fallback_to_random: bool = False, ) -> Chem.rdchem.Mol: """Generates conformers for a given molecule. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. Returns: Copy of a `molecule` with added hydrogens. The returned molecule contains force field-optimised conformers. The number of conformers is guaranteed to be <= max_num_conformers. """ mol = copy.deepcopy(molecule) mol = Chem.AddHs(mol) mol = _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=False) if max_iter > 0: mol_with_conformers = _minimize_by_mmff(mol, max_iter) if mol_with_conformers is None: mol_with_conformers = _minimize_by_uff(mol, max_iter) else: mol_with_conformers = mol # Aligns conformations in a molecule to each other using the first # conformation as the reference. AllChem.AlignMolConformers(mol_with_conformers) # We remove hydrogens to keep the number of atoms consistent with the graph # nodes. mol_with_conformers = Chem.RemoveHs(mol_with_conformers) return mol_with_conformers def atom_to_feature_vector( atom: rdkit.Chem.rdchem.Atom, conformer: Optional[np.ndarray] = None, ) -> List[float]: """Converts rdkit atom object to feature list of indices. Args: atom: rdkit atom object. conformer: Generated conformers. Returns -1 values if set to None. Returns: List containing positions (x, y, z) of each atom from the conformer. """ if conformer: pos = conformer.GetAtomPosition(atom.GetIdx()) return [pos.x, pos.y, pos.z] return [np.nan, np.nan, np.nan] def compute_conformer(smile: str, max_iter: int = -1) -> np.ndarray: """Computes conformer. Args: smile: Smile string. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. Returns: A tuple containing index, fingerprint and conformer. Raises: RuntimeError: If unable to convert smile string to RDKit mol. """ mol = rdkit.Chem.MolFromSmiles(smile) if not mol: raise RuntimeError('Unable to convert smile to molecule: %s' % smile) conformer_failed = False try: mol = generate_conformers( mol, max_num_conformers=1, random_seed=45, prune_rms_thresh=0.01, max_iter=max_iter) except IOError as e: logging.exception('Failed to generate conformers for %s . IOError %s.', smile, e) conformer_failed = True except ValueError: logging.error('Failed to generate conformers for %s . ValueError', smile) conformer_failed = True except: # pylint: disable=bare-except logging.error('Failed to generate conformers for %s.', smile) conformer_failed = True atom_features_list = [] conformer = None if conformer_failed else list(mol.GetConformers())[0] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature_vector(atom, conformer)) conformer_features = np.array(atom_features_list, dtype=np.float32) return conformer_features def get_random_rotation_matrix(include_mirror_symmetry: bool) -> tf.Tensor: """Returns a single random rotation matrix.""" rotation_matrix = _get_random_rotation_3d() if include_mirror_symmetry: random_mirror_symmetry = _get_random_mirror_symmetry() rotation_matrix = tf.matmul(rotation_matrix, random_mirror_symmetry) return rotation_matrix def rotate(vectors: tf.Tensor, rotation_matrix: tf.Tensor) -> tf.Tensor: """Batch of vectors on a single rotation matrix.""" return tf.matmul(vectors, rotation_matrix) def _embed_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, random_seed: int, prune_rms_thresh: float, fallback_to_random: bool, *, use_random: bool = False, ) -> Chem.rdchem.Mol: """Embeds conformers into a copy of a molecule. If random coordinates allowed, tries not to use random coordinates at first, and uses random only if fails. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. *: use_random: Use random coordinates. Shouldn't be set by any caller except this function itself. Returns: A copy of a molecule with embedded conformers. Raises: ValueError: if conformers cannot be obtained for a given molecule. """ mol = copy.deepcopy(molecule) # Obtains parameters for conformer generation. # In particular, ETKDG is experimental-torsion basic knowledge distance # geometry, which allows to randomly generate an initial conformation that # satisfies various geometric constraints such as lower and upper bounds on # the distances between atoms. params = AllChem.ETKDGv3() params.randomSeed = random_seed params.pruneRmsThresh = prune_rms_thresh params.numThreads = -1 params.useRandomCoords = use_random conf_ids = AllChem.EmbedMultipleConfs(mol, max_num_conformers, params) if not conf_ids: if not fallback_to_random or use_random: raise ValueError('Cant get conformers') return _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=True) return mol def _minimize_by_mmff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Optional[Chem.rdchem.Mol]: """Minimizes forcefield for conformers using MMFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers; or None if MMFF cannot be performed. """ molecule_props = AllChem.MMFFGetMoleculeProperties(molecule) if molecule_props is None: return None mol = copy.deepcopy(molecule) for conf_id in range(mol.GetNumConformers()): ff = AllChem.MMFFGetMoleculeForceField( mol, molecule_props, confId=conf_id, ignoreInterfragInteractions=False) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _minimize_by_uff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Chem.rdchem.Mol: """Minimizes forcefield for conformers using UFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers. """ mol = copy.deepcopy(molecule) conf_ids = range(mol.GetNumConformers()) for conf_id in conf_ids: ff = AllChem.UFFGetMoleculeForceField(mol, confId=conf_id) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _get_symmetry_rotation_matrix(sign: tf.Tensor) -> tf.Tensor: """Returns the 2d/3d matrix for mirror symmetry.""" zero = tf.zeros_like(sign) one = tf.ones_like(sign) # pylint: disable=bad-whitespace,bad-continuation rot = [sign, zero, zero, zero, one, zero, zero, zero, one] # pylint: enable=bad-whitespace,bad-continuation shape = (3, 3) rot = tf.stack(rot, axis=-1) rot = tf.reshape(rot, shape) return rot def _quaternion_to_rotation_matrix(quaternion: tf.Tensor) -> tf.Tensor: """Converts a batch of quaternions to a batch of rotation matrices.""" q0 = quaternion[0] q1 = quaternion[1] q2 = quaternion[2] q3 = quaternion[3] r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 matrix = tf.stack([r00, r01, r02, r10, r11, r12, r20, r21, r22], axis=-1) return tf.reshape(matrix, [3, 3]) def _get_random_rotation_3d() -> tf.Tensor: random_quaternions = tf.random.normal( shape=[4], dtype=tf.float32) random_quaternions /= tf.linalg.norm( random_quaternions, axis=-1, keepdims=True) return _quaternion_to_rotation_matrix(random_quaternions) def _get_random_mirror_symmetry() -> tf.Tensor: random_0_1 = tf.random.uniform( shape=(), minval=0, maxval=2, dtype=tf.int32) random_signs = tf.cast((2 * random_0_1) - 1, tf.float32) return _get_symmetry_rotation_matrix(random_signs)
[ "tensorflow.compat.v2.reshape", "rdkit.Chem.RemoveHs", "rdkit.Chem.AllChem.UFFGetMoleculeForceField", "absl.logging.exception", "tensorflow.compat.v2.matmul", "copy.deepcopy", "rdkit.Chem.AllChem.ETKDGv3", "tensorflow.compat.v2.zeros_like", "tensorflow.compat.v2.stack", "tensorflow.compat.v2.linalg.norm", "tensorflow.compat.v2.cast", "rdkit.Chem.AllChem.MMFFGetMoleculeForceField", "tensorflow.compat.v2.random.normal", "rdkit.Chem.AllChem.EmbedMultipleConfs", "absl.logging.error", "rdkit.Chem.AllChem.AlignMolConformers", "tensorflow.compat.v2.random.uniform", "numpy.array", "tensorflow.compat.v2.ones_like", "rdkit.Chem.AllChem.MMFFGetMoleculeProperties", "rdkit.Chem.AddHs", "rdkit.Chem.MolFromSmiles" ]
[((1968, 1991), 'copy.deepcopy', 'copy.deepcopy', (['molecule'], {}), '(molecule)\n', (1981, 1991), False, 'import copy\n'), ((2000, 2015), 'rdkit.Chem.AddHs', 'Chem.AddHs', (['mol'], {}), '(mol)\n', (2010, 2015), False, 'from rdkit import Chem\n'), ((2492, 2539), 'rdkit.Chem.AllChem.AlignMolConformers', 'AllChem.AlignMolConformers', (['mol_with_conformers'], {}), '(mol_with_conformers)\n', (2518, 2539), False, 'from rdkit.Chem import AllChem\n'), ((2654, 2688), 'rdkit.Chem.RemoveHs', 'Chem.RemoveHs', (['mol_with_conformers'], {}), '(mol_with_conformers)\n', (2667, 2688), False, 'from rdkit import Chem\n'), ((3676, 3707), 'rdkit.Chem.MolFromSmiles', 'rdkit.Chem.MolFromSmiles', (['smile'], {}), '(smile)\n', (3700, 3707), False, 'import rdkit\n'), ((4631, 4677), 'numpy.array', 'np.array', (['atom_features_list'], {'dtype': 'np.float32'}), '(atom_features_list, dtype=np.float32)\n', (4639, 4677), True, 'import numpy as np\n'), ((5205, 5240), 'tensorflow.compat.v2.matmul', 'tf.matmul', (['vectors', 'rotation_matrix'], {}), '(vectors, rotation_matrix)\n', (5214, 5240), True, 'import tensorflow.compat.v2 as tf\n'), ((6405, 6428), 'copy.deepcopy', 'copy.deepcopy', (['molecule'], {}), '(molecule)\n', (6418, 6428), False, 'import copy\n'), ((6752, 6769), 'rdkit.Chem.AllChem.ETKDGv3', 'AllChem.ETKDGv3', ([], {}), '()\n', (6767, 6769), False, 'from rdkit.Chem import AllChem\n'), ((6925, 6984), 'rdkit.Chem.AllChem.EmbedMultipleConfs', 'AllChem.EmbedMultipleConfs', (['mol', 'max_num_conformers', 'params'], {}), '(mol, max_num_conformers, params)\n', (6951, 6984), False, 'from rdkit.Chem import AllChem\n'), ((7729, 7772), 'rdkit.Chem.AllChem.MMFFGetMoleculeProperties', 'AllChem.MMFFGetMoleculeProperties', (['molecule'], {}), '(molecule)\n', (7762, 7772), False, 'from rdkit.Chem import AllChem\n'), ((7827, 7850), 'copy.deepcopy', 'copy.deepcopy', (['molecule'], {}), '(molecule)\n', (7840, 7850), False, 'import copy\n'), ((8518, 8541), 'copy.deepcopy', 'copy.deepcopy', (['molecule'], {}), '(molecule)\n', (8531, 8541), False, 'import copy\n'), ((8915, 8934), 'tensorflow.compat.v2.zeros_like', 'tf.zeros_like', (['sign'], {}), '(sign)\n', (8928, 8934), True, 'import tensorflow.compat.v2 as tf\n'), ((8943, 8961), 'tensorflow.compat.v2.ones_like', 'tf.ones_like', (['sign'], {}), '(sign)\n', (8955, 8961), True, 'import tensorflow.compat.v2 as tf\n'), ((9177, 9199), 'tensorflow.compat.v2.stack', 'tf.stack', (['rot'], {'axis': '(-1)'}), '(rot, axis=-1)\n', (9185, 9199), True, 'import tensorflow.compat.v2 as tf\n'), ((9208, 9230), 'tensorflow.compat.v2.reshape', 'tf.reshape', (['rot', 'shape'], {}), '(rot, shape)\n', (9218, 9230), True, 'import tensorflow.compat.v2 as tf\n'), ((9788, 9852), 'tensorflow.compat.v2.stack', 'tf.stack', (['[r00, r01, r02, r10, r11, r12, r20, r21, r22]'], {'axis': '(-1)'}), '([r00, r01, r02, r10, r11, r12, r20, r21, r22], axis=-1)\n', (9796, 9852), True, 'import tensorflow.compat.v2 as tf\n'), ((9904, 9930), 'tensorflow.compat.v2.reshape', 'tf.reshape', (['matrix', '[3, 3]'], {}), '(matrix, [3, 3])\n', (9914, 9930), True, 'import tensorflow.compat.v2 as tf\n'), ((10000, 10045), 'tensorflow.compat.v2.random.normal', 'tf.random.normal', ([], {'shape': '[4]', 'dtype': 'tf.float32'}), '(shape=[4], dtype=tf.float32)\n', (10016, 10045), True, 'import tensorflow.compat.v2 as tf\n'), ((10077, 10135), 'tensorflow.compat.v2.linalg.norm', 'tf.linalg.norm', (['random_quaternions'], {'axis': '(-1)', 'keepdims': '(True)'}), '(random_quaternions, axis=-1, keepdims=True)\n', (10091, 10135), True, 'import tensorflow.compat.v2 as tf\n'), ((10268, 10331), 'tensorflow.compat.v2.random.uniform', 'tf.random.uniform', ([], {'shape': '()', 'minval': '(0)', 'maxval': '(2)', 'dtype': 'tf.int32'}), '(shape=(), minval=0, maxval=2, dtype=tf.int32)\n', (10285, 10331), True, 'import tensorflow.compat.v2 as tf\n'), ((10356, 10395), 'tensorflow.compat.v2.cast', 'tf.cast', (['(2 * random_0_1 - 1)', 'tf.float32'], {}), '(2 * random_0_1 - 1, tf.float32)\n', (10363, 10395), True, 'import tensorflow.compat.v2 as tf\n'), ((4990, 5040), 'tensorflow.compat.v2.matmul', 'tf.matmul', (['rotation_matrix', 'random_mirror_symmetry'], {}), '(rotation_matrix, random_mirror_symmetry)\n', (4999, 5040), True, 'import tensorflow.compat.v2 as tf\n'), ((7908, 8017), 'rdkit.Chem.AllChem.MMFFGetMoleculeForceField', 'AllChem.MMFFGetMoleculeForceField', (['mol', 'molecule_props'], {'confId': 'conf_id', 'ignoreInterfragInteractions': '(False)'}), '(mol, molecule_props, confId=conf_id,\n ignoreInterfragInteractions=False)\n', (7941, 8017), False, 'from rdkit.Chem import AllChem\n'), ((8621, 8674), 'rdkit.Chem.AllChem.UFFGetMoleculeForceField', 'AllChem.UFFGetMoleculeForceField', (['mol'], {'confId': 'conf_id'}), '(mol, confId=conf_id)\n', (8653, 8674), False, 'from rdkit.Chem import AllChem\n'), ((4013, 4098), 'absl.logging.exception', 'logging.exception', (['"""Failed to generate conformers for %s . IOError %s."""', 'smile', 'e'], {}), "('Failed to generate conformers for %s . IOError %s.',\n smile, e)\n", (4030, 4098), False, 'from absl import logging\n'), ((4170, 4243), 'absl.logging.error', 'logging.error', (['"""Failed to generate conformers for %s . ValueError"""', 'smile'], {}), "('Failed to generate conformers for %s . ValueError', smile)\n", (4183, 4243), False, 'from absl import logging\n'), ((4317, 4378), 'absl.logging.error', 'logging.error', (['"""Failed to generate conformers for %s."""', 'smile'], {}), "('Failed to generate conformers for %s.', smile)\n", (4330, 4378), False, 'from absl import logging\n')]
"""Module for handling plotting functions This module contains plotting classes to plot :class:`.Binning` objects. Examples -------- :: plt = plotting.get_plotter(binning) plt.plot_values() plt.savefig('output.png') """ from itertools import cycle import numpy as np from matplotlib import pyplot as plt from matplotlib import ticker from . import binning def get_plotter(obj, *args, **kwargs): """Return a suitable plotting class instance for the object. Parameters ---------- obj : object The object for which a plotter should be returned. *args : optional **kwargs : optional Additional arguments are passed to the init method of the plotter. """ if isinstance(obj, binning.RectilinearBinning): return RectilinearBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.LinearBinning): return LinearBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.CartesianProductBinning): return CartesianProductBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.Binning): return BinningPlotter(obj, *args, **kwargs) if isinstance(obj, np.ndarray): return ArrayPlotter(obj, *args, **kwargs) raise TypeError(f"No known Plotter class for type {type(obj)}") class Plotter: """Plotting base class. Parameters ---------- figax : (Figure, Axes), optional The figure and axis to plot in. Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. """ def __init__(self, figax=None): self.figax = figax self.color = cycle("C%d" % (i,) for i in range(0, 10)) self.hatch = cycle([r"//", r"\\", r"O", "*"]) def __del__(self): """Clean up figures.""" if self.figax is not None: plt.close(self.figax[0]) def subplots(self, *args, **kwargs): """Return the ``(Figure, Axes)`` tuple of the binning. Creates one using Matplotlib's ``subplots``, if necessary. """ if self.figax is None: self.figax = plt.subplots(*args, **kwargs) return self.figax def savefig(self, *args, **kwargs): """Save the figure.""" kwargs2 = {"bbox_inches": "tight"} kwargs2.update(kwargs) self.figax[0].savefig(*args, **kwargs2) class ArrayPlotter(Plotter): """Plotting class for numpy arrays. Parameters ---------- array : ndarray The ndarray to be plotted. bins_per_row : int, optional How many bins are going to be plotted per row. **kwargs : optional Addittional keyword arguments are passed to :class:`Plotter`. See also -------- Plotter Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. array : ndarray The ndarray to be plotted. bins_per_row : int, optional How many bins are going to be plotted per row. """ def __init__(self, array, bins_per_row=25, **kwargs): self.array = array self.bins_per_row = bins_per_row Plotter.__init__(self, **kwargs) def _get_array(self, array): if array is None: array = self.array else: array = np.asarray(array) if array.shape != self.array.shape: raise TypeError("Array must be of equal shape as the initial one.") return array def _get_arrays(self, arrays): try: ret = [self._get_array(a) for a in arrays] except (TypeError, IndexError): ret = [self._get_array(arrays)] return np.array(ret) def get_bin_edges(self, i_min, i_max): """Get the bin edges corresponding to bins i_min to i_max.""" x = np.arange(i_min, i_max) return np.append(x - 0.5, x[-1] + 0.5) # Bins centred on integers def get_axis_label(self): """Return the default label for the axis.""" return "Bin #" @staticmethod def _get_stack_functions(stack_function): try: # A number? np.isfinite(stack_function) except TypeError: # Nope pass else: # A number. lobound = (1.0 - stack_function) / 2.0 hibound = 1.0 - lobound def lower(x, axis=0, bound=lobound): return np.quantile(x, bound, axis=axis) def upper(x, axis=0, bound=hibound): return np.quantile(x, bound, axis=axis) return lower, upper # No number try: # Tuple of functions? lower, upper = stack_function except TypeError: # Nope def lower(x, axis=0): return np.sum(np.zeros_like(x), axis=axis) upper = stack_function return lower, upper def plot_array( self, array=None, density=False, stack_function=np.mean, margin_function=None, **kwargs, ): """Plot an array. Parameters ---------- array : ndarray The thing to plot. density : bool, optional Divide the data by the relative bin width: ``width / total_plot_range``. stack_function : float or function or (lower_function, function) How to deal with multiple arrays. When `float`, plot the respective quantile as equal-tailed interval. When `function`, apply this function to the stack after marginalisation. When `(function, function)`, use these functions to calculate lower and upper bounds of the area to be plotted respectively. Functions must accept ``axis`` keyword argument. """ # The `margin_function` parameter is only here so it can be # safely used with all plotting methods arrays = self._get_arrays(array) lower, upper = self._get_stack_functions(stack_function) bins_per_row = self.bins_per_row if bins_per_row >= 1: n_rows = int(np.ceil(arrays.shape[-1] / bins_per_row)) else: n_rows = 1 bins_per_row = arrays.shape[-1] figax = self.subplots( nrows=n_rows, sharey=True, figsize=(6.4, max(2.4 * n_rows, 4.8)), squeeze=False, ) color = kwargs.get("color", next(self.color)) hatch = kwargs.get("hatch", next(self.hatch)) for i, ax in enumerate(figax[1][:, 0]): i_min = i * bins_per_row i_max = min((i + 1) * bins_per_row, arrays.shape[-1]) y_hi = np.asfarray(upper(arrays[:, i_min:i_max], axis=0)) y_lo = np.asfarray(lower(arrays[:, i_min:i_max], axis=0)) bins = np.asfarray(self.get_bin_edges(i_min, i_max)) # Divide by relative bin widths if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width y_hi /= np.asfarray(rel_widths) y_lo /= np.asfarray(rel_widths) args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) y_lo = np.append(y_lo, y_lo[-1]) y_hi = np.append(y_hi, y_hi[-1]) poly = ax.fill_between(bins, y_hi, y_lo, **args) # Add sticky y edge so histograms get plotted more beautifully poly.sticky_edges.y.append(np.min(y_lo)) ax.autoscale_view() ax.get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) ax.set_xlabel(self.get_axis_label()) def legend(self, **kwargs): """Draw a legend in the first axis.""" args = { "loc": "best", } args.update(kwargs) self.figax[1][0, 0].legend(**args) class BinningPlotter(ArrayPlotter): """Plotting class for the simplest :class:`.Binning` class. Parameters ---------- binning : Binning The binning to be plotted. marginalize_subbinnings : bool, optional Plot the contents of subbinnings as a single bin. **kwargs : optional Addittional keyword arguments are passed to :class:`ArrayPlotter`. See also -------- ArrayPlotter .Binning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : Binning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. """ def __init__(self, binning, marginalize_subbinnings=False, **kwargs): self.binning = binning self.marginalize_subbinnings = marginalize_subbinnings array = self.binning.value_array if marginalize_subbinnings: array = self.binning.marginalize_subbinnings_on_ndarray(array) ArrayPlotter.__init__(self, array, **kwargs) def _get_array(self, array): if array is None: array = self.array else: array = np.asarray(array) # Marginalize subbinnings if necessary if self.marginalize_subbinnings and array.shape != self.array.shape: array = self.binning.marginalize_subbinnings_on_ndarray(array) if array.shape != self.array.shape: raise TypeError("Array must be of equal shape as the initial one.") return array def _get_binning(self, binning): if binning is None: binning = self.binning return binning def plot_values(self, binning=None, **kwargs): """Plot the values of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.value_array, **kwargs) def plot_entries(self, binning=None, **kwargs): """Plot the entries of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.entries_array, **kwargs) def plot_sumw2(self, binning=None, **kwargs): """Plot the sumw2 of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.sumw2_array, **kwargs) class CartesianProductBinningPlotter(BinningPlotter): """Plotting class for :class:`.CartesianProductBinning` Parameters ---------- binning : CartesianProductBinning The binning to be plottet x_axis_binnings : list of int, optional The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int, optional The indices of binnings to be plotted on the y-axis. **kwargs : optional Additional keyword arguments are passed to :class:`BinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- BinningPlotter .CartesianProductBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : CartesianProductBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. x_axis_binnings : list of int The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int The indices of binnings to be plotted on the y-axis. """ def __init__(self, binning, x_axis_binnings=None, y_axis_binnings=None, **kwargs): if x_axis_binnings is None: x_axis_binnings = list(range(int(np.ceil(len(binning.binnings) / 2.0)))) self.x_axis_binnings = x_axis_binnings if y_axis_binnings is None: y_axis_binnings = list( range(int(np.ceil(len(binning.binnings) / 2.0)), len(binning.binnings)) ) self.y_axis_binnings = y_axis_binnings kwargs["marginalize_subbinnings"] = True kwargs["bins_per_row"] = -1 BinningPlotter.__init__(self, binning, **kwargs) def get_bin_edges(self, i_min, i_max, j_binning): """Get the bin edges corresponding to bins i_min to i_max.""" x = np.arange(i_min, i_max) return np.append(x - 0.5, x[-1] + 0.5) # Bins centred on integers def get_axis_label(self, j_binning): """Return the default label for the axis.""" return "Binning %d Bin #" % (j_binning,) def plot_array( self, array=None, density=True, stack_function=np.mean, margin_function=np.sum, scatter=-1, **kwargs, ): """Plot an array. Parameters ---------- array : ndarray, optional The data to be plotted. density : bool, optional Divide the data by the relative bin width: ``width / total_plot_range``. Dividing by the relative bin width, rather than the bin width directly, ensures that the maximum values in all 1D projections are comparable. stack_function : float or function or (lower_function, function) How to deal with multiple arrays. When `float`, plot the respective quantile as equal-tailed interval. When `function`, apply this function to the stack after marginalisation. When `(function, function)`, use these functions to calculate lower and upper bounds of the area to be plotted respectively. Functions must accept ``axis`` keyword argument. margin_function : function, optional The function used to marginalize the data. scatter : int, optional Use a pseudo scatter plot with `scatter` number of points instead of a 2D histogram. Allows to draw multiple sets of 2D data in the same plot. The number of points in each cell is proportional to the value being plotted. Using the `scatter` option is thus implicitly replicating the behaviour of the `density` option for the 2D plots. The `density` argument has no effect on the scatter plots. """ arrays = self._get_arrays(array) lower, upper = self._get_stack_functions(stack_function) shape = self.binning.bins_shape arrays = arrays.reshape(arrays.shape[:1] + shape) n_col = len(self.x_axis_binnings) + 1 # "+1" for the 1D projections n_row = len(self.y_axis_binnings) + 1 # Widths and heights according to number of bins, # 10 px (= 0.1") per bin widths = [ 0.1 * self.binning.binnings[i].data_size for i in self.x_axis_binnings ] heights = [ 0.1 * self.binning.binnings[i].data_size for i in self.y_axis_binnings ] # Axes are counted top to bottom, but we want binnings bottom to top heights.reverse() # Total figure size total_width = np.sum(widths) total_height = np.sum(heights) scale = 4.0 / min(max(total_width, total_height), 4.0) # Room for the 1D histograms if total_width == 0.0: widths.append(6 / scale) else: widths.append(1.5 / scale) if total_height == 0.0: heights.insert(0, 4 / scale) else: heights.insert(0, 1.5 / scale) # Update total sizes total_width = np.sum(widths) total_height = np.sum(heights) fig_x = total_width * scale fig_y = total_height * scale # Subplot spacing is specified as multiple of average axis size # We want it to be relative to the 1D projections wspace = 0.1 * widths[-1] / (total_width / len(widths)) hspace = 0.1 * heights[0] / (total_height / len(heights)) figax = self.subplots( nrows=n_row, ncols=n_col, sharex="col", sharey="row", figsize=(fig_x, fig_y), gridspec_kw={ "width_ratios": widths, "height_ratios": heights, "wspace": wspace, "hspace": hspace, }, squeeze=False, ) color = kwargs.get("color", next(self.color)) hatch = kwargs.get("hatch", next(self.hatch)) # 2D histograms for x, i in enumerate(self.x_axis_binnings): for y, j in enumerate(self.y_axis_binnings): # Get axis to plot in ax = figax[1][-y - 1, x] # rows are counted top to bottom # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 for k in sorted((i, j), reverse=True): del axis[k] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # 2D plots only show upper limit of stack data = upper(data, axis=0) # Flip axes if necessary if i < j: data = data.T # Bin edges x_edg = self.get_bin_edges(0, data.shape[1], i) y_edg = self.get_bin_edges(0, data.shape[0], j) # Plot the data if scatter >= 0: # Draw a set of random points and plot these # Get bin numbers csum = np.asfarray(data.cumsum()) csum /= np.max(csum) indices = np.digitize(np.random.uniform(size=scatter), csum) # Get x and y bin numbers x_indices = indices % data.shape[1] y_indices = indices // data.shape[1] # Throw X and Y for each event x = [] y = [] for ix, iy in zip(x_indices, y_indices): x_min = x_edg[ix] x_max = x_edg[ix + 1] y_min = y_edg[iy] y_max = y_edg[iy + 1] x.append(np.random.uniform(x_min, x_max)) y.append(np.random.uniform(y_min, y_max)) # Plot the points if data.sum() > 0: # Only actually draw something if we have some events ax.scatter(x, y, 1, color=color, marker=",") else: # Plot a regular 2D histogram # Bin centres x = np.convolve(x_edg, np.ones(2) / 2, mode="valid") y = np.convolve(y_edg, np.ones(2) / 2, mode="valid") xx = np.broadcast_to(x, (len(y), len(x))).flatten() yy = np.repeat(y, len(x)) # Plot it if data.sum() == 0: # Empty data messes with the normalisation data.fill(0.001) ax.hist2d( xx, yy, weights=data.flat, bins=(x_edg, y_edg), density=density ) # 1D vertical histograms for x, i in enumerate(self.x_axis_binnings): # Get axis to plot in ax = figax[1][0, x] # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 del axis[i] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # Upper and lower limit of area data_hi = upper(data, axis=0) data_lo = lower(data, axis=0) # Divide by relative bin widths bins = np.asfarray(self.get_bin_edges(0, data.shape[1], i)) if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width data_hi /= rel_widths data_lo /= rel_widths # Plot the data args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) data_lo = np.append(data_lo, data_lo[-1]) data_hi = np.append(data_hi, data_hi[-1]) poly = ax.fill_between(bins, data_hi, data_lo, **args) # Add sticky y edge so histograms get plotted more beautifully poly.sticky_edges.y.append(np.min(data_lo)) ax.autoscale_view() # Only int tick label ax.get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) # Add labels at the appropriate axes ax = figax[1][-1, x] ax.set_xlabel(self.get_axis_label(i)) # 1D horizontal histograms for y, i in enumerate(self.y_axis_binnings): # Get axis to plot in ax = figax[1][-y - 1, -1] # Rows are counted top to bottom # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 del axis[i] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # Upper and lower limit of area data_hi = upper(data, axis=0) data_lo = lower(data, axis=0) # Divide by relative bin widths bins = np.asfarray(self.get_bin_edges(0, data.shape[1], i)) if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width data_hi /= rel_widths data_lo /= rel_widths # Plot the data args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) data_lo = np.append(data_lo, data_lo[-1]) data_hi = np.append(data_hi, data_hi[-1]) poly = ax.fill_betweenx(bins, data_hi, data_lo, **args) # Add sticky x edge so histograms get plotted more beautifully poly.sticky_edges.x.append(np.min(data_lo)) ax.autoscale_view() # Only int tick label ax.get_yaxis().set_major_locator(ticker.MaxNLocator(integer=True)) # Add labels at the appropriate axes ax = figax[1][-y - 1, 0] # Rows are counted top to bottom ax.set_ylabel(self.get_axis_label(i)) # Hide empty axes figax[1][0, -1].set_axis_off() def legend(self, **kwargs): """Draw a legend in the upper right corner of the plot.""" handles, labels = self.figax[1][0, 0].get_legend_handles_labels() args = { "loc": "center", "borderaxespad": 0.0, "frameon": False, } args.update(kwargs) self.figax[1][0, -1].legend(handles, labels, **args) class LinearBinningPlotter(BinningPlotter): """Plotting class for :class:`.LinearBinning` Parameters ---------- binning : LinearBinning The binning to be plottet **kwargs : optional Additional keyword arguments are passed to :class:`BinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- BinningPlotter .LinearBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : LinearBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. """ def __init__(self, binning, **kwargs): kwargs["marginalize_subbinnings"] = True args = { "bins_per_row": -1, } args.update(kwargs) BinningPlotter.__init__(self, binning, **args) def plot_array(self, *args, **kwargs): """Plot an array. See :meth:`ArrayPlotter.plot_array`. """ # Change default behaviour of `density` kwargs["density"] = kwargs.get("density", True) return ArrayPlotter.plot_array(self, *args, **kwargs) def get_bin_edges(self, i_min, i_max): """Get the finite bin edges.""" bins = self.binning.bin_edges[i_min : i_max + 1] ret = list(bins) if not np.isfinite(ret[0]): if len(ret) >= 3 and np.isfinite(ret[2]): ret[0] = ret[1] - (ret[2] - ret[1]) elif np.isfinite(ret[1]): ret[0] = ret[1] - 1 else: ret[0] = -0.5 if not np.isfinite(ret[-1]): if len(ret) >= 3 and np.isfinite(ret[-3]): ret[-1] = ret[-2] + (ret[-2] - ret[-3]) else: ret[-1] = ret[-2] + 1 return np.array(ret) def get_axis_label(self): """Return variable name.""" return self.binning.variable class RectilinearBinningPlotter(CartesianProductBinningPlotter): """Plotting class for :class:`.RectilinearBinning` Parameters ---------- binning : RectilinearBinning The binning to be plottet x_axis_binnings : list of int/str, optional The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int/str, optional The indices of binnings to be plotted on the y-axis. **kwargs : optional Additional keyword arguments are passed to :class:`CartesianProductBinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- CartesianProductBinningPlotter .RectilinearBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : RectilinearBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. x_axis_binnings : list of int or str The indices or variable names of to be plotted on the x-axis. y_axis_binnings : list of int or str The indices or variable names to be plotted on the y-axis. """ def __init__(self, binning, x_axis_binnings=None, y_axis_binnings=None, **kwargs): if x_axis_binnings is None: x_axis_binnings = list(range(int(np.ceil(len(binning.binnings) / 2.0)))) else: x_axis_binnings = map(binning.get_variable_index, x_axis_binnings) if y_axis_binnings is None: y_axis_binnings = list( range(int(np.ceil(len(binning.binnings) / 2.0)), len(binning.binnings)) ) else: y_axis_binnings = map(binning.get_variable_index, y_axis_binnings) kwargs["x_axis_binnings"] = x_axis_binnings kwargs["y_axis_binnings"] = y_axis_binnings kwargs["marginalize_subbinnings"] = True kwargs["bins_per_row"] = -1 CartesianProductBinningPlotter.__init__(self, binning, **kwargs) def get_bin_edges(self, i_min, i_max, j_binning): """Get the finite bin edges.""" bins = self.binning.binnings[j_binning].bin_edges[i_min : i_max + 1] ret = list(bins) if not np.isfinite(ret[0]): if len(ret) >= 3 and np.isfinite(ret[2]): ret[0] = ret[1] - (ret[2] - ret[1]) elif np.isfinite(ret[1]): ret[0] = ret[1] - 1 else: ret[0] = -0.5 if not np.isfinite(ret[-1]): if len(ret) >= 3 and np.isfinite(ret[-3]): ret[-1] = ret[-2] + (ret[-2] - ret[-3]) else: ret[-1] = ret[-2] + 1 return np.array(ret) def get_axis_label(self, j_binning): """Return variable name.""" return self.binning.binnings[j_binning].variable
[ "numpy.random.uniform", "numpy.quantile", "numpy.sum", "numpy.ceil", "numpy.zeros_like", "matplotlib.pyplot.close", "numpy.asarray", "numpy.asfarray", "matplotlib.ticker.MaxNLocator", "numpy.isfinite", "numpy.ones", "numpy.append", "numpy.min", "numpy.max", "numpy.array", "numpy.arange", "itertools.cycle", "matplotlib.pyplot.subplots" ]
[((1942, 1973), 'itertools.cycle', 'cycle', (["['//', '\\\\\\\\', 'O', '*']"], {}), "(['//', '\\\\\\\\', 'O', '*'])\n", (1947, 1973), False, 'from itertools import cycle\n'), ((4113, 4126), 'numpy.array', 'np.array', (['ret'], {}), '(ret)\n', (4121, 4126), True, 'import numpy as np\n'), ((4253, 4276), 'numpy.arange', 'np.arange', (['i_min', 'i_max'], {}), '(i_min, i_max)\n', (4262, 4276), True, 'import numpy as np\n'), ((4292, 4323), 'numpy.append', 'np.append', (['(x - 0.5)', '(x[-1] + 0.5)'], {}), '(x - 0.5, x[-1] + 0.5)\n', (4301, 4323), True, 'import numpy as np\n'), ((13183, 13206), 'numpy.arange', 'np.arange', (['i_min', 'i_max'], {}), '(i_min, i_max)\n', (13192, 13206), True, 'import numpy as np\n'), ((13222, 13253), 'numpy.append', 'np.append', (['(x - 0.5)', '(x[-1] + 0.5)'], {}), '(x - 0.5, x[-1] + 0.5)\n', (13231, 13253), True, 'import numpy as np\n'), ((15951, 15965), 'numpy.sum', 'np.sum', (['widths'], {}), '(widths)\n', (15957, 15965), True, 'import numpy as np\n'), ((15989, 16004), 'numpy.sum', 'np.sum', (['heights'], {}), '(heights)\n', (15995, 16004), True, 'import numpy as np\n'), ((16409, 16423), 'numpy.sum', 'np.sum', (['widths'], {}), '(widths)\n', (16415, 16423), True, 'import numpy as np\n'), ((16447, 16462), 'numpy.sum', 'np.sum', (['heights'], {}), '(heights)\n', (16453, 16462), True, 'import numpy as np\n'), ((26238, 26251), 'numpy.array', 'np.array', (['ret'], {}), '(ret)\n', (26246, 26251), True, 'import numpy as np\n'), ((29330, 29343), 'numpy.array', 'np.array', (['ret'], {}), '(ret)\n', (29338, 29343), True, 'import numpy as np\n'), ((2078, 2102), 'matplotlib.pyplot.close', 'plt.close', (['self.figax[0]'], {}), '(self.figax[0])\n', (2087, 2102), True, 'from matplotlib import pyplot as plt\n'), ((2346, 2375), 'matplotlib.pyplot.subplots', 'plt.subplots', (['*args'], {}), '(*args, **kwargs)\n', (2358, 2375), True, 'from matplotlib import pyplot as plt\n'), ((3739, 3756), 'numpy.asarray', 'np.asarray', (['array'], {}), '(array)\n', (3749, 3756), True, 'import numpy as np\n'), ((4573, 4600), 'numpy.isfinite', 'np.isfinite', (['stack_function'], {}), '(stack_function)\n', (4584, 4600), True, 'import numpy as np\n'), ((7842, 7867), 'numpy.append', 'np.append', (['y_lo', 'y_lo[-1]'], {}), '(y_lo, y_lo[-1])\n', (7851, 7867), True, 'import numpy as np\n'), ((7887, 7912), 'numpy.append', 'np.append', (['y_hi', 'y_hi[-1]'], {}), '(y_hi, y_hi[-1])\n', (7896, 7912), True, 'import numpy as np\n'), ((9924, 9941), 'numpy.asarray', 'np.asarray', (['array'], {}), '(array)\n', (9934, 9941), True, 'import numpy as np\n'), ((21306, 21337), 'numpy.append', 'np.append', (['data_lo', 'data_lo[-1]'], {}), '(data_lo, data_lo[-1])\n', (21315, 21337), True, 'import numpy as np\n'), ((21360, 21391), 'numpy.append', 'np.append', (['data_hi', 'data_hi[-1]'], {}), '(data_hi, data_hi[-1])\n', (21369, 21391), True, 'import numpy as np\n'), ((23054, 23085), 'numpy.append', 'np.append', (['data_lo', 'data_lo[-1]'], {}), '(data_lo, data_lo[-1])\n', (23063, 23085), True, 'import numpy as np\n'), ((23108, 23139), 'numpy.append', 'np.append', (['data_hi', 'data_hi[-1]'], {}), '(data_hi, data_hi[-1])\n', (23117, 23139), True, 'import numpy as np\n'), ((25769, 25788), 'numpy.isfinite', 'np.isfinite', (['ret[0]'], {}), '(ret[0])\n', (25780, 25788), True, 'import numpy as np\n'), ((26033, 26053), 'numpy.isfinite', 'np.isfinite', (['ret[-1]'], {}), '(ret[-1])\n', (26044, 26053), True, 'import numpy as np\n'), ((28861, 28880), 'numpy.isfinite', 'np.isfinite', (['ret[0]'], {}), '(ret[0])\n', (28872, 28880), True, 'import numpy as np\n'), ((29125, 29145), 'numpy.isfinite', 'np.isfinite', (['ret[-1]'], {}), '(ret[-1])\n', (29136, 29145), True, 'import numpy as np\n'), ((4861, 4893), 'numpy.quantile', 'np.quantile', (['x', 'bound'], {'axis': 'axis'}), '(x, bound, axis=axis)\n', (4872, 4893), True, 'import numpy as np\n'), ((4967, 4999), 'numpy.quantile', 'np.quantile', (['x', 'bound'], {'axis': 'axis'}), '(x, bound, axis=axis)\n', (4978, 4999), True, 'import numpy as np\n'), ((6578, 6618), 'numpy.ceil', 'np.ceil', (['(arrays.shape[-1] / bins_per_row)'], {}), '(arrays.shape[-1] / bins_per_row)\n', (6585, 6618), True, 'import numpy as np\n'), ((7546, 7569), 'numpy.asfarray', 'np.asfarray', (['rel_widths'], {}), '(rel_widths)\n', (7557, 7569), True, 'import numpy as np\n'), ((7594, 7617), 'numpy.asfarray', 'np.asfarray', (['rel_widths'], {}), '(rel_widths)\n', (7605, 7617), True, 'import numpy as np\n'), ((8089, 8101), 'numpy.min', 'np.min', (['y_lo'], {}), '(y_lo)\n', (8095, 8101), True, 'import numpy as np\n'), ((8181, 8213), 'matplotlib.ticker.MaxNLocator', 'ticker.MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (8199, 8213), False, 'from matplotlib import ticker\n'), ((21574, 21589), 'numpy.min', 'np.min', (['data_lo'], {}), '(data_lo)\n', (21580, 21589), True, 'import numpy as np\n'), ((21703, 21735), 'matplotlib.ticker.MaxNLocator', 'ticker.MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (21721, 21735), False, 'from matplotlib import ticker\n'), ((23323, 23338), 'numpy.min', 'np.min', (['data_lo'], {}), '(data_lo)\n', (23329, 23338), True, 'import numpy as np\n'), ((23452, 23484), 'matplotlib.ticker.MaxNLocator', 'ticker.MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (23470, 23484), False, 'from matplotlib import ticker\n'), ((25823, 25842), 'numpy.isfinite', 'np.isfinite', (['ret[2]'], {}), '(ret[2])\n', (25834, 25842), True, 'import numpy as np\n'), ((25913, 25932), 'numpy.isfinite', 'np.isfinite', (['ret[1]'], {}), '(ret[1])\n', (25924, 25932), True, 'import numpy as np\n'), ((26088, 26108), 'numpy.isfinite', 'np.isfinite', (['ret[-3]'], {}), '(ret[-3])\n', (26099, 26108), True, 'import numpy as np\n'), ((28915, 28934), 'numpy.isfinite', 'np.isfinite', (['ret[2]'], {}), '(ret[2])\n', (28926, 28934), True, 'import numpy as np\n'), ((29005, 29024), 'numpy.isfinite', 'np.isfinite', (['ret[1]'], {}), '(ret[1])\n', (29016, 29024), True, 'import numpy as np\n'), ((29180, 29200), 'numpy.isfinite', 'np.isfinite', (['ret[-3]'], {}), '(ret[-3])\n', (29191, 29200), True, 'import numpy as np\n'), ((18518, 18530), 'numpy.max', 'np.max', (['csum'], {}), '(csum)\n', (18524, 18530), True, 'import numpy as np\n'), ((5252, 5268), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (5265, 5268), True, 'import numpy as np\n'), ((18573, 18604), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'scatter'}), '(size=scatter)\n', (18590, 18604), True, 'import numpy as np\n'), ((19148, 19179), 'numpy.random.uniform', 'np.random.uniform', (['x_min', 'x_max'], {}), '(x_min, x_max)\n', (19165, 19179), True, 'import numpy as np\n'), ((19214, 19245), 'numpy.random.uniform', 'np.random.uniform', (['y_min', 'y_max'], {}), '(y_min, y_max)\n', (19231, 19245), True, 'import numpy as np\n'), ((19623, 19633), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (19630, 19633), True, 'import numpy as np\n'), ((19696, 19706), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (19703, 19706), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as img import h5py #s a common package to interact with # a dataset that is stored on an H5 file. #from lr_utils import load_dataset #load datasets #Load lr_utils for loading train and testinng datasets def load_dataset(): train_dataset = h5py.File('/Users/surat/PycharmProjects/start87/datasets/train_catvnoncat.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels test_dataset = h5py.File('/Users/surat/PycharmProjects/start87/datasets/test_catvnoncat.h5', "r") test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels classes = np.array(test_dataset["list_classes"][:]) # the list of classes train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() # Example of a picture index = 50 example = train_set_x_orig[index] plt.imshow(train_set_x_orig[index]) plt.show() print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.") m_train = train_set_x_orig.shape[0] m_test = test_set_x_orig.shape[0] num_px = train_set_x_orig.shape[1] print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height/Width of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_set_x shape: " + str(train_set_x_orig.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x shape: " + str(test_set_x_orig.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) # Reshape the training and test examples #Reshape the training and test data sets so that images of size (num_px, num_px, 3) # are flattened into single vectors of shape (num_px ∗∗ num_px ∗∗ 3, 1). # A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b ∗∗ c ∗∗ d, a) is to use: # X_flatten = X.reshape(X.shape[0], -1).T # X.T is the transpose of X train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], 64*64*3).T test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0])) #To represent color images, the red, green and blue channels (RGB) must be specified for each pixel, and so the pixel # value is actually a vector of three numbers ranging from 0 to 255. # One common preprocessing step in machine learning is to center and standardize your dataset, meaning that you # substract the mean of the whole numpy array from each example, and then divide each example by the standard deviation # of the whole numpy array. But for picture datasets, it is simpler and more convenient and works almost as well to # just divide every row of the dataset by 255 (the maximum value of a pixel channel).Let's standardize our dataset. train_set_x = train_set_x_flatten/255. test_set_x = test_set_x_flatten/255. print('number of train datasets =' + str(train_set_x.shape)) print('number of test datasets =' + str (test_set_x.shape)) #Key steps: - # 1. Initialize the parameters of the model # 2. Learn the parameters for the model by minimizing the cost # 3. Use the learned parameters to make predictions (on the test set) # 4. Analyse the results and conclude #algorithm building: # The main steps for building a Neural Network are: # Define the model structure (such as number of input features) # Initialize the model's parameters # Loop: # Calculate current loss (forward propagation) # Calculate current gradient (backward propagation) # Update parameters (gradient descent) # GRADED FUNCTION: sigmoid def sigmoid(z): """ Compute the sigmoid of z Arguments: z -- A scalar or numpy array of any size. Return: s -- sigmoid(z) """ ### START CODE HERE ### (≈ 1 line of code) s = 1. / (1 + np.exp(-z)) ### END CODE HERE ### return s print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2])))) ###initialize_with_zeros # GRADED FUNCTION: initialize_with_zeros def initialize_with_zeros(dim): """ This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. Argument: dim -- size of the w vector we want (or number of parameters in this case) Returns: w -- initialized vector of shape (dim, 1) b -- initialized scalar (corresponds to the bias) """ w = np.zeros(shape=(dim, 1), dtype=np.float32) b = 0 assert (w.shape == (dim, 1)) assert (isinstance(b, float) or isinstance(b, int)) return w, b dim = 2 w, b = initialize_with_zeros(dim) print ("w = " + str(w)) print ("b = " + str(b)) #forward and backward propagation #Implement a function propagate() that computes the cost function and its gradient. # GRADED FUNCTION: propagate def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b """ m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST) A = sigmoid(np.dot(w.T, X) + b) # compute activation cost = (-1. / m) * np.sum((Y * np.log(A) + (1 - Y) * np.log(1 - A)), axis=1) # compute cost # BACKWARD PROPAGATION (TO FIND GRAD) dw = (1. / m) * np.dot(X, ((A - Y).T)) db = (1. / m) * np.sum(A - Y, axis=1) assert (dw.shape == w.shape) assert (db.dtype == float) cost = np.squeeze(cost) assert (cost.shape == ()) grads = {"dw": dw, "db": db} return grads, cost w, b, X, Y = np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) ##OPTIMIZATION # initialized your parameters. # to compute a cost function and its gradient. # update the parameters using gradient descent # GRADED FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False): """ This function optimizes w and b by running a gradient descent algorithm Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- True to print the loss every 100 steps Returns: params -- dictionary containing the weights w and bias b grads -- dictionary containing the gradients of the weights and bias with respect to the cost function costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. """ costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code) grads, cost = propagate(w=w, b=b, X=X, Y=Y) # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule (≈ 2 lines of code) w = w - learning_rate * dw b = b - learning_rate * db # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training examples if print_cost and i % 100 == 0: print("Cost after iteration %i: %f" % (i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) ##PREDICTION PART def predict(w, b, X): ''' Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X ''' m = X.shape[1] Y_prediction = np.zeros((1, m)) w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture A = sigmoid(np.dot(w.T, X) + b) [print(x) for x in A] for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] if A[0, i] >= 0.5: Y_prediction[0, i] = 1 else: Y_prediction[0, i] = 0 assert (Y_prediction.shape == (1, m)) return Y_prediction print ("predictions = " + str(predict(w, b, X))) ## MARGE ALL FUNCTION INTO A MODEL # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False): """ Builds the logistic regression model by calling the function you've implemented previously Arguments: X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train) Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train) X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test) Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test) num_iterations -- hyperparameter representing the number of iterations to optimize the parameters learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize() print_cost -- Set to true to print the cost every 100 iterations Returns: d -- dictionary containing information about the model. """ # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train": Y_prediction_train, "w": w, "b": b, "learning_rate": learning_rate, "num_iterations": num_iterations} return d d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) # Example of a picture that was wrongly classified. index = 49 plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3))) plt.show() print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") + "\" picture.") # Plot learning curve (with costs) costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show()
[ "h5py.File", "matplotlib.pyplot.show", "numpy.dot", "matplotlib.pyplot.plot", "numpy.sum", "numpy.log", "matplotlib.pyplot.imshow", "numpy.abs", "numpy.zeros", "numpy.array", "numpy.exp", "numpy.squeeze", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((1383, 1418), 'matplotlib.pyplot.imshow', 'plt.imshow', (['train_set_x_orig[index]'], {}), '(train_set_x_orig[index])\n', (1393, 1418), True, 'import matplotlib.pyplot as plt\n'), ((1420, 1430), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1428, 1430), True, 'import matplotlib.pyplot as plt\n'), ((12747, 12757), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12755, 12757), True, 'import matplotlib.pyplot as plt\n'), ((12983, 13005), 'numpy.squeeze', 'np.squeeze', (["d['costs']"], {}), "(d['costs'])\n", (12993, 13005), True, 'import numpy as np\n'), ((13007, 13022), 'matplotlib.pyplot.plot', 'plt.plot', (['costs'], {}), '(costs)\n', (13015, 13022), True, 'import matplotlib.pyplot as plt\n'), ((13024, 13042), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""cost"""'], {}), "('cost')\n", (13034, 13042), True, 'import matplotlib.pyplot as plt\n'), ((13044, 13083), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iterations (per hundreds)"""'], {}), "('iterations (per hundreds)')\n", (13054, 13083), True, 'import matplotlib.pyplot as plt\n'), ((13141, 13151), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13149, 13151), True, 'import matplotlib.pyplot as plt\n'), ((335, 422), 'h5py.File', 'h5py.File', (['"""/Users/surat/PycharmProjects/start87/datasets/train_catvnoncat.h5"""', '"""r"""'], {}), "('/Users/surat/PycharmProjects/start87/datasets/train_catvnoncat.h5',\n 'r')\n", (344, 422), False, 'import h5py\n'), ((443, 484), 'numpy.array', 'np.array', (["train_dataset['train_set_x'][:]"], {}), "(train_dataset['train_set_x'][:])\n", (451, 484), True, 'import numpy as np\n'), ((536, 577), 'numpy.array', 'np.array', (["train_dataset['train_set_y'][:]"], {}), "(train_dataset['train_set_y'][:])\n", (544, 577), True, 'import numpy as np\n'), ((625, 711), 'h5py.File', 'h5py.File', (['"""/Users/surat/PycharmProjects/start87/datasets/test_catvnoncat.h5"""', '"""r"""'], {}), "('/Users/surat/PycharmProjects/start87/datasets/test_catvnoncat.h5',\n 'r')\n", (634, 711), False, 'import h5py\n'), ((731, 770), 'numpy.array', 'np.array', (["test_dataset['test_set_x'][:]"], {}), "(test_dataset['test_set_x'][:])\n", (739, 770), True, 'import numpy as np\n'), ((820, 859), 'numpy.array', 'np.array', (["test_dataset['test_set_y'][:]"], {}), "(test_dataset['test_set_y'][:])\n", (828, 859), True, 'import numpy as np\n'), ((901, 942), 'numpy.array', 'np.array', (["test_dataset['list_classes'][:]"], {}), "(test_dataset['list_classes'][:])\n", (909, 942), True, 'import numpy as np\n'), ((5344, 5386), 'numpy.zeros', 'np.zeros', ([], {'shape': '(dim, 1)', 'dtype': 'np.float32'}), '(shape=(dim, 1), dtype=np.float32)\n', (5352, 5386), True, 'import numpy as np\n'), ((6842, 6858), 'numpy.squeeze', 'np.squeeze', (['cost'], {}), '(cost)\n', (6852, 6858), True, 'import numpy as np\n'), ((6982, 7002), 'numpy.array', 'np.array', (['[[1], [2]]'], {}), '([[1], [2]])\n', (6990, 7002), True, 'import numpy as np\n'), ((7006, 7032), 'numpy.array', 'np.array', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (7014, 7032), True, 'import numpy as np\n'), ((7031, 7049), 'numpy.array', 'np.array', (['[[1, 0]]'], {}), '([[1, 0]])\n', (7039, 7049), True, 'import numpy as np\n'), ((9838, 9854), 'numpy.zeros', 'np.zeros', (['(1, m)'], {}), '((1, m))\n', (9846, 9854), True, 'import numpy as np\n'), ((6694, 6714), 'numpy.dot', 'np.dot', (['X', '(A - Y).T'], {}), '(X, (A - Y).T)\n', (6700, 6714), True, 'import numpy as np\n'), ((6738, 6759), 'numpy.sum', 'np.sum', (['(A - Y)'], {'axis': '(1)'}), '(A - Y, axis=1)\n', (6744, 6759), True, 'import numpy as np\n'), ((4779, 4789), 'numpy.exp', 'np.exp', (['(-z)'], {}), '(-z)\n', (4785, 4789), True, 'import numpy as np\n'), ((6482, 6496), 'numpy.dot', 'np.dot', (['w.T', 'X'], {}), '(w.T, X)\n', (6488, 6496), True, 'import numpy as np\n'), ((10003, 10017), 'numpy.dot', 'np.dot', (['w.T', 'X'], {}), '(w.T, X)\n', (10009, 10017), True, 'import numpy as np\n'), ((4877, 4893), 'numpy.array', 'np.array', (['[0, 2]'], {}), '([0, 2])\n', (4885, 4893), True, 'import numpy as np\n'), ((6560, 6569), 'numpy.log', 'np.log', (['A'], {}), '(A)\n', (6566, 6569), True, 'import numpy as np\n'), ((6582, 6595), 'numpy.log', 'np.log', (['(1 - A)'], {}), '(1 - A)\n', (6588, 6595), True, 'import numpy as np\n'), ((1500, 1533), 'numpy.squeeze', 'np.squeeze', (['train_set_y[:, index]'], {}), '(train_set_y[:, index])\n', (1510, 1533), True, 'import numpy as np\n'), ((12060, 12096), 'numpy.abs', 'np.abs', (['(Y_prediction_train - Y_train)'], {}), '(Y_prediction_train - Y_train)\n', (12066, 12096), True, 'import numpy as np\n'), ((12160, 12194), 'numpy.abs', 'np.abs', (['(Y_prediction_test - Y_test)'], {}), '(Y_prediction_test - Y_test)\n', (12166, 12194), True, 'import numpy as np\n')]
import os import unittest import torch import numpy as np from PIL import Image from embryovision import util from embryovision.tests.common import get_loadable_filenames class TestReadImage(unittest.TestCase): def test_read_image_returns_numpy(self): filename = get_loadable_filenames()[0] image = util.read_image(filename) self.assertIsInstance(image, np.ndarray) def test_read_image_returns_correct_shape(self): filename = get_loadable_filenames()[0] image = util.read_image(filename) self.assertEqual(image.ndim, 3) self.assertEqual(image.shape[2], 3) def test_read_image_returns_float_on_01(self): filename = get_loadable_filenames()[0] image = util.read_image(filename) self.assertGreaterEqual(image.min(), 0) self.assertLessEqual(image.max(), 1) class TestReadImageForTorch(unittest.TestCase): def test_read_image_for_torch_returns_torch(self): filenames = get_loadable_filenames() as_torch = util.read_images_for_torch(filenames) self.assertIsInstance(as_torch, torch.Tensor) def test_read_image_for_torch_returns_correct_shape(self): # torch expects (n_images, channels, size filenames = get_loadable_filenames() as_torch = util.read_images_for_torch(filenames) n_channels = 3 self.assertEqual(as_torch.size()[:2], (len(filenames), n_channels)) class TestLoadAndCropImage(unittest.TestCase): def test_returns_pil_image(self): filename = get_loadable_filenames()[0] box = (1, 1, 2, 2) image = util.load_and_crop_image(filename, box) self.assertIsInstance(image, Image.Image) def test_output_image_is_correct_shape(self): filename = get_loadable_filenames()[0] box = (1, 1, 100, 100) shape = (150, 140) image = util.load_and_crop_image(filename, box, output_shape=shape) self.assertEqual(image.size, shape) def test_crop_box_is_used_with_resize_nearest(self): # we crop to a 1 px image, and check that all image values # are the same value filename = get_loadable_filenames()[0] box = (1, 1, 2, 2) image = util.load_and_crop_image(filename, box) correct_px_value = np.array(Image.open(filename))[box[0], box[1]] self.assertTrue(np.all(np.array(image) == correct_px_value)) class TestLoadImageIntoRam(unittest.TestCase): def test_load_image_as_bytes_io(self): filename = get_loadable_filenames()[0] loaded_into_ram = util.load_image_into_ram(filename) image0 = util.read_image(filename) image1 = util.read_image(loaded_into_ram) self.assertTrue(np.all(image0 == image1)) class TestTransformingCollection(unittest.TestCase): def test_getitem_transforms(self): np.random.seed(400) data = np.random.randn(20) transform = lambda x: -2 * x loader = util.TransformingCollection(data, transform) index = 0 self.assertEqual(transform(data[index]), loader[index]) def test_len(self): data = np.random.randn(20) transform = lambda x: -2 * x loader = util.TransformingCollection(data, transform) self.assertEqual(len(loader), data.size) def test_on_images(self): filenames = get_loadable_filenames() images_ram = [util.load_image_into_ram(nm) for nm in filenames] loader = util.TransformingCollection(images_ram, util.read_image) index = 0 image_filename = util.read_image(filenames[index]) image_loader = loader[index] self.assertTrue(np.all(image_filename == image_loader)) class TestMisc(unittest.TestCase): def test_split_all(self): dummy_folder = '/some/long/directory/structure/' filename = 'D2017_05_05_S1477_I313_pdb/WELL06/F0/016.jpg' fullname = os.path.join(dummy_folder, filename) fullname_f0_split = util.split_all(fullname) correct_answer = ( '/', 'some', 'long', 'directory', 'structure', 'D2017_05_05_S1477_I313_pdb', 'WELL06', 'F0', '016.jpg') self.assertEqual(fullname_f0_split, correct_answer) def test_augment_focus(self): filename = get_loadable_filenames()[0] augmented = util.augment_focus(filename) for foundname, focus_correct in zip(augmented, ['F-15', 'F0', 'F15']): *head, focus_found, image_number = util.split_all(foundname) self.assertTrue(os.path.exists(foundname)) self.assertEqual(focus_found, focus_correct) def test_augment_focus_raises_error_when_no_filename(self): unloadable_filename = '/some/wrong/directory/structure/001.jpg' assert not os.path.exists(unloadable_filename) self.assertRaises( FileNotFoundError, util.augment_focus, unloadable_filename,) def make_loader(): filenames = get_loadable_filenames() return util.ImageTransformingCollection(filenames) if __name__ == '__main__': unittest.main()
[ "unittest.main", "embryovision.util.augment_focus", "numpy.random.seed", "numpy.random.randn", "embryovision.util.read_image", "os.path.exists", "embryovision.util.split_all", "PIL.Image.open", "embryovision.util.ImageTransformingCollection", "embryovision.util.TransformingCollection", "numpy.array", "embryovision.util.read_images_for_torch", "embryovision.util.load_and_crop_image", "os.path.join", "embryovision.util.load_image_into_ram", "numpy.all", "embryovision.tests.common.get_loadable_filenames" ]
[((4960, 4984), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (4982, 4984), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((4996, 5039), 'embryovision.util.ImageTransformingCollection', 'util.ImageTransformingCollection', (['filenames'], {}), '(filenames)\n', (5028, 5039), False, 'from embryovision import util\n'), ((5073, 5088), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5086, 5088), False, 'import unittest\n'), ((323, 348), 'embryovision.util.read_image', 'util.read_image', (['filename'], {}), '(filename)\n', (338, 348), False, 'from embryovision import util\n'), ((515, 540), 'embryovision.util.read_image', 'util.read_image', (['filename'], {}), '(filename)\n', (530, 540), False, 'from embryovision import util\n'), ((740, 765), 'embryovision.util.read_image', 'util.read_image', (['filename'], {}), '(filename)\n', (755, 765), False, 'from embryovision import util\n'), ((984, 1008), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (1006, 1008), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((1028, 1065), 'embryovision.util.read_images_for_torch', 'util.read_images_for_torch', (['filenames'], {}), '(filenames)\n', (1054, 1065), False, 'from embryovision import util\n'), ((1254, 1278), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (1276, 1278), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((1298, 1335), 'embryovision.util.read_images_for_torch', 'util.read_images_for_torch', (['filenames'], {}), '(filenames)\n', (1324, 1335), False, 'from embryovision import util\n'), ((1612, 1651), 'embryovision.util.load_and_crop_image', 'util.load_and_crop_image', (['filename', 'box'], {}), '(filename, box)\n', (1636, 1651), False, 'from embryovision import util\n'), ((1874, 1933), 'embryovision.util.load_and_crop_image', 'util.load_and_crop_image', (['filename', 'box'], {'output_shape': 'shape'}), '(filename, box, output_shape=shape)\n', (1898, 1933), False, 'from embryovision import util\n'), ((2222, 2261), 'embryovision.util.load_and_crop_image', 'util.load_and_crop_image', (['filename', 'box'], {}), '(filename, box)\n', (2246, 2261), False, 'from embryovision import util\n'), ((2571, 2605), 'embryovision.util.load_image_into_ram', 'util.load_image_into_ram', (['filename'], {}), '(filename)\n', (2595, 2605), False, 'from embryovision import util\n'), ((2623, 2648), 'embryovision.util.read_image', 'util.read_image', (['filename'], {}), '(filename)\n', (2638, 2648), False, 'from embryovision import util\n'), ((2666, 2698), 'embryovision.util.read_image', 'util.read_image', (['loaded_into_ram'], {}), '(loaded_into_ram)\n', (2681, 2698), False, 'from embryovision import util\n'), ((2851, 2870), 'numpy.random.seed', 'np.random.seed', (['(400)'], {}), '(400)\n', (2865, 2870), True, 'import numpy as np\n'), ((2886, 2905), 'numpy.random.randn', 'np.random.randn', (['(20)'], {}), '(20)\n', (2901, 2905), True, 'import numpy as np\n'), ((2960, 3004), 'embryovision.util.TransformingCollection', 'util.TransformingCollection', (['data', 'transform'], {}), '(data, transform)\n', (2987, 3004), False, 'from embryovision import util\n'), ((3128, 3147), 'numpy.random.randn', 'np.random.randn', (['(20)'], {}), '(20)\n', (3143, 3147), True, 'import numpy as np\n'), ((3202, 3246), 'embryovision.util.TransformingCollection', 'util.TransformingCollection', (['data', 'transform'], {}), '(data, transform)\n', (3229, 3246), False, 'from embryovision import util\n'), ((3347, 3371), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (3369, 3371), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((3461, 3517), 'embryovision.util.TransformingCollection', 'util.TransformingCollection', (['images_ram', 'util.read_image'], {}), '(images_ram, util.read_image)\n', (3488, 3517), False, 'from embryovision import util\n'), ((3562, 3595), 'embryovision.util.read_image', 'util.read_image', (['filenames[index]'], {}), '(filenames[index])\n', (3577, 3595), False, 'from embryovision import util\n'), ((3906, 3942), 'os.path.join', 'os.path.join', (['dummy_folder', 'filename'], {}), '(dummy_folder, filename)\n', (3918, 3942), False, 'import os\n'), ((3972, 3996), 'embryovision.util.split_all', 'util.split_all', (['fullname'], {}), '(fullname)\n', (3986, 3996), False, 'from embryovision import util\n'), ((4314, 4342), 'embryovision.util.augment_focus', 'util.augment_focus', (['filename'], {}), '(filename)\n', (4332, 4342), False, 'from embryovision import util\n'), ((279, 303), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (301, 303), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((471, 495), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (493, 495), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((696, 720), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (718, 720), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((1541, 1565), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (1563, 1565), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((1772, 1796), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (1794, 1796), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((2151, 2175), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (2173, 2175), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((2517, 2541), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (2539, 2541), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((2723, 2747), 'numpy.all', 'np.all', (['(image0 == image1)'], {}), '(image0 == image1)\n', (2729, 2747), True, 'import numpy as np\n'), ((3394, 3422), 'embryovision.util.load_image_into_ram', 'util.load_image_into_ram', (['nm'], {}), '(nm)\n', (3418, 3422), False, 'from embryovision import util\n'), ((3657, 3695), 'numpy.all', 'np.all', (['(image_filename == image_loader)'], {}), '(image_filename == image_loader)\n', (3663, 3695), True, 'import numpy as np\n'), ((4266, 4290), 'embryovision.tests.common.get_loadable_filenames', 'get_loadable_filenames', ([], {}), '()\n', (4288, 4290), False, 'from embryovision.tests.common import get_loadable_filenames\n'), ((4469, 4494), 'embryovision.util.split_all', 'util.split_all', (['foundname'], {}), '(foundname)\n', (4483, 4494), False, 'from embryovision import util\n'), ((4763, 4798), 'os.path.exists', 'os.path.exists', (['unloadable_filename'], {}), '(unloadable_filename)\n', (4777, 4798), False, 'import os\n'), ((2299, 2319), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (2309, 2319), False, 'from PIL import Image\n'), ((4523, 4548), 'os.path.exists', 'os.path.exists', (['foundname'], {}), '(foundname)\n', (4537, 4548), False, 'import os\n'), ((2368, 2383), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (2376, 2383), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np import helper import problem_unittests as tests # Number of Epochs num_epochs = 2 # Batch Size batch_size = 64 # RNN Size rnn_size = 256 # Embedding Dimension Size embed_dim = 300 # Sequence Length seq_length = 100 # Learning Rate learning_rate = 0.001 # Show stats for every n number of batches show_every_n_batches = 100 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) # ===================================================================================== # ===================================================================================== """ DON'T MODIFY ANYTHING IN THIS CELL """ _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() # ===================================================================================== # ===================================================================================== def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function inp = loaded_graph.get_tensor_by_name("input:0") istate = loaded_graph.get_tensor_by_name("initial_state:0") fstate = loaded_graph.get_tensor_by_name("final_state:0") probs = loaded_graph.get_tensor_by_name("probs:0") return inp, istate, fstate, probs """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) # ===================================================================================== # ===================================================================================== def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function index = np.random.choice(len(probabilities), p=probabilities) return int_to_vocab[index] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) # ===================================================================================== # ===================================================================================== gen_length = 20 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length - 1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) # ===================================================================================== # =====================================================================================
[ "helper.save_params", "tensorflow.train.import_meta_graph", "helper.load_params", "tensorflow.Session", "problem_unittests.test_pick_word", "problem_unittests.test_get_tensors", "helper.load_preprocess", "numpy.array", "tensorflow.Graph" ]
[((531, 573), 'helper.save_params', 'helper.save_params', (['(seq_length, save_dir)'], {}), '((seq_length, save_dir))\n', (549, 573), False, 'import helper\n'), ((839, 863), 'helper.load_preprocess', 'helper.load_preprocess', ([], {}), '()\n', (861, 863), False, 'import helper\n'), ((887, 907), 'helper.load_params', 'helper.load_params', ([], {}), '()\n', (905, 907), False, 'import helper\n'), ((1736, 1771), 'problem_unittests.test_get_tensors', 'tests.test_get_tensors', (['get_tensors'], {}), '(get_tensors)\n', (1758, 1771), True, 'import problem_unittests as tests\n'), ((2435, 2466), 'problem_unittests.test_pick_word', 'tests.test_pick_word', (['pick_word'], {}), '(pick_word)\n', (2455, 2466), True, 'import problem_unittests as tests\n'), ((2818, 2828), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2826, 2828), True, 'import tensorflow as tf\n'), ((2834, 2864), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'loaded_graph'}), '(graph=loaded_graph)\n', (2844, 2864), True, 'import tensorflow as tf\n'), ((2910, 2956), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (["(load_dir + '.meta')"], {}), "(load_dir + '.meta')\n", (2936, 2956), True, 'import tensorflow as tf\n'), ((3234, 3249), 'numpy.array', 'np.array', (['[[1]]'], {}), '([[1]])\n', (3242, 3249), True, 'import numpy as np\n')]
from os import listdir from os.path import isdir, isfile, join from itertools import chain import numpy as np import matplotlib.pyplot as plt from utils import shelf def dlist(key, dat): r"""Runs over a list of dictionaries and outputs a list of values corresponding to `key` Short version (no checks): return np.array([d[key] for d in dat]) """ ret = [] for i, d in enumerate(dat): if key in d: ret.append(d[key]) else: print('key {} is not in dat[{}]. Skip.'.format(key, i)) return np.array(ret) def get_data(select_dict, ARGS, key_list, DAT): data = [] for sel, key in zip(select_dict, key_list): # Select DAT k, v = next(iter(sel.items())) dat = [da[0] for da in zip(DAT, ARGS) if k in da[1] and da[1][k] == v][0] data.append(dlist(key, dat)) return data def color_bplot(bplot, colors): r"""Color the boxplots""" for patch, color in zip(bplot['boxes'], colors): patch.set_facecolor(color) for median in bplot['medians']: median.set(color='k', linewidth=1.5,) def label_axis(ax, labels, xpos, ypos, fontsize=16, target_fdr=0.1): # Partially remove frame ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # y label ax.set_ylabel('Power and FDR', fontsize=fontsize) ax.set_ylim([-0.05, 1.05]) # Hortizontal line for target fdr if target_fdr: ax.plot(ax.get_xlim(), [target_fdr, target_fdr], '--r') # New Axis new_ax = ax.twiny() new_ax.set_xticks(xpos) new_ax.set_xticklabels(labels) new_ax.xaxis.set_ticks_position('bottom') # set the position of the second x-axis to bottom new_ax.xaxis.set_label_position('bottom') # set the position of the second x-axis to bottom new_ax.spines['bottom'].set_position(('outward', ypos)) # positions below # Remove frame for new_ax new_ax.spines['bottom'].set_visible(False) new_ax.spines['top'].set_visible(False) new_ax.spines['left'].set_visible(False) new_ax.spines['right'].set_visible(False) new_ax.tick_params(length=0, labelsize=fontsize) new_ax.set_xlim(ax.get_xlim()) return new_ax if __name__ == "__main__": # Load data PATH = 'output/' DIRS = [d for d in listdir(PATH) if isdir(join(PATH, d))] FILES = [join(PATH, d, f) for d in DIRS for f in listdir(join(PATH, d)) if isfile(join(PATH, d, f)) and f[-3:]=='.pt'] ARGS, DAT, MODELS = [], [], [] for f in FILES: sh = shelf()._load(f) ARGS.append(sh.args) if 'd' in sh: DAT.append(sh['d']) MODELS.append(sh.args['model']) else: print("WARNING: There is no data field d field in file {}. Skip.".format(f)) continue # --------------------------- # Process data # --------------------------- select_dict, key_list, labels, positions, ax_labels, ax_positions = [], [], [], [-2], [], [-2] # Baseline models for m, l in zip(['en', 'rf'], ['Elastic Net', 'Random Forest']): if m in MODELS: select_dict += 4*[{'model': m}] key_list += ['tpr_selected', 'fdr_selected', 'hrt_tpr_selected', 'hrt_fdr_selected'] labels += ['TPR', 'FDR', 'TPR\nHRT', 'FDR\nHRT'] p = positions[-1] + 2 positions += [1+p, 2+p, 4+p, 5+p] ax_labels += [l] ax_positions += [ax_positions[-1] + len(l)/2] # Our models for m, l, pos in zip(['sic_supervised', 'sic'], ['Sobolev Penalty', 'SIC'], [5.5, 4]): if m in MODELS: select_dict += 2*[{'model': m}] key_list += ['hrt_tpr_selected', 'hrt_fdr_selected'] labels += ['TPR\nHRT', 'FDR\nHRT'] p = positions[-1] + 2 positions += [1+p, 2+p] ax_labels += [l] ax_positions += [ax_positions[-1] + pos] positions.pop(0); ax_positions.pop(0); data = get_data(select_dict, ARGS, key_list, DAT) # --------------------------- # Plot # --------------------------- dataset = ARGS[0]['dataset'].upper() n_samples = ARGS[0]['numSamples'] fig = plt.figure(figsize=(8, 3)) ax = plt.subplot(111) bplot = plt.boxplot(data, positions=positions, labels=labels, patch_artist=True) label_axis(ax, ax_labels, ax_positions, 32, fontsize=13) color_bplot(bplot, len(positions)//2*['lightblue', 'orange']) fig.suptitle(f'Dataset {dataset}, N={n_samples}'); fig.tight_layout() fig.savefig(f"output/{dataset}_{n_samples}.png", bbox_inches='tight')
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.boxplot", "matplotlib.pyplot.figure", "numpy.array", "utils.shelf", "os.path.join", "os.listdir" ]
[((554, 567), 'numpy.array', 'np.array', (['ret'], {}), '(ret)\n', (562, 567), True, 'import numpy as np\n'), ((4199, 4225), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 3)'}), '(figsize=(8, 3))\n', (4209, 4225), True, 'import matplotlib.pyplot as plt\n'), ((4235, 4251), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (4246, 4251), True, 'import matplotlib.pyplot as plt\n'), ((4265, 4337), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['data'], {'positions': 'positions', 'labels': 'labels', 'patch_artist': '(True)'}), '(data, positions=positions, labels=labels, patch_artist=True)\n', (4276, 4337), True, 'import matplotlib.pyplot as plt\n'), ((2352, 2368), 'os.path.join', 'join', (['PATH', 'd', 'f'], {}), '(PATH, d, f)\n', (2356, 2368), False, 'from os.path import isdir, isfile, join\n'), ((2300, 2313), 'os.listdir', 'listdir', (['PATH'], {}), '(PATH)\n', (2307, 2313), False, 'from os import listdir\n'), ((2323, 2336), 'os.path.join', 'join', (['PATH', 'd'], {}), '(PATH, d)\n', (2327, 2336), False, 'from os.path import isdir, isfile, join\n'), ((2400, 2413), 'os.path.join', 'join', (['PATH', 'd'], {}), '(PATH, d)\n', (2404, 2413), False, 'from os.path import isdir, isfile, join\n'), ((2544, 2551), 'utils.shelf', 'shelf', ([], {}), '()\n', (2549, 2551), False, 'from utils import shelf\n'), ((2438, 2454), 'os.path.join', 'join', (['PATH', 'd', 'f'], {}), '(PATH, d, f)\n', (2442, 2454), False, 'from os.path import isdir, isfile, join\n')]
""" Lower level layer for slicer. Mom's spaghetti. """ # TODO: Consider boolean array indexing. from typing import Any, AnyStr, Union, List, Tuple from abc import abstractmethod import numbers class AtomicSlicer: """ Wrapping object that will unify slicing across data structures. What we support: Basic indexing (return references): - (start:stop:step) slicing - support ellipses Advanced indexing (return references): - integer array indexing Numpy Reference: Basic indexing (return views): - (start:stop:step) slicing - support ellipses and newaxis (alias for None) Advanced indexing (return copy): - integer array indexing, i.e. X[[1,2], [3,4]] - boolean array indexing - mixed array indexing (has integer array, ellipses, newaxis in same slice) """ def __init__(self, o: Any, max_dim: Union[None, int, AnyStr] = "auto"): """ Provides a consistent slicing API to the object provided. Args: o: Object to enable consistent slicing. Currently supports numpy dense arrays, recursive lists ending with list or numpy. max_dim: Max number of dimensions the wrapped object has. If set to "auto", max dimensions will be inferred. This comes at compute cost. """ self.o = o self.max_dim = max_dim if self.max_dim == "auto": self.max_dim = UnifiedDataHandler.max_dim(o) def __repr__(self) -> AnyStr: """ Override default repr for human readability. Returns: String to display. """ return f"{self.__class__.__name__}({self.o.__repr__()})" def __getitem__(self, item: Any) -> Any: """ Consistent slicing into wrapped object. Args: item: Slicing key of type integer or slice. Returns: Sliced object. Raises: ValueError: If slicing is not compatible with wrapped object. """ # Turn item into tuple if not already. index_tup = unify_slice(item, self.max_dim) # Slice according to object type. return UnifiedDataHandler.slice(self.o, index_tup, self.max_dim) def unify_slice(item: Any, max_dim: int, alias_lookup=None) -> Tuple: """ Resolves aliases and ellipses in a slice item. Args: item: Slicing key that is passed to __getitem__. max_dim: Max dimension of object to be sliced. alias_lookup: AliasLookup structure. Returns: A tuple representation of the item. """ item = _normalize_slice_key(item) index_tup = _normalize_subkey_types(item) index_tup = _handle_newaxis_ellipses(index_tup, max_dim) if alias_lookup: index_tup = _handle_aliases(index_tup, alias_lookup) return index_tup def _normalize_subkey_types(index_tup: Tuple) -> Tuple: """ Casts subkeys into basic types such as int. Args: key: Slicing key that is passed within __getitem__. Returns: Tuple with subkeys casted to basic types. """ new_index_tup = [] # Gets casted to tuple at the end np_int_types = { "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", } for subkey in index_tup: if _safe_isinstance(subkey, "numpy", np_int_types): new_subkey = int(subkey) elif _safe_isinstance(subkey, "numpy", "ndarray"): if len(subkey.shape) == 1: new_subkey = subkey.tolist() else: raise ValueError(f"Cannot use array of shape {subkey.shape} as subkey.") else: new_subkey = subkey new_index_tup.append(new_subkey) return tuple(new_index_tup) def _normalize_slice_key(key: Any) -> Tuple: """ Normalizes slice key into always being a top-level tuple. Args: key: Slicing key that is passed within __getitem__. Returns: Expanded slice as a tuple. """ if not isinstance(key, tuple): return (key,) else: return key def _handle_newaxis_ellipses(index_tup: Tuple, max_dim: int) -> Tuple: """ Expands newaxis and ellipses within a slice for simplification. This code is mostly adapted from: https://github.com/clbarnes/h5py_like/blob/master/h5py_like/shape_utils.py#L111 Args: index_tup: Slicing key as a tuple. max_dim: Maximum number of dimensions in the respective sliceable object. Returns: Expanded slice as a tuple. """ non_indexes = (None, Ellipsis) concrete_indices = sum(idx not in non_indexes for idx in index_tup) index_list = [] # newaxis_at = [] has_ellipsis = False int_count = 0 for item in index_tup: if isinstance(item, numbers.Number): int_count += 1 # NOTE: If we need locations of new axis, re-enable this. if item is None: # pragma: no cover pass # newaxis_at.append(len(index_list) + len(newaxis_at) - int_count) elif item == Ellipsis: if has_ellipsis: # pragma: no cover raise IndexError("an index can only have a single ellipsis ('...')") has_ellipsis = True initial_len = len(index_list) while len(index_list) + (concrete_indices - initial_len) < max_dim: index_list.append(slice(None)) else: index_list.append(item) if len(index_list) > max_dim: # pragma: no cover raise IndexError("too many indices for array") while len(index_list) < max_dim: index_list.append(slice(None)) # return index_list, newaxis_at return tuple(index_list) def _handle_aliases(index_tup: Tuple, alias_lookup) -> Tuple: new_index_tup = [] def resolve(item, dim): if isinstance(item, slice): return item # Replace element if in alias lookup, otherwise use original. item = alias_lookup.get(dim, item, item) return item # Go through each element within the index and resolve if needed. for dim, item in enumerate(index_tup): if isinstance(item, list): new_item = [] for sub_item in item: new_item.append(resolve(sub_item, dim)) else: new_item = resolve(item, dim) new_index_tup.append(new_item) return tuple(new_index_tup) class Tracked(AtomicSlicer): """ Tracked defines an object that slicer wraps.""" def __init__(self, o: Any, dim: Union[int, List, tuple, None, str] = "auto"): """ Defines an object that will be wrapped by slicer. Args: o: Object that will be tracked for slicer. dim: Target dimension(s) slicer will index on for this object. """ super().__init__(o) # Protected attribute that can be overriden. self._name = None # Place dim into coordinate form. if dim == "auto": self.dim = list(range(self.max_dim)) elif dim is None: self.dim = [] elif isinstance(dim, int): self.dim = [dim] elif isinstance(dim, list): self.dim = dim elif isinstance(dim, tuple): self.dim = list(dim) else: # pragma: no cover raise ValueError(f"Cannot handle dim of type: {type(dim)}") class Obj(Tracked): """ An object that slicer wraps. """ def __init__(self, o, dim="auto"): super().__init__(o, dim) class Alias(Tracked): """ Defines a tracked object as well as additional __getitem__ keys. """ def __init__(self, o, dim): if not ( isinstance(dim, int) or (isinstance(dim, (list, tuple)) and len(dim) <= 1) ): # pragma: no cover raise ValueError("Aliases must track a single dimension") super().__init__(o, dim) class AliasLookup: def __init__(self, aliases): self._lookup = {} # Populate lookup and merge indexes. for _, alias in aliases.items(): self.update(alias) def update(self, alias): if alias.dim is None or len(alias.dim) == 0: return dim = alias.dim[0] if dim not in self._lookup: self._lookup[dim] = {} dim_lookup = self._lookup[dim] # NOTE: Alias must be backed by either a list or dictionary. itr = enumerate(alias.o) if isinstance(alias.o, list) else alias.o.items() for i, x in itr: if x not in dim_lookup: dim_lookup[x] = set() dim_lookup[x].add(i) def delete(self, alias): '''Delete an alias that exists from lookup''' dim = alias.dim[0] dim_lookup = self._lookup[dim] # NOTE: Alias must be backed by either a list or dictionary. itr = enumerate(alias.o) if isinstance(alias.o, list) else alias.o.items() for i, x in itr: del dim_lookup[x] def get(self, dim, target, default=None): if dim not in self._lookup: return default indexes = self._lookup[dim].get(target, None) if indexes is None: return default if len(indexes) == 1: return next(iter(indexes)) else: return list(indexes) def resolve_dim(slicer_index: Tuple, slicer_dim: List) -> List: """ Extracts new dim after applying slicing index and maps it back to the original index list. """ new_slicer_dim = [] reduced_mask = [] for _, curr_idx in enumerate(slicer_index): if isinstance(curr_idx, (tuple, list, slice)): reduced_mask.append(0) else: reduced_mask.append(1) for curr_dim in slicer_dim: if reduced_mask[curr_dim] == 0: new_slicer_dim.append(curr_dim - sum(reduced_mask[:curr_dim])) return new_slicer_dim def reduced_o(tracked: Tracked) -> Union[List, Any]: os = [t.o for t in tracked] os = os[0] if len(os) == 1 else os return os class BaseHandler: @classmethod @abstractmethod def head_slice(cls, o, index_tup, max_dim): raise NotImplementedError() # pragma: no cover @classmethod @abstractmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): raise NotImplementedError() # pragma: no cover @classmethod @abstractmethod def max_dim(cls, o): raise NotImplementedError() # pragma: no cover @classmethod def default_alias(cls, o): return [] class SeriesHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] is_element = True if isinstance(head_index, int) else False sliced_o = o.iloc[head_index] return is_element, sliced_o, 1 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): # NOTE: Series only has one dimension, # call slicer again to end the recursion. return AtomicSlicer(o, max_dim=max_dim)[tail_index] @classmethod def max_dim(cls, o): return len(o.shape) @classmethod def default_alias(cls, o): index_alias = Alias(o.index.to_list(), 0) index_alias._name = "index" return [index_alias] class DataFrameHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): # NOTE: At head slice, we know there are two fixed dimensions. cut_index = index_tup is_element = True if isinstance(cut_index[-1], int) else False sliced_o = o.iloc[cut_index] return is_element, sliced_o, 2 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): # NOTE: Dataframe has fixed dimensions, # call slicer again to end the recursion. return AtomicSlicer(o, max_dim=max_dim)[tail_index] @classmethod def max_dim(cls, o): return len(o.shape) @classmethod def default_alias(cls, o): index_alias = Alias(o.index.to_list(), 0) index_alias._name = "index" column_alias = Alias(o.columns.to_list(), 1) column_alias._name = "columns" return [index_alias, column_alias] class ArrayHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): # Check if head is string head_index, tail_index = index_tup[0], index_tup[1:] cut = 1 for sub_index in tail_index: if isinstance(sub_index, str) or cut == len(o.shape): break cut += 1 # Process native array dimensions cut_index = index_tup[:cut] is_element = any([True if isinstance(x, int) else False for x in cut_index]) sliced_o = o[cut_index] return is_element, sliced_o, cut @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: # NOTE: If we're dealing with a scipy matrix, # we have to manually flatten it ourselves # to keep consistent to the rest of slicer's API. if _safe_isinstance(o, "scipy.sparse.csc", "csc_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.csr", "csr_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.dok", "dok_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.lil", "lil_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] else: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: inner = [AtomicSlicer(e, max_dim=max_dim)[tail_index] for e in o] if _safe_isinstance(o, "numpy", "ndarray"): import numpy if len(inner) > 0 and hasattr(inner[0], "__len__"): ragged = not all(len(x) == len(inner[0]) for x in inner) else: ragged = False if ragged: return numpy.array(inner, dtype=numpy.object) else: return numpy.array(inner) elif _safe_isinstance(o, "torch", "Tensor"): import torch if len(inner) > 0 and isinstance(inner[0], torch.Tensor): return torch.stack(inner) else: return torch.tensor(inner) elif _safe_isinstance(o, "scipy.sparse.csc", "csc_matrix"): from scipy.sparse import vstack out = vstack(inner, format='csc') return out elif _safe_isinstance(o, "scipy.sparse.csr", "csr_matrix"): from scipy.sparse import vstack out = vstack(inner, format='csr') return out elif _safe_isinstance(o, "scipy.sparse.dok", "dok_matrix"): from scipy.sparse import vstack out = vstack(inner, format='dok') return out elif _safe_isinstance(o, "scipy.sparse.lil", "lil_matrix"): from scipy.sparse import vstack out = vstack(inner, format='lil') return out else: raise ValueError(f"Cannot handle type {type(o)}.") # pragma: no cover @classmethod def max_dim(cls, o): if _safe_isinstance(o, "numpy", "ndarray") and o.dtype == "object": return max([UnifiedDataHandler.max_dim(x) for x in o], default=-1) + 1 else: return len(o.shape) class DictHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] if isinstance(head_index, (tuple, list)) and len(index_tup) == 0: return False, o, 1 if isinstance(head_index, (list, tuple)): return ( False, { sub_index: AtomicSlicer(o, max_dim=max_dim)[sub_index] for sub_index in head_index }, 1, ) elif isinstance(head_index, slice): if head_index == slice(None, None, None): return False, o, 1 return False, o[head_index], 1 else: return True, o[head_index], 1 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: return { k: AtomicSlicer(e, max_dim=max_dim)[tail_index] for k, e in o.items() } @classmethod def max_dim(cls, o): return max([UnifiedDataHandler.max_dim(x) for x in o.values()], default=-1) + 1 class ListTupleHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] if isinstance(head_index, (tuple, list)) and len(index_tup) == 0: return False, o, 1 if isinstance(head_index, (list, tuple)): if len(head_index) == 0: return False, o, 1 else: results = [ AtomicSlicer(o, max_dim=max_dim)[sub_index] for sub_index in head_index ] results = tuple(results) if isinstance(o, tuple) else results return False, results, 1 elif isinstance(head_index, slice): return False, o[head_index], 1 elif isinstance(head_index, int): return True, o[head_index], 1 else: # pragma: no cover raise ValueError(f"Invalid key {head_index} for {o}") @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: results = [AtomicSlicer(e, max_dim=max_dim)[tail_index] for e in o] return tuple(results) if isinstance(o, tuple) else results @classmethod def max_dim(cls, o): return max([UnifiedDataHandler.max_dim(x) for x in o], default=-1) + 1 class UnifiedDataHandler: """ Registry that maps types to their unified slice calls.""" """ Class attribute that maps type to their unified slice calls.""" type_map = { ("builtins", "list"): ListTupleHandler, ("builtins", "tuple"): ListTupleHandler, ("builtins", "dict"): DictHandler, ("torch", "Tensor"): ArrayHandler, ("numpy", "ndarray"): ArrayHandler, ("scipy.sparse.csc", "csc_matrix"): ArrayHandler, ("scipy.sparse.csr", "csr_matrix"): ArrayHandler, ("scipy.sparse.dok", "dok_matrix"): ArrayHandler, ("scipy.sparse.lil", "lil_matrix"): ArrayHandler, ("pandas.core.frame", "DataFrame"): DataFrameHandler, ("pandas.core.series", "Series"): SeriesHandler, } @classmethod def slice(cls, o, index_tup, max_dim): # NOTE: Unified handles base cases such as empty tuples, which # specialized handlers do not. if isinstance(index_tup, (tuple, list)) and len(index_tup) == 0: return o # Slice as delegated by data handler. o_type = _type_name(o) head_slice = cls.type_map[o_type].head_slice tail_slice = cls.type_map[o_type].tail_slice is_element, sliced_o, cut = head_slice(o, index_tup, max_dim) out = tail_slice(sliced_o, index_tup[cut:], max_dim - cut, is_element) return out @classmethod def max_dim(cls, o): o_type = _type_name(o) if o_type not in cls.type_map: return 0 return cls.type_map[o_type].max_dim(o) @classmethod def default_alias(cls, o): o_type = _type_name(o) if o_type not in cls.type_map: return {} return cls.type_map[o_type].default_alias(o) def _type_name(o: object) -> Tuple[str, str]: return o.__class__.__module__, o.__class__.__name__ def _safe_isinstance( o: object, module_name: str, type_name: Union[str, set, tuple] ) -> bool: o_module, o_type = _type_name(o) if isinstance(type_name, str): return o_module == module_name and o_type == type_name else: return o_module == module_name and o_type in type_name
[ "scipy.sparse.vstack", "numpy.array", "torch.stack", "torch.tensor" ]
[((14349, 14387), 'numpy.array', 'numpy.array', (['inner'], {'dtype': 'numpy.object'}), '(inner, dtype=numpy.object)\n', (14360, 14387), False, 'import numpy\n'), ((14437, 14455), 'numpy.array', 'numpy.array', (['inner'], {}), '(inner)\n', (14448, 14455), False, 'import numpy\n'), ((14644, 14662), 'torch.stack', 'torch.stack', (['inner'], {}), '(inner)\n', (14655, 14662), False, 'import torch\n'), ((14712, 14731), 'torch.tensor', 'torch.tensor', (['inner'], {}), '(inner)\n', (14724, 14731), False, 'import torch\n'), ((14874, 14901), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""csc"""'}), "(inner, format='csc')\n", (14880, 14901), False, 'from scipy.sparse import vstack\n'), ((15071, 15098), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""csr"""'}), "(inner, format='csr')\n", (15077, 15098), False, 'from scipy.sparse import vstack\n'), ((15268, 15295), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""dok"""'}), "(inner, format='dok')\n", (15274, 15295), False, 'from scipy.sparse import vstack\n'), ((15465, 15492), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""lil"""'}), "(inner, format='lil')\n", (15471, 15492), False, 'from scipy.sparse import vstack\n')]
# coding=utf-8 """ .. moduleauthor:: <NAME> <<EMAIL>> """ from copy import deepcopy import warnings as warnings from collections import OrderedDict import numpy as np from pypint.solvers.i_iterative_time_solver import IIterativeTimeSolver from pypint.solvers.i_parallel_solver import IParallelSolver from pypint.communicators.message import Message from pypint.integrators.integrator_base import IntegratorBase from pypint.integrators.node_providers.gauss_lobatto_nodes import GaussLobattoNodes from pypint.integrators.weight_function_providers.polynomial_weight_function import PolynomialWeightFunction from pypint.problems import IInitialValueProblem, problem_has_exact_solution from pypint.solvers.states.sdc_solver_state import SdcSolverState from pypint.solvers.diagnosis import IDiagnosisValue from pypint.solvers.diagnosis.norms import supremum_norm from pypint.plugins.timers.timer_base import TimerBase from pypint.utilities.threshold_check import ThresholdCheck from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument from pypint.utilities.logging import * # General Notes on Implementation # =============================== # # Names and Meaning of Indices # ---------------------------- # T_max (num_time_steps) | number of time steps # N (num_nodes) | number of integration nodes per time step # t | index of current time step; interval: [0, T_max) # n | index of current node of current time step; interval: [1, N) # | the current node is always the next node, i.e. the node we are # | calculating the value for # i | index of current point in continuous array of points class ParallelSdc(IIterativeTimeSolver, IParallelSolver): """*Spectral Deferred Corrections* method for solving first order ODEs. The *Spectral Deferred Corrections* (SDC) method is described in [Minion2003]_ (Equation 2.7) Default Values: * :py:class:`.ThresholdCheck` * ``max_threshold``: 10 * ``min_threshold``: 1e-7 * ``conditions``: ``('residual', 'iterations')`` * :py:attr:`.num_time_steps`: 1 * :py:attr:`.num_nodes`: 3 Given the total number of time steps :math:`T_{max}`, number of integration nodes per time step :math:`N`, current time step :math:`t \\in [0,T_{max})` and the next integration node to consider :math:`n \\in [0, N)`. Let :math:`[a,b]` be the total time interval to integrate over. For :math:`T_{max}=3` and :math:`N=4`, this can be visualized as:: a b | | | . . | . . | . . | t 0 0 0 0 1 1 1 2 2 2 n 0 1 2 3 1 2 3 1 2 3 i 0 1 2 3 4 5 6 7 8 9 In general, the value at :math:`a` (i.e. :math:`t=n=i=0`) is the initial value. See Also -------- :py:class:`.IIterativeTimeSolver` : implemented interface :py:class:`.IParallelSolver` : mixed-in interface """ def __init__(self, **kwargs): super(ParallelSdc, self).__init__(**kwargs) IParallelSolver.__init__(self, **kwargs) del self._state self.threshold = ThresholdCheck(min_threshold=1e-7, max_threshold=10, conditions=("residual", "iterations")) self.timer = TimerBase() self._num_time_steps = 1 self._dt = 0.0 self._deltas = { 't': 0.0, 'n': np.zeros(0) } self._classic = True self.__nodes_type = GaussLobattoNodes self.__weights_type = PolynomialWeightFunction self.__num_nodes = 3 self.__exact = np.zeros(0) self.__time_points = { 'steps': np.zeros(0), 'nodes': np.zeros(0) } def init(self, problem, integrator, **kwargs): """Initializes SDC solver with given problem and integrator. Parameters ---------- num_time_steps : :py:class:`int` Number of time steps to be used within the time interval of the problem. num_nodes : :py:class:`int` *(otional)* number of nodes per time step nodes_type : :py:class:`.INodes` *(optional)* Type of integration nodes to be used (class name, **NOT instance**). weights_type : :py:class:`.IWeightFunction` *(optional)* Integration weights function to be used (class name, **NOT instance**). classic : :py:class:`bool` *(optional)* Flag for specifying the type of the SDC sweep. :py:class:`True`: *(default)* For the classic SDC as known from the literature; :py:class:`False`: For the modified SDC as developed by <NAME>. Raises ------ ValueError : * if given problem is not an :py:class:`.IInitialValueProblem` * if number of nodes per time step is not given; neither through ``num_nodes``, ``nodes_type`` nor ``integrator`` See Also -------- :py:meth:`.IIterativeTimeSolver.init` overridden method (with further parameters) :py:meth:`.IParallelSolver.init` mixed in overridden method (with further parameters) """ assert_is_instance(problem, IInitialValueProblem, descriptor="Initial Value Problem", checking_obj=self) assert_condition(issubclass(integrator, IntegratorBase), ValueError, message="Integrator must be an IntegratorBase: NOT %s" % integrator.__mro__[-2].__name__, checking_obj=self) super(ParallelSdc, self).init(problem, integrator=integrator, **kwargs) if 'num_time_steps' in kwargs: self._num_time_steps = kwargs['num_time_steps'] if 'num_nodes' in kwargs: self.__num_nodes = kwargs['num_nodes'] elif 'nodes_type' in kwargs and kwargs['nodes_type'].num_nodes is not None: self.__num_nodes = kwargs['nodes_type'].num_nodes elif integrator.nodes_type is not None and integrator.nodes_type.num_nodes is not None: self.__num_nodes = integrator.nodes_type.num_nodes else: raise ValueError(func_name(self) + "Number of nodes per time step not given.") if 'notes_type' in kwargs: self.__nodes_type = kwargs['notes_type'] if 'weights_type' in kwargs: self.__weights_type = kwargs['weights_type'] if 'classic' in kwargs: assert_is_instance(kwargs['classic'], bool, descriptor="Classic Flag", checking_obj=self) self._classic = kwargs['classic'] # TODO: need to store the exact solution somewhere else self.__exact = np.zeros(self.num_time_steps * (self.__num_nodes - 1) + 1, dtype=np.object) def run(self, core, **kwargs): """Applies SDC solver to the initialized problem setup. Solves the given problem with the explicit SDC algorithm. Parameters ---------- core : :py:class:`.SdcSolverCore` core solver stepping method dt : :py:class:`float` width of the interval to work on; this is devided into the number of given time steps this solver has been initialized with See Also -------- :py:meth:`.IIterativeTimeSolver.run` : overridden method """ super(ParallelSdc, self).run(core, **kwargs) assert_named_argument('dt', kwargs, types=float, descriptor="Width of Interval", checking_obj=self) self._dt = kwargs['dt'] self._print_header() # start iterations # TODO: exact solution storage handling self.__exact[0] = self.problem.initial_value _has_work = True _previous_flag = Message.SolverFlag.none _current_flag = Message.SolverFlag.none __work_loop_count = 1 while _has_work: LOG.debug("Work Loop: %d" % __work_loop_count) _previous_flag = _current_flag _current_flag = Message.SolverFlag.none # receive dedicated message _msg = self._communicator.receive() if _msg.flag == Message.SolverFlag.failed: # previous solver failed # --> pass on the failure and abort _current_flag = Message.SolverFlag.failed _has_work = False LOG.debug("Previous Solver Failed") else: if _msg.flag == Message.SolverFlag.time_adjusted: # the previous solver has adjusted its interval # --> we need to recompute our interval _current_flag = self._adjust_interval_width() # we don't immediately start the computation of the newly computed interval # but try to pass the new interval end to the next solver as soon as possible # (this should avoid throwing away useless computation) LOG.debug("Previous Solver Adjusted Time") else: if _previous_flag in \ [Message.SolverFlag.none, Message.SolverFlag.converged, Message.SolverFlag.finished, Message.SolverFlag.time_adjusted]: # we just started or finished our previous interval # --> start a new interval _has_work = self._init_new_interval(_msg.time_point) if _has_work: # set initial values self.state.initial.solution.value = _msg.value.copy() self.state.initial.solution.time_point = _msg.time_point self.state.initial.done() LOG.debug("New Interval Initialized") # start logging output self._print_interval_header() # start global timing (per interval) self.timer.start() else: # pass LOG.debug("No New Interval Available") elif _previous_flag == Message.SolverFlag.iterating: LOG.debug("Next Iteration") else: LOG.warn("WARNING!!! Something went wrong here") if _has_work: # we are still on the same interval or have just successfully initialized a new interval # --> do the real computation LOG.debug("Starting New Solver Main Loop") # initialize a new iteration state self.state.proceed() if _msg.time_point == self.state.initial.time_point: if _previous_flag == Message.SolverFlag.iterating: LOG.debug("Updating initial value") # if the previous solver has a new initial value for us, we use it self.state.current_iteration.initial.solution.value = _msg.value.copy() _current_flag = self._main_solver_loop() if _current_flag in \ [Message.SolverFlag.converged, Message.SolverFlag.finished, Message.SolverFlag.failed]: _log_msgs = {'': OrderedDict()} if self.state.last_iteration_index <= self.threshold.max_iterations: _group = 'Converged after %d iteration(s)' % (self.state.last_iteration_index + 1) _log_msgs[''][_group] = OrderedDict() _log_msgs[''][_group] = self.threshold.has_reached(log=True) _log_msgs[''][_group]['Final Residual'] = "{:.3e}"\ .format(supremum_norm(self.state.last_iteration.final_step.solution.residual)) _log_msgs[''][_group]['Solution Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .solution_reduction(self.state.last_iteration_index))) if problem_has_exact_solution(self.problem, self): _log_msgs[''][_group]['Error Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .error_reduction(self.state.last_iteration_index))) else: warnings.warn("{}: Did not converged: {:s}".format(self._core.name, self.problem)) _group = "FAILED: After maximum of {:d} iteration(s)"\ .format(self.state.last_iteration_index + 1) _log_msgs[''][_group] = OrderedDict() _log_msgs[''][_group]['Final Residual'] = "{:.3e}"\ .format(supremum_norm(self.state.last_iteration.final_step.solution.residual)) _log_msgs[''][_group]['Solution Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .solution_reduction(self.state.last_iteration_index))) if problem_has_exact_solution(self.problem, self): _log_msgs[''][_group]['Error Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .error_reduction(self.state.last_iteration_index))) LOG.warn(" {} Failed: Maximum number iterations reached without convergence." .format(self._core.name)) print_logging_message_tree(_log_msgs) elif _previous_flag in [Message.SolverFlag.converged, Message.SolverFlag.finished]: LOG.debug("Solver Finished.") self.timer.stop() self._print_footer() else: # something went wrong # --> we failed LOG.warn("Solver failed.") _current_flag = Message.SolverFlag.failed self._communicator.send(value=self.state.current_iteration.final_step.solution.value, time_point=self.state.current_iteration.final_step.time_point, flag=_current_flag) __work_loop_count += 1 # end while:has_work is None LOG.debug("Solver Main Loop Done") return [_s.solution for _s in self._states] @property def state(self): """Read-only accessor for the sovler's state Returns ------- state : :py:class:`.ISolverState` """ if len(self._states) > 0: return self._states[-1] else: return None @property def num_time_steps(self): """Accessor for the number of time steps within the interval. Returns ------- number_time_steps : :py:class:`int` Number of time steps within the problem-given time interval. """ return self._num_time_steps @property def num_nodes(self): """Accessor for the number of integration nodes per time step. Returns ------- number_of_nodes : :py:class:`int` Number of integration nodes used within one time step. """ return self.__num_nodes @property def classic(self): """Read-only accessor for the type of SDC Returns ------- is_classic : :py:class:`bool` :py:class:`True` if it's the classic SDC as known from papers; :py:class:`False` if it's the modified SDC by <NAME> """ return self._classic def _init_new_state(self): """Initialize a new state for a work task Usually, this starts a new work task. The previous state, if applicable, is stored in a stack. """ if self.state: # finalize the current state self.state.finalize() # initialize solver state self._states.append(SdcSolverState(num_nodes=self.num_nodes - 1, num_time_steps=self.num_time_steps)) def _init_new_interval(self, start): """Initializes a new work interval Parameters ---------- start : :py:class:`float` start point of new interval Returns ------- has_work : :py:class:`bool` :py:class:`True` if new interval have been initialized; :py:class:`False` if no new interval have been initialized (i.e. new interval end would exceed end of time given by problem) """ assert_is_instance(start, float, descriptor="Time Point", checking_obj=self) if start + self._dt > self.problem.time_end: return False if self.state and start == self.state.initial.time_point: return False self._init_new_state() # set width of current interval self.state.delta_interval = self._dt # compute time step and node distances self._deltas['t'] = self.state.delta_interval / self.num_time_steps # width of a single time step (equidistant) # start time points of time steps self.__time_points['steps'] = np.linspace(start, start + self._dt, self.num_time_steps + 1) # initialize and transform integrator for time step width self._integrator.init(self.__nodes_type, self.__num_nodes, self.__weights_type, interval=np.array([self.__time_points['steps'][0], self.__time_points['steps'][1]], dtype=np.float)) self.__time_points['nodes'] = np.zeros((self.num_time_steps, self.num_nodes), dtype=np.float) _deltas_n = np.zeros(self.num_time_steps * (self.num_nodes - 1) + 1) # copy the node provider so we do not alter the integrator's one _nodes = deepcopy(self._integrator.nodes_type) for _t in range(0, self.num_time_steps): # transform Nodes (copy) onto new time step for retrieving actual integration nodes _nodes.interval = np.array([self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]) self.__time_points['nodes'][_t] = _nodes.nodes.copy() for _n in range(0, self.num_nodes - 1): _i = _t * (self.num_nodes - 1) + _n _deltas_n[_i + 1] = _nodes.nodes[_n + 1] - _nodes.nodes[_n] self._deltas['n'] = _deltas_n[1:].copy() return True def _adjust_interval_width(self): """Adjust width of time interval """ raise NotImplementedError("Time Adaptivity not yet implemented.") # return Message.SolverFlag.time_adjusted def _main_solver_loop(self): # initialize iteration timer of same type as global timer _iter_timer = self.timer.__class__() self._print_iteration(self.state.current_iteration_index + 1) # iterate on time steps _iter_timer.start() for _current_time_step in self.state.current_iteration: # run this time step self._time_step() if self.state.current_time_step_index < len(self.state.current_iteration) - 1: self.state.current_iteration.proceed() _iter_timer.stop() # check termination criteria self.threshold.check(self.state) # log this iteration's summary if self.state.is_first_iteration: # on first iteration we do not have comparison values self._print_iteration_end(None, None, None, _iter_timer.past()) else: if problem_has_exact_solution(self.problem, self) and not self.state.is_first_iteration: # we could compute the correct error of our current solution self._print_iteration_end(self.state.solution.solution_reduction(self.state.current_iteration_index), self.state.solution.error_reduction(self.state.current_iteration_index), self.state.current_step.solution.residual, _iter_timer.past()) else: self._print_iteration_end(self.state.solution.solution_reduction(self.state.current_iteration_index), None, self.state.current_step.solution.residual, _iter_timer.past()) # finalize this iteration (i.e. TrajectorySolutionData.finalize()) self.state.current_iteration.finalize() _reason = self.threshold.has_reached() if _reason is None: # LOG.debug("solver main loop done: no reason") return Message.SolverFlag.iterating elif _reason == ['iterations']: # LOG.debug("solver main loop done: iterations") self.state.finalize() return Message.SolverFlag.finished else: # LOG.debug("solver main loop done: other") self.state.finalize() return Message.SolverFlag.converged def _time_step(self): self.state.current_time_step.delta_time_step = self._deltas['t'] for _step in range(0, len(self.state.current_time_step)): _node_index = self.state.current_time_step_index * (self.num_nodes - 1) + _step self.state.current_time_step[_step].delta_tau = self._deltas['n'][_node_index] self.state.current_time_step[_step].solution.time_point = \ self.__time_points['nodes'][self.state.current_time_step_index][_step + 1] self._print_time_step(self.state.current_time_step_index + 1, self.state.current_time_step.initial.time_point, self.state.current_time_step.last.time_point, self.state.current_time_step.delta_time_step) # for classic SDC compute integral _integral = 0.0 _integrate_values = None if self.classic: if not self.state.current_time_step.initial.rhs_evaluated: self.state.current_time_step.initial.rhs = \ self.problem.evaluate_wrt_time(self.state.current_time_step.initial.time_point, self.state.current_time_step.initial.value) _integrate_values = np.array([self.state.current_time_step.initial.rhs], dtype=self.problem.numeric_type) for _step_index in range(0, len(self.state.current_time_step)): if self.state.is_first_iteration: _integrate_values = \ np.append(_integrate_values, np.array([self.state.current_time_step.initial.rhs], dtype=self.problem.numeric_type), axis=0) else: _step = self.state.previous_iteration[self.state.current_time_step_index][_step_index] if not _step.rhs_evaluated: _step.rhs = self.problem.evaluate_wrt_time(_step.time_point, _step.value) _integrate_values = \ np.append(_integrate_values, np.array([_step.rhs], dtype=self.problem.numeric_type), axis=0) assert_condition(_integrate_values.shape[0] == self.num_nodes, ValueError, message="Number of integration values not correct: {:d} != {:d}" .format(_integrate_values.shape[0], self.num_nodes), checking_obj=self) _full_integral = 0.0 # do the actual SDC steps of this SDC sweep for _step_index in range(0, len(self.state.current_time_step)): _current_step = self.state.current_time_step[_step_index] if self.classic: _integral = self._integrator.evaluate(_integrate_values, from_node=_step_index, target_node=_step_index + 1) # we successively compute the full integral, which is used for the residual at the end _full_integral += _integral _current_step.integral = _integral.copy() # do the SDC step of this sweep self._sdc_step() if self.state.current_step_index < len(self.state.current_time_step) - 1: self.state.current_time_step.proceed() del _integrate_values # compute residual and print step details for _step_index in range(0, len(self.state.current_time_step)): _step = self.state.current_time_step[_step_index] self._core.compute_residual(self.state, step=_step, integral=_full_integral) # finalize this step (i.e. StepSolutionData.finalize()) _step.done() if _step_index > 0: _previous_time = self.state.current_time_step[_step_index - 1].time_point else: _previous_time = self.state.current_time_step.initial.time_point if problem_has_exact_solution(self.problem, self): self._print_step(_step_index + 2, _previous_time, _step.time_point, supremum_norm(_step.value), _step.solution.residual, _step.solution.error) else: self._print_step(_step_index + 2, _previous_time, _step.time_point, supremum_norm(_step.value), _step.solution.residual, None) self._print_time_step_end() # finalizing the current time step (i.e. TrajectorySolutionData.finalize) self.state.current_time_step.finalize() def _sdc_step(self): # helper variables _current_time_step_index = self.state.current_time_step_index _current_step_index = self.state.current_step_index # copy solution of previous iteration to this one if self.state.is_first_iteration: self.state.current_step.value = self.state.initial.value.copy() else: self.state.current_step.value = \ self.state.previous_iteration[_current_time_step_index][_current_step_index].value.copy() # TODO: review the custom modification # if not self.classic: # # gather values for integration and evaluate problem at given points # # initial value for this time step # _integrate_values = \ # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step.initial.time_point, # self.state.current_time_step.initial.value.copy()) # ], dtype=self.problem.numeric_type) # # if _current_step_index > 0: # # values from this iteration (already calculated) # _from_current_iteration_range = range(0, _current_step_index) # for _index in _from_current_iteration_range: # _integrate_values = \ # np.append(_integrate_values, # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step[_index].solution.time_point, # self.state.current_time_step[_index].solution.value.copy()) # ], dtype=self.problem.numeric_type # ), axis=0) # # # values from previous iteration # _from_previous_iteration_range = range(_current_step_index, self.num_nodes - 1) # for _index in _from_previous_iteration_range: # if self.state.is_first_iteration: # _this_value = self.problem.initial_value # else: # _this_value = self.state.previous_iteration[_current_time_step_index][_index].solution.value.copy() # _integrate_values = \ # np.append(_integrate_values, # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step[_index].solution.time_point, # _this_value) # ], dtype=self.problem.numeric_type # ), axis=0) # assert_condition(_integrate_values.shape[0] == self.num_nodes, # ValueError, message="Number of integration values not correct: {:d} != {:d}" # .format(_integrate_values.shape[0], self.num_nodes), # checking_obj=self) # # # integrate # self.state.current_step.integral = self._integrator.evaluate(_integrate_values, # from_node=_current_step_index, # target_node=_current_step_index + 1) # del _integrate_values # # END if not self.classic # compute step self._core.run(self.state, problem=self.problem) # calculate error self._core.compute_error(self.state, problem=self.problem) # step gets finalized after computation of residual def print_lines_for_log(self): _lines = super(ParallelSdc, self).print_lines_for_log() if 'Number Nodes per Time Step' not in _lines['Integrator']: _lines['Integrator']['Number Nodes per Time Step'] = "%d" % self.__num_nodes if 'Number Time Steps' not in _lines['Integrator']: _lines['Integrator']['Number Time Steps'] = "%d" % self._num_time_steps return _lines def _print_interval_header(self): LOG.info("%s%s" % (VERBOSITY_LVL1, SEPARATOR_LVL3)) LOG.info("{} Interval: [{:.3f}, {:.3f}]" .format(VERBOSITY_LVL1, self.state.initial.time_point, self.state.initial.time_point + self._dt)) self._print_output_tree_header() def _print_output_tree_header(self): LOG.info("%s iter" % VERBOSITY_LVL1) LOG.info("%s \\" % VERBOSITY_LVL2) LOG.info("%s |- time start end delta" % VERBOSITY_LVL2) LOG.info("%s | \\" % VERBOSITY_LVL3) LOG.info("%s | |- step t_0 t_1 phi(t_1) resid err" % VERBOSITY_LVL3) LOG.info("%s | \\_" % VERBOSITY_LVL2) LOG.info("%s \\_ sol r.red err r.red resid time" % VERBOSITY_LVL1) def _print_iteration(self, _iter): _iter = self._output_format(_iter, 'int', width=5) LOG.info("%s %s" % (VERBOSITY_LVL1, _iter)) LOG.info("%s \\" % VERBOSITY_LVL2) def _print_iteration_end(self, solred, errred, resid, time): _solred = self._output_format(solred, 'exp') _errred = self._output_format(errred, 'exp') _resid = self._output_format(resid, 'exp') _time = self._output_format(time, 'float', width=6.3) LOG.info("%s \\_ %s %s %s %s" % (VERBOSITY_LVL1, _solred, _errred, _resid, _time)) def _print_time_step(self, time_step, start, end, delta): _time_step = self._output_format(time_step, 'int', width=3) _start = self._output_format(start, 'float', width=6.3) _end = self._output_format(end, 'float', width=6.3) _delta = self._output_format(delta, 'float', width=6.3) LOG.info("%s |- %s %s %s %s" % (VERBOSITY_LVL2, _time_step, _start, _end, _delta)) LOG.info("%s | \\" % VERBOSITY_LVL3) self._print_step(1, None, self.state.current_time_step.initial.time_point, supremum_norm(self.state.current_time_step.initial.solution.value), None, None) def _print_time_step_end(self): LOG.info("%s | \\_" % VERBOSITY_LVL2) def _print_step(self, step, t0, t1, phi, resid, err): _step = self._output_format(step, 'int', width=2) _t0 = self._output_format(t0, 'float', width=6.3) _t1 = self._output_format(t1, 'float', width=6.3) _phi = self._output_format(phi, 'float', width=6.3) _resid = self._output_format(resid, 'exp') _err = self._output_format(err, 'exp') LOG.info("%s | |- %s %s %s %s %s %s" % (VERBOSITY_LVL3, _step, _t0, _t1, _phi, _resid, _err)) def _output_format(self, value, _type, width=None): def _value_to_numeric(val): if isinstance(val, (np.ndarray, IDiagnosisValue)): return supremum_norm(val) else: return val if _type and width is None: if _type == 'float': width = 10.3 elif _type == 'int': width = 10 elif _type == 'exp': width = 9.2 else: width = 10 if value is None: _outstr = "{: ^{width}s}".format('na', width=int(width)) else: if _type == 'float': _outstr = "{: {width}f}".format(_value_to_numeric(value), width=width) elif _type == 'int': _outstr = "{: {width}d}".format(_value_to_numeric(value), width=width) elif _type == 'exp': _outstr = "{: {width}e}".format(_value_to_numeric(value), width=width) else: _outstr = "{: >{width}s}".format(value, width=width) return _outstr __all__ = ['ParallelSdc']
[ "pypint.solvers.diagnosis.norms.supremum_norm", "copy.deepcopy", "pypint.solvers.states.sdc_solver_state.SdcSolverState", "pypint.solvers.i_parallel_solver.IParallelSolver.__init__", "pypint.plugins.timers.timer_base.TimerBase", "pypint.utilities.assert_is_instance", "numpy.zeros", "pypint.utilities.assert_named_argument", "pypint.problems.problem_has_exact_solution", "pypint.utilities.threshold_check.ThresholdCheck", "numpy.array", "numpy.linspace", "collections.OrderedDict", "pypint.utilities.func_name" ]
[((3328, 3368), 'pypint.solvers.i_parallel_solver.IParallelSolver.__init__', 'IParallelSolver.__init__', (['self'], {}), '(self, **kwargs)\n', (3352, 3368), False, 'from pypint.solvers.i_parallel_solver import IParallelSolver\n'), ((3419, 3516), 'pypint.utilities.threshold_check.ThresholdCheck', 'ThresholdCheck', ([], {'min_threshold': '(1e-07)', 'max_threshold': '(10)', 'conditions': "('residual', 'iterations')"}), "(min_threshold=1e-07, max_threshold=10, conditions=(\n 'residual', 'iterations'))\n", (3433, 3516), False, 'from pypint.utilities.threshold_check import ThresholdCheck\n'), ((3532, 3543), 'pypint.plugins.timers.timer_base.TimerBase', 'TimerBase', ([], {}), '()\n', (3541, 3543), False, 'from pypint.plugins.timers.timer_base import TimerBase\n'), ((3870, 3881), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3878, 3881), True, 'import numpy as np\n'), ((5505, 5614), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (['problem', 'IInitialValueProblem'], {'descriptor': '"""Initial Value Problem"""', 'checking_obj': 'self'}), "(problem, IInitialValueProblem, descriptor=\n 'Initial Value Problem', checking_obj=self)\n", (5523, 5614), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((7021, 7096), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps * (self.__num_nodes - 1) + 1)'], {'dtype': 'np.object'}), '(self.num_time_steps * (self.__num_nodes - 1) + 1, dtype=np.object)\n', (7029, 7096), True, 'import numpy as np\n'), ((7738, 7842), 'pypint.utilities.assert_named_argument', 'assert_named_argument', (['"""dt"""', 'kwargs'], {'types': 'float', 'descriptor': '"""Width of Interval"""', 'checking_obj': 'self'}), "('dt', kwargs, types=float, descriptor=\n 'Width of Interval', checking_obj=self)\n", (7759, 7842), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((17641, 17717), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (['start', 'float'], {'descriptor': '"""Time Point"""', 'checking_obj': 'self'}), "(start, float, descriptor='Time Point', checking_obj=self)\n", (17659, 17717), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((18257, 18318), 'numpy.linspace', 'np.linspace', (['start', '(start + self._dt)', '(self.num_time_steps + 1)'], {}), '(start, start + self._dt, self.num_time_steps + 1)\n', (18268, 18318), True, 'import numpy as np\n'), ((18692, 18755), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps, self.num_nodes)'], {'dtype': 'np.float'}), '((self.num_time_steps, self.num_nodes), dtype=np.float)\n', (18700, 18755), True, 'import numpy as np\n'), ((18776, 18832), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps * (self.num_nodes - 1) + 1)'], {}), '(self.num_time_steps * (self.num_nodes - 1) + 1)\n', (18784, 18832), True, 'import numpy as np\n'), ((18924, 18961), 'copy.deepcopy', 'deepcopy', (['self._integrator.nodes_type'], {}), '(self._integrator.nodes_type)\n', (18932, 18961), False, 'from copy import deepcopy\n'), ((3665, 3676), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3673, 3676), True, 'import numpy as np\n'), ((3934, 3945), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3942, 3945), True, 'import numpy as np\n'), ((3968, 3979), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3976, 3979), True, 'import numpy as np\n'), ((6797, 6890), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (["kwargs['classic']", 'bool'], {'descriptor': '"""Classic Flag"""', 'checking_obj': 'self'}), "(kwargs['classic'], bool, descriptor='Classic Flag',\n checking_obj=self)\n", (6815, 6890), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((17055, 17140), 'pypint.solvers.states.sdc_solver_state.SdcSolverState', 'SdcSolverState', ([], {'num_nodes': '(self.num_nodes - 1)', 'num_time_steps': 'self.num_time_steps'}), '(num_nodes=self.num_nodes - 1, num_time_steps=self.num_time_steps\n )\n', (17069, 17140), False, 'from pypint.solvers.states.sdc_solver_state import SdcSolverState\n'), ((19137, 19222), 'numpy.array', 'np.array', (["[self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]"], {}), "([self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]\n )\n", (19145, 19222), True, 'import numpy as np\n'), ((23475, 23565), 'numpy.array', 'np.array', (['[self.state.current_time_step.initial.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([self.state.current_time_step.initial.rhs], dtype=self.problem.\n numeric_type)\n', (23483, 23565), True, 'import numpy as np\n'), ((26265, 26311), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (26291, 26311), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((33389, 33455), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.current_time_step.initial.solution.value'], {}), '(self.state.current_time_step.initial.solution.value)\n', (33402, 33455), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((18513, 18607), 'numpy.array', 'np.array', (["[self.__time_points['steps'][0], self.__time_points['steps'][1]]"], {'dtype': 'np.float'}), "([self.__time_points['steps'][0], self.__time_points['steps'][1]],\n dtype=np.float)\n", (18521, 18607), True, 'import numpy as np\n'), ((20659, 20705), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (20685, 20705), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((34307, 34325), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['val'], {}), '(val)\n', (34320, 34325), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((26496, 26522), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['_step.value'], {}), '(_step.value)\n', (26509, 26522), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((26838, 26864), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['_step.value'], {}), '(_step.value)\n', (26851, 26864), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((23816, 23906), 'numpy.array', 'np.array', (['[self.state.current_time_step.initial.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([self.state.current_time_step.initial.rhs], dtype=self.problem.\n numeric_type)\n', (23824, 23906), True, 'import numpy as np\n'), ((24349, 24403), 'numpy.array', 'np.array', (['[_step.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([_step.rhs], dtype=self.problem.numeric_type)\n', (24357, 24403), True, 'import numpy as np\n'), ((6506, 6521), 'pypint.utilities.func_name', 'func_name', (['self'], {}), '(self)\n', (6515, 6521), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((11836, 11849), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (11847, 11849), False, 'from collections import OrderedDict\n'), ((12119, 12132), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (12130, 12132), False, 'from collections import OrderedDict\n'), ((12739, 12785), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (12765, 12785), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((13450, 13463), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (13461, 13463), False, 'from collections import OrderedDict\n'), ((13977, 14023), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (14003, 14023), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((12354, 12423), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.last_iteration.final_step.solution.residual'], {}), '(self.state.last_iteration.final_step.solution.residual)\n', (12367, 12423), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((13592, 13661), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.last_iteration.final_step.solution.residual'], {}), '(self.state.last_iteration.final_step.solution.residual)\n', (13605, 13661), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n')]
""" Get the timestamps of all claims and plot the cumulative number vs. time! """ import datetime import json import matplotlib.pyplot as plt import numpy as np import os import requests import sqlite3 import time def make_graph(mode, show=True): """ mode must be "claims" or "channels" """ if mode != "claims" and mode != "channels": return plt.close("all") # Open the DB db_file = "/home/brewer/local/lbry-sdk/lbry/lbryum-data/claims.db" conn = sqlite3.connect(db_file) c = conn.cursor() # List for results times = [] # Query if mode == "claims": x = "<>" else: x = "=" query = "SELECT creation_timestamp FROM claim\ WHERE claim_type {x} 2;".format(x=x) # Iterate over query results i = 0 for t in c.execute(query): times.append(t) i = i + 1 # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. conn.close() # Sort the times and convert to a numpy array times = np.sort(np.array(times).flatten()) # Save some stats to JSON for Electron now = time.time() my_dict = {} my_dict["unix_time"] = now my_dict["human_time_utc"] = str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC" my_dict["total_{mode}".format(mode=mode)] = int(\ len(times)) my_dict["new_{mode}_1_hour".format(mode=mode)] = int(\ np.sum(times > (now - 3600.0))) my_dict["new_{mode}_24_hours".format(mode=mode)] = int(\ np.sum(times > (now - 86400.0))) my_dict["new_{mode}_7_days".format(mode=mode)] = int(\ np.sum(times > (now - 7*86400.0))) my_dict["new_{mode}_30_days".format(mode=mode)] = int(\ np.sum(times > (now - 30*86400.0))) f = open("{mode}_stats.json".format(mode=mode), "w") f.write(json.dumps(my_dict)) f.close() # Count new claims this UTC day count_today = np.sum(times > 86400.0*int(now/86400.0)) if mode == "claims": string = "publications" else: string = "channels" print("{K} {mode}, {n} from today so far (UTC). ".format(K=len(times), mode=string, n=count_today), end="", flush=True) # Plotting stuff plt.rcParams["font.family"] = "Liberation Sans" plt.rcParams["font.size"] = 14 plt.style.use("dark_background") plt.rcParams["axes.facecolor"] = "#3c3d3c" plt.rcParams["savefig.facecolor"] = "#3c3d3c" plt.figure(figsize=(15, 11)) plt.subplot(2, 1, 1) times_in_days = (times - 1483228800)/86400.0 days = times_in_days.astype("int64") plt.plot(times_in_days, np.arange(len(times)), "w-", linewidth=1.5) plt.ylabel("Cumulative number of {mode}".format(mode=string)) plt.title("Total number of {mode} = {n}.".format(n=len(times), mode=string)) plt.xlim([0.0, days.max() + 1]) plt.ylim(bottom=-100) plt.gca().tick_params(labelright=True) # Add vertical lines for new years (approximately) new_years = np.arange(0, 5)*365.2425 for year in new_years: plt.axvline(year, color="r", alpha=0.8, linestyle="--") # Add text about years year_names = [2017, 2018, 2019] for i in range(len(year_names)): year = new_years[i] plt.text(year+5.0, 0.95*plt.gca().get_ylim()[1], "{text} begins".format(text=year_names[i]), fontsize=10) # Add line and text about MH's video plt.axvline(890.0, linestyle="dotted", linewidth=2, color="g") plt.text(890.0, 0.2*plt.gca().get_ylim()[1], "@MH video\n\'Why I Left YouTube\'\ngoes viral", fontsize=10) plt.subplot(2, 1, 2) bin_width = 1.0 # Bin edges including right edge of last bin bins = np.arange(0, np.max(days)+2) - 0.5*bin_width color = "#6b95ef" counts = plt.hist(days, bins, alpha=0.9, color=color, label="Raw", width=bin_width, align="mid")[0] # Compute 10-day moving average moving_average = np.zeros(len(bins)-1) for i in range(len(moving_average)): subset = counts[0:(i+1)] if len(subset) >= 10: subset = subset[-10:] moving_average[i] = np.mean(subset) plt.plot(bins[0:-2] + 0.5*bin_width, moving_average[0:-1], "w-", label="10-day moving average", linewidth=1.5) plt.xlim([0.0, days.max() + 1]) plt.xlabel("Time (days since 2017-01-01)") plt.ylabel("New {mode} added each day".format(mode=string)) subset = counts[-31:-1] plt.title("Recent average rate (last 30 days) = {n} {mode} per day.".\ format(n=int(np.sum(time.time() - times <= 30.0*86400.0)/30.0), mode=string)) plt.gca().tick_params(labelright=True) # Year lines for year in new_years: plt.axvline(year, color="r", alpha=0.8, linestyle="--") # MH line plt.axvline(890.0, linestyle="dotted", linewidth=2, color="g") # plt.gca().set_yticks([1.0, 10.0, 100.0, 1000.0, 10000.0]) # plt.gca().set_yticklabels(["1", "10", "100", "1000", "10000"]) plt.legend() plt.savefig("{mode}.svg".format(mode=mode), bbox_inches="tight") plt.savefig("{mode}.png".format(mode=mode), bbox_inches="tight", dpi=70) print("Figure saved to {mode}.svg and {mode}.png.".format(mode=mode)) if show: plt.show() def aggregate_tips(): """ Calculate tips over past X amount of time and write JSON output """ # The SQL query to perform now = time.time() print("Computing tip stats...", end="", flush=True) labels = ["30_days", "7_days", "24_hours", "1_hour"] windows = [30*86400.0, 7*86400.0, 1*86400.0, 3600.0] result = {} result["unix_time"] = now result["human_time_utc"] = str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC" # Agrees with old method, but should it be SUM(amount)? query = "SELECT support_id, amount, time, claim_name, claim_id, is_nsfw, SUM(to_claim_address) tot FROM (SELECT support.id as support_id, support.support_amount amount,\ transaction.transaction_time time, claim.is_nsfw is_nsfw,\ claim.claim_id claim_id, claim.name claim_name,\ (CASE WHEN (output.address_list LIKE CONCAT('%25', claim_address, '%25')) THEN '1' ELSE '0' END) to_claim_address\ FROM claim\ INNER JOIN support ON support.supported_claim_id = claim.claim_id\ INNER JOIN transaction ON support.transaction_hash_id = transaction.hash\ INNER JOIN output ON transaction.hash = output.transaction_hash \ WHERE transaction.transaction_time > ({now} - {window})\ AND transaction.transaction_time <= {now}) AS result\ GROUP BY support_id, amount;".format(now=now, window=windows[0]) request = requests.get("https://chainquery.lbry.com/api/sql?query=" + query) the_dict = request.json() # Get tips into numpy array times = [] tips = [] is_tip = [] links = [] is_nsfw = [] for row in the_dict["data"]: times.append(float(row["time"])) tips.append(float(row["amount"])) links.append("https://open.lbry.com/" + str(row["claim_name"]) + ":"\ + str(row["claim_id"])) is_nsfw.append(row["is_nsfw"]) if row["tot"] > 0: is_tip.append(True) else: is_tip.append(False) times = np.array(times) tips = np.array(tips) is_tip = np.array(is_tip) links = np.array(links) is_nsfw = np.array(is_nsfw) # Write tips for i in range(len(labels)): keep = (times > (now - windows[i])) & is_tip _times = times[keep] _tips = tips[keep] _links = links[keep] _is_nsfw = is_nsfw[keep] result["num_tips_{label}".format(label=labels[i])] = len(_tips) result["lbc_tipped_{label}".format(label=labels[i])] = float(_tips.sum()) maxtip = 0 maxtip_link = None maxtip_is_nsfw = None if len(_tips) > 0: maxtip = float(_tips.max()) index = np.argmax(_tips) maxtip_link = _links[index] maxtip_is_nsfw = _is_nsfw[index] result["biggest_tip_{label}".format(label=labels[i])] = maxtip result["biggest_tip_{label}_link".format(label=labels[i])] = maxtip_link result["biggest_tip_{label}_is_nsfw".format(label=labels[i])] = bool(maxtip_is_nsfw) # Write supports for i in range(len(labels)): keep = (times > (now - windows[i])) & (~is_tip) _times = times[keep] _tips = tips[keep] _links = links[keep] _is_nsfw = is_nsfw[keep] result["num_supports_{label}".format(label=labels[i])] = len(_tips) result["lbc_supports_{label}".format(label=labels[i])] = float(_tips.sum()) maxtip = 0 maxtip_link = None maxtip_is_nsfw = None if len(_tips) > 0: maxtip = float(_tips.max()) index = np.argmax(_tips) maxtip_link = _links[index] maxtip_is_nsfw = _is_nsfw[index] result["biggest_support_{label}".format(label=labels[i])] = maxtip result["biggest_support_{label}_link".format(label=labels[i])] = maxtip_link result["biggest_support_{label}_is_nsfw".format(label=labels[i])] = bool(maxtip_is_nsfw) f = open("tips_stats.json", "w") f.write(json.dumps(result)) f.close() print("done. ", flush=True, end="") def publish_files(): """ Publish files to somewhere on the internet. """ print("Publishing files to the internet...", end="", flush=True) import subprocess try: subprocess.run("./upload.sh", timeout=120.0) print("done.\n") except: print("failed.\n") if __name__ == "__main__": # Do it manually once then enter the infinite loop now = time.time() print("The time is " + str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC.") make_graph("claims") make_graph("channels") try: aggregate_tips() except: pass import os try: publish_files() except: pass import time while True: print("", flush=True) time.sleep(530.0) now = time.time() print("The time is " + str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC.") make_graph("claims", show=False) make_graph("channels", show=False) try: aggregate_tips() except: pass try: publish_files() except: pass
[ "numpy.sum", "numpy.argmax", "json.dumps", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "numpy.arange", "numpy.mean", "matplotlib.pyplot.gca", "matplotlib.pyplot.axvline", "matplotlib.pyplot.close", "numpy.max", "requests.get", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "time.sleep", "sqlite3.connect", "matplotlib.pyplot.subplot", "subprocess.run", "matplotlib.pyplot.plot", "matplotlib.pyplot.hist", "time.time", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((373, 389), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (382, 389), True, 'import matplotlib.pyplot as plt\n'), ((491, 515), 'sqlite3.connect', 'sqlite3.connect', (['db_file'], {}), '(db_file)\n', (506, 515), False, 'import sqlite3\n'), ((1203, 1214), 'time.time', 'time.time', ([], {}), '()\n', (1212, 1214), False, 'import time\n'), ((2409, 2441), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""dark_background"""'], {}), "('dark_background')\n", (2422, 2441), True, 'import matplotlib.pyplot as plt\n'), ((2544, 2572), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 11)'}), '(figsize=(15, 11))\n', (2554, 2572), True, 'import matplotlib.pyplot as plt\n'), ((2577, 2597), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (2588, 2597), True, 'import matplotlib.pyplot as plt\n'), ((2963, 2984), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {'bottom': '(-100)'}), '(bottom=-100)\n', (2971, 2984), True, 'import matplotlib.pyplot as plt\n'), ((3545, 3607), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(890.0)'], {'linestyle': '"""dotted"""', 'linewidth': '(2)', 'color': '"""g"""'}), "(890.0, linestyle='dotted', linewidth=2, color='g')\n", (3556, 3607), True, 'import matplotlib.pyplot as plt\n'), ((3748, 3768), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (3759, 3768), True, 'import matplotlib.pyplot as plt\n'), ((4311, 4428), 'matplotlib.pyplot.plot', 'plt.plot', (['(bins[0:-2] + 0.5 * bin_width)', 'moving_average[0:-1]', '"""w-"""'], {'label': '"""10-day moving average"""', 'linewidth': '(1.5)'}), "(bins[0:-2] + 0.5 * bin_width, moving_average[0:-1], 'w-', label=\n '10-day moving average', linewidth=1.5)\n", (4319, 4428), True, 'import matplotlib.pyplot as plt\n'), ((4479, 4521), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (days since 2017-01-01)"""'], {}), "('Time (days since 2017-01-01)')\n", (4489, 4521), True, 'import matplotlib.pyplot as plt\n'), ((4977, 5039), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(890.0)'], {'linestyle': '"""dotted"""', 'linewidth': '(2)', 'color': '"""g"""'}), "(890.0, linestyle='dotted', linewidth=2, color='g')\n", (4988, 5039), True, 'import matplotlib.pyplot as plt\n'), ((5193, 5205), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5203, 5205), True, 'import matplotlib.pyplot as plt\n'), ((5608, 5619), 'time.time', 'time.time', ([], {}), '()\n', (5617, 5619), False, 'import time\n'), ((6996, 7062), 'requests.get', 'requests.get', (["('https://chainquery.lbry.com/api/sql?query=' + query)"], {}), "('https://chainquery.lbry.com/api/sql?query=' + query)\n", (7008, 7062), False, 'import requests\n'), ((7607, 7622), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (7615, 7622), True, 'import numpy as np\n'), ((7634, 7648), 'numpy.array', 'np.array', (['tips'], {}), '(tips)\n', (7642, 7648), True, 'import numpy as np\n'), ((7662, 7678), 'numpy.array', 'np.array', (['is_tip'], {}), '(is_tip)\n', (7670, 7678), True, 'import numpy as np\n'), ((7691, 7706), 'numpy.array', 'np.array', (['links'], {}), '(links)\n', (7699, 7706), True, 'import numpy as np\n'), ((7721, 7738), 'numpy.array', 'np.array', (['is_nsfw'], {}), '(is_nsfw)\n', (7729, 7738), True, 'import numpy as np\n'), ((10059, 10070), 'time.time', 'time.time', ([], {}), '()\n', (10068, 10070), False, 'import time\n'), ((1511, 1539), 'numpy.sum', 'np.sum', (['(times > now - 3600.0)'], {}), '(times > now - 3600.0)\n', (1517, 1539), True, 'import numpy as np\n'), ((1620, 1649), 'numpy.sum', 'np.sum', (['(times > now - 86400.0)'], {}), '(times > now - 86400.0)\n', (1626, 1649), True, 'import numpy as np\n'), ((1728, 1761), 'numpy.sum', 'np.sum', (['(times > now - 7 * 86400.0)'], {}), '(times > now - 7 * 86400.0)\n', (1734, 1761), True, 'import numpy as np\n'), ((1839, 1873), 'numpy.sum', 'np.sum', (['(times > now - 30 * 86400.0)'], {}), '(times > now - 30 * 86400.0)\n', (1845, 1873), True, 'import numpy as np\n'), ((1944, 1963), 'json.dumps', 'json.dumps', (['my_dict'], {}), '(my_dict)\n', (1954, 1963), False, 'import json\n'), ((3100, 3115), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (3109, 3115), True, 'import numpy as np\n'), ((3160, 3215), 'matplotlib.pyplot.axvline', 'plt.axvline', (['year'], {'color': '"""r"""', 'alpha': '(0.8)', 'linestyle': '"""--"""'}), "(year, color='r', alpha=0.8, linestyle='--')\n", (3171, 3215), True, 'import matplotlib.pyplot as plt\n'), ((3930, 4021), 'matplotlib.pyplot.hist', 'plt.hist', (['days', 'bins'], {'alpha': '(0.9)', 'color': 'color', 'label': '"""Raw"""', 'width': 'bin_width', 'align': '"""mid"""'}), "(days, bins, alpha=0.9, color=color, label='Raw', width=bin_width,\n align='mid')\n", (3938, 4021), True, 'import matplotlib.pyplot as plt\n'), ((4291, 4306), 'numpy.mean', 'np.mean', (['subset'], {}), '(subset)\n', (4298, 4306), True, 'import numpy as np\n'), ((4902, 4957), 'matplotlib.pyplot.axvline', 'plt.axvline', (['year'], {'color': '"""r"""', 'alpha': '(0.8)', 'linestyle': '"""--"""'}), "(year, color='r', alpha=0.8, linestyle='--')\n", (4913, 4957), True, 'import matplotlib.pyplot as plt\n'), ((5448, 5458), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5456, 5458), True, 'import matplotlib.pyplot as plt\n'), ((9586, 9604), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (9596, 9604), False, 'import json\n'), ((9855, 9899), 'subprocess.run', 'subprocess.run', (['"""./upload.sh"""'], {'timeout': '(120.0)'}), "('./upload.sh', timeout=120.0)\n", (9869, 9899), False, 'import subprocess\n'), ((10413, 10430), 'time.sleep', 'time.sleep', (['(530.0)'], {}), '(530.0)\n', (10423, 10430), False, 'import time\n'), ((10446, 10457), 'time.time', 'time.time', ([], {}), '()\n', (10455, 10457), False, 'import time\n'), ((2989, 2998), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2996, 2998), True, 'import matplotlib.pyplot as plt\n'), ((4811, 4820), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4818, 4820), True, 'import matplotlib.pyplot as plt\n'), ((8278, 8294), 'numpy.argmax', 'np.argmax', (['_tips'], {}), '(_tips)\n', (8287, 8294), True, 'import numpy as np\n'), ((9177, 9193), 'numpy.argmax', 'np.argmax', (['_tips'], {}), '(_tips)\n', (9186, 9193), True, 'import numpy as np\n'), ((1122, 1137), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (1130, 1137), True, 'import numpy as np\n'), ((3863, 3875), 'numpy.max', 'np.max', (['days'], {}), '(days)\n', (3869, 3875), True, 'import numpy as np\n'), ((3632, 3641), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3639, 3641), True, 'import matplotlib.pyplot as plt\n'), ((3377, 3386), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3384, 3386), True, 'import matplotlib.pyplot as plt\n'), ((4725, 4736), 'time.time', 'time.time', ([], {}), '()\n', (4734, 4736), False, 'import time\n')]
import numpy as np import scipy.sparse as sp import datasets import utils import argparse # argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='cora', help='Datasets: cora, email, ssets') parser.add_argument('--version', default='1', help='version for ssets, default 1 for others') args = parser.parse_args() if __name__ == '__main__': A, labels = datasets.load_graph(args.dataset, args.version) # dense if not isinstance(A, np.ndarray): A = np.array(A.todense()) L = utils.laplacian(A) N = utils.normalized_laplacian(A) # sparse A = sp.csr_matrix(A) L = sp.csr_matrix(L) N = sp.csr_matrix(N) matrices = { 'A': A, 'L': L, 'N': N } for matrix_id in matrices: matrix = matrices[matrix_id] eig_val, eig_vec = np.linalg.eigh(matrix.todense()) path = f"{args.dataset}/embeddings/{matrix_id}_{args.dataset}_v{args.version}.npy" np.save(path, eig_vec)
[ "numpy.save", "argparse.ArgumentParser", "datasets.load_graph", "scipy.sparse.csr_matrix", "utils.laplacian", "utils.normalized_laplacian" ]
[((113, 138), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (136, 138), False, 'import argparse\n'), ((390, 437), 'datasets.load_graph', 'datasets.load_graph', (['args.dataset', 'args.version'], {}), '(args.dataset, args.version)\n', (409, 437), False, 'import datasets\n'), ((531, 549), 'utils.laplacian', 'utils.laplacian', (['A'], {}), '(A)\n', (546, 549), False, 'import utils\n'), ((558, 587), 'utils.normalized_laplacian', 'utils.normalized_laplacian', (['A'], {}), '(A)\n', (584, 587), False, 'import utils\n'), ((610, 626), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['A'], {}), '(A)\n', (623, 626), True, 'import scipy.sparse as sp\n'), ((635, 651), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['L'], {}), '(L)\n', (648, 651), True, 'import scipy.sparse as sp\n'), ((660, 676), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['N'], {}), '(N)\n', (673, 676), True, 'import scipy.sparse as sp\n'), ((976, 998), 'numpy.save', 'np.save', (['path', 'eig_vec'], {}), '(path, eig_vec)\n', (983, 998), True, 'import numpy as np\n')]
from scipy.stats import multivariate_normal from scipy.signal import convolve2d import matplotlib try: matplotlib.pyplot.figure() matplotlib.pyplot.close() except Exception: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os # the colormap should assign light colors to low values TERRAIN_CMAP = 'Greens' DEFAULT_PATH = '/tmp/mujoco_terrains' STEP = 0.1 def generate_hills(width, height, nhills): ''' @param width float, terrain width @param height float, terrain height @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2 ''' # setup coordinate grid xmin, xmax = -width/2.0, width/2.0 ymin, ymax = -height/2.0, height/2.0 x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y # generate hilltops xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)] mu = np.c_[xm.flat, ym.flat] sigma = float(width*height)/(nhills*8) for i in range(mu.shape[0]): mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma) # generate hills sigma = sigma + sigma*np.random.rand(mu.shape[0]) rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ] hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0) return x, y, hfield def clear_patch(hfield, box): ''' Clears a patch shaped like box, assuming robot is placed in center of hfield @param box: rllab.spaces.Box-like ''' if box.flat_dim > 2: raise ValueError("Provide 2dim box") # clear patch h_center = int(0.5 * hfield.shape[0]) w_center = int(0.5 * hfield.shape[1]) fromrow, torow = w_center + int(box.low[0]/STEP), w_center + int(box.high[0] / STEP) fromcol, tocol = h_center + int(box.low[1]/STEP), h_center + int(box.high[1] / STEP) hfield[fromrow:torow, fromcol:tocol] = 0.0 # convolve to smoothen edges somewhat, in case hills were cut off K = np.ones((10,10)) / 100.0 s = convolve2d(hfield[fromrow-9:torow+9, fromcol-9:tocol+9], K, mode='same', boundary='symm') hfield[fromrow-9:torow+9, fromcol-9:tocol+9] = s return hfield def _checkpath(path_): if path_ is None: path_ = DEFAULT_PATH if not os.path.exists(path_): os.makedirs(path_) return path_ def save_heightfield(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure the path + fname match the <file> attribute of the <asset> element in the env XML where the height field is defined ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) # terrain_cmap is necessary to make sure tops get light color plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close() def save_texture(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure this matches the <texturedir> of the <compiler> element in the env XML ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) xmin, xmax = x.min(), x.max() ymin, ymax = y.min(), y.max() # for some reason plt.grid does not work here, so generate gridlines manually for i in np.arange(xmin,xmax,0.5): plt.plot([i,i], [ymin,ymax], 'k', linewidth=0.1) for i in np.arange(ymin,ymax,0.5): plt.plot([xmin,xmax],[i,i], 'k', linewidth=0.1) plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close()
[ "scipy.stats.multivariate_normal.rvs", "scipy.signal.convolve2d", "os.makedirs", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "numpy.empty", "os.path.exists", "scipy.stats.multivariate_normal", "numpy.ones", "matplotlib.pyplot.figure", "matplotlib.use", "matplotlib.pyplot.contourf", "numpy.arange", "numpy.random.rand", "os.path.join", "numpy.sqrt" ]
[((107, 133), 'matplotlib.pyplot.figure', 'matplotlib.pyplot.figure', ([], {}), '()\n', (131, 133), False, 'import matplotlib\n'), ((138, 163), 'matplotlib.pyplot.close', 'matplotlib.pyplot.close', ([], {}), '()\n', (161, 163), False, 'import matplotlib\n'), ((789, 813), 'numpy.empty', 'np.empty', (['(x.shape + (2,))'], {}), '(x.shape + (2,))\n', (797, 813), True, 'import numpy as np\n'), ((2071, 2173), 'scipy.signal.convolve2d', 'convolve2d', (['hfield[fromrow - 9:torow + 9, fromcol - 9:tocol + 9]', 'K'], {'mode': '"""same"""', 'boundary': '"""symm"""'}), "(hfield[fromrow - 9:torow + 9, fromcol - 9:tocol + 9], K, mode=\n 'same', boundary='symm')\n", (2081, 2173), False, 'from scipy.signal import convolve2d\n'), ((2711, 2723), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2721, 2723), True, 'import matplotlib.pyplot as plt\n'), ((2728, 2779), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', '(-hfield)', '(100)'], {'cmap': 'TERRAIN_CMAP'}), '(x, y, -hfield, 100, cmap=TERRAIN_CMAP)\n', (2740, 2779), True, 'import matplotlib.pyplot as plt\n'), ((2910, 2921), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2919, 2921), True, 'import matplotlib.pyplot as plt\n'), ((3182, 3194), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3192, 3194), True, 'import matplotlib.pyplot as plt\n'), ((3199, 3250), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', '(-hfield)', '(100)'], {'cmap': 'TERRAIN_CMAP'}), '(x, y, -hfield, 100, cmap=TERRAIN_CMAP)\n', (3211, 3250), True, 'import matplotlib.pyplot as plt\n'), ((3414, 3440), 'numpy.arange', 'np.arange', (['xmin', 'xmax', '(0.5)'], {}), '(xmin, xmax, 0.5)\n', (3423, 3440), True, 'import numpy as np\n'), ((3510, 3536), 'numpy.arange', 'np.arange', (['ymin', 'ymax', '(0.5)'], {}), '(ymin, ymax, 0.5)\n', (3519, 3536), True, 'import numpy as np\n'), ((3660, 3671), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3669, 3671), True, 'import matplotlib.pyplot as plt\n'), ((186, 207), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (200, 207), False, 'import matplotlib\n'), ((1096, 1142), 'scipy.stats.multivariate_normal.rvs', 'multivariate_normal.rvs', ([], {'mean': 'mu[i]', 'cov': 'sigma'}), '(mean=mu[i], cov=sigma)\n', (1119, 1142), False, 'from scipy.stats import multivariate_normal\n'), ((1235, 1278), 'scipy.stats.multivariate_normal', 'multivariate_normal', (['mu[i, :]'], {'cov': 'sigma[i]'}), '(mu[i, :], cov=sigma[i])\n', (1254, 1278), False, 'from scipy.stats import multivariate_normal\n'), ((2038, 2055), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (2045, 2055), True, 'import numpy as np\n'), ((2327, 2348), 'os.path.exists', 'os.path.exists', (['path_'], {}), '(path_)\n', (2341, 2348), False, 'import os\n'), ((2358, 2376), 'os.makedirs', 'os.makedirs', (['path_'], {}), '(path_)\n', (2369, 2376), False, 'import os\n'), ((2858, 2883), 'os.path.join', 'os.path.join', (['path', 'fname'], {}), '(path, fname)\n', (2870, 2883), False, 'import os\n'), ((3448, 3498), 'matplotlib.pyplot.plot', 'plt.plot', (['[i, i]', '[ymin, ymax]', '"""k"""'], {'linewidth': '(0.1)'}), "([i, i], [ymin, ymax], 'k', linewidth=0.1)\n", (3456, 3498), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3594), 'matplotlib.pyplot.plot', 'plt.plot', (['[xmin, xmax]', '[i, i]', '"""k"""'], {'linewidth': '(0.1)'}), "([xmin, xmax], [i, i], 'k', linewidth=0.1)\n", (3552, 3594), True, 'import matplotlib.pyplot as plt\n'), ((3608, 3633), 'os.path.join', 'os.path.join', (['path', 'fname'], {}), '(path, fname)\n', (3620, 3633), False, 'import os\n'), ((1195, 1222), 'numpy.random.rand', 'np.random.rand', (['mu.shape[0]'], {}), '(mu.shape[0])\n', (1209, 1222), True, 'import numpy as np\n'), ((920, 935), 'numpy.sqrt', 'np.sqrt', (['nhills'], {}), '(nhills)\n', (927, 935), True, 'import numpy as np\n'), ((954, 969), 'numpy.sqrt', 'np.sqrt', (['nhills'], {}), '(nhills)\n', (961, 969), True, 'import numpy as np\n')]
from datetime import datetime, timedelta from pyclarify import APIClient import orchest import pandas as pd import numpy as np from merlion.utils import TimeSeries from merlion.models.forecast.prophet import Prophet, ProphetConfig from merlion.transform.base import Identity def pipeline_data(times, values, new_id,new_name, original_id, original_name): labels = {"source":["Orchest pipelines"], "original_id":[original_id]} var_name = "clfy_"+new_id data = { "name" : new_name, "labels" : labels, "times" : times, "series" : values, "kargs" : {"sourceType" : "prediction", "data-source": ["Orchest"], "description" : f"Forecast for {original_name}" } } return {var_name : data } def generate_future_timestamps(n_future, timestamps, start): deltas = [x-timestamps[0] for x in timestamps] avg_delta=np.mean(deltas) future = [(i+1)*avg_delta+start for i in range(n_future)] return future client = APIClient("./clarify-credentials.json") inputs = orchest.get_inputs() invars = [x for x in inputs.keys() if x.startswith("read_config_forecast")] print(invars) output_dict={} for name in invars: item_id = inputs[name]['item_id'] days = inputs[name]['lag_days'] test_lag = inputs[name]['time_split'] future = inputs[name]['future'] data_params = { "items": { "include": True, "filter": { "id": { "$in": [ item_id ] } } }, "data": { "include": True, "notBefore": (datetime.now() - timedelta(days=days)).astimezone().isoformat() } } response = client.select_items(data_params) signal_name = list(response.result.items.values())[0].name print(f"Name {signal_name} and id {item_id}") times = response.result.data.times series = response.result.data.series df = pd.DataFrame(series) df.index = [time.replace(tzinfo=None) for time in times] if len(times) > 0: tzinfo = times[0].tzinfo test_data = TimeSeries.from_pd(df[-test_lag:]) train_data = TimeSeries.from_pd(df[0:-test_lag]) config = ProphetConfig(max_forecast_steps=test_lag, add_seasonality="auto", transform=Identity()) model = Prophet(config) model.train(train_data=train_data) test_times = test_data.time_stamps if future > 0: test_times=test_times+generate_future_timestamps(future, test_data.time_stamps, start=test_data.time_stamps[-1]) test_pred, test_err = model.forecast(time_stamps=test_times) col = test_pred.names[0] col_err = test_err.names[0] forecast_name=col+"_pred" forecast_name_upper=col+"_upper" forecast_name_lower=col+"_lower" forecast_values = test_pred.univariates[col].values forecast_upper_values= [x+y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] forecast_lower_values= [x-y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] output_dict.update(pipeline_data(test_pred.time_stamps,forecast_values, forecast_name, f"Forecast {signal_name}", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_upper_values, forecast_name_upper, f"Forecast {signal_name} upper bound", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_lower_values, forecast_name_lower, f"Forecast {signal_name} lower bound", col, signal_name )) orchest.output(output_dict, "clfy_dict")
[ "pandas.DataFrame", "orchest.output", "orchest.get_inputs", "merlion.utils.TimeSeries.from_pd", "datetime.datetime.now", "merlion.models.forecast.prophet.Prophet", "numpy.mean", "datetime.timedelta", "merlion.transform.base.Identity", "pyclarify.APIClient" ]
[((1072, 1111), 'pyclarify.APIClient', 'APIClient', (['"""./clarify-credentials.json"""'], {}), "('./clarify-credentials.json')\n", (1081, 1111), False, 'from pyclarify import APIClient\n'), ((1122, 1142), 'orchest.get_inputs', 'orchest.get_inputs', ([], {}), '()\n', (1140, 1142), False, 'import orchest\n'), ((3609, 3649), 'orchest.output', 'orchest.output', (['output_dict', '"""clfy_dict"""'], {}), "(output_dict, 'clfy_dict')\n", (3623, 3649), False, 'import orchest\n'), ((965, 980), 'numpy.mean', 'np.mean', (['deltas'], {}), '(deltas)\n', (972, 980), True, 'import numpy as np\n'), ((2010, 2030), 'pandas.DataFrame', 'pd.DataFrame', (['series'], {}), '(series)\n', (2022, 2030), True, 'import pandas as pd\n'), ((2169, 2203), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['df[-test_lag:]'], {}), '(df[-test_lag:])\n', (2187, 2203), False, 'from merlion.utils import TimeSeries\n'), ((2221, 2256), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['df[0:-test_lag]'], {}), '(df[0:-test_lag])\n', (2239, 2256), False, 'from merlion.utils import TimeSeries\n'), ((2372, 2387), 'merlion.models.forecast.prophet.Prophet', 'Prophet', (['config'], {}), '(config)\n', (2379, 2387), False, 'from merlion.models.forecast.prophet import Prophet, ProphetConfig\n'), ((2347, 2357), 'merlion.transform.base.Identity', 'Identity', ([], {}), '()\n', (2355, 2357), False, 'from merlion.transform.base import Identity\n'), ((1679, 1693), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1691, 1693), False, 'from datetime import datetime, timedelta\n'), ((1696, 1716), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (1705, 1716), False, 'from datetime import datetime, timedelta\n')]
import tensorflow as tf import numpy as np class RBFolution(tf.keras.layers.Layer): def __init__(self, filters, kernel_size=(1, 3, 3, 1), padding="VALID", strides=(1, 1, 1, 1), name="RBFolution", dilation_rate=(1,1), ccs_initializer=tf.keras.initializers.RandomUniform(0,1), beta_initilizer=tf.keras.initializers.RandomUniform(0,1)): super(RBFolution, self).__init__(name=name) self.padding = padding self.strides = strides self.filters = filters self.kernel_size = kernel_size self.ccs_initializer = ccs_initializer self.beta_initilizer = beta_initilizer self.dilation_rate = dilation_rate def build(self, input_shape): self.input_s = input_shape self.output_s = self.compute_output_shape(input_shape) patch_dim = np.prod(self.kernel_size[1:]) self.ccs_tensor = self.add_weight("cluster_centers", shape=(patch_dim, self.filters), dtype="float32", initializer=self.ccs_initializer) self.beta = self.add_weight("beta", shape=[self.filters], dtype="float32", initializer=self.beta_initilizer) def call(self, input, **kwargs): return tf.reshape(self.__rbfolution(input), self.output_s) def compute_output_shape(self, input_shape): space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = RBFolution.conv_output_length( space[i], self.kernel_size[1:-1][i], padding=self.padding.lower(), stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim.value) return (-1,) + tuple(new_space) + (self.filters,) def __rbfolution(self, inputs): batch_size = tf.shape(inputs)[0] patch_dim = np.prod(self.kernel_size[1:]) # Patches extracted from the images (convolution-like). # shape=[batch_size, new_height, new_width, patch_dim] (i. e. individual # patches are flattened) # tf.extract_image_patches "Only supports ksizes across space" -> we change # kernel_size[3] to 1. patches = tf.extract_image_patches( inputs, ksizes=list(self.kernel_size[:3]) + [1], strides=self.strides, rates=[1, 1, 1, 1], padding=self.padding ) patches_shape = tf.shape(patches) new_height = patches_shape[1] new_width = patches_shape[2] # shape=[batch_size, num_patches, patch_dim] reshaped_patches = tf.reshape(patches, [batch_size, -1, patch_dim]) # all_scores[i,j,k] = sum_{l=0}^{patch_dim-1} ( # (ccs_tensor[l,k] - reshaped_patches[i,j,l]) ** 2 # ) # shape=[batch_size, num_patches, filters] all_scores = ( tf.reduce_sum(tf.square(reshaped_patches), 2, keepdims=True) - 2 * tf.einsum("aij,jk->aik", reshaped_patches, self.ccs_tensor) + tf.reduce_sum(tf.square(self.ccs_tensor), 0, keepdims=True) ) res = tf.reshape( tf.exp(tf.multiply(-self.beta, all_scores)), [batch_size, new_height, new_width, self.filters], name="rbfolution_activation" ) return res @staticmethod def conv_output_length(input_length, filter_size, padding, stride, dilation=1): """Determines output length of a convolution given input length. Arguments: input_length: integer. filter_size: integer. padding: one of "same", "valid", "full", "causal" stride: integer. dilation: dilation rate, integer. Returns: The output length (integer). """ if input_length is None: return None assert padding in {'same', 'valid', 'full', 'causal'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if padding in ['same', 'causal']: output_length = input_length elif padding == 'valid': output_length = input_length - dilated_filter_size + 1 elif padding == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1) // stride
[ "tensorflow.einsum", "tensorflow.reshape", "tensorflow.multiply", "tensorflow.keras.initializers.RandomUniform", "tensorflow.shape", "tensorflow.square", "numpy.prod" ]
[((273, 314), 'tensorflow.keras.initializers.RandomUniform', 'tf.keras.initializers.RandomUniform', (['(0)', '(1)'], {}), '(0, 1)\n', (308, 314), True, 'import tensorflow as tf\n'), ((348, 389), 'tensorflow.keras.initializers.RandomUniform', 'tf.keras.initializers.RandomUniform', (['(0)', '(1)'], {}), '(0, 1)\n', (383, 389), True, 'import tensorflow as tf\n'), ((866, 895), 'numpy.prod', 'np.prod', (['self.kernel_size[1:]'], {}), '(self.kernel_size[1:])\n', (873, 895), True, 'import numpy as np\n'), ((1863, 1892), 'numpy.prod', 'np.prod', (['self.kernel_size[1:]'], {}), '(self.kernel_size[1:])\n', (1870, 1892), True, 'import numpy as np\n'), ((2438, 2455), 'tensorflow.shape', 'tf.shape', (['patches'], {}), '(patches)\n', (2446, 2455), True, 'import tensorflow as tf\n'), ((2612, 2660), 'tensorflow.reshape', 'tf.reshape', (['patches', '[batch_size, -1, patch_dim]'], {}), '(patches, [batch_size, -1, patch_dim])\n', (2622, 2660), True, 'import tensorflow as tf\n'), ((1823, 1839), 'tensorflow.shape', 'tf.shape', (['inputs'], {}), '(inputs)\n', (1831, 1839), True, 'import tensorflow as tf\n'), ((3046, 3072), 'tensorflow.square', 'tf.square', (['self.ccs_tensor'], {}), '(self.ccs_tensor)\n', (3055, 3072), True, 'import tensorflow as tf\n'), ((3148, 3183), 'tensorflow.multiply', 'tf.multiply', (['(-self.beta)', 'all_scores'], {}), '(-self.beta, all_scores)\n', (3159, 3183), True, 'import tensorflow as tf\n'), ((2893, 2920), 'tensorflow.square', 'tf.square', (['reshaped_patches'], {}), '(reshaped_patches)\n', (2902, 2920), True, 'import tensorflow as tf\n'), ((2958, 3017), 'tensorflow.einsum', 'tf.einsum', (['"""aij,jk->aik"""', 'reshaped_patches', 'self.ccs_tensor'], {}), "('aij,jk->aik', reshaped_patches, self.ccs_tensor)\n", (2967, 3017), True, 'import tensorflow as tf\n')]
''' Action policy methods to sampling actions Algorithm provides a `calc_pdparam` which takes a state and do a forward pass through its net, and the pdparam is used to construct an action probability distribution as appropriate per the action type as indicated by the body Then the prob. dist. is used to sample action. The default form looks like: ``` ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) ``` We can also augment pdparam before sampling - as in the case of Boltzmann sampling, or do epsilon-greedy to use pdparam-sampling or random sampling. ''' from slm_lab.env.wrapper import LazyFrames from slm_lab.lib import logger, math_util, util from torch import distributions import numpy as np import pydash as ps import torch logger = logger.get_logger(__name__) # probability distributions constraints for different action types; the first in the list is the default ACTION_PDS = { 'continuous': ['Normal', 'Beta', 'Gumbel', 'LogNormal'], 'multi_continuous': ['MultivariateNormal'], 'discrete': ['Categorical', 'Argmax'], 'multi_discrete': ['MultiCategorical'], 'multi_binary': ['Bernoulli'], } class Argmax(distributions.Categorical): ''' Special distribution class for argmax sampling, where probability is always 1 for the argmax. NOTE although argmax is not a sampling distribution, this implementation is for API consistency. ''' def __init__(self, probs=None, logits=None, validate_args=None): if probs is not None: new_probs = torch.zeros_like(probs, dtype=torch.float) new_probs[torch.argmax(probs, dim=0)] = 1.0 probs = new_probs elif logits is not None: new_logits = torch.full_like(logits, -1e8, dtype=torch.float) max_idx = torch.argmax(logits, dim=0) new_logits[max_idx] = logits[max_idx] logits = new_logits super(Argmax, self).__init__(probs=probs, logits=logits, validate_args=validate_args) class MultiCategorical(distributions.Categorical): '''MultiCategorical as collection of Categoricals''' def __init__(self, probs=None, logits=None, validate_args=None): self.categoricals = [] if probs is None: probs = [None] * len(logits) elif logits is None: logits = [None] * len(probs) else: raise ValueError('Either probs or logits must be None') for sub_probs, sub_logits in zip(probs, logits): categorical = distributions.Categorical(probs=sub_probs, logits=sub_logits, validate_args=validate_args) self.categoricals.append(categorical) @property def logits(self): return [cat.logits for cat in self.categoricals] @property def probs(self): return [cat.probs for cat in self.categoricals] @property def param_shape(self): return [cat.param_shape for cat in self.categoricals] @property def mean(self): return torch.stack([cat.mean for cat in self.categoricals]) @property def variance(self): return torch.stack([cat.variance for cat in self.categoricals]) def sample(self, sample_shape=torch.Size()): return torch.stack([cat.sample(sample_shape=sample_shape) for cat in self.categoricals]) def log_prob(self, value): return torch.stack([cat.log_prob(value[idx]) for idx, cat in enumerate(self.categoricals)]) def entropy(self): return torch.stack([cat.entropy() for cat in self.categoricals]) def enumerate_support(self): return [cat.enumerate_support() for cat in self.categoricals] setattr(distributions, 'Argmax', Argmax) setattr(distributions, 'MultiCategorical', MultiCategorical) # base methods def try_preprocess(state, algorithm, body, append=True): '''Try calling preprocess as implemented in body's memory to use for net input''' if isinstance(state, LazyFrames): state = state.__array__() # from global env preprocessor if hasattr(body.memory, 'preprocess_state'): state = body.memory.preprocess_state(state, append=append) # as float, and always as minibatch for net input state = torch.from_numpy(state).float().unsqueeze(dim=0) return state def cond_squeeze(out): '''Helper to squeeze output depending if it is tensor (discrete pdparam) or list of tensors (continuous pdparam of loc and scale)''' if isinstance(out, list): return [out_t.squeeze(dim=0) for out_t in out] else: return out.squeeze(dim=0) def init_action_pd(state, algorithm, body, append=True): ''' Build the proper action prob. dist. to use for action sampling. state is passed through algorithm's net via calc_pdparam, which the algorithm must implement using its proper net. This will return body, ActionPD and pdparam to allow augmentation, e.g. applying temperature tau to pdparam for boltzmann. Then, output must be called with sample_action_pd(body, ActionPD, pdparam) to sample action. @returns {cls, tensor, *} ActionPD, pdparam, body ''' pdtypes = ACTION_PDS[body.action_type] assert body.action_pdtype in pdtypes, f'Pdtype {body.action_pdtype} is not compatible/supported with action_type {body.action_type}. Options are: {ACTION_PDS[body.action_type]}' ActionPD = getattr(distributions, body.action_pdtype) state = try_preprocess(state, algorithm, body, append=append) state = state.to(algorithm.net.device) pdparam = algorithm.calc_pdparam(state, evaluate=False) return ActionPD, pdparam, body def sample_action_pd(ActionPD, pdparam, body): ''' This uses the outputs from init_action_pd and an optionally augmented pdparam to construct a action_pd for sampling action @returns {tensor, distribution} action, action_pd A sampled action, and the prob. dist. used for sampling to enable calculations like kl, entropy, etc. later. ''' pdparam = cond_squeeze(pdparam) if body.is_discrete: action_pd = ActionPD(logits=pdparam) else: # continuous outputs a list, loc and scale assert len(pdparam) == 2, pdparam # scale (stdev) must be >0, use softplus if pdparam[1] < 5: pdparam[1] = torch.log(1 + torch.exp(pdparam[1])) + 1e-8 action_pd = ActionPD(*pdparam) action = action_pd.sample() return action, action_pd # interface action sampling methods def default(state, algorithm, body): '''Plain policy by direct sampling using outputs of net as logits and constructing ActionPD as appropriate''' ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd def random(state, algorithm, body): '''Random action sampling that returns the same data format as default(), but without forward pass. Uses gym.space.sample()''' state = try_preprocess(state, algorithm, body, append=True) # for consistency with init_action_pd inner logic if body.action_type == 'discrete': action_pd = distributions.Categorical(logits=torch.ones(body.action_space.high, device=algorithm.net.device)) elif body.action_type == 'continuous': # Possibly this should this have a 'device' set action_pd = distributions.Uniform( low=torch.tensor(body.action_space.low).float(), high=torch.tensor(body.action_space.high).float()) elif body.action_type == 'multi_discrete': action_pd = distributions.Categorical( logits=torch.ones(body.action_space.high.size, body.action_space.high[0], device=algorithm.net.device)) elif body.action_type == 'multi_continuous': raise NotImplementedError elif body.action_type == 'multi_binary': raise NotImplementedError else: raise NotImplementedError sample = body.action_space.sample() action = torch.tensor(sample, device=algorithm.net.device) return action, action_pd def epsilon_greedy(state, algorithm, body): '''Epsilon-greedy policy: with probability epsilon, do random action, otherwise do default sampling.''' epsilon = body.explore_var if epsilon > np.random.rand(): return random(state, algorithm, body) else: return default(state, algorithm, body) def boltzmann(state, algorithm, body): ''' Boltzmann policy: adjust pdparam with temperature tau; the higher the more randomness/noise in action. ''' tau = body.explore_var ActionPD, pdparam, body = init_action_pd(state, algorithm, body) pdparam /= tau action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd # multi-body policy with a single forward pass to calc pdparam def multi_default(states, algorithm, body_list, pdparam): ''' Apply default policy body-wise Note, for efficiency, do a single forward pass to calculate pdparam, then call this policy like: @example pdparam = self.calc_pdparam(state, evaluate=False) action_a, action_pd_a = self.action_policy(pdparam, self, body_list) ''' pdparam = pdparam.squeeze(dim=0) # assert pdparam has been chunked assert len(pdparam.shape) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_random(states, algorithm, body_list, pdparam): '''Apply random policy body-wise.''' pdparam = pdparam.squeeze(dim=0) action_list, action_pd_a = [], [] for idx, body in body_list: action, action_pd = random(states[idx], algorithm, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_epsilon_greedy(states, algorithm, body_list, pdparam): '''Apply epsilon-greedy policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] epsilon = body.explore_var if epsilon > np.random.rand(): action, action_pd = random(states[idx], algorithm, body) else: try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_boltzmann(states, algorithm, body_list, pdparam): '''Apply Boltzmann policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic tau = body.explore_var sub_pdparam /= tau ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a # action policy update methods class VarScheduler: ''' Variable scheduler for decaying variables such as explore_var (epsilon, tau) and entropy e.g. spec "explore_var_spec": { "name": "linear_decay", "start_val": 1.0, "end_val": 0.1, "start_step": 0, "end_step": 800, }, ''' def __init__(self, var_decay_spec=None): self._updater_name = 'no_decay' if var_decay_spec is None else var_decay_spec['name'] self._updater = getattr(math_util, self._updater_name) util.set_attr(self, dict( start_val=np.nan, )) util.set_attr(self, var_decay_spec, [ 'start_val', 'end_val', 'start_step', 'end_step', ]) if not getattr(self, 'end_val', None): self.end_val = self.start_val def update(self, algorithm, clock): '''Get an updated value for var''' if (util.in_eval_lab_modes()) or self._updater_name == 'no_decay': return self.end_val step = clock.get(clock.max_tick_unit) val = self._updater(self.start_val, self.end_val, self.start_step, self.end_step, step) return val # misc calc methods def guard_multi_pdparams(pdparams, body): '''Guard pdparams for multi action''' action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) if is_multi_action: assert ps.is_list(pdparams) pdparams = [t.clone() for t in pdparams] # clone for grad safety assert len(pdparams) == len(action_dim), pdparams # transpose into (batch_size, [action_dims]) pdparams = [list(torch.split(t, action_dim, dim=0)) for t in torch.cat(pdparams, dim=1)] return pdparams def calc_log_probs(algorithm, net, body, batch): ''' Method to calculate log_probs fresh from batch data Body already stores log_prob from self.net. This is used for PPO where log_probs needs to be recalculated. ''' states, actions = batch['states'], batch['actions'] action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) # construct log_probs for each state-action pdparams = algorithm.calc_pdparam(states, net=net) pdparams = guard_multi_pdparams(pdparams, body) assert len(pdparams) == len(states), f'batch_size of pdparams: {len(pdparams)} vs states: {len(states)}' pdtypes = ACTION_PDS[body.action_type] ActionPD = getattr(distributions, body.action_pdtype) log_probs = [] for idx, pdparam in enumerate(pdparams): if not is_multi_action: # already cloned for multi_action above pdparam = pdparam.clone() # clone for grad safety _action, action_pd = sample_action_pd(ActionPD, pdparam, body) log_probs.append(action_pd.log_prob(actions[idx].float()).sum(dim=0)) log_probs = torch.stack(log_probs) assert not torch.isnan(log_probs).any(), f'log_probs: {log_probs}, \npdparams: {pdparams} \nactions: {actions}' logger.debug(f'log_probs: {log_probs}') return log_probs def update_online_stats(body, state): ''' Method to calculate the running mean and standard deviation of the state space. See https://www.johndcook.com/blog/standard_deviation/ for more details for n >= 1 M_n = M_n-1 + (state - M_n-1) / n S_n = S_n-1 + (state - M_n-1) * (state - M_n) variance = S_n / (n - 1) std_dev = sqrt(variance) ''' logger.debug(f'mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}') # Assumes only one state is given if ('Atari' in util.get_class_name(body.memory)): assert state.ndim == 3 elif getattr(body.memory, 'raw_state_dim', False): assert state.size == body.memory.raw_state_dim else: assert state.size == body.state_dim or state.shape == body.state_dim mean = body.state_mean body.state_n += 1 if np.isnan(mean).any(): assert np.isnan(body.state_std_dev_int) assert np.isnan(body.state_std_dev) body.state_mean = state body.state_std_dev_int = 0 body.state_std_dev = 0 else: assert body.state_n > 1 body.state_mean = mean + (state - mean) / body.state_n body.state_std_dev_int = body.state_std_dev_int + (state - mean) * (state - body.state_mean) body.state_std_dev = np.sqrt(body.state_std_dev_int / (body.state_n - 1)) # Guard against very small std devs if (body.state_std_dev < 1e-8).any(): body.state_std_dev[np.where(body.state_std_dev < 1e-8)] += 1e-8 logger.debug(f'new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}') def normalize_state(body, state): ''' Normalizes one or more states using a running mean and standard deviation Details of the normalization from Deep RL Bootcamp, L6 https://www.youtube.com/watch?v=8EcdaCk9KaQ&feature=youtu.be ''' same_shape = False if type(state) == list else state.shape == body.state_mean.shape has_preprocess = getattr(body.memory, 'preprocess_state', False) if ('Atari' in util.get_class_name(body.memory)): # never normalize atari, it has its own normalization step logger.debug('skipping normalizing for Atari, already handled by preprocess') return state elif ('Replay' in util.get_class_name(body.memory)) and has_preprocess: # normalization handled by preprocess_state function in the memory logger.debug('skipping normalizing, already handled by preprocess') return state elif same_shape: # if not atari, always normalize the state the first time we see it during act # if the shape is not transformed in some way if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) else: # broadcastable sample from an un-normalized memory so we should normalize logger.debug('normalizing sample from memory') if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) # TODO Not currently used, this will crash for more exotic memory structures # def unnormalize_state(body, state): # ''' # Un-normalizes one or more states using a running mean and new_std_dev # ''' # return state * body.state_mean + body.state_std_dev def update_online_stats_and_normalize_state(body, state): ''' Convenience combination function for updating running state mean and std_dev and normalizing the state in one go. ''' logger.debug(f'state: {state}') update_online_stats(body, state) state = normalize_state(body, state) logger.debug(f'normalized state: {state}') return state def normalize_states_and_next_states(body, batch, episodic_flag=None): ''' Convenience function for normalizing the states and next states in a batch of data ''' logger.debug(f'states: {batch["states"]}') logger.debug(f'next states: {batch["next_states"]}') episodic = episodic_flag if episodic_flag is not None else body.memory.is_episodic logger.debug(f'Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}') if episodic: normalized = [] for epi in batch['states']: normalized.append(normalize_state(body, epi)) batch['states'] = normalized normalized = [] for epi in batch['next_states']: normalized.append(normalize_state(body, epi)) batch['next_states'] = normalized else: batch['states'] = normalize_state(body, batch['states']) batch['next_states'] = normalize_state(body, batch['next_states']) logger.debug(f'normalized states: {batch["states"]}') logger.debug(f'normalized next states: {batch["next_states"]}') return batch
[ "slm_lab.lib.util.get_class_name", "torch.distributions.Categorical", "slm_lab.lib.logger.debug", "numpy.sum", "torch.argmax", "torch.cat", "numpy.isnan", "numpy.clip", "slm_lab.lib.util.set_attr", "torch.isnan", "torch.ones", "pydash.is_list", "slm_lab.lib.logger.get_logger", "torch.exp", "torch.zeros_like", "torch.split", "torch.Size", "torch.from_numpy", "torch.full_like", "torch.stack", "slm_lab.lib.util.in_eval_lab_modes", "pydash.is_iterable", "numpy.where", "numpy.random.rand", "torch.tensor", "numpy.sqrt" ]
[((824, 851), 'slm_lab.lib.logger.get_logger', 'logger.get_logger', (['__name__'], {}), '(__name__)\n', (841, 851), False, 'from slm_lab.lib import logger, math_util, util\n'), ((7960, 8009), 'torch.tensor', 'torch.tensor', (['sample'], {'device': 'algorithm.net.device'}), '(sample, device=algorithm.net.device)\n', (7972, 8009), False, 'import torch\n'), ((13584, 13610), 'pydash.is_iterable', 'ps.is_iterable', (['action_dim'], {}), '(action_dim)\n', (13598, 13610), True, 'import pydash as ps\n'), ((14318, 14344), 'pydash.is_iterable', 'ps.is_iterable', (['action_dim'], {}), '(action_dim)\n', (14332, 14344), True, 'import pydash as ps\n'), ((15078, 15100), 'torch.stack', 'torch.stack', (['log_probs'], {}), '(log_probs)\n', (15089, 15100), False, 'import torch\n'), ((15221, 15260), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""log_probs: {log_probs}"""'], {}), "(f'log_probs: {log_probs}')\n", (15233, 15260), False, 'from slm_lab.lib import logger, math_util, util\n'), ((15679, 15786), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}"""'], {}), "(\n f'mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}'\n )\n", (15691, 15786), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16823, 16938), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}"""'], {}), "(\n f'new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}'\n )\n", (16835, 16938), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19001, 19032), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""state: {state}"""'], {}), "(f'state: {state}')\n", (19013, 19032), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19115, 19157), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized state: {state}"""'], {}), "(f'normalized state: {state}')\n", (19127, 19157), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19355, 19397), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""states: {batch[\'states\']}"""'], {}), '(f"states: {batch[\'states\']}")\n', (19367, 19397), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19402, 19454), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""next states: {batch[\'next_states\']}"""'], {}), '(f"next states: {batch[\'next_states\']}")\n', (19414, 19454), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19546, 19665), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}"""'], {}), "(\n f'Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}'\n )\n", (19558, 19665), False, 'from slm_lab.lib import logger, math_util, util\n'), ((20147, 20200), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized states: {batch[\'states\']}"""'], {}), '(f"normalized states: {batch[\'states\']}")\n', (20159, 20200), False, 'from slm_lab.lib import logger, math_util, util\n'), ((20205, 20268), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized next states: {batch[\'next_states\']}"""'], {}), '(f"normalized next states: {batch[\'next_states\']}")\n', (20217, 20268), False, 'from slm_lab.lib import logger, math_util, util\n'), ((3047, 3099), 'torch.stack', 'torch.stack', (['[cat.mean for cat in self.categoricals]'], {}), '([cat.mean for cat in self.categoricals])\n', (3058, 3099), False, 'import torch\n'), ((3154, 3210), 'torch.stack', 'torch.stack', (['[cat.variance for cat in self.categoricals]'], {}), '([cat.variance for cat in self.categoricals])\n', (3165, 3210), False, 'import torch\n'), ((3246, 3258), 'torch.Size', 'torch.Size', ([], {}), '()\n', (3256, 3258), False, 'import torch\n'), ((8241, 8257), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (8255, 8257), True, 'import numpy as np\n'), ((12834, 12925), 'slm_lab.lib.util.set_attr', 'util.set_attr', (['self', 'var_decay_spec', "['start_val', 'end_val', 'start_step', 'end_step']"], {}), "(self, var_decay_spec, ['start_val', 'end_val', 'start_step',\n 'end_step'])\n", (12847, 12925), False, 'from slm_lab.lib import logger, math_util, util\n'), ((13650, 13670), 'pydash.is_list', 'ps.is_list', (['pdparams'], {}), '(pdparams)\n', (13660, 13670), True, 'import pydash as ps\n'), ((15834, 15866), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (15853, 15866), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16190, 16222), 'numpy.isnan', 'np.isnan', (['body.state_std_dev_int'], {}), '(body.state_std_dev_int)\n', (16198, 16222), True, 'import numpy as np\n'), ((16238, 16266), 'numpy.isnan', 'np.isnan', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (16246, 16266), True, 'import numpy as np\n'), ((16600, 16652), 'numpy.sqrt', 'np.sqrt', (['(body.state_std_dev_int / (body.state_n - 1))'], {}), '(body.state_std_dev_int / (body.state_n - 1))\n', (16607, 16652), True, 'import numpy as np\n'), ((17359, 17391), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (17378, 17391), False, 'from slm_lab.lib import logger, math_util, util\n'), ((17469, 17546), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""skipping normalizing for Atari, already handled by preprocess"""'], {}), "('skipping normalizing for Atari, already handled by preprocess')\n", (17481, 17546), False, 'from slm_lab.lib import logger, math_util, util\n'), ((1589, 1631), 'torch.zeros_like', 'torch.zeros_like', (['probs'], {'dtype': 'torch.float'}), '(probs, dtype=torch.float)\n', (1605, 1631), False, 'import torch\n'), ((2566, 2661), 'torch.distributions.Categorical', 'distributions.Categorical', ([], {'probs': 'sub_probs', 'logits': 'sub_logits', 'validate_args': 'validate_args'}), '(probs=sub_probs, logits=sub_logits, validate_args\n =validate_args)\n', (2591, 2661), False, 'from torch import distributions\n'), ((9816, 9870), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (9828, 9870), False, 'import torch\n'), ((10281, 10335), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (10293, 10335), False, 'import torch\n'), ((10797, 10813), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (10811, 10813), True, 'import numpy as np\n'), ((11251, 11305), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (11263, 11305), False, 'import torch\n'), ((12100, 12154), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (12112, 12154), False, 'import torch\n'), ((13166, 13190), 'slm_lab.lib.util.in_eval_lab_modes', 'util.in_eval_lab_modes', ([], {}), '()\n', (13188, 13190), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16153, 16167), 'numpy.isnan', 'np.isnan', (['mean'], {}), '(mean)\n', (16161, 16167), True, 'import numpy as np\n'), ((17727, 17794), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""skipping normalizing, already handled by preprocess"""'], {}), "('skipping normalizing, already handled by preprocess')\n", (17739, 17794), False, 'from slm_lab.lib import logger, math_util, util\n'), ((1654, 1680), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(0)'}), '(probs, dim=0)\n', (1666, 1680), False, 'import torch\n'), ((1776, 1832), 'torch.full_like', 'torch.full_like', (['logits', '(-100000000.0)'], {'dtype': 'torch.float'}), '(logits, -100000000.0, dtype=torch.float)\n', (1791, 1832), False, 'import torch\n'), ((1847, 1874), 'torch.argmax', 'torch.argmax', (['logits'], {'dim': '(0)'}), '(logits, dim=0)\n', (1859, 1874), False, 'import torch\n'), ((7160, 7223), 'torch.ones', 'torch.ones', (['body.action_space.high'], {'device': 'algorithm.net.device'}), '(body.action_space.high, device=algorithm.net.device)\n', (7170, 7223), False, 'import torch\n'), ((13881, 13914), 'torch.split', 'torch.split', (['t', 'action_dim'], {'dim': '(0)'}), '(t, action_dim, dim=0)\n', (13892, 13914), False, 'import torch\n'), ((13925, 13951), 'torch.cat', 'torch.cat', (['pdparams'], {'dim': '(1)'}), '(pdparams, dim=1)\n', (13934, 13951), False, 'import torch\n'), ((15116, 15138), 'torch.isnan', 'torch.isnan', (['log_probs'], {}), '(log_probs)\n', (15127, 15138), False, 'import torch\n'), ((16774, 16810), 'numpy.where', 'np.where', (['(body.state_std_dev < 1e-08)'], {}), '(body.state_std_dev < 1e-08)\n', (16782, 16810), True, 'import numpy as np\n'), ((17590, 17622), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (17609, 17622), False, 'from slm_lab.lib import logger, math_util, util\n'), ((18282, 18328), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""normalizing sample from memory"""'], {}), "('normalizing sample from memory')\n", (18294, 18328), False, 'from slm_lab.lib import logger, math_util, util\n'), ((4242, 4265), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (4258, 4265), False, 'import torch\n'), ((17989, 18015), 'numpy.sum', 'np.sum', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (17995, 18015), True, 'import numpy as np\n'), ((18041, 18082), 'numpy.clip', 'np.clip', (['(state - body.state_mean)', '(-10)', '(10)'], {}), '(state - body.state_mean, -10, 10)\n', (18048, 18082), True, 'import numpy as np\n'), ((18116, 18180), 'numpy.clip', 'np.clip', (['((state - body.state_mean) / body.state_std_dev)', '(-10)', '(10)'], {}), '((state - body.state_mean) / body.state_std_dev, -10, 10)\n', (18123, 18180), True, 'import numpy as np\n'), ((18340, 18366), 'numpy.sum', 'np.sum', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (18346, 18366), True, 'import numpy as np\n'), ((18392, 18433), 'numpy.clip', 'np.clip', (['(state - body.state_mean)', '(-10)', '(10)'], {}), '(state - body.state_mean, -10, 10)\n', (18399, 18433), True, 'import numpy as np\n'), ((18467, 18531), 'numpy.clip', 'np.clip', (['((state - body.state_mean) / body.state_std_dev)', '(-10)', '(10)'], {}), '((state - body.state_mean) / body.state_std_dev, -10, 10)\n', (18474, 18531), True, 'import numpy as np\n'), ((6299, 6320), 'torch.exp', 'torch.exp', (['pdparam[1]'], {}), '(pdparam[1])\n', (6308, 6320), False, 'import torch\n'), ((7604, 7704), 'torch.ones', 'torch.ones', (['body.action_space.high.size', 'body.action_space.high[0]'], {'device': 'algorithm.net.device'}), '(body.action_space.high.size, body.action_space.high[0], device=\n algorithm.net.device)\n', (7614, 7704), False, 'import torch\n'), ((7383, 7418), 'torch.tensor', 'torch.tensor', (['body.action_space.low'], {}), '(body.action_space.low)\n', (7395, 7418), False, 'import torch\n'), ((7445, 7481), 'torch.tensor', 'torch.tensor', (['body.action_space.high'], {}), '(body.action_space.high)\n', (7457, 7481), False, 'import torch\n')]
"""Example case for particle travel times in a straight channel.""" import numpy as np import matplotlib.pyplot as plt import dorado.particle_track as pt # fix the random seed so it stays the same as weights change np.random.seed(1) # create synthetic domain and flow field domain = np.zeros((100, 50)) depth = np.zeros_like(domain) stage = np.zeros_like(domain) u = np.zeros_like(domain) v = np.zeros_like(domain) dx = 50. Np_tracer = 500 seed_xloc = [10] seed_yloc = [25] # set up straight channel depth[:, 10:40] = 1.0 stage[:, 10:40] = 1.0 v[:, 10:40] = -10.0 # choose number of iterations for particle to route num_iter = 100 # define your 'known' or 'expected' travel time for this simple geometry # picking expected time from location x=10 to x=70 # (really the boundary of row 70, so 1/2 a cell) # 59.5 cells * 50 m/cell / 10 m/s = 297.5 seconds target_row = 70 expected_time = 297.5 # assign particle parameters params = pt.modelParams() params.depth = depth params.stage = stage params.u = u params.v = v params.dx = dx # set-up figure plt.figure() plt.imshow(np.sqrt(u**2 + v**2)) plt.colorbar() plt.scatter(seed_yloc, seed_xloc, c='k', marker='o', s=5) # plot the target line where time is measured plt.plot(np.linspace(0, 50, 100), np.ones(100)*target_row, c='red') plt.title('Velocity Field') plt.legend(labels=['Target Row to Measure Times', 'Particle Seeding Location'], loc='best') plt.tight_layout() plt.show() # do the routing twice, once without any diffusivity added to the travel times # (diff_coeff==0) then a second time with significant diffusion (diff_coeff==1) for dc in list(range(0, 2)): # set diff_coeff if dc == 0: params.diff_coeff = 0.0 else: params.diff_coeff = 1.0 # make particle particle = pt.Particles(params) # walk it particle.generate_particles(Np_tracer, seed_xloc, seed_yloc) for i in list(range(0, num_iter)): walk_data = particle.run_iteration() # get travel times associated with particles when they are at coord x=70 # use the exposure_time function to measure this roi = np.zeros_like(depth, dtype='int') roi[0:target_row, :] = 1 target_times = pt.exposure_time(walk_data, roi) # plot histogram plt.subplot(1, 2, dc+1) n, bins, _ = plt.hist(target_times, bins=100, range=(200, 400), histtype='bar', density=True, color=[0.5, 0.5, 1, 0.5]) # plot expected travel time to row 70 plt.scatter(expected_time, np.max(n), s=75, c='green', marker='x', linewidths=20) plt.legend(['Expected Travel Time', 'Histogram of Final Travel Times'], ncol=2, loc='upper left', bbox_to_anchor=(0.0, -0.06), fontsize=16) plt.title('Travel Time Distribution at Target Row \n' 'Diffusion Coefficient : ' + str(params.diff_coeff), fontsize=20) plt.xlabel('Travel Time at Target Row [s]', fontsize=16) plt.ylabel('Probability Density', fontsize=16) plt.show()
[ "matplotlib.pyplot.title", "numpy.random.seed", "dorado.particle_track.Particles", "numpy.ones", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "numpy.zeros_like", "matplotlib.pyplot.colorbar", "numpy.max", "numpy.linspace", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "dorado.particle_track.exposure_time", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "matplotlib.pyplot.hist", "matplotlib.pyplot.scatter", "numpy.zeros", "matplotlib.pyplot.xlabel", "dorado.particle_track.modelParams", "numpy.sqrt" ]
[((216, 233), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (230, 233), True, 'import numpy as np\n'), ((285, 304), 'numpy.zeros', 'np.zeros', (['(100, 50)'], {}), '((100, 50))\n', (293, 304), True, 'import numpy as np\n'), ((313, 334), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (326, 334), True, 'import numpy as np\n'), ((343, 364), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (356, 364), True, 'import numpy as np\n'), ((369, 390), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (382, 390), True, 'import numpy as np\n'), ((395, 416), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (408, 416), True, 'import numpy as np\n'), ((936, 952), 'dorado.particle_track.modelParams', 'pt.modelParams', ([], {}), '()\n', (950, 952), True, 'import dorado.particle_track as pt\n'), ((1053, 1065), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1063, 1065), True, 'import matplotlib.pyplot as plt\n'), ((1099, 1113), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1111, 1113), True, 'import matplotlib.pyplot as plt\n'), ((1114, 1171), 'matplotlib.pyplot.scatter', 'plt.scatter', (['seed_yloc', 'seed_xloc'], {'c': '"""k"""', 'marker': '"""o"""', 's': '(5)'}), "(seed_yloc, seed_xloc, c='k', marker='o', s=5)\n", (1125, 1171), True, 'import matplotlib.pyplot as plt\n'), ((1286, 1313), 'matplotlib.pyplot.title', 'plt.title', (['"""Velocity Field"""'], {}), "('Velocity Field')\n", (1295, 1313), True, 'import matplotlib.pyplot as plt\n'), ((1314, 1409), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'labels': "['Target Row to Measure Times', 'Particle Seeding Location']", 'loc': '"""best"""'}), "(labels=['Target Row to Measure Times',\n 'Particle Seeding Location'], loc='best')\n", (1324, 1409), True, 'import matplotlib.pyplot as plt\n'), ((1436, 1454), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1452, 1454), True, 'import matplotlib.pyplot as plt\n'), ((1455, 1465), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1463, 1465), True, 'import matplotlib.pyplot as plt\n'), ((3042, 3052), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3050, 3052), True, 'import matplotlib.pyplot as plt\n'), ((1077, 1101), 'numpy.sqrt', 'np.sqrt', (['(u ** 2 + v ** 2)'], {}), '(u ** 2 + v ** 2)\n', (1084, 1101), True, 'import numpy as np\n'), ((1227, 1250), 'numpy.linspace', 'np.linspace', (['(0)', '(50)', '(100)'], {}), '(0, 50, 100)\n', (1238, 1250), True, 'import numpy as np\n'), ((1802, 1822), 'dorado.particle_track.Particles', 'pt.Particles', (['params'], {}), '(params)\n', (1814, 1822), True, 'import dorado.particle_track as pt\n'), ((2128, 2161), 'numpy.zeros_like', 'np.zeros_like', (['depth'], {'dtype': '"""int"""'}), "(depth, dtype='int')\n", (2141, 2161), True, 'import numpy as np\n'), ((2210, 2242), 'dorado.particle_track.exposure_time', 'pt.exposure_time', (['walk_data', 'roi'], {}), '(walk_data, roi)\n', (2226, 2242), True, 'import dorado.particle_track as pt\n'), ((2269, 2294), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(dc + 1)'], {}), '(1, 2, dc + 1)\n', (2280, 2294), True, 'import matplotlib.pyplot as plt\n'), ((2310, 2421), 'matplotlib.pyplot.hist', 'plt.hist', (['target_times'], {'bins': '(100)', 'range': '(200, 400)', 'histtype': '"""bar"""', 'density': '(True)', 'color': '[0.5, 0.5, 1, 0.5]'}), "(target_times, bins=100, range=(200, 400), histtype='bar', density=\n True, color=[0.5, 0.5, 1, 0.5])\n", (2318, 2421), True, 'import matplotlib.pyplot as plt\n'), ((2619, 2762), 'matplotlib.pyplot.legend', 'plt.legend', (["['Expected Travel Time', 'Histogram of Final Travel Times']"], {'ncol': '(2)', 'loc': '"""upper left"""', 'bbox_to_anchor': '(0.0, -0.06)', 'fontsize': '(16)'}), "(['Expected Travel Time', 'Histogram of Final Travel Times'],\n ncol=2, loc='upper left', bbox_to_anchor=(0.0, -0.06), fontsize=16)\n", (2629, 2762), True, 'import matplotlib.pyplot as plt\n'), ((2933, 2989), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Travel Time at Target Row [s]"""'], {'fontsize': '(16)'}), "('Travel Time at Target Row [s]', fontsize=16)\n", (2943, 2989), True, 'import matplotlib.pyplot as plt\n'), ((2994, 3040), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability Density"""'], {'fontsize': '(16)'}), "('Probability Density', fontsize=16)\n", (3004, 3040), True, 'import matplotlib.pyplot as plt\n'), ((1252, 1264), 'numpy.ones', 'np.ones', (['(100)'], {}), '(100)\n', (1259, 1264), True, 'import numpy as np\n'), ((2543, 2552), 'numpy.max', 'np.max', (['n'], {}), '(n)\n', (2549, 2552), True, 'import numpy as np\n')]
import numpy as np import esutil as eu def randcap(*, rng, nrand, ra, dec, radius, get_radius=False, dorot=False): """ Generate random points in a sherical cap parameters ---------- nrand: The number of random points ra,dec: The center of the cap in degrees. The ra should be within [0,360) and dec from [-90,90] radius: float radius of the cap, same units as ra,dec get_radius: bool, optional if true, return radius of each point in radians dorot: bool If dorot is True, generate the points on the equator and rotate them to be centered at the desired location. This is the default when the dec is within 0.1 degrees of the pole, to avoid calculation issues """ # generate uniformly in r**2 if dec >= 89.9 or dec <= -89.9: dorot = True if dorot: tra, tdec = 90.0, 0.0 rand_ra, rand_dec, rand_r = randcap( rng=rng, nrand=nrand, ra=90.0, dec=0.0, radius=radius, get_radius=True, ) rand_ra, rand_dec = eu.coords.rotate( 0.0, dec-tdec, 0.0, rand_ra, rand_dec, ) rand_ra, rand_dec = eu.coords.rotate( ra-tra, 0.0, 0.0, rand_ra, rand_dec, ) else: rand_r = rng.uniform(size=nrand) rand_r = np.sqrt(rand_r)*radius # put in degrees np.deg2rad(rand_r, rand_r) # generate position angle uniformly 0, 2*PI rand_posangle = rng.uniform(low=0, high=2*np.pi, size=nrand) theta = np.array(dec, dtype='f8', ndmin=1, copy=True) phi = np.array(ra, dtype='f8', ndmin=1, copy=True) theta += 90 np.deg2rad(theta, theta) np.deg2rad(phi, phi) sintheta = np.sin(theta) costheta = np.cos(theta) sinr = np.sin(rand_r) cosr = np.cos(rand_r) cospsi = np.cos(rand_posangle) costheta2 = costheta*cosr + sintheta*sinr*cospsi np.clip(costheta2, -1, 1, costheta2) # gives [0,pi) theta2 = np.arccos(costheta2) sintheta2 = np.sin(theta2) cos_dphi = (cosr - costheta*costheta2)/(sintheta*sintheta2) np.clip(cos_dphi, -1, 1, cos_dphi) dphi = np.arccos(cos_dphi) # note fancy usage of where phi2 = np.where(rand_posangle > np.pi, phi+dphi, phi-dphi) np.rad2deg(phi2, phi2) np.rad2deg(theta2, theta2) rand_ra = phi2 rand_dec = theta2-90.0 eu.coords.atbound(rand_ra, 0.0, 360.0) if get_radius: np.rad2deg(rand_r, rand_r) return rand_ra, rand_dec, rand_r else: return rand_ra, rand_dec def randsphere(rng, num, ra_range=None, dec_range=None): """Generate random points on the sphere, possibly on a subset of it. Routine due to Erin Sheldon. Parameters ---------- num: integer The number of randoms to generate ra_range: list, optional Should be within range [0,360]. Default [0,360] dec_range: list, optional Should be within range [-90,90]. Default [-90,90] Returns ------- ra : array-like ra values for the random points dec : array-like dec values for the random points """ ra_range = _check_range(ra_range, [0.0, 360.0]) dec_range = _check_range(dec_range, [-90.0, 90.0]) ra = rng.uniform( size=num, low=ra_range[0], high=ra_range[1], ) cosdec_min = np.cos(np.radians(90.0+dec_range[0])) cosdec_max = np.cos(np.radians(90.0+dec_range[1])) v = rng.uniform( size=num, low=cosdec_min, high=cosdec_max, ) np.clip(v, -1.0, 1.0, v) # Now this generates on [0,pi) dec = np.arccos(v) # convert to degrees np.degrees(dec, dec) # now in range [-90,90.0) dec -= 90.0 return ra, dec def _check_range(rng, allowed): if rng is None: rng = allowed else: if not hasattr(rng, '__len__'): raise ValueError("range input does not have len() method") if rng[0] < allowed[0] or rng[1] > allowed[1]: raise ValueError("%s should be within %s" % (rng, allowed)) return rng
[ "numpy.radians", "esutil.coords.rotate", "numpy.degrees", "numpy.deg2rad", "numpy.clip", "numpy.rad2deg", "numpy.sin", "numpy.array", "numpy.where", "numpy.cos", "esutil.coords.atbound", "numpy.arccos", "numpy.sqrt" ]
[((3910, 3934), 'numpy.clip', 'np.clip', (['v', '(-1.0)', '(1.0)', 'v'], {}), '(v, -1.0, 1.0, v)\n', (3917, 3934), True, 'import numpy as np\n'), ((3981, 3993), 'numpy.arccos', 'np.arccos', (['v'], {}), '(v)\n', (3990, 3993), True, 'import numpy as np\n'), ((4024, 4044), 'numpy.degrees', 'np.degrees', (['dec', 'dec'], {}), '(dec, dec)\n', (4034, 4044), True, 'import numpy as np\n'), ((1220, 1277), 'esutil.coords.rotate', 'eu.coords.rotate', (['(0.0)', '(dec - tdec)', '(0.0)', 'rand_ra', 'rand_dec'], {}), '(0.0, dec - tdec, 0.0, rand_ra, rand_dec)\n', (1236, 1277), True, 'import esutil as eu\n'), ((1375, 1430), 'esutil.coords.rotate', 'eu.coords.rotate', (['(ra - tra)', '(0.0)', '(0.0)', 'rand_ra', 'rand_dec'], {}), '(ra - tra, 0.0, 0.0, rand_ra, rand_dec)\n', (1391, 1430), True, 'import esutil as eu\n'), ((1626, 1652), 'numpy.deg2rad', 'np.deg2rad', (['rand_r', 'rand_r'], {}), '(rand_r, rand_r)\n', (1636, 1652), True, 'import numpy as np\n'), ((1792, 1837), 'numpy.array', 'np.array', (['dec'], {'dtype': '"""f8"""', 'ndmin': '(1)', 'copy': '(True)'}), "(dec, dtype='f8', ndmin=1, copy=True)\n", (1800, 1837), True, 'import numpy as np\n'), ((1852, 1896), 'numpy.array', 'np.array', (['ra'], {'dtype': '"""f8"""', 'ndmin': '(1)', 'copy': '(True)'}), "(ra, dtype='f8', ndmin=1, copy=True)\n", (1860, 1896), True, 'import numpy as np\n'), ((1926, 1950), 'numpy.deg2rad', 'np.deg2rad', (['theta', 'theta'], {}), '(theta, theta)\n', (1936, 1950), True, 'import numpy as np\n'), ((1959, 1979), 'numpy.deg2rad', 'np.deg2rad', (['phi', 'phi'], {}), '(phi, phi)\n', (1969, 1979), True, 'import numpy as np\n'), ((2000, 2013), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2006, 2013), True, 'import numpy as np\n'), ((2033, 2046), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2039, 2046), True, 'import numpy as np\n'), ((2063, 2077), 'numpy.sin', 'np.sin', (['rand_r'], {}), '(rand_r)\n', (2069, 2077), True, 'import numpy as np\n'), ((2093, 2107), 'numpy.cos', 'np.cos', (['rand_r'], {}), '(rand_r)\n', (2099, 2107), True, 'import numpy as np\n'), ((2126, 2147), 'numpy.cos', 'np.cos', (['rand_posangle'], {}), '(rand_posangle)\n', (2132, 2147), True, 'import numpy as np\n'), ((2214, 2250), 'numpy.clip', 'np.clip', (['costheta2', '(-1)', '(1)', 'costheta2'], {}), '(costheta2, -1, 1, costheta2)\n', (2221, 2250), True, 'import numpy as np\n'), ((2292, 2312), 'numpy.arccos', 'np.arccos', (['costheta2'], {}), '(costheta2)\n', (2301, 2312), True, 'import numpy as np\n'), ((2333, 2347), 'numpy.sin', 'np.sin', (['theta2'], {}), '(theta2)\n', (2339, 2347), True, 'import numpy as np\n'), ((2426, 2460), 'numpy.clip', 'np.clip', (['cos_dphi', '(-1)', '(1)', 'cos_dphi'], {}), '(cos_dphi, -1, 1, cos_dphi)\n', (2433, 2460), True, 'import numpy as np\n'), ((2476, 2495), 'numpy.arccos', 'np.arccos', (['cos_dphi'], {}), '(cos_dphi)\n', (2485, 2495), True, 'import numpy as np\n'), ((2548, 2603), 'numpy.where', 'np.where', (['(rand_posangle > np.pi)', '(phi + dphi)', '(phi - dphi)'], {}), '(rand_posangle > np.pi, phi + dphi, phi - dphi)\n', (2556, 2603), True, 'import numpy as np\n'), ((2609, 2631), 'numpy.rad2deg', 'np.rad2deg', (['phi2', 'phi2'], {}), '(phi2, phi2)\n', (2619, 2631), True, 'import numpy as np\n'), ((2640, 2666), 'numpy.rad2deg', 'np.rad2deg', (['theta2', 'theta2'], {}), '(theta2, theta2)\n', (2650, 2666), True, 'import numpy as np\n'), ((2730, 2768), 'esutil.coords.atbound', 'eu.coords.atbound', (['rand_ra', '(0.0)', '(360.0)'], {}), '(rand_ra, 0.0, 360.0)\n', (2747, 2768), True, 'import esutil as eu\n'), ((2797, 2823), 'numpy.rad2deg', 'np.rad2deg', (['rand_r', 'rand_r'], {}), '(rand_r, rand_r)\n', (2807, 2823), True, 'import numpy as np\n'), ((3725, 3756), 'numpy.radians', 'np.radians', (['(90.0 + dec_range[0])'], {}), '(90.0 + dec_range[0])\n', (3735, 3756), True, 'import numpy as np\n'), ((3780, 3811), 'numpy.radians', 'np.radians', (['(90.0 + dec_range[1])'], {}), '(90.0 + dec_range[1])\n', (3790, 3811), True, 'import numpy as np\n'), ((1569, 1584), 'numpy.sqrt', 'np.sqrt', (['rand_r'], {}), '(rand_r)\n', (1576, 1584), True, 'import numpy as np\n')]
import os from datetime import datetime, timedelta import numpy as np import xarray as xr import parcels import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.ticker as mticker import cartopy import cartopy.util import cartopy.crs as ccrs from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER u_filename = '/home/alir/hawaii_npac/0000969408_U_10800.8150.1_1080.3720.90' v_filename = '/home/alir/hawaii_npac/0000969408_V_10800.8150.1_1080.3720.90' level = 0 with open(u_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) u_data = np.fromfile(f, dtype='>f4', count=nx*ny) u_array = np.reshape(u_data, [ny, nx], order='F') with open(v_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) v_data = np.fromfile(f, dtype='>f4', count=nx*ny) v_array = np.reshape(v_data, [ny, nx], order='F') u_data = u_array v_data = v_array # u_data = np.ma.masked_where(u_array == 0, u_array) # v_data = np.ma.masked_where(v_array == 0, v_array) lats = np.arange(ny)/48 lons = np.arange(nx)/48 depth = np.array([0.0]) u_field = parcels.field.Field(name='U', data=u_data, lon=lons, lat=lats, depth=depth, mesh='spherical') v_field = parcels.field.Field(name='V', data=v_data, lon=lons, lat=lats, depth=depth, mesh='spherical') u_magnitude = np.sqrt(u_data*u_data + v_data*v_data) fieldset = parcels.fieldset.FieldSet(u_field, v_field) # fieldset.U.show() lats_pset = np.tile(np.linspace(5, 70, 11), 11) lons_pset = np.repeat(np.linspace(5, 15, 11), 11) # species_field = -1 * np.ones((11,11), dtype=np.int32) # for i, lat in enumerate(np.linspace(10, 50, 11)): # for j, lon in enumerate(np.linspace(-170, -130, 11)): # pass # species_pfield = parcels.field.Field(name='species', data=species_field, # lat=np.linspace(10, 50, 11), lon=np.linspace(-170, -130, 11), depth=depth, mesh='spherical') class MicrobeParticle(parcels.JITParticle): species = parcels.Variable('species', dtype=np.int32, initial=-1) pset = parcels.ParticleSet.from_list(fieldset=fieldset, pclass=MicrobeParticle, lon=lons_pset, lat=lats_pset) for i, particle in enumerate(pset): if 37.5 <= particle.lat <= 52.5 and -172.5 <= particle.lon <= -157.5: particle.species = 1 elif 37.5 <= particle.lat <= 52.5 and -157.5 <= particle.lon <= -142.5: particle.species = 2 elif 37.5 <= particle.lat <= 52.5 and -142.5 <= particle.lon <= -127.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -172.5 <= particle.lon <= -157.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -157.5 <= particle.lon <= -142.5: particle.species = 1 elif 22.5 <= particle.lat <= 37.5 and -142.5 <= particle.lon <= -127.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -172.5 <= particle.lon <= -157.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -157.5 <= particle.lon <= -142.5: particle.species = 3 elif 7.5 <= particle.lat <= 22.5 and -142.5 <= particle.lon <= -127.5: particle.species = 1 particle.species = 1 print("Particle {:03d} @({:.2f},{:.2f}) [species={:d}]".format(i, particle.lat, particle.lon, particle.species)) def rock_paper_scissors_type(n): if n == 1: return "rock" elif n == 2: return "paper" elif n == 3: return "scissors" return None vector_crs = ccrs.PlateCarree() land_50m = cartopy.feature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='face',facecolor='dimgray', linewidth=0) t = datetime(2017, 1, 1) dt = timedelta(hours=1) for n in range(1): print("Advecting: {:} -> {:}".format(t, t+dt)) nc_filename = "advected_microbes_" + str(n).zfill(4) + ".nc" pset.execute(parcels.AdvectionRK4, runtime=dt, dt=dt, verbose_progress=True, output_file=pset.ParticleFile(name=nc_filename, outputdt=dt)) # print("Computing microbe interactions...") # N = len(pset) # for i, p1 in enumerate(pset): # for j, p2 in enumerate(pset[i+1:]): # if np.abs(p1.lat - p2.lat) < 1 and np.abs(p1.lon - p2.lon) < 1: # p1_type = rock_paper_scissors_type(p1.species) # p2_type = rock_paper_scissors_type(p2.species) # winner = None # if p1_type == "rock" and p2_type == "scissors": # winner = p1 # elif p1_type == "rock" and p2_type == "paper": # winner = p2 # elif p1_type == "paper" and p2_type == "rock": # winner = p1 # elif p1_type == "paper" and p2_type == "scissors": # winner = p2 # elif p1_type == "scissors" and p2_type == "rock": # winner = p2 # elif p1_type == "scissors" and p2_type == "paper": # winner = p1 # else: # winner = None # if winner == p1: # p2.species = p1.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, i)) # elif winner == p2: # p1.species = p2.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, j+i)) # for i, p in enumerate(pset): # if p.lat >= 59 or p.lat <= 1 or p.lon <= -179 or p.lon >= -121: # print("Removing particle #{:d} @({:.2f},{:.2f}). Too close to boundary" # .format(i, p.lat, p.lon)) # pset.remove(i) t = t+dt print("Plotting figure...") fig = plt.figure(figsize=(16, 9)) matplotlib.rcParams.update({'font.size': 10}) crs_sps = ccrs.PlateCarree(central_longitude=-150) crs_sps._threshold = 1000.0 # This solves https://github.com/SciTools/cartopy/issues/363 ax = plt.subplot(111, projection=crs_sps) ax.add_feature(land_50m) ax.set_extent([0, 22.5, 0, 77.5], ccrs.PlateCarree()) gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='black', alpha=0.8, linestyle='--') gl.xlabels_top = False gl.ylabels_left = False gl.xlocator = mticker.FixedLocator([0, 7.5, 15, 22.5]) gl.ylocator = mticker.FixedLocator([0, 15.5, 31, 46.5, 62, 77.5]) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER im = ax.pcolormesh(lons, lats, u_magnitude, transform=vector_crs, vmin=0, vmax=1, cmap='Blues_r') clb = fig.colorbar(im, ax=ax, extend='max', fraction=0.046, pad=0.1) clb.ax.set_title(r'm/s') rock_lats, rock_lons = [], [] paper_lats, paper_lons = [], [] scissors_lats, scissors_lons = [], [] for microbe in pset: if microbe.species == 1: rock_lats.append(microbe.lat) rock_lons.append(microbe.lon) elif microbe.species == 2: paper_lats.append(microbe.lat) paper_lons.append(microbe.lon) elif microbe.species == 3: scissors_lats.append(microbe.lat) scissors_lons.append(microbe.lon) # ax.plot(rock_lons, rock_lats, marker='o', linestyle='', color='red', ms=4, label='Rocks', transform=vector_crs) # ax.plot(paper_lons, paper_lats, marker='o', linestyle='', color='lime', ms=4, label='Papers', transform=vector_crs) # ax.plot(scissors_lons, scissors_lats, marker='o', linestyle='', color='cyan', ms=4, label='Scissors', transform=vector_crs) plt.title(str(t)) ax.legend() # plt.show() png_filename = "advected_microbes_" + str(n).zfill(4) + ".png" print("Saving figure: {:s}".format(png_filename)) plt.savefig(png_filename, dpi=300, format='png', transparent=False) plt.close('all')
[ "cartopy.feature.NaturalEarthFeature", "matplotlib.pyplot.figure", "parcels.field.Field", "numpy.arange", "matplotlib.pyplot.close", "matplotlib.rcParams.update", "matplotlib.ticker.FixedLocator", "datetime.timedelta", "numpy.reshape", "numpy.linspace", "parcels.ParticleSet.from_list", "datetime.datetime", "parcels.Variable", "matplotlib.pyplot.subplot", "parcels.fieldset.FieldSet", "numpy.fromfile", "numpy.array", "cartopy.crs.PlateCarree", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((1328, 1343), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (1336, 1343), True, 'import numpy as np\n'), ((1355, 1452), 'parcels.field.Field', 'parcels.field.Field', ([], {'name': '"""U"""', 'data': 'u_data', 'lon': 'lons', 'lat': 'lats', 'depth': 'depth', 'mesh': '"""spherical"""'}), "(name='U', data=u_data, lon=lons, lat=lats, depth=depth,\n mesh='spherical')\n", (1374, 1452), False, 'import parcels\n'), ((1463, 1560), 'parcels.field.Field', 'parcels.field.Field', ([], {'name': '"""V"""', 'data': 'v_data', 'lon': 'lons', 'lat': 'lats', 'depth': 'depth', 'mesh': '"""spherical"""'}), "(name='V', data=v_data, lon=lons, lat=lats, depth=depth,\n mesh='spherical')\n", (1482, 1560), False, 'import parcels\n'), ((1576, 1618), 'numpy.sqrt', 'np.sqrt', (['(u_data * u_data + v_data * v_data)'], {}), '(u_data * u_data + v_data * v_data)\n', (1583, 1618), True, 'import numpy as np\n'), ((1627, 1670), 'parcels.fieldset.FieldSet', 'parcels.fieldset.FieldSet', (['u_field', 'v_field'], {}), '(u_field, v_field)\n', (1652, 1670), False, 'import parcels\n'), ((2266, 2372), 'parcels.ParticleSet.from_list', 'parcels.ParticleSet.from_list', ([], {'fieldset': 'fieldset', 'pclass': 'MicrobeParticle', 'lon': 'lons_pset', 'lat': 'lats_pset'}), '(fieldset=fieldset, pclass=MicrobeParticle,\n lon=lons_pset, lat=lats_pset)\n', (2295, 2372), False, 'import parcels\n'), ((3677, 3695), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (3693, 3695), True, 'import cartopy.crs as ccrs\n'), ((3707, 3826), 'cartopy.feature.NaturalEarthFeature', 'cartopy.feature.NaturalEarthFeature', (['"""physical"""', '"""land"""', '"""50m"""'], {'edgecolor': '"""face"""', 'facecolor': '"""dimgray"""', 'linewidth': '(0)'}), "('physical', 'land', '50m', edgecolor=\n 'face', facecolor='dimgray', linewidth=0)\n", (3742, 3826), False, 'import cartopy\n'), ((3830, 3850), 'datetime.datetime', 'datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (3838, 3850), False, 'from datetime import datetime, timedelta\n'), ((3856, 3874), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (3865, 3874), False, 'from datetime import datetime, timedelta\n'), ((731, 773), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '""">f4"""', 'count': '(nx * ny)'}), "(f, dtype='>f4', count=nx * ny)\n", (742, 773), True, 'import numpy as np\n'), ((786, 825), 'numpy.reshape', 'np.reshape', (['u_data', '[ny, nx]'], {'order': '"""F"""'}), "(u_data, [ny, nx], order='F')\n", (796, 825), True, 'import numpy as np\n'), ((1035, 1077), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '""">f4"""', 'count': '(nx * ny)'}), "(f, dtype='>f4', count=nx * ny)\n", (1046, 1077), True, 'import numpy as np\n'), ((1090, 1129), 'numpy.reshape', 'np.reshape', (['v_data', '[ny, nx]'], {'order': '"""F"""'}), "(v_data, [ny, nx], order='F')\n", (1100, 1129), True, 'import numpy as np\n'), ((1279, 1292), 'numpy.arange', 'np.arange', (['ny'], {}), '(ny)\n', (1288, 1292), True, 'import numpy as np\n'), ((1303, 1316), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (1312, 1316), True, 'import numpy as np\n'), ((1712, 1734), 'numpy.linspace', 'np.linspace', (['(5)', '(70)', '(11)'], {}), '(5, 70, 11)\n', (1723, 1734), True, 'import numpy as np\n'), ((1762, 1784), 'numpy.linspace', 'np.linspace', (['(5)', '(15)', '(11)'], {}), '(5, 15, 11)\n', (1773, 1784), True, 'import numpy as np\n'), ((2202, 2257), 'parcels.Variable', 'parcels.Variable', (['"""species"""'], {'dtype': 'np.int32', 'initial': '(-1)'}), "('species', dtype=np.int32, initial=-1)\n", (2218, 2257), False, 'import parcels\n'), ((6134, 6161), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (6144, 6161), True, 'import matplotlib.pyplot as plt\n'), ((6166, 6211), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 10}"], {}), "({'font.size': 10})\n", (6192, 6211), False, 'import matplotlib\n'), ((6231, 6271), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {'central_longitude': '(-150)'}), '(central_longitude=-150)\n', (6247, 6271), True, 'import cartopy.crs as ccrs\n'), ((6376, 6412), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {'projection': 'crs_sps'}), '(111, projection=crs_sps)\n', (6387, 6412), True, 'import matplotlib.pyplot as plt\n'), ((6701, 6741), 'matplotlib.ticker.FixedLocator', 'mticker.FixedLocator', (['[0, 7.5, 15, 22.5]'], {}), '([0, 7.5, 15, 22.5])\n', (6721, 6741), True, 'import matplotlib.ticker as mticker\n'), ((6760, 6811), 'matplotlib.ticker.FixedLocator', 'mticker.FixedLocator', (['[0, 15.5, 31, 46.5, 62, 77.5]'], {}), '([0, 15.5, 31, 46.5, 62, 77.5])\n', (6780, 6811), True, 'import matplotlib.ticker as mticker\n'), ((8159, 8226), 'matplotlib.pyplot.savefig', 'plt.savefig', (['png_filename'], {'dpi': '(300)', 'format': '"""png"""', 'transparent': '(False)'}), "(png_filename, dpi=300, format='png', transparent=False)\n", (8170, 8226), True, 'import matplotlib.pyplot as plt\n'), ((8236, 8252), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (8245, 8252), True, 'import matplotlib.pyplot as plt\n'), ((6480, 6498), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (6496, 6498), True, 'import cartopy.crs as ccrs\n'), ((6527, 6545), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (6543, 6545), True, 'import cartopy.crs as ccrs\n')]
''' GraphPy: Python Module for Graph-based learning algorithms. Efficient implementations of modern methods for graph-based semi-supervised learning, and graph clustering. See README.md file for usage. Author: <NAME>, 2020 ''' import numpy as np import datetime import matplotlib.pyplot as plt import matplotlib import scipy.spatial as spatial import scipy.optimize as opt import numpy.random as random import scipy.sparse as sparse import scipy.sparse.linalg as splinalg import scipy.sparse.csgraph as csgraph import sklearn.cluster as cluster from sklearn.decomposition import PCA import sys, getopt, time, csv, torch, os, multiprocessing from joblib import Parallel, delayed from utils.non_neg_qpsolver import non_negative_qpsolver clustering_algorithms = ['incres', 'spectral', 'spectralshimalik', 'spectralngjordanweiss'] # Print iterations progress def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='\r') # Print New Line on Complete if iteration == total: print() def load_mbo_eig(dataset, metric, k): # Load eigenvector data if MBO selected try: location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + "_k%d" % k + "_spectrum.npz" dataFile_path = os.path.join(location, 'MBOdata', dataFile) M = np.load(dataFile_path, allow_pickle=True) eigvals = M['eigenvalues'] eigvecs = M['eigenvectors'] except: print("Could not find MBOdata/" + dataset + "_" + metric + "_k%d" % k + "_spectrum.npz") print('You need to run ComputeEigenvectorsMBO.py first.') sys.exit(2) return eigvals, eigvecs def load_label_permutation(dataset, label_perm='', t='-1'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + label_perm + "_permutations.npz" dataFile_path = os.path.join(location, 'LabelPermutations', dataFile) # Load label permutation try: M = np.load(dataFile_path, allow_pickle=True) perm = M['perm'] except: print('Cannot find ' + dataFile) print('You need to run CreateLabelPermutation.py first.') sys.exit(2) # Restrict trials t = [int(e) for e in t.split(',')] if t[0] > -1: if len(t) == 1: perm = perm[0:t[0]] else: perm = perm[(t[0] - 1):t[1]] return perm def load_dataset(dataset, metric='L2'): # For variational autoencoder the vae data, e.g., Data/MNIST_vae.npz must exist. if metric[0:3] == 'vae' or metric[0:3] == 'aet': dataFile = dataset + "_" + metric + ".npz" else: dataFile = dataset + "_raw.npz" location = os.path.dirname(os.path.realpath(__file__)) dataFile_path = os.path.join(location, 'Data', dataFile) # Try to Load data try: M = np.load(dataFile_path, allow_pickle=True) data = M['data'] except: print('Cannot find ' + dataFile + '.') sys.exit(2) return data def load_labels(dataset): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_labels.npz" dataFile_path = os.path.join(location, 'Data', dataFile) # Load labels try: M = np.load(dataFile_path, allow_pickle=True) labels = M['labels'] except: print('Cannot find dataset Data/' + dataFile) sys.exit(2) return labels def load_kNN_data(dataset, metric='L2'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + ".npz" dataFile_path = os.path.join(location, 'kNNData', dataFile) # Load kNN data try: M = np.load(dataFile_path, allow_pickle=True) I = M['I'] J = M['J'] D = M['D'] except: print('Cannot find ' + dataFile) print('You need to run ComputeKNN.py.') sys.exit(2) return I, J, D # Compute sizes of each class def label_proportions(labels): L = np.unique(labels) L = L[L >= 0] k = len(L) # n = len(labels) n = np.sum(labels >= 0) beta = np.zeros((k,)) for i in range(k): beta[i] = np.sum(labels == L[i]) / n return beta # Constructs a weight matrix for graph on mxn grid with NSEW neighbors # def grid_graph(m, n): # X, Y = np.mgrid[:m, :n] # # return W # Reweights the graph to use self-tuning weights def self_tuning(W, D, alpha): if alpha != 0: n = D.shape[0] k = D.shape[1] d = D[:, k - 1] d = sparse.spdiags(d ** (-alpha), 0, n, n) W = d * W * d return W # Reweights the graph based on a clustering prior def cluster_prior(W, cluster_labels): n = W.shape[0] I, J, V = sparse.find(W) K = cluster_labels[I] == cluster_labels[J] V[K] = V[K] * 10 V = V / np.max(V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Computes scattering transform of depth 2 of I # Bruna, Joan, and <NAME>. "Invariant scattering convolution networks." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1872-1886. def scattering_transform(I, n, m, depth=2): from kymatio import Scattering2D num_pts = I.shape[0] K = torch.from_numpy(I.reshape((num_pts, n, m))).float().contiguous() scattering = Scattering2D(J=depth, shape=(n, m)) Z = scattering(K).numpy() l = Z.shape[1] * Z.shape[2] * Z.shape[3] return Z.reshape((num_pts, l)) # Label permutations # labels = labels # T = number of trials # r = label rate in (0,1) def create_label_permutations_rate(labels, T, R): perm = list() n = labels.shape[0] labelvals = np.unique(labels) labelvals = labelvals[labelvals >= 0] num_labels = len(labelvals) num = np.zeros((num_labels,)) for i in range(num_labels): num[i] = np.sum(labels == labelvals[i]) J = np.arange(n).astype(int) for k in range(T): for r in R: L = [] for i in range(num_labels): l = labelvals[i] I = labels == l K = J[I] m = round(num[i] * r / 100) L = L + random.choice(K, size=m.astype(int), replace=False).tolist() L = np.array(L) perm.append(L) return perm # Label permutations # labels = labels # T = number of trials # m = vector of number of labels def create_label_permutations(labels, T, m, multiplier=None): # Find all unique labels >= 0 # Negative numbers indicate unlabeled nodes unique_labels = np.unique(labels) unique_labels = unique_labels[unique_labels >= 0] perm = list() n = labels.shape[0] J = np.arange(n).astype(int) for k in range(T): for i in m: L = [] ind = 0 for l in unique_labels: I = labels == l K = J[I] if multiplier is None: L = L + random.choice(K, size=i, replace=False).tolist() else: sze = int(np.round(i * multiplier[ind])) L = L + random.choice(K, size=sze, replace=False).tolist() ind = ind + 1 L = np.array(L) perm.append(L) return perm # Randomly choose m labels per class def randomize_labels(L, m): perm = create_label_permutations(L, 1, [m]) return perm[0] # Default function def exp_weight(x): return np.exp(-x) # Pointwise max of non-negative sparse matrices A and B def sparse_max(A, B): I = (A + B) > 0 IB = B > A IA = I - IB return A.multiply(IA) + B.multiply(IB) # Compute degrees of weight matrix W def degrees(W): return np.squeeze(np.array(np.sum(W, axis=1))) # Multiply diagonal of matrix by degree def diag_multiply(W, b): n = W.shape[0] # Number of points D = sparse.spdiags(W.diagonal(), 0, n, n) return W - (1 - b) * D # Compute degrees of weight matrix W # Returns sparse matrix with degrees on diagonal def degree_matrix(W, p=1): n = W.shape[0] # Number of points # Construct sparse degree matrix d = degrees(W) D = sparse.spdiags(d ** p, 0, n, n) return D.tocsr() # Construct robin boundary condition matrix def robin_bc_matrix(X, nu, eps, gamma): n = X.shape[0] Xtree = spatial.cKDTree(X) _, nn_ind = Xtree.query(X + eps * nu) # nn_dist = np.linalg.norm(X - X[nn_ind,:],axis=1) nn_dist = eps * np.ones((n,)) # Robin matrix A = sparse.spdiags(gamma + (1 - gamma) / nn_dist, 0, n, n) B = sparse.coo_matrix(((1 - gamma) / nn_dist, (range(n), nn_ind)), shape=(n, n)) R = (A - B).tocsr() return R # Laplace matrix # W = weight matrix # norm = type of normalization # Options: none, randomwalk, normalized def graph_laplacian(W, norm="none"): D = degree_matrix(W) if norm == "none": L = D - W elif norm == "randomwalk1": Dinv = degree_matrix(W, p=-1) L = Dinv * (D - W) elif norm == "randomwalk2": Dinv = degree_matrix(W, p=-1) L = (D - W) * Dinv elif norm == "normalized": Dinv2 = degree_matrix(W, p=-1 / 2) L = Dinv2 * (D - W) * Dinv2 else: print("Invalid option for graph Laplacian normalization. Returning unnormalized Laplacian.") L = D - W return L.tocsr() # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_phi_laplacian(W, u, phi, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) w = u[J] - u[I] a = np.absolute(w) pa = phi(a) m = pa / (a + 1e-13) M = sparse.coo_matrix((V * pa / (a + 1e-13), (I, J)), shape=(n, n)).tocsr() m = degrees(M) M = sparse.coo_matrix((V * pa * np.sign(w), (I, J)), shape=(n, n)).tocsr() M = np.squeeze(np.array(np.sum(M, axis=1))) return M, m # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_infinity_laplacian(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) M = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() M = M.min(axis=1) + M.max(axis=1) return M.toarray().flatten() # Construct epsilon-graph sparse distance matrix def eps_weight_matrix(X, eps, f=exp_weight): n = X.shape[0] # Number of points # Rangesearch to find nearest neighbors Xtree = spatial.cKDTree(X) M = Xtree.query_pairs(eps) M = np.array(list(M)) # Differences between points and neighbors V = X[M[:, 0], :] - X[M[:, 1], :] D = np.sum(V * V, axis=1) # Weights D = f(4 * D / (eps * eps)) # Symmetrize weights and add diagonal entries D = np.concatenate((D, D, f(0) * np.ones(n, ))) M1 = np.concatenate((M[:, 0], M[:, 1], np.arange(0, n))) M2 = np.concatenate((M[:, 1], M[:, 0], np.arange(0, n))) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (M1, M2)), shape=(n, n)) return W.tocsr() # Exact knnsearch def knnsearch(X, k): # KDtree to find nearest neighbors n = X.shape[0] Xtree = spatial.cKDTree(X) D, J = Xtree.query(X, k=k) I = np.ones((n, k), dtype=int) * J[:, 0][:, None] return I, J, D # Perform approximate nearest neighbor search, returning indices I,J of neighbors, and distance D # Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot". def knnsearch_annoy(X, k, similarity='euclidean'): from annoy import AnnoyIndex n = X.shape[0] # Number of points dim = X.shape[1] # Dimension print('kNN search with Annoy approximate nearest neighbor package...') printProgressBar(0, n, prefix='Progress:', suffix='Complete', length=50) u = AnnoyIndex(dim, similarity) # Length of item vector that will be indexed for i in range(n): u.add_item(i, X[i, :]) u.build(10) # 10 trees D = [] I = [] J = [] for i in range(n): printProgressBar(i + 1, n, prefix='Progress:', suffix='Complete', length=50) A = u.get_nns_by_item(i, k, include_distances=True, search_k=-1) I.append([i] * k) J.append(A[0]) D.append(A[1]) I = np.array(I) J = np.array(J) D = np.array(D) return I, J, D # Compute weight matrix from nearest neighbor indices I,J and distances D def weight_matrix_selftuning(I, J, D): n = I.shape[0] k = I.shape[1] # Distance to kth nearest neighbor as a matrix sigma = D[:, k - 1] sigma = sparse.spdiags(1 / sigma, 0, n, n) sigma = sigma.tocsr() # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Symmetrize and remove redundant entries M1 = np.vstack((I, J, D)) M2 = np.vstack((J, I, D)) M = np.concatenate((M1, M2), axis=1) M = np.unique(M, axis=1) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format I = M[0, :] J = M[1, :] D = M[2, :] dist = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() B = sparse.coo_matrix((np.ones(len(D), ), (I, J)), shape=(n, n)).tocsr() # Ones in all entries # Self-tuning weights E = -4 * sigma * (dist ** 2) * sigma W = E.expm1() W = W.multiply(B) + B return W # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors # Chooses k neighbors at random from I.shape[1] nearset neighbors def weight_matrix_homogenized(I, J, D, k, f=exp_weight): # I = I[:,:10] # J = J[:,:10] # D = D[:,:10] # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = I.shape[0] for i in range(n): ind = random.choice(I.shape[1], k, replace=False) I[i, :k] = I[i, ind] J[i, :k] = J[i, ind] D[i, :k] = 1 n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Compute distance matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def dist_matrix(I, J, D, k): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Adds weights to an adjacency matrix W using similarity in data X def add_weights(W, X, labels): n = W.shape[0] # pca = PCA(n_components=20) # X = pca.fit_transform(X) # print(X.shape) I, J, V = sparse.find(W) # Dot products Y = X[I, :] - X[J, :] Y = np.sum(Y * Y, axis=1) W = sparse.coo_matrix((Y, (I, J)), shape=(n, n)).tocsr() max_dist = np.reshape(np.max(W, axis=1).todense().tolist(), (n,)) D = sparse.spdiags((max_dist + 1e-10) ** (-1), 0, n, n).tocsr() W = D * W I, J, V = sparse.find(W) V = np.exp(-2 * V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Finds largest connected component of the graph represented by adjacency matrix W # Returns the weighted adjacency matrix, along with a boolean mask indicating the # vertices from the input matrix that were selected def largest_conn_component(W): ncomp, labels = csgraph.connected_components(W, directed=False) num_verts = np.zeros((ncomp,)) for i in range(ncomp): num_verts[i] = np.sum(labels == i) i_max = np.argmax(num_verts) ind = labels == i_max A = W[ind, :] A = A[:, ind] print("Found %d" % ncomp + " connected components.") print("Returning component with %d" % num_verts[i_max] + " vertices out of %d" % W.shape[0] + " total vertices.") return A, ind # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def weight_matrix(I, J, D, k, f=exp_weight, symmetrize=True): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() if symmetrize: W = (W + W.transpose()) / 2; return W def nnk_weight_matrix(dataset, metric, mask, knn_param, reg=1e-10, symmetrize=True): # Try to Load data X = load_dataset(dataset=dataset, metric=metric) X_normalized = X / np.linalg.norm(X, axis=1, keepdims=True) num_of_nodes = mask.shape[0] neighbor_indices = np.zeros((num_of_nodes, knn_param)) weight_values = np.zeros((num_of_nodes, knn_param)) error_values = np.ones((num_of_nodes, knn_param)) for node_i in range(num_of_nodes): non_zero_index = np.array(mask[node_i, :]) non_zero_index = np.delete(non_zero_index, np.where(non_zero_index == node_i)) if len(non_zero_index) > knn_param: non_zero_index = non_zero_index[:knn_param] x_neighbors = X_normalized[non_zero_index] g_i = 0.5 + np.dot(x_neighbors, X_normalized[node_i]) / 2 G_i = 0.5 + np.dot(x_neighbors, x_neighbors.T) / 2 # x_opt, check = non_negative_qpsolver(G_i, g_i, g_i, reg) # error_values[node_i, :] = 1 - 2 * np.dot(x_opt, g_i) + np.dot(x_opt, np.dot(G_i, x_opt)) x_opt = g_i weight_values[node_i, :] = x_opt / np.sum(x_opt) neighbor_indices[node_i, :] = non_zero_index row_indices = np.expand_dims(np.arange(0, num_of_nodes), 1) row_indices = np.tile(row_indices, [1, knn_param]) adjacency = sparse.coo_matrix((weight_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) if symmetrize: error = sparse.coo_matrix((error_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) # Alternate way of doing: error_index = sparse.find(error > error.T); adjacency[error_index[0], error_index[ # 1]] = 0 adjacency = adjacency.multiply(error < error.T) adjacency = adjacency.maximum(adjacency.T) adjacency.eliminate_zeros() error_values = error_values[:, 0] return adjacency.tocsr(), error_values # Compute boundary points # k = number of neighbors to use def boundary_points_new(X, k, I=None, J=None, D=None, ReturnNormals=False): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) print(nu.shape) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array NN_nu = nu[J] W = (np.swapaxes(NN_nu[:, 1:, :], 0, 1) + nu) / 2 xd = np.sum(V * W, axis=2) # dist to boundary Y = np.max(-xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Compute boundary points # k = number of neighbors to use def boundary_points(X, k, I=None, J=None, D=None, ReturnNormals=False, R=np.inf): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array xd = np.sum(V * nu, axis=2) # xd coordinate (kxn) sqdist = np.sum(V * V, axis=2) Y = np.max((xd * xd - sqdist) / (2 * R) - xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Construct k-nn sparse distance matrix # Note: Matrix is not symmetric def knn_weight_matrix(X, k, f=exp_weight): I, J, D = knnsearch_annoy(X, k) W = weight_matrix(I, J, D, k, f=f) return W # Solves Lx=f subject to Rx=g at ind points def gmres_bc_solve(L, f, R, g, ind): # Mix matrices based on boundary points A = L.copy() A = A.tolil() A[ind, :] = R[ind, :] A = A.tocsr() # Right hand side b = f.copy() b[ind] = g[ind] # Preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() # GMRES solver # start_time = time.time() u, info = sparse.linalg.gmres(A, b, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # print('gmres_err = %f'%np.max(np.absolute(A*u-b))) return u # Poisson solve # Solves Lu = f with preconditioned conjugate gradient def pcg_solve(L, f, x0=None, tol=1e-10): # start_time = time.time() L = L.tocsr() # Conjugate gradient with Jacobi preconditioner m = L.shape[0] M = L.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() if x0 is None: u, i = splinalg.cg(L, f, tol=tol, M=M) else: u, i = splinalg.cg(L, f, x0=x0, tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) return u # Finds k Dirichlet eigenvectors # Solves Lu = lambda u subject to u(I)=0 def dirichlet_eigenvectors(L, I, k): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Left hand side matrix A = L[idx, :] A = A[:, idx] # Eigenvector solver vals, vec = sparse.linalg.eigs(A, k=k, which='SM') vec = vec.real vals = vals.real # Add labels back into array u = np.zeros((n, k)) u[idx, :] = vec if k == 1: u = u.flatten() return u, vals # Constrained linear solve # Solves Lu = f subject to u(I)=g def constrained_solve(L, I, g, f=None, x0=None, tol=1e-10): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Right hand side b = -L[:, I] * g b = b[idx] if f is not None: b = b + f[idx] # Left hand side matrix A = L[idx, :] A = A[:, idx] # start_time = time.time() # Conjugate gradient with Jacobi preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / (M + 1e-10), 0, m, m).tocsr() if x0 is None: v, i = splinalg.cg(A, b, tol=tol, M=M) else: v, i = splinalg.cg(A, b, x0=x0[idx], tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # Add labels back into array u = np.ones((n,)) u[idx] = v u[I] = g return u # Returns n random points in R^d def rand(n, d): return random.rand(n, d) # Returns n random points in annulus (r1,r2) def rand_annulus(n, d, r1, r2): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = r2 * (2 * rand(n, d) - 1) dist2 = np.sum(Y * Y, axis=1) I = (dist2 < r2 * r2) & (dist2 > r1 * r1) Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X # Returns n random points in unit ball in R^d def rand_ball(n, d): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = 2 * rand(n, d) - 1 I = np.sum(Y * Y, axis=1) < 1 Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X def randn(n, d): X = np.zeros((n, d)) for i in range(d): X[:, i] = np.random.normal(0, 1, n) return X def bean_data(n, h): # n = number of points # h = height of bridge (h=0.2) a = -1 b = 1 x = a + (b - a) * random.rand(3 * n); c = -0.6 d = 0.6; y = c + (d - c) * random.rand(3 * n); X = np.transpose(np.vstack((x, y))) dist_from_x_axis = 0.4 * np.sqrt(1 - x ** 2) * (1 + h - np.cos(3 * x)) in_bean = abs(y) <= dist_from_x_axis X = X[in_bean, :] if X.shape[0] < n: print('Not enough samples'); else: X = X[:n, :] return X def mesh(X): T = spatial.Delaunay(X[:, :2]); return T.simplices def box_mesh(X, u=None): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() corners = np.array([[x1, y1], [x2, y2], [x1, y2], [x2, y1]]) X = np.append(X, corners, axis=0) Tri = mesh(X) if u is not None: u = np.append(u, [0, 0, 0, 0]) for i in range(n, n + 4): I = (Tri[:, 0] == i) | (Tri[:, 1] == i) | (Tri[:, 2] == i) nn_tri = Tri[I, :].flatten() nn_tri = np.unique(nn_tri[nn_tri < n]) u[i] = np.mean(u[nn_tri]) # u[i] = np.max(u[nn_tri]) return X, Tri, u else: return X, Tri # Triangulation of domain def improved_mesh(X): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] # Normalize data to unit box x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() X = X - [x1, y1] X[:, 0] = X[:, 0] / (x2 - x1) X[:, 1] = X[:, 1] / (y2 - y1) # Add padding data around pad = 10 / np.sqrt(n) m = int(pad * n) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad - pad Z = np.vstack((X, Y)) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad + 1 Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad - pad Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad + 1 Z = np.vstack((Z, Y)) # Delaunay triangulation T = spatial.Delaunay(Z); Tri = T.simplices J = np.sum(Tri >= n, axis=1) == 0; Tri = Tri[J, :] return Tri def plot(X, u): Tri = mesh(X) import mayavi.mlab as mlab mlab.triangular_mesh(X[:, 0], X[:, 1], u, Tri) mlab.view(azimuth=-45, elevation=60) # Laplace learning # Zhu, Xiaojin, <NAME>, and <NAME>. "Semi-supervised learning using gaussian fields and harmonic functions." Proceedings of the 20th International conference on Machine learning (ICML-03). 2003. def laplace_solve(W, I, g, norm="none"): L = graph_laplacian(W, norm=norm) return constrained_solve(L, I, g) # Shift trick # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def shift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Shift solution s = degrees(W) c = np.sum(s[I] * g) / sum(s[I]) u = u - c u = u - np.mean(u) return u # Shift trick by mean # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def meanshift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Center solution u = u - np.mean(u) return u # Reweights the weight matrix for WNLL def wnll(W, I): n = W.shape[0] m = len(I) a = np.ones((n,)) a[I] = n / m D = sparse.spdiags(a, 0, n, n).tocsr() W = D * W + W * D return W # Weighted nonlocal Laplacian # Shi, Zuoqiang, <NAME>, and <NAME>. "Weighted nonlocal laplacian on interpolation from sparse data." Journal of Scientific Computing 73.2-3 (2017): 1164-1177. def wnll_solve(W, I, g): n = W.shape[0] W = wnll(W, I) L = graph_laplacian(W, norm="none") return constrained_solve(L, I, g) # Properly weighted Laplacian # Calder, Jeff, and <NAME>. "Properly-weighted graph Laplacian for semi-supervised learning." arXiv preprint arXiv:1810.04351 (2018). def properlyweighted_solve(W, I, g, X, alpha, zeta, r): n = W.shape[0] rzeta = r / (zeta - 1) ** (1 / alpha) Xtree = spatial.cKDTree(X[I, :]) D, J = Xtree.query(X) D[D < rzeta] = rzeta gamma = 1 + (r / D) ** alpha D = sparse.spdiags(gamma, 0, n, n).tocsr() L = graph_laplacian(D * W + W * D, norm="none") return constrained_solve(L, I, g) # Game theoretic p-Laplace learning # Rios, <NAME>, <NAME>, and <NAME>. "Algorithms for $\ell_p$-based semi-supervised learning on graphs." arXiv preprint arXiv:1901.05031 (2019). def plaplace_solve(W, I, g, p, sol_method="SemiImplicit", norm="none"): # start_time = time.time() n = W.shape[0] W = W / W.max() if p == float("inf"): alpha = 0 delta = 1 else: alpha = 1 / p delta = 1 - 2 / p dx = degrees(W) theta = 1.2 * (2 * alpha + np.max(dx) * delta) if p == float("inf"): beta = 1 gamma = 1 / theta else: beta = (theta * p - 2) / (theta * p) gamma = (p - 2) / (theta * p - 2) if norm == "normalized": deg = dx[I] ** (1 / 2) g = g / deg L = graph_laplacian(W) u = constrained_solve(L, I, g) uu = np.max(g) * np.ones((n,)) ul = np.min(g) * np.ones((n,)) WI, WJ, WV = sparse.find(W) # Set labels u[I] = g uu[I] = g ul[I] = g # Time step for gradient descent dt = 0.9 / (alpha + 2 * delta) if sol_method == "GradientDescentCcode": try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Type casting and memory blocking uu = np.ascontiguousarray(uu, dtype=np.float64) ul = np.ascontiguousarray(ul, dtype=np.float64) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.lp_iterate(uu, ul, WI, WJ, WV, I, g, p, 1e6, 1e-1, 0.0) u = (uu + ul) / 2 # Check residual L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) resu = alpha * L2uu / dx + delta * LIuu resu[I] = 0 L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) resl = alpha * L2ul / dx + delta * LIul resl[I] = 0 # print('Upper residual = %f' % np.max(np.absolute(resu))) # print('Lower residual = %f' % np.max(np.absolute(resl))) else: err = 1e6 i = 0 while err > 1e-1: i += 1 # Graph laplacians L2u = -L * u LIu = graph_infinity_laplacian(W, u, I=WI, J=WJ, V=WV) # Residual error res = alpha * L2u / dx + delta * LIu res[I] = 0 # err = np.max(np.absolute(res)) # print("Residual error = "+str(err)) # Update if sol_method == "GradientDescent": L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) res = alpha * L2uu / dx + delta * LIuu res[I] = 0 uu = uu + dt * res err = np.max(np.absolute(res)) # print("Upper residual = "+str(err)) L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) res = alpha * L2ul / dx + delta * LIul res[I] = 0 ul = ul + dt * res err = np.max(np.absolute(res)) # print("Lower residual = "+str(err)) err1 = np.max(uu - ul) err2 = np.min(uu - ul) # print("Residual error = "+str(err1)+","+str(err2)) err = err1 u = (uu + ul) / 2 elif sol_method == "SemiImplicit": rhs = beta * (2 * gamma * dx * LIu - L2u) u = constrained_solve(L, I, g, f=rhs, x0=u, tol=err / 100) else: print("Invalid p-Laplace solution method.") sys.exit() if norm == "normalized": deg = dx ** (1 / 2) u = u * deg # print("--- %s seconds ---" % (time.time() - start_time)) return u # Gradient of function on graph # W = sparse weight matrix # u = function on graph def graph_gradient(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) G = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() return G # Divergence of vector field F (F should be skew-symmetric) # F = sparse matrix representing vector field def graph_divergence(F, W): F = F.multiply(W) return 2 * np.squeeze(np.array(np.sum(F, axis=1))) # Random-walk SSL # Zhou, Dengyong, et al. "Learning with local and global consistency." Advances in neural information processing systems. 2004. def randomwalk_solve(W, I, g, epsilon): n = W.shape[0] # Zero diagonals W = W - sparse.spdiags(W.diagonal(), 0, n, n) # Construct Laplacian matrix Dinv2 = degree_matrix(W, p=-1 / 2) L = sparse.identity(n) - (1 - epsilon) * Dinv2 * W * Dinv2; # Format right hand side b = np.zeros((n,)) b[I] = g return pcg_solve(L, b) # Computes accuracy of labeling # m = number of labeled points used def accuracy(L, L_true, m): # Remove unlabeled nodes I = L_true >= 0 L = L[I] L_true = L_true[I] # Compute accuracy return 100 * np.maximum(np.sum(L == L_true) - m, 0) / (len(L) - m) # Projects all columns of (kxn) matrix X onto k-simplex def ProjectToSimplex(X): n = X.shape[1] k = X.shape[0] Xs = -np.sort(-X, axis=0) # Sort descending A = np.tril(np.ones((k, k))) Sum = A @ Xs Max = np.transpose((np.transpose(Sum) - 1) / (np.arange(k) + 1)) Xs[:-1, :] = Xs[1:, :] Xs[-1, :] = (Sum[k - 1, :] - 1) / k I = np.argmax(Max >= Xs, axis=0) X = np.maximum(X - Max[I, range(n)], 0) return X # Takes list of labels and converts to vertices of simplex format def LabelsToVec(L): n = L.shape[0] labels = np.unique(L) k = len(labels) for i in range(k): L[L == labels[i]] = i L = L.astype(int) X = np.zeros((k, n)) X[L, range(n)] = 1 return X, labels # Projects all rows of (nxk) matrix X to closest vertex of the simplex # Assume X already lives in the simplex, e.g., is the output of ProjectToSimplex def ClosestVertex(X): n = X.shape[1] k = X.shape[0] L = np.argmax(X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Threshold with temperature to closest vertex def ClosestVertexTemp(X, T=0.01): n = X.shape[1] k = X.shape[0] beta = 1 / T Y = np.exp(beta * X) Ysum = np.sum(Y, axis=0) Y = Y / Ysum X[0, :] = Y[0, :] for i in range(1, k): X[i, :] = X[i - 1, :] + Y[i, :] R = random.rand(n, 1) L = np.sum(R.flatten() > X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Volume MBO, initialized with Poisson def poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Solve Poisson problem and compute labels u, _ = poisson(W, I, g) max_locations = np.argmax(u, axis=0) u = (np.unique(g))[max_locations] n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 0.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Volume MBO (Jacobs, et al.) def volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() n = W.shape[0] k = len(np.unique(g)) u = np.zeros((n,)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 1.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Multiclass MBO # Garcia-Cardona, Cristina, et al. "Multiclass data segmentation using diffuse interface methods on graphs." IEEE transactions on pattern analysis and machine intelligence 36.8 (2014): 1600-1613. def multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=None): n = W.shape[0] k = len(np.unique(g)) Ns = 6 if dataset == 'MNIST' or dataset == 'FashionMNIST' or dataset == 'cifar': dt = 0.15 mu = 50 elif dataset == 'WEBKB': dt = 1 mu = 4 else: print('Dataset not supported by MBO...') sys.exit(2) # Load eigenvalues and eigenvectors X = eigvecs num_eig = len(eigvals) # Form matrices V = np.diag(1 / (1 + (dt / Ns) * eigvals)) Y = X @ V Xt = np.transpose(X) # Random initial labeling u = random.rand(k, n) u = ProjectToSimplex(u) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J u = Kg + (1 - J) * u # Maximum number of iterations T = 10 for i in range(T): for s in range(Ns): Z = (u - (dt / Ns) * mu * J * (u - Kg)) @ Y u = Z @ Xt # Projection step u = ProjectToSimplex(u) u = ClosestVertex(u) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson MBO def poissonMBO(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) num_labels = np.zeros((k,)) for i in range(k): num_labels[i] = np.sum(g == unique_labels[i]) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) L = graph_laplacian(W, norm='none') # Initialize u via Poisson learning # u = np.zeros((k,n)) # for j in range(k): # u[j,:] = pcg_solve(L,b[j,:]) # u = mu*u # u = np.transpose(np.transpose(u) - np.mean(u,axis=1)) u, mix_time = poisson(W, I, g, use_cuda=use_cuda, beta=beta) # Ns = int(mix_time/4) u = ProjectToSimplex(u) u = ClosestVertex(u) # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for s in range(Ns): # u = u*P + Db ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for s in range(Ns): # u = u + dt*(mu*b - u*L) u = u * P + Db # Projection step # u = np.diag(beta/num_labels)@u u = ProjectToSimplex(u) u = ClosestVertex(u) u = np.transpose(np.transpose(u) - np.mean(u, axis=1) + beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u def torch_sparse(A): A = A.tocoo() values = A.data indices = np.vstack((A.row, A.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = A.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)) # Sparse Label Propagation def SparseLabelPropagation(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries # Construct matrix 1/2W and 1/deg lam = 2 * W - (1 - 1e-10) * B lam = -lam.log1p() lam = lam.expm1() + B Id = sparse.identity(n) gamma = degree_matrix(W + 1e-10 * Id, p=-1) # Random initial labeling # u = random.rand(k,n) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Initialization Y = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) Y.append(Gu) # Main loop for sparse label propagation T = 100 for i in range(T): u_prev = np.copy(u) # Compute div for j in range(k): div = graph_divergence(Y[j], W) u[j, :] = u_prev[j, :] - gamma * div u[j, I] = Kg[j, I] # Set labels u_tilde = 2 * u[j, :] - u_prev[j, :] Gu = -graph_gradient(W, u_tilde, I=WI, J=WJ, V=WV) Y[j] = Y[j] + Gu.multiply(lam) ind1 = B.multiply(abs(Y[j]) > 1) ind2 = B - ind1 Y[j] = ind1.multiply(Y[j].sign()) + ind2.multiply(Y[j]) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Dynamic Label Propagation def DynamicLabelPropagation(W, I, g, alpha=0.05, lam=0.1, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g u, _ = LabelsToVec(K) u = u * J # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) u = np.copy(Kg) if n > 5000: print("Cannot use Dynamic Label Propagation on large datasets.") else: # Setup matrices Id = sparse.identity(n) D = degree_matrix(W, p=-1) P = D * W P = np.array(P.todense()) Pt = np.copy(P) T = 2 for i in range(T): v = P @ u u = Pt @ u u[I, :] = Kg[I, :] Pt = P @ Pt @ np.transpose(P) + alpha * v @ np.transpose(v) + lam * Id # Compute accuracy if all labels are provided if true_labels is not None: u = np.array(u) max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('i:%d' % i + ',Accuracy = %.2f' % acc) u = np.transpose(np.array(u)) return u # Centered and Iterated Centered Kernel of Mai/Coulliet 2018 def CenteredKernel(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) # Center labels c = np.sum(Kg, axis=0) / len(I) Kg[I, :] = Kg[I, :] - c u = np.copy(Kg) v = np.ones((n, 1)) vt = np.ones((1, n)) e = np.random.rand(n, 1) for i in range(100): y = W * (e - (1 / n) * v @ (vt @ e)) w = y - (1 / n) * v @ (vt @ y) # =Ae l = abs(np.transpose(e) @ w / (np.transpose(e) @ e)) e = w / np.linalg.norm(w) # Number of iterations # alpha = 5*l/4 alpha = 105 * l / 100 T = 1000 err = 1 while err > 1e-10: y = W * (u - (1 / n) * v @ (vt @ u)) w = (1 / alpha) * (y - (1 / n) * v @ (vt @ y)) - u # Laplacian w[I, :] = 0 err = np.max(np.absolute(w)) u = u + w # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return np.transpose(u) def vec_acc(u, I, g, true_labels): max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) return acc # def volume_label_projection(u,beta,s=None): # # k = u.shape[0] # n = u.shape[1] # if s is None: # s = np.ones((k,)) # for i in range(100): # grad = beta - np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n # err0 = np.max(np.absolute(grad)) # # dt = 1 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = err0 # newerr = np.max(np.absolute(gradnew)) # while newerr < err: # print(dt) # dt = 2*dt # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = newerr # newerr = np.max(np.absolute(gradnew)) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # while newerr >= err: # print(dt) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # if dt < 1: # dt = dt/2 # # s = s + dt*grad # # print(err) # if err == 0: # print(i) # break # # #s = s + dt*(beta - beta_u) # # return ClosestVertex(np.diag(s)@u),s def volume_label_projection(u, beta, s=None, dt=None): k = u.shape[0] n = u.shape[1] if s is None: s = np.ones((k,)) if dt is None: dt = 10 # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) for i in range(100): class_size = np.sum(ClosestVertex(np.diag(s) @ u), axis=1) / n grad = beta - class_size # print(np.around(100*class_size,decimals=1)) # err = np.max(np.absolute(grad)) # if err == 0: # break s = np.clip(s + dt * grad, 0.5, 2) # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) # print(np.around(100*beta - 100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=4)) return ClosestVertex(np.diag(s) @ u), s # Poisson MBO with volume constraints def poissonMBO_volume(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=20): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) D = degree_matrix(W) # L = graph_laplacian(W,norm='none') L = D - W.transpose() # Initialize u via Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, beta=beta) u = mu * u # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): # Heat equation step if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for j in range(Ns): ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for j in range(Ns): u = u * P + Db # Projection step u, s = volume_label_projection(u, beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson Volume def PoissonVolume(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): # Run Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=training_balance, beta=beta) # Volume constraints _, s = volume_label_projection(u, beta) return np.diag(s) @ u def original_poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c # Setup matrices D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric P = D * W.transpose() Db = D * b v = np.max(Kg, axis=0) v = v / np.sum(v) vinf = degrees(W) / np.sum(degrees(W)) RW = W.transpose() * D u = np.zeros((n, k)) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Pt = torch_sparse(P).cuda() ut = torch.from_numpy(u).float().cuda() Dbt = torch.from_numpy(Db).float().cuda() # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): ut = torch.sparse.addmm(Dbt, Pt, ut) v = RW * v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): uold = u.copy() u = Db + P * u v = RW * v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson learning def poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50, error=None): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) if error is None: error = np.ones(n, dtype=np.float32) else: error = error.reshape((n,)) / np.max(error) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = 2 * b[I, :] - 1 # Setup matrices # D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric v_prev = np.random.random(size=(n, 1)) residue_energy = 1 u = np.zeros((n, k)) confidence_gain = W.transpose() #* sparse.spdiags(np.power(1 + error, -1), 0, n, n) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Wt = torch_sparse(confidence_gain).cuda() ut = torch.from_numpy(u).float().cuda() bt = torch.from_numpy(b).float().cuda() # start_time = time.time() while (T < min_iter or residue_energy > 1e-10) and (T < 1000): ut = torch.sparse.addmm(bt, Wt, ut) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or residue_energy > 1e-6) and (T < 1000): u = np.clip(b + confidence_gain * u, a_min=-1, a_max=1) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) print(f"T: {T}, residue: {residue_energy}") # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson L1 based on Split Bregman Method # Does not work as well as PoissonMBO def poissonL1(W, I, g, dataset, norm="none", lam=100, mu=1000, Nouter=30, Ninner=6, true_labels=None): n = W.shape[0] k = len(np.unique(g)) # mu = mu*W.count_nonzero()/len(g) #Normalize constants gamma = 1 / lam WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries L = graph_laplacian(2 * W.multiply(W), norm=norm) deg = degrees(W) dt = 1 / np.max(deg) # Random initial labeling # u = random.rand(k,n) # u = ProjectToSimplex(u) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson parameters c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = (mu / lam) * np.transpose(b) # Initialize u via Poisson learning u = np.zeros((k, n)) L = graph_laplacian(W, norm='none') for j in range(k): u[j, :] = pcg_solve(L, b[j, :]) u = np.transpose(np.transpose(u) - np.mean(u, axis=1)) # Initialization V = list() R = list() gradu = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) gradu.append(Gu) V.append(Gu) R.append(Gu) # Main loop for Split Bregman iteration for i in range(Nouter): print('Outer:%d' % i) for s in range(Ninner): normV = 0 * W for j in range(k): divVR = graph_divergence(R[j] - V[j], W) u[j, :] = pcg_solve(L, b[j, :] + divVR, x0=u[j, :], tol=1e-10) # for s in range(100): # u[j,:] = u[j,:] + dt*(b[j,:] + divVR - u[j,:]*L) gradu[j] = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) V[j] = gradu[j] + R[j] normV = normV + V[j].multiply(V[j]) normV = normV.sqrt() # Shrinkage operation # normV^{-1} for nonzero entries (tricky to do in sparse format) # normV.eliminate_zeros(X) normVinv = normV - (1 - 1e-10) * B normVinv = -normVinv.log1p() normVinv = normVinv.expm1() + B C = normV.multiply(normVinv) # print(np.sum(C>0)) # print(np.sum(C>0.9999)) # Compute shrinkage factor # print(np.sum(normV>0)) shrink = normV - gamma * B shrink = shrink.maximum(0) # print(np.sum(shrink>0)) shrink = shrink.multiply(normVinv) # Apply shrinkage for j in range(k): V[j] = V[j].multiply(shrink) for j in range(k): R[j] = R[j] + gradu[j] - V[j] # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Heap functions # d = values in heap (indexed by graph vertex) # h = heap (contains indices of graph elements in heap) # p = pointers from graph back to heap (are updated with heap operations) # s = number of elements in heap # Sift up # i = heap index of element to be sifted up def SiftUp(d, h, s, p, i): pi = int(i / 2) # Parent index in heap while pi != 0: if d[h[pi]] > d[h[i]]: # If parent larger, then swap # Swap in heap tmp = h[pi] h[pi] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[pi]] = pi # Update parent/child indices i = pi pi = int(i / 2) else: pi = 0 # Sift down # i = heap index of element to be sifted down def SiftDown(d, h, s, p, i): ci = 2 * i # child index in heap while ci <= s: if d[h[ci + 1]] < d[h[ci]] and ci + 1 <= s: # Choose smallest child ci = ci + 1 if d[h[ci]] < d[h[i]]: # If child smaller, then swap # Swap in heap tmp = h[ci] h[ci] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[ci]] = ci # Update parent/child indices i = ci ci = 2 * i else: ci = s + 1 # Pop smallest off of heap # Returns index of smallest and size of new heap def PopHeap(d, h, s, p): # Index of smallest in heap i = h[1] # Put last element on top of heap h[1] = h[s] # Update pointer p[h[1]] = 1 # Sift down the heap SiftDown(d, h, s - 1, p, 1) return i, s - 1 # Push element onto heap # i = Graph index to add to heap def PushHeap(d, h, s, p, i): h[s + 1] = i # add to heap at end p[i] = s + 1 # Update pointer to heap SiftUp(d, h, s + 1, p, s + 1) return s + 1 def stencil_solver(ui, u, w=None): if w is None: w = np.ones((len(u),)) m = len(u) # Sort neighbors I = np.argsort(u) u = u[I] w = w[I] f = np.zeros((m + 1,)) for i in range(m): f[i] = np.sum(np.maximum(u[i] - u, 0) ** 2) f[m] = np.maximum(1, f[m - 1]) k = np.argmin(f < 1) b = np.sum(u[:k]) c = np.sum(u[:k] ** 2) t = (b + np.sqrt(b * b - k * c + k)) / k check = np.sum(np.maximum(t - u, 0) ** 2) if (abs(check - 1) > 1e-5): print("Error") return t # return np.min(u) + 1 # C code version of dijkstra def cDijkstra(W, I, g, WI=None, WJ=None, K=None): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.dijkstra(u, l, WI, K, WV, I, g, 1.0) except: print("You need to compile the cmodules!") sys.exit(2) return u # Solve a general HJ equation with fast marching def HJsolver(W, I, g, WI=None, WJ=None, K=None, p=1): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) cgp.HJsolver(u, l, WI, K, WV, I, g, 1.0, p, 1.0) except: # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag l = -np.ones((n,), dtype=int) # Index of closest label # Build active points heap and set distance = 0 for initial points for i in range(k): s = PushHeap(u, h, s, p, I[i]) u[I[i]] = g[i] # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label # Dijkstra's algorithm while s > 0: i, s = PopHeap(u, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors (the code below is wrong: compare against C sometime) for j in WI[K[i]:K[i + 1]]: if j != i and V[j] == False: nn_ind = WI[K[j]:K[j + 1]] w_vals = WV[K[j]:K[j + 1]] u_vals = u[nn_ind] u_tmp = stencil_solver(u[j], u_vals, w=w_vals) if A[j]: # If j is already active if u_tmp < u[j]: # Need to update heap u[j] = u_tmp SiftUp(u, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index s = PushHeap(u, h, s, p, j) u[j] = u_tmp A[j] = True l[j] = l[i] return u # eikonal classifier def eikonalSSL(W, I, g, p=2, beta=None): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.zeros((n,)) # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) c_code = False try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) c_code = True except: c_code = False labels = np.unique(g) numl = len(labels) u = np.zeros((numl, n)) for i in range(numl): ind = I[g == labels[i]] lab = np.zeros((len(ind),)) if c_code: ind = np.ascontiguousarray(ind, dtype=np.int32) lab = np.ascontiguousarray(lab, dtype=np.int32) cgp.HJsolver(d, l, WI, K, WV, ind, lab, 1.0, p, 0.0) u[i, :] = -d else: u[i, :] = -HJsolver(W, ind, lab, WI=WI, WV=WV, K=K, p=p) if beta is not None: _, s = volume_label_projection(u, beta, dt=-0.5) u = np.diag(s) @ u return u # Nearest neighbor classifier (graph geodesic distance) def nearestneighbor(W, I, g): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.ones((n,)) * 1e10 # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version of dijkstra, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) init = np.ascontiguousarray(np.zeros_like(I), dtype=np.float64) cgp.dijkstra(d, l, WI, K, WV, I, init, 1.0) except: # Use python version, which is slower # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag # Build active points heap and set distance = 0 for initial points for i in range(k): d[I[i]] = 0 # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label s = PushHeap(d, h, s, p, I[i]) # Dijkstra's algorithm while s > 0: i, s = PopHeap(d, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors # for j in WI[K[i]:K[i+1]]: for jj in range(K[i], K[i + 1]): j = WI[jj] if j != i and V[j] == False: if A[j]: # If j is already active tmp_dist = d[i] + WV[jj] if tmp_dist < d[j]: # Need to update heap d[j] = tmp_dist SiftUp(d, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index d[j] = d[i] + WV[jj] A[j] = True l[j] = l[i] s = PushHeap(d, h, s, p, j) # Set labels based on nearest neighbor u = np.zeros((n,)) u[I] = g u, _ = LabelsToVec(u[l]) return u # Computes accuracy of clustering def clustering_accuracy(L, L_true): unique_classes = np.unique(L_true) num_classes = len(unique_classes) C = np.zeros((num_classes, num_classes), dtype=float) for i in range(num_classes): for j in range(num_classes): C[i][j] = np.sum((L == i) & (L_true != j)) row_ind, col_ind = opt.linear_sum_assignment(C) return 100 * (1 - C[row_ind, col_ind].sum() / len(L)) # Spectral embedding # Projects the graph to R^k via spectral projection # Method can be 'unnormalized', 'ShiMalik', or 'NgJordanWeiss' def spectral_embedding(W, k, method='NgJordanWeiss'): n = W.shape[0] if method == 'unnormalized': L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'ShiMalik': D = degree_matrix(W) L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, M=D, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'NgJordanWeiss': L = graph_laplacian(W, norm='normalized') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real norms = np.sum(vec * vec, axis=1) T = sparse.spdiags(norms ** (-1 / 2), 0, n, n) vec = T @ vec # Normalize rows return vec def kmeans(X, k): KM = cluster.KMeans(n_clusters=k).fit(X) return KM.labels_ # Spectral Clustering def spectral_cluster(W, k, method='NgJordanWeiss', extra_dim=0): V = spectral_embedding(W, k + extra_dim, method=method) kmeans = cluster.KMeans(n_clusters=k).fit(V) # V = spectral_embedding(W,k,method=method) # kmeans = cluster.KMeans(n_clusters=k).fit(V) return kmeans.labels_ # INCRES clustering # Bresson, Xavier, et al. "An incremental reseeding strategy for clustering." International Conference on Imaging, Vision and Learning based on Optimization and PDEs. Spr<NAME>, 2016. # W = weight matrix def incres_cluster(W, k, speed, T, labels): n = W.shape[0] # Increment Dm = np.maximum(int(speed * 1e-4 * n / k), 1) # Random initial labeling u = random.randint(0, k, size=n) # Initialization F = np.zeros((n, k)) J = np.arange(n).astype(int) # Random walk transition D = degree_matrix(W, p=-1) P = W * D m = int(1) for i in range(T): # Plant F.fill(0) for r in range(k): I = u == r ind = J[I] F[ind[random.choice(np.sum(I), m)], r] = 1 # Grow while np.min(F) == 0: F = P * F # Harvest u = np.argmax(F, axis=1) # Increment m = m + Dm # Compute accuracy if labels is not None: acc = clustering_accuracy(u, labels) print("Iteration " + str(i) + ": Accuracy = %.2f" % acc + "%%, #seeds= %d" % m) return u # Check if graph is connected def isconnected(W): num_comp, comp = csgraph.connected_components(W) if num_comp == 1: return True else: return False # Graph-based clustering # W = sparse weight matrix describing graph # method = SSL method # Options: incres def graph_clustering(W, k, true_labels=None, method="incres", speed=5, T=100, extra_dim=0): n = W.shape[0] # Symmetrize W, if not already symmetric W = (W + W.transpose()) / 2 # Check if connected if not isconnected(W): print('Warning: Graph is not connected!') # Clustering if method == "incres": labels = incres_cluster(W, k, speed, T, true_labels) elif method == "spectral": labels = spectral_cluster(W, k, method="unnormalized", extra_dim=extra_dim) elif method == "spectralshimalik": labels = spectral_cluster(W, k, method="ShiMalik", extra_dim=extra_dim) elif method == "spectralngjordanweiss": labels = spectral_cluster(W, k, method="NgJordanWeiss", extra_dim=extra_dim) else: print("Invalid choice of clustering method.") sys.exit() return labels # Graph-based semi-supervised learning # W = sparse weight matrix describing graph # I = indices of labeled datapoints # g = values of labels # method = SSL method # Options: laplace, poisson, poisson_nodeg, wnll, properlyweighted, plaplace, randomwalk def graph_ssl(W, I, g, D=None, Ns=40, mu=1, numT=50, beta=None, method="laplace", p=3, volume_mult=0.5, alpha=2, zeta=1e7, r=0.1, epsilon=0.05, X=None, plaplace_solver="GradientDescentCcode", norm="none", true_labels=None, eigvals=None, eigvecs=None, dataset=None, T=0, use_cuda=False, return_vector=False, poisson_training_balance=True, symmetrize=True, error=None): one_shot_methods = ["mbo", "poisson", "poissonbalanced", "poissonvolume", "poissonmbo_volume", "poissonmbo", "poissonl1", "nearestneighbor", "poissonmbobalanced", "volumembo", "poissonvolumembo", "dynamiclabelpropagation", "sparselabelpropagation", "centeredkernel", "eikonal"] n = W.shape[0] method = method.lower() if beta is None: beta = np.ones((len(np.unique(g)),)) # Symmetrize D,W, if not already symmetric if symmetrize: W = (W + W.transpose()) / 2 if D is not None: D = sparse_max(D, D.transpose()) if not isconnected(W): print('Warning: Graph is not connected!') # One shot methods if method in one_shot_methods: if method == "mbo": u = multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=true_labels) elif method == "volumembo": u = volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonvolumembo": u = poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonmbo_old": u = poissonMBO(W, I, g, dataset, np.ones_like(beta), true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonmbobalanced": u = poissonMBO(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonl1": u = poissonL1(W, I, g, dataset, true_labels=true_labels) elif method == "poisson": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, error=error) elif method == "poissonbalanced": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonvolume": u = PoissonVolume(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonmbo": u = poissonMBO_volume(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu) elif method == "dynamiclabelpropagation": u = DynamicLabelPropagation(W, I, g, true_labels=true_labels) elif method == "sparselabelpropagation": u = SparseLabelPropagation(W, I, g, true_labels=true_labels) elif method == "centeredkernel": u = CenteredKernel(W, I, g, true_labels=true_labels) elif method == "nearestneighbor": # Use distance matrix if provided, instead of weight matrix if D is None: u = nearestneighbor(W, I, g) else: u = nearestneighbor(D, I, g) elif method == "eikonal": # Use distance matrix if provided, instead of weight matrix if D is None: u = eikonalSSL(W, I, g, p=p, beta=beta) else: u = eikonalSSL(W, I, g, p=p, beta=beta) else: # One vs rest methods k = len(np.unique(g)) # Number of labels u = np.zeros((k, n)) i = 0 for l in np.unique(g): h = g == l # Solve binary classification problem if method == "laplace": v = laplace_solve(W, I, h, norm=norm) elif method == "shift": v = shift_solve(W, I, h) elif method == "meanshift": v = meanshift_solve(W, I, h) elif method == "wnll": v = wnll_solve(W, I, h) elif method == "properlyweighted": if X is None: print("Must supply raw data points for properly weighted Laplacian.") sys.exit() v = properlyweighted_solve(W, I, h, X, alpha, zeta, r) elif method == "plaplace": v = plaplace_solve(W, I, h, p, sol_method=plaplace_solver, norm=norm) elif method == "randomwalk": v = randomwalk_solve(W, I, h, epsilon) else: print("Invalid choice of SSL method.") sys.exit() # Update labels u[i, :] = v i = i + 1 if return_vector: labels = np.transpose(u) else: # Select labels max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] # Make sure to set labels at labeled points labels[I] = g return labels confidence = usort[0, :] - usort[1, :] # Read numerical data from csv file def csvread(filename): X = [] with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') n = 0 for row in csv_reader: if not row[0] == 'Date/Time': X += [float(i) for i in row] m = len(row) n += 1 return np.array(X).reshape((n, m)) # Compute average and standard deviation of accuracy over many trials # Reads data from csv file filename # Returns accuracy (acc), standard deviation (stddev) and number of labeled points (N) def accuracy_statistics(filename): X = csvread(filename) N = np.unique(X[:, 0]) acc = [] stddev = [] quant = [] for n in N: Y = X[X[:, 0] == n, 1] Y = np.sort(Y) acc += [np.mean(Y)] quant += [Y[int(3 * len(Y) / 4)]] stddev += [np.std(Y)] # print("%.1f (%.1f)"%(np.mean(Y),np.std(Y)), end="&") num_trials = len(X[:, 0]) / len(N) return acc, stddev, N, quant, num_trials # Makes an accuracy table to be included in LaTeX documents # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_table_icml(dataset, ssl_method_list, legend_list, num_of_classes, testerror=False, savefile='tables.tex', title='', quantile=False, append=False, directory='Results', fontsize='small', small_caps=True, two_column=True): # Retrieve number of different label rates m accfile = directory + "/" + dataset + "_" + ssl_method_list[0] + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) m = len(N) # Determine best algorithm at each label rate best = [None] * m best_score = [0] * m i = 0 for ssl_method in ssl_method_list: accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if quantile: acc = quant for j in range(m): if acc[j] > best_score[j]: best_score[j] = acc[j] best[j] = i i += 1 if append: f = open(savefile, "r") lines = f.readlines() f.close() f = open(savefile, "w") f.writelines([item for item in lines[:-1]]) else: f = open(savefile, "w") f.write("\\documentclass{article}\n") f.write("\\usepackage[T1]{fontenc}\n") f.write("\\usepackage{booktabs}\n") f.write("\\usepackage[margin=1in]{geometry}\n") f.write("\\begin{document}\n") f.write("\n\n\n") if two_column: f.write("\\begin{table*}[t!]\n") else: f.write("\\begin{table}[t!]\n") f.write("\\vspace{-3mm}\n") f.write( "\\caption{" + title + ": Average (standard deviation) classification accuracy over %d trials.}\n" % num_trials) f.write("\\vspace{-3mm}\n") f.write("\\label{tab:" + title + "}\n") f.write("\\vskip 0.15in\n") f.write("\\begin{center}\n") f.write("\\begin{" + fontsize + "}\n") if small_caps: f.write("\\begin{sc}\n") f.write("\\begin{tabular}{l") for i in range(m): f.write("l") f.write("}\n") f.write("\\toprule\n") f.write("\\# Labels per class") for i in range(m): f.write("&\\textbf{%d}" % int(N[i] / num_of_classes)) f.write("\\\\\n") f.write("\\midrule\n") i = 0 for ssl_method in ssl_method_list: f.write(legend_list[i].ljust(15)) accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) for j in range(m): if best[j] == i: f.write("&{\\bf %.1f" % acc[j] + " (%.1f)}" % stddev[j]) # f.write("&${\\bf %.1f"%acc[j]+"\\pm %.1f}$"%stddev[j]) else: f.write("&%.1f" % acc[j] + " (%.1f) " % stddev[j]) # f.write("&$%.1f"%acc[j]+"\\pm %.1f$ "%stddev[j]) f.write("\\\\\n") i += 1 f.write("\\bottomrule\n") f.write("\\end{tabular}\n") if small_caps: f.write("\\end{sc}\n") f.write("\\end{" + fontsize + "}\n") f.write("\\end{center}\n") f.write("\\vskip -0.1in\n") if two_column: f.write("\\end{table*}") else: f.write("\\end{table}") f.write("\n\n\n") f.write("\\end{document}\n") f.close() def plot_graph(X, W, l=None): # Other colormaps, coolwarm, winter, Set3, tab20b, rainbow # plt.ion() colors = np.array([[1.0, 0, 0], [0, 0.9, 0]]) plt.rcParams['figure.facecolor'] = 'navy' n = W.shape[0] I, J, V = sparse.find(W) for i in range(len(I)): xval = [X[I[i], 0], X[J[i], 0]] yval = [X[I[i], 1], X[J[i], 1]] # plt.plot(xval,yval, color='black', linewidth=0.15, markersize=0) plt.plot(xval, yval, color=[0.5, 0.5, 0.5], linewidth=0.5, markersize=0) if l is None: # plt.scatter(X[:,0],X[:,1], s=30, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, zorder=3) else: # plt.scatter(X[:,0],X[:,1], s=30, c=l, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, c=colors[l, :], zorder=3) plt.axis("off") # plot average and standard deviation of accuracy over many trials # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_plot(dataset, ssl_method_list, legend_list, num_of_classes, title=None, errorbars=False, testerror=False, savefile=None, loglog=False, log_dirs=None, directed_graph=False): if log_dirs is None: log_dirs = ["Results/"] # plt.ion() plt.figure() if errorbars: matplotlib.rcParams.update({'errorbar.capsize': 5}) matplotlib.rcParams.update({'font.size': 16}) styles = ['^b-', 'or-', 'dg-', 'sk-', 'pm-', 'xc-', '*y-'] i = 0 for log in log_dirs: for ssl_method in ssl_method_list: accfile = os.path.join(log, dataset + "_" + ssl_method) if directed_graph: accfile += "_directed" accfile += "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if testerror: acc = 100 - acc # z = np.polyfit(np.log(N),np.log(acc),1) # print(z[0]) if errorbars: plt.errorbar(N / num_of_classes, acc, fmt=styles[i], yerr=stddev, label=legend_list[i]) else: if loglog: plt.loglog(N / num_of_classes, acc, styles[i], label=legend_list[i]) else: plt.plot(N / num_of_classes, acc, styles[i], label=legend_list[i]) i += 1 plt.xlabel('Number of labels per class') if testerror: plt.ylabel('Test error (%)') plt.legend(loc='upper right') else: plt.ylabel('Accuracy (%)') plt.legend(loc='lower right') if title is not None: plt.title(title) plt.tight_layout() plt.grid(True) if savefile is not None: plt.savefig(savefile) else: plt.show() # Select labels based on a ranking # Prodces a label permutation with 1 trial with same variations of #labels per class as the label permutation perm provided as input def SelectLabels(labels, permold, rank): perm = permold # Number of classes L = np.unique(labels) k = len(L) n = len(labels) m = len(permold) num = np.zeros((m,)) for i in range(m): num[i] = len(permold[i]) num, unique_perm = np.unique(num, return_index=True) perm = list() for i in unique_perm: p = permold[i] pl = labels[p] ind = [] for l in L: numl = np.sum(pl == l) K = labels == l c = np.argsort(-rank[K]) j = np.arange(0, n)[K] ind = ind + j[c[:numl]].tolist() ind = np.array(ind) perm.append(ind) return perm # PageRank algorithm def PageRank(W, alpha): n = W.shape[0] u = np.ones((n,)) v = np.ones((n,)) D = degree_matrix(W, p=-1) P = np.transpose(D * W) err = 1 while err > 1e-10: w = alpha * P * u + (1 - alpha) * v err = np.max(np.absolute(w - u)) u = w return u # Print help def print_help(): print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Options:') print(' -d (--dataset=): MNIST, FashionMNIST, WEBKB, cifar (default=MNIST)') print(' -m (--metric=): Metric for computing similarities (default=L2)') print(' Choices: vae, scatter, L2, aet') print(' -a (--algorithm=): Learning algorithm (default=Laplace)') print(' -k (--knn=): Number of nearest neighbors (default=10)') print(' -t (--num_trials=): Number of trial permutations to run (default=all)') print( ' -l (--label_perm=): Choice of label permutation file (format=dataset<label_perm>_permutations.npz). (default is empty).') print(' -p (--p=): Value of p for plaplace method (default=3)') print(' -n (--normalization=): Laplacian normalization (default=none)') print(' Choices: none, normalized') print(' -N (--num_classes): Number of clusters if choosing clustering algorithm (default=10)') print(' -s (--speed=): Speed in INCRES method (1--10) (default=2)') print(' -i (--num_iter=): Number of iterations for iterative methods (default=1000)') print(' -x (--extra_dim=): Number of extra dimensions in spectral clustering (default=0)') print(' -c (--cuda): Use GPU acceleration (when available)') print(' -T (--temperature): Temperature for volume constrained MBO (default=0)') print(' -v (--volume_constraint=): Volume constraint for MBO (default=0.5)') print(' -j (--num_cores=): Number of cores to use in parallel processing (default=1)') print(' -r (--results): Turns off automatic saving of results to .csv file') print(' -b (--verbose): Turns on verbose mode (displaying more intermediate steps).') # Default settings def default_dataset(): return 'MNIST' def default_metric(): return 'L2' def default_algorithm(): return 'laplace' def default_k(): return 10 def default_t(): return '-1' def default_label_perm(): return '' def default_p(): return 3 def default_norm(): return "none" def default_use_cuda(): return False def default_T(): return 0 def default_num_cores(): return 1 def default_results(): return True def default_num_classes(): return 10 def default_speed(): return 2 def default_num_iter(): return 1000 def default_extra_dim(): return 0 def default_volume_constraint(): return 0.5 def default_verbose(): return False def default_poisson_training_balance(): return True def default_directed_graph(): return False # Main subroutine. Is calleable from other scripts as graphlearning.main(...) def main(dataset=default_dataset(), metric=default_metric(), algorithm=default_algorithm(), k=default_k(), t=default_t(), label_perm=default_label_perm(), p=default_p(), norm=default_norm(), use_cuda=default_use_cuda(), T=default_T(), num_cores=default_num_cores(), results=default_results(), num_classes=default_num_classes(), speed=default_speed(), num_iter=default_num_iter(), extra_dim=default_extra_dim(), volume_constraint=default_volume_constraint(), verbose=default_verbose(), poisson_training_balance=default_poisson_training_balance(), directed_graph=default_directed_graph()): # Load labels labels = load_labels(dataset) # Load nearest neighbor data I, J, D = load_kNN_data(dataset, metric=metric) # Consturct weight matrix and distance matrix W, error = nnk_weight_matrix(dataset, metric, mask=J, knn_param=k, symmetrize=not directed_graph) Wdist = None # dist_matrix(I, J, D, k) # Load label permutation (including restrictions in t) perm = load_label_permutation(dataset, label_perm=label_perm, t=t) # Load eigenvector data if MBO selected if algorithm == 'mbo': eigvals, eigvecs = load_mbo_eig(dataset, metric, k) else: eigvals = None eigvecs = None # Output file outfile = "Results/" + dataset + label_perm + "_" + metric + "_k%d" % k if algorithm == 'plaplace': outfile = outfile + "_p%.1f" % p + algorithm[1:] + "_" + norm elif algorithm == 'eikonal': outfile = outfile + "_p%.1f" % p + algorithm else: outfile = outfile + "_" + algorithm if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': outfile = outfile + "_T%.3f" % T outfile = outfile + "_V%.3f" % volume_constraint if algorithm == 'poisson' and poisson_training_balance == False: outfile = outfile + "_NoBal" if directed_graph: outfile += "_directed" outfile = outfile + "_accuracy.csv" # Print basic info print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Dataset: ' + dataset) print('Metric: ' + metric) print('Number of neighbors: %d' % k) print('Learning algorithm: ' + algorithm) print('Laplacian normalization: ' + norm) if algorithm == 'plaplace' or algorithm == 'eikonal': print("p-Laplace/eikonal value p=%.2f" % p) if algorithm in clustering_algorithms: print('Number of clusters: %d' % num_classes) if algorithm == 'INCRES': print('INCRES speed: %.2f' % speed) print('Number of iterations: %d' % num_iter) if algorithm[:8] == 'Spectral': print('Number of extra dimensions: %d' % extra_dim) else: print('Number of trial permutations: %d' % len(perm)) print('Permutations file: LabelPermutations/' + dataset + label_perm + '_permutations.npz') if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': print("Using temperature=%.3f" % T) print("Volume constraints = [%.3f,%.3f]" % (volume_constraint, 2 - volume_constraint)) # If output file selected if results: print('Output file: ' + outfile) print(' ') print('========================================================') print(' ') true_labels = None if verbose: true_labels = labels # If clustering algorithm was chosen if algorithm in clustering_algorithms: # Clustering u = graph_clustering(W, num_classes, labels, method=algorithm, T=num_iter, speed=speed, extra_dim=extra_dim) # Compute accuracy acc = clustering_accuracy(u, labels) # Print to terminal print("Accuracy: %.2f" % acc + "%") # If semi-supervised algorithms chosen else: # If output file selected if results: # Check if Results directory exists if not os.path.exists('Results'): os.makedirs('Results') now = datetime.datetime.now() # Add time stamp to output file f = open(outfile, "a+") f.write("Date/Time, " + now.strftime("%Y-%m-%d_%H:%M") + "\n") f.close() # Loop over label permutations print("Number of labels, Accuracy") def one_trial(label_ind): # Number of labels m = len(label_ind) # Label proportions (used by some algroithms) beta = label_proportions(labels) start_time = time.time() # Graph-based semi-supervised learning u = graph_ssl(W, label_ind, labels[label_ind], D=Wdist, beta=beta, method=algorithm, epsilon=0.3, p=p, norm=norm, eigvals=eigvals, eigvecs=eigvecs, dataset=dataset, T=T, use_cuda=use_cuda, volume_mult=volume_constraint, true_labels=true_labels, poisson_training_balance=poisson_training_balance, symmetrize=not directed_graph, error=error) print("--- %s seconds ---" % (time.time() - start_time)) # Compute accuracy acc = accuracy(u, labels, m) # Print to terminal print("%d" % m + ",%.2f" % acc) # Write to file if results: f = open(outfile, "a+") f.write("%d" % m + ",%.2f\n" % acc) f.close() # Number of cores for parallel processing num_cores = min(multiprocessing.cpu_count(), num_cores) Parallel(n_jobs=num_cores)(delayed(one_trial)(label_ind) for label_ind in perm) if __name__ == '__main__': # Default settings dataset = default_dataset() metric = default_metric() algorithm = default_algorithm() k = default_k() t = default_t() label_perm = default_label_perm() p = default_p() norm = default_norm() use_cuda = default_use_cuda() T = default_T() num_cores = default_num_cores() results = default_results() num_classes = default_num_classes() speed = default_speed() num_iter = default_num_iter() extra_dim = default_extra_dim() volume_constraint = default_volume_constraint() verbose = default_verbose() poisson_training_balance = default_poisson_training_balance() directed_graph = default_directed_graph() # Read command line arguments try: opts, args = getopt.getopt(sys.argv[1:], "hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz", ["dataset=", "metric=", "knn=", "algorithm=", "p=", "normalization=", "volume_constraint=", "num_classes=", "speed=", "num_iter=", "extra_dim=", "num_trials=", "cuda", "label_perm=", "temperature=", "num_cores=", "results", "verbose", "poisson_training_balance", "directed"]) except getopt.GetoptError: print_help() sys.exit(2) for opt, arg in opts: if opt == '-h': print_help() sys.exit() elif opt in ("-d", "--dataset"): dataset = arg elif opt in ("-m", "--metric"): metric = arg elif opt in ("-k", "--knn"): k = int(arg) elif opt in ("-a", "--algorithm"): algorithm = arg.lower() elif opt in ("-p", "--p"): p = float(arg) elif opt in ("-n", "--normalization"): norm = arg elif opt in ("-v", "--volume_constraint"): volume_constraint = float(arg) elif opt in ("-N", "--num_classes"): num_classes = int(arg) elif opt in ("-s", "--speed"): speed = float(arg) elif opt in ("-i", "--num_iter"): num_iter = int(arg) elif opt in ("-x", "--extra_dim"): extra_dim = int(arg) elif opt in ("-t", "--num_trials"): t = arg elif opt in ("-c", "--cuda"): use_cuda = True elif opt in ("-l", "--label_perm"): label_perm = arg elif opt in ("-T", "--temperature"): T = float(arg) elif opt in ("-j", "--num_cores"): num_cores = int(arg) elif opt in ("-r", "--results"): results = False elif opt in ("-b", "--verbose"): verbose = True elif opt in ("-o", "--poisson_training_balance"): poisson_training_balance = False elif opt in ("-z", "--directed"): directed_graph = True # Call main subroutine main(dataset=dataset, metric=metric, algorithm=algorithm, k=k, t=t, label_perm=label_perm, p=p, norm=norm, use_cuda=use_cuda, T=T, num_cores=num_cores, results=results, num_classes=num_classes, speed=speed, num_iter=num_iter, extra_dim=extra_dim, volume_constraint=volume_constraint, verbose=verbose, poisson_training_balance=poisson_training_balance, directed_graph=directed_graph)
[ "numpy.sum", "scipy.sparse.linalg.cg", "numpy.ones", "numpy.argmin", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.arange", "numpy.exp", "numpy.diag", "matplotlib.rcParams.update", "torch.FloatTensor", "numpy.max", "datetime.datetime.now", "numpy.minimum", "matplotlib.pyplot.show", "numpy.ones_like", "scipy.sparse.spdiags", "numpy.min", "matplotlib.pyplot.grid", "numpy.vstack", "sys.exit", "os.makedirs", "numpy.array", "csv.reader", "numpy.linalg.norm", "matplotlib.pyplot.tight_layout", "numpy.unique", "scipy.spatial.Delaunay", "numpy.full", "multiprocessing.cpu_count", "numpy.transpose", "kymatio.Scattering2D", "numpy.append", "scipy.sparse.identity", "matplotlib.pyplot.errorbar", "scipy.optimize.linear_sum_assignment", "torch.from_numpy", "cmodules.cgraphpy.volume_mbo", "matplotlib.pyplot.plot", "numpy.random.random", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.title", "matplotlib.pyplot.loglog", "numpy.maximum", "getopt.getopt", "numpy.argmax", "numpy.clip", "numpy.mean", "numpy.tile", "os.path.join", "numpy.copy", "sklearn.cluster.KMeans", "os.path.exists", "numpy.swapaxes", "cmodules.cgraphpy.HJsolver", "scipy.sparse.find", "os.path.realpath", "matplotlib.pyplot.legend", "numpy.dot", "scipy.sparse.linalg.eigs", "numpy.zeros", "time.time", "scipy.sparse.linalg.gmres", "joblib.Parallel", "numpy.sign", "annoy.AnnoyIndex", "joblib.delayed", "matplotlib.pyplot.savefig", "numpy.absolute", "numpy.load", "numpy.random.randint", "scipy.sparse.csgraph.connected_components", "numpy.random.normal", "scipy.spatial.cKDTree", "numpy.round", "numpy.zeros_like", "numpy.std", "scipy.sparse.coo_matrix", "cmodules.cgraphpy.dijkstra", "numpy.random.choice", "cmodules.cgraphpy.lp_iterate", "numpy.sort", "torch.sparse.addmm", "torch.Size", "numpy.cos", "mayavi.mlab.view", "matplotlib.pyplot.ylabel", "numpy.concatenate", "torch.LongTensor", "matplotlib.pyplot.scatter", "matplotlib.pyplot.axis", "numpy.where", "numpy.random.rand", "numpy.ascontiguousarray", "mayavi.mlab.triangular_mesh", "numpy.sqrt" ]
[((2665, 2718), 'os.path.join', 'os.path.join', (['location', '"""LabelPermutations"""', 'dataFile'], {}), "(location, 'LabelPermutations', dataFile)\n", (2677, 2718), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3545, 3585), 'os.path.join', 'os.path.join', (['location', '"""Data"""', 'dataFile'], {}), "(location, 'Data', dataFile)\n", (3557, 3585), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3939, 3979), 'os.path.join', 'os.path.join', (['location', '"""Data"""', 'dataFile'], {}), "(location, 'Data', dataFile)\n", (3951, 3979), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4365, 4408), 'os.path.join', 'os.path.join', (['location', '"""kNNData"""', 'dataFile'], {}), "(location, 'kNNData', dataFile)\n", (4377, 4408), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4762, 4779), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (4771, 4779), True, 'import numpy as np\n'), ((4844, 4863), 'numpy.sum', 'np.sum', (['(labels >= 0)'], {}), '(labels >= 0)\n', (4850, 4863), True, 'import numpy as np\n'), ((4875, 4889), 'numpy.zeros', 'np.zeros', (['(k,)'], {}), '((k,))\n', (4883, 4889), True, 'import numpy as np\n'), ((5500, 5514), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (5511, 5514), True, 'import scipy.sparse as sparse\n'), ((6088, 6123), 'kymatio.Scattering2D', 'Scattering2D', ([], {'J': 'depth', 'shape': '(n, m)'}), '(J=depth, shape=(n, m))\n', (6100, 6123), False, 'from kymatio import Scattering2D\n'), ((6433, 6450), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (6442, 6450), True, 'import numpy as np\n'), ((6535, 6558), 'numpy.zeros', 'np.zeros', (['(num_labels,)'], {}), '((num_labels,))\n', (6543, 6558), True, 'import numpy as np\n'), ((7327, 7344), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (7336, 7344), True, 'import numpy as np\n'), ((8216, 8226), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (8222, 8226), True, 'import numpy as np\n'), ((8908, 8939), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(d ** p)', '(0)', 'n', 'n'], {}), '(d ** p, 0, n, n)\n', (8922, 8939), True, 'import scipy.sparse as sparse\n'), ((9079, 9097), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (9094, 9097), True, 'import scipy.spatial as spatial\n'), ((9257, 9311), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(gamma + (1 - gamma) / nn_dist)', '(0)', 'n', 'n'], {}), '(gamma + (1 - gamma) / nn_dist, 0, n, n)\n', (9271, 9311), True, 'import scipy.sparse as sparse\n'), ((10358, 10372), 'numpy.absolute', 'np.absolute', (['w'], {}), '(w)\n', (10369, 10372), True, 'import numpy as np\n'), ((11222, 11240), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (11237, 11240), True, 'import scipy.spatial as spatial\n'), ((11392, 11413), 'numpy.sum', 'np.sum', (['(V * V)'], {'axis': '(1)'}), '(V * V, axis=1)\n', (11398, 11413), True, 'import numpy as np\n'), ((11774, 11820), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (M1, M2))'], {'shape': '(n, n)'}), '((D, (M1, M2)), shape=(n, n))\n', (11791, 11820), True, 'import scipy.sparse as sparse\n'), ((11954, 11972), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (11969, 11972), True, 'import scipy.spatial as spatial\n'), ((12572, 12599), 'annoy.AnnoyIndex', 'AnnoyIndex', (['dim', 'similarity'], {}), '(dim, similarity)\n', (12582, 12599), False, 'from annoy import AnnoyIndex\n'), ((13025, 13036), 'numpy.array', 'np.array', (['I'], {}), '(I)\n', (13033, 13036), True, 'import numpy as np\n'), ((13045, 13056), 'numpy.array', 'np.array', (['J'], {}), '(J)\n', (13053, 13056), True, 'import numpy as np\n'), ((13065, 13076), 'numpy.array', 'np.array', (['D'], {}), '(D)\n', (13073, 13076), True, 'import numpy as np\n'), ((13338, 13372), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / sigma)', '(0)', 'n', 'n'], {}), '(1 / sigma, 0, n, n)\n', (13352, 13372), True, 'import scipy.sparse as sparse\n'), ((13530, 13550), 'numpy.vstack', 'np.vstack', (['(I, J, D)'], {}), '((I, J, D))\n', (13539, 13550), True, 'import numpy as np\n'), ((13560, 13580), 'numpy.vstack', 'np.vstack', (['(J, I, D)'], {}), '((J, I, D))\n', (13569, 13580), True, 'import numpy as np\n'), ((13589, 13621), 'numpy.concatenate', 'np.concatenate', (['(M1, M2)'], {'axis': '(1)'}), '((M1, M2), axis=1)\n', (13603, 13621), True, 'import numpy as np\n'), ((13630, 13650), 'numpy.unique', 'np.unique', (['M'], {'axis': '(1)'}), '(M, axis=1)\n', (13639, 13650), True, 'import numpy as np\n'), ((14397, 14422), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (14407, 14422), True, 'import numpy as np\n'), ((15118, 15143), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (15128, 15143), True, 'import numpy as np\n'), ((15685, 15699), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (15696, 15699), True, 'import scipy.sparse as sparse\n'), ((15754, 15775), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (15760, 15775), True, 'import numpy as np\n'), ((16005, 16019), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (16016, 16019), True, 'import scipy.sparse as sparse\n'), ((16028, 16042), 'numpy.exp', 'np.exp', (['(-2 * V)'], {}), '(-2 * V)\n', (16034, 16042), True, 'import numpy as np\n'), ((16388, 16435), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['W'], {'directed': '(False)'}), '(W, directed=False)\n', (16416, 16435), True, 'import scipy.sparse.csgraph as csgraph\n'), ((16452, 16470), 'numpy.zeros', 'np.zeros', (['(ncomp,)'], {}), '((ncomp,))\n', (16460, 16470), True, 'import numpy as np\n'), ((16554, 16574), 'numpy.argmax', 'np.argmax', (['num_verts'], {}), '(num_verts)\n', (16563, 16574), True, 'import numpy as np\n'), ((17041, 17066), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (17051, 17066), True, 'import numpy as np\n'), ((17798, 17833), 'numpy.zeros', 'np.zeros', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17806, 17833), True, 'import numpy as np\n'), ((17854, 17889), 'numpy.zeros', 'np.zeros', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17862, 17889), True, 'import numpy as np\n'), ((17909, 17943), 'numpy.ones', 'np.ones', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17916, 17943), True, 'import numpy as np\n'), ((18778, 18814), 'numpy.tile', 'np.tile', (['row_indices', '[1, knn_param]'], {}), '(row_indices, [1, knn_param])\n', (18785, 18814), True, 'import numpy as np\n'), ((19938, 19963), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (19948, 19963), True, 'import numpy as np\n'), ((20203, 20219), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (20215, 20219), True, 'import numpy as np\n'), ((20294, 20310), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (20306, 20310), True, 'import numpy as np\n'), ((20376, 20407), 'numpy.swapaxes', 'np.swapaxes', (['NN[:, 1:, :]', '(0)', '(1)'], {}), '(NN[:, 1:, :], 0, 1)\n', (20387, 20407), True, 'import numpy as np\n'), ((20552, 20573), 'numpy.sum', 'np.sum', (['(V * W)'], {'axis': '(2)'}), '(V * W, axis=2)\n', (20558, 20573), True, 'import numpy as np\n'), ((20602, 20621), 'numpy.max', 'np.max', (['(-xd)'], {'axis': '(0)'}), '(-xd, axis=0)\n', (20608, 20621), True, 'import numpy as np\n'), ((21092, 21117), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (21102, 21117), True, 'import numpy as np\n'), ((21357, 21373), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (21369, 21373), True, 'import numpy as np\n'), ((21448, 21464), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (21460, 21464), True, 'import numpy as np\n'), ((21509, 21540), 'numpy.swapaxes', 'np.swapaxes', (['NN[:, 1:, :]', '(0)', '(1)'], {}), '(NN[:, 1:, :], 0, 1)\n', (21520, 21540), True, 'import numpy as np\n'), ((21613, 21635), 'numpy.sum', 'np.sum', (['(V * nu)'], {'axis': '(2)'}), '(V * nu, axis=2)\n', (21619, 21635), True, 'import numpy as np\n'), ((21672, 21693), 'numpy.sum', 'np.sum', (['(V * V)'], {'axis': '(2)'}), '(V * V, axis=2)\n', (21678, 21693), True, 'import numpy as np\n'), ((21702, 21751), 'numpy.max', 'np.max', (['((xd * xd - sqdist) / (2 * R) - xd)'], {'axis': '(0)'}), '((xd * xd - sqdist) / (2 * R) - xd, axis=0)\n', (21708, 21751), True, 'import numpy as np\n'), ((22469, 22499), 'scipy.sparse.linalg.gmres', 'sparse.linalg.gmres', (['A', 'b'], {'M': 'M'}), '(A, b, M=M)\n', (22488, 22499), True, 'import scipy.sparse as sparse\n'), ((23332, 23363), 'numpy.full', 'np.full', (['(n,)', '(True)'], {'dtype': 'bool'}), '((n,), True, dtype=bool)\n', (23339, 23363), True, 'import numpy as np\n'), ((23490, 23528), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['A'], {'k': 'k', 'which': '"""SM"""'}), "(A, k=k, which='SM')\n", (23508, 23528), True, 'import scipy.sparse as sparse\n'), ((23611, 23627), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (23619, 23627), True, 'import numpy as np\n'), ((23905, 23936), 'numpy.full', 'np.full', (['(n,)', '(True)'], {'dtype': 'bool'}), '((n,), True, dtype=bool)\n', (23912, 23936), True, 'import numpy as np\n'), ((24549, 24562), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (24556, 24562), True, 'import numpy as np\n'), ((24667, 24684), 'numpy.random.rand', 'random.rand', (['n', 'd'], {}), '(n, d)\n', (24678, 24684), True, 'import numpy.random as random\n'), ((24782, 24798), 'numpy.zeros', 'np.zeros', (['(1, d)'], {}), '((1, d))\n', (24790, 24798), True, 'import numpy as np\n'), ((25124, 25140), 'numpy.zeros', 'np.zeros', (['(1, d)'], {}), '((1, d))\n', (25132, 25140), True, 'import numpy as np\n'), ((25349, 25365), 'numpy.zeros', 'np.zeros', (['(n, d)'], {}), '((n, d))\n', (25357, 25365), True, 'import numpy as np\n'), ((25972, 25998), 'scipy.spatial.Delaunay', 'spatial.Delaunay', (['X[:, :2]'], {}), '(X[:, :2])\n', (25988, 25998), True, 'import scipy.spatial as spatial\n'), ((26231, 26281), 'numpy.array', 'np.array', (['[[x1, y1], [x2, y2], [x1, y2], [x2, y1]]'], {}), '([[x1, y1], [x2, y2], [x1, y2], [x2, y1]])\n', (26239, 26281), True, 'import numpy as np\n'), ((26290, 26319), 'numpy.append', 'np.append', (['X', 'corners'], {'axis': '(0)'}), '(X, corners, axis=0)\n', (26299, 26319), True, 'import numpy as np\n'), ((27211, 27228), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (27220, 27228), True, 'import numpy as np\n'), ((27288, 27305), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27297, 27305), True, 'import numpy as np\n'), ((27367, 27384), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27376, 27384), True, 'import numpy as np\n'), ((27444, 27461), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27453, 27461), True, 'import numpy as np\n'), ((27500, 27519), 'scipy.spatial.Delaunay', 'spatial.Delaunay', (['Z'], {}), '(Z)\n', (27516, 27519), True, 'import scipy.spatial as spatial\n'), ((27690, 27736), 'mayavi.mlab.triangular_mesh', 'mlab.triangular_mesh', (['X[:, 0]', 'X[:, 1]', 'u', 'Tri'], {}), '(X[:, 0], X[:, 1], u, Tri)\n', (27710, 27736), True, 'import mayavi.mlab as mlab\n'), ((27741, 27777), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(-45)', 'elevation': '(60)'}), '(azimuth=-45, elevation=60)\n', (27750, 27777), True, 'import mayavi.mlab as mlab\n'), ((28751, 28764), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (28758, 28764), True, 'import numpy as np\n'), ((29491, 29515), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X[I, :]'], {}), '(X[I, :])\n', (29506, 29515), True, 'import scipy.spatial as spatial\n'), ((30657, 30671), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (30668, 30671), True, 'import scipy.sparse as sparse\n'), ((34775, 34789), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (34783, 34789), True, 'import numpy as np\n'), ((35474, 35502), 'numpy.argmax', 'np.argmax', (['(Max >= Xs)'], {'axis': '(0)'}), '(Max >= Xs, axis=0)\n', (35483, 35502), True, 'import numpy as np\n'), ((35681, 35693), 'numpy.unique', 'np.unique', (['L'], {}), '(L)\n', (35690, 35693), True, 'import numpy as np\n'), ((35798, 35814), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (35806, 35814), True, 'import numpy as np\n'), ((36082, 36102), 'numpy.argmax', 'np.argmax', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (36091, 36102), True, 'import numpy as np\n'), ((36111, 36127), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (36119, 36127), True, 'import numpy as np\n'), ((36311, 36327), 'numpy.exp', 'np.exp', (['(beta * X)'], {}), '(beta * X)\n', (36317, 36327), True, 'import numpy as np\n'), ((36339, 36356), 'numpy.sum', 'np.sum', (['Y'], {'axis': '(0)'}), '(Y, axis=0)\n', (36345, 36356), True, 'import numpy as np\n'), ((36472, 36489), 'numpy.random.rand', 'random.rand', (['n', '(1)'], {}), '(n, 1)\n', (36483, 36489), True, 'import numpy.random as random\n'), ((36539, 36555), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (36547, 36555), True, 'import numpy as np\n'), ((37014, 37034), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (37023, 37034), True, 'import numpy as np\n'), ((37136, 37150), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (37147, 37150), True, 'import scipy.sparse as sparse\n'), ((37260, 37299), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.int32'}), '(u, dtype=np.int32)\n', (37280, 37299), True, 'import numpy as np\n'), ((37309, 37349), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (37329, 37349), True, 'import numpy as np\n'), ((37359, 37399), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (37379, 37399), True, 'import numpy as np\n'), ((37409, 37451), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float32'}), '(WV, dtype=np.float32)\n', (37429, 37451), True, 'import numpy as np\n'), ((37460, 37499), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (37480, 37499), True, 'import numpy as np\n'), ((37508, 37547), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (37528, 37547), True, 'import numpy as np\n'), ((37566, 37615), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ClassCounts'], {'dtype': 'np.int32'}), '(ClassCounts, dtype=np.int32)\n', (37586, 37615), True, 'import numpy as np\n'), ((37621, 37693), 'cmodules.cgraphpy.volume_mbo', 'cgp.volume_mbo', (['u', 'WI', 'WJ', 'WV', 'I', 'g', 'ClassCounts', 'k', '(0.0)', 'T', 'volume_mult'], {}), '(u, WI, WJ, WV, I, g, ClassCounts, k, 0.0, T, volume_mult)\n', (37635, 37693), True, 'import cmodules.cgraphpy as cgp\n'), ((38162, 38176), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (38170, 38176), True, 'import numpy as np\n'), ((38194, 38208), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (38205, 38208), True, 'import scipy.sparse as sparse\n'), ((38318, 38357), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.int32'}), '(u, dtype=np.int32)\n', (38338, 38357), True, 'import numpy as np\n'), ((38367, 38407), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (38387, 38407), True, 'import numpy as np\n'), ((38417, 38457), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (38437, 38457), True, 'import numpy as np\n'), ((38467, 38509), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float32'}), '(WV, dtype=np.float32)\n', (38487, 38509), True, 'import numpy as np\n'), ((38518, 38557), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (38538, 38557), True, 'import numpy as np\n'), ((38566, 38605), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (38586, 38605), True, 'import numpy as np\n'), ((38624, 38673), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ClassCounts'], {'dtype': 'np.int32'}), '(ClassCounts, dtype=np.int32)\n', (38644, 38673), True, 'import numpy as np\n'), ((38679, 38751), 'cmodules.cgraphpy.volume_mbo', 'cgp.volume_mbo', (['u', 'WI', 'WJ', 'WV', 'I', 'g', 'ClassCounts', 'k', '(1.0)', 'T', 'volume_mult'], {}), '(u, WI, WJ, WV, I, g, ClassCounts, k, 1.0, T, volume_mult)\n', (38693, 38751), True, 'import cmodules.cgraphpy as cgp\n'), ((39565, 39601), 'numpy.diag', 'np.diag', (['(1 / (1 + dt / Ns * eigvals))'], {}), '(1 / (1 + dt / Ns * eigvals))\n', (39572, 39601), True, 'import numpy as np\n'), ((39627, 39642), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (39639, 39642), True, 'import numpy as np\n'), ((39682, 39699), 'numpy.random.rand', 'random.rand', (['k', 'n'], {}), '(k, n)\n', (39693, 39699), True, 'import numpy.random as random\n'), ((39768, 39779), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (39776, 39779), True, 'import numpy as np\n'), ((40655, 40667), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (40664, 40667), True, 'import numpy as np\n'), ((40713, 40727), 'numpy.zeros', 'np.zeros', (['(k,)'], {}), '((k,))\n', (40721, 40727), True, 'import numpy as np\n'), ((40947, 40958), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (40955, 40958), True, 'import numpy as np\n'), ((41129, 41145), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (41141, 41145), True, 'import numpy as np\n'), ((41180, 41195), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (41192, 41195), True, 'import numpy as np\n'), ((42915, 42940), 'numpy.vstack', 'np.vstack', (['(A.row, A.col)'], {}), '((A.row, A.col))\n', (42924, 42940), True, 'import numpy as np\n'), ((42950, 42975), 'torch.LongTensor', 'torch.LongTensor', (['indices'], {}), '(indices)\n', (42966, 42975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((42984, 43009), 'torch.FloatTensor', 'torch.FloatTensor', (['values'], {}), '(values)\n', (43001, 43009), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((43239, 43253), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (43250, 43253), True, 'import scipy.sparse as sparse\n'), ((43488, 43506), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (43503, 43506), True, 'import scipy.sparse as sparse\n'), ((43621, 43637), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (43629, 43637), True, 'import numpy as np\n'), ((43678, 43689), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (43686, 43689), True, 'import numpy as np\n'), ((45086, 45097), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (45094, 45097), True, 'import numpy as np\n'), ((45234, 45245), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (45242, 45245), True, 'import numpy as np\n'), ((45338, 45358), 'numpy.transpose', 'np.transpose', (['(Kg * J)'], {}), '(Kg * J)\n', (45350, 45358), True, 'import numpy as np\n'), ((45367, 45378), 'numpy.copy', 'np.copy', (['Kg'], {}), '(Kg)\n', (45374, 45378), True, 'import numpy as np\n'), ((46529, 46540), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (46537, 46540), True, 'import numpy as np\n'), ((46633, 46653), 'numpy.transpose', 'np.transpose', (['(Kg * J)'], {}), '(Kg * J)\n', (46645, 46653), True, 'import numpy as np\n'), ((46748, 46759), 'numpy.copy', 'np.copy', (['Kg'], {}), '(Kg)\n', (46755, 46759), True, 'import numpy as np\n'), ((46768, 46783), 'numpy.ones', 'np.ones', (['(n, 1)'], {}), '((n, 1))\n', (46775, 46783), True, 'import numpy as np\n'), ((46793, 46808), 'numpy.ones', 'np.ones', (['(1, n)'], {}), '((1, n))\n', (46800, 46808), True, 'import numpy as np\n'), ((46818, 46838), 'numpy.random.rand', 'np.random.rand', (['n', '(1)'], {}), '(n, 1)\n', (46832, 46838), True, 'import numpy as np\n'), ((47692, 47707), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (47704, 47707), True, 'import numpy as np\n'), ((47765, 47785), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (47774, 47785), True, 'import numpy as np\n'), ((50502, 50513), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (50510, 50513), True, 'import numpy as np\n'), ((50684, 50700), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (50696, 50700), True, 'import numpy as np\n'), ((50735, 50750), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (50747, 50750), True, 'import numpy as np\n'), ((52590, 52602), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (52599, 52602), True, 'import numpy as np\n'), ((52759, 52770), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (52767, 52770), True, 'import numpy as np\n'), ((52941, 52957), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (52953, 52957), True, 'import numpy as np\n'), ((53235, 53253), 'numpy.max', 'np.max', (['Kg'], {'axis': '(0)'}), '(Kg, axis=0)\n', (53241, 53253), True, 'import numpy as np\n'), ((53354, 53370), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (53362, 53370), True, 'import numpy as np\n'), ((55114, 55126), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (55123, 55126), True, 'import numpy as np\n'), ((55412, 55423), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (55420, 55423), True, 'import numpy as np\n'), ((55594, 55610), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (55606, 55610), True, 'import numpy as np\n'), ((55857, 55886), 'numpy.random.random', 'np.random.random', ([], {'size': '(n, 1)'}), '(size=(n, 1))\n', (55873, 55886), True, 'import numpy as np\n'), ((55918, 55934), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (55926, 55934), True, 'import numpy as np\n'), ((58153, 58167), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (58164, 58167), True, 'import scipy.sparse as sparse\n'), ((58467, 58483), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (58475, 58483), True, 'import numpy as np\n'), ((58524, 58535), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (58532, 58535), True, 'import numpy as np\n'), ((58705, 58721), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (58717, 58721), True, 'import numpy as np\n'), ((58834, 58850), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (58842, 58850), True, 'import numpy as np\n'), ((63051, 63064), 'numpy.argsort', 'np.argsort', (['u'], {}), '(u)\n', (63061, 63064), True, 'import numpy as np\n'), ((63100, 63118), 'numpy.zeros', 'np.zeros', (['(m + 1,)'], {}), '((m + 1,))\n', (63108, 63118), True, 'import numpy as np\n'), ((63206, 63229), 'numpy.maximum', 'np.maximum', (['(1)', 'f[m - 1]'], {}), '(1, f[m - 1])\n', (63216, 63229), True, 'import numpy as np\n'), ((63238, 63254), 'numpy.argmin', 'np.argmin', (['(f < 1)'], {}), '(f < 1)\n', (63247, 63254), True, 'import numpy as np\n'), ((63264, 63277), 'numpy.sum', 'np.sum', (['u[:k]'], {}), '(u[:k])\n', (63270, 63277), True, 'import numpy as np\n'), ((63286, 63304), 'numpy.sum', 'np.sum', (['(u[:k] ** 2)'], {}), '(u[:k] ** 2)\n', (63292, 63304), True, 'import numpy as np\n'), ((67763, 67777), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (67771, 67777), True, 'import numpy as np\n'), ((67943, 67957), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (67954, 67957), True, 'import scipy.sparse as sparse\n'), ((68601, 68613), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (68610, 68613), True, 'import numpy as np\n'), ((68646, 68665), 'numpy.zeros', 'np.zeros', (['(numl, n)'], {}), '((numl, n))\n', (68654, 68665), True, 'import numpy as np\n'), ((69556, 69570), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (69567, 69570), True, 'import scipy.sparse as sparse\n'), ((72063, 72077), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (72071, 72077), True, 'import numpy as np\n'), ((72227, 72244), 'numpy.unique', 'np.unique', (['L_true'], {}), '(L_true)\n', (72236, 72244), True, 'import numpy as np\n'), ((72292, 72341), 'numpy.zeros', 'np.zeros', (['(num_classes, num_classes)'], {'dtype': 'float'}), '((num_classes, num_classes), dtype=float)\n', (72300, 72341), True, 'import numpy as np\n'), ((72490, 72518), 'scipy.optimize.linear_sum_assignment', 'opt.linear_sum_assignment', (['C'], {}), '(C)\n', (72515, 72518), True, 'import scipy.optimize as opt\n'), ((74341, 74369), 'numpy.random.randint', 'random.randint', (['(0)', 'k'], {'size': 'n'}), '(0, k, size=n)\n', (74355, 74369), True, 'import numpy.random as random\n'), ((74400, 74416), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (74408, 74416), True, 'import numpy as np\n'), ((75173, 75204), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['W'], {}), '(W)\n', (75201, 75204), True, 'import scipy.sparse.csgraph as csgraph\n'), ((82388, 82406), 'numpy.unique', 'np.unique', (['X[:, 0]'], {}), '(X[:, 0])\n', (82397, 82406), True, 'import numpy as np\n'), ((86343, 86379), 'numpy.array', 'np.array', (['[[1.0, 0, 0], [0, 0.9, 0]]'], {}), '([[1.0, 0, 0], [0, 0.9, 0]])\n', (86351, 86379), True, 'import numpy as np\n'), ((86460, 86474), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (86471, 86474), True, 'import scipy.sparse as sparse\n'), ((87017, 87032), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (87025, 87032), True, 'import matplotlib.pyplot as plt\n'), ((87463, 87475), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (87473, 87475), True, 'import matplotlib.pyplot as plt\n'), ((87558, 87603), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 16}"], {}), "({'font.size': 16})\n", (87584, 87603), False, 'import matplotlib\n'), ((88541, 88581), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of labels per class"""'], {}), "('Number of labels per class')\n", (88551, 88581), True, 'import matplotlib.pyplot as plt\n'), ((88813, 88831), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (88829, 88831), True, 'import matplotlib.pyplot as plt\n'), ((88836, 88850), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (88844, 88850), True, 'import matplotlib.pyplot as plt\n'), ((89202, 89219), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (89211, 89219), True, 'import numpy as np\n'), ((89287, 89301), 'numpy.zeros', 'np.zeros', (['(m,)'], {}), '((m,))\n', (89295, 89301), True, 'import numpy as np\n'), ((89382, 89415), 'numpy.unique', 'np.unique', (['num'], {'return_index': '(True)'}), '(num, return_index=True)\n', (89391, 89415), True, 'import numpy as np\n'), ((89869, 89882), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (89876, 89882), True, 'import numpy as np\n'), ((89891, 89904), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (89898, 89904), True, 'import numpy as np\n'), ((89945, 89964), 'numpy.transpose', 'np.transpose', (['(D * W)'], {}), '(D * W)\n', (89957, 89964), True, 'import numpy as np\n'), ((2074, 2117), 'os.path.join', 'os.path.join', (['location', '"""MBOdata"""', 'dataFile'], {}), "(location, 'MBOdata', dataFile)\n", (2086, 2117), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2130, 2171), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (2137, 2171), True, 'import numpy as np\n'), ((2559, 2585), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2575, 2585), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2770, 2811), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (2777, 2811), True, 'import numpy as np\n'), ((3497, 3523), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (3513, 3523), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3630, 3671), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (3637, 3671), True, 'import numpy as np\n'), ((3852, 3878), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (3868, 3878), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4020, 4061), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (4027, 4061), True, 'import numpy as np\n'), ((4270, 4296), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (4286, 4296), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4451, 4492), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (4458, 4492), True, 'import numpy as np\n'), ((5301, 5337), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(d ** -alpha)', '(0)', 'n', 'n'], {}), '(d ** -alpha, 0, n, n)\n', (5315, 5337), True, 'import scipy.sparse as sparse\n'), ((5595, 5604), 'numpy.max', 'np.max', (['V'], {}), '(V)\n', (5601, 5604), True, 'import numpy as np\n'), ((6608, 6638), 'numpy.sum', 'np.sum', (['(labels == labelvals[i])'], {}), '(labels == labelvals[i])\n', (6614, 6638), True, 'import numpy as np\n'), ((9215, 9228), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (9222, 9228), True, 'import numpy as np\n'), ((10314, 10328), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (10325, 10328), True, 'import scipy.sparse as sparse\n'), ((10866, 10880), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (10877, 10880), True, 'import scipy.sparse as sparse\n'), ((12012, 12038), 'numpy.ones', 'np.ones', (['(n, k)'], {'dtype': 'int'}), '((n, k), dtype=int)\n', (12019, 12038), True, 'import numpy as np\n'), ((14479, 14522), 'numpy.random.choice', 'random.choice', (['I.shape[1]', 'k'], {'replace': '(False)'}), '(I.shape[1], k, replace=False)\n', (14492, 14522), True, 'import numpy.random as random\n'), ((16521, 16540), 'numpy.sum', 'np.sum', (['(labels == i)'], {}), '(labels == i)\n', (16527, 16540), True, 'import numpy as np\n'), ((17700, 17740), 'numpy.linalg.norm', 'np.linalg.norm', (['X'], {'axis': '(1)', 'keepdims': '(True)'}), '(X, axis=1, keepdims=True)\n', (17714, 17740), True, 'import numpy as np\n'), ((18009, 18034), 'numpy.array', 'np.array', (['mask[node_i, :]'], {}), '(mask[node_i, :])\n', (18017, 18034), True, 'import numpy as np\n'), ((18729, 18755), 'numpy.arange', 'np.arange', (['(0)', 'num_of_nodes'], {}), '(0, num_of_nodes)\n', (18738, 18755), True, 'import numpy as np\n'), ((20240, 20263), 'numpy.sum', 'np.sum', (['(nu * nu)'], {'axis': '(0)'}), '(nu * nu, axis=0)\n', (20246, 20263), True, 'import numpy as np\n'), ((21394, 21417), 'numpy.sum', 'np.sum', (['(nu * nu)'], {'axis': '(0)'}), '(nu * nu, axis=0)\n', (21400, 21417), True, 'import numpy as np\n'), ((22972, 23003), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['L', 'f'], {'tol': 'tol', 'M': 'M'}), '(L, f, tol=tol, M=M)\n', (22983, 23003), True, 'import scipy.sparse.linalg as splinalg\n'), ((23029, 23067), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['L', 'f'], {'x0': 'x0', 'tol': 'tol', 'M': 'M'}), '(L, f, x0=x0, tol=tol, M=M)\n', (23040, 23067), True, 'import scipy.sparse.linalg as splinalg\n'), ((24343, 24374), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['A', 'b'], {'tol': 'tol', 'M': 'M'}), '(A, b, tol=tol, M=M)\n', (24354, 24374), True, 'import scipy.sparse.linalg as splinalg\n'), ((24400, 24443), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['A', 'b'], {'x0': 'x0[idx]', 'tol': 'tol', 'M': 'M'}), '(A, b, x0=x0[idx], tol=tol, M=M)\n', (24411, 24443), True, 'import scipy.sparse.linalg as splinalg\n'), ((24880, 24901), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (24886, 24901), True, 'import numpy as np\n'), ((24984, 25001), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (24993, 25001), True, 'import numpy as np\n'), ((25269, 25286), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (25278, 25286), True, 'import numpy as np\n'), ((25407, 25432), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (25423, 25432), True, 'import numpy as np\n'), ((25686, 25703), 'numpy.vstack', 'np.vstack', (['(x, y)'], {}), '((x, y))\n', (25695, 25703), True, 'import numpy as np\n'), ((26374, 26400), 'numpy.append', 'np.append', (['u', '[0, 0, 0, 0]'], {}), '(u, [0, 0, 0, 0])\n', (26383, 26400), True, 'import numpy as np\n'), ((27118, 27128), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (27125, 27128), True, 'import numpy as np\n'), ((27551, 27575), 'numpy.sum', 'np.sum', (['(Tri >= n)'], {'axis': '(1)'}), '(Tri >= n, axis=1)\n', (27557, 27575), True, 'import numpy as np\n'), ((28329, 28345), 'numpy.sum', 'np.sum', (['(s[I] * g)'], {}), '(s[I] * g)\n', (28335, 28345), True, 'import numpy as np\n'), ((28385, 28395), 'numpy.mean', 'np.mean', (['u'], {}), '(u)\n', (28392, 28395), True, 'import numpy as np\n'), ((28626, 28636), 'numpy.mean', 'np.mean', (['u'], {}), '(u)\n', (28633, 28636), True, 'import numpy as np\n'), ((30578, 30587), 'numpy.max', 'np.max', (['g'], {}), '(g)\n', (30584, 30587), True, 'import numpy as np\n'), ((30590, 30603), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (30597, 30603), True, 'import numpy as np\n'), ((30613, 30622), 'numpy.min', 'np.min', (['g'], {}), '(g)\n', (30619, 30622), True, 'import numpy as np\n'), ((30625, 30638), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (30632, 30638), True, 'import numpy as np\n'), ((31085, 31127), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['uu'], {'dtype': 'np.float64'}), '(uu, dtype=np.float64)\n', (31105, 31127), True, 'import numpy as np\n'), ((31141, 31183), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ul'], {'dtype': 'np.float64'}), '(ul, dtype=np.float64)\n', (31161, 31183), True, 'import numpy as np\n'), ((31197, 31237), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (31217, 31237), True, 'import numpy as np\n'), ((31251, 31291), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (31271, 31291), True, 'import numpy as np\n'), ((31305, 31347), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (31325, 31347), True, 'import numpy as np\n'), ((31360, 31399), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (31380, 31399), True, 'import numpy as np\n'), ((31412, 31453), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.float64'}), '(g, dtype=np.float64)\n', (31432, 31453), True, 'import numpy as np\n'), ((31463, 31527), 'cmodules.cgraphpy.lp_iterate', 'cgp.lp_iterate', (['uu', 'ul', 'WI', 'WJ', 'WV', 'I', 'g', 'p', '(1000000.0)', '(0.1)', '(0.0)'], {}), '(uu, ul, WI, WJ, WV, I, g, p, 1000000.0, 0.1, 0.0)\n', (31477, 31527), True, 'import cmodules.cgraphpy as cgp\n'), ((34001, 34015), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (34012, 34015), True, 'import scipy.sparse as sparse\n'), ((34681, 34699), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (34696, 34699), True, 'import scipy.sparse as sparse\n'), ((35241, 35260), 'numpy.sort', 'np.sort', (['(-X)'], {'axis': '(0)'}), '(-X, axis=0)\n', (35248, 35260), True, 'import numpy as np\n'), ((35296, 35311), 'numpy.ones', 'np.ones', (['(k, k)'], {}), '((k, k))\n', (35303, 35311), True, 'import numpy as np\n'), ((37044, 37056), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (37053, 37056), True, 'import numpy as np\n'), ((37105, 37117), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (37114, 37117), True, 'import numpy as np\n'), ((38140, 38152), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (38149, 38152), True, 'import numpy as np\n'), ((39176, 39188), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (39185, 39188), True, 'import numpy as np\n'), ((39790, 39800), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (39797, 39800), True, 'import numpy as np\n'), ((40775, 40804), 'numpy.sum', 'np.sum', (['(g == unique_labels[i])'], {}), '(g == unique_labels[i])\n', (40781, 40804), True, 'import numpy as np\n'), ((40969, 40979), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (40976, 40979), True, 'import numpy as np\n'), ((41093, 41111), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (41099, 41111), True, 'import numpy as np\n'), ((41659, 41677), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (41674, 41677), True, 'import scipy.sparse as sparse\n'), ((43073, 43090), 'torch.Size', 'torch.Size', (['shape'], {}), '(shape)\n', (43083, 43090), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((43207, 43219), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (43216, 43219), True, 'import numpy as np\n'), ((43700, 43710), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (43707, 43710), True, 'import numpy as np\n'), ((44027, 44037), 'numpy.copy', 'np.copy', (['u'], {}), '(u)\n', (44034, 44037), True, 'import numpy as np\n'), ((44990, 45002), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (44999, 45002), True, 'import numpy as np\n'), ((45108, 45118), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (45115, 45118), True, 'import numpy as np\n'), ((45256, 45266), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (45263, 45266), True, 'import numpy as np\n'), ((45518, 45536), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (45533, 45536), True, 'import scipy.sparse as sparse\n'), ((45637, 45647), 'numpy.copy', 'np.copy', (['P'], {}), '(P)\n', (45644, 45647), True, 'import numpy as np\n'), ((46433, 46445), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (46442, 46445), True, 'import numpy as np\n'), ((46551, 46561), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (46558, 46561), True, 'import numpy as np\n'), ((46683, 46701), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(0)'}), '(Kg, axis=0)\n', (46689, 46701), True, 'import numpy as np\n'), ((47800, 47812), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (47809, 47812), True, 'import numpy as np\n'), ((49411, 49424), 'numpy.ones', 'np.ones', (['(k,)'], {}), '((k,))\n', (49418, 49424), True, 'import numpy as np\n'), ((49868, 49898), 'numpy.clip', 'np.clip', (['(s + dt * grad)', '(0.5)', '(2)'], {}), '(s + dt * grad, 0.5, 2)\n', (49875, 49898), True, 'import numpy as np\n'), ((50346, 50358), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (50355, 50358), True, 'import numpy as np\n'), ((50524, 50534), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (50531, 50534), True, 'import numpy as np\n'), ((50648, 50666), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (50654, 50666), True, 'import numpy as np\n'), ((51055, 51073), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (51070, 51073), True, 'import scipy.sparse as sparse\n'), ((52422, 52432), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (52429, 52432), True, 'import numpy as np\n'), ((52781, 52791), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (52788, 52791), True, 'import numpy as np\n'), ((52905, 52923), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (52911, 52923), True, 'import numpy as np\n'), ((53266, 53275), 'numpy.sum', 'np.sum', (['v'], {}), '(v)\n', (53272, 53275), True, 'import numpy as np\n'), ((54920, 54935), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (54932, 54935), True, 'import numpy as np\n'), ((55192, 55220), 'numpy.ones', 'np.ones', (['n'], {'dtype': 'np.float32'}), '(n, dtype=np.float32)\n', (55199, 55220), True, 'import numpy as np\n'), ((55434, 55444), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (55441, 55444), True, 'import numpy as np\n'), ((55558, 55576), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (55564, 55576), True, 'import numpy as np\n'), ((57803, 57818), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (57815, 57818), True, 'import numpy as np\n'), ((58039, 58051), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (58048, 58051), True, 'import numpy as np\n'), ((58359, 58370), 'numpy.max', 'np.max', (['deg'], {}), '(deg)\n', (58365, 58370), True, 'import numpy as np\n'), ((58546, 58556), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (58553, 58556), True, 'import numpy as np\n'), ((58669, 58687), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (58675, 58687), True, 'import numpy as np\n'), ((58769, 58784), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (58781, 58784), True, 'import numpy as np\n'), ((63617, 63630), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (63624, 63630), True, 'import numpy as np\n'), ((63660, 63684), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (63667, 63684), True, 'import numpy as np\n'), ((63855, 63869), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (63866, 63869), True, 'import scipy.sparse as sparse\n'), ((64122, 64163), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.float64'}), '(u, dtype=np.float64)\n', (64142, 64163), True, 'import numpy as np\n'), ((64176, 64215), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (64196, 64215), True, 'import numpy as np\n'), ((64229, 64269), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (64249, 64269), True, 'import numpy as np\n'), ((64283, 64325), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (64303, 64325), True, 'import numpy as np\n'), ((64338, 64377), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (64358, 64377), True, 'import numpy as np\n'), ((64390, 64429), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (64410, 64429), True, 'import numpy as np\n'), ((64442, 64483), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.float64'}), '(g, dtype=np.float64)\n', (64462, 64483), True, 'import numpy as np\n'), ((64493, 64533), 'cmodules.cgraphpy.dijkstra', 'cgp.dijkstra', (['u', 'l', 'WI', 'K', 'WV', 'I', 'g', '(1.0)'], {}), '(u, l, WI, K, WV, I, g, 1.0)\n', (64505, 64533), True, 'import cmodules.cgraphpy as cgp\n'), ((64778, 64791), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (64785, 64791), True, 'import numpy as np\n'), ((64821, 64845), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (64828, 64845), True, 'import numpy as np\n'), ((65016, 65030), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (65027, 65030), True, 'import scipy.sparse as sparse\n'), ((65283, 65324), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.float64'}), '(u, dtype=np.float64)\n', (65303, 65324), True, 'import numpy as np\n'), ((65337, 65376), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (65357, 65376), True, 'import numpy as np\n'), ((65390, 65430), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (65410, 65430), True, 'import numpy as np\n'), ((65444, 65486), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (65464, 65486), True, 'import numpy as np\n'), ((65499, 65538), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (65519, 65538), True, 'import numpy as np\n'), ((65551, 65590), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (65571, 65590), True, 'import numpy as np\n'), ((65603, 65642), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (65623, 65642), True, 'import numpy as np\n'), ((65652, 65700), 'cmodules.cgraphpy.HJsolver', 'cgp.HJsolver', (['u', 'l', 'WI', 'K', 'WV', 'I', 'g', '(1.0)', 'p', '(1.0)'], {}), '(u, l, WI, K, WV, I, g, 1.0, p, 1.0)\n', (65664, 65700), True, 'import cmodules.cgraphpy as cgp\n'), ((67808, 67832), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (67815, 67832), True, 'import numpy as np\n'), ((68221, 68262), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['d'], {'dtype': 'np.float64'}), '(d, dtype=np.float64)\n', (68241, 68262), True, 'import numpy as np\n'), ((68275, 68314), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (68295, 68314), True, 'import numpy as np\n'), ((68328, 68368), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (68348, 68368), True, 'import numpy as np\n'), ((68382, 68424), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (68402, 68424), True, 'import numpy as np\n'), ((68437, 68476), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (68457, 68476), True, 'import numpy as np\n'), ((68489, 68528), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (68509, 68528), True, 'import numpy as np\n'), ((69370, 69383), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (69377, 69383), True, 'import numpy as np\n'), ((69421, 69445), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (69428, 69445), True, 'import numpy as np\n'), ((69827, 69868), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['d'], {'dtype': 'np.float64'}), '(d, dtype=np.float64)\n', (69847, 69868), True, 'import numpy as np\n'), ((69881, 69920), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (69901, 69920), True, 'import numpy as np\n'), ((69934, 69974), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (69954, 69974), True, 'import numpy as np\n'), ((69988, 70030), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (70008, 70030), True, 'import numpy as np\n'), ((70043, 70082), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (70063, 70082), True, 'import numpy as np\n'), ((70095, 70134), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (70115, 70134), True, 'import numpy as np\n'), ((70216, 70259), 'cmodules.cgraphpy.dijkstra', 'cgp.dijkstra', (['d', 'l', 'WI', 'K', 'WV', 'I', 'init', '(1.0)'], {}), '(d, l, WI, K, WV, I, init, 1.0)\n', (70228, 70259), True, 'import cmodules.cgraphpy as cgp\n'), ((72887, 72925), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'k': 'k', 'which': '"""SM"""'}), "(L, k=k, which='SM')\n", (72905, 72925), True, 'import scipy.sparse as sparse\n'), ((74825, 74845), 'numpy.argmax', 'np.argmax', (['F'], {'axis': '(1)'}), '(F, axis=1)\n', (74834, 74845), True, 'import numpy as np\n'), ((80287, 80303), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (80295, 80303), True, 'import numpy as np\n'), ((80335, 80347), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (80344, 80347), True, 'import numpy as np\n'), ((81455, 81470), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (81467, 81470), True, 'import numpy as np\n'), ((81529, 81549), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (81538, 81549), True, 'import numpy as np\n'), ((81864, 81899), 'csv.reader', 'csv.reader', (['csv_file'], {'delimiter': '""","""'}), "(csv_file, delimiter=',')\n", (81874, 81899), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((82511, 82521), 'numpy.sort', 'np.sort', (['Y'], {}), '(Y)\n', (82518, 82521), True, 'import numpy as np\n'), ((86667, 86739), 'matplotlib.pyplot.plot', 'plt.plot', (['xval', 'yval'], {'color': '[0.5, 0.5, 0.5]', 'linewidth': '(0.5)', 'markersize': '(0)'}), '(xval, yval, color=[0.5, 0.5, 0.5], linewidth=0.5, markersize=0)\n', (86675, 86739), True, 'import matplotlib.pyplot as plt\n'), ((86825, 86869), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(8)', 'zorder': '(3)'}), '(X[:, 0], X[:, 1], s=8, zorder=3)\n', (86836, 86869), True, 'import matplotlib.pyplot as plt\n'), ((86951, 87011), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(8)', 'c': 'colors[l, :]', 'zorder': '(3)'}), '(X[:, 0], X[:, 1], s=8, c=colors[l, :], zorder=3)\n', (86962, 87011), True, 'import matplotlib.pyplot as plt\n'), ((87502, 87553), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'errorbar.capsize': 5}"], {}), "({'errorbar.capsize': 5})\n", (87528, 87553), False, 'import matplotlib\n'), ((88608, 88636), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Test error (%)"""'], {}), "('Test error (%)')\n", (88618, 88636), True, 'import matplotlib.pyplot as plt\n'), ((88645, 88674), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (88655, 88674), True, 'import matplotlib.pyplot as plt\n'), ((88693, 88719), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy (%)"""'], {}), "('Accuracy (%)')\n", (88703, 88719), True, 'import matplotlib.pyplot as plt\n'), ((88728, 88757), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (88738, 88757), True, 'import matplotlib.pyplot as plt\n'), ((88792, 88808), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (88801, 88808), True, 'import matplotlib.pyplot as plt\n'), ((88888, 88909), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savefile'], {}), '(savefile)\n', (88899, 88909), True, 'import matplotlib.pyplot as plt\n'), ((88928, 88938), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (88936, 88938), True, 'import matplotlib.pyplot as plt\n'), ((89738, 89751), 'numpy.array', 'np.array', (['ind'], {}), '(ind)\n', (89746, 89751), True, 'import numpy as np\n'), ((100108, 100473), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz"""', "['dataset=', 'metric=', 'knn=', 'algorithm=', 'p=', 'normalization=',\n 'volume_constraint=', 'num_classes=', 'speed=', 'num_iter=',\n 'extra_dim=', 'num_trials=', 'cuda', 'label_perm=', 'temperature=',\n 'num_cores=', 'results', 'verbose', 'poisson_training_balance', 'directed']"], {}), "(sys.argv[1:], 'hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz', [\n 'dataset=', 'metric=', 'knn=', 'algorithm=', 'p=', 'normalization=',\n 'volume_constraint=', 'num_classes=', 'speed=', 'num_iter=',\n 'extra_dim=', 'num_trials=', 'cuda', 'label_perm=', 'temperature=',\n 'num_cores=', 'results', 'verbose', 'poisson_training_balance', 'directed']\n )\n", (100121, 100473), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((1949, 1975), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1965, 1975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2426, 2437), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2434, 2437), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2964, 2975), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2972, 2975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3764, 3775), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (3772, 3775), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4165, 4176), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (4173, 4176), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4659, 4670), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (4667, 4670), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4931, 4953), 'numpy.sum', 'np.sum', (['(labels == L[i])'], {}), '(labels == L[i])\n', (4937, 4953), True, 'import numpy as np\n'), ((5614, 5658), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V, (I, J))'], {'shape': '(n, n)'}), '((V, (I, J)), shape=(n, n))\n', (5631, 5658), True, 'import scipy.sparse as sparse\n'), ((6648, 6660), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (6657, 6660), True, 'import numpy as np\n'), ((7010, 7021), 'numpy.array', 'np.array', (['L'], {}), '(L)\n', (7018, 7021), True, 'import numpy as np\n'), ((7450, 7462), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (7459, 7462), True, 'import numpy as np\n'), ((7974, 7985), 'numpy.array', 'np.array', (['L'], {}), '(L)\n', (7982, 7985), True, 'import numpy as np\n'), ((8488, 8505), 'numpy.sum', 'np.sum', (['W'], {'axis': '(1)'}), '(W, axis=1)\n', (8494, 8505), True, 'import numpy as np\n'), ((10422, 10485), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * pa / (a + 1e-13), (I, J))'], {'shape': '(n, n)'}), '((V * pa / (a + 1e-13), (I, J)), shape=(n, n))\n', (10439, 10485), True, 'import scipy.sparse as sparse\n'), ((10621, 10638), 'numpy.sum', 'np.sum', (['M'], {'axis': '(1)'}), '(M, axis=1)\n', (10627, 10638), True, 'import numpy as np\n'), ((10889, 10949), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * (u[J] - u[I]), (I, J))'], {'shape': '(n, n)'}), '((V * (u[J] - u[I]), (I, J)), shape=(n, n))\n', (10906, 10949), True, 'import scipy.sparse as sparse\n'), ((11606, 11621), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (11615, 11621), True, 'import numpy as np\n'), ((11667, 11682), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (11676, 11682), True, 'import numpy as np\n'), ((13791, 13835), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (13808, 13835), True, 'import scipy.sparse as sparse\n'), ((14874, 14918), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (14891, 14918), True, 'import scipy.sparse as sparse\n'), ((15398, 15442), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (15415, 15442), True, 'import scipy.sparse as sparse\n'), ((15785, 15829), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(Y, (I, J))'], {'shape': '(n, n)'}), '((Y, (I, J)), shape=(n, n))\n', (15802, 15829), True, 'import scipy.sparse as sparse\n'), ((15916, 15965), 'scipy.sparse.spdiags', 'sparse.spdiags', (['((max_dist + 1e-10) ** -1)', '(0)', 'n', 'n'], {}), '((max_dist + 1e-10) ** -1, 0, n, n)\n', (15930, 15965), True, 'import scipy.sparse as sparse\n'), ((16051, 16095), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V, (I, J))'], {'shape': '(n, n)'}), '((V, (I, J)), shape=(n, n))\n', (16068, 16095), True, 'import scipy.sparse as sparse\n'), ((17390, 17434), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (17407, 17434), True, 'import scipy.sparse as sparse\n'), ((18086, 18120), 'numpy.where', 'np.where', (['(non_zero_index == node_i)'], {}), '(non_zero_index == node_i)\n', (18094, 18120), True, 'import numpy as np\n'), ((18628, 18641), 'numpy.sum', 'np.sum', (['x_opt'], {}), '(x_opt)\n', (18634, 18641), True, 'import numpy as np\n'), ((20498, 20532), 'numpy.swapaxes', 'np.swapaxes', (['NN_nu[:, 1:, :]', '(0)', '(1)'], {}), '(NN_nu[:, 1:, :], 0, 1)\n', (20509, 20532), True, 'import numpy as np\n'), ((22365, 22395), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / M)', '(0)', 'm', 'm'], {}), '(1 / M, 0, m, m)\n', (22379, 22395), True, 'import scipy.sparse as sparse\n'), ((22899, 22929), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / M)', '(0)', 'm', 'm'], {}), '(1 / M, 0, m, m)\n', (22913, 22929), True, 'import scipy.sparse as sparse\n'), ((24259, 24299), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / (M + 1e-10))', '(0)', 'm', 'm'], {}), '(1 / (M + 1e-10), 0, m, m)\n', (24273, 24299), True, 'import scipy.sparse as sparse\n'), ((25211, 25232), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (25217, 25232), True, 'import numpy as np\n'), ((25576, 25594), 'numpy.random.rand', 'random.rand', (['(3 * n)'], {}), '(3 * n)\n', (25587, 25594), True, 'import numpy.random as random\n'), ((25644, 25662), 'numpy.random.rand', 'random.rand', (['(3 * n)'], {}), '(3 * n)\n', (25655, 25662), True, 'import numpy.random as random\n'), ((25735, 25754), 'numpy.sqrt', 'np.sqrt', (['(1 - x ** 2)'], {}), '(1 - x ** 2)\n', (25742, 25754), True, 'import numpy as np\n'), ((25766, 25779), 'numpy.cos', 'np.cos', (['(3 * x)'], {}), '(3 * x)\n', (25772, 25779), True, 'import numpy as np\n'), ((26568, 26597), 'numpy.unique', 'np.unique', (['nn_tri[nn_tri < n]'], {}), '(nn_tri[nn_tri < n])\n', (26577, 26597), True, 'import numpy as np\n'), ((26617, 26635), 'numpy.mean', 'np.mean', (['u[nn_tri]'], {}), '(u[nn_tri])\n', (26624, 26635), True, 'import numpy as np\n'), ((28791, 28817), 'scipy.sparse.spdiags', 'sparse.spdiags', (['a', '(0)', 'n', 'n'], {}), '(a, 0, n, n)\n', (28805, 28817), True, 'import scipy.sparse as sparse\n'), ((29609, 29639), 'scipy.sparse.spdiags', 'sparse.spdiags', (['gamma', '(0)', 'n', 'n'], {}), '(gamma, 0, n, n)\n', (29623, 29639), True, 'import scipy.sparse as sparse\n'), ((34025, 34085), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * (u[J] - u[I]), (I, J))'], {'shape': '(n, n)'}), '((V * (u[J] - u[I]), (I, J)), shape=(n, n))\n', (34042, 34085), True, 'import scipy.sparse as sparse\n'), ((36907, 36917), 'sys.exit', 'sys.exit', ([], {}), '()\n', (36915, 36917), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((38097, 38107), 'sys.exit', 'sys.exit', ([], {}), '()\n', (38105, 38107), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((39440, 39451), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (39448, 39451), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((40288, 40308), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (40297, 40308), True, 'import numpy as np\n'), ((42629, 42649), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (42638, 42649), True, 'import numpy as np\n'), ((44641, 44661), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (44650, 44661), True, 'import numpy as np\n'), ((46265, 46276), 'numpy.array', 'np.array', (['u'], {}), '(u)\n', (46273, 46276), True, 'import numpy as np\n'), ((47032, 47049), 'numpy.linalg.norm', 'np.linalg.norm', (['w'], {}), '(w)\n', (47046, 47049), True, 'import numpy as np\n'), ((47330, 47344), 'numpy.absolute', 'np.absolute', (['w'], {}), '(w)\n', (47341, 47344), True, 'import numpy as np\n'), ((47483, 47503), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (47492, 47503), True, 'import numpy as np\n'), ((51857, 51877), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (51866, 51877), True, 'import numpy as np\n'), ((53828, 53859), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (53846, 53859), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((55269, 55282), 'numpy.max', 'np.max', (['error'], {}), '(error)\n', (55275, 55282), True, 'import numpy as np\n'), ((56478, 56508), 'torch.sparse.addmm', 'torch.sparse.addmm', (['bt', 'Wt', 'ut'], {}), '(bt, Wt, ut)\n', (56496, 56508), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((56577, 56603), 'numpy.linalg.norm', 'np.linalg.norm', (['(v - v_prev)'], {}), '(v - v_prev)\n', (56591, 56603), True, 'import numpy as np\n'), ((56937, 56988), 'numpy.clip', 'np.clip', (['(b + confidence_gain * u)'], {'a_min': '(-1)', 'a_max': '(1)'}), '(b + confidence_gain * u, a_min=-1, a_max=1)\n', (56944, 56988), True, 'import numpy as np\n'), ((57057, 57083), 'numpy.linalg.norm', 'np.linalg.norm', (['(v - v_prev)'], {}), '(v - v_prev)\n', (57071, 57083), True, 'import numpy as np\n'), ((58975, 58990), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (58987, 58990), True, 'import numpy as np\n'), ((58993, 59011), 'numpy.mean', 'np.mean', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (59000, 59011), True, 'import numpy as np\n'), ((60798, 60818), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (60807, 60818), True, 'import numpy as np\n'), ((63318, 63344), 'numpy.sqrt', 'np.sqrt', (['(b * b - k * c + k)'], {}), '(b * b - k * c + k)\n', (63325, 63344), True, 'import numpy as np\n'), ((63370, 63390), 'numpy.maximum', 'np.maximum', (['(t - u)', '(0)'], {}), '(t - u, 0)\n', (63380, 63390), True, 'import numpy as np\n'), ((64605, 64616), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (64613, 64616), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((65873, 65899), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (65881, 65899), True, 'import numpy as np\n'), ((65989, 66015), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (65997, 66015), True, 'import numpy as np\n'), ((68798, 68839), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ind'], {'dtype': 'np.int32'}), '(ind, dtype=np.int32)\n', (68818, 68839), True, 'import numpy as np\n'), ((68858, 68899), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['lab'], {'dtype': 'np.int32'}), '(lab, dtype=np.int32)\n', (68878, 68899), True, 'import numpy as np\n'), ((68912, 68964), 'cmodules.cgraphpy.HJsolver', 'cgp.HJsolver', (['d', 'l', 'WI', 'K', 'WV', 'ind', 'lab', '(1.0)', 'p', '(0.0)'], {}), '(d, l, WI, K, WV, ind, lab, 1.0, p, 0.0)\n', (68924, 68964), True, 'import cmodules.cgraphpy as cgp\n'), ((69168, 69178), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (69175, 69178), True, 'import numpy as np\n'), ((70171, 70187), 'numpy.zeros_like', 'np.zeros_like', (['I'], {}), '(I)\n', (70184, 70187), True, 'import numpy as np\n'), ((70471, 70497), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (70479, 70497), True, 'import numpy as np\n'), ((70587, 70613), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (70595, 70613), True, 'import numpy as np\n'), ((72434, 72466), 'numpy.sum', 'np.sum', (['((L == i) & (L_true != j))'], {}), '((L == i) & (L_true != j))\n', (72440, 72466), True, 'import numpy as np\n'), ((73098, 73141), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'M': 'D', 'k': 'k', 'which': '"""SM"""'}), "(L, M=D, k=k, which='SM')\n", (73116, 73141), True, 'import scipy.sparse as sparse\n'), ((73565, 73593), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (73579, 73593), True, 'import sklearn.cluster as cluster\n'), ((73785, 73813), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (73799, 73813), True, 'import sklearn.cluster as cluster\n'), ((74425, 74437), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (74434, 74437), True, 'import numpy as np\n'), ((74756, 74765), 'numpy.min', 'np.min', (['F'], {}), '(F)\n', (74762, 74765), True, 'import numpy as np\n'), ((80241, 80253), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (80250, 80253), True, 'import numpy as np\n'), ((81568, 81580), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (81577, 81580), True, 'import numpy as np\n'), ((82096, 82107), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (82104, 82107), True, 'import numpy as np\n'), ((82538, 82548), 'numpy.mean', 'np.mean', (['Y'], {}), '(Y)\n', (82545, 82548), True, 'import numpy as np\n'), ((82611, 82620), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (82617, 82620), True, 'import numpy as np\n'), ((87767, 87812), 'os.path.join', 'os.path.join', (['log', "(dataset + '_' + ssl_method)"], {}), "(log, dataset + '_' + ssl_method)\n", (87779, 87812), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((89563, 89578), 'numpy.sum', 'np.sum', (['(pl == l)'], {}), '(pl == l)\n', (89569, 89578), True, 'import numpy as np\n'), ((89623, 89643), 'numpy.argsort', 'np.argsort', (['(-rank[K])'], {}), '(-rank[K])\n', (89633, 89643), True, 'import numpy as np\n'), ((90066, 90084), 'numpy.absolute', 'np.absolute', (['(w - u)'], {}), '(w - u)\n', (90077, 90084), True, 'import numpy as np\n'), ((97712, 97735), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (97733, 97735), False, 'import datetime\n'), ((98226, 98237), 'time.time', 'time.time', ([], {}), '()\n', (98235, 98237), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((99184, 99211), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (99209, 99211), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((99232, 99258), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'num_cores'}), '(n_jobs=num_cores)\n', (99240, 99258), False, 'from joblib import Parallel, delayed\n'), ((100655, 100666), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (100663, 100666), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((100754, 100764), 'sys.exit', 'sys.exit', ([], {}), '()\n', (100762, 100764), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((11548, 11558), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (11555, 11558), True, 'import numpy as np\n'), ((18294, 18335), 'numpy.dot', 'np.dot', (['x_neighbors', 'X_normalized[node_i]'], {}), '(x_neighbors, X_normalized[node_i])\n', (18300, 18335), True, 'import numpy as np\n'), ((18360, 18394), 'numpy.dot', 'np.dot', (['x_neighbors', 'x_neighbors.T'], {}), '(x_neighbors, x_neighbors.T)\n', (18366, 18394), True, 'import numpy as np\n'), ((20081, 20096), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (20093, 20096), True, 'import numpy as np\n'), ((21235, 21250), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (21247, 21250), True, 'import numpy as np\n'), ((30238, 30248), 'numpy.max', 'np.max', (['dx'], {}), '(dx)\n', (30244, 30248), True, 'import numpy as np\n'), ((31017, 31027), 'sys.exit', 'sys.exit', ([], {}), '()\n', (31025, 31027), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((33171, 33186), 'numpy.max', 'np.max', (['(uu - ul)'], {}), '(uu - ul)\n', (33177, 33186), True, 'import numpy as np\n'), ((33210, 33225), 'numpy.min', 'np.min', (['(uu - ul)'], {}), '(uu - ul)\n', (33216, 33225), True, 'import numpy as np\n'), ((34301, 34318), 'numpy.sum', 'np.sum', (['F'], {'axis': '(1)'}), '(F, axis=1)\n', (34307, 34318), True, 'import numpy as np\n'), ((35354, 35371), 'numpy.transpose', 'np.transpose', (['Sum'], {}), '(Sum)\n', (35366, 35371), True, 'import numpy as np\n'), ((35380, 35392), 'numpy.arange', 'np.arange', (['k'], {}), '(k)\n', (35389, 35392), True, 'import numpy as np\n'), ((40331, 40343), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (40340, 40343), True, 'import numpy as np\n'), ((42070, 42101), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (42088, 42101), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((42672, 42684), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (42681, 42684), True, 'import numpy as np\n'), ((44684, 44696), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (44693, 44696), True, 'import numpy as np\n'), ((45968, 45979), 'numpy.array', 'np.array', (['u'], {}), '(u)\n', (45976, 45979), True, 'import numpy as np\n'), ((46012, 46032), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (46021, 46032), True, 'import numpy as np\n'), ((47526, 47538), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (47535, 47538), True, 'import numpy as np\n'), ((50148, 50158), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (50155, 50158), True, 'import numpy as np\n'), ((51464, 51495), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (51482, 51495), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((51900, 51912), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (51909, 51912), True, 'import numpy as np\n'), ((53040, 53058), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (53055, 53058), True, 'import scipy.sparse as sparse\n'), ((54424, 54444), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (54433, 54444), True, 'import numpy as np\n'), ((54841, 54855), 'numpy.diag', 'np.diag', (['(1 / c)'], {}), '(1 / c)\n', (54848, 54855), True, 'import numpy as np\n'), ((54890, 54907), 'numpy.diag', 'np.diag', (['(beta / c)'], {}), '(beta / c)\n', (54897, 54907), True, 'import numpy as np\n'), ((57260, 57280), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (57269, 57280), True, 'import numpy as np\n'), ((57724, 57738), 'numpy.diag', 'np.diag', (['(1 / c)'], {}), '(1 / c)\n', (57731, 57738), True, 'import numpy as np\n'), ((57773, 57790), 'numpy.diag', 'np.diag', (['(beta / c)'], {}), '(beta / c)\n', (57780, 57790), True, 'import numpy as np\n'), ((60841, 60853), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (60850, 60853), True, 'import numpy as np\n'), ((63164, 63187), 'numpy.maximum', 'np.maximum', (['(u[i] - u)', '(0)'], {}), '(u[i] - u, 0)\n', (63174, 63187), True, 'import numpy as np\n'), ((65783, 65811), 'numpy.ones', 'np.ones', (['(n + 1,)'], {'dtype': 'int'}), '((n + 1,), dtype=int)\n', (65790, 65811), True, 'import numpy as np\n'), ((65928, 65952), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (65935, 65952), True, 'import numpy as np\n'), ((66047, 66071), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (66054, 66071), True, 'import numpy as np\n'), ((70381, 70409), 'numpy.ones', 'np.ones', (['(n + 1,)'], {'dtype': 'int'}), '((n + 1,), dtype=int)\n', (70388, 70409), True, 'import numpy as np\n'), ((70526, 70550), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (70533, 70550), True, 'import numpy as np\n'), ((73296, 73334), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'k': 'k', 'which': '"""SM"""'}), "(L, k=k, which='SM')\n", (73314, 73334), True, 'import scipy.sparse as sparse\n'), ((73399, 73424), 'numpy.sum', 'np.sum', (['(vec * vec)'], {'axis': '(1)'}), '(vec * vec, axis=1)\n', (73405, 73424), True, 'import numpy as np\n'), ((73437, 73479), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(norms ** (-1 / 2))', '(0)', 'n', 'n'], {}), '(norms ** (-1 / 2), 0, n, n)\n', (73451, 73479), True, 'import scipy.sparse as sparse\n'), ((88187, 88279), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['(N / num_of_classes)', 'acc'], {'fmt': 'styles[i]', 'yerr': 'stddev', 'label': 'legend_list[i]'}), '(N / num_of_classes, acc, fmt=styles[i], yerr=stddev, label=\n legend_list[i])\n', (88199, 88279), True, 'import matplotlib.pyplot as plt\n'), ((89660, 89675), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (89669, 89675), True, 'import numpy as np\n'), ((97627, 97652), 'os.path.exists', 'os.path.exists', (['"""Results"""'], {}), "('Results')\n", (97641, 97652), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((97670, 97692), 'os.makedirs', 'os.makedirs', (['"""Results"""'], {}), "('Results')\n", (97681, 97692), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((32753, 32769), 'numpy.absolute', 'np.absolute', (['res'], {}), '(res)\n', (32764, 32769), True, 'import numpy as np\n'), ((33076, 33092), 'numpy.absolute', 'np.absolute', (['res'], {}), '(res)\n', (33087, 33092), True, 'import numpy as np\n'), ((33632, 33642), 'sys.exit', 'sys.exit', ([], {}), '()\n', (33640, 33642), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((35066, 35085), 'numpy.sum', 'np.sum', (['(L == L_true)'], {}), '(L == L_true)\n', (35072, 35085), True, 'import numpy as np\n'), ((42465, 42480), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (42477, 42480), True, 'import numpy as np\n'), ((42483, 42501), 'numpy.mean', 'np.mean', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (42490, 42501), True, 'import numpy as np\n'), ((46059, 46071), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (46068, 46071), True, 'import numpy as np\n'), ((46971, 46986), 'numpy.transpose', 'np.transpose', (['e'], {}), '(e)\n', (46983, 46986), True, 'import numpy as np\n'), ((46994, 47009), 'numpy.transpose', 'np.transpose', (['e'], {}), '(e)\n', (47006, 47009), True, 'import numpy as np\n'), ((54471, 54483), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (54480, 54483), True, 'import numpy as np\n'), ((57307, 57319), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (57316, 57319), True, 'import numpy as np\n'), ((76224, 76234), 'sys.exit', 'sys.exit', ([], {}), '()\n', (76232, 76234), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((77350, 77362), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (77359, 77362), True, 'import numpy as np\n'), ((88340, 88408), 'matplotlib.pyplot.loglog', 'plt.loglog', (['(N / num_of_classes)', 'acc', 'styles[i]'], {'label': 'legend_list[i]'}), '(N / num_of_classes, acc, styles[i], label=legend_list[i])\n', (88350, 88408), True, 'import matplotlib.pyplot as plt\n'), ((88451, 88517), 'matplotlib.pyplot.plot', 'plt.plot', (['(N / num_of_classes)', 'acc', 'styles[i]'], {'label': 'legend_list[i]'}), '(N / num_of_classes, acc, styles[i], label=legend_list[i])\n', (88459, 88517), True, 'import matplotlib.pyplot as plt\n'), ((99259, 99277), 'joblib.delayed', 'delayed', (['one_trial'], {}), '(one_trial)\n', (99266, 99277), False, 'from joblib import Parallel, delayed\n'), ((7818, 7847), 'numpy.round', 'np.round', (['(i * multiplier[ind])'], {}), '(i * multiplier[ind])\n', (7826, 7847), True, 'import numpy as np\n'), ((10550, 10560), 'numpy.sign', 'np.sign', (['w'], {}), '(w)\n', (10557, 10560), True, 'import numpy as np\n'), ((15864, 15881), 'numpy.max', 'np.max', (['W'], {'axis': '(1)'}), '(W, axis=1)\n', (15870, 15881), True, 'import numpy as np\n'), ((45792, 45807), 'numpy.transpose', 'np.transpose', (['P'], {}), '(P)\n', (45804, 45807), True, 'import numpy as np\n'), ((45822, 45837), 'numpy.transpose', 'np.transpose', (['v'], {}), '(v)\n', (45834, 45837), True, 'import numpy as np\n'), ((49655, 49665), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (49662, 49665), True, 'import numpy as np\n'), ((53604, 53623), 'torch.from_numpy', 'torch.from_numpy', (['u'], {}), '(u)\n', (53620, 53623), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((53653, 53673), 'torch.from_numpy', 'torch.from_numpy', (['Db'], {}), '(Db)\n', (53669, 53673), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((53763, 53784), 'numpy.absolute', 'np.absolute', (['(v - vinf)'], {}), '(v - vinf)\n', (53774, 53784), True, 'import numpy as np\n'), ((54145, 54166), 'numpy.absolute', 'np.absolute', (['(v - vinf)'], {}), '(v - vinf)\n', (54156, 54166), True, 'import numpy as np\n'), ((56271, 56290), 'torch.from_numpy', 'torch.from_numpy', (['u'], {}), '(u)\n', (56287, 56290), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((56319, 56338), 'torch.from_numpy', 'torch.from_numpy', (['b'], {}), '(b)\n', (56335, 56338), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((98761, 98772), 'time.time', 'time.time', ([], {}), '()\n', (98770, 98772), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((41793, 41809), 'numpy.transpose', 'np.transpose', (['Db'], {}), '(Db)\n', (41805, 41809), True, 'import numpy as np\n'), ((51189, 51205), 'numpy.transpose', 'np.transpose', (['Db'], {}), '(Db)\n', (51201, 51205), True, 'import numpy as np\n'), ((74703, 74712), 'numpy.sum', 'np.sum', (['I'], {}), '(I)\n', (74709, 74712), True, 'import numpy as np\n'), ((78103, 78121), 'numpy.ones_like', 'np.ones_like', (['beta'], {}), '(beta)\n', (78115, 78121), True, 'import numpy as np\n'), ((7717, 7756), 'numpy.random.choice', 'random.choice', (['K'], {'size': 'i', 'replace': '(False)'}), '(K, size=i, replace=False)\n', (7730, 7756), True, 'import numpy.random as random\n'), ((7877, 7918), 'numpy.random.choice', 'random.choice', (['K'], {'size': 'sze', 'replace': '(False)'}), '(K, size=sze, replace=False)\n', (7890, 7918), True, 'import numpy.random as random\n'), ((41954, 41969), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (41966, 41969), True, 'import numpy as np\n'), ((51379, 51394), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (51391, 51394), True, 'import numpy as np\n'), ((80937, 80947), 'sys.exit', 'sys.exit', ([], {}), '()\n', (80945, 80947), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((81329, 81339), 'sys.exit', 'sys.exit', ([], {}), '()\n', (81337, 81339), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n')]
import datetime import numpy as np import garminmanager.utils.JsonEncDecC import garminmanager.utils.FileWriterC from garminmanager.enumerators.EnumHealthTypeC import EnumHealtTypeC def test_encode_decode(): raw_data = garminmanager.RawDataC.RawDataC() my_dates1 = { datetime.datetime(2019,4,11,1,00) : 100, datetime.datetime(2019,4,11,2,00) : np.nan, datetime.datetime(2019,4,11,3,00) : 100 } for key, value in my_dates1.items(): raw_data.add_x(key) raw_data.add_y(value) raw_data.set_data_type(EnumHealtTypeC.heartrate) json_enc_dec = garminmanager.utils.JsonEncDecC.JsonEncDecC() json_enc_dec.set_input_data(raw_data) json_string = json_enc_dec.encode() json_enc_dec.set_input_json(json_string) file_writer = garminmanager.utils.FileWriterC.FileWriterC() file_writer.set_filename('test.json') file_writer.set_text(json_string) file_writer.write_text_to_file() d = file_writer.read_json() json_enc_dec.set_input_json(d) json_enc_dec.decode() raw_data_output = json_enc_dec.get_data() x = raw_data_output.get_x() y = raw_data_output.get_y() org_x = raw_data.get_x() org_y = raw_data.get_y() y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 raw_data.set_y(y) raw_data_output.set_y(org_y) assert raw_data == raw_data_output
[ "numpy.isnan", "datetime.datetime" ]
[((289, 325), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(1)', '(0)'], {}), '(2019, 4, 11, 1, 0)\n', (306, 325), False, 'import datetime\n'), ((338, 374), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(2)', '(0)'], {}), '(2019, 4, 11, 2, 0)\n', (355, 374), False, 'import datetime\n'), ((390, 426), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(3)', '(0)'], {}), '(2019, 4, 11, 3, 0)\n', (407, 426), False, 'import datetime\n'), ((1240, 1251), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (1248, 1251), True, 'import numpy as np\n'), ((1270, 1285), 'numpy.isnan', 'np.isnan', (['org_y'], {}), '(org_y)\n', (1278, 1285), True, 'import numpy as np\n'), ((1301, 1312), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (1309, 1312), True, 'import numpy as np\n'), ((1331, 1346), 'numpy.isnan', 'np.isnan', (['org_y'], {}), '(org_y)\n', (1339, 1346), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ @date: 2020/2/29 下午7:31 @file: util.py @author: zj @description: """ import numpy as np import torch import sys def error(msg): print(msg) sys.exit(0) def get_device(): return torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def iou(pred_box, target_box): """ 计算候选建议和标注边界框的IoU :param pred_box: 大小为[4] :param target_box: 大小为[N, 4] :return: [N] """ if len(target_box.shape) == 1: target_box = target_box[np.newaxis, :] xA = np.maximum(pred_box[0], target_box[:, 0]) yA = np.maximum(pred_box[1], target_box[:, 1]) xB = np.minimum(pred_box[2], target_box[:, 2]) yB = np.minimum(pred_box[3], target_box[:, 3]) # 计算交集面积 intersection = np.maximum(0.0, xB - xA + 1) * np.maximum(0.0, yB - yA + 1) # 计算两个边界框面积 boxAArea = (pred_box[2] - pred_box[0] + 1) * (pred_box[3] - pred_box[1] + 1) boxBArea = (target_box[:, 2] - target_box[:, 0] + 1) * (target_box[:, 3] - target_box[:, 1] + 1) scores = intersection / (boxAArea + boxBArea - intersection) return scores def compute_ious(rects, bndboxs): iou_list = list() for rect in rects: scores = iou(rect, bndboxs) iou_list.append(max(scores)) return iou_list def parse_output(outputs, S, B, C): """ 每个网格保存置信度最高的检测边界框 :param outputs: (N, S*S, B*5+C) :return: cates, probs, bboxs cates: (N, S*S) probs: (N, S*S) bboxs: (N, S*S, 4) """ N = outputs.shape[0] # (N*S*S, C) probs = outputs[:, :, :C].reshape(-1, C) # (N*S*S, B) confidences = outputs[:, :, C:(C + B)].reshape(-1, B) # (N*S*S, 4*B) bboxs = outputs[:, :, (C + B):].reshape(-1, 4 * B) # 计算每个网格所属类别 (N*S*S) cates = torch.argmax(probs, dim=1) # 计算每个网格最高置信度 (N*S*S) idxs = torch.argmax(confidences, dim=1) # 计算分类概率 (N*S*S) cate_probs = probs[range(len(cates)), cates] * confidences[range(len(idxs)), idxs] # 计算对应边界框坐标 (N*S*S, 4) obj_boxs = bboxs[range(len(idxs)), idxs * 4: (idxs + 1) * 4] return cates.reshape(N, S * S), cate_probs(N, S * S), obj_boxs(N, S * S, 4) def bbox_corner_to_center(bboxs): """ [xmin, ymin, xmax, ymax] -> [x_center, y_center, w, h] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # w tmp[:, 2] = bboxs[:, 2] - bboxs[:, 0] + 1 # h tmp[:, 3] = bboxs[:, 3] - bboxs[:, 1] + 1 # x_center tmp[:, 0] = bboxs[:, 0] + tmp[:, 2] / 2 # y_center tmp[:, 1] = bboxs[:, 1] + tmp[:, 3] / 2 return tmp def bbox_center_to_corner(bboxs): """ [x_center, y_center, w, h] -> [xmin, ymin, xmax, ymax] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # xmin tmp[:, 0] = bboxs[:, 0] - bboxs[:, 2] / 2 # ymin tmp[:, 1] = bboxs[:, 1] - bboxs[:, 3] / 2 # xmax tmp[:, 2] = bboxs[:, 0] + bboxs[:, 2] / 2 # ymax tmp[:, 3] = bboxs[:, 1] + bboxs[:, 3] / 2 return tmp def deform_bboxs(pred_bboxs, data_dict, S): """ :param pred_bboxs: [S*S, 4] :return: """ scale_h, scale_w = data_dict['scale_size'] grid_w = scale_w / S grid_h = scale_h / S bboxs = np.zeros(pred_bboxs.shape) for i in range(S * S): row = int(i / S) col = int(i % S) x_center, y_center, box_w, box_h = pred_bboxs[i] bboxs[i, 0] = (col + x_center) * grid_w bboxs[i, 1] = (row + y_center) * grid_h bboxs[i, 2] = box_w * scale_w bboxs[i, 3] = box_h * scale_h # (x_center, y_center, w, h) -> (xmin, ymin, xmax, ymax) bboxs = bbox_center_to_corner(bboxs) ratio_h, ratio_w = data_dict['ratio'] bboxs[:, 0] /= ratio_w bboxs[:, 1] /= ratio_h bboxs[:, 2] /= ratio_w bboxs[:, 3] /= ratio_h # 最大最小值 h, w = data_dict['src_size'] bboxs[:, 0] = np.maximum(bboxs[:, 0], 0) bboxs[:, 1] = np.maximum(bboxs[:, 1], 0) bboxs[:, 2] = np.minimum(bboxs[:, 2], w) bboxs[:, 3] = np.minimum(bboxs[:, 3], h) return bboxs.astype(int) def nms(rect_list, score_list, cate_list, thresh=0.3): """ 非最大抑制 :param rect_list: list,大小为[N, 4] :param score_list: list,大小为[N] :param cate_list: list, 大小为[N] """ nms_rects = list() nms_scores = list() nms_cates = list() rect_array = np.array(rect_list) score_array = np.array(score_list) cate_array = np.array(cate_list) # 一次排序后即可 # 按分类概率从大到小排序 idxs = np.argsort(score_array)[::-1] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] while len(score_array) > 0: # 添加分类概率最大的边界框 nms_rects.append(rect_array[0]) nms_scores.append(score_array[0]) nms_cates.append(cate_array[0]) rect_array = rect_array[1:] score_array = score_array[1:] cate_array = cate_array[1:] length = len(score_array) if length <= 0: break # 计算IoU iou_scores = iou(np.array(nms_rects[len(nms_rects) - 1]), rect_array) # print(iou_scores) # 去除重叠率大于等于thresh的边界框 idxs = np.where(iou_scores < thresh)[0] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] return nms_rects, nms_scores, nms_cates
[ "numpy.minimum", "numpy.maximum", "torch.argmax", "numpy.zeros", "numpy.argsort", "numpy.where", "numpy.array", "torch.cuda.is_available", "sys.exit" ]
[((180, 191), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (188, 191), False, 'import sys\n'), ((526, 567), 'numpy.maximum', 'np.maximum', (['pred_box[0]', 'target_box[:, 0]'], {}), '(pred_box[0], target_box[:, 0])\n', (536, 567), True, 'import numpy as np\n'), ((577, 618), 'numpy.maximum', 'np.maximum', (['pred_box[1]', 'target_box[:, 1]'], {}), '(pred_box[1], target_box[:, 1])\n', (587, 618), True, 'import numpy as np\n'), ((628, 669), 'numpy.minimum', 'np.minimum', (['pred_box[2]', 'target_box[:, 2]'], {}), '(pred_box[2], target_box[:, 2])\n', (638, 669), True, 'import numpy as np\n'), ((679, 720), 'numpy.minimum', 'np.minimum', (['pred_box[3]', 'target_box[:, 3]'], {}), '(pred_box[3], target_box[:, 3])\n', (689, 720), True, 'import numpy as np\n'), ((1752, 1778), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(1)'}), '(probs, dim=1)\n', (1764, 1778), False, 'import torch\n'), ((1816, 1848), 'torch.argmax', 'torch.argmax', (['confidences'], {'dim': '(1)'}), '(confidences, dim=1)\n', (1828, 1848), False, 'import torch\n'), ((2310, 2331), 'numpy.zeros', 'np.zeros', (['bboxs.shape'], {}), '(bboxs.shape)\n', (2318, 2331), True, 'import numpy as np\n'), ((2754, 2775), 'numpy.zeros', 'np.zeros', (['bboxs.shape'], {}), '(bboxs.shape)\n', (2762, 2775), True, 'import numpy as np\n'), ((3238, 3264), 'numpy.zeros', 'np.zeros', (['pred_bboxs.shape'], {}), '(pred_bboxs.shape)\n', (3246, 3264), True, 'import numpy as np\n'), ((3889, 3915), 'numpy.maximum', 'np.maximum', (['bboxs[:, 0]', '(0)'], {}), '(bboxs[:, 0], 0)\n', (3899, 3915), True, 'import numpy as np\n'), ((3934, 3960), 'numpy.maximum', 'np.maximum', (['bboxs[:, 1]', '(0)'], {}), '(bboxs[:, 1], 0)\n', (3944, 3960), True, 'import numpy as np\n'), ((3979, 4005), 'numpy.minimum', 'np.minimum', (['bboxs[:, 2]', 'w'], {}), '(bboxs[:, 2], w)\n', (3989, 4005), True, 'import numpy as np\n'), ((4024, 4050), 'numpy.minimum', 'np.minimum', (['bboxs[:, 3]', 'h'], {}), '(bboxs[:, 3], h)\n', (4034, 4050), True, 'import numpy as np\n'), ((4359, 4378), 'numpy.array', 'np.array', (['rect_list'], {}), '(rect_list)\n', (4367, 4378), True, 'import numpy as np\n'), ((4397, 4417), 'numpy.array', 'np.array', (['score_list'], {}), '(score_list)\n', (4405, 4417), True, 'import numpy as np\n'), ((4435, 4454), 'numpy.array', 'np.array', (['cate_list'], {}), '(cate_list)\n', (4443, 4454), True, 'import numpy as np\n'), ((753, 781), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xB - xA + 1)'], {}), '(0.0, xB - xA + 1)\n', (763, 781), True, 'import numpy as np\n'), ((784, 812), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yB - yA + 1)'], {}), '(0.0, yB - yA + 1)\n', (794, 812), True, 'import numpy as np\n'), ((4499, 4522), 'numpy.argsort', 'np.argsort', (['score_array'], {}), '(score_array)\n', (4509, 4522), True, 'import numpy as np\n'), ((248, 273), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (271, 273), False, 'import torch\n'), ((5166, 5195), 'numpy.where', 'np.where', (['(iou_scores < thresh)'], {}), '(iou_scores < thresh)\n', (5174, 5195), True, 'import numpy as np\n')]
''' Module to preprocess filckr8k image data ''' import cv2 import numpy as np import os from _pickle import dump, load from keras.applications.inception_v3 import InceptionV3 from keras.layers import Flatten from keras.models import load_model from keras.preprocessing import image from keras.applications.inception_v3 import preprocess_input from keras.models import Model from PIL import Image def load_images_as_arrays(directory): img_array_dict = {} for img_file in os.listdir(directory): img_path = directory + '/' + img_file img = Image.open(img_path) x = np.array(img) img_array_dict[os.path.splitext(img_file)[0]] = x return img_array_dict def extract_features(directory): # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) #model = load_model('./preprocessing/CNN_encoder_100epoch.h5') #top = Flatten()(model.output) #model = Model(inputs=model.input, outputs=top) #print(model.summary()) img_id = [] img_matrices = [] i = 0 for img_file in os.listdir(directory): print(i, ":", i > 1999 and i < 8000 or i > 8999) '''if (i > 1999 and i < 8000 or i > 8999): i += 1 continue''' img_path = directory + '/' + img_file resizeDim = (256, 512) img = cv2.imread(img_path) img = cv2.resize(img, resizeDim, interpolation=cv2.INTER_AREA) img = img.astype('float16') / 255 #x = img.reshape(img.shape + (1,)) img_id.append(os.path.splitext(img_file)[0]) img_matrices.append(img) i += 1 img_matrices = np.array(img_matrices) #img_features = model.predict(img_matrices, verbose=1) return {'ids': img_id, 'features': img_matrices} def extract_feature_from_image(file_dir): img = image.load_img(file_dir, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) model = load_model('CNN_encoder_100epoch.h5') return model.predict(x) def load_features(dict_dir, dataset_dir, repeat_times=1): assert (repeat_times >= 1) img_ids = [] with open(dataset_dir, 'r') as f: for line in f.readlines(): img_ids.append(os.path.splitext(line)[0]) features_dict = load(open(dict_dir, 'rb')) #features_dict = extract_features('./datasets/Flickr8k_Dataset') dataset_features = [] for img_id in img_ids: fidx = features_dict['ids'].index(img_id) dataset_features.append(np.vstack([features_dict['features'][fidx, :]] * repeat_times)) #dataset_features = np.vstack(dataset_features) return np.array(dataset_features) if __name__ == "__main__": # pre-extract image features from Inception Net image_directory = './datasets/Flickr8k_Dataset' features_dict = extract_features(image_directory) dump(features_dict, open('./datasets/features_dict2.pkl', 'wb'),protocol=4)
[ "keras.models.load_model", "numpy.expand_dims", "PIL.Image.open", "keras.applications.inception_v3.preprocess_input", "keras.preprocessing.image.img_to_array", "keras.preprocessing.image.load_img", "cv2.imread", "numpy.array", "os.path.splitext", "numpy.vstack", "os.listdir", "cv2.resize" ]
[((483, 504), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (493, 504), False, 'import os\n'), ((1130, 1151), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (1140, 1151), False, 'import os\n'), ((1693, 1715), 'numpy.array', 'np.array', (['img_matrices'], {}), '(img_matrices)\n', (1701, 1715), True, 'import numpy as np\n'), ((1884, 1932), 'keras.preprocessing.image.load_img', 'image.load_img', (['file_dir'], {'target_size': '(299, 299)'}), '(file_dir, target_size=(299, 299))\n', (1898, 1932), False, 'from keras.preprocessing import image\n'), ((1941, 1964), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (1959, 1964), False, 'from keras.preprocessing import image\n'), ((1973, 1998), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1987, 1998), True, 'import numpy as np\n'), ((2007, 2026), 'keras.applications.inception_v3.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (2023, 2026), False, 'from keras.applications.inception_v3 import preprocess_input\n'), ((2185, 2222), 'keras.models.load_model', 'load_model', (['"""CNN_encoder_100epoch.h5"""'], {}), "('CNN_encoder_100epoch.h5')\n", (2195, 2222), False, 'from keras.models import load_model\n'), ((2869, 2895), 'numpy.array', 'np.array', (['dataset_features'], {}), '(dataset_features)\n', (2877, 2895), True, 'import numpy as np\n'), ((567, 587), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (577, 587), False, 'from PIL import Image\n'), ((600, 613), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (608, 613), True, 'import numpy as np\n'), ((1395, 1415), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1405, 1415), False, 'import cv2\n'), ((1430, 1486), 'cv2.resize', 'cv2.resize', (['img', 'resizeDim'], {'interpolation': 'cv2.INTER_AREA'}), '(img, resizeDim, interpolation=cv2.INTER_AREA)\n', (1440, 1486), False, 'import cv2\n'), ((2740, 2802), 'numpy.vstack', 'np.vstack', (["([features_dict['features'][fidx, :]] * repeat_times)"], {}), "([features_dict['features'][fidx, :]] * repeat_times)\n", (2749, 2802), True, 'import numpy as np\n'), ((638, 664), 'os.path.splitext', 'os.path.splitext', (['img_file'], {}), '(img_file)\n', (654, 664), False, 'import os\n'), ((1594, 1620), 'os.path.splitext', 'os.path.splitext', (['img_file'], {}), '(img_file)\n', (1610, 1620), False, 'import os\n'), ((2461, 2483), 'os.path.splitext', 'os.path.splitext', (['line'], {}), '(line)\n', (2477, 2483), False, 'import os\n')]
# Omid55 # Test module for network_utils. from __future__ import division from __future__ import print_function from __future__ import absolute_import import networkx as nx import pandas as pd import numpy as np import unittest import datetime import re from parameterized import parameterized import utils import network_utils class MyTestClass(unittest.TestCase): @classmethod def setUpClass(cls): cls.triad_map, cls.triad_list = ( network_utils.generate_all_possible_sparse_triads()) @classmethod def tearDownClass(cls): del cls.triad_map del cls.triad_list # ========================================================================= # ==================== extract_graph ====================================== # ========================================================================= @parameterized.expand([ ["latest_multiple_edge_weight", False], ["sum_of_multiple_edge_weights", True]]) def test_extract_graph(self, name, sum_multiple_edge): matrix_edges = [ [1, 2, +1, datetime.datetime(2017, 1, 1)], [1, 2, +5, datetime.datetime(2017, 1, 2)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [2, 3, -2, datetime.datetime(2017, 1, 6)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 22)], [4, 3, -5, datetime.datetime(2017, 2, 24)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = nx.DiGraph() expected.add_nodes_from([1, 2, 3, 4]) if sum_multiple_edge: expected.add_edge(1, 2, weight=6) else: expected.add_edge(1, 2, weight=5) if sum_multiple_edge: expected.add_edge(2, 3, weight=1) else: expected.add_edge(2, 3, weight=-2) expected.add_edge(3, 1, weight=1) expected.add_edge(1, 4, weight=-1) if sum_multiple_edge: expected.add_edge(4, 3, weight=-10) else: expected.add_edge(4, 3, weight=-5) computed = network_utils.extract_graph( sample_edge_list, sum_multiple_edge=sum_multiple_edge) self.assertTrue( utils.graph_equals( expected, computed, weight_column_name='weight')) # ========================================================================= # ==================== extract_graphs ===================================== # ========================================================================= def test_extract_graphs_raises_with_missing_columns(self): sample_edge_list = pd.DataFrame({'source': [1, 2], 'target': [5, 6]}) with self.assertRaises(ValueError): network_utils.extract_graphs(edge_list=sample_edge_list) @parameterized.expand( [["seperated graphs", False], ["accumulative graphs", True]]) def test_extract_graphs(self, name, accumulative): # source, target, weight, edge_date matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] # The last one is going to be ignored because fall into another period # which is neglected. sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) g1 = nx.DiGraph() g1.add_nodes_from([1, 2, 3]) g1.add_edge(1, 2, weight=1) g1.add_edge(2, 3, weight=3) g2 = nx.DiGraph() g2.add_nodes_from([1, 3, 4]) g2.add_edge(3, 1, weight=1) g2.add_edge(1, 4, weight=-1) g2.add_edge(4, 3, weight=-5) g3 = nx.DiGraph() g3.add_nodes_from([1, 2, 3, 4]) g3.add_edge(1, 2, weight=1) g3.add_edge(2, 3, weight=3) g3.add_edge(3, 1, weight=1) g3.add_edge(1, 4, weight=-1) g3.add_edge(4, 3, weight=-5) if not accumulative: expected = [g1, g2] else: expected = [g1, g3] computed = network_utils.extract_graphs( edge_list=sample_edge_list, weeks=4, accumulative=accumulative) for expected_graph, computed_graph in zip(expected, computed): self.assertTrue( utils.graph_equals( expected_graph, computed_graph, weight_column_name='weight')) # ========================================================================= # ====================== get_all_degrees ================================== # ========================================================================= def test_get_all_degrees(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 1, weight=6) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 4, weight=-5) dg.add_edge(2, 2, weight=-1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-4) dg.add_edge(3, 2, weight=4) dg.add_edge(4, 4, weight=-10) computed = network_utils.get_all_degrees(dg) expected = ( {1: {'self': 6, 'out': -4, 'in': -4}, 2: {'self': -1, 'out': 1, 'in': 5}, 3: {'self': 0, 'out': 0, 'in': 1}, 4: {'self': -10, 'out': 0, 'in': -5}, 5: {'self': 0, 'out': 0, 'in': 0}}) self.assertDictEqual(computed, expected) # ========================================================================= # ===================== get_just_periods ================================== # ========================================================================= def test_get_just_periods(self): matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = [['2017-01-01', '2017-01-29'], ['2017-01-29', '2017-02-26']] computed = network_utils.get_just_periods( sample_edge_list, weeks=4, accumulative=False) self.assertEqual(expected, computed) # ========================================================================= # ==================== get_metrics_for_network ============================ # ========================================================================= def test_get_metrics_for_network(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(1, 3, weight=-1) computed = network_utils.get_metrics_for_network(dg) expected = { '#edges': 4, '#edges/#nodes': 1, '#gcc edges': 3, '#gcc neg edges': 1, '#gcc nodes': 3, '#gcc pos edges': 2, '#neg edges': 2, '#nodes': 4, '#pos edges': 2, 'algebraic connectivity': 0, 'average (und) clustering coefficient': 0.75, 'average betweenness': 0.0833, 'average closeness': 0.3888, 'average degree': 2, 'average eigenvector': 0.4222, 'average harmonic': 1.25, 'average in degree': 1, 'average w in degree': 0, 'average w out degree': 0, 'average load': 0.0833, 'average out degree': 1, 'gcc algebraic connectivity': 2.9999, 'gcc diameter': 1, 'unbalanced cycles 3 ratio': 1, 'weights max': 1, 'weights average': 0, 'weights min': -1, 'weights std': 1 } # utils.print_dict_pretty(computed) # self.assertDictEqual(computed, expected) for key, value in expected.items(): self.assertAlmostEqual(value, computed[key], places=3) # ========================================================================= # ====================== cartwright_harary_balance_ratio ================== # ========================================================================= def test_cartwright_harary_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 1) def test_cartwright_harary_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) self.assertEqual( network_utils.cartwright_harary_balance_ratio(dg), 0.5) # ========================================================================= # ========================= sprase_balance_ratio ========================== # ========================================================================= def test_sparse_balance_ratio_raises_when_incorrect_balance_type(self): with self.assertRaises(ValueError): network_utils.sprase_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) @parameterized.expand([ ['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', 2, [0.5, 5, 5]], ['Transitivity', 3, [0.9, 9, 1]]]) def test_sprase_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=5) dg.add_edge(2, 3, weight=-4) dg.add_edge(3, 1, weight=-7) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-2) dg.add_edge(1, 5, weight=9) dg.add_edge(5, 1, weight=-11) dg.add_edge(2, 1, weight=100) computed = network_utils.sprase_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ======================= fullyconnected_balance_ratio ==================== # ========================================================================= def test_fullyconnected_balance_ratio_raises_when_incorrect_balance_type( self): with self.assertRaises(ValueError): network_utils.fullyconnected_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) def test_fullyconnected_balance_ratio_raises_when_negative_in_dgraph(self): with self.assertRaises(ValueError): dg = nx.DiGraph() dg.add_nodes_from([1, 2]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=-1) network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=1) @parameterized.expand([ ['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7, 7, 3]], ['Transitivity', 3, [0.8, 8, 2]]]) def test_fullyconnected_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(5, 1, weight=1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 2, weight=1) dg.add_edge(2, 5, weight=1) dg.add_edge(5, 3, weight=1) dg.add_edge(2, 3, weight=1) computed = network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ====================== count_different_signed_edges ===================== # ========================================================================= def test_count_different_signed_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=-5) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 0) def test_count_different_signed_edges1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=3) dg.add_edge(2, 1, weight=4) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 3, weight=-1) self.assertEqual(network_utils.count_different_signed_edges(dg), 1) def test_count_different_signed_edges2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=9) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 2) # ========================================================================= # ==================== terzi_sprase_balance_ratio ========================= # ========================================================================= def test_terzi_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.5 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) # ========================================================================= # ================= kunegis_sprase_balance_ratio ========================== # ========================================================================= def test_kunegis_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.6 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected, decimal=1) # ========================================================================= # ====================== compute_vanderijt_edge_balance =================== # ========================================================================= def test_compute_vanderijt_edge_balance_small_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=-5) dg.add_edge(3, 1, weight=-2) expected = {(2, 1): {'#nodes3': 1, '#balanced_node3': 1}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) def test_compute_vanderijt_edge_balance_allnegative_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(1, 3, weight=-1) dg.add_edge(2, 4, weight=-1) dg.add_edge(4, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 2, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(4, 1, weight=-5) dg.add_edge(1, 4, weight=-5) dg.add_edge(4, 3, weight=-2) dg.add_edge(3, 4, weight=1) expected = { (1, 2): {'#balanced_node3': 1, '#nodes3': 2}, (3, 2): {'#balanced_node3': 1, '#nodes3': 2}, (1, 3): {'#balanced_node3': 0, '#nodes3': 2}, (3, 4): {'#balanced_node3': 1, '#nodes3': 2}, (3, 1): {'#balanced_node3': 1, '#nodes3': 2}, (1, 4): {'#balanced_node3': 1, '#nodes3': 2}, (2, 3): {'#balanced_node3': 1, '#nodes3': 2}, (2, 1): {'#balanced_node3': 2, '#nodes3': 2}, (4, 3): {'#balanced_node3': 0, '#nodes3': 2}, (4, 2): {'#balanced_node3': 1, '#nodes3': 2}, (4, 1): {'#balanced_node3': 1, '#nodes3': 2}, (2, 4): {'#balanced_node3': 2, '#nodes3': 2}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_small_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3]) # dg.add_edge(1, 2, weight=1) # dg.add_edge(2, 1, weight=1) # dg.add_edge(2, 3, weight=-5) # dg.add_edge(3, 1, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}} # else: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}, # (3, 1): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}, # (2, 3): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], # ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_allnegative_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3, 4]) # dg.add_edge(1, 2, weight=-1) # dg.add_edge(2, 3, weight=-1) # dg.add_edge(3, 1, weight=-1) # dg.add_edge(1, 4, weight=-5) # dg.add_edge(4, 3, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # else: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}, # (2, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (3, 1): { # '#balanced': 0, # '#cycle3': 2, # 'weight_distance': 13, # 'as_expected_sign': False}, # (4, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # ========================================================================= # ====================== compute_fairness_goodness ======================== # ========================================================================= def test_compute_fairness_goodness(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1.0) dg.add_edge(2, 3, weight=1.0) dg.add_edge(3, 1, weight=1.0) dg.add_edge(1, 4, weight=2.0) dg.add_edge(4, 3, weight=-1.0) expected = {'fairness': {1: 1.0, 2: 0.95, 3: 1.0, 4: 0.95}, 'goodness': {1: 1.0, 2: 1.0, 3: 0.0, 4: 2.0}} computed = network_utils.compute_fairness_goodness(dg, verbose=False) self.assertDictEqual(computed, expected) # ========================================================================= # ====================== is_sparsely_transitive_balanced ================== # ========================================================================= def test_is_sparsely_transitive_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_transitive_balanced(triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), True], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), True], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), True], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_transitive_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_transitive_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_cartwright_harary_balanced =========== # ========================================================================= def test_is_sparsely_cartwright_harary_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_cartwright_harary_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), False], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), False], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), False], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), False]] ) def test_is_sparsely_cartwright_harary_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_cartwright_harary_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_clustering_balanced ================== # ========================================================================= def test_is_sparsely_clustering_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_clustering_balanced(triad), expected_balance) # ========================================================================= # ========= is_fullyconnected_cartwright_harary_balance =================== # ========================================================================= def test_is_fullyconnected_cartwright_harary_balance_raises_when_selfloops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) def test_is_fullyconnected_cartwright_harary_balance_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), False], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), False], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_cartwright_harary_balance( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_cartwright_harary_balance(triad), expected_balance) # ========================================================================= # =============== is_fullyconnected_clustering_balanced =================== # ========================================================================= def test_is_fullyconnected_clustering_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) def test_is_fullyconnected_clustering_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_clustering_balanced(triad), expected_balance) # ========================================================================= # ============= is_fullyconnected_transitivity_balanced =================== # ========================================================================= def test_is_fullyconnected_transitivity_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) def test_is_fullyconnected_transitivity_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), True], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), True], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), True], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_transitivity_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_transitivity_balanced(triad), expected_balance) # # ======================================================================= # # =================== is_sparsely_ranked_clustering_balanced ============ # # ======================================================================= # def test_is_sparsely_ranked_clustering_balanced_raises_when_self_loops( # self): # with self.assertRaises(ValueError): # triad_with_self_loop = np.array( # [[0, 1, 0], # [0, 1, 1], # [0, 0, 0]]) # network_utils.is_sparsely_ranked_clustering_balanced( # triad_with_self_loop) # @parameterized.expand([ # ["120U", np.array( # [[0, 1, 1], # [1, 0, 1], # [-1, -1, 0]]), True], # ["120D", np.array( # [[0, 1, -1], # [1, 0, -1], # [1, 1, 0]]), True], # ["0122Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [1, -1, 0]]), True], # ["030TZ", np.array( # [[0, 1, 1], # [0, 0, 1], # [0, 0, 0]]), True], # ["003", np.array( # [[0, -1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True], # ["0032Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [-1, -1, 0]]), True], # ["030T", np.array( # [[0, 1, 1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["021C", np.array( # [[0, 1, -1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["030T2negZ", np.array( # [[0, 1, -1], # [0, 0, -1], # [0, 0, 0]]), True], # ["021UnegZ", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, -1, 0]]), True], # ["021DZ", np.array( # [[0, 0, 0], # [1, 0, 1], # [0, 0, 0]]), True], # ["210", np.array( # [[0, 1, -1], # [1, 0, 1], # [1, 1, 0]]), False], # ["210Z", np.array( # [[0, 1, 0], # [1, 0, 1], # [1, 1, 0]]), False], # ["003Z", np.array( # [[0, 0, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["102Z", np.array( # [[0, 1, 0], # [1, 0, 0], # [0, 0, 0]]), True], # ["102negZ", np.array( # [[0, -1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["102posnegZ", np.array( # [[0, 1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["012Z", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["012", np.array( # [[0, 1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True]] # ) # def test_is_sparsely_ranked_clustering_balanced( # self, name, triad, expected_balance): # self.assertEqual( # network_utils.is_sparsely_ranked_clustering_balanced(triad), # expected_balance) # ========================================================================= # ====================== get_all_triad_permutations ======================= # ========================================================================= def test_get_all_triad_permutations(self): triad_adj_matrix = np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]) expected = set([ '[[0 1 1]\n [1 0 1]\n [1 0 0]]', '[[0 0 1]\n [1 0 1]\n [1 1 0]]', '[[0 1 1]\n [0 0 1]\n [1 1 0]]', '[[0 1 1]\n [1 0 1]\n [0 1 0]]', '[[0 1 1]\n [1 0 0]\n [1 1 0]]', '[[0 1 0]\n [1 0 1]\n [1 1 0]]']) computed = network_utils._get_all_triad_permutations(triad_adj_matrix) self.assertEqual(expected, computed) # ========================================================================= # ====================== generate_all_possible_sparse_triads ============== # ========================================================================= def test_generate_all_possible_sparse_triads(self): computed_triad_map, computed_triad_list = ( network_utils.generate_all_possible_sparse_triads()) # Testing triad_list self.assertTrue( len(computed_triad_list) == 138, 'Length of triad_list is not correct.') np.testing.assert_array_equal( computed_triad_list[0], np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), 'First triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[-1], np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), 'Last triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[69], np.array( [[0, 0, 1], [1, 0, -1], [1, 0, 0]]), 'Middle triad_list is incorrect.') # Testing triad_map. expected_key1 = '[[0 0 0]\n [1 0 0]\n [0 0 0]]' expected_value1 = 1 expected_key2 = '[[ 0 1 1]\n [-1 0 1]\n [-1 -1 0]]' expected_value2 = 129 self.assertTrue( expected_key1 in computed_triad_map, 'First key was not found in computed_triad_map.') self.assertTrue( expected_key2 in computed_triad_map, 'Second key was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key1], expected_value1, 'First value was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key2], expected_value2, 'Second value was not found in computed_triad_map.') # ========================================================================= # ====================== detect_triad_type_for_all_subgraph3 ============== # ========================================================================= def test_detect_triad_type_for_all_subgraph3(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 4, weight=2) dg.add_edge(4, 3, weight=-5) expected = { '(1, 2, 3)': 55, # [[0, 0, 1], # [1, 0, 0], # [0, 1, 0]] '(1, 2, 4)': 3, # [[0, 0, 0], # [0, 0, 0], # [1, 1, 0]] '(1, 3, 4)': 56, # [[0, 0, 1], # [1, 0, 0], # [0,-1, 0]] '(2, 3, 4)': 24 # [[0, 0, 0], # [1, 0, 0], # [-1, 0, 0]] } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_nodes_with_str_name(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) expected = { "('a', 'b', 'c')": 55, "('a', 'b', 'd')": 56, "('a', 'c', 'd')": 24, "('b', 'c', 'd')": 3 } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_has_unique_keys(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) truncated_keys = [] for key in list(computed.keys()): key = re.sub(r'[^\w]', ' ', key) key = key.replace(" ", "") truncated_keys.append(''.join(sorted(key))) self.assertEqual(len(truncated_keys), len(np.unique(truncated_keys))) # ========================================================================= # ====================== compute_transition_matrix ======================== # ========================================================================= def test_compute_transition_matrix(self): dg1 = nx.DiGraph() dg1.add_nodes_from([1, 2, 3, 4]) dg1.add_edge(1, 2, weight=1) dg1.add_edge(2, 1, weight=1) dg1.add_edge(2, 3, weight=1) dg1.add_edge(3, 1, weight=-1) dg1.add_edge(3, 4, weight=1) dg2 = nx.DiGraph() dg2.add_nodes_from([1, 2, 3, 4]) dg2.add_edge(1, 2, weight=1) dg2.add_edge(1, 3, weight=1) dg2.add_edge(2, 1, weight=1) dg2.add_edge(2, 3, weight=1) dg2.add_edge(2, 4, weight=1) dg2.add_edge(3, 1, weight=1) dg2.add_edge(3, 4, weight=1) dg2.add_edge(4, 1, weight=1) dgraphs = [dg1, dg2] triads_types = [ {'(1, 2, 3)': 76, '(1, 2, 4)': 6, '(1, 3, 4)': 4, '(2, 3, 4)': 8}, {'(1, 2, 3)': 63, '(1, 2, 4)': 57, '(1, 3, 4)': 57, '(2, 3, 4)': 22}] n = len(self.triad_list) transition_matrix = np.zeros((n, n)) transition_matrix[76, 63] = 1 transition_matrix[6, 57] = 1 transition_matrix[4, 57] = 1 transition_matrix[8, 22] = 1 computed = network_utils.compute_transition_matrix( dgraphs=dgraphs, unique_triad_num=n, triad_map=self.triad_map) # self.assertDictEqual(expected, computed) self.assertTrue( 'triads_types' in computed, 'triads_types was not found in computed transition matrix.') self.assertTrue( 'transition_matrices' in computed, 'transition_matrices was not found in computed transition matrix.') self.assertEqual( triads_types, computed['triads_types'], 'Triad types were different.') np.testing.assert_array_equal( transition_matrix, computed['transition_matrices'][0], 'Transition matrices were different.') # ========================================================================= # ====================== get_stationary_distribution ====================== # ========================================================================= def test_get_stationary_distribution_simple(self): transition_matrix = np.array( [[0, 0, 1], [0, 0, 1], [0, 0, 1]], dtype=float) expected = np.array([0, 0, 1]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_full_matrix(self): transition_matrix = np.array( [[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]], dtype=float) expected = np.array([0.2759, 0.3448, 0.3793]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_not_row_stochastic(self): transition_matrix = np.array( [[0, 0, 0], [9, 0, 1], [1, 0, 3]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) # ========================================================================= # ====================== get_mixing_time_range ============================ # ========================================================================= def test_get_mixing_time_range(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = 13.7081 computed = network_utils.get_mixing_time_range( transition_matrix, aperiodic_irreducible_eps=0.0001, distance_from_stationary_eps=0.01) self.assertEqual(np.round(expected, 4), np.round(computed, 4)) # ========================================================================= # ====================== _randomize_network =============================== # ========================================================================= def test_randomize_network_with_unweighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2) dg.add_edge(2, 1) dg.add_edge(2, 3) dg.add_edge(3, 1) dg.add_edge(3, 4) dg.add_edge(4, 5) dg.add_edge(5, 4) dg.add_edge(1, 6) dg.add_edge(6, 1) dg.add_edge(6, 5) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_all_positive_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=6) dg.add_edge(1, 6, weight=9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_signed_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=-6) dg.add_edge(1, 6, weight=-9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=-16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) # ========================================================================= # ================== get_robustness_of_transitions ======================== # ========================================================================= def test_get_robustness_of_transitions(self): transition_matrices = [ np.array( [[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]]), np.array( [[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]]) ] # Expected dataframe. columns = [ 'Transitions', 'Matrix L2-Norm Dist. from Average', 'Matrix Pearson r-value', 'Matrix Pearson p-value', 'Stationary Dist. L2-Norm Dist. from Average', 'Stationary Dist. Pearson r-value', 'Stationary Dist. Pearson p-value'] expected_df = pd.DataFrame({ columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'], columns[1]: [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]: [0.2534, 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, 0.1319], columns[6]: [0.6930, 0.9156], }, columns=columns) expected_df = pd.DataFrame( expected_df, columns=columns) # Computed dataframe. computed_df = network_utils.get_robustness_of_transitions( transition_matrices, lnorm=2) # Comparing computed with expected. pd.testing.assert_frame_equal( expected_df, computed_df, check_less_precise=2) # ========================================================================= # ================== generate_converted_graphs ============================ # ========================================================================= def test_generate_converted_graphs_raises_when_wrong_percentage(self): with self.assertRaises(ValueError): network_utils.generate_converted_graphs( dgraph=nx.DiGraph(), percentage=-1) def test_generate_converted_graphs_when_it_adds_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 3, weight=2) dg.add_edge(2, 3, weight=5) dg.add_edge(3, 1, weight=1) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=5) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(len(nx.difference(dg, computed).edges()), 0) # It should contain percentage% more edges. remaining_edges_count = 4 * 3 - 4 self.assertEqual( len(nx.difference(computed, dg).edges()), int(percentage*remaining_edges_count/100)) def test_generate_converted_graphs_when_all_edges_exist(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=2) dg.add_edge(1, 3, weight=-5) dg.add_edge(2, 3, weight=-2) dg.add_edge(3, 1, weight=2) dg.add_edge(4, 1, weight=2) dg.add_edge(4, 3, weight=2) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=2, convert_to=3, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: converted_cnt = 0 # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(dg.edges(), computed.edges()) # Checking every edge weight. for edge in dg.edges(): w1 = dg.get_edge_data(edge[0], edge[1])['weight'] w2 = computed.get_edge_data(edge[0], edge[1])['weight'] if w1 == w2: continue if w1 != w2 and w1 == 2 and w2 == 3 and converted_cnt == 0: converted_cnt += 1 else: self.assertTrue( False, 'Found more converted edges than expeced.') def test_generate_converted_graphs(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) percentage = 10 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), int(4 * 3 * percentage / 100)) def test_generate_converted_graphs_for_large_networks(self): n = 100 m = 300 dgraph = nx.gnm_random_graph(n=n, m=m, directed=True) percentage = 5 computed_graphs = network_utils.generate_converted_graphs( dgraph=dgraph, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=6) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dgraph.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), m + int( (n * (n-1) - m) * percentage / 100)) if __name__ == '__main__': unittest.main()
[ "network_utils.generate_converted_graphs", "network_utils.is_fullyconnected_cartwright_harary_balance", "numpy.testing.assert_array_almost_equal", "numpy.round", "network_utils.compute_vanderijt_edge_balance", "network_utils.get_just_periods", "numpy.unique", "unittest.main", "pandas.DataFrame", "network_utils.generate_all_possible_sparse_triads", "network_utils.is_sparsely_cartwright_harary_balanced", "network_utils.extract_graph", "network_utils.kunegis_sprase_balance_ratio", "network_utils.get_robustness_of_transitions", "numpy.testing.assert_almost_equal", "network_utils.get_all_degrees", "network_utils.count_different_signed_edges", "re.sub", "networkx.gnm_random_graph", "pandas.testing.assert_frame_equal", "network_utils.is_sparsely_transitive_balanced", "network_utils.get_metrics_for_network", "network_utils._detect_triad_type_for_all_subgraph3", "numpy.testing.assert_array_equal", "utils.graph_equals", "network_utils.cartwright_harary_balance_ratio", "datetime.datetime", "parameterized.parameterized.expand", "network_utils._get_all_triad_permutations", "network_utils.is_sparsely_clustering_balanced", "network_utils.is_fullyconnected_clustering_balanced", "network_utils.compute_transition_matrix", "network_utils.terzi_sprase_balance_ratio", "networkx.DiGraph", "network_utils.sprase_balance_ratio", "network_utils.get_stationary_distribution", "network_utils.compute_fairness_goodness", "network_utils.is_fullyconnected_transitivity_balanced", "network_utils.extract_graphs", "numpy.zeros", "network_utils.fullyconnected_balance_ratio", "networkx.difference", "numpy.array", "network_utils._randomize_network", "network_utils.get_mixing_time_range" ]
[((865, 972), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['latest_multiple_edge_weight', False], ['sum_of_multiple_edge_weights', True]\n ]"], {}), "([['latest_multiple_edge_weight', False], [\n 'sum_of_multiple_edge_weights', True]])\n", (885, 972), False, 'from parameterized import parameterized\n'), ((2978, 3065), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['seperated graphs', False], ['accumulative graphs', True]]"], {}), "([['seperated graphs', False], ['accumulative graphs', \n True]])\n", (2998, 3065), False, 'from parameterized import parameterized\n'), ((10923, 11054), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', 2, [0.5, 5, 5]], [\n 'Transitivity', 3, [0.9, 9, 1]]]"], {}), "([['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', \n 2, [0.5, 5, 5]], ['Transitivity', 3, [0.9, 9, 1]]])\n", (10943, 11054), False, 'from parameterized import parameterized\n'), ((12682, 12805), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7, 7, 3]], [\n 'Transitivity', 3, [0.8, 8, 2]]]"], {}), "([['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7,\n 7, 3]], ['Transitivity', 3, [0.8, 8, 2]]])\n", (12702, 12805), False, 'from parameterized import parameterized\n'), ((65583, 65598), 'unittest.main', 'unittest.main', ([], {}), '()\n', (65596, 65598), False, 'import unittest\n'), ((467, 518), 'network_utils.generate_all_possible_sparse_triads', 'network_utils.generate_all_possible_sparse_triads', ([], {}), '()\n', (516, 518), False, 'import network_utils\n'), ((1539, 1618), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (1551, 1618), True, 'import pandas as pd\n'), ((1651, 1663), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (1661, 1663), True, 'import networkx as nx\n'), ((2226, 2313), 'network_utils.extract_graph', 'network_utils.extract_graph', (['sample_edge_list'], {'sum_multiple_edge': 'sum_multiple_edge'}), '(sample_edge_list, sum_multiple_edge=\n sum_multiple_edge)\n', (2253, 2313), False, 'import network_utils\n'), ((2808, 2858), 'pandas.DataFrame', 'pd.DataFrame', (["{'source': [1, 2], 'target': [5, 6]}"], {}), "({'source': [1, 2], 'target': [5, 6]})\n", (2820, 2858), True, 'import pandas as pd\n'), ((3724, 3803), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (3736, 3803), True, 'import pandas as pd\n'), ((3830, 3842), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (3840, 3842), True, 'import networkx as nx\n'), ((3965, 3977), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (3975, 3977), True, 'import networkx as nx\n'), ((4138, 4150), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (4148, 4150), True, 'import networkx as nx\n'), ((4499, 4595), 'network_utils.extract_graphs', 'network_utils.extract_graphs', ([], {'edge_list': 'sample_edge_list', 'weeks': '(4)', 'accumulative': 'accumulative'}), '(edge_list=sample_edge_list, weeks=4,\n accumulative=accumulative)\n', (4527, 4595), False, 'import network_utils\n'), ((5153, 5165), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (5163, 5165), True, 'import networkx as nx\n'), ((5521, 5554), 'network_utils.get_all_degrees', 'network_utils.get_all_degrees', (['dg'], {}), '(dg)\n', (5550, 5554), False, 'import network_utils\n'), ((6584, 6663), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (6596, 6663), True, 'import pandas as pd\n'), ((6776, 6853), 'network_utils.get_just_periods', 'network_utils.get_just_periods', (['sample_edge_list'], {'weeks': '(4)', 'accumulative': '(False)'}), '(sample_edge_list, weeks=4, accumulative=False)\n', (6806, 6853), False, 'import network_utils\n'), ((7210, 7222), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (7220, 7222), True, 'import networkx as nx\n'), ((7428, 7469), 'network_utils.get_metrics_for_network', 'network_utils.get_metrics_for_network', (['dg'], {}), '(dg)\n', (7465, 7469), False, 'import network_utils\n'), ((9028, 9040), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9038, 9040), True, 'import networkx as nx\n'), ((9351, 9363), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9361, 9363), True, 'import networkx as nx\n'), ((9672, 9684), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9682, 9684), True, 'import networkx as nx\n'), ((9996, 10008), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (10006, 10008), True, 'import networkx as nx\n'), ((11215, 11227), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (11225, 11227), True, 'import networkx as nx\n'), ((11586, 11658), 'network_utils.sprase_balance_ratio', 'network_utils.sprase_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': 'balance_type'}), '(dgraph=dg, balance_type=balance_type)\n', (11620, 11658), False, 'import network_utils\n'), ((11692, 11766), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['computed', 'expected_values'], {'decimal': '(2)'}), '(computed, expected_values, decimal=2)\n', (11728, 11766), True, 'import numpy as np\n'), ((12975, 12987), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12985, 12987), True, 'import networkx as nx\n'), ((13338, 13423), 'network_utils.fullyconnected_balance_ratio', 'network_utils.fullyconnected_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': 'balance_type'}), '(dgraph=dg, balance_type=balance_type\n )\n', (13380, 13423), False, 'import network_utils\n'), ((13452, 13526), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['computed', 'expected_values'], {'decimal': '(2)'}), '(computed, expected_values, decimal=2)\n', (13488, 13526), True, 'import numpy as np\n'), ((13843, 13855), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (13853, 13855), True, 'import networkx as nx\n'), ((14179, 14191), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (14189, 14191), True, 'import networkx as nx\n'), ((14514, 14526), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (14524, 14526), True, 'import networkx as nx\n'), ((15106, 15118), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15116, 15118), True, 'import networkx as nx\n'), ((15305, 15366), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (15345, 15366), False, 'import network_utils\n'), ((15388, 15438), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (15418, 15438), True, 'import numpy as np\n'), ((15519, 15531), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15529, 15531), True, 'import networkx as nx\n'), ((15720, 15781), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (15760, 15781), False, 'import network_utils\n'), ((15803, 15853), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (15833, 15853), True, 'import numpy as np\n'), ((15930, 15942), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15940, 15942), True, 'import networkx as nx\n'), ((16130, 16191), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (16170, 16191), False, 'import network_utils\n'), ((16213, 16263), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (16243, 16263), True, 'import numpy as np\n'), ((16344, 16356), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (16354, 16356), True, 'import networkx as nx\n'), ((16735, 16796), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (16775, 16796), False, 'import network_utils\n'), ((16818, 16868), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (16848, 16868), True, 'import numpy as np\n'), ((17191, 17203), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (17201, 17203), True, 'import networkx as nx\n'), ((17390, 17453), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (17432, 17453), False, 'import network_utils\n'), ((17475, 17525), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (17505, 17525), True, 'import numpy as np\n'), ((17608, 17620), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (17618, 17620), True, 'import networkx as nx\n'), ((17809, 17872), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (17851, 17872), False, 'import network_utils\n'), ((17894, 17944), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (17924, 17944), True, 'import numpy as np\n'), ((18023, 18035), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (18033, 18035), True, 'import networkx as nx\n'), ((18223, 18286), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (18265, 18286), False, 'import network_utils\n'), ((18308, 18358), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (18338, 18358), True, 'import numpy as np\n'), ((18441, 18453), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (18451, 18453), True, 'import networkx as nx\n'), ((18832, 18895), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (18874, 18895), False, 'import network_utils\n'), ((18917, 18978), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {'decimal': '(1)'}), '(computed, expected, decimal=1)\n', (18947, 18978), True, 'import numpy as np\n'), ((19296, 19308), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (19306, 19308), True, 'import networkx as nx\n'), ((19577, 19625), 'network_utils.compute_vanderijt_edge_balance', 'network_utils.compute_vanderijt_edge_balance', (['dg'], {}), '(dg)\n', (19621, 19625), False, 'import network_utils\n'), ((19758, 19770), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (19768, 19770), True, 'import networkx as nx\n'), ((20988, 21036), 'network_utils.compute_vanderijt_edge_balance', 'network_utils.compute_vanderijt_edge_balance', (['dg'], {}), '(dg)\n', (21032, 21036), False, 'import network_utils\n'), ((25020, 25032), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (25030, 25032), True, 'import networkx as nx\n'), ((25417, 25475), 'network_utils.compute_fairness_goodness', 'network_utils.compute_fairness_goodness', (['dg'], {'verbose': '(False)'}), '(dg, verbose=False)\n', (25456, 25475), False, 'import network_utils\n'), ((46930, 46973), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (46938, 46973), True, 'import numpy as np\n'), ((47328, 47387), 'network_utils._get_all_triad_permutations', 'network_utils._get_all_triad_permutations', (['triad_adj_matrix'], {}), '(triad_adj_matrix)\n', (47369, 47387), False, 'import network_utils\n'), ((47794, 47845), 'network_utils.generate_all_possible_sparse_triads', 'network_utils.generate_all_possible_sparse_triads', ([], {}), '()\n', (47843, 47845), False, 'import network_utils\n'), ((49732, 49744), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (49742, 49744), True, 'import networkx as nx\n'), ((50443, 50535), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (50493, 50535), False, 'import network_utils\n'), ((50683, 50695), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (50693, 50695), True, 'import networkx as nx\n'), ((51133, 51225), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (51183, 51225), False, 'import network_utils\n'), ((51369, 51381), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (51379, 51381), True, 'import networkx as nx\n'), ((51650, 51742), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (51700, 51742), False, 'import network_utils\n'), ((52340, 52352), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (52350, 52352), True, 'import networkx as nx\n'), ((52594, 52606), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (52604, 52606), True, 'import networkx as nx\n'), ((53330, 53346), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (53338, 53346), True, 'import numpy as np\n'), ((53515, 53621), 'network_utils.compute_transition_matrix', 'network_utils.compute_transition_matrix', ([], {'dgraphs': 'dgraphs', 'unique_triad_num': 'n', 'triad_map': 'self.triad_map'}), '(dgraphs=dgraphs, unique_triad_num=n,\n triad_map=self.triad_map)\n', (53554, 53621), False, 'import network_utils\n'), ((54137, 54265), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['transition_matrix', "computed['transition_matrices'][0]", '"""Transition matrices were different."""'], {}), "(transition_matrix, computed[\n 'transition_matrices'][0], 'Transition matrices were different.')\n", (54166, 54265), True, 'import numpy as np\n'), ((54622, 54678), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 0, 1], [0, 0, 1]]'], {'dtype': 'float'}), '([[0, 0, 1], [0, 0, 1], [0, 0, 1]], dtype=float)\n', (54630, 54678), True, 'import numpy as np\n'), ((54737, 54756), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (54745, 54756), True, 'import numpy as np\n'), ((54776, 54871), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0)\n', (54817, 54871), False, 'import network_utils\n'), ((54889, 54956), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (54925, 54956), True, 'import numpy as np\n'), ((55046, 55120), 'numpy.array', 'np.array', (['[[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]]'], {'dtype': 'float'}), '([[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]], dtype=float)\n', (55054, 55120), True, 'import numpy as np\n'), ((55179, 55213), 'numpy.array', 'np.array', (['[0.2759, 0.3448, 0.3793]'], {}), '([0.2759, 0.3448, 0.3793])\n', (55187, 55213), True, 'import numpy as np\n'), ((55233, 55328), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0)\n', (55274, 55328), False, 'import network_utils\n'), ((55346, 55413), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (55382, 55413), True, 'import numpy as np\n'), ((55510, 55566), 'numpy.array', 'np.array', (['[[0, 0, 0], [9, 0, 1], [1, 0, 3]]'], {'dtype': 'float'}), '([[0, 0, 0], [9, 0, 1], [1, 0, 3]], dtype=float)\n', (55518, 55566), True, 'import numpy as np\n'), ((55625, 55659), 'numpy.array', 'np.array', (['[0.3571, 0.1191, 0.5238]'], {}), '([0.3571, 0.1191, 0.5238])\n', (55633, 55659), True, 'import numpy as np\n'), ((55679, 55777), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001)\n', (55720, 55777), False, 'import network_utils\n'), ((55795, 55862), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (55831, 55862), True, 'import numpy as np\n'), ((55940, 56006), 'numpy.array', 'np.array', (['[[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]]'], {'dtype': 'float'}), '([[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float)\n', (55948, 56006), True, 'import numpy as np\n'), ((56065, 56099), 'numpy.array', 'np.array', (['[0.3571, 0.1191, 0.5238]'], {}), '([0.3571, 0.1191, 0.5238])\n', (56073, 56099), True, 'import numpy as np\n'), ((56119, 56217), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001)\n', (56160, 56217), False, 'import network_utils\n'), ((56235, 56302), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (56271, 56302), True, 'import numpy as np\n'), ((56614, 56680), 'numpy.array', 'np.array', (['[[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]]'], {'dtype': 'float'}), '([[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float)\n', (56622, 56680), True, 'import numpy as np\n'), ((56766, 56893), 'network_utils.get_mixing_time_range', 'network_utils.get_mixing_time_range', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)', 'distance_from_stationary_eps': '(0.01)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001, distance_from_stationary_eps=0.01)\n', (56801, 56893), False, 'import network_utils\n'), ((57312, 57324), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (57322, 57324), True, 'import networkx as nx\n'), ((57650, 57710), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (57682, 57710), False, 'import network_utils\n'), ((58020, 58032), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (58030, 58032), True, 'import networkx as nx\n'), ((58459, 58519), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (58491, 58519), False, 'import network_utils\n'), ((58823, 58835), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (58833, 58835), True, 'import networkx as nx\n'), ((59266, 59326), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (59298, 59326), False, 'import network_utils\n'), ((60510, 60795), 'pandas.DataFrame', 'pd.DataFrame', (["{columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'], columns[1]:\n [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]: [0.2534, \n 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, 0.1319],\n columns[6]: [0.693, 0.9156]}"], {'columns': 'columns'}), "({columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'],\n columns[1]: [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]:\n [0.2534, 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, \n 0.1319], columns[6]: [0.693, 0.9156]}, columns=columns)\n", (60522, 60795), True, 'import pandas as pd\n'), ((60917, 60959), 'pandas.DataFrame', 'pd.DataFrame', (['expected_df'], {'columns': 'columns'}), '(expected_df, columns=columns)\n', (60929, 60959), True, 'import pandas as pd\n'), ((61025, 61098), 'network_utils.get_robustness_of_transitions', 'network_utils.get_robustness_of_transitions', (['transition_matrices'], {'lnorm': '(2)'}), '(transition_matrices, lnorm=2)\n', (61068, 61098), False, 'import network_utils\n'), ((61164, 61241), 'pandas.testing.assert_frame_equal', 'pd.testing.assert_frame_equal', (['expected_df', 'computed_df'], {'check_less_precise': '(2)'}), '(expected_df, computed_df, check_less_precise=2)\n', (61193, 61241), True, 'import pandas as pd\n'), ((61815, 61827), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (61825, 61827), True, 'import networkx as nx\n'), ((62062, 62193), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(5)'}), '(dgraph=dg, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=5)\n', (62101, 62193), False, 'import network_utils\n'), ((62846, 62858), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (62856, 62858), True, 'import networkx as nx\n'), ((63167, 63298), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(2)', 'convert_to': '(3)', 'percentage': 'percentage', 'how_many_to_generate': '(2)'}), '(dgraph=dg, convert_from=2,\n convert_to=3, percentage=percentage, how_many_to_generate=2)\n', (63206, 63298), False, 'import network_utils\n'), ((64219, 64231), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (64229, 64231), True, 'import networkx as nx\n'), ((64322, 64453), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(2)'}), '(dgraph=dg, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=2)\n', (64361, 64453), False, 'import network_utils\n'), ((64925, 64969), 'networkx.gnm_random_graph', 'nx.gnm_random_graph', ([], {'n': 'n', 'm': 'm', 'directed': '(True)'}), '(n=n, m=m, directed=True)\n', (64944, 64969), True, 'import networkx as nx\n'), ((65019, 65154), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dgraph', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(6)'}), '(dgraph=dgraph, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=6)\n', (65058, 65154), False, 'import network_utils\n'), ((2359, 2426), 'utils.graph_equals', 'utils.graph_equals', (['expected', 'computed'], {'weight_column_name': '"""weight"""'}), "(expected, computed, weight_column_name='weight')\n", (2377, 2426), False, 'import utils\n'), ((2915, 2971), 'network_utils.extract_graphs', 'network_utils.extract_graphs', ([], {'edge_list': 'sample_edge_list'}), '(edge_list=sample_edge_list)\n', (2943, 2971), False, 'import network_utils\n'), ((9212, 9261), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9257, 9261), False, 'import network_utils\n'), ((9537, 9586), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9582, 9586), False, 'import network_utils\n'), ((9857, 9906), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9902, 9906), False, 'import network_utils\n'), ((10383, 10432), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (10428, 10432), False, 'import network_utils\n'), ((12429, 12441), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12439, 12441), True, 'import networkx as nx\n'), ((12573, 12642), 'network_utils.fullyconnected_balance_ratio', 'network_utils.fullyconnected_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': '(1)'}), '(dgraph=dg, balance_type=1)\n', (12615, 12642), False, 'import network_utils\n'), ((14064, 14110), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14106, 14110), False, 'import network_utils\n'), ((14399, 14445), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14441, 14445), False, 'import network_utils\n'), ((14735, 14781), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14777, 14781), False, 'import network_utils\n'), ((25920, 25963), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (25928, 25963), True, 'import numpy as np\n'), ((26027, 26094), 'network_utils.is_sparsely_transitive_balanced', 'network_utils.is_sparsely_transitive_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (26072, 26094), False, 'import network_utils\n'), ((28378, 28430), 'network_utils.is_sparsely_transitive_balanced', 'network_utils.is_sparsely_transitive_balanced', (['triad'], {}), '(triad)\n', (28423, 28430), False, 'import network_utils\n'), ((28877, 28920), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (28885, 28920), True, 'import numpy as np\n'), ((28984, 29058), 'network_utils.is_sparsely_cartwright_harary_balanced', 'network_utils.is_sparsely_cartwright_harary_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (29036, 29058), False, 'import network_utils\n'), ((31373, 31432), 'network_utils.is_sparsely_cartwright_harary_balanced', 'network_utils.is_sparsely_cartwright_harary_balanced', (['triad'], {}), '(triad)\n', (31425, 31432), False, 'import network_utils\n'), ((31859, 31902), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (31867, 31902), True, 'import numpy as np\n'), ((31966, 32033), 'network_utils.is_sparsely_clustering_balanced', 'network_utils.is_sparsely_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (32011, 32033), False, 'import network_utils\n'), ((34337, 34389), 'network_utils.is_sparsely_clustering_balanced', 'network_utils.is_sparsely_clustering_balanced', (['triad'], {}), '(triad)\n', (34382, 34389), False, 'import network_utils\n'), ((34840, 34883), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (34848, 34883), True, 'import numpy as np\n'), ((34947, 35026), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (35004, 35026), False, 'import network_utils\n'), ((35222, 35266), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (35230, 35266), True, 'import numpy as np\n'), ((35330, 35409), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (35387, 35409), False, 'import network_utils\n'), ((37352, 37416), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad'], {}), '(triad)\n', (37409, 37416), False, 'import network_utils\n'), ((37862, 37905), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (37870, 37905), True, 'import numpy as np\n'), ((37969, 38042), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (38020, 38042), False, 'import network_utils\n'), ((38232, 38276), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (38240, 38276), True, 'import numpy as np\n'), ((38340, 38413), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (38391, 38413), False, 'import network_utils\n'), ((40348, 40406), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad'], {}), '(triad)\n', (40399, 40406), False, 'import network_utils\n'), ((40854, 40897), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (40862, 40897), True, 'import numpy as np\n'), ((40961, 41036), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (41014, 41036), False, 'import network_utils\n'), ((41228, 41272), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (41236, 41272), True, 'import numpy as np\n'), ((41336, 41411), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (41389, 41411), False, 'import network_utils\n'), ((43343, 43403), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad'], {}), '(triad)\n', (43396, 43403), False, 'import network_utils\n'), ((48074, 48117), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (48082, 48117), True, 'import numpy as np\n'), ((48280, 48329), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (48288, 48329), True, 'import numpy as np\n'), ((48493, 48537), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, -1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, -1], [1, 0, 0]])\n', (48501, 48537), True, 'import numpy as np\n'), ((51839, 51865), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'key'], {}), "('[^\\\\w]', ' ', key)\n", (51845, 51865), False, 'import re\n'), ((56952, 56973), 'numpy.round', 'np.round', (['expected', '(4)'], {}), '(expected, 4)\n', (56960, 56973), True, 'import numpy as np\n'), ((56975, 56996), 'numpy.round', 'np.round', (['computed', '(4)'], {}), '(computed, 4)\n', (56983, 56996), True, 'import numpy as np\n'), ((59886, 59945), 'numpy.array', 'np.array', (['[[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]]'], {}), '([[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]])\n', (59894, 59945), True, 'import numpy as np\n'), ((60010, 60069), 'numpy.array', 'np.array', (['[[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]]'], {}), '([[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]])\n', (60018, 60069), True, 'import numpy as np\n'), ((1092, 1121), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (1109, 1121), False, 'import datetime\n'), ((1147, 1176), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(2)'], {}), '(2017, 1, 2)\n', (1164, 1176), False, 'import datetime\n'), ((1202, 1231), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (1219, 1231), False, 'import datetime\n'), ((1257, 1286), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (1274, 1286), False, 'import datetime\n'), ((1312, 1341), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(6)'], {}), '(2017, 1, 6)\n', (1329, 1341), False, 'import datetime\n'), ((1367, 1397), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (1384, 1397), False, 'import datetime\n'), ((1423, 1453), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(22)'], {}), '(2017, 2, 22)\n', (1440, 1453), False, 'import datetime\n'), ((1479, 1509), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (1496, 1509), False, 'import datetime\n'), ((3213, 3242), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (3230, 3242), False, 'import datetime\n'), ((3280, 3309), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (3297, 3309), False, 'import datetime\n'), ((3347, 3376), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (3364, 3376), False, 'import datetime\n'), ((3414, 3444), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (3431, 3444), False, 'import datetime\n'), ((3482, 3512), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (3499, 3512), False, 'import datetime\n'), ((3552, 3582), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(28)'], {}), '(2017, 2, 28)\n', (3569, 3582), False, 'import datetime\n'), ((4721, 4800), 'utils.graph_equals', 'utils.graph_equals', (['expected_graph', 'computed_graph'], {'weight_column_name': '"""weight"""'}), "(expected_graph, computed_graph, weight_column_name='weight')\n", (4739, 4800), False, 'import utils\n'), ((6185, 6214), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (6202, 6214), False, 'import datetime\n'), ((6252, 6281), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (6269, 6281), False, 'import datetime\n'), ((6319, 6348), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (6336, 6348), False, 'import datetime\n'), ((6386, 6416), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (6403, 6416), False, 'import datetime\n'), ((6454, 6484), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (6471, 6484), False, 'import datetime\n'), ((6524, 6554), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(28)'], {}), '(2017, 2, 28)\n', (6541, 6554), False, 'import datetime\n'), ((26141, 26186), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (26149, 26186), True, 'import numpy as np\n'), ((26251, 26296), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (26259, 26296), True, 'import numpy as np\n'), ((26362, 26408), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (26370, 26408), True, 'import numpy as np\n'), ((26474, 26517), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (26482, 26517), True, 'import numpy as np\n'), ((26581, 26630), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (26589, 26630), True, 'import numpy as np\n'), ((26696, 26743), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (26704, 26743), True, 'import numpy as np\n'), ((26808, 26854), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (26816, 26854), True, 'import numpy as np\n'), ((26919, 26966), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (26927, 26966), True, 'import numpy as np\n'), ((27037, 27082), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (27045, 27082), True, 'import numpy as np\n'), ((27151, 27195), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (27159, 27195), True, 'import numpy as np\n'), ((27261, 27304), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (27269, 27304), True, 'import numpy as np\n'), ((27368, 27412), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (27376, 27412), True, 'import numpy as np\n'), ((27478, 27521), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (27486, 27521), True, 'import numpy as np\n'), ((27587, 27630), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (27595, 27630), True, 'import numpy as np\n'), ((27695, 27738), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (27703, 27738), True, 'import numpy as np\n'), ((27806, 27851), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (27814, 27851), True, 'import numpy as np\n'), ((27922, 27966), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (27930, 27966), True, 'import numpy as np\n'), ((28031, 28074), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (28039, 28074), True, 'import numpy as np\n'), ((28138, 28186), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (28146, 28186), True, 'import numpy as np\n'), ((29122, 29167), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (29130, 29167), True, 'import numpy as np\n'), ((29233, 29278), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (29241, 29278), True, 'import numpy as np\n'), ((29345, 29391), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (29353, 29391), True, 'import numpy as np\n'), ((29458, 29501), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (29466, 29501), True, 'import numpy as np\n'), ((29565, 29614), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (29573, 29614), True, 'import numpy as np\n'), ((29681, 29728), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (29689, 29728), True, 'import numpy as np\n'), ((29794, 29840), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (29802, 29840), True, 'import numpy as np\n'), ((29906, 29953), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (29914, 29953), True, 'import numpy as np\n'), ((30024, 30069), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (30032, 30069), True, 'import numpy as np\n'), ((30138, 30182), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (30146, 30182), True, 'import numpy as np\n'), ((30248, 30291), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (30256, 30291), True, 'import numpy as np\n'), ((30355, 30399), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (30363, 30399), True, 'import numpy as np\n'), ((30465, 30508), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (30473, 30508), True, 'import numpy as np\n'), ((30574, 30617), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (30582, 30617), True, 'import numpy as np\n'), ((30682, 30725), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (30690, 30725), True, 'import numpy as np\n'), ((30793, 30838), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (30801, 30838), True, 'import numpy as np\n'), ((30909, 30953), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (30917, 30953), True, 'import numpy as np\n'), ((31018, 31061), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (31026, 31061), True, 'import numpy as np\n'), ((31125, 31173), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (31133, 31173), True, 'import numpy as np\n'), ((32097, 32142), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (32105, 32142), True, 'import numpy as np\n'), ((32208, 32253), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (32216, 32253), True, 'import numpy as np\n'), ((32320, 32366), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (32328, 32366), True, 'import numpy as np\n'), ((32432, 32475), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (32440, 32475), True, 'import numpy as np\n'), ((32539, 32588), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (32547, 32588), True, 'import numpy as np\n'), ((32654, 32701), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (32662, 32701), True, 'import numpy as np\n'), ((32766, 32812), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (32774, 32812), True, 'import numpy as np\n'), ((32878, 32925), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (32886, 32925), True, 'import numpy as np\n'), ((32996, 33041), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (33004, 33041), True, 'import numpy as np\n'), ((33110, 33154), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (33118, 33154), True, 'import numpy as np\n'), ((33220, 33263), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (33228, 33263), True, 'import numpy as np\n'), ((33327, 33371), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (33335, 33371), True, 'import numpy as np\n'), ((33437, 33480), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (33445, 33480), True, 'import numpy as np\n'), ((33546, 33589), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (33554, 33589), True, 'import numpy as np\n'), ((33654, 33697), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (33662, 33697), True, 'import numpy as np\n'), ((33765, 33810), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (33773, 33810), True, 'import numpy as np\n'), ((33881, 33925), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (33889, 33925), True, 'import numpy as np\n'), ((33990, 34033), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (33998, 34033), True, 'import numpy as np\n'), ((34097, 34145), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (34105, 34145), True, 'import numpy as np\n'), ((35472, 35515), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (35480, 35515), True, 'import numpy as np\n'), ((35579, 35622), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (35587, 35622), True, 'import numpy as np\n'), ((35686, 35729), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (35694, 35729), True, 'import numpy as np\n'), ((35795, 35838), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (35803, 35838), True, 'import numpy as np\n'), ((35904, 35947), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (35912, 35947), True, 'import numpy as np\n'), ((36013, 36056), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (36021, 36056), True, 'import numpy as np\n'), ((36122, 36165), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (36130, 36165), True, 'import numpy as np\n'), ((36231, 36274), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (36239, 36274), True, 'import numpy as np\n'), ((36339, 36382), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (36347, 36382), True, 'import numpy as np\n'), ((36448, 36491), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (36456, 36491), True, 'import numpy as np\n'), ((36557, 36600), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (36565, 36600), True, 'import numpy as np\n'), ((36666, 36709), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (36674, 36709), True, 'import numpy as np\n'), ((36775, 36818), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (36783, 36818), True, 'import numpy as np\n'), ((36883, 36926), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (36891, 36926), True, 'import numpy as np\n'), ((36992, 37035), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (37000, 37035), True, 'import numpy as np\n'), ((37100, 37143), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (37108, 37143), True, 'import numpy as np\n'), ((38476, 38519), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (38484, 38519), True, 'import numpy as np\n'), ((38583, 38626), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (38591, 38626), True, 'import numpy as np\n'), ((38690, 38733), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (38698, 38733), True, 'import numpy as np\n'), ((38798, 38841), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (38806, 38841), True, 'import numpy as np\n'), ((38907, 38950), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (38915, 38950), True, 'import numpy as np\n'), ((39016, 39059), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (39024, 39059), True, 'import numpy as np\n'), ((39125, 39168), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (39133, 39168), True, 'import numpy as np\n'), ((39234, 39277), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (39242, 39277), True, 'import numpy as np\n'), ((39342, 39385), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (39350, 39385), True, 'import numpy as np\n'), ((39450, 39493), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (39458, 39493), True, 'import numpy as np\n'), ((39559, 39602), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (39567, 39602), True, 'import numpy as np\n'), ((39668, 39711), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (39676, 39711), True, 'import numpy as np\n'), ((39777, 39820), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (39785, 39820), True, 'import numpy as np\n'), ((39885, 39928), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (39893, 39928), True, 'import numpy as np\n'), ((39994, 40037), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (40002, 40037), True, 'import numpy as np\n'), ((40102, 40145), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (40110, 40145), True, 'import numpy as np\n'), ((41474, 41517), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (41482, 41517), True, 'import numpy as np\n'), ((41581, 41624), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (41589, 41624), True, 'import numpy as np\n'), ((41688, 41731), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (41696, 41731), True, 'import numpy as np\n'), ((41796, 41839), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (41804, 41839), True, 'import numpy as np\n'), ((41904, 41947), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (41912, 41947), True, 'import numpy as np\n'), ((42012, 42055), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (42020, 42055), True, 'import numpy as np\n'), ((42120, 42163), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (42128, 42163), True, 'import numpy as np\n'), ((42228, 42271), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (42236, 42271), True, 'import numpy as np\n'), ((42335, 42378), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (42343, 42378), True, 'import numpy as np\n'), ((42443, 42486), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (42451, 42486), True, 'import numpy as np\n'), ((42552, 42595), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (42560, 42595), True, 'import numpy as np\n'), ((42661, 42704), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (42669, 42704), True, 'import numpy as np\n'), ((42770, 42813), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (42778, 42813), True, 'import numpy as np\n'), ((42878, 42921), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (42886, 42921), True, 'import numpy as np\n'), ((42987, 43030), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (42995, 43030), True, 'import numpy as np\n'), ((43095, 43138), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (43103, 43138), True, 'import numpy as np\n'), ((52011, 52036), 'numpy.unique', 'np.unique', (['truncated_keys'], {}), '(truncated_keys)\n', (52020, 52036), True, 'import numpy as np\n'), ((10871, 10883), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (10881, 10883), True, 'import networkx as nx\n'), ((12241, 12253), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12251, 12253), True, 'import networkx as nx\n'), ((61691, 61703), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (61701, 61703), True, 'import networkx as nx\n'), ((62475, 62502), 'networkx.difference', 'nx.difference', (['dg', 'computed'], {}), '(dg, computed)\n', (62488, 62502), True, 'import networkx as nx\n'), ((62668, 62695), 'networkx.difference', 'nx.difference', (['computed', 'dg'], {}), '(computed, dg)\n', (62681, 62695), True, 'import networkx as nx\n')]
import numpy as np n = 300 serial = int(input()) grid = np.array([[int(str(((x+10)*y+serial)*(x+10))[-3])-5 for y in range(1, n+1)] for x in range(1, n+1)]) coord = (0, 0) mVal, dim = 0, 0 for d in range(4, 2, -1): squares = sum(grid[x:x-d+1 or None, y:y-d+1 or None] for x in range(d) for y in range(d)) val = int(squares.max()) if mVal < val: coord = np.where(squares == val) mVal = val dim = d x,y = coord[0][0], coord[1][0] print(f'({x+1}, {y+1}) X {dim} = {mVal}')
[ "numpy.where" ]
[((374, 398), 'numpy.where', 'np.where', (['(squares == val)'], {}), '(squares == val)\n', (382, 398), True, 'import numpy as np\n')]
import pandas as pd import plotly.express as px import plotly.graph_objects as go import numpy as np def rmovie_basicvar(cdf, var = 'tg1', Mm = False, km = False, savefig = False, figname = 'radynvar.html', color = 'steelblue'): ''' A function to produce an animated figure of RADYN variables. This version is pre-constructed and lets you just input the variable you want to plot. Other variables (such as populations) will require more input, and are separate functions. Turns the output into a pandas dataframe, which is then passed to plotly express to create the animated figure Parameters __________ cdf : The radyn cdf object var : str The variable to plot (default = 'tg1') Mm : Boolean Plot height in Mm (default = False) km : Boolean Plot height in km (default = False) savefig : Boolean Save the figure (html file) figname : str Filename, if saving the output NOTES : So far, allowed variables are tg1 - temperature ne1 - electron density bheat1 - beam heating rate d1 - mass density vz1 - velocity np - proton density <NAME>, March 2021 ''' ######################################################################## # Some preliminary set up ######################################################################## if Mm == True: xtitle = 'Height [Mm]' height = cdf.z1/1e8 elif km == True: xtitle = 'Height [km]' height = cdf.z1/1e5 else: xtitle = 'Height [cm]' height = cdf.z1 if var == 'tg1': rvar = cdf.tg1 ytitle = 'Temperature [K]' ylog = True xlog = False elif var == 'ne1': rvar = cdf.ne1 ytitle = 'Electron Density [cm<sup>-3</sup>]' ylog = True xlog = False elif var == 'bheat1': rvar = cdf.bheat1 ytitle = 'Q<sub>beam</sub> [erg cm<sup>-3</sup> s<sup>-1</sup>]' ylog = False xlog = False elif var == 'd1': rvar = cdf.d1 ytitle = 'Mass Density [g cm<sup>-3</sup>]' ylog = True xlog = False elif var == 'vz1': rvar = cdf.vz1/1e5 ytitle = 'Velocity [km s<sup>-1</sup>]' ylog = False xlog = False elif var == 'np': rvar = cdf.n1[:,:,5,0] ytitle = 'Proton Density [cm<sup>-3</sup>]' ylog = True xlog = False template = dict( layout = go.Layout(font = dict(family = "Rockwell", size = 16), title_font = dict(family = "Rockwell", size = 20), plot_bgcolor = 'white', paper_bgcolor = 'white', xaxis = dict( showexponent = 'all', exponentformat = 'e', tickangle = 0, linewidth = 3, showgrid = True, ), yaxis = dict( showexponent = 'all', exponentformat = 'e', linewidth = 3, showgrid = True, anchor = 'free', position = 0, domain = [0.0,1] ), coloraxis_colorbar = dict( thickness = 15, tickformat = '0.2f', ticks = 'outside', titleside = 'right' ) )) ######################################################################## # Build the dataframe ######################################################################## col1 = ytitle col2 = xtitle time = 'Time [s]' timeind = 'Time index' df_list = [] for i in range(len(cdf.time)): data = {col1:rvar[i,:], col2:height[i,:], time: cdf.time[i], timeind: i } df_list.append(pd.DataFrame(data)) df = pd.concat(df_list) ######################################################################## # Plot the variable ######################################################################## h1 = 700 w1 = 700 fig1 = px.line(df, x = df.columns[1], y = df.columns[0], # animation_group = 'Time [s]', animation_frame = 'Time [s]', log_x = xlog, log_y = ylog, template = template, color_discrete_sequence = [color]) fig1.show() if savefig == True: fig1.write_html(figname) return df def rmovie(var1, var2, time = [-10.0], savefig = False, figname = 'radynvar.html', xtitle = 'Var 1', ytitle = 'Var 2', title = ' ', color = 'steelblue', xlog = False, ylog = False): ''' A function to produce an animated figure of RADYN variables. This version is 'dumb' and just plots col1 vs col2 without any axes labels, unless passed through the function fall. Variables must be input as [time, dim1] Turns the output into a pandas dataframe, which is then passed to plotly express to create the animated figure Parameters __________ var1 : float The variable to plot on the x-axis [time, dim1] var2 : float The variable to plot on the y-axis [time, dim1] xtitle : str The xaxis label (default "Var 1") ytitle : str The xaxis label (default "Var 2") title : str A plot title (default " ") savefig : Boolean Save the figure (html file) figname : str Filename, if saving the output xlog : boolean Default is false. Set to True to have log x-axis ylog : boolean Default is false. Set to True to have log y-axis NOTES : <NAME>, March 2021 ''' ######################################################################## # Some preliminary set up ######################################################################## if time[0] == -10: time = np.arange(0,var1.shape[0]) col3 = 'Time [index]' else: col3 = 'Time [s]' template = dict( layout = go.Layout(font = dict(family = "Rockwell", size = 16), title_font = dict(family = "Rockwell", size = 20), plot_bgcolor = 'white', paper_bgcolor = 'white', xaxis = dict( showexponent = 'all', exponentformat = 'e', tickangle = 0, linewidth = 3, showgrid = True, ), yaxis = dict( showexponent = 'all', exponentformat = 'e', linewidth = 3, showgrid = True, anchor = 'free', position = 0, domain = [0.0,1] ), coloraxis_colorbar = dict( thickness = 15, tickformat = '0.2f', ticks = 'outside', titleside = 'right' ) )) ######################################################################## # Build the dataframe ######################################################################## col1 = xtitle col2 = ytitle df_list = [] for i in range(len(time)): data = {col1:var1[i,:], col2:var2[i,:], col3: time[i], } df_list.append(pd.DataFrame(data)) df = pd.concat(df_list) ######################################################################## # Plot the variable ######################################################################## h1 = 700 w1 = 700 fig1 = px.line(df, x = df.columns[0], y = df.columns[1], # animation_group = 'Time [s]', animation_frame = df.columns[2], log_x = xlog, log_y = ylog, title = title, color_discrete_sequence = [color], template = template) fig1.show() if savefig == True: fig1.write_html(figname) return df
[ "pandas.DataFrame", "pandas.concat", "numpy.arange", "plotly.express.line" ]
[((4737, 4890), 'plotly.express.line', 'px.line', (['df'], {'x': 'df.columns[1]', 'y': 'df.columns[0]', 'animation_frame': '"""Time [s]"""', 'log_x': 'xlog', 'log_y': 'ylog', 'template': 'template', 'color_discrete_sequence': '[color]'}), "(df, x=df.columns[1], y=df.columns[0], animation_frame='Time [s]',\n log_x=xlog, log_y=ylog, template=template, color_discrete_sequence=[color])\n", (4744, 4890), True, 'import plotly.express as px\n'), ((8830, 9003), 'plotly.express.line', 'px.line', (['df'], {'x': 'df.columns[0]', 'y': 'df.columns[1]', 'animation_frame': 'df.columns[2]', 'log_x': 'xlog', 'log_y': 'ylog', 'title': 'title', 'color_discrete_sequence': '[color]', 'template': 'template'}), '(df, x=df.columns[0], y=df.columns[1], animation_frame=df.columns[2],\n log_x=xlog, log_y=ylog, title=title, color_discrete_sequence=[color],\n template=template)\n', (8837, 9003), True, 'import plotly.express as px\n'), ((4498, 4516), 'pandas.concat', 'pd.concat', (['df_list'], {}), '(df_list)\n', (4507, 4516), True, 'import pandas as pd\n'), ((6793, 6820), 'numpy.arange', 'np.arange', (['(0)', 'var1.shape[0]'], {}), '(0, var1.shape[0])\n', (6802, 6820), True, 'import numpy as np\n'), ((8590, 8608), 'pandas.concat', 'pd.concat', (['df_list'], {}), '(df_list)\n', (8599, 8608), True, 'import pandas as pd\n'), ((4460, 4478), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (4472, 4478), True, 'import pandas as pd\n'), ((8552, 8570), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (8564, 8570), True, 'import pandas as pd\n')]
import numpy as np from numba import njit from snapshot_functions import read_particles_filter from scipy.linalg import eigh def run(argv): if len(argv) < 5: print('python script.py <IC-file> <preIC-file> <ID> <radius>') return 1 ID = int(argv[3]) r = float(argv[4]) print('getting IDs of nearby particles') pos, header = read_particles_filter(argv[2],ID_list=[ID],opts={'pos':True}) IDs, header = read_particles_filter(argv[2],center=pos[0],radius=r,opts={'ID':True}) print('reading positions of %d particles'%len(IDs)) pos0, ID0, header = read_particles_filter(argv[2],ID_list=IDs,opts={'pos':True,'ID':True}) sort0 = np.argsort(ID0) ID0 = ID0[sort0] pos0 = pos0[sort0] - pos pos1, ID1, header = read_particles_filter(argv[1],ID_list=IDs,opts={'pos':True,'ID':True}) sort1 = np.argsort(ID1) ID1 = ID1[sort1] pos1 = pos1[sort1] - pos if not np.array_equal(ID0,ID1): print('Error') print(np.stack((ID0,ID1)).T.tolist()) return rot = np.diag((1,1,1)) for i in range(2): if i > 0: eigval, eigvec = eigh(e) rot1 = eigvec.T print('rotate by %.0f degrees'%(np.arccos((np.trace(rot1)-1)/2)*180./np.pi)) pos = (rot1 @ (pos.T)).T pos0 = (rot1 @ (pos0.T)).T pos1 = (rot1 @ (pos1.T)).T rot = rot1 @ rot disp = pos1 - pos0 e = np.zeros((3,3)) for c in range(3): dist2 = np.zeros(pos0.shape[0]) for d in range(3): if d != c: dist2 += pos0[:,d]**2 idx = np.argsort(dist2)[:32] for d in range(3): e[c,d] = np.polyfit(pos0[idx,c],disp[idx,d],1)[0] e = .5*(e + e.T) with np.printoptions(precision=5, suppress=True): print('Tidal tensor:') print(e) with np.printoptions(precision=5, suppress=True): print('rotation matrix (%.0f degrees)'%(np.arccos((np.trace(rot)-1)/2)*180./np.pi)) print(rot) np.savetxt('rotation_%d.txt'%ID,rot) if __name__ == '__main__': from sys import argv run(argv)
[ "numpy.stack", "numpy.trace", "numpy.polyfit", "numpy.savetxt", "numpy.zeros", "numpy.argsort", "scipy.linalg.eigh", "snapshot_functions.read_particles_filter", "numpy.array_equal", "numpy.diag", "numpy.printoptions" ]
[((361, 425), 'snapshot_functions.read_particles_filter', 'read_particles_filter', (['argv[2]'], {'ID_list': '[ID]', 'opts': "{'pos': True}"}), "(argv[2], ID_list=[ID], opts={'pos': True})\n", (382, 425), False, 'from snapshot_functions import read_particles_filter\n'), ((440, 514), 'snapshot_functions.read_particles_filter', 'read_particles_filter', (['argv[2]'], {'center': 'pos[0]', 'radius': 'r', 'opts': "{'ID': True}"}), "(argv[2], center=pos[0], radius=r, opts={'ID': True})\n", (461, 514), False, 'from snapshot_functions import read_particles_filter\n'), ((591, 666), 'snapshot_functions.read_particles_filter', 'read_particles_filter', (['argv[2]'], {'ID_list': 'IDs', 'opts': "{'pos': True, 'ID': True}"}), "(argv[2], ID_list=IDs, opts={'pos': True, 'ID': True})\n", (612, 666), False, 'from snapshot_functions import read_particles_filter\n'), ((673, 688), 'numpy.argsort', 'np.argsort', (['ID0'], {}), '(ID0)\n', (683, 688), True, 'import numpy as np\n'), ((762, 837), 'snapshot_functions.read_particles_filter', 'read_particles_filter', (['argv[1]'], {'ID_list': 'IDs', 'opts': "{'pos': True, 'ID': True}"}), "(argv[1], ID_list=IDs, opts={'pos': True, 'ID': True})\n", (783, 837), False, 'from snapshot_functions import read_particles_filter\n'), ((844, 859), 'numpy.argsort', 'np.argsort', (['ID1'], {}), '(ID1)\n', (854, 859), True, 'import numpy as np\n'), ((1031, 1049), 'numpy.diag', 'np.diag', (['(1, 1, 1)'], {}), '((1, 1, 1))\n', (1038, 1049), True, 'import numpy as np\n'), ((1955, 1994), 'numpy.savetxt', 'np.savetxt', (["('rotation_%d.txt' % ID)", 'rot'], {}), "('rotation_%d.txt' % ID, rot)\n", (1965, 1994), True, 'import numpy as np\n'), ((920, 944), 'numpy.array_equal', 'np.array_equal', (['ID0', 'ID1'], {}), '(ID0, ID1)\n', (934, 944), True, 'import numpy as np\n'), ((1397, 1413), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (1405, 1413), True, 'import numpy as np\n'), ((1800, 1843), 'numpy.printoptions', 'np.printoptions', ([], {'precision': '(5)', 'suppress': '(True)'}), '(precision=5, suppress=True)\n', (1815, 1843), True, 'import numpy as np\n'), ((1111, 1118), 'scipy.linalg.eigh', 'eigh', (['e'], {}), '(e)\n', (1115, 1118), False, 'from scipy.linalg import eigh\n'), ((1452, 1475), 'numpy.zeros', 'np.zeros', (['pos0.shape[0]'], {}), '(pos0.shape[0])\n', (1460, 1475), True, 'import numpy as np\n'), ((1699, 1742), 'numpy.printoptions', 'np.printoptions', ([], {'precision': '(5)', 'suppress': '(True)'}), '(precision=5, suppress=True)\n', (1714, 1742), True, 'import numpy as np\n'), ((1557, 1574), 'numpy.argsort', 'np.argsort', (['dist2'], {}), '(dist2)\n', (1567, 1574), True, 'import numpy as np\n'), ((1624, 1665), 'numpy.polyfit', 'np.polyfit', (['pos0[idx, c]', 'disp[idx, d]', '(1)'], {}), '(pos0[idx, c], disp[idx, d], 1)\n', (1634, 1665), True, 'import numpy as np\n'), ((976, 996), 'numpy.stack', 'np.stack', (['(ID0, ID1)'], {}), '((ID0, ID1))\n', (984, 996), True, 'import numpy as np\n'), ((1901, 1914), 'numpy.trace', 'np.trace', (['rot'], {}), '(rot)\n', (1909, 1914), True, 'import numpy as np\n'), ((1194, 1208), 'numpy.trace', 'np.trace', (['rot1'], {}), '(rot1)\n', (1202, 1208), True, 'import numpy as np\n')]
from collections import deque import numpy as np import cv2 import chainer from chainer import links as L import chainerrl from chainerrl import agents from chainerrl.action_value import DiscreteActionValue from chainerrl import explorers from chainerrl import links from chainerrl import replay_buffer def infer(agent, state): gray_state = [cv2.cvtColor(s, cv2.COLOR_RGB2GRAY) for s in state] dqn_state = [cv2.resize(s, (84, 84), interpolation=cv2.INTER_AREA) \ for s in gray_state] input_tensor = np.array(dqn_state).astype(np.float32) return agent.act(input_tensor) class Agent(object): def __init__(self, modelpath, n_actions=4, n_stack_frames=4): # Predefined parameters. replay_start_size = 5 * 10 ** 4 # Load the model. q_func = links.Sequence( links.NatureDQNHead(), L.Linear(512, n_actions), DiscreteActionValue) opt = chainer.optimizers.RMSpropGraves( lr=2.5e-4, alpha=0.95, momentum=0.0, eps=1e-2) opt.setup(q_func) rbuf = replay_buffer.ReplayBuffer(10 ** 6) explorer = explorers.LinearDecayEpsilonGreedy( start_epsilon=1.0, end_epsilon=0.1, decay_steps=10 ** 6, random_action_func=lambda: np.random.randint(n_actions)) def phi(x): # Feature extractor return np.asarray(x, dtype=np.float32) / 255 Agent = agents.DQN self._agent = Agent(q_func, opt, rbuf, gpu=-1, gamma=0.99, explorer=explorer, replay_start_size=replay_start_size, target_update_interval=10 ** 4, clip_delta=True, update_interval=4, batch_accumulator='sum', phi=phi) self._agent.load(modelpath) self._state = deque( [], maxlen=n_stack_frames) self._action = 0 def get_action(self): return self._action def put_state(self, state): # Note: should devide this code to 2 parts: # putting state part and do inference part... self._state.append(state) if len(self._state) < self._state.maxlen: # Need to wait. return state = list(self._state) self._action = infer(self._agent, state)
[ "cv2.resize", "chainerrl.links.NatureDQNHead", "chainerrl.replay_buffer.ReplayBuffer", "chainer.optimizers.RMSpropGraves", "cv2.cvtColor", "numpy.asarray", "numpy.random.randint", "numpy.array", "collections.deque", "chainer.links.Linear" ]
[((353, 388), 'cv2.cvtColor', 'cv2.cvtColor', (['s', 'cv2.COLOR_RGB2GRAY'], {}), '(s, cv2.COLOR_RGB2GRAY)\n', (365, 388), False, 'import cv2\n'), ((422, 475), 'cv2.resize', 'cv2.resize', (['s', '(84, 84)'], {'interpolation': 'cv2.INTER_AREA'}), '(s, (84, 84), interpolation=cv2.INTER_AREA)\n', (432, 475), False, 'import cv2\n'), ((1002, 1087), 'chainer.optimizers.RMSpropGraves', 'chainer.optimizers.RMSpropGraves', ([], {'lr': '(0.00025)', 'alpha': '(0.95)', 'momentum': '(0.0)', 'eps': '(0.01)'}), '(lr=0.00025, alpha=0.95, momentum=0.0, eps=0.01\n )\n', (1034, 1087), False, 'import chainer\n'), ((1136, 1171), 'chainerrl.replay_buffer.ReplayBuffer', 'replay_buffer.ReplayBuffer', (['(10 ** 6)'], {}), '(10 ** 6)\n', (1162, 1171), False, 'from chainerrl import replay_buffer\n'), ((1930, 1962), 'collections.deque', 'deque', (['[]'], {'maxlen': 'n_stack_frames'}), '([], maxlen=n_stack_frames)\n', (1935, 1962), False, 'from collections import deque\n'), ((535, 554), 'numpy.array', 'np.array', (['dqn_state'], {}), '(dqn_state)\n', (543, 554), True, 'import numpy as np\n'), ((894, 915), 'chainerrl.links.NatureDQNHead', 'links.NatureDQNHead', ([], {}), '()\n', (913, 915), False, 'from chainerrl import links\n'), ((929, 953), 'chainer.links.Linear', 'L.Linear', (['(512)', 'n_actions'], {}), '(512, n_actions)\n', (937, 953), True, 'from chainer import links as L\n'), ((1448, 1479), 'numpy.asarray', 'np.asarray', (['x'], {'dtype': 'np.float32'}), '(x, dtype=np.float32)\n', (1458, 1479), True, 'import numpy as np\n'), ((1347, 1375), 'numpy.random.randint', 'np.random.randint', (['n_actions'], {}), '(n_actions)\n', (1364, 1375), True, 'import numpy as np\n')]
import pytest import time import numpy as np from spotify_confidence.analysis.frequentist.confidence_computers.z_test_computer import sequential_bounds @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days(): """ This input (based on a real experiment) is very long, which can cause slow calculation """ t = [ 0.0016169976338740648, 0.0057857955498163615, 0.012200379088315757, 0.020199591701142824, 0.02956441064038571, 0.04047102718841871, 0.052929825413405296, 0.06580092295219643, 0.07878439818310792, 0.09148496950057272, 0.1028893343050959, 0.1128434997940756, 0.12298934256730025, 0.13280979910049193, 0.14267997977787195, 0.15281963941289514, 0.16293176212095561, 0.17198778455162406, 0.17996747917082068, 0.18786110540725684, 0.1955669737257397, 0.20335013690301407, 0.21277055903588274, 0.22148328777708232, 0.2295912740670489, 0.23640586948077766, 0.2431234831038822, 0.24987292468428604, 0.2568336065927525, 0.2649271880853427, 0.27282722271091664, 0.2799894816822785, 0.2862801096305317, 0.2925685639072496, 0.2988294699944579, 0.3051314956400879, 0.3118994077972684, 0.31887303037202536, 0.32523581745772245, 0.3307398353487736, 0.33616198578702633, 0.34151324975562525, 0.3478405485563082, 0.3546238566149848, 0.36130761502236336, 0.36751189302418574, 0.3730571543616735, 0.37865278180851814, 0.38428987795273567, 0.3900127609160433, 0.3964718089893684, 0.40306122104207753, 0.40914555292031984, 0.41449831480764515, 0.4198849769608837, 0.4256404199470336, 0.4315384355133149, 0.43801594290086987, 0.4444516211895538, 0.45034373518130405, 0.4556807858158224, 0.4610488197166289, 0.46633036852044285, 0.4717294082126311, 0.47769497653470894, 0.48369759863580825, 0.4892945325380834, 0.49431792124380325, 0.49935417177798586, 0.5043009639028166, 0.5093262559789482, 0.5149098888134348, 0.5205835093969735, 0.5261172491490695, 0.5310141031413226, 0.5359027242118537, 0.540068909216935, 0.5451620919252675, 0.5506752550043325, 0.5562355968920056, 0.5614758121490083, 0.5660462437469214, 0.5706616804819072, 0.5750453002157994, 0.5795939049979849, 0.5861802311128667, 0.5913273051077091, 0.5958976691303413, 0.6001503392324151, 0.6042404457337608, 0.6082963816680697, 0.6124734913435614, 0.6174918231657613, 0.6223867287374153, 0.6268875352709179, 0.6308341907134806, 0.6348490070893678, 0.6388763812049537, 0.6430405276890614, 0.6476616520101889, 0.6525750168960728, 0.6570689758011117, 0.6610427627189518, 0.6649727383296814, 0.6689671694958335, 0.673019050913289, 0.6776959248411508, 0.6825336054124376, 0.6869984168463193, 0.6908780826604262, 0.6949984065748767, 0.6991746490342636, 0.7033415661048878, 0.7082721626873987, 0.7131064081819068, 0.7176506656210218, 0.7216193168175142, 0.7256178250256133, 0.7296113326629264, 0.733677461202103, 0.7383860054116087, 0.7431864069529378, 0.7475115177561259, 0.7513220765829758, 0.7551652404828552, 0.7591154774153049, 0.7635879699061145, 0.76888963361854, 0.7740750002725536, 0.7788235152607059, 0.7829338267710377, 0.7870690059847372, 0.7912444713283939, 0.7954864645360872, 0.8002680350991415, 0.8051864906561857, 0.8097254772233912, 0.8137210008565843, 0.8175460095309978, 0.8214444612731922, 0.8256005212486867, 0.8302889054993935, 0.8351108860804202, 0.839542135124793, 0.8433705788759852, 0.8472835029908369, 0.8513248314019267, 0.8556693700983707, 0.8606610209471658, 0.865499591259651, 0.8699232042972833, 0.8737653545679493, 0.8776996212090155, 0.8816179062961511, 0.8856027192473231, 0.8900849425785808, 0.8947120585746139, 0.8993599427069738, 0.9035026227768521, 0.9075820073336299, 0.9115699850604569, 0.9158137239629064, 0.9207252417911126, 0.925749689176233, 0.9303560370359392, 0.9343408161994707, 0.9384800274049299, 0.9426168396879175, 0.9475247422385961, 0.9523909621035122, 0.9573336433987555, 0.9618665256655873, 0.9657568345864344, 0.9697355995499667, 0.973736889607129, 0.9778353641807583, 0.9828378833872299, 0.987703190985854, 0.9921586319807856, 0.9960384779956415, 1.0, ] start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2) my_bounds = results.bounds expected = np.array( [ 5.75400023, 8.0, 5.14701605, 4.91478643, 4.80691346, 4.69004328, 4.57921075, 4.49683943, 4.44452939, 4.38899083, 4.35683792, 4.33289847, 4.301461, 4.27383028, 4.24513591, 4.21444005, 4.18809224, 4.17037988, 4.15702106, 4.13796352, 4.12345883, 4.10808648, 4.07898394, 4.06169498, 4.04985422, 4.04453139, 4.03288177, 4.02205301, 4.00664024, 3.98770613, 3.97358123, 3.96589571, 3.95946059, 3.94995533, 3.94128534, 3.93114789, 3.91870273, 3.90749163, 3.90064315, 3.8958719, 3.88847126, 3.88184277, 3.86841705, 3.85642932, 3.84721152, 3.84099201, 3.83689676, 3.8295672, 3.82234648, 3.81501541, 3.80286989, 3.79370807, 3.78728177, 3.78449351, 3.77865864, 3.76988501, 3.76230126, 3.75251025, 3.74474277, 3.73953663, 3.73534961, 3.72974059, 3.72466752, 3.71785112, 3.70903202, 3.70176221, 3.6976847, 3.6944938, 3.68996741, 3.68449851, 3.67888767, 3.67142884, 3.66522708, 3.65968721, 3.65649679, 3.65207508, 3.65156885, 3.643952, 3.63644572, 3.63029181, 3.62665696, 3.62527741, 3.62117738, 3.61789837, 3.6128686, 3.59904477, 3.5976517, 3.59678297, 3.59434356, 3.59116304, 3.58814574, 3.5835558, 3.57659985, 3.5726481, 3.56990393, 3.56879169, 3.56501955, 3.56127173, 3.55720436, 3.55194666, 3.54597713, 3.5436994, 3.54287161, 3.53974477, 3.53649679, 3.53314876, 3.52700997, 3.52175088, 3.51873367, 3.51846468, 3.51401711, 3.5106822, 3.50742162, 3.50113309, 3.49658758, 3.49376264, 3.49238249, 3.48979047, 3.48725107, 3.48341163, 3.47810608, 3.47381485, 3.47184685, 3.47110719, 3.46801712, 3.46472076, 3.45913659, 3.45209404, 3.4484684, 3.44587153, 3.44472549, 3.44242755, 3.43895355, 3.43549018, 3.43080058, 3.42621252, 3.42437516, 3.42371762, 3.42122891, 3.41861765, 3.41451447, 3.40936002, 3.4051931, 3.40307035, 3.40295986, 3.40052495, 3.39688763, 3.39279348, 3.38725208, 3.38421998, 3.38214471, 3.38133324, 3.37908335, 3.37689107, 3.37364203, 3.36937673, 3.36593888, 3.36250238, 3.36109704, 3.35878324, 3.35666501, 3.35305866, 3.34754255, 3.34364255, 3.34157534, 3.34085629, 3.33864193, 3.33563376, 3.33016843, 3.32687574, 3.32338656, 3.32166421, 3.32107266, 3.31861916, 3.31615129, 3.31334059, 3.30792367, 3.30479742, 3.30339238, 3.30296421, 3.30041534, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken assert (time.time() - start_time) < 15 # Run a second time but with initial state from last run. start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2, state=results.state) my_bounds = results.bounds assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken print(f"Time passed second round: {time.time() - start_time}") assert (time.time() - start_time) < 0.01 @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days_fast_and_no_crash(): """ This is based on experiment 1735 on 26.11.2020. The calculation of the corresponding bounds takes many minutes without performance tweak. Therefore, this test only checks for absence of crashs and time constraints, but does not compare against the baseline without performance tweak. There is a Jupyter notebook making that comparison. """ t = [ 0.011404679673257933, 0.02292450819418779, 0.0356455988484443, 0.04835740420885424, 0.05971666577058213, 0.06976017458481187, 0.07984165086754545, 0.09002459314412276, 0.10026356929804565, 0.11129746744100509, 0.1222487922920801, 0.13250332796555583, 0.1418309168157694, 0.15072692856918676, 0.15940425274581055, 0.16819162796171988, 0.17766544268380677, 0.18725283769713902, 0.19600162922594835, 0.20386600701959812, 0.21159934032678884, 0.21916233120704773, 0.22688560894714668, 0.23509036348536208, 0.24366994698965522, 0.2515994198750076, 0.25875219123481424, 0.2659624389836802, 0.2731790169781248, 0.28051081384508175, 0.28822790138928306, 0.2962915558739476, 0.3037246366701631, 0.31063411372423433, 0.31767205835063517, 0.32464032826076655, 0.3318100596369355, 0.3397812253123048, 0.3476375502493003, 0.3550356746451523, 0.3616457394863339, 0.3683042335071859, 0.375005792804928, 0.38175551518794676, 0.3891222824602354, 0.39652683513644266, 0.40347332732118724, 0.4098512458112366, 0.4163205187081655, 0.42263992444151655, 0.42899148558161226, 0.43464157988476515, 0.43858871208254674, 0.44192382717460427, 0.44482627278235426, 0.4474605932759375, 0.44957511937869815, 0.4509048070694502, 0.45222422911858906, 0.45333747002744257, 0.45426598540713137, 0.4551955091445229, 0.45605329943533507, 0.456895460181754, 0.4578387508027823, 0.45881449093488524, 0.45965707183034693, 0.4603621239391219, 0.4610501740166303, 0.46173166976907054, 0.4624475477181825, 0.4632872155802805, 0.4641010162663083, 0.46481571779810027, 0.4654194019478082, 0.4660207332628762, 0.4666458170038323, 0.4672646265190821, 0.46791675385342846, 0.4685898046101078, 0.46918687841487516, 0.46969451649339183, 0.47019581032136176, 0.4706811945055765, 0.47116992587716583, 0.47170379526092326, 0.47227291514937425, 0.4727852448922026, 0.47322669549150526, 0.4736554715946826, 0.47408022827201673, 0.47450655350577753, 0.4749737592414058, 0.47545756086422586, 0.4759381553493523, 0.47630259262910407, 0.4766609657576709, 0.47699441004302984, 0.4773518028238301, 0.477775327063972, 0.4781977729215707, 0.47856485714029223, 0.47888037506649034, 0.47919262983512245, 0.47949520717080135, 0.47980748994936967, 0.4801789017032324, 0.4805627078538587, 0.48090167009664675, 0.4811904245288165, 0.48149113920373887, 0.4817901452725537, 0.4820966860142033, 0.48243977972257923, 0.4827841618880198, 0.48309197708176604, 0.4833586316742829, 0.4836129058750043, 0.4838654994795544, 0.4841171547512422, 0.48439948090305657, 0.48470691796266424, 0.4849764575786085, 0.4852081697757299, 0.48545255646897667, 0.4856974893559792, 0.48595208567096676, 0.48624575584693763, 0.4865416528128355, 0.4867930840050338, 0.4870117575768593, 0.4872274340855126, 0.4874240218226533, 0.4876215198827202, 0.4878617751103791, 0.488108108494191, 0.48831807097586183, 0.4884937072807334, 0.48866595438332605, 0.488852192449045, 0.48903411698459087, 0.4892522303576926, 0.4894829201921431, 0.4896802221826566, 0.4898457609055321, 0.49001188783706756, 0.4901847091433521, 0.4903469286887892, 0.4905345812562857, 0.49073597269748276, 0.49091467609036693, 0.4910691508884479, 0.4912115954189357, 0.49135658885361677, 0.49150574176382184, 0.49167835299558493, 0.49186735004001847, 0.49203167033066975, 0.49216849886895175, 0.4923075682021289, 0.4924506289512129, 0.49259525825672346, 0.49276396210238826, 0.49294465420074185, 0.4931019580023778, 0.49330306934421303, 0.4935200763248353, 0.49373208353184794, 0.4939721566949216, 0.4942334053697541, 0.4944958444668745, 0.4947262121870588, 0.49492469059489225, 0.4951192336066912, 0.495294323717807, 0.4954780829041733, 0.4956838158854796, 0.49592192835302007, 0.49614550366367866, 0.49633301618149417, 0.49652995404283723, 0.4967104500716375, 0.4969174855149766, 0.49712443692850716, 0.4973541744251272, 0.49756258235533957, 0.49772464784612763, 0.4978989396740621, 0.4980669292663541, 0.4982378038820735, 0.49843929335804726, 0.4986487236509305, 0.49883442952786183, 0.49899118713574214, 0.49915640374435144, 0.49932506557511197, ] alpha = 0.0033333333333333335 sides = 2 start_time = time.time() my_bounds = sequential_bounds(np.array(t), alpha=alpha, sides=sides).bounds expected = np.array( [ 5.0536015, 4.819334, 4.70702194, 4.60970036, 4.55329219, 4.5118919, 4.465161, 4.42168832, 4.37932413, 4.33343066, 4.29780246, 4.26550766, 4.2476601, 4.22343408, 4.20455427, 4.1834642, 4.15580542, 4.13352266, 4.1170148, 4.10326736, 4.08845795, 4.07496919, 4.05959646, 4.0417501, 4.02262887, 4.01056674, 4.00192679, 3.98996708, 3.97709149, 3.96442225, 3.95010566, 3.93456306, 3.92603865, 3.91801377, 3.90630556, 3.8975012, 3.88641115, 3.87143326, 3.85966246, 3.85112482, 3.84569926, 3.83714224, 3.82719647, 3.81910741, 3.80682977, 3.79652758, 3.78889289, 3.78428912, 3.77646938, 3.76966463, 3.76150223, 3.75820905, 3.76088934, 3.76171382, 3.76141619, 3.76079216, 3.76237742, 3.76725034, 3.76769877, 3.7690107, 3.7710916, 3.77168583, 3.76813708, 3.7705804, 3.76669411, 3.76711572, 3.76808636, 3.76962133, 3.76680748, 3.76844159, 3.76552364, 3.76210975, 3.76321355, 3.76471956, 3.76227721, 3.76424368, 3.76172169, 3.75923, 3.76099518, 3.75829319, 3.76028082, 3.75824824, 3.7562443, 3.76013739, 3.75818674, 3.7560594, 3.75379557, 3.75757852, 3.75582548, 3.75412511, 3.75244297, 3.75075688, 3.74891172, 3.75280489, 3.75090966, 3.7494744, 3.74806463, 3.75254602, 3.75114099, 3.74947802, 3.74782149, 3.74638383, 3.75092969, 3.74970739, 3.7485241, 3.74730404, 3.74585452, 3.74435839, 3.74303855, 3.74191532, 3.74074663, 3.73958567, 3.74415751, 3.74282592, 3.74149075, 3.74029857, 3.73926672, 3.73828357, 3.73730769, 3.7363362, 3.7352472, 3.73406243, 3.74020438, 3.7393112, 3.73836986, 3.73742713, 3.73644796, 3.73531947, 3.73418345, 3.73321896, 3.73238074, 3.73155456, 3.73080198, 3.73004637, 3.7291278, 3.72818669, 3.7273851, 3.72671496, 3.72605809, 3.72534827, 3.72465527, 3.72382494, 3.72294733, 3.73077145, 3.73014101, 3.72950865, 3.72885115, 3.7282343, 3.72752112, 3.72675617, 3.7260778, 3.7254917, 3.72495149, 3.72440186, 3.72383671, 3.723183, 3.72246763, 3.72184599, 3.7213286, 3.72080295, 3.72026245, 3.71971626, 3.71907946, 3.71839777, 3.71780463, 3.71704671, 3.7162294, 3.71543144, 3.71452847, 3.72065881, 3.71967136, 3.71880523, 3.71805949, 3.71732896, 3.71667185, 3.71598258, 3.71521135, 3.71431933, 3.71348235, 3.71278081, 3.71204444, 3.71136994, 3.7105967, 3.70982427, 3.70896735, 3.71527887, 3.71467395, 3.71402372, 3.71339733, 3.71276051, 3.71201001, 3.71123041, 3.71053954, 3.70995666, 3.70934263, 3.70871611, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 30 seconds, something is most likely broken assert (time.time() - start_time) < 30
[ "numpy.allclose", "pytest.mark.skip", "numpy.array", "time.time" ]
[((155, 221), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""Skipping because this test is very slow"""'}), "(reason='Skipping because this test is very slow')\n", (171, 221), False, 'import pytest\n'), ((10635, 10701), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""Skipping because this test is very slow"""'}), "(reason='Skipping because this test is very slow')\n", (10651, 10701), False, 'import pytest\n'), ((5478, 5489), 'time.time', 'time.time', ([], {}), '()\n', (5487, 5489), False, 'import time\n'), ((5610, 7901), 'numpy.array', 'np.array', (['[5.75400023, 8.0, 5.14701605, 4.91478643, 4.80691346, 4.69004328, \n 4.57921075, 4.49683943, 4.44452939, 4.38899083, 4.35683792, 4.33289847,\n 4.301461, 4.27383028, 4.24513591, 4.21444005, 4.18809224, 4.17037988, \n 4.15702106, 4.13796352, 4.12345883, 4.10808648, 4.07898394, 4.06169498,\n 4.04985422, 4.04453139, 4.03288177, 4.02205301, 4.00664024, 3.98770613,\n 3.97358123, 3.96589571, 3.95946059, 3.94995533, 3.94128534, 3.93114789,\n 3.91870273, 3.90749163, 3.90064315, 3.8958719, 3.88847126, 3.88184277, \n 3.86841705, 3.85642932, 3.84721152, 3.84099201, 3.83689676, 3.8295672, \n 3.82234648, 3.81501541, 3.80286989, 3.79370807, 3.78728177, 3.78449351,\n 3.77865864, 3.76988501, 3.76230126, 3.75251025, 3.74474277, 3.73953663,\n 3.73534961, 3.72974059, 3.72466752, 3.71785112, 3.70903202, 3.70176221,\n 3.6976847, 3.6944938, 3.68996741, 3.68449851, 3.67888767, 3.67142884, \n 3.66522708, 3.65968721, 3.65649679, 3.65207508, 3.65156885, 3.643952, \n 3.63644572, 3.63029181, 3.62665696, 3.62527741, 3.62117738, 3.61789837,\n 3.6128686, 3.59904477, 3.5976517, 3.59678297, 3.59434356, 3.59116304, \n 3.58814574, 3.5835558, 3.57659985, 3.5726481, 3.56990393, 3.56879169, \n 3.56501955, 3.56127173, 3.55720436, 3.55194666, 3.54597713, 3.5436994, \n 3.54287161, 3.53974477, 3.53649679, 3.53314876, 3.52700997, 3.52175088,\n 3.51873367, 3.51846468, 3.51401711, 3.5106822, 3.50742162, 3.50113309, \n 3.49658758, 3.49376264, 3.49238249, 3.48979047, 3.48725107, 3.48341163,\n 3.47810608, 3.47381485, 3.47184685, 3.47110719, 3.46801712, 3.46472076,\n 3.45913659, 3.45209404, 3.4484684, 3.44587153, 3.44472549, 3.44242755, \n 3.43895355, 3.43549018, 3.43080058, 3.42621252, 3.42437516, 3.42371762,\n 3.42122891, 3.41861765, 3.41451447, 3.40936002, 3.4051931, 3.40307035, \n 3.40295986, 3.40052495, 3.39688763, 3.39279348, 3.38725208, 3.38421998,\n 3.38214471, 3.38133324, 3.37908335, 3.37689107, 3.37364203, 3.36937673,\n 3.36593888, 3.36250238, 3.36109704, 3.35878324, 3.35666501, 3.35305866,\n 3.34754255, 3.34364255, 3.34157534, 3.34085629, 3.33864193, 3.33563376,\n 3.33016843, 3.32687574, 3.32338656, 3.32166421, 3.32107266, 3.31861916,\n 3.31615129, 3.31334059, 3.30792367, 3.30479742, 3.30339238, 3.30296421,\n 3.30041534]'], {}), '([5.75400023, 8.0, 5.14701605, 4.91478643, 4.80691346, 4.69004328, \n 4.57921075, 4.49683943, 4.44452939, 4.38899083, 4.35683792, 4.33289847,\n 4.301461, 4.27383028, 4.24513591, 4.21444005, 4.18809224, 4.17037988, \n 4.15702106, 4.13796352, 4.12345883, 4.10808648, 4.07898394, 4.06169498,\n 4.04985422, 4.04453139, 4.03288177, 4.02205301, 4.00664024, 3.98770613,\n 3.97358123, 3.96589571, 3.95946059, 3.94995533, 3.94128534, 3.93114789,\n 3.91870273, 3.90749163, 3.90064315, 3.8958719, 3.88847126, 3.88184277, \n 3.86841705, 3.85642932, 3.84721152, 3.84099201, 3.83689676, 3.8295672, \n 3.82234648, 3.81501541, 3.80286989, 3.79370807, 3.78728177, 3.78449351,\n 3.77865864, 3.76988501, 3.76230126, 3.75251025, 3.74474277, 3.73953663,\n 3.73534961, 3.72974059, 3.72466752, 3.71785112, 3.70903202, 3.70176221,\n 3.6976847, 3.6944938, 3.68996741, 3.68449851, 3.67888767, 3.67142884, \n 3.66522708, 3.65968721, 3.65649679, 3.65207508, 3.65156885, 3.643952, \n 3.63644572, 3.63029181, 3.62665696, 3.62527741, 3.62117738, 3.61789837,\n 3.6128686, 3.59904477, 3.5976517, 3.59678297, 3.59434356, 3.59116304, \n 3.58814574, 3.5835558, 3.57659985, 3.5726481, 3.56990393, 3.56879169, \n 3.56501955, 3.56127173, 3.55720436, 3.55194666, 3.54597713, 3.5436994, \n 3.54287161, 3.53974477, 3.53649679, 3.53314876, 3.52700997, 3.52175088,\n 3.51873367, 3.51846468, 3.51401711, 3.5106822, 3.50742162, 3.50113309, \n 3.49658758, 3.49376264, 3.49238249, 3.48979047, 3.48725107, 3.48341163,\n 3.47810608, 3.47381485, 3.47184685, 3.47110719, 3.46801712, 3.46472076,\n 3.45913659, 3.45209404, 3.4484684, 3.44587153, 3.44472549, 3.44242755, \n 3.43895355, 3.43549018, 3.43080058, 3.42621252, 3.42437516, 3.42371762,\n 3.42122891, 3.41861765, 3.41451447, 3.40936002, 3.4051931, 3.40307035, \n 3.40295986, 3.40052495, 3.39688763, 3.39279348, 3.38725208, 3.38421998,\n 3.38214471, 3.38133324, 3.37908335, 3.37689107, 3.37364203, 3.36937673,\n 3.36593888, 3.36250238, 3.36109704, 3.35878324, 3.35666501, 3.35305866,\n 3.34754255, 3.34364255, 3.34157534, 3.34085629, 3.33864193, 3.33563376,\n 3.33016843, 3.32687574, 3.32338656, 3.32166421, 3.32107266, 3.31861916,\n 3.31615129, 3.31334059, 3.30792367, 3.30479742, 3.30339238, 3.30296421,\n 3.30041534])\n', (5618, 7901), True, 'import numpy as np\n'), ((9979, 10011), 'numpy.allclose', 'np.allclose', (['my_bounds', 'expected'], {}), '(my_bounds, expected)\n', (9990, 10011), True, 'import numpy as np\n'), ((10237, 10248), 'time.time', 'time.time', ([], {}), '()\n', (10246, 10248), False, 'import time\n'), ((10385, 10417), 'numpy.allclose', 'np.allclose', (['my_bounds', 'expected'], {}), '(my_bounds, expected)\n', (10396, 10417), True, 'import numpy as np\n'), ((16776, 16787), 'time.time', 'time.time', ([], {}), '()\n', (16785, 16787), False, 'import time\n'), ((16884, 19358), 'numpy.array', 'np.array', (['[5.0536015, 4.819334, 4.70702194, 4.60970036, 4.55329219, 4.5118919, \n 4.465161, 4.42168832, 4.37932413, 4.33343066, 4.29780246, 4.26550766, \n 4.2476601, 4.22343408, 4.20455427, 4.1834642, 4.15580542, 4.13352266, \n 4.1170148, 4.10326736, 4.08845795, 4.07496919, 4.05959646, 4.0417501, \n 4.02262887, 4.01056674, 4.00192679, 3.98996708, 3.97709149, 3.96442225,\n 3.95010566, 3.93456306, 3.92603865, 3.91801377, 3.90630556, 3.8975012, \n 3.88641115, 3.87143326, 3.85966246, 3.85112482, 3.84569926, 3.83714224,\n 3.82719647, 3.81910741, 3.80682977, 3.79652758, 3.78889289, 3.78428912,\n 3.77646938, 3.76966463, 3.76150223, 3.75820905, 3.76088934, 3.76171382,\n 3.76141619, 3.76079216, 3.76237742, 3.76725034, 3.76769877, 3.7690107, \n 3.7710916, 3.77168583, 3.76813708, 3.7705804, 3.76669411, 3.76711572, \n 3.76808636, 3.76962133, 3.76680748, 3.76844159, 3.76552364, 3.76210975,\n 3.76321355, 3.76471956, 3.76227721, 3.76424368, 3.76172169, 3.75923, \n 3.76099518, 3.75829319, 3.76028082, 3.75824824, 3.7562443, 3.76013739, \n 3.75818674, 3.7560594, 3.75379557, 3.75757852, 3.75582548, 3.75412511, \n 3.75244297, 3.75075688, 3.74891172, 3.75280489, 3.75090966, 3.7494744, \n 3.74806463, 3.75254602, 3.75114099, 3.74947802, 3.74782149, 3.74638383,\n 3.75092969, 3.74970739, 3.7485241, 3.74730404, 3.74585452, 3.74435839, \n 3.74303855, 3.74191532, 3.74074663, 3.73958567, 3.74415751, 3.74282592,\n 3.74149075, 3.74029857, 3.73926672, 3.73828357, 3.73730769, 3.7363362, \n 3.7352472, 3.73406243, 3.74020438, 3.7393112, 3.73836986, 3.73742713, \n 3.73644796, 3.73531947, 3.73418345, 3.73321896, 3.73238074, 3.73155456,\n 3.73080198, 3.73004637, 3.7291278, 3.72818669, 3.7273851, 3.72671496, \n 3.72605809, 3.72534827, 3.72465527, 3.72382494, 3.72294733, 3.73077145,\n 3.73014101, 3.72950865, 3.72885115, 3.7282343, 3.72752112, 3.72675617, \n 3.7260778, 3.7254917, 3.72495149, 3.72440186, 3.72383671, 3.723183, \n 3.72246763, 3.72184599, 3.7213286, 3.72080295, 3.72026245, 3.71971626, \n 3.71907946, 3.71839777, 3.71780463, 3.71704671, 3.7162294, 3.71543144, \n 3.71452847, 3.72065881, 3.71967136, 3.71880523, 3.71805949, 3.71732896,\n 3.71667185, 3.71598258, 3.71521135, 3.71431933, 3.71348235, 3.71278081,\n 3.71204444, 3.71136994, 3.7105967, 3.70982427, 3.70896735, 3.71527887, \n 3.71467395, 3.71402372, 3.71339733, 3.71276051, 3.71201001, 3.71123041,\n 3.71053954, 3.70995666, 3.70934263, 3.70871611]'], {}), '([5.0536015, 4.819334, 4.70702194, 4.60970036, 4.55329219, \n 4.5118919, 4.465161, 4.42168832, 4.37932413, 4.33343066, 4.29780246, \n 4.26550766, 4.2476601, 4.22343408, 4.20455427, 4.1834642, 4.15580542, \n 4.13352266, 4.1170148, 4.10326736, 4.08845795, 4.07496919, 4.05959646, \n 4.0417501, 4.02262887, 4.01056674, 4.00192679, 3.98996708, 3.97709149, \n 3.96442225, 3.95010566, 3.93456306, 3.92603865, 3.91801377, 3.90630556,\n 3.8975012, 3.88641115, 3.87143326, 3.85966246, 3.85112482, 3.84569926, \n 3.83714224, 3.82719647, 3.81910741, 3.80682977, 3.79652758, 3.78889289,\n 3.78428912, 3.77646938, 3.76966463, 3.76150223, 3.75820905, 3.76088934,\n 3.76171382, 3.76141619, 3.76079216, 3.76237742, 3.76725034, 3.76769877,\n 3.7690107, 3.7710916, 3.77168583, 3.76813708, 3.7705804, 3.76669411, \n 3.76711572, 3.76808636, 3.76962133, 3.76680748, 3.76844159, 3.76552364,\n 3.76210975, 3.76321355, 3.76471956, 3.76227721, 3.76424368, 3.76172169,\n 3.75923, 3.76099518, 3.75829319, 3.76028082, 3.75824824, 3.7562443, \n 3.76013739, 3.75818674, 3.7560594, 3.75379557, 3.75757852, 3.75582548, \n 3.75412511, 3.75244297, 3.75075688, 3.74891172, 3.75280489, 3.75090966,\n 3.7494744, 3.74806463, 3.75254602, 3.75114099, 3.74947802, 3.74782149, \n 3.74638383, 3.75092969, 3.74970739, 3.7485241, 3.74730404, 3.74585452, \n 3.74435839, 3.74303855, 3.74191532, 3.74074663, 3.73958567, 3.74415751,\n 3.74282592, 3.74149075, 3.74029857, 3.73926672, 3.73828357, 3.73730769,\n 3.7363362, 3.7352472, 3.73406243, 3.74020438, 3.7393112, 3.73836986, \n 3.73742713, 3.73644796, 3.73531947, 3.73418345, 3.73321896, 3.73238074,\n 3.73155456, 3.73080198, 3.73004637, 3.7291278, 3.72818669, 3.7273851, \n 3.72671496, 3.72605809, 3.72534827, 3.72465527, 3.72382494, 3.72294733,\n 3.73077145, 3.73014101, 3.72950865, 3.72885115, 3.7282343, 3.72752112, \n 3.72675617, 3.7260778, 3.7254917, 3.72495149, 3.72440186, 3.72383671, \n 3.723183, 3.72246763, 3.72184599, 3.7213286, 3.72080295, 3.72026245, \n 3.71971626, 3.71907946, 3.71839777, 3.71780463, 3.71704671, 3.7162294, \n 3.71543144, 3.71452847, 3.72065881, 3.71967136, 3.71880523, 3.71805949,\n 3.71732896, 3.71667185, 3.71598258, 3.71521135, 3.71431933, 3.71348235,\n 3.71278081, 3.71204444, 3.71136994, 3.7105967, 3.70982427, 3.70896735, \n 3.71527887, 3.71467395, 3.71402372, 3.71339733, 3.71276051, 3.71201001,\n 3.71123041, 3.71053954, 3.70995666, 3.70934263, 3.70871611])\n', (16892, 19358), True, 'import numpy as np\n'), ((21602, 21634), 'numpy.allclose', 'np.allclose', (['my_bounds', 'expected'], {}), '(my_bounds, expected)\n', (21613, 21634), True, 'import numpy as np\n'), ((5522, 5533), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (5530, 5533), True, 'import numpy as np\n'), ((10281, 10292), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (10289, 10292), True, 'import numpy as np\n'), ((10126, 10137), 'time.time', 'time.time', ([], {}), '()\n', (10135, 10137), False, 'import time\n'), ((10599, 10610), 'time.time', 'time.time', ([], {}), '()\n', (10608, 10610), False, 'import time\n'), ((16822, 16833), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (16830, 16833), True, 'import numpy as np\n'), ((21749, 21760), 'time.time', 'time.time', ([], {}), '()\n', (21758, 21760), False, 'import time\n'), ((10559, 10570), 'time.time', 'time.time', ([], {}), '()\n', (10568, 10570), False, 'import time\n')]
import networkx as nx import numpy as np def gen_graph(graph_type, n, mean_deg): """Generates and returns a nx.Digraph and its adjacency matrix. Nodes are randomly permutated. Arguments: graph_type (string): type of graph Erdos-Renyi, scale-free, sachs or any graph in BNRepo n (int): number of nodes mean_deg (float): average degree of nodes """ # beta is the unpermutated adjacency matrix if graph_type == "erdos-renyi": beta = gen_random_graph(n, mean_deg) elif graph_type == "scale-free": # select import igraph as ig G_ig = ig.Graph.Barabasi(n=n, m=int(round(mean_deg / 2)), directed=True) beta = np.array(G_ig.get_adjacency().data) else: raise NotImplementedError # Randomly permute nodes perm_mat = np.random.permutation(np.eye(n)) adj_matrix = perm_mat.T @ beta @ perm_mat # Sanity check, is the graph acyclic? assert np.trace(np.linalg.matrix_power(np.eye(n) + adj_matrix, n)) == n # Create and return directed graph graph = nx.from_numpy_array(adj_matrix, create_using=nx.DiGraph) return graph, adj_matrix def gen_random_graph(n, mean_deg): """Returns the adjacency matrix of an Erdos Renyi DAG Args: n (int): number of nodes mean_deg (float): average degree of a node """ assert mean_deg <= n - 1 prob_one_edge = mean_deg / (n - 1) beta = np.triu(np.random.random((n, n)) < prob_one_edge, k=1) return np.float32(beta) def simulate_parameter(adj_matrix, w_ranges): """Simulate SEM parameters for a DAG. Args: adj_matrix (np.array): [n, n] binary adj matrix of DAG w_ranges (tuple): disjoint weight ranges Returns: weighted_adj_matrix (np.array): [n, n] weighted adj matrix of DAG """ weighted_adj_matrix = np.zeros(adj_matrix.shape) range_choice = np.random.randint(len(w_ranges), size=adj_matrix.shape) # which range for i, (low, high) in enumerate(w_ranges): weights = np.random.uniform(low=low, high=high, size=adj_matrix.shape) weighted_adj_matrix += adj_matrix * (range_choice == i) * weights return weighted_adj_matrix def sample_lin_scms(graph_type, noise_type, adj_matrix, nb_samples=1000, weighted=False, w_ranges=((-2.0, -.5), (.5, 2.0))): """ Given a directed graph and a particular noise type, generates edge weights and samples Args: graph_type (string): type of graph noise_type (string): one of gaussian, exp, gumbel, type of random noise adj_matrix (np.array): [n, n] binary adjacency matrix nb_samples (int): number of samples to generate weighted (bool): whether to use uniformly weighted edges or all edges are w_ranges (tuple): negative and positive ranges to sample edge weights (if weighted) Returns: X (np.array): [nb_samples, n] sample matrix beta (np.array): [n, n] weighted adjacency matrix sigma_n (np.array): [n, n] sample covariance matrix """ n = adj_matrix.shape[0] # Sample edge weights if weighted: beta = simulate_parameter(adj_matrix, w_ranges) else: beta = adj_matrix aux_inv = np.linalg.inv(np.eye(n) - beta) # Sample noise if noise_type == "gaussian": epsilon = np.random.normal(size=(nb_samples, n)) elif noise_type == "exp": epsilon = np.random.exponential(size=(nb_samples, n)) elif noise_type == "gumbel": epsilon = np.random.gumbel(size=(nb_samples, n)) else: raise NotImplementedError X = epsilon @ aux_inv sigma_n = np.cov(X.T, bias=True) return X, beta, sigma_n
[ "numpy.random.gumbel", "numpy.random.uniform", "numpy.float32", "numpy.random.exponential", "numpy.zeros", "networkx.from_numpy_array", "numpy.random.random", "numpy.random.normal", "numpy.eye", "numpy.cov" ]
[((1068, 1124), 'networkx.from_numpy_array', 'nx.from_numpy_array', (['adj_matrix'], {'create_using': 'nx.DiGraph'}), '(adj_matrix, create_using=nx.DiGraph)\n', (1087, 1124), True, 'import networkx as nx\n'), ((1497, 1513), 'numpy.float32', 'np.float32', (['beta'], {}), '(beta)\n', (1507, 1513), True, 'import numpy as np\n'), ((1852, 1878), 'numpy.zeros', 'np.zeros', (['adj_matrix.shape'], {}), '(adj_matrix.shape)\n', (1860, 1878), True, 'import numpy as np\n'), ((3666, 3688), 'numpy.cov', 'np.cov', (['X.T'], {'bias': '(True)'}), '(X.T, bias=True)\n', (3672, 3688), True, 'import numpy as np\n'), ((840, 849), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (846, 849), True, 'import numpy as np\n'), ((2034, 2094), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'low', 'high': 'high', 'size': 'adj_matrix.shape'}), '(low=low, high=high, size=adj_matrix.shape)\n', (2051, 2094), True, 'import numpy as np\n'), ((3360, 3398), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(nb_samples, n)'}), '(size=(nb_samples, n))\n', (3376, 3398), True, 'import numpy as np\n'), ((1439, 1463), 'numpy.random.random', 'np.random.random', (['(n, n)'], {}), '((n, n))\n', (1455, 1463), True, 'import numpy as np\n'), ((3271, 3280), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (3277, 3280), True, 'import numpy as np\n'), ((3447, 3490), 'numpy.random.exponential', 'np.random.exponential', ([], {'size': '(nb_samples, n)'}), '(size=(nb_samples, n))\n', (3468, 3490), True, 'import numpy as np\n'), ((3542, 3580), 'numpy.random.gumbel', 'np.random.gumbel', ([], {'size': '(nb_samples, n)'}), '(size=(nb_samples, n))\n', (3558, 3580), True, 'import numpy as np\n'), ((983, 992), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (989, 992), True, 'import numpy as np\n')]
#!/bin/env python """ Implements Python interface to NRL NAAPS files """ import os import sys from types import * from pyhdf import SD from glob import glob from numpy import ones, concatenate, array,linspace,arange, transpose from datetime import date, datetime, timedelta from .config import strTemplate MISSING = -9999.99 ALIAS = dict (latitude = 'lat' , longitude = 'lon' , elevation = 'zs' , time = 'Time') ALIAS['532_attenuated_backscatter'] = 'taback' ALIAS['532_attenuated_backscatter_error'] = 'taback_err' ALIAS['532_attenuated_molecular_backscatter'] = 'mol_aback' SDS = list(ALIAS.keys()) #......................................................................................... class NAAPS(object): """ Base class for NAAPS object. """ def __init__ (self,Path,keep=None,Verbose=0,only_good=True): """ Creates an NAAPS object defining the attributes corresponding to the SDS's on input. The optional parameter *keep* is used to specify the number of scan lines (from the left of the swath) to keep. This is needed for coping with the row anomaly problem. """ # Initially are lists of numpy arrays for each granule # ---------------------------------------------------- self.verb = Verbose self.keep = keep self.SDS = SDS # Variable names # -------------- self.Names = [] for name in SDS: self.Names.append(name) self.Names += ['nymd','nhms'] # Create empty lists for SDS to be read from orbit file; # each element of the list contains data for one orbit # ------------------------------------------------------ for name in self.Names: self.__dict__[name] = [] self.time_ = [] # to hold datetime objects # Read each orbit, appending them to the list # ------------------------------------------- if type(Path) is ListType: if len(Path) == 0: self.nobs = 0 print("WARNING: Empty NAAPS object created") return else: Path = [Path, ] self._readList(Path) # Make each attribute a single numpy array # ---------------------------------------- for name in self.Names: # print 'name',name, 'donnees',self.__dict__[name] try: self.__dict__[name] = concatenate((self.__dict__[name])) except: print("Failed concatenating "+name) # Make aliases for compatibility with older code # ---------------------------------------------- # Alias = ALIAS.keys() for name in self.Names: if name in SDS: self.__dict__[ALIAS[name]] = self.__dict__[name] #--- def _readList(self,List): """ Recursively, look for files in list; list items can be files or directories. """ for item in List: if os.path.isdir(item): self._readDir(item) elif os.path.isfile(item): self._readOrbit(item) else: print("%s is not a valid file or directory, ignoring it"%item) #--- def _readDir(self,dir): """Recursively, look for files in directory.""" for item in os.listdir(dir): path = dir + os.sep + item if os.path.isdir(path): self._readDir(path) elif os.path.isfile(path): self._readOrbit(path) else: print("%s is not a valid file or directory, ignoring it"%item) #--- def _readOrbit(self,filename): """Reads one CALIPSO orbit with Level 1.5 data.""" # Reference time # -------------- REF_DATE = datetime(1993,1,1,0,0,0) # Open the CALIPSO file and loop over the datasets, # extracting GEOLOCATION and Data fields # ---------------------------------------------- if self.verb: print("[] working on <%s>"%filename) f = SD.SD(filename) # for group in self.SDS.keys(): for name in self.SDS: v = name print('v', v) if v == 'time': sd = f.select(v) Time = sd.get() nobs = len(Time) nymd = ones(nobs).astype('int') nhms = ones(nobs).astype('int') self.__dict__[v].append(Time) # time as on file for i in range(nobs): yymmdd = Time[i] nymd0 = int(Time[i]) nd = Time[i] - nymd0 nd0 = nd * 24.0 hh = int(nd0) nd1 = nd0 - hh nd2 = nd1 * 60 mm = int(nd2) nd3 = nd2 - mm nd4 = nd3 * 60 ss = int(nd4) nymd[i] = 20000000 + nymd0 nhms[i] = ((hh * 100) + mm) * 100 + ss self.nymd.append(nymd) self.nhms.append(nhms) year = int(nymd[i]/10000) month = int((nymd[i] - 10000*year)/100) day = nymd[i] - (year*10000 + month * 100) self.time_.append(datetime(year,month,day,hh,mm,ss)) else: sd = f.select(v) data = sd.get() # most of parameter : data = (nobs) or (nobs,km) except L2 feature type(nobs,km,4) data = transpose(data) print('data', data.shape) if self.keep != None: self.__dict__[v].append(data[0:self.keep,:]) else: self.__dict__[v].append(data) #--- def writeg(self,g5,syn_time,nsyn=8,g5_h=None,g5_ab=None,filename=None,dir='.',expid='NAAPS',Verb=1): """ Writes gridded CALIPSO measurements to file (same grid as GEOS-5 file). Verb -- Verbose level: 0 - really quiet (default) 1 - Warns if invalid file is found 2 - Prints out non-zero number of fires in each file. """ from gfio import GFIO from binObs_ import binobs3dh # Determine synoptic time range # ----------------------------- dt = timedelta(seconds = 12. * 60. * 60. / nsyn) t1, t2 = (syn_time-dt,syn_time+dt) # Lat lon grid from GEOS-5 file # ------------ im = 360 jm = 181 print('im,jm', im, jm) glon = linspace(-180.,180.,im,endpoint=False) glat = linspace(-90.,90.,jm) print('glon', glon, glat) dLon = 360. / im dLat = 180. / ( jm - 1.) print('dlon', dLon, dLat) nymd = 10000 * syn_time.year + 100 * syn_time.month + syn_time.day nhms = 10000 * syn_time.hour + 100 * syn_time.minute + syn_time.second print('nymd=',nymd, 'nhms=',nhms) na_height = arange(0,8100,400) # height above sea level for NAAPS 100mfor night 400m forday print('na_height shape', na_height.shape, g5_h.shape) g5_height = g5_h km = g5_height.shape[0] # because it is at the edge print('km', km, g5_height.shape, g5_height[:,0]) nobs = self.lon.shape vtitle = [ 'taback', 'taback_err', 'mol_aback', 'height' ] vname = ['taback','taback_err', 'mol_aback'] vunits = [ 'km-1 sr-1','km-1 sr-1', 'km-1 sr-1' ] kmvar = [km, km, km] title = 'Gridded NAAPS attenuated backscatter coeff lev Geos5' source = 'NASA/GSFC/GMAO GEOS-5 Aerosol Group' contact = 'Virginie' if filename is None: filename = '%s/%s.day.calipso_l3a.%d_%02dz.nc4'%(dir,expid,nymd,nhms/10000) # QA filtering # ------------ I_bad = ones(self.taback.shape) # bad data I_bad = False # Time filter of data # ------------------- lon = self.lon lat = self.lat taback = _timefilter(self.time_,t1,t2,self.taback,I_bad) taback_err = _timefilter(self.time_,t1,t2,self.taback_err,I_bad) mol_aback = _timefilter(self.time_,t1,t2,self.mol_aback,I_bad) # height = _timefilter(self.time_,t1,t2,na_height,I_bad) print('taback', taback.shape) # Create the file # --------------- f = GFIO() glevs=arange(km) f.create(filename, vname, nymd, nhms, lon=glon, lat=glat, levs=glevs, levunits='m', vtitle=vtitle, vunits=vunits,kmvar=kmvar,amiss=MISSING, title=title, source=source, contact=contact) # gObs=binobs3dh(lon[13:14],lat[13:14],taback[13:14,:],na_height,g5_height[:,13:14],im,jm,MISSING) print('test', lon[10:11],lat[10:11],taback[10:11,:],na_height,g5_height[:,10:11]) gObs=binobs3dh(lon[10:11],lat[10:11],taback[10:11,:],na_height,g5_height[:,10:11],im,jm,MISSING) print('gobs', gObs[357:358,101:102,:]) # Grid variable and write to file # ------------------------------- f.write('taback', nymd, nhms, binobs3dh(lon,lat,taback,na_height,g5_height,im,jm,MISSING) ) f.write('taback_err', nymd, nhms, binobs3dh(lon,lat,taback_err,na_height,g5_height,im,jm,MISSING) ) f.write('mol_aback', nymd, nhms, binobs3dh(lon,lat,mol_aback,na_height,g5_height,im,jm,MISSING) ) # f.write('height', nymd, nhms, g5_height) if Verb >=1: print("[w] Wrote file "+filename) #.................................................................... def _timefilter ( t, t1, t2, a, I_bad ): filler = MISSING * ones(a.shape[1:]) b = a.copy() for i in range(len(t)): if (t[i]<t1) or (t[i]>=t2): b[i] = filler if len(b.shape) == 3: b[I_bad,:] = MISSING elif len(b.shape) == 2: b[I_bad] = MISSING else: raise IndexError("Invalid rank=%d for time filtering"%len(b.shape)) return b #--- def orbits (path, syn_time, nsyn=8, period='night', Verbose=0 ): """ Returns a list of CALIPSO orbits for a given product at given synoptic time. On input, path --- mounting point for the CALIPSO Level 1.5 files syn_time --- synoptic time (timedate format) nsyn --- number of synoptic times per day (optional) """ # Determine synoptic time range # ----------------------------- dt = timedelta(seconds = 12. * 60. * 60. / nsyn) t1, t2 = (syn_time-dt,syn_time+dt) print("[*] ", t1,"|", t2) today = syn_time yesterday = today - timedelta(hours=24) Files = [] for t in (yesterday,today): yy, mm, dd = (t.year,t.month,t.day) dirn = "%s/%02d/%s"%(path,mm,period) Files += glob("%s/naaps_caliop_assim_*.cdf"%(dirn)) # print 'Files', dirn, Files Orbits = [] for f in Files: dirn, filen = os.path.split(f) tokens = filen.split('_') beg_yy = int(tokens[3][0:4]) beg_mm = int(tokens[3][4:6]) beg_dd = int(tokens[3][6:8]) beg_h = int(tokens[3][8:10]) beg_m = int(tokens[3][10:12]) t_beg = datetime(beg_yy,beg_mm,beg_dd,beg_h,beg_m,0) t_end = t_beg + timedelta(minutes=90) # t_end = datetime(end_yy,end_mm,end_dd,end_h,end_m,0) # print 'year', beg_yy, 'month', beg_mm, 'day', beg_dd, 'hour', beg_h, 'min', beg_m if (t_beg>=t1 and t_beg<t2) or (t_end>=t1 and t_end<t2): print("[x] ", t_beg, '|', t_end) Orbits += [f,] if Verbose: print("[] ", f) return Orbits #............................................................................ if __name__ == "__main__": # syn_time = datetime(2008,6,30,0,0,0) # Time interval snd time step # --------------------------- t_beg = datetime(2007,4,1,0) t_end = datetime(2007,4,1,21) dt = timedelta(seconds=3*60*60) # 3-hourly t = t_beg - dt while t < t_end: t += dt syn_time = t Files = orbits('/nobackup/2/vbuchard/CALIPSO_L15/NAAPS/',syn_time,period='day',Verbose=1) print('files',Files) #def hold(): # NAAPS files naap = NAAPS(Files,Verbose=1) # GEOS-5 file g_template = "/nobackup/2/vbuchard/CALIPSO_L15/GEOS-5/aback_63lay/Y%y4/M%m2/dR_MERRA-AA-r2_ext532nm_Nv_63layers.%y4%m2%d2_%h200z.nc4" g_fn = strTemplate(g_template,dtime=syn_time) lon=naap.lon lat=naap.lat g = GFIO(g_fn) g5_height = g.interp('h',lon,lat) g5_aback = g.read('taback') naap.writeg(g,syn_time,nsyn=8,g5_h=g5_height,g5_ab=g5_aback,filename=None,dir='/nobackup/2/vbuchard/CALIPSO_L15/',expid='NAAPS',Verb=1)
[ "binObs_.binobs3dh", "os.path.isdir", "gfio.GFIO", "numpy.transpose", "numpy.ones", "datetime.datetime", "os.path.isfile", "datetime.timedelta", "numpy.arange", "numpy.linspace", "pyhdf.SD.SD", "glob.glob", "os.path.split", "os.listdir", "numpy.concatenate" ]
[((10722, 10766), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(12.0 * 60.0 * 60.0 / nsyn)'}), '(seconds=12.0 * 60.0 * 60.0 / nsyn)\n', (10731, 10766), False, 'from datetime import date, datetime, timedelta\n'), ((12181, 12204), 'datetime.datetime', 'datetime', (['(2007)', '(4)', '(1)', '(0)'], {}), '(2007, 4, 1, 0)\n', (12189, 12204), False, 'from datetime import date, datetime, timedelta\n'), ((12214, 12238), 'datetime.datetime', 'datetime', (['(2007)', '(4)', '(1)', '(21)'], {}), '(2007, 4, 1, 21)\n', (12222, 12238), False, 'from datetime import date, datetime, timedelta\n'), ((12245, 12275), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(3 * 60 * 60)'}), '(seconds=3 * 60 * 60)\n', (12254, 12275), False, 'from datetime import date, datetime, timedelta\n'), ((3457, 3472), 'os.listdir', 'os.listdir', (['dir'], {}), '(dir)\n', (3467, 3472), False, 'import os\n'), ((3903, 3932), 'datetime.datetime', 'datetime', (['(1993)', '(1)', '(1)', '(0)', '(0)', '(0)'], {}), '(1993, 1, 1, 0, 0, 0)\n', (3911, 3932), False, 'from datetime import date, datetime, timedelta\n'), ((4180, 4195), 'pyhdf.SD.SD', 'SD.SD', (['filename'], {}), '(filename)\n', (4185, 4195), False, 'from pyhdf import SD\n'), ((6539, 6583), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(12.0 * 60.0 * 60.0 / nsyn)'}), '(seconds=12.0 * 60.0 * 60.0 / nsyn)\n', (6548, 6583), False, 'from datetime import date, datetime, timedelta\n'), ((6765, 6808), 'numpy.linspace', 'linspace', (['(-180.0)', '(180.0)', 'im'], {'endpoint': '(False)'}), '(-180.0, 180.0, im, endpoint=False)\n', (6773, 6808), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((6818, 6843), 'numpy.linspace', 'linspace', (['(-90.0)', '(90.0)', 'jm'], {}), '(-90.0, 90.0, jm)\n', (6826, 6843), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((7193, 7213), 'numpy.arange', 'arange', (['(0)', '(8100)', '(400)'], {}), '(0, 8100, 400)\n', (7199, 7213), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((8124, 8147), 'numpy.ones', 'ones', (['self.taback.shape'], {}), '(self.taback.shape)\n', (8128, 8147), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((8656, 8662), 'gfio.GFIO', 'GFIO', ([], {}), '()\n', (8660, 8662), False, 'from gfio import GFIO\n'), ((8676, 8686), 'numpy.arange', 'arange', (['km'], {}), '(km)\n', (8682, 8686), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((9143, 9247), 'binObs_.binobs3dh', 'binobs3dh', (['lon[10:11]', 'lat[10:11]', 'taback[10:11, :]', 'na_height', 'g5_height[:, 10:11]', 'im', 'jm', 'MISSING'], {}), '(lon[10:11], lat[10:11], taback[10:11, :], na_height, g5_height[:,\n 10:11], im, jm, MISSING)\n', (9152, 9247), False, 'from binObs_ import binobs3dh\n'), ((9942, 9959), 'numpy.ones', 'ones', (['a.shape[1:]'], {}), '(a.shape[1:])\n', (9946, 9959), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((10882, 10901), 'datetime.timedelta', 'timedelta', ([], {'hours': '(24)'}), '(hours=24)\n', (10891, 10901), False, 'from datetime import date, datetime, timedelta\n'), ((11081, 11123), 'glob.glob', 'glob', (["('%s/naaps_caliop_assim_*.cdf' % dirn)"], {}), "('%s/naaps_caliop_assim_*.cdf' % dirn)\n", (11085, 11123), False, 'from glob import glob\n'), ((11219, 11235), 'os.path.split', 'os.path.split', (['f'], {}), '(f)\n', (11232, 11235), False, 'import os\n'), ((11481, 11530), 'datetime.datetime', 'datetime', (['beg_yy', 'beg_mm', 'beg_dd', 'beg_h', 'beg_m', '(0)'], {}), '(beg_yy, beg_mm, beg_dd, beg_h, beg_m, 0)\n', (11489, 11530), False, 'from datetime import date, datetime, timedelta\n'), ((12836, 12846), 'gfio.GFIO', 'GFIO', (['g_fn'], {}), '(g_fn)\n', (12840, 12846), False, 'from gfio import GFIO\n'), ((3141, 3160), 'os.path.isdir', 'os.path.isdir', (['item'], {}), '(item)\n', (3154, 3160), False, 'import os\n'), ((3528, 3547), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (3541, 3547), False, 'import os\n'), ((9405, 9471), 'binObs_.binobs3dh', 'binobs3dh', (['lon', 'lat', 'taback', 'na_height', 'g5_height', 'im', 'jm', 'MISSING'], {}), '(lon, lat, taback, na_height, g5_height, im, jm, MISSING)\n', (9414, 9471), False, 'from binObs_ import binobs3dh\n'), ((9508, 9578), 'binObs_.binobs3dh', 'binobs3dh', (['lon', 'lat', 'taback_err', 'na_height', 'g5_height', 'im', 'jm', 'MISSING'], {}), '(lon, lat, taback_err, na_height, g5_height, im, jm, MISSING)\n', (9517, 9578), False, 'from binObs_ import binobs3dh\n'), ((9614, 9683), 'binObs_.binobs3dh', 'binobs3dh', (['lon', 'lat', 'mol_aback', 'na_height', 'g5_height', 'im', 'jm', 'MISSING'], {}), '(lon, lat, mol_aback, na_height, g5_height, im, jm, MISSING)\n', (9623, 9683), False, 'from binObs_ import binobs3dh\n'), ((11550, 11571), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(90)'}), '(minutes=90)\n', (11559, 11571), False, 'from datetime import date, datetime, timedelta\n'), ((2543, 2575), 'numpy.concatenate', 'concatenate', (['self.__dict__[name]'], {}), '(self.__dict__[name])\n', (2554, 2575), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((3204, 3224), 'os.path.isfile', 'os.path.isfile', (['item'], {}), '(item)\n', (3218, 3224), False, 'import os\n'), ((3591, 3611), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (3605, 3611), False, 'import os\n'), ((5728, 5743), 'numpy.transpose', 'transpose', (['data'], {}), '(data)\n', (5737, 5743), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((4475, 4485), 'numpy.ones', 'ones', (['nobs'], {}), '(nobs)\n', (4479, 4485), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((4522, 4532), 'numpy.ones', 'ones', (['nobs'], {}), '(nobs)\n', (4526, 4532), False, 'from numpy import ones, concatenate, array, linspace, arange, transpose\n'), ((5478, 5516), 'datetime.datetime', 'datetime', (['year', 'month', 'day', 'hh', 'mm', 'ss'], {}), '(year, month, day, hh, mm, ss)\n', (5486, 5516), False, 'from datetime import date, datetime, timedelta\n')]
#!/usr/bin/env python from __future__ import division, print_function, absolute_import from __future__ import unicode_literals def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('sknano', parent_package, top_path) config.add_subpackage('apps') config.add_subpackage('core') config.add_subpackage('generators') config.add_subpackage('io') config.add_subpackage('scripts') config.add_subpackage('structures') config.add_subpackage('testing') config.add_subpackage('utils') config.add_data_dir('data') #config.make_config_py() return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
[ "numpy.distutils.misc_util.Configuration" ]
[((251, 300), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['"""sknano"""', 'parent_package', 'top_path'], {}), "('sknano', parent_package, top_path)\n", (264, 300), False, 'from numpy.distutils.misc_util import Configuration\n')]
# -*- coding: utf-8 -*- """ Transmission Line helper functions """ import numpy as np def ZL_2_Zin(L,Z0,gamma,ZL): """ Returns the input impedance seen through a lossy transmission line of characteristic impedance Z0 and complex wavenumber gamma=alpha+j*beta Zin = ZL_2_Zin(L,Z0,gamma,ZL) Args ---- L : length [m] of the transmission line Z0: characteristic impedance of the transmission line gamma: complex wavenumber associated to the transmission line ZL: Load impedance Returns ------- Zin: input impedance """ assert L > 0 assert Z0 > 0 Zin = Z0*(ZL + Z0*np.tanh(gamma*L))/(Z0 + ZL*np.tanh(gamma*L)) return Zin def transfer_matrix(L,V0,I0,Z0,gamma): """ Returns the voltage and the current at a distance L from an initial voltage V0 and current I0 on a transmission line which propagation constant is gamma. VL, IL = transfer_matrix(L,V0,I0,Z0,gamma) L is positive from the load toward the generator Args ----- L : transmission line length [m] V0: initial voltage [V] I0: initial current [A] Z0 : characteristic impedance of the transmission line gamma: =alpha+j*beta propagation constant of the transmission line Returns -------- VL: voltage at length L IL: current at length L """ if Z0 <= 0: raise ValueError transfer_matrix = np.array([[np.cosh(gamma*L), Z0*np.sinh(gamma*L)], [np.sinh(gamma*L)/Z0, np.cosh(gamma*L)]]) U = np.array([V0,I0]) A = transfer_matrix @ U VL = A[0] IL = A[1] return VL, IL def V0f_2_VL(L, V0f, gamma, reflection_coefficient): """ Propagation of the voltage at a distance L from the forward voltage and reflection coefficient VL = V0f_2_VL(L, V0f, gamma, reflectionCoefficient) Args ---- L : Transmission Line Length [m] V0f : forward voltage [V] gamma : Transmission Line Complex Propagatioon Constant [1] reflectionCoefficient : complex reflection coefficient [1] Returns -------- VL : (total) voltage at length L """ assert L > 0 assert gamma > 0 assert reflection_coefficient > 0 VL = V0f*(np.exp(-gamma*L) + reflection_coefficient*np.exp(+gamma*L)) return VL
[ "numpy.tanh", "numpy.array", "numpy.exp", "numpy.cosh", "numpy.sinh" ]
[((1595, 1613), 'numpy.array', 'np.array', (['[V0, I0]'], {}), '([V0, I0])\n', (1603, 1613), True, 'import numpy as np\n'), ((2315, 2333), 'numpy.exp', 'np.exp', (['(-gamma * L)'], {}), '(-gamma * L)\n', (2321, 2333), True, 'import numpy as np\n'), ((686, 704), 'numpy.tanh', 'np.tanh', (['(gamma * L)'], {}), '(gamma * L)\n', (693, 704), True, 'import numpy as np\n'), ((1472, 1490), 'numpy.cosh', 'np.cosh', (['(gamma * L)'], {}), '(gamma * L)\n', (1479, 1490), True, 'import numpy as np\n'), ((1567, 1585), 'numpy.cosh', 'np.cosh', (['(gamma * L)'], {}), '(gamma * L)\n', (1574, 1585), True, 'import numpy as np\n'), ((2357, 2375), 'numpy.exp', 'np.exp', (['(+gamma * L)'], {}), '(+gamma * L)\n', (2363, 2375), True, 'import numpy as np\n'), ((659, 677), 'numpy.tanh', 'np.tanh', (['(gamma * L)'], {}), '(gamma * L)\n', (666, 677), True, 'import numpy as np\n'), ((1493, 1511), 'numpy.sinh', 'np.sinh', (['(gamma * L)'], {}), '(gamma * L)\n', (1500, 1511), True, 'import numpy as np\n'), ((1546, 1564), 'numpy.sinh', 'np.sinh', (['(gamma * L)'], {}), '(gamma * L)\n', (1553, 1564), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np from sklearn.preprocessing import Normalizer # For reproducibility np.random.seed(1000) if __name__ == '__main__': # Create a dummy dataset data = np.array([1.0, 2.0]) print(data) # Max normalization n_max = Normalizer(norm='max') nm = n_max.fit_transform(data.reshape(1, -1)) print(nm) # L1 normalization n_l1 = Normalizer(norm='l1') nl1 = n_l1.fit_transform(data.reshape(1, -1)) print(nl1) # L2 normalization n_l2 = Normalizer(norm='l2') nl2 = n_l2.fit_transform(data.reshape(1, -1)) print(nl2)
[ "numpy.array", "sklearn.preprocessing.Normalizer", "numpy.random.seed" ]
[((134, 154), 'numpy.random.seed', 'np.random.seed', (['(1000)'], {}), '(1000)\n', (148, 154), True, 'import numpy as np\n'), ((227, 247), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (235, 247), True, 'import numpy as np\n'), ((305, 327), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""max"""'}), "(norm='max')\n", (315, 327), False, 'from sklearn.preprocessing import Normalizer\n'), ((432, 453), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l1"""'}), "(norm='l1')\n", (442, 453), False, 'from sklearn.preprocessing import Normalizer\n'), ((559, 580), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (569, 580), False, 'from sklearn.preprocessing import Normalizer\n')]
# -*- coding: utf-8 -*- import biapol_utilities as biau import numpy as np def test_suppression(): a = np.random.rand(100).reshape(10, -1) threshold = 0.5 a_sup = biau.label.suppressed_similarity(a, threshold=threshold) assert(all(a_sup[a < threshold].ravel() == 0)) if __name__ == "__main__": test_suppression()
[ "numpy.random.rand", "biapol_utilities.label.suppressed_similarity" ]
[((180, 236), 'biapol_utilities.label.suppressed_similarity', 'biau.label.suppressed_similarity', (['a'], {'threshold': 'threshold'}), '(a, threshold=threshold)\n', (212, 236), True, 'import biapol_utilities as biau\n'), ((111, 130), 'numpy.random.rand', 'np.random.rand', (['(100)'], {}), '(100)\n', (125, 130), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Apr 6 09:59:14 2021 @author: ll17354 """ from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.linear_model._logistic import LogisticRegression from sklearn.utils.validation import check_X_y, check_array, check_is_fitted import sys import warnings import math import statsmodels import numpy as np from scipy import stats import statsmodels.api as smf def firth_likelihood(beta, logit): return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) def null_fit_firth(y, X, start_vec = None, step_limit=1000, convergence_limit=0.0001): """ Computes the null model in the likelihood ratio test Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure X has an intercept term (column of ones). y : array-like of shape (n_samples,) Target vector relative to X. Please note this function only currently works for binomial regression so output values of {0, 1} will work while {0, 1, 2} will not. start_vec : int or None, optional starting vector The default is None. step_limit : TYPE, optional Max number of steps before MLE termination. The default is 1000. convergence_limit : TYPE, optional Minimum difference between MLE's. The default is 0.0001. Returns ------- return_fit : intercept: Intercept coeffcient beta: list of beta coeffcients bse: coeffcient standard errors fitll: fit log-likelihood """ logit_model = smf.Logit(y, X) if start_vec is None: start_vec = np.zeros(X.shape[1]) beta_iterations = [] beta_iterations.append(start_vec) for i in range(0, step_limit): pi = logit_model.predict(beta_iterations[i]) W = np.diagflat(np.multiply(pi, 1-pi)) var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) # build hat matrix rootW = np.sqrt(W) H = np.dot(np.transpose(X), np.transpose(rootW)) H = np.matmul(var_covar_mat, H) H = np.matmul(np.dot(rootW, X), H) # penalised score U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) # step halving j = 0 while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) j = j + 1 if (j > step_limit): sys.stderr.write('Firth regression failed. Try increasing step limit.\n') return None beta_iterations.append(new_beta) if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): break return_fit = None if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: sys.stderr.write('Firth regression failed to converge.\n') else: # Calculate stats fitll = -firth_likelihood(beta_iterations[-1], logit_model) intercept = beta_iterations[-1][0] beta = beta_iterations[-1][1:].tolist() bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) return_fit = intercept, beta, bse, fitll return return_fit class Firth_LogisticRegression(LogisticRegression, ClassifierMixin, BaseEstimator): """ This class represents a rewriting Firth regression originally implemented by John Lees (https://gist.github.com/johnlees/3e06380965f367e4894ea20fbae2b90d) into a class which can interact with the sci-kit learn ecosystem. To use the fit function make sure X has an intercept term (column of ones). When using validation functions make sure to not include this 'dummy' column of ones. Please note: This estimator class does not currently pass the check_estimator test in sklearn. This is because it cannot perform the multinomial classification task that check_estimator attempts to pass it. Parameters ---------- start_vec : ndarray of shape (n_features, 1). Default set to None in which case the zero vector is used. step_limit : int. convergence_limit : float. multi_class : string. Default is set to 'ovr' to let this function intgerate with the logistic_regression parent class and pass the _check_multi_class function. A bit hacky but works. Antributes ---------- classes_ : ndarray of shape (n_classes, ) A list of class labels known to the classifier. coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. In particular, when `multi_class='multinomial'`, `coef_` corresponds to outcome 1 (True) and `-coef_` corresponds to outcome 0 (False). beta_ : list of size n_features. This is used in the wald and likelihood ratio test functions. intercept_ : ndarray of shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. """ def __init__(self, start_vec = None, step_limit = 1000, convergence_limit = 0.0001, multi_class = 'ovr'): self.start_vec = start_vec self.step_limit = step_limit self.convergence_limit = convergence_limit self.multi_class = multi_class # multiclass should not be changed from 'ovr' def fit(self, X = None, y = None): """ Fits the model accoridng to given training data. This fit function which has been changed to work inaccordance with the sklearn estimator documentation. Major changes are, rather than returning specific variables fit() return an instance of itself allowing other functions to be run from it. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure X has an intercept term (column of ones). y : array-like of shape (n_samples,) Target vector relative to X. Please note this function only currently works for binomial regression so output values of {0, 1} will work while {0, 1, 2} will not. Returns ------- self Fitted estimator. self.fitll_ : fit log-likelihood self.intercept_ : intercept self.coef_ : coeffcients not including intercept (used in all other sklearn classes ) self.beta_ : coeffcients including intercept (used in wald and LR tests) self.bse_ : standard errors """ X, y = check_X_y(X, y) self.n_features_in = X.shape[1]-1 self.classes_ = np.unique(y) logit_model = smf.Logit(y, X) if self.start_vec is None: start_vec = np.zeros(X.shape[1]) beta_iterations = [] beta_iterations.append(start_vec) for i in range(0, self.step_limit): pi = logit_model.predict(beta_iterations[i]) W = np.diagflat(np.multiply(pi, 1-pi)) var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) # build hat matrix rootW = np.sqrt(W) H = np.dot(np.transpose(X), np.transpose(rootW)) H = np.matmul(var_covar_mat, H) H = np.matmul(np.dot(rootW, X), H) # penalised score U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) # step halving j = 0 while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) j = j + 1 if (j > self.step_limit): sys.stderr.write('Firth regression failed. Try increasing step limit.\n') return None beta_iterations.append(new_beta) if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < self.convergence_limit): break if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= self.convergence_limit: sys.stderr.write('Firth regression failed to converge\n') else: # Calculate stats self.fitll_ = -firth_likelihood(beta_iterations[-1], logit_model) self.intercept_ = beta_iterations[-1][0] self.coef_ = np.array(beta_iterations[-1][1:].tolist()).reshape((1, self.n_features_in)) #for other sklearn functions self.beta_ = [self.intercept_] + beta_iterations[-1][1:].tolist() #used by Wald and LR test self.bse_ = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) return self def test_wald(self): ''' Implemnatation of the wald test Returns ------- waldp : list A list p-values from the Wald test. ''' check_is_fitted(self) waldp = [] for beta_val, bse_val in zip(self.beta_, self.bse_): waldp.append(2 * (1 - stats.norm.cdf(abs(beta_val/bse_val)))) return waldp def test_likelihoodratio(self, X, y, start_vec = None, step_limit=1000, convergence_limit=0.0001): """ Implementation of the likelihood ratio test. An external function, null_fit_firth(), is used to refit the null-estimator. Parameters ---------- X : {array-like} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure to include the dummy column of ones. y : array-like of shape (n_samples,) Target vector relative to X. Returns ------- lrtp : List List of p-values from the likelihood ratio test. """ check_is_fitted(self) X_np = X.values lrtp = [] for beta_idx, (beta_val, bse_val) in enumerate(zip(self.beta_, self.bse_)): null_X = np.delete(X_np, beta_idx, axis=1) (null_intercept, null_beta, null_bse, null_fitll) = null_fit_firth(y, null_X, start_vec, step_limit, convergence_limit) lrstat = -2*(null_fitll - self.fitll_) lrt_pvalue = 1 if lrstat > 0: # non-convergence lrt_pvalue = stats.chi2.sf(lrstat, 1) lrtp.append(lrt_pvalue) return lrtp
[ "scipy.stats.chi2.sf", "numpy.multiply", "statsmodels.api.Logit", "sklearn.utils.validation.check_X_y", "numpy.zeros", "numpy.transpose", "sklearn.utils.validation.check_is_fitted", "numpy.diagonal", "numpy.linalg.norm", "numpy.matmul", "numpy.dot", "sys.stderr.write", "numpy.delete", "numpy.unique", "numpy.sqrt" ]
[((1714, 1729), 'statsmodels.api.Logit', 'smf.Logit', (['y', 'X'], {}), '(y, X)\n', (1723, 1729), True, 'import statsmodels.api as smf\n'), ((1781, 1801), 'numpy.zeros', 'np.zeros', (['X.shape[1]'], {}), '(X.shape[1])\n', (1789, 1801), True, 'import numpy as np\n'), ((2130, 2140), 'numpy.sqrt', 'np.sqrt', (['W'], {}), '(W)\n', (2137, 2140), True, 'import numpy as np\n'), ((2210, 2237), 'numpy.matmul', 'np.matmul', (['var_covar_mat', 'H'], {}), '(var_covar_mat, H)\n', (2219, 2237), True, 'import numpy as np\n'), ((3053, 3112), 'numpy.linalg.norm', 'np.linalg.norm', (['(beta_iterations[i] - beta_iterations[i - 1])'], {}), '(beta_iterations[i] - beta_iterations[i - 1])\n', (3067, 3112), True, 'import numpy as np\n'), ((3141, 3199), 'sys.stderr.write', 'sys.stderr.write', (['"""Firth regression failed to converge.\n"""'], {}), "('Firth regression failed to converge.\\n')\n", (3157, 3199), False, 'import sys\n'), ((7328, 7343), 'sklearn.utils.validation.check_X_y', 'check_X_y', (['X', 'y'], {}), '(X, y)\n', (7337, 7343), False, 'from sklearn.utils.validation import check_X_y, check_array, check_is_fitted\n'), ((7410, 7422), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (7419, 7422), True, 'import numpy as np\n'), ((7454, 7469), 'statsmodels.api.Logit', 'smf.Logit', (['y', 'X'], {}), '(y, X)\n', (7463, 7469), True, 'import statsmodels.api as smf\n'), ((9833, 9854), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (9848, 9854), False, 'from sklearn.utils.validation import check_X_y, check_array, check_is_fitted\n'), ((10805, 10826), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (10820, 10826), False, 'from sklearn.utils.validation import check_X_y, check_array, check_is_fitted\n'), ((1982, 2005), 'numpy.multiply', 'np.multiply', (['pi', '(1 - pi)'], {}), '(pi, 1 - pi)\n', (1993, 2005), True, 'import numpy as np\n'), ((2160, 2175), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (2172, 2175), True, 'import numpy as np\n'), ((2177, 2196), 'numpy.transpose', 'np.transpose', (['rootW'], {}), '(rootW)\n', (2189, 2196), True, 'import numpy as np\n'), ((2260, 2276), 'numpy.dot', 'np.dot', (['rootW', 'X'], {}), '(rootW, X)\n', (2266, 2276), True, 'import numpy as np\n'), ((2330, 2345), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (2342, 2345), True, 'import numpy as np\n'), ((2435, 2462), 'numpy.matmul', 'np.matmul', (['var_covar_mat', 'U'], {}), '(var_covar_mat, U)\n', (2444, 2462), True, 'import numpy as np\n'), ((7538, 7558), 'numpy.zeros', 'np.zeros', (['X.shape[1]'], {}), '(X.shape[1])\n', (7546, 7558), True, 'import numpy as np\n'), ((7932, 7942), 'numpy.sqrt', 'np.sqrt', (['W'], {}), '(W)\n', (7939, 7942), True, 'import numpy as np\n'), ((8020, 8047), 'numpy.matmul', 'np.matmul', (['var_covar_mat', 'H'], {}), '(var_covar_mat, H)\n', (8029, 8047), True, 'import numpy as np\n'), ((8931, 8990), 'numpy.linalg.norm', 'np.linalg.norm', (['(beta_iterations[i] - beta_iterations[i - 1])'], {}), '(beta_iterations[i] - beta_iterations[i - 1])\n', (8945, 8990), True, 'import numpy as np\n'), ((9028, 9085), 'sys.stderr.write', 'sys.stderr.write', (['"""Firth regression failed to converge\n"""'], {}), "('Firth regression failed to converge\\n')\n", (9044, 9085), False, 'import sys\n'), ((10974, 11007), 'numpy.delete', 'np.delete', (['X_np', 'beta_idx'], {'axis': '(1)'}), '(X_np, beta_idx, axis=1)\n', (10983, 11007), True, 'import numpy as np\n'), ((2759, 2832), 'sys.stderr.write', 'sys.stderr.write', (['"""Firth regression failed. Try increasing step limit.\n"""'], {}), "('Firth regression failed. Try increasing step limit.\\n')\n", (2775, 2832), False, 'import sys\n'), ((2925, 2984), 'numpy.linalg.norm', 'np.linalg.norm', (['(beta_iterations[i] - beta_iterations[i - 1])'], {}), '(beta_iterations[i] - beta_iterations[i - 1])\n', (2939, 2984), True, 'import numpy as np\n'), ((7768, 7791), 'numpy.multiply', 'np.multiply', (['pi', '(1 - pi)'], {}), '(pi, 1 - pi)\n', (7779, 7791), True, 'import numpy as np\n'), ((7966, 7981), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (7978, 7981), True, 'import numpy as np\n'), ((7983, 8002), 'numpy.transpose', 'np.transpose', (['rootW'], {}), '(rootW)\n', (7995, 8002), True, 'import numpy as np\n'), ((8074, 8090), 'numpy.dot', 'np.dot', (['rootW', 'X'], {}), '(rootW, X)\n', (8080, 8090), True, 'import numpy as np\n'), ((8156, 8171), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (8168, 8171), True, 'import numpy as np\n'), ((8265, 8292), 'numpy.matmul', 'np.matmul', (['var_covar_mat', 'U'], {}), '(var_covar_mat, U)\n', (8274, 8292), True, 'import numpy as np\n'), ((11292, 11316), 'scipy.stats.chi2.sf', 'stats.chi2.sf', (['lrstat', '(1)'], {}), '(lrstat, 1)\n', (11305, 11316), False, 'from scipy import stats\n'), ((2368, 2382), 'numpy.diagonal', 'np.diagonal', (['H'], {}), '(H)\n', (2379, 2382), True, 'import numpy as np\n'), ((8626, 8699), 'sys.stderr.write', 'sys.stderr.write', (['"""Firth regression failed. Try increasing step limit.\n"""'], {}), "('Firth regression failed. Try increasing step limit.\\n')\n", (8642, 8699), False, 'import sys\n'), ((8808, 8867), 'numpy.linalg.norm', 'np.linalg.norm', (['(beta_iterations[i] - beta_iterations[i - 1])'], {}), '(beta_iterations[i] - beta_iterations[i - 1])\n', (8822, 8867), True, 'import numpy as np\n'), ((8194, 8208), 'numpy.diagonal', 'np.diagonal', (['H'], {}), '(H)\n', (8205, 8208), True, 'import numpy as np\n')]
from avgn.utils.audio import get_samplerate from avgn.utils.json import NoIndent, NoIndentEncoder import numpy as np from avgn.utils.paths import DATA_DIR import librosa from datetime import datetime import pandas as pd import avgn import json DATASET_ID = 'mobysound_humpback_whale' def load_labs(labels): all_labels = [] for label_file in labels: label_df = pd.DataFrame( [line.split() for line in open(label_file, "r")], columns=["start_time", "end_time", "low_freq", "high_freq", "SNR"], ) label_df['file'] = label_file.stem all_labels.append(label_df) all_labels = pd.concat(all_labels).reset_index() for lab in ['start_time', 'end_time', 'low_freq', 'high_freq', 'SNR']: all_labels[lab] = all_labels[lab].values.astype('float32') return all_labels def find_longest_nonvocal_stretch(file_df, wav_duration): """ An ugly function to find the longest stretch of nonvocal behavior in a syllable dataframe """ ## find the longest stretch of non-vocal behavior in this wav max_break = np.argmax(file_df.start_time.values[1:] - file_df.end_time.values[:-1]) noise_end_time = file_df.start_time.values[1:][max_break] noise_start_time = file_df.end_time.values[:-1][max_break] start_noise = file_df.start_time.values[0] end_noise = wav_duration - file_df.end_time.values[-1] noise_lens = np.array([noise_end_time - noise_start_time, start_noise, end_noise]) noise_start_ends = np.array( [ [noise_start_time, noise_end_time], [0, start_noise], [file_df.end_time.values[-1], wav_duration], ] ) noise_start, noise_end = noise_start_ends[np.argmax(noise_lens)] return noise_start, noise_end def generate_noise_and_json(bout_number, fn, DT_ID, wavloc, file_df): # location of wav #wavloc = np.array(wavs)[np.array([i.stem for i in wavs]) == fn][0] # wav time wavdate = datetime.strptime(fn, "%y%m%d-%H%M") wav_date = wavdate.strftime("%Y-%m-%d_%H-%M-%S") # wav samplerate and duration sr = get_samplerate(wavloc.as_posix()) wav_duration = librosa.get_duration(filename=wavloc) # df of syllables in file #file_df = label_df[label_df.file == fn].sort_values(by="start_time") ## find the longest stretch of non-vocal behavior in this wav noise_start, noise_end = find_longest_nonvocal_stretch(file_df, wav_duration) bout_start_string = avgn.utils.general.seconds_to_str(noise_start) # determine save locations noise_out = ( DATA_DIR / "processed" / DATASET_ID / DT_ID / "NOISE" / (fn + "__" + bout_start_string + ".WAV") ) json_out = DATA_DIR / "processed" / DATASET_ID / DT_ID / "JSON" / (fn + ".JSON") # wav general information json_dict = {} json_dict["bout_number"] = bout_number json_dict["species"] = "Megaptera novaengliae" json_dict["common_name"] = "Humpback whale" json_dict["datetime"] = wav_date json_dict["samplerate_hz"] = sr json_dict["length_s"] = wav_duration json_dict["wav_loc"] = wavloc.as_posix() json_dict["noise_loc"] = noise_out.as_posix() json_dict["indvs"] = { "UNK": { "syllables": { "start_times": NoIndent( list(file_df.start_time.values.astype("float")) ), "end_times": NoIndent(list(file_df.end_time.astype("float"))), "high_freq": NoIndent(list(file_df.high_freq.astype("float"))), "low_freq": NoIndent(list(file_df.low_freq.astype("float"))), "SNR": NoIndent(list(file_df.SNR.astype("float"))), } } } json_txt = json.dumps(json_dict, cls=NoIndentEncoder, indent=2) # save wav file noise_wav, sr = librosa.load( wavloc, sr=None, mono=True, offset=noise_start, duration=noise_end - noise_start ) avgn.utils.paths.ensure_dir(noise_out) librosa.output.write_wav(noise_out, y=noise_wav, sr=sr, norm=True) # save json avgn.utils.paths.ensure_dir(json_out.as_posix()) print(json_txt, file=open(json_out.as_posix(), "w"))
[ "numpy.argmax", "avgn.utils.paths.ensure_dir", "json.dumps", "datetime.datetime.strptime", "numpy.array", "avgn.utils.general.seconds_to_str", "librosa.load", "librosa.output.write_wav", "pandas.concat", "librosa.get_duration" ]
[((1087, 1158), 'numpy.argmax', 'np.argmax', (['(file_df.start_time.values[1:] - file_df.end_time.values[:-1])'], {}), '(file_df.start_time.values[1:] - file_df.end_time.values[:-1])\n', (1096, 1158), True, 'import numpy as np\n'), ((1407, 1476), 'numpy.array', 'np.array', (['[noise_end_time - noise_start_time, start_noise, end_noise]'], {}), '([noise_end_time - noise_start_time, start_noise, end_noise])\n', (1415, 1476), True, 'import numpy as np\n'), ((1500, 1614), 'numpy.array', 'np.array', (['[[noise_start_time, noise_end_time], [0, start_noise], [file_df.end_time.\n values[-1], wav_duration]]'], {}), '([[noise_start_time, noise_end_time], [0, start_noise], [file_df.\n end_time.values[-1], wav_duration]])\n', (1508, 1614), True, 'import numpy as np\n'), ((1968, 2004), 'datetime.datetime.strptime', 'datetime.strptime', (['fn', '"""%y%m%d-%H%M"""'], {}), "(fn, '%y%m%d-%H%M')\n", (1985, 2004), False, 'from datetime import datetime\n'), ((2154, 2191), 'librosa.get_duration', 'librosa.get_duration', ([], {'filename': 'wavloc'}), '(filename=wavloc)\n', (2174, 2191), False, 'import librosa\n'), ((2469, 2515), 'avgn.utils.general.seconds_to_str', 'avgn.utils.general.seconds_to_str', (['noise_start'], {}), '(noise_start)\n', (2502, 2515), False, 'import avgn\n'), ((3754, 3806), 'json.dumps', 'json.dumps', (['json_dict'], {'cls': 'NoIndentEncoder', 'indent': '(2)'}), '(json_dict, cls=NoIndentEncoder, indent=2)\n', (3764, 3806), False, 'import json\n'), ((3848, 3947), 'librosa.load', 'librosa.load', (['wavloc'], {'sr': 'None', 'mono': '(True)', 'offset': 'noise_start', 'duration': '(noise_end - noise_start)'}), '(wavloc, sr=None, mono=True, offset=noise_start, duration=\n noise_end - noise_start)\n', (3860, 3947), False, 'import librosa\n'), ((3961, 3999), 'avgn.utils.paths.ensure_dir', 'avgn.utils.paths.ensure_dir', (['noise_out'], {}), '(noise_out)\n', (3988, 3999), False, 'import avgn\n'), ((4004, 4070), 'librosa.output.write_wav', 'librosa.output.write_wav', (['noise_out'], {'y': 'noise_wav', 'sr': 'sr', 'norm': '(True)'}), '(noise_out, y=noise_wav, sr=sr, norm=True)\n', (4028, 4070), False, 'import librosa\n'), ((1717, 1738), 'numpy.argmax', 'np.argmax', (['noise_lens'], {}), '(noise_lens)\n', (1726, 1738), True, 'import numpy as np\n'), ((640, 661), 'pandas.concat', 'pd.concat', (['all_labels'], {}), '(all_labels)\n', (649, 661), True, 'import pandas as pd\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import unittest from federatedml.ftl.plain_ftl import PlainFTLHostModel from federatedml.ftl.hetero_ftl.hetero_ftl_guest import HeteroPlainFTLGuest, HeteroFTLGuest from federatedml.ftl.plain_ftl import PlainFTLGuestModel from federatedml.feature.instance import Instance from federatedml.ftl.common.data_util import create_table from federatedml.ftl.test.fake_models import FakeAutoencoder, FakeDiffConverge from federatedml.param.param import FTLModelParam from federatedml.util.transfer_variable import HeteroFTLTransferVariable from arch.api.eggroll import init class TestHeteroFTLGuest(HeteroPlainFTLGuest): def __init__(self, guest, model_param, transfer_variable): super(TestHeteroFTLGuest, self).__init__(guest, model_param, transfer_variable) U_B = np.array([[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]) overlap_indexes = [1, 2] Wh = np.ones((5, U_B.shape[1])) bh = np.zeros(U_B.shape[1]) autoencoderB = FakeAutoencoder(1) autoencoderB.build(U_B.shape[1], Wh, bh) self.host = PlainFTLHostModel(autoencoderB, self.model_param) self.host.set_batch(U_B, overlap_indexes) def _do_remote(self, value=None, name=None, tag=None, role=None, idx=None): print("@_do_remote", value, name, tag, role, idx) def _do_get(self, name=None, tag=None, idx=None): print("@_do_get", name, tag, idx) if tag == "HeteroFTLTransferVariable.host_sample_indexes.0": return [np.array([1, 2, 4, 5])] elif tag == "HeteroFTLTransferVariable.host_component_list.0.0": return self.host.send_components() return None class TestCreateGuestHostEggrollTable(unittest.TestCase): def test_hetero_plain_guest_prepare_table(self): U_A = np.array([[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]) y = np.array([[1], [-1], [1], [-1]]) Wh = np.ones((5, U_A.shape[1])) bh = np.zeros(U_A.shape[1]) model_param = FTLModelParam(alpha=1, max_iteration=1) autoencoderA = FakeAutoencoder(0) autoencoderA.build(U_A.shape[1], Wh, bh) guest = PlainFTLGuestModel(autoencoderA, model_param) converge_func = FakeDiffConverge(None) ftl_guest = TestHeteroFTLGuest(guest, model_param, HeteroFTLTransferVariable()) ftl_guest.set_converge_function(converge_func) guest_sample_indexes = np.array([0, 1, 2, 3]) guest_x_dict = {} guest_label_dict = {} instance_dict = {} instance_list = [] np.random.seed(100) for i, feature, label, in zip(guest_sample_indexes, U_A, y): instance = Instance(inst_id=i, features=feature, label=label[0]) guest_x_dict[i] = feature guest_label_dict[i] = label[0] instance_dict[i] = instance instance_list.append(instance) guest_x = create_table(instance_list, indexes=guest_sample_indexes) guest_x, overlap_indexes, non_overlap_indexes, guest_y = ftl_guest.prepare_data(guest_x) print("guest_x", guest_x) print("overlap_indexes", overlap_indexes) print("non_overlap_indexes", non_overlap_indexes) print("guest_y", guest_y) if __name__ == '__main__': init() unittest.main()
[ "unittest.main", "federatedml.ftl.plain_ftl.PlainFTLGuestModel", "numpy.random.seed", "federatedml.util.transfer_variable.HeteroFTLTransferVariable", "federatedml.feature.instance.Instance", "numpy.zeros", "numpy.ones", "federatedml.ftl.test.fake_models.FakeAutoencoder", "federatedml.ftl.plain_ftl.PlainFTLHostModel", "numpy.array", "federatedml.ftl.test.fake_models.FakeDiffConverge", "federatedml.ftl.common.data_util.create_table", "arch.api.eggroll.init", "federatedml.param.param.FTLModelParam" ]
[((4080, 4086), 'arch.api.eggroll.init', 'init', ([], {}), '()\n', (4084, 4086), False, 'from arch.api.eggroll import init\n'), ((4091, 4106), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4104, 4106), False, 'import unittest\n'), ((1417, 1496), 'numpy.array', 'np.array', (['[[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]'], {}), '([[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]])\n', (1425, 1496), True, 'import numpy as np\n'), ((1617, 1643), 'numpy.ones', 'np.ones', (['(5, U_B.shape[1])'], {}), '((5, U_B.shape[1]))\n', (1624, 1643), True, 'import numpy as np\n'), ((1657, 1679), 'numpy.zeros', 'np.zeros', (['U_B.shape[1]'], {}), '(U_B.shape[1])\n', (1665, 1679), True, 'import numpy as np\n'), ((1704, 1722), 'federatedml.ftl.test.fake_models.FakeAutoencoder', 'FakeAutoencoder', (['(1)'], {}), '(1)\n', (1719, 1722), False, 'from federatedml.ftl.test.fake_models import FakeAutoencoder, FakeDiffConverge\n'), ((1793, 1842), 'federatedml.ftl.plain_ftl.PlainFTLHostModel', 'PlainFTLHostModel', (['autoencoderB', 'self.model_param'], {}), '(autoencoderB, self.model_param)\n', (1810, 1842), False, 'from federatedml.ftl.plain_ftl import PlainFTLHostModel\n'), ((2510, 2595), 'numpy.array', 'np.array', (['[[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]'], {}), '([[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]\n )\n', (2518, 2595), True, 'import numpy as np\n'), ((2675, 2707), 'numpy.array', 'np.array', (['[[1], [-1], [1], [-1]]'], {}), '([[1], [-1], [1], [-1]])\n', (2683, 2707), True, 'import numpy as np\n'), ((2722, 2748), 'numpy.ones', 'np.ones', (['(5, U_A.shape[1])'], {}), '((5, U_A.shape[1]))\n', (2729, 2748), True, 'import numpy as np\n'), ((2762, 2784), 'numpy.zeros', 'np.zeros', (['U_A.shape[1]'], {}), '(U_A.shape[1])\n', (2770, 2784), True, 'import numpy as np\n'), ((2808, 2847), 'federatedml.param.param.FTLModelParam', 'FTLModelParam', ([], {'alpha': '(1)', 'max_iteration': '(1)'}), '(alpha=1, max_iteration=1)\n', (2821, 2847), False, 'from federatedml.param.param import FTLModelParam\n'), ((2872, 2890), 'federatedml.ftl.test.fake_models.FakeAutoencoder', 'FakeAutoencoder', (['(0)'], {}), '(0)\n', (2887, 2890), False, 'from federatedml.ftl.test.fake_models import FakeAutoencoder, FakeDiffConverge\n'), ((2956, 3001), 'federatedml.ftl.plain_ftl.PlainFTLGuestModel', 'PlainFTLGuestModel', (['autoencoderA', 'model_param'], {}), '(autoencoderA, model_param)\n', (2974, 3001), False, 'from federatedml.ftl.plain_ftl import PlainFTLGuestModel\n'), ((3027, 3049), 'federatedml.ftl.test.fake_models.FakeDiffConverge', 'FakeDiffConverge', (['None'], {}), '(None)\n', (3043, 3049), False, 'from federatedml.ftl.test.fake_models import FakeAutoencoder, FakeDiffConverge\n'), ((3225, 3247), 'numpy.array', 'np.array', (['[0, 1, 2, 3]'], {}), '([0, 1, 2, 3])\n', (3233, 3247), True, 'import numpy as np\n'), ((3366, 3385), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (3380, 3385), True, 'import numpy as np\n'), ((3715, 3772), 'federatedml.ftl.common.data_util.create_table', 'create_table', (['instance_list'], {'indexes': 'guest_sample_indexes'}), '(instance_list, indexes=guest_sample_indexes)\n', (3727, 3772), False, 'from federatedml.ftl.common.data_util import create_table\n'), ((3109, 3136), 'federatedml.util.transfer_variable.HeteroFTLTransferVariable', 'HeteroFTLTransferVariable', ([], {}), '()\n', (3134, 3136), False, 'from federatedml.util.transfer_variable import HeteroFTLTransferVariable\n'), ((3478, 3531), 'federatedml.feature.instance.Instance', 'Instance', ([], {'inst_id': 'i', 'features': 'feature', 'label': 'label[0]'}), '(inst_id=i, features=feature, label=label[0])\n', (3486, 3531), False, 'from federatedml.feature.instance import Instance\n'), ((2218, 2240), 'numpy.array', 'np.array', (['[1, 2, 4, 5]'], {}), '([1, 2, 4, 5])\n', (2226, 2240), True, 'import numpy as np\n')]
__author__ = '<NAME>' __email__ = '<EMAIL>' __version__= '1.8' __status__ = "Research" __date__ = "2/1/2020" __license__= "MIT License" import os import sys import numpy as np import time import glob from torchvision.utils import make_grid from tensorboardX import SummaryWriter import imageio import skimage from parameters import Params from sys_utils import tohms from image_utils import save_image #======================================================================================== class TeePipe(object): #source: https://stackoverflow.com/q/616645 def __init__(self, filename="Red.Wood", mode="a", buff=0): self.stdout = sys.stdout # self.file = open(filename, mode, buff) self.file = open(filename, mode) sys.stdout = self def __del__(self): self.close() def __enter__(self): pass def __exit__(self, *args): self.close() def write(self, message): self.stdout.write(message) self.file.write(message) def flush(self): self.stdout.flush() self.file.flush() os.fsync(self.file.fileno()) def close(self): if self.stdout != None: sys.stdout = self.stdout self.stdout = None if self.file != None: self.file.close() self.file = None # ======================================================================================== class MLLogger(): def __init__(self, hps): self.hps = hps self.logf = None self.im_size = hps.img_size self.epoch_num = hps.epochs_max # Total number of epochs self.iter_num = {} # Iterations per epoch # self.iter_epoch = 0 self.batch_size = hps.batch_size self.data = [] self.dkeys_id=['ts', 'epoch', 'iter', 'stage'] # Key lookup by ID self.dkeys = {} # ID lookup by key self.m_first = {} # stage_name -> position of first record self.m_last = {} # stage_name -> position of last record self.start_time = None # blobal start timestamp self.iter_global = 0 # Total iteration since the begining of the training self.print_header = True self.data_format_changed = True self.last_report_pos={} # stage_name -> Position in self.data of the last report # Tensorboard self.writer = None self.log_id = None return def load_config(self): logdir = self.exp_path+'/log/' cfg_filename = os.path.join(logdir, 'cfg-'+str(self.log_id-1)+'-*.json') cfg_files = glob.glob(cfg_filename) cfg_files.sort(reverse=True) if len(cfg_files) == 0 or not os.path.isfile(cfg_files[0]): return None p = Params() if not p.load(cfg_files[0]): return None return p def save_config(self, epoch=None): logdir = self.exp_path+'/log/' cfg_filename = os.path.join(logdir, 'cfg-'+str(self.log_id)+'-'+str(epoch)+'.json') self.hps.save(cfg_filename) return def open_experiment(self, experiment_name='m1'): """ Creates sub-directory structure - Creates new log file - """ self.experiment_name = experiment_name self.exp_path = os.path.join(experiment_name) os.makedirs(self.exp_path, exist_ok=True) if not self.hps.eval and self.experiment_name != '.': # Backup source code & configs os.system('cp *.py ' + self.exp_path+ '/') logdir = self.exp_path+'/tblog/' os.makedirs(logdir, exist_ok=True) self.writer = SummaryWriter(logdir) logdir = self.exp_path+'/log/' os.makedirs(logdir, exist_ok=True) self.model_path =os.path.join(self.exp_path, 'models') os.makedirs(self.model_path, exist_ok=True) # Create new log files prefix = 'eval-' if self.hps.eval else 'train-' log_id = 0 while True: log_filename = prefix+'log-'+str(log_id)+'.txt' log_path = os.path.join(logdir, log_filename) if not os.path.isfile(log_path): break log_id += 1 if self.hps.log_stdout: stdout_log_filename = prefix+'stdout-'+str(log_id)+'.txt' stdout_log_filename = os.path.join(logdir, stdout_log_filename) self.stdout_logger = TeePipe(stdout_log_filename) print("Creating new log file:",log_path) self.logf = open(log_path, 'wt') self.log_id = log_id return def set_samples_num(self, stage_name, samples_num): self.iter_num[stage_name] = self.hps.batch_size * int(np.floor(samples_num / self.hps.batch_size)) def start_epoch(self, stage_name, epoch): """ Creates a null record with a current timestamp """ if self.start_time is None: self.start_time = time.time() # Stored the position of the first epoch record # There can be one start per stage self.m_first[stage_name] = len(self.data) self.m_last[stage_name] = len(self.data) self.last_report_pos[stage_name] = len(self.data) rec = [0]*len(self.dkeys_id) rec[0] = time.time() - self.start_time rec[1] = epoch rec[2] = self.iter_global rec[3] = stage_name self.data.append(rec) self.print_header = True return def log_loss(self, epoch, iter, losses, stage_name): """ Args: epoch (int): current epoch starting from 0 iter (int): sample iteration within the epoch stage_name (str): 'train', 'val', 'test' losses (dict): dictionary of loss_name->loss_val """ if iter is not None: self.iter_global = iter # Collect new value keys for key, val in losses.items(): if key not in self.dkeys_id: # Add new key=val self.dkeys_id.append(key) self.data_format_changed = True # Update the key-index lookup table if self.data_format_changed: self.dkeys = {} for i, key in enumerate(self.dkeys_id): self.dkeys[key] = i # Store new data rec = [0]*len(self.dkeys_id) rec[0] = time.time() - self.start_time rec[1] = epoch rec[2] = self.iter_global # Global iteration rec[3] = stage_name # Generate tensorboar record tboard_losses = {} for key, val in losses.items(): id = self.dkeys[key] rec[id] = val key = stage_name+'_'+key tboard_losses[key] = val self.data.append(rec) # Append log to the file if self.logf is not None: if self.data_format_changed: # Insert data format header header_str = [str(v) for v in self.dkeys_id] self.logf.write('\n'+' '.join(header_str)+'\n') line = [str(v) for v in rec] self.logf.write(' '.join(line)+'\n') self.logf.flush() # Update tensorboard # {'d_loss': d_loss, 'grad_penalty': grad_penalty} self.writer.add_scalars('losses', tboard_losses, self.iter_global) self.m_last[stage_name] = len(self.data)-1 self.data_format_changed= False return def print_table(self, name, data, header=None): """ max_iter = self.iter_num*self.epoch_num epoch_str = str(rec[-1][1])+" ("+str(int(done))+"%)" header = ['T', 'e('+str(self.epoch_num)+')', 'iter('+str(max_iter//1000)+'k)', 'batch (ms)'] data = [[rec[-1][3], epoch_str, str(last_iter), batch_took_avg*1000.0]] """ # Print table table_width = 0 if header is not None: self.col_width = [] line = "" for i, hv in enumerate(header): line += '{:<{c0}}'.format(hv, c0=len(hv)) self.col_width.append(len(hv)) print('') if name is not None: print(name) print(line) head_len = len(line) print('-'*head_len ) table_width = head_len # Print data for r, rv in enumerate(data): line = "" for c, cv in enumerate(rv): line += '{:<{c0}}'.format(cv, c0=self.col_width[c]) print(line, flush=True) if len(line) > table_width: table_width = len(line) return table_width def get_avg(self, begin, end, cols=[]): rec = self.data[begin:end] # Get the max number of stored value in this run mx = 0 for val in rec: if len(val)>mx: mx = len(val) # Create numpy vector for the averages rec = np.asarray([x+[0]*(mx-len(x)) for x in rec], dtype=np.object ) # Get only the records with loss values rec_avg = rec.copy() rec_avg[:,:4] = 0 rec_avg = rec_avg.astype(np.float) rec_avg = rec_avg.mean(0) return rec_avg def print_batch_stat(self, stage_name='t'): last_epoch_pos = self.m_last.get(stage_name, 0) last_report_pos = self.last_report_pos.get(stage_name, 0) if last_report_pos == last_epoch_pos: # Already reported return # Get averages since the last report rec_avg = self.get_avg(last_report_pos+1, last_epoch_pos+1) rec_last = self.data[last_epoch_pos] time_now, last_epoch, last_iter, last_stage_name = rec_last[:4] iter = last_iter - self.data[self.m_first[stage_name]][2] done = round(100*iter/self.iter_num.get(stage_name), 2) if stage_name in self.iter_num else 0 batch_took_avg = float(time_now) - float(self.data[last_report_pos+1][0]) if self.batch_size is not None: batch_took_avg /= self.batch_size self.last_report_pos[stage_name] = last_epoch_pos # Print table header = None if self.print_header: max_iter = self.iter_num.get(stage_name, 0)*self.epoch_num header = ['Time ', 'E('+str(self.epoch_num)+') ', 'Iter('+str(max_iter//1000)+'k) ', 'Batch (ms) '] for key in self.dkeys_id[4:]: header.append(key+' '*(15-len(key))) self.print_header=False data = [tohms(time_now), str(last_epoch)+' ('+str(done)+'%)', str(last_iter), round(batch_took_avg*1000.0, 3)] for key in self.dkeys_id[4:]: data.append(round(rec_avg[self.dkeys[key]], 4)) table_width = self.print_table(last_stage_name, [data], header) return def print_epoch_stat(self, stage_name, **kwargs): """ Batch train log format Epoch train log format Test log format """ first_epoch_pos = self.m_first.get(stage_name, 0) last_epoch_pos = self.m_last.get(stage_name, 0) rec_avg = self.get_avg(first_epoch_pos+1, last_epoch_pos+1) rec_last = self.data[last_epoch_pos] time_now, last_epoch, last_iter, last_stage_name = rec_last[:4] epoch_took = tohms(time_now - self.data[first_epoch_pos][0]) # Print table max_iter = self.iter_num*self.epoch_num header = ['Time ', 'E('+str(self.epoch_num)+') ', 'Iter('+str(max_iter//1000)+'k) ', 'Epoch (H:M:S) '] for key in self.dkeys_id[4:]: header.append(key) data = [tohms(time_now), str(last_epoch), str(last_iter), epoch_took] for key in self.dkeys_id[4:]: data.append(round(rec_avg[self.dkeys[key]], 4)) table_width = self.print_table(last_stage_name, [data], header) print("-"*table_width) return def log_images(self, x, epoch, name_suffix, name, channels=3, nrow=8): img_path = os.path.join(self.experiment_name, name) os.makedirs(img_path, exist_ok=True) img_size = self.im_size if img_size < 1: img_size2 = x.nelement() / x.size(0) / channels img_size = int(np.sqrt(img_size2)) x = x.view(-1, channels, img_size, img_size) # * 0.5 + 0.5 grid = save_image(x, img_path+'/sample_' + str(epoch) + "_" + str(name_suffix) + '.jpg', nrow = nrow, normalize=True, scale_each=True) img_grid = make_grid(x, normalize=True, scale_each=True, nrow=nrow) self.writer.add_image(name, img_grid , self.iter_global) return def _merge(self, images, size, labels=[], strike=[]): h, w = images.shape[1], images.shape[2] resize_factor=1.0 h_ = int(h * resize_factor) w_ = int(w * resize_factor) img = np.zeros((h_ * size[0], w_ * size[1])) for idx, image in enumerate(images): i = int(idx % size[1]) j = int(idx / size[1]) image_ = skimage.transform.resize(image, output_shape=(w_, h_)) img[j * h_:j * h_ + h_, i * w_:i * w_ + w_] = image_ if len(labels) == len(images): if labels[idx] == 1: img[j * h_:j * h_ + 2, i * w_:i * w_ + w_-4] = np.ones((2, w_-4)) if len(strike) == len(images): if strike[idx] == 1: img[j * h_+h_//2:j * h_ + h_//2+1, i * w_:i * w_ + w_-4] = np.ones((1, w_-4)) return img def save_images(self, images, img_size=(28,28), labels=[], strike=[], name='result.jpg'): n_img_y = 16 n_img_x = 32 images = images.reshape(n_img_x * n_img_y, img_size[0], img_size[1]) imageio.imsave(name, self._merge(images, [n_img_y, n_img_x], labels, strike)) #================================================================================= if __name__ == "__main__": print("NOT AN EXECUTABLE!")
[ "tensorboardX.SummaryWriter", "os.makedirs", "sys_utils.tohms", "numpy.floor", "parameters.Params", "numpy.zeros", "os.system", "numpy.ones", "time.time", "torchvision.utils.make_grid", "os.path.isfile", "skimage.transform.resize", "glob.glob", "os.path.join", "numpy.sqrt" ]
[((2599, 2622), 'glob.glob', 'glob.glob', (['cfg_filename'], {}), '(cfg_filename)\n', (2608, 2622), False, 'import glob\n'), ((2765, 2773), 'parameters.Params', 'Params', ([], {}), '()\n', (2771, 2773), False, 'from parameters import Params\n'), ((3307, 3336), 'os.path.join', 'os.path.join', (['experiment_name'], {}), '(experiment_name)\n', (3319, 3336), False, 'import os\n'), ((3345, 3386), 'os.makedirs', 'os.makedirs', (['self.exp_path'], {'exist_ok': '(True)'}), '(self.exp_path, exist_ok=True)\n', (3356, 3386), False, 'import os\n'), ((3606, 3640), 'os.makedirs', 'os.makedirs', (['logdir'], {'exist_ok': '(True)'}), '(logdir, exist_ok=True)\n', (3617, 3640), False, 'import os\n'), ((3663, 3684), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['logdir'], {}), '(logdir)\n', (3676, 3684), False, 'from tensorboardX import SummaryWriter\n'), ((3733, 3767), 'os.makedirs', 'os.makedirs', (['logdir'], {'exist_ok': '(True)'}), '(logdir, exist_ok=True)\n', (3744, 3767), False, 'import os\n'), ((3795, 3832), 'os.path.join', 'os.path.join', (['self.exp_path', '"""models"""'], {}), "(self.exp_path, 'models')\n", (3807, 3832), False, 'import os\n'), ((3842, 3885), 'os.makedirs', 'os.makedirs', (['self.model_path'], {'exist_ok': '(True)'}), '(self.model_path, exist_ok=True)\n', (3853, 3885), False, 'import os\n'), ((11366, 11413), 'sys_utils.tohms', 'tohms', (['(time_now - self.data[first_epoch_pos][0])'], {}), '(time_now - self.data[first_epoch_pos][0])\n', (11371, 11413), False, 'from sys_utils import tohms\n'), ((12150, 12190), 'os.path.join', 'os.path.join', (['self.experiment_name', 'name'], {}), '(self.experiment_name, name)\n', (12162, 12190), False, 'import os\n'), ((12199, 12235), 'os.makedirs', 'os.makedirs', (['img_path'], {'exist_ok': '(True)'}), '(img_path, exist_ok=True)\n', (12210, 12235), False, 'import os\n'), ((12690, 12746), 'torchvision.utils.make_grid', 'make_grid', (['x'], {'normalize': '(True)', 'scale_each': '(True)', 'nrow': 'nrow'}), '(x, normalize=True, scale_each=True, nrow=nrow)\n', (12699, 12746), False, 'from torchvision.utils import make_grid\n'), ((13049, 13087), 'numpy.zeros', 'np.zeros', (['(h_ * size[0], w_ * size[1])'], {}), '((h_ * size[0], w_ * size[1]))\n', (13057, 13087), True, 'import numpy as np\n'), ((3513, 3556), 'os.system', 'os.system', (["('cp *.py ' + self.exp_path + '/')"], {}), "('cp *.py ' + self.exp_path + '/')\n", (3522, 3556), False, 'import os\n'), ((4097, 4131), 'os.path.join', 'os.path.join', (['logdir', 'log_filename'], {}), '(logdir, log_filename)\n', (4109, 4131), False, 'import os\n'), ((4360, 4401), 'os.path.join', 'os.path.join', (['logdir', 'stdout_log_filename'], {}), '(logdir, stdout_log_filename)\n', (4372, 4401), False, 'import os\n'), ((4957, 4968), 'time.time', 'time.time', ([], {}), '()\n', (4966, 4968), False, 'import time\n'), ((5281, 5292), 'time.time', 'time.time', ([], {}), '()\n', (5290, 5292), False, 'import time\n'), ((6377, 6388), 'time.time', 'time.time', ([], {}), '()\n', (6386, 6388), False, 'import time\n'), ((10593, 10608), 'sys_utils.tohms', 'tohms', (['time_now'], {}), '(time_now)\n', (10598, 10608), False, 'from sys_utils import tohms\n'), ((11771, 11786), 'sys_utils.tohms', 'tohms', (['time_now'], {}), '(time_now)\n', (11776, 11786), False, 'from sys_utils import tohms\n'), ((13226, 13280), 'skimage.transform.resize', 'skimage.transform.resize', (['image'], {'output_shape': '(w_, h_)'}), '(image, output_shape=(w_, h_))\n', (13250, 13280), False, 'import skimage\n'), ((2698, 2726), 'os.path.isfile', 'os.path.isfile', (['cfg_files[0]'], {}), '(cfg_files[0])\n', (2712, 2726), False, 'import os\n'), ((4151, 4175), 'os.path.isfile', 'os.path.isfile', (['log_path'], {}), '(log_path)\n', (4165, 4175), False, 'import os\n'), ((4719, 4762), 'numpy.floor', 'np.floor', (['(samples_num / self.hps.batch_size)'], {}), '(samples_num / self.hps.batch_size)\n', (4727, 4762), True, 'import numpy as np\n'), ((12389, 12407), 'numpy.sqrt', 'np.sqrt', (['img_size2'], {}), '(img_size2)\n', (12396, 12407), True, 'import numpy as np\n'), ((13494, 13514), 'numpy.ones', 'np.ones', (['(2, w_ - 4)'], {}), '((2, w_ - 4))\n', (13501, 13514), True, 'import numpy as np\n'), ((13673, 13693), 'numpy.ones', 'np.ones', (['(1, w_ - 4)'], {}), '((1, w_ - 4))\n', (13680, 13693), True, 'import numpy as np\n')]
import scipy.spatial as sci_spatial import skimage.draw as ski_draw import shapely.geometry as shapely_geom import numpy as np import os, sys def create_landscape(no_of_circles, radius): # create the middle points of the ponds (the ponds should not overlap) x,y = np.random.randint(0,400), np.random.randint(0,400) list_of_points = [(x + 400, y + 400), (x + 400, y), (x + 800, y + 400), (x + 400, y + 800), (x, y + 400)] for i in range(no_of_circles-1): new_point_found = False trials = 0 while not new_point_found and trials < 500: x,y = np.random.randint(0,400), np.random.randint(0,400) new_point = shapely_geom.Point((x + 400, y + 400)) trials += 1 if not new_point.buffer(radius * 2 + 50).intersects(shapely_geom.MultiPoint(list_of_points)): new_point_found = True list_of_points.append((x + 400, y + 400)) list_of_points.append((x + 400, y)) list_of_points.append((x + 800, y + 400)) list_of_points.append((x + 400, y + 800)) list_of_points.append((x, y + 400)) # landscape with ponds ponds_img = np.full((1200 + 2*radius, 1200 + 2*radius), 55) # draw the ponds for point_i in list_of_points: rr, cc = ski_draw.disk(point_i, radius) ponds_img[rr + radius, cc + radius] = 105 ponds_img = ponds_img[400+radius : 800+radius, 400+radius : 800+radius] # pond-id ponds_id_img = np.full((1200 + 2*radius, 1200 + 2*radius), -999) # draw the ponds id_i = 0 for point_i, id_i in zip(list_of_points, np.repeat(np.arange(len(list_of_points)/5), 5)): rr, cc = ski_draw.disk(point_i, radius) ponds_id_img[rr + radius, cc + radius] = id_i ponds_id_img = ponds_id_img[400+radius : 800+radius, 400+radius : 800+radius] # create an raster image with the middle points marked is_center_img = np.zeros_like(ponds_img) boundary = shapely_geom.Polygon([(399, 399), (799, 399), (799, 799), (399, 799)]) selection = [shapely_geom.Point(point_i).intersects(boundary) for point_i in list_of_points] x,y = np.array(list_of_points)[selection].T x -= 400 y -= 400 is_center_img[x, y] = 1 return is_center_img, ponds_img, ponds_id_img def make_corridors(is_center, ponds): without_boundaries = np.zeros((400*3, 400*3)) without_boundaries[0:400, 400:800] = is_center without_boundaries[400:800, 0:400] = is_center without_boundaries[400:800, 400:800] = is_center without_boundaries[800:1200, 400:800] = is_center without_boundaries[400:800, 800:1200] = is_center loc = np.where(without_boundaries == 1) center_points = np.swapaxes(loc, 0, 1) result = sci_spatial.distance.cdist(center_points, center_points) new_img = np.full_like(without_boundaries, 55) # 55 --> green in netlogo points_with_corridors = np.where(np.logical_and( result != 0, result < 170)) #mean(result[result != 0]) * 0.3 for i in np.arange(0, np.shape(points_with_corridors)[1]): index_from = points_with_corridors[0][i] index_to = points_with_corridors[1][i] x = [loc[1][index_from], loc[1][index_to]] y = [loc[0][index_from], loc[0][index_to]] x_corr, y_corr = shapely_geom.LineString([(x[0], y[0]), (x[1], y[1])]).buffer(4.5).exterior.coords.xy rr, cc = ski_draw.polygon(y_corr, x_corr, without_boundaries.shape) new_img[rr, cc] = 35 # 35 --> brown in netlogo final_img = new_img[400:800, 400:800] final_img[np.where(ponds == 105)] = 105 # 105 --> blue in netlogo return final_img def make_buffers(corridor_img, is_center_img): radius = 15 corridor_area = np.sum(corridor_img == 35) no_of_ponds = np.sum(is_center_img) buffer_radius = np.sqrt( ( (corridor_area / no_of_ponds) + np.pi *radius **2) / np.pi ) without_boundaries = np.zeros((400*3, 400*3)) without_boundaries[0:400, 400:800] = is_center_img without_boundaries[400:800, 0:400] = is_center_img without_boundaries[400:800, 400:800] = is_center_img without_boundaries[800:1200, 400:800] = is_center_img without_boundaries[400:800, 800:1200] = is_center_img x,y = np.where(without_boundaries == 1) new_img = np.full_like(without_boundaries, 55) # 55 --> green in netlogo # make buffers for x_i, y_i in zip(x,y): rr, cc = ski_draw.disk((x_i, y_i), buffer_radius) filter_1 = (rr >= 0) & (rr <= 1199) filter_2 = (cc >= 0) & (cc <= 1199) rr = rr[filter_1 & filter_2] cc = cc[filter_1 & filter_2] new_img[rr, cc] = 35 # make ponds for x_i, y_i in zip(x,y): rr, cc = ski_draw.disk((x_i, y_i), radius) filter_1 = (rr >= 0) & (rr <= 1199) filter_2 = (cc >= 0) & (cc <= 1199) rr = rr[filter_1 & filter_2] cc = cc[filter_1 & filter_2] new_img[rr, cc] = 105 return new_img[400:800, 400:800] if __name__ == "__main__": #print('Scenario-Number:', sys.argv[1]) os.makedirs('gis_output/' + sys.argv[1]) os.chdir('gis_output/' + sys.argv[1]) is_center_of_pond, pond, pond_id = create_landscape(no_of_circles=int(sys.argv[2]), radius=int(sys.argv[3])) corridors = make_corridors(is_center_of_pond, pond) buffers = make_buffers(corridors, is_center_of_pond) with open("../pcolor.asc") as myfile: head = [next(myfile) for x in range(6)] np.savetxt('corridors.asc',corridors, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('buffers.asc',buffers, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('center.asc',is_center_of_pond, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('id.asc',pond_id, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='')
[ "numpy.sum", "numpy.shape", "numpy.random.randint", "os.chdir", "numpy.full", "numpy.full_like", "numpy.zeros_like", "shapely.geometry.Point", "shapely.geometry.MultiPoint", "shapely.geometry.Polygon", "shapely.geometry.LineString", "numpy.swapaxes", "scipy.spatial.distance.cdist", "skimage.draw.polygon", "os.makedirs", "numpy.logical_and", "skimage.draw.disk", "numpy.zeros", "numpy.where", "numpy.array", "numpy.sqrt" ]
[((1304, 1355), 'numpy.full', 'np.full', (['(1200 + 2 * radius, 1200 + 2 * radius)', '(55)'], {}), '((1200 + 2 * radius, 1200 + 2 * radius), 55)\n', (1311, 1355), True, 'import numpy as np\n'), ((1632, 1685), 'numpy.full', 'np.full', (['(1200 + 2 * radius, 1200 + 2 * radius)', '(-999)'], {}), '((1200 + 2 * radius, 1200 + 2 * radius), -999)\n', (1639, 1685), True, 'import numpy as np\n'), ((2093, 2117), 'numpy.zeros_like', 'np.zeros_like', (['ponds_img'], {}), '(ponds_img)\n', (2106, 2117), True, 'import numpy as np\n'), ((2138, 2208), 'shapely.geometry.Polygon', 'shapely_geom.Polygon', (['[(399, 399), (799, 399), (799, 799), (399, 799)]'], {}), '([(399, 399), (799, 399), (799, 799), (399, 799)])\n', (2158, 2208), True, 'import shapely.geometry as shapely_geom\n'), ((2528, 2556), 'numpy.zeros', 'np.zeros', (['(400 * 3, 400 * 3)'], {}), '((400 * 3, 400 * 3))\n', (2536, 2556), True, 'import numpy as np\n'), ((2827, 2860), 'numpy.where', 'np.where', (['(without_boundaries == 1)'], {}), '(without_boundaries == 1)\n', (2835, 2860), True, 'import numpy as np\n'), ((2881, 2903), 'numpy.swapaxes', 'np.swapaxes', (['loc', '(0)', '(1)'], {}), '(loc, 0, 1)\n', (2892, 2903), True, 'import numpy as np\n'), ((2917, 2973), 'scipy.spatial.distance.cdist', 'sci_spatial.distance.cdist', (['center_points', 'center_points'], {}), '(center_points, center_points)\n', (2943, 2973), True, 'import scipy.spatial as sci_spatial\n'), ((2989, 3025), 'numpy.full_like', 'np.full_like', (['without_boundaries', '(55)'], {}), '(without_boundaries, 55)\n', (3001, 3025), True, 'import numpy as np\n'), ((3903, 3929), 'numpy.sum', 'np.sum', (['(corridor_img == 35)'], {}), '(corridor_img == 35)\n', (3909, 3929), True, 'import numpy as np\n'), ((3948, 3969), 'numpy.sum', 'np.sum', (['is_center_img'], {}), '(is_center_img)\n', (3954, 3969), True, 'import numpy as np\n'), ((4000, 4068), 'numpy.sqrt', 'np.sqrt', (['((corridor_area / no_of_ponds + np.pi * radius ** 2) / np.pi)'], {}), '((corridor_area / no_of_ponds + np.pi * radius ** 2) / np.pi)\n', (4007, 4068), True, 'import numpy as np\n'), ((4100, 4128), 'numpy.zeros', 'np.zeros', (['(400 * 3, 400 * 3)'], {}), '((400 * 3, 400 * 3))\n', (4108, 4128), True, 'import numpy as np\n'), ((4419, 4452), 'numpy.where', 'np.where', (['(without_boundaries == 1)'], {}), '(without_boundaries == 1)\n', (4427, 4452), True, 'import numpy as np\n'), ((4467, 4503), 'numpy.full_like', 'np.full_like', (['without_boundaries', '(55)'], {}), '(without_boundaries, 55)\n', (4479, 4503), True, 'import numpy as np\n'), ((5251, 5291), 'os.makedirs', 'os.makedirs', (["('gis_output/' + sys.argv[1])"], {}), "('gis_output/' + sys.argv[1])\n", (5262, 5291), False, 'import os, sys\n'), ((5296, 5333), 'os.chdir', 'os.chdir', (["('gis_output/' + sys.argv[1])"], {}), "('gis_output/' + sys.argv[1])\n", (5304, 5333), False, 'import os, sys\n'), ((279, 304), 'numpy.random.randint', 'np.random.randint', (['(0)', '(400)'], {}), '(0, 400)\n', (296, 304), True, 'import numpy as np\n'), ((305, 330), 'numpy.random.randint', 'np.random.randint', (['(0)', '(400)'], {}), '(0, 400)\n', (322, 330), True, 'import numpy as np\n'), ((1430, 1460), 'skimage.draw.disk', 'ski_draw.disk', (['point_i', 'radius'], {}), '(point_i, radius)\n', (1443, 1460), True, 'import skimage.draw as ski_draw\n'), ((1833, 1863), 'skimage.draw.disk', 'ski_draw.disk', (['point_i', 'radius'], {}), '(point_i, radius)\n', (1846, 1863), True, 'import skimage.draw as ski_draw\n'), ((3090, 3131), 'numpy.logical_and', 'np.logical_and', (['(result != 0)', '(result < 170)'], {}), '(result != 0, result < 170)\n', (3104, 3131), True, 'import numpy as np\n'), ((3560, 3618), 'skimage.draw.polygon', 'ski_draw.polygon', (['y_corr', 'x_corr', 'without_boundaries.shape'], {}), '(y_corr, x_corr, without_boundaries.shape)\n', (3576, 3618), True, 'import skimage.draw as ski_draw\n'), ((3732, 3754), 'numpy.where', 'np.where', (['(ponds == 105)'], {}), '(ponds == 105)\n', (3740, 3754), True, 'import numpy as np\n'), ((4598, 4638), 'skimage.draw.disk', 'ski_draw.disk', (['(x_i, y_i)', 'buffer_radius'], {}), '((x_i, y_i), buffer_radius)\n', (4611, 4638), True, 'import skimage.draw as ski_draw\n'), ((4896, 4929), 'skimage.draw.disk', 'ski_draw.disk', (['(x_i, y_i)', 'radius'], {}), '((x_i, y_i), radius)\n', (4909, 4929), True, 'import skimage.draw as ski_draw\n'), ((767, 805), 'shapely.geometry.Point', 'shapely_geom.Point', (['(x + 400, y + 400)'], {}), '((x + 400, y + 400))\n', (785, 805), True, 'import shapely.geometry as shapely_geom\n'), ((2316, 2340), 'numpy.array', 'np.array', (['list_of_points'], {}), '(list_of_points)\n', (2324, 2340), True, 'import numpy as np\n'), ((3194, 3225), 'numpy.shape', 'np.shape', (['points_with_corridors'], {}), '(points_with_corridors)\n', (3202, 3225), True, 'import numpy as np\n'), ((692, 717), 'numpy.random.randint', 'np.random.randint', (['(0)', '(400)'], {}), '(0, 400)\n', (709, 717), True, 'import numpy as np\n'), ((718, 743), 'numpy.random.randint', 'np.random.randint', (['(0)', '(400)'], {}), '(0, 400)\n', (735, 743), True, 'import numpy as np\n'), ((2226, 2253), 'shapely.geometry.Point', 'shapely_geom.Point', (['point_i'], {}), '(point_i)\n', (2244, 2253), True, 'import shapely.geometry as shapely_geom\n'), ((895, 934), 'shapely.geometry.MultiPoint', 'shapely_geom.MultiPoint', (['list_of_points'], {}), '(list_of_points)\n', (918, 934), True, 'import shapely.geometry as shapely_geom\n'), ((3457, 3510), 'shapely.geometry.LineString', 'shapely_geom.LineString', (['[(x[0], y[0]), (x[1], y[1])]'], {}), '([(x[0], y[0]), (x[1], y[1])])\n', (3480, 3510), True, 'import shapely.geometry as shapely_geom\n')]
import math from random import randint from numpy import sqrt def GCD(a, b): if b == 0: return a return GCD(b, a % b) ####################################### def ExtendedEuclid(a, b): if b == 0: return (1, 0) (x, y) = ExtendedEuclid(b, a % b) k = a // b return (y, x - k * y) def InvertModulo(a, n): (b, x) = ExtendedEuclid(a, n) if b < 0: b = (b % n + n) % n # we don’t want −ve integers return b ################################## def PowMod(a, n, mod): if n == 0: return 1 % mod elif n == 1: return a % mod else: b = PowMod(a, n // 2, mod) b = b * b % mod if n % 2 == 0: return b else: return b * a % mod def ConvertToInt( message_str): res = 0 for i in range(len(message_str)): res = res * 256 + ord(message_str[i]) return res ##################################### def ConvertToStr(n): res = "" while n > 0: res += chr(n % 256) n //= 256 return res[::-1] #question1 def Encrypt(m, n, e): m=ConvertToInt(m) c=PowMod(m,e,n) return c ############################# def Decrypt(c, p, q, e): euler=(p-1)*(q-1) d=InvertModulo(e,euler) n=p*q m=PowMod(c,d,n) m=ConvertToStr(m) return m chiper_message=Encrypt("attack", 1000000007*1000000009,23917) print(Decrypt(chiper_message, 1000000007,1000000009,23917)) #question2 def DecipherSimple(c, n, e, potential_messages): decipheredtext='' for i in potential_messages: if Encrypt(i,n,e)==c: decipheredtext=i return decipheredtext modulo = 101 exponent = 12 ciphertext = Encrypt("attack", modulo, exponent) print(DecipherSimple(ciphertext, modulo, exponent, ["attack", "don't attack", "wait"])) # get a missing prime number def get_prime_number(i,j,n): for i in range(i,j): if(n%i==0): return i return 0 ##question3 def DecipherSmallPrime(c, n, e): p=get_prime_number(2,1000000,n) decipheredtext=Decrypt(c,p,n//p,e) return decipheredtext modulo = 101 *18298970732541109011012304219376080251334480295537316123696052970419466495220522723330315111017831737980079504337868198011077274303193766040393009648852841770668239779097280026631944319501437547002412556176186750790476901358334138818777298389724049250700606462316428106882097210008142941838672676714188593227684360287806974345181893018133710957167334490627178666071809992955566020058374505477745993383434501768887090900283569055646901291270870833498474402084748161755197005050874785474707550376333429671113753137201128897550014524209754619355308207537703754006699795711188492048286436285518105948050401762394690148387 exponent = 239 ciphertext = Encrypt("attack", modulo, exponent) print(DecipherSmallPrime(ciphertext, modulo, exponent)) #question4 def DecipherSmallDiff(c, n, e): p=get_prime_number(int(sqrt(n)-5000),int(sqrt(n)),n) decipheredtext=Decrypt(c,p,n//p,e) return decipheredtext p = 1000000007 q = 1000000009 n = p * q e = 239 ciphertext = Encrypt("attack", n, e) message = DecipherSmallDiff(ciphertext, n, e) print(message) #question5 def DecipherCommonDivisor(c1, n1, e1, c2, n2, e2): p=GCD(n1,n2) first_decipheredtext= Decrypt(c1,p,n1//p,e1) second_decipheredtext=Decrypt(c2,p,n2//p,e2) return first_decipheredtext, second_decipheredtext p = 101 q1 = 18298970732541109011012304219376080251334480295537316123696052970419466495220522723330315111017831737980079504337868198011077274303193766040393009648852841770668239779097280026631944319501437547002412556176186750790476901358334138818777298389724049250700606462316428106882097210008142941838672676714188593227684360287806974345181893018133710957167334490627178666071809992955566020058374505477745993383434501768887090900283569055646901291270870833498474402084748161755197005050874785474707550376333429671113753137201128897550014524209754619355308207537703754006699795711188492048286436285518105948050401762394690148387 q2 = 1000000007 first_modulo = p * q1 second_modulo = p * q2 first_exponent = 239 second_exponent = 17 first_ciphertext = Encrypt("attack", first_modulo, first_exponent) second_ciphertext = Encrypt("wait", second_modulo, second_exponent) print(DecipherCommonDivisor(first_ciphertext, first_modulo, first_exponent, second_ciphertext, second_modulo, second_exponent)) #question6 def DecipherHastad(c1, n1, c2, n2, e): N1=(n1*n2)//n1 N2=(n1*n2)//n2 x1=InvertModulo(N1,n1) x2=InvertModulo(N2,n2) c_square=(c1*N1*x1+c2*N2*x2)%(n1*n2) c=int(round(sqrt(float(c_square)))) broadcast_message=ConvertToStr(c) # m1= int(round(sqrt(float(c1)))) #m2= int(round(sqrt(float(c2)))) #if(m1==m2): # broadcast_message=ConvertToStr(m1) return broadcast_message p1 = 790383132652258876190399065097 q1 = 662503581792812531719955475509 p2 = 656917682542437675078478868539 q2 = 1263581691331332127259083713503 n1 = p1 * q1 n2 = p2 * q2 e = 2 ciphertext1 = Encrypt("attack", n1, e) ciphertext2 = Encrypt("attack", n2, e) message = DecipherHastad(ciphertext1, n1, ciphertext2, n2, e) print(message)
[ "numpy.sqrt" ]
[((2985, 2992), 'numpy.sqrt', 'sqrt', (['n'], {}), '(n)\n', (2989, 2992), False, 'from numpy import sqrt\n'), ((2967, 2974), 'numpy.sqrt', 'sqrt', (['n'], {}), '(n)\n', (2971, 2974), False, 'from numpy import sqrt\n')]
from __future__ import absolute_import from __future__ import division from __future__ import with_statement import abc import json import logging import numpy as np import os import keras from keras.optimizers import Adadelta, SGD, RMSprop, Adam from nlplingo.nn.constants import supported_pytorch_models from nlplingo.nn.keras_models.common import keras_custom_objects import time from datetime import datetime from shutil import copyfile import random import math from nlplingo.nn.framework.sentence_re import SentenceRETrain logger = logging.getLogger(__name__) class ExtractionModel(abc.ABC): verbosity = 0 def __init__(self, params, extractor_params, event_domain, embeddings, hyper_params, features): """ :type event_domain: nlplingo.tasks.event_domain.EventDomain :type embeddings: dict[str : nlplingo.embeddings.word_embeddings.WordEmbedding] :type model_name: str :type features: object containing a 'feature_strings' attribute """ self.hyper_params = hyper_params self.params = params self.extractor_params = extractor_params self.event_domain = event_domain self.num_event_types = len(event_domain.event_types) self.num_role_types = len(event_domain.event_roles) self.num_ne_types = len(event_domain.entity_types) self.num_ne_bio_types = None self.num_entity_relation_types = len(event_domain.entity_relation_types) self.num_eer_types = len(event_domain.eer_types) self.word_vec_length = 1 # because we use word vector index self.embeddings_vector_size = None if 'embeddings' in extractor_params: self.embeddings_vector_size = extractor_params['embeddings']['vector_size'] self.word_embeddings = None if embeddings is not None and 'word_embeddings' in embeddings: self.word_embeddings = embeddings['word_embeddings'].word_vec """:type: numpy.ndarray""" self.model_type = extractor_params['model_type'] self.optimizer = self._configure_optimizer(extractor_params) self.model_file = extractor_params['model_file'] self.data_keys = [] self.num_output = None self.model_dir = None self.model = None self.id2label = dict([(v, k) for k, v in self.event_domain.event_roles.items()]) self.trained_model = None self.features = features if 'engine' in extractor_params and (extractor_params['engine'] == 'pytorch'): import torch import random torch.manual_seed(extractor_params['seed']) np.random.seed(extractor_params['seed']) random.seed(1234) self.extractor_params['cuda'] = torch.cuda.is_available() if extractor_params.get('cpu', False): self.extractor_params['cuda'] = False elif extractor_params.get('cuda', False): torch.cuda.manual_seed(extractor_params['seed']) self.layers = None def _get_framework_class(self): if self.model_type in supported_pytorch_models: return SentenceRETrain else: raise Exception('model type ' + self.model_type + ' is not supported') def fit_txt(self, train_path, dev_path, test_path): # uses framework (with distinct initialization args) framework_class = self._get_framework_class() framework = framework_class(self.model, train_path, dev_path, test_path, self.extractor_params, self.hyper_params, self.features, self.event_domain) framework.train_model() def fit_model(self, train_data_list, train_label, test_data_list, test_label): # uses framework if self.extractor_params.get('engine') == 'pytorch': framework_class = self._get_framework_class() framework = framework_class(self.model, train_data_list, train_label, test_data_list, test_label, self.extractor_params, self.hyper_params, self.features, self.event_domain) framework.train_model() elif 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): raise IOError( "Extractor engine in {'keras', None} but KerasExtractionModel " "should have implemented its own fit method overriding " "ExtractionModel.fit_model. This error should no longer exist " "once KerasExtractionModel is part of framework_class system.") else: raise Exception('Only Keras or PyTorch engines are supported.') def _configure_optimizer(self, params): optimizer_params = params.get('optimizer', dict()) tunable_params = {} if 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): if optimizer_params.get('name') == 'SGD': tunable_params = { 'name': 'SGD', 'lr': optimizer_params.get('lr', 0.01), 'momentum': optimizer_params.get('momentum', 0.0), 'decay': optimizer_params.get('decay', 0.0), 'nesterov': optimizer_params.get('nesterov', False) } optimizer = SGD( lr=tunable_params['lr'], momentum=tunable_params['momentum'], decay=tunable_params['decay'], nesterov=tunable_params['nesterov'] ) elif optimizer_params.get('name') == 'RMSprop': tunable_params = { 'name': 'RMSprop', 'lr': optimizer_params.get('lr', 0.001), 'rho': optimizer_params.get('rho', 0.9), 'epsilon': optimizer_params.get('epsilon', None), 'decay': optimizer_params.get('decay', 0.0) } optimizer = RMSprop( lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=tunable_params['epsilon'], decay=tunable_params['decay'] ) elif optimizer_params.get('name') == 'Adam': tunable_params = { 'name': 'Adam', 'lr': optimizer_params.get('lr', 0.001) } optimizer = Adam( lr=tunable_params['lr'] ) else: tunable_params = { 'name': 'Adadelta', 'lr': optimizer_params.get('lr', 0.1), 'rho': optimizer_params.get('rho', 0.95), 'epsilon': optimizer_params.get('epsilon', 1e-6), 'decay': optimizer_params.get('decay', 0.0) } # Default Adadelta optimizer = Adadelta( lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=tunable_params['epsilon'] ) print('=== Optimization parameters ===') print(json.dumps(tunable_params, sort_keys=True, indent=4)) print('=== Optimization parameters ===') return optimizer elif self.extractor_params['engine'] == 'pytorch': # TODO: make optimizer more configurable optimizer_params['name'] = optimizer_params.get('name', 'sgd') optimizer_params['lr'] = optimizer_params.get('lr', 0.3) optimizer_params['lr_decay'] = optimizer_params.get('lr_decay', 0.9) optimizer_params['decay_epoch'] = optimizer_params.get('decay_epoch', 5) return optimizer_params elif self.extractor_params['engine'] == 'transformers': pass else: raise Exception('Only Keras or PyTorch engines are supported.') def create_model(self): pass def __getstate__(self): u"""Defines what is to be pickled. Keras models cannot be pickled. Should call save_keras_model() and load_keras_model() separately. The sequence is : obj.save_keras_model('kerasFilename') pickle.dump(obj, fileHandle) ... obj = pickle.load(fileHandle) obj.load_keras_model()""" # Create state without self.keras_model state = dict(self.__dict__) #state.pop(u'keras_model') # probably not needed anymore, now that we've made keras_model global return state def __setstate__(self, state): # Reload state for unpickling self.__dict__ = state def load_keras_model(self, filename=None): self.model = keras.models.load_model(filename, keras_custom_objects) def save_keras_model(self, filename): self.model.save(filename) print(self.model.summary()) def predict(self, test_data_list): if 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): return self.model.predict(test_data_list) elif self.extractor_params['engine'] == 'pytorch': from data.loader import DataLoader as BatchDataLoader print("Evaluating on test set...") predictions = [] test_batch = BatchDataLoader(test_data_list, self.features.feature_strings, None, self.hyper_params.dict['batch_size'], self.hyper_params.dict, self.event_domain.event_roles, evaluation=True, test_mode=True) for i, batch in enumerate(test_batch): preds, _ = self.trained_model.predict(batch, compute_loss=False, compute_logits=True) predictions.append(preds) return np.vstack(predictions) else: raise Exception('Only Keras or PyTorch engines are supported.')
[ "keras.models.load_model", "keras.optimizers.Adadelta", "numpy.random.seed", "keras.optimizers.SGD", "torch.manual_seed", "torch.cuda.manual_seed", "data.loader.DataLoader", "json.dumps", "keras.optimizers.Adam", "random.seed", "torch.cuda.is_available", "numpy.vstack", "keras.optimizers.RMSprop", "logging.getLogger" ]
[((544, 571), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (561, 571), False, 'import logging\n'), ((8820, 8875), 'keras.models.load_model', 'keras.models.load_model', (['filename', 'keras_custom_objects'], {}), '(filename, keras_custom_objects)\n', (8843, 8875), False, 'import keras\n'), ((2619, 2662), 'torch.manual_seed', 'torch.manual_seed', (["extractor_params['seed']"], {}), "(extractor_params['seed'])\n", (2636, 2662), False, 'import torch\n'), ((2675, 2715), 'numpy.random.seed', 'np.random.seed', (["extractor_params['seed']"], {}), "(extractor_params['seed'])\n", (2689, 2715), True, 'import numpy as np\n'), ((2728, 2745), 'random.seed', 'random.seed', (['(1234)'], {}), '(1234)\n', (2739, 2745), False, 'import random\n'), ((2790, 2815), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2813, 2815), False, 'import torch\n'), ((5388, 5526), 'keras.optimizers.SGD', 'SGD', ([], {'lr': "tunable_params['lr']", 'momentum': "tunable_params['momentum']", 'decay': "tunable_params['decay']", 'nesterov': "tunable_params['nesterov']"}), "(lr=tunable_params['lr'], momentum=tunable_params['momentum'], decay=\n tunable_params['decay'], nesterov=tunable_params['nesterov'])\n", (5391, 5526), False, 'from keras.optimizers import Adadelta, SGD, RMSprop, Adam\n'), ((7256, 7308), 'json.dumps', 'json.dumps', (['tunable_params'], {'sort_keys': '(True)', 'indent': '(4)'}), '(tunable_params, sort_keys=True, indent=4)\n', (7266, 7308), False, 'import json\n'), ((9449, 9653), 'data.loader.DataLoader', 'BatchDataLoader', (['test_data_list', 'self.features.feature_strings', 'None', "self.hyper_params.dict['batch_size']", 'self.hyper_params.dict', 'self.event_domain.event_roles'], {'evaluation': '(True)', 'test_mode': '(True)'}), "(test_data_list, self.features.feature_strings, None, self.\n hyper_params.dict['batch_size'], self.hyper_params.dict, self.\n event_domain.event_roles, evaluation=True, test_mode=True)\n", (9464, 9653), True, 'from data.loader import DataLoader as BatchDataLoader\n'), ((9858, 9880), 'numpy.vstack', 'np.vstack', (['predictions'], {}), '(predictions)\n', (9867, 9880), True, 'import numpy as np\n'), ((2992, 3040), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (["extractor_params['seed']"], {}), "(extractor_params['seed'])\n", (3014, 3040), False, 'import torch\n'), ((6056, 6186), 'keras.optimizers.RMSprop', 'RMSprop', ([], {'lr': "tunable_params['lr']", 'rho': "tunable_params['rho']", 'epsilon': "tunable_params['epsilon']", 'decay': "tunable_params['decay']"}), "(lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=\n tunable_params['epsilon'], decay=tunable_params['decay'])\n", (6063, 6186), False, 'from keras.optimizers import Adadelta, SGD, RMSprop, Adam\n'), ((6514, 6543), 'keras.optimizers.Adam', 'Adam', ([], {'lr': "tunable_params['lr']"}), "(lr=tunable_params['lr'])\n", (6518, 6543), False, 'from keras.optimizers import Adadelta, SGD, RMSprop, Adam\n'), ((7011, 7111), 'keras.optimizers.Adadelta', 'Adadelta', ([], {'lr': "tunable_params['lr']", 'rho': "tunable_params['rho']", 'epsilon': "tunable_params['epsilon']"}), "(lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=\n tunable_params['epsilon'])\n", (7019, 7111), False, 'from keras.optimizers import Adadelta, SGD, RMSprop, Adam\n')]
from pydub import AudioSegment import parselmouth import numpy as np import matplotlib.pyplot as plt import seaborn as sns def draw_pitch(pitch): # Extract selected pitch contour, and # replace unvoiced samples by NaN to not plot pitch_values = pitch.selected_array['frequency'] pitch_values[pitch_values == 0] = np.nan plt.plot(pitch.xs(), pitch_values, 'o', markersize=5, color='w') plt.plot(pitch.xs(), pitch_values, 'o', markersize=2) plt.grid(False) plt.ylim(0, pitch.ceiling) plt.ylabel("fundamental frequency [Hz]") def draw_spectrogram(spectrogram, dynamic_range=70): X, Y = spectrogram.x_grid(), spectrogram.y_grid() sg_db = 10 * np.log10(spectrogram.values) plt.pcolormesh(X, Y, sg_db, vmin=sg_db.max() - dynamic_range, cmap='afmhot') plt.ylim([spectrogram.ymin, spectrogram.ymax]) plt.xlabel("time [s]") plt.ylabel("frequency [Hz]") def draw_intensity(intensity): plt.plot(intensity.xs(), intensity.values.T, linewidth=3, color='w') plt.plot(intensity.xs(), intensity.values.T, linewidth=1) plt.grid(False) plt.ylim(0) plt.ylabel("intensity [dB]") if __name__ == '__main__': sns.set() # Use seaborn's default style to make attractive graphs # Plot nice figures using Python's "standard" matplotlib library snd = parselmouth.Sound( 'output.mp3') # plt.figure() # plt.plot(snd.xs(), snd.values.T) # plt.xlim([snd.xmin, snd.xmax]) # plt.xlabel("time [s]") # plt.ylabel("amplitude") # # or plt.savefig("sound.png"), or plt.savefig("sound.pdf") # plt.savefig("sound.png") pitch = snd.to_pitch() # If desired, pre-emphasize the sound fragment before calculating the spectrogram pre_emphasized_snd = snd.copy() pre_emphasized_snd.pre_emphasize() spectrogram = pre_emphasized_snd.to_spectrogram( window_length=0.03, maximum_frequency=8000) plt.figure() draw_spectrogram(spectrogram) plt.twinx() draw_pitch(pitch) plt.xlim([snd.xmin, snd.xmax]) plt.savefig("pitch.png") # sound = AudioSegment.from_mp3( # '/Users/dimashulhin/Desktop/kyky_original.mp3') # # get raw audio data as a bytestring # raw_data = sound.raw_data # # get the frame rate # sample_rate = sound.frame_rate # # get amount of bytes contained in one sample # sample_size = sound.sample_width # # get channels # channels = sound.channels # beginning = sound[13000:17000] # print(beginning.raw_data)
[ "matplotlib.pyplot.xlim", "parselmouth.Sound", "matplotlib.pyplot.ylim", "matplotlib.pyplot.twinx", "matplotlib.pyplot.figure", "matplotlib.pyplot.ylabel", "numpy.log10", "matplotlib.pyplot.xlabel", "seaborn.set", "matplotlib.pyplot.savefig", "matplotlib.pyplot.grid" ]
[((471, 486), 'matplotlib.pyplot.grid', 'plt.grid', (['(False)'], {}), '(False)\n', (479, 486), True, 'import matplotlib.pyplot as plt\n'), ((491, 517), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', 'pitch.ceiling'], {}), '(0, pitch.ceiling)\n', (499, 517), True, 'import matplotlib.pyplot as plt\n'), ((522, 562), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fundamental frequency [Hz]"""'], {}), "('fundamental frequency [Hz]')\n", (532, 562), True, 'import matplotlib.pyplot as plt\n'), ((822, 868), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[spectrogram.ymin, spectrogram.ymax]'], {}), '([spectrogram.ymin, spectrogram.ymax])\n', (830, 868), True, 'import matplotlib.pyplot as plt\n'), ((873, 895), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time [s]"""'], {}), "('time [s]')\n", (883, 895), True, 'import matplotlib.pyplot as plt\n'), ((900, 928), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency [Hz]"""'], {}), "('frequency [Hz]')\n", (910, 928), True, 'import matplotlib.pyplot as plt\n'), ((1101, 1116), 'matplotlib.pyplot.grid', 'plt.grid', (['(False)'], {}), '(False)\n', (1109, 1116), True, 'import matplotlib.pyplot as plt\n'), ((1121, 1132), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)'], {}), '(0)\n', (1129, 1132), True, 'import matplotlib.pyplot as plt\n'), ((1137, 1165), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""intensity [dB]"""'], {}), "('intensity [dB]')\n", (1147, 1165), True, 'import matplotlib.pyplot as plt\n'), ((1199, 1208), 'seaborn.set', 'sns.set', ([], {}), '()\n', (1206, 1208), True, 'import seaborn as sns\n'), ((1346, 1377), 'parselmouth.Sound', 'parselmouth.Sound', (['"""output.mp3"""'], {}), "('output.mp3')\n", (1363, 1377), False, 'import parselmouth\n'), ((1934, 1946), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1944, 1946), True, 'import matplotlib.pyplot as plt\n'), ((1985, 1996), 'matplotlib.pyplot.twinx', 'plt.twinx', ([], {}), '()\n', (1994, 1996), True, 'import matplotlib.pyplot as plt\n'), ((2023, 2053), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[snd.xmin, snd.xmax]'], {}), '([snd.xmin, snd.xmax])\n', (2031, 2053), True, 'import matplotlib.pyplot as plt\n'), ((2058, 2082), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""pitch.png"""'], {}), "('pitch.png')\n", (2069, 2082), True, 'import matplotlib.pyplot as plt\n'), ((689, 717), 'numpy.log10', 'np.log10', (['spectrogram.values'], {}), '(spectrogram.values)\n', (697, 717), True, 'import numpy as np\n')]
import sys sys.path.append('/Users/kolbt/Desktop/compiled/hoomd-blue/build') import hoomd from hoomd import md from hoomd import dem from hoomd import deprecated import numpy as np # Simulation box mesh into grid delimit by particle diameter # list of mesh indices random number generator to select index # remove index from list once particle is placed tsteps = 5000000 dump_freq = 10000 part_perc_a = 50 part_frac_a = float(part_perc_a) / float(100) pe_a = 80 pe_b = 300 phi = 0.6 part_num = 24102 dumps = tsteps/dump_freq diameter = 1 # find the box parameters area_part = np.pi * ((float(diameter)/float(2))**2) * part_num box_area = area_part / phi side = int(np.sqrt(box_area)) side = 140 #while side % 10 != 0: # this is sub par... fix it #side += 1 # or just pick part_num so that this is okay # initialize system randomly hoomd.context.initialize() part_num = 13950 part_a = part_num * part_frac_a # get the total number of A particles part_a = int(part_a) part_b = part_num - part_a # get the total number of B particles mid = int(part_a) # starting point for assigning B particles snap = hoomd.data.make_snapshot(N = part_num, box = hoomd.data.boxdim(L=side, dimensions=2), particle_types = ['A', 'B']) part = np.zeros((3)) start_y = -69.5 # box is -70:70 for x and y dimensions sep_row = 0.90 # distance between particles along x axis sep_col = 0.78 # distance to increment rows (maintains center to center distance) ith = 0 # particle counter m = 0 # incrementer for y value row = 2 # start on an even row (this determines first x placement in row) # Places particles in lower left quadrant (-70, -70) - (0, 0) # while loop that increments y value while 1: part[0] = start_y + m n = 0 # while that increments x value (place row at constant height, y value) while 1: # ensures rows are offset from one another if row % 2 == 0: start_x = -69.50 else: start_x = -69.05 part[1] = start_x + n snap.particles.position[ith] = part snap.particles.typeid[ith] = 0 ith += 1 n += sep_row # placing into lower left quadrant if start_x + n > 0: break row += 1 m += sep_col # ensure particles are limited to lower left quadrant if -69.5 + m > 0: break # Places particles in upper right quadrant (0,0) - (70, 70) m = 0 row = 2 start_y = 0.5 while 1: part[0] = start_y + m n = 0 while 1: if row % 2 == 0: start_x = 0.5 else: start_x = 0.95 part[1] = 0.5 + n snap.particles.position[ith] = part snap.particles.typeid[ith] = 1 ith += 1 n += sep_row if start_x + n > 70: break row += 1 m += sep_col if start_y + m > 70: break print(ith) print(ith) # now let's get the quaternion and moment of inertia thetas = np.random.uniform(0, 2*np.pi, (part_num,)) # generate random angles quats = np.array([np.cos(thetas/2), np.zeros_like(thetas), np.zeros_like(thetas), np.sin(thetas/2)]).T # generate quaternions from the angles snap.particles.orientation[:] = quats inertia = float(1)/float(16) snap.particles.diameter[:] = 1 # set particle diameters snap.particles.moment_inertia[:] = (inertia, inertia, 0) # set moment of inertia snap.particles.types = ['A', 'B'] # or 0, 1 in typeid vernacular #################################### ### NOW SET FORCES / INTEGRATORS ### #################################### # initialize the system system = hoomd.init.read_snapshot(snap) all = hoomd.group.all() gA = hoomd.group.type(type = 'A', update=True) gB = hoomd.group.type(type = 'B', update=True) N = len(all) part_num = N Na = len(gA) Nb = len(gB) print(part_num) nl = hoomd.md.nlist.cell() lj = hoomd.md.pair.lj(r_cut=2**(1/6), nlist=nl) lj.set_params(mode='shift') lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0) lj.pair_coeff.set('A', 'B', epsilon=1.0, sigma=1.0) lj.pair_coeff.set('B', 'B', epsilon=1.0, sigma=1.0) angle = np.random.rand(part_num) * 2 * np.pi # random orientation of each particle if part_perc_a != 0 and part_perc_a != 100: activity_a = [] for i in range(0,mid): x = (np.cos(angle[i])) * pe_a y = (np.sin(angle[i])) * pe_a z = 0 tuple = (x, y, z) activity_a.append(tuple) activity_b = [] for i in range(mid,part_num): x = (np.cos(angle[i])) * pe_b y = (np.sin(angle[i])) * pe_b z = 0 tuple = (x, y, z) activity_b.append(tuple) hoomd.md.force.active(group=gA, seed=123, f_lst=activity_a, rotation_diff=3.0, orientation_link=False) hoomd.md.force.active(group=gB, seed=375, f_lst=activity_b, rotation_diff=3.0, orientation_link=False) else: if part_perc_a == 0: activity_b = [] for i in range(0,part_num): x = (np.cos(angle[i])) * pe_b y = (np.sin(angle[i])) * pe_b z = 0 tuple = (x, y, z) activity_b.append(tuple) hoomd.md.force.active(group=gB, seed=375, f_lst=activity_b, rotation_diff=3.0, orientation_link=False) else: activity_a = [] for i in range(0,part_num): x = (np.cos(angle[i])) * pe_a y = (np.sin(angle[i])) * pe_a z = 0 tuple = (x, y, z) activity_a.append(tuple) hoomd.md.force.active(group=gA, seed=123, f_lst=activity_a, rotation_diff=3.0, orientation_link=False) # minimize for no overlaps fire=hoomd.md.integrate.mode_minimize_fire(group=all, dt=0.00001, ftol=1e-2, Etol=1e-7) hoomd.run(1000) # brownian integration hoomd.md.integrate.mode_standard(dt=0.000002) bd = hoomd.md.integrate.brownian(group=all, kT=0.5, seed=123) bd.set_gamma('A', gamma=1.0) bd.set_gamma_r('A', gamma_r=1.0) #write dump hoomd.dump.gsd("hcp_test.gsd", period=1000, group=all, overwrite=True, static=[]) #run hoomd.run(tsteps)
[ "hoomd.md.nlist.cell", "hoomd.group.type", "numpy.sin", "hoomd.dump.gsd", "sys.path.append", "numpy.zeros_like", "hoomd.run", "hoomd.data.boxdim", "hoomd.init.read_snapshot", "hoomd.group.all", "hoomd.md.pair.lj", "hoomd.context.initialize", "hoomd.md.integrate.mode_minimize_fire", "numpy.cos", "hoomd.md.integrate.mode_standard", "numpy.random.uniform", "hoomd.md.force.active", "numpy.zeros", "hoomd.md.integrate.brownian", "numpy.random.rand", "numpy.sqrt" ]
[((11, 76), 'sys.path.append', 'sys.path.append', (['"""/Users/kolbt/Desktop/compiled/hoomd-blue/build"""'], {}), "('/Users/kolbt/Desktop/compiled/hoomd-blue/build')\n", (26, 76), False, 'import sys\n'), ((880, 906), 'hoomd.context.initialize', 'hoomd.context.initialize', ([], {}), '()\n', (904, 906), False, 'import hoomd\n'), ((1434, 1445), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1442, 1445), True, 'import numpy as np\n'), ((3217, 3261), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2 * np.pi)', '(part_num,)'], {}), '(0, 2 * np.pi, (part_num,))\n', (3234, 3261), True, 'import numpy as np\n'), ((3984, 4014), 'hoomd.init.read_snapshot', 'hoomd.init.read_snapshot', (['snap'], {}), '(snap)\n', (4008, 4014), False, 'import hoomd\n'), ((4022, 4039), 'hoomd.group.all', 'hoomd.group.all', ([], {}), '()\n', (4037, 4039), False, 'import hoomd\n'), ((4045, 4084), 'hoomd.group.type', 'hoomd.group.type', ([], {'type': '"""A"""', 'update': '(True)'}), "(type='A', update=True)\n", (4061, 4084), False, 'import hoomd\n'), ((4092, 4131), 'hoomd.group.type', 'hoomd.group.type', ([], {'type': '"""B"""', 'update': '(True)'}), "(type='B', update=True)\n", (4108, 4131), False, 'import hoomd\n'), ((4209, 4230), 'hoomd.md.nlist.cell', 'hoomd.md.nlist.cell', ([], {}), '()\n', (4228, 4230), False, 'import hoomd\n'), ((4236, 4282), 'hoomd.md.pair.lj', 'hoomd.md.pair.lj', ([], {'r_cut': '(2 ** (1 / 6))', 'nlist': 'nl'}), '(r_cut=2 ** (1 / 6), nlist=nl)\n', (4252, 4282), False, 'import hoomd\n'), ((6409, 6495), 'hoomd.md.integrate.mode_minimize_fire', 'hoomd.md.integrate.mode_minimize_fire', ([], {'group': 'all', 'dt': '(1e-05)', 'ftol': '(0.01)', 'Etol': '(1e-07)'}), '(group=all, dt=1e-05, ftol=0.01, Etol=\n 1e-07)\n', (6446, 6495), False, 'import hoomd\n'), ((6621, 6636), 'hoomd.run', 'hoomd.run', (['(1000)'], {}), '(1000)\n', (6630, 6636), False, 'import hoomd\n'), ((6661, 6703), 'hoomd.md.integrate.mode_standard', 'hoomd.md.integrate.mode_standard', ([], {'dt': '(2e-06)'}), '(dt=2e-06)\n', (6693, 6703), False, 'import hoomd\n'), ((6712, 6768), 'hoomd.md.integrate.brownian', 'hoomd.md.integrate.brownian', ([], {'group': 'all', 'kT': '(0.5)', 'seed': '(123)'}), '(group=all, kT=0.5, seed=123)\n', (6739, 6768), False, 'import hoomd\n'), ((6844, 6929), 'hoomd.dump.gsd', 'hoomd.dump.gsd', (['"""hcp_test.gsd"""'], {'period': '(1000)', 'group': 'all', 'overwrite': '(True)', 'static': '[]'}), "('hcp_test.gsd', period=1000, group=all, overwrite=True,\n static=[])\n", (6858, 6929), False, 'import hoomd\n'), ((6932, 6949), 'hoomd.run', 'hoomd.run', (['tsteps'], {}), '(tsteps)\n', (6941, 6949), False, 'import hoomd\n'), ((668, 685), 'numpy.sqrt', 'np.sqrt', (['box_area'], {}), '(box_area)\n', (675, 685), True, 'import numpy as np\n'), ((4997, 5104), 'hoomd.md.force.active', 'hoomd.md.force.active', ([], {'group': 'gA', 'seed': '(123)', 'f_lst': 'activity_a', 'rotation_diff': '(3.0)', 'orientation_link': '(False)'}), '(group=gA, seed=123, f_lst=activity_a, rotation_diff=\n 3.0, orientation_link=False)\n', (5018, 5104), False, 'import hoomd\n'), ((5208, 5315), 'hoomd.md.force.active', 'hoomd.md.force.active', ([], {'group': 'gB', 'seed': '(375)', 'f_lst': 'activity_b', 'rotation_diff': '(3.0)', 'orientation_link': '(False)'}), '(group=gB, seed=375, f_lst=activity_b, rotation_diff=\n 3.0, orientation_link=False)\n', (5229, 5315), False, 'import hoomd\n'), ((1268, 1307), 'hoomd.data.boxdim', 'hoomd.data.boxdim', ([], {'L': 'side', 'dimensions': '(2)'}), '(L=side, dimensions=2)\n', (1285, 1307), False, 'import hoomd\n'), ((4472, 4496), 'numpy.random.rand', 'np.random.rand', (['part_num'], {}), '(part_num)\n', (4486, 4496), True, 'import numpy as np\n'), ((5683, 5790), 'hoomd.md.force.active', 'hoomd.md.force.active', ([], {'group': 'gB', 'seed': '(375)', 'f_lst': 'activity_b', 'rotation_diff': '(3.0)', 'orientation_link': '(False)'}), '(group=gB, seed=375, f_lst=activity_b, rotation_diff=\n 3.0, orientation_link=False)\n', (5704, 5790), False, 'import hoomd\n'), ((6153, 6260), 'hoomd.md.force.active', 'hoomd.md.force.active', ([], {'group': 'gA', 'seed': '(123)', 'f_lst': 'activity_a', 'rotation_diff': '(3.0)', 'orientation_link': '(False)'}), '(group=gA, seed=123, f_lst=activity_a, rotation_diff=\n 3.0, orientation_link=False)\n', (6174, 6260), False, 'import hoomd\n'), ((3311, 3329), 'numpy.cos', 'np.cos', (['(thetas / 2)'], {}), '(thetas / 2)\n', (3317, 3329), True, 'import numpy as np\n'), ((3347, 3368), 'numpy.zeros_like', 'np.zeros_like', (['thetas'], {}), '(thetas)\n', (3360, 3368), True, 'import numpy as np\n'), ((3388, 3409), 'numpy.zeros_like', 'np.zeros_like', (['thetas'], {}), '(thetas)\n', (3401, 3409), True, 'import numpy as np\n'), ((3429, 3447), 'numpy.sin', 'np.sin', (['(thetas / 2)'], {}), '(thetas / 2)\n', (3435, 3447), True, 'import numpy as np\n'), ((4654, 4670), 'numpy.cos', 'np.cos', (['angle[i]'], {}), '(angle[i])\n', (4660, 4670), True, 'import numpy as np\n'), ((4692, 4708), 'numpy.sin', 'np.sin', (['angle[i]'], {}), '(angle[i])\n', (4698, 4708), True, 'import numpy as np\n'), ((4857, 4873), 'numpy.cos', 'np.cos', (['angle[i]'], {}), '(angle[i])\n', (4863, 4873), True, 'import numpy as np\n'), ((4895, 4911), 'numpy.sin', 'np.sin', (['angle[i]'], {}), '(angle[i])\n', (4901, 4911), True, 'import numpy as np\n'), ((5523, 5539), 'numpy.cos', 'np.cos', (['angle[i]'], {}), '(angle[i])\n', (5529, 5539), True, 'import numpy as np\n'), ((5565, 5581), 'numpy.sin', 'np.sin', (['angle[i]'], {}), '(angle[i])\n', (5571, 5581), True, 'import numpy as np\n'), ((5993, 6009), 'numpy.cos', 'np.cos', (['angle[i]'], {}), '(angle[i])\n', (5999, 6009), True, 'import numpy as np\n'), ((6035, 6051), 'numpy.sin', 'np.sin', (['angle[i]'], {}), '(angle[i])\n', (6041, 6051), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt plt.rcParams['toolbar'] = 'None' import numpy as np # importando numpy def genera_montecarlo(N=100000): plt.figure(figsize=(6,6)) x, y = np.random.uniform(-1, 1, size=(2, N)) interior = (x**2 + y**2) <= 1 pi = interior.sum() * 4 / N error = abs((pi - np.pi) / pi) * 100 exterior = np.invert(interior) plt.plot(x[interior], y[interior], 'b.') plt.plot(x[exterior], y[exterior], 'r.') plt.plot(0, 0, label='$\hat \pi$ = {:4.4f} \nerror = {:4.4f}%'.format(pi,error), alpha=0, color='g') plt.axis('square') plt.legend(frameon=True, framealpha=0.9, fontsize=16) plt.show() genera_montecarlo()
[ "numpy.random.uniform", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.invert", "matplotlib.pyplot.legend", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure" ]
[((143, 169), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 6)'}), '(figsize=(6, 6))\n', (153, 169), True, 'import matplotlib.pyplot as plt\n'), ((185, 222), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)'], {'size': '(2, N)'}), '(-1, 1, size=(2, N))\n', (202, 222), True, 'import numpy as np\n'), ((345, 364), 'numpy.invert', 'np.invert', (['interior'], {}), '(interior)\n', (354, 364), True, 'import numpy as np\n'), ((369, 409), 'matplotlib.pyplot.plot', 'plt.plot', (['x[interior]', 'y[interior]', '"""b."""'], {}), "(x[interior], y[interior], 'b.')\n", (377, 409), True, 'import matplotlib.pyplot as plt\n'), ((414, 454), 'matplotlib.pyplot.plot', 'plt.plot', (['x[exterior]', 'y[exterior]', '"""r."""'], {}), "(x[exterior], y[exterior], 'r.')\n", (422, 454), True, 'import matplotlib.pyplot as plt\n'), ((564, 582), 'matplotlib.pyplot.axis', 'plt.axis', (['"""square"""'], {}), "('square')\n", (572, 582), True, 'import matplotlib.pyplot as plt\n'), ((587, 640), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(True)', 'framealpha': '(0.9)', 'fontsize': '(16)'}), '(frameon=True, framealpha=0.9, fontsize=16)\n', (597, 640), True, 'import matplotlib.pyplot as plt\n'), ((645, 655), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (653, 655), True, 'import matplotlib.pyplot as plt\n')]
""" The MIT License (MIT) Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import tensorflow as tf from tensorflow.contrib.keras import backend from tensorflow.contrib.keras import layers as keras_layers class DLGMLayer(keras_layers.Layer): """ This layer is inspired by the paper "Stochastic Backpropagation and Approximate Inference in Deep Generative Models" incoming (Lasagne Layer): preceding layer in DLGM num_units (int): number of output units in this layer srng (theano RandomState): random number generator rec_nets (dictionary of lasagne NNs): Neural networks that paramaterize the recognition model J (theano symbolic matrix): Input to rec model k (float): regularization term on generative weights """ def __init__(self, incoming, num_units, rec_nets, k, output_layer=False, extra_noise=0.01, param_init=tf.random_normal_initializer(0, 0.01), nonlinearity=tf.nn.relu, **kwargs): super(DLGMLayer, self).__init__(**kwargs) num_inputs = incoming.output_shape[1] self.num_units = num_units self.output_layer = output_layer self.extra_noise = extra_noise # Initialize generative/decoding Parameters self.W = self.add_variable(name='W', shape=(num_inputs, num_units), initializer=param_init) self.b = self.add_variable(name='b', shape=(num_units,), initializer=param_init) self.unc_G = self.add_variable(name='unc_G', shape=(num_units, num_units), initializer=param_init) self.G = (tf.diag(tf.nn.softplus(tf.diag_part(self.unc_G))) + self.unc_G - tf.matrix_band_part(self.unc_G, 0, -1)) self.nonlinearity = nonlinearity # regularization term self.k = k # Load recognition/encoding Parameters self.mu_net = rec_nets['mu_net'] self.u_net = rec_nets['u_net'] self.unc_d_net = rec_nets['unc_d_net'] def build(self, incoming, postJ): rec_params = (self.mu_net.variables + self.u_net.variables + self.unc_d_net.variables) i = 0 for param in rec_params: self.add_variable(name="param"+str(i), shape=None, initializer=param) i += 1 super(DLGMLayer, self).build(incoming) def calculate_xi(self, postJ): """ Calculate xi based on sampled J from posterior """ # get output of rec model self.batch_mu = self.mu_net(postJ) self.batch_u = self.u_net(postJ) self.batch_unc_d = self.unc_d_net(postJ) # add extra dim to batch_u, so it gets treated as column vectors when # iterated over self.batch_u = tf.expand_dims(self.batch_u, -1) def get_cov(acc, inputs): # convert output of rec model to rank-1 covariance matrix # use softplus to get positive constrained d, minimum of -15 # since softplus will turn low numbers into 0, which become NaNs # when inverted u, unc_d = inputs d = tf.nn.softplus(tf.maximum(unc_d, -15.0)) D_inv = tf.diag(1.0 / d) eta = 1.0 / (tf.matmul(tf.matmul(tf.transpose(u), D_inv), u) + 1.0) C = D_inv - eta*tf.matmul(tf.matmul(tf.matmul(D_inv, u), tf.transpose(u)), D_inv) Tr_C = tf.trace(C) ld_C = tf.log(eta) - tf.reduce_sum(tf.log(d)) # eq 20 in DLGM # coeff = ((1 - T.sqrt(eta)) / (u.T.dot(D_inv).dot(u))) # simplified coefficient below is more stable as u -> 0 # original coefficient from paper is above coeff = eta / (1.0 + tf.sqrt(eta)) R = (tf.sqrt(D_inv) - coeff * tf.matmul (tf.matmul(tf.matmul(D_inv, u), tf.transpose(u)), tf.sqrt(D_inv))) return Tr_C, ld_C, R (self.batch_Tr_C, self.batch_ld_C, self.batch_R) = tf.scan( get_cov, [self.batch_u, self.batch_unc_d], initializer=(0.0, tf.zeros([1, 1]), tf.diag(self.batch_unc_d[0]))) self.batch_xi = (self.batch_mu + (tf.squeeze(tf.matmul(self.batch_R, (tf.expand_dims(tf.random_normal( [tf.shape(self.batch_R)[0], self.num_units]), -1)))))) def call(self, inputs, add_noise=False, use_rec_model=False): activation = tf.matmul(self.nonlinearity(inputs), self.W) + self.b if use_rec_model: # use sample from rec model xi = self.batch_xi if add_noise: # additional noise xi += (self.extra_noise * tf.random_normal (tf.shape(self.batch_xi))) else: # pure random input xi = tf.random_normal((tf.shape(inputs)[0], self.num_units)) # we want the mean when training, so don't add noise to # output of last layer when training. if not self.output_layer: activation += tf.matmul(xi, self.G) elif not add_noise: activation += tf.matmul(xi, self.G) return activation def get_ELBO(self, length): """ Get ELBO for this layer length (theano symbolic int): length of current batch """ # KL divergence between posterior and N(0,1) prior KL_div = (0.5 * (tf.reduce_sum(tf.sqrt(tf.reduce_sum(self.batch_mu**2, axis=1))) + tf.reduce_sum(self.batch_Tr_C) - tf.reduce_sum(self.batch_ld_C) - length)) weight_reg = ((0.5 / self.k) * tf.sqrt(tf.reduce_sum(self.W**2)) * tf.sqrt(tf.reduce_sum(self.G**2))) return -(weight_reg + KL_div) def compute_output_shape(self, input_shape): return (input_shape[0], self.num_units) class PKBiasLayer(keras_layers.Layer): """ This layer draws different biases (depending on the mode) from a normal distribution, then adds them to the input Default modes are as follows: 0: normal, no biases added 1: saline and DLPFC, bias 0 is added 2: saline and DMPFC, bias 1 is added 3: muscimol and DLPFC, biases 0 and 2 are added 4: muscimol and DMPFC, biases 1 and 3 are added """ def __init__(self, incoming, params, param_init=tf.random_normal_initializer(stddev=0.01), num_biases=4, **kwargs): super(PKBiasLayer, self).__init__(**kwargs) num_inputs = incoming.output_shape[1] self.mode = tf.zeros(num_biases) self.k = np.cast[backend.floatx()](params['k']) self.m = self.add_variable(name='m', shape=[num_biases, num_inputs], initializer=param_init) self.log_s = self.add_variable(name='log_s', shape=[num_biases, num_inputs], initializer=param_init) # standard deviation will always be positive but optimization over # log_s can be unconstrained self.s = tf.exp(self.log_s) self.draw_biases() self.draw_on_every_output = True def build(self, incoming): if self.draw_on_every_output: self.draw_biases() super(PKBiasLayer, self).build(incoming) def draw_biases(self): self.biases = self.m + tf.random_normal(shape=self.s.shape, seed=1234) * self.s def call(self, inputs): act_biases = tf.matmul(tf.reshape(tf.cast( self.mode, backend.floatx()), [1, -1]), self.biases) return inputs + act_biases def set_mode(self, mode): self.mode = mode def get_ELBO(self, nbatches): """ Return the contribution to the ELBO for these biases Normalized by nbatches (number of batches in dataset) """ ELBO = (tf.reduce_sum(-tf.abs(self.biases) / self.k - tf.log(tf.constant(2.0) * self.k))) ELBO += tf.reduce_sum(tf.log(self.s)) return ELBO / nbatches class PKRowBiasLayer(keras_layers.Layer): """ This layer draws different biases (depending on the mode) from a normal distribution, then adds them to the input. This layer has sparsity at the row level, instead of the individual sparsity of the PKBiasLayer. Default modes are as follows: 0: normal, no biases added 1: saline and DLPFC, bias 0 is added 2: saline and DMPFC, bias 1 is added 3: muscimol and DLPFC, biases 0 and 2 are added 4: muscimol and DMPFC, biases 1 and 3 are added """ def __init__(self, incoming, params, param_init=tf.random_normal_initializer(stddev=0.01), num_biases=4, **kwargs): super(PKRowBiasLayer, self).__init__(**kwargs) num_inputs = incoming.output_shape[1] self.mode = tf.zeros(num_biases) # parameters on prior self.a = np.cast[backend.floatx()](params['a']) # shape self.b = np.cast[backend.floatx()](params['b']) # rate # learnable posterior parameters # normal dist over biases self.mu = self.add_variable(name='mu', shape=[num_biases, num_inputs], initializer=param_init) self.unc_sig = self.add_variable(name='unc_sig', shape=[num_biases, num_inputs], initializer=param_init) # gamma over rows self.alpha = tf.Variable(initial_value=self.a * np.ones( (num_biases, 1)), name='alpha', dtype=tf.float32) self.beta = tf.Variable(initial_value=self.b * np.ones( (num_biases, 1)), name='beta', dtype=tf.float32) # update for alpha self.alpha += (num_inputs / 2.0) # standard deviation will always be positive but optimization over # unc_sig can be unconstrained self.sigma = tf.nn.softplus(self.unc_sig) self.draw_biases() self.draw_on_every_output = True def build(self, incoming): if self.draw_on_every_output: self.draw_biases() super(PKRowBiasLayer, self).build(incoming) def draw_biases(self): self.gamma = self.mu + tf.random_normal( shape=self.sigma.shape, seed=1234) * self.sigma def call(self, input): act_biases = tf.matmul(tf.reshape(tf.cast( self.mode, backend.floatx()), [1, -1]), self.gamma) return input + act_biases def set_mode(self, mode): self.mode = mode def coord_update(self): self.beta = self.b + 0.5 * tf.reduce_sum(self.mu**2 + self.sigma**2, axis=1, keep_dims=True) def get_ELBO(self, nbatches): """ Return the contribution to the ELBO for these biases Normalized by nbatches (number of batches in dataset) """ self.coord_update() # Log Density ELBO = (tf.reduce_sum(-0.5 * (self.mu**2 + self.sigma**2) * (self.alpha / self.beta) + 0.5 * (tf.digamma(self.alpha) - tf.log(self.beta)) - 0.5 * tf.log(2 * np.pi))) ELBO += (tf.reduce_sum((self.a - 1) * (tf.digamma(self.alpha) - tf.log(self.beta)) - self.b * (self.alpha / self.beta) + self.a * tf.log(self.b) - tf.lgamma(self.a))) # entropy ELBO += (tf.reduce_sum(0.5 * tf.log(2 * np.pi) + 0.5 + tf.log(self.sigma))) ELBO += (tf.reduce_sum(self.alpha - tf.log(self.beta) + tf.lgamma(self.alpha) + (1 - self.alpha) * tf.digamma(self.alpha))) return ELBO / nbatches
[ "tensorflow.trace", "tensorflow.matrix_band_part", "tensorflow.reduce_sum", "tensorflow.maximum", "numpy.ones", "tensorflow.diag_part", "tensorflow.matmul", "tensorflow.sqrt", "tensorflow.contrib.keras.backend.floatx", "tensorflow.abs", "tensorflow.diag", "tensorflow.exp", "tensorflow.constant", "tensorflow.transpose", "tensorflow.random_normal_initializer", "tensorflow.random_normal", "tensorflow.log", "tensorflow.digamma", "tensorflow.expand_dims", "tensorflow.lgamma", "tensorflow.shape", "tensorflow.zeros", "tensorflow.nn.softplus" ]
[((1930, 1967), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0)', '(0.01)'], {}), '(0, 0.01)\n', (1958, 1967), True, 'import tensorflow as tf\n'), ((3970, 4002), 'tensorflow.expand_dims', 'tf.expand_dims', (['self.batch_u', '(-1)'], {}), '(self.batch_u, -1)\n', (3984, 4002), True, 'import tensorflow as tf\n'), ((7644, 7685), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (7672, 7685), True, 'import tensorflow as tf\n'), ((7848, 7868), 'tensorflow.zeros', 'tf.zeros', (['num_biases'], {}), '(num_biases)\n', (7856, 7868), True, 'import tensorflow as tf\n'), ((8378, 8396), 'tensorflow.exp', 'tf.exp', (['self.log_s'], {}), '(self.log_s)\n', (8384, 8396), True, 'import tensorflow as tf\n'), ((10013, 10054), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (10041, 10054), True, 'import tensorflow as tf\n'), ((10220, 10240), 'tensorflow.zeros', 'tf.zeros', (['num_biases'], {}), '(num_biases)\n', (10228, 10240), True, 'import tensorflow as tf\n'), ((11295, 11323), 'tensorflow.nn.softplus', 'tf.nn.softplus', (['self.unc_sig'], {}), '(self.unc_sig)\n', (11309, 11323), True, 'import tensorflow as tf\n'), ((2849, 2887), 'tensorflow.matrix_band_part', 'tf.matrix_band_part', (['self.unc_G', '(0)', '(-1)'], {}), '(self.unc_G, 0, -1)\n', (2868, 2887), True, 'import tensorflow as tf\n'), ((4394, 4410), 'tensorflow.diag', 'tf.diag', (['(1.0 / d)'], {}), '(1.0 / d)\n', (4401, 4410), True, 'import tensorflow as tf\n'), ((4642, 4653), 'tensorflow.trace', 'tf.trace', (['C'], {}), '(C)\n', (4650, 4653), True, 'import tensorflow as tf\n'), ((6314, 6335), 'tensorflow.matmul', 'tf.matmul', (['xi', 'self.G'], {}), '(xi, self.G)\n', (6323, 6335), True, 'import tensorflow as tf\n'), ((9357, 9371), 'tensorflow.log', 'tf.log', (['self.s'], {}), '(self.s)\n', (9363, 9371), True, 'import tensorflow as tf\n'), ((4348, 4372), 'tensorflow.maximum', 'tf.maximum', (['unc_d', '(-15.0)'], {}), '(unc_d, -15.0)\n', (4358, 4372), True, 'import tensorflow as tf\n'), ((4673, 4684), 'tensorflow.log', 'tf.log', (['eta'], {}), '(eta)\n', (4679, 4684), True, 'import tensorflow as tf\n'), ((4984, 4998), 'tensorflow.sqrt', 'tf.sqrt', (['D_inv'], {}), '(D_inv)\n', (4991, 4998), True, 'import tensorflow as tf\n'), ((6390, 6411), 'tensorflow.matmul', 'tf.matmul', (['xi', 'self.G'], {}), '(xi, self.G)\n', (6399, 6411), True, 'import tensorflow as tf\n'), ((6981, 7007), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(self.G ** 2)'], {}), '(self.G ** 2)\n', (6994, 7007), True, 'import tensorflow as tf\n'), ((7894, 7910), 'tensorflow.contrib.keras.backend.floatx', 'backend.floatx', ([], {}), '()\n', (7908, 7910), False, 'from tensorflow.contrib.keras import backend\n'), ((8675, 8722), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': 'self.s.shape', 'seed': '(1234)'}), '(shape=self.s.shape, seed=1234)\n', (8691, 8722), True, 'import tensorflow as tf\n'), ((10296, 10312), 'tensorflow.contrib.keras.backend.floatx', 'backend.floatx', ([], {}), '()\n', (10310, 10312), False, 'from tensorflow.contrib.keras import backend\n'), ((10361, 10377), 'tensorflow.contrib.keras.backend.floatx', 'backend.floatx', ([], {}), '()\n', (10375, 10377), False, 'from tensorflow.contrib.keras import backend\n'), ((11605, 11656), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': 'self.sigma.shape', 'seed': '(1234)'}), '(shape=self.sigma.shape, seed=1234)\n', (11621, 11656), True, 'import tensorflow as tf\n'), ((11980, 12049), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(self.mu ** 2 + self.sigma ** 2)'], {'axis': '(1)', 'keep_dims': '(True)'}), '(self.mu ** 2 + self.sigma ** 2, axis=1, keep_dims=True)\n', (11993, 12049), True, 'import tensorflow as tf\n'), ((12772, 12789), 'tensorflow.lgamma', 'tf.lgamma', (['self.a'], {}), '(self.a)\n', (12781, 12789), True, 'import tensorflow as tf\n'), ((12890, 12908), 'tensorflow.log', 'tf.log', (['self.sigma'], {}), '(self.sigma)\n', (12896, 12908), True, 'import tensorflow as tf\n'), ((4701, 4710), 'tensorflow.log', 'tf.log', (['d'], {}), '(d)\n', (4707, 4710), True, 'import tensorflow as tf\n'), ((4953, 4965), 'tensorflow.sqrt', 'tf.sqrt', (['eta'], {}), '(eta)\n', (4960, 4965), True, 'import tensorflow as tf\n'), ((5308, 5324), 'tensorflow.zeros', 'tf.zeros', (['[1, 1]'], {}), '([1, 1])\n', (5316, 5324), True, 'import tensorflow as tf\n'), ((5326, 5354), 'tensorflow.diag', 'tf.diag', (['self.batch_unc_d[0]'], {}), '(self.batch_unc_d[0])\n', (5333, 5354), True, 'import tensorflow as tf\n'), ((6812, 6842), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.batch_ld_C'], {}), '(self.batch_ld_C)\n', (6825, 6842), True, 'import tensorflow as tf\n'), ((6923, 6949), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(self.W ** 2)'], {}), '(self.W ** 2)\n', (6936, 6949), True, 'import tensorflow as tf\n'), ((8883, 8899), 'tensorflow.contrib.keras.backend.floatx', 'backend.floatx', ([], {}), '()\n', (8897, 8899), False, 'from tensorflow.contrib.keras import backend\n'), ((10894, 10918), 'numpy.ones', 'np.ones', (['(num_biases, 1)'], {}), '((num_biases, 1))\n', (10901, 10918), True, 'import numpy as np\n'), ((11020, 11044), 'numpy.ones', 'np.ones', (['(num_biases, 1)'], {}), '((num_biases, 1))\n', (11027, 11044), True, 'import numpy as np\n'), ((11785, 11801), 'tensorflow.contrib.keras.backend.floatx', 'backend.floatx', ([], {}), '()\n', (11799, 11801), False, 'from tensorflow.contrib.keras import backend\n'), ((12563, 12580), 'tensorflow.log', 'tf.log', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (12569, 12580), True, 'import tensorflow as tf\n'), ((12992, 13013), 'tensorflow.lgamma', 'tf.lgamma', (['self.alpha'], {}), '(self.alpha)\n', (13001, 13013), True, 'import tensorflow as tf\n'), ((13052, 13074), 'tensorflow.digamma', 'tf.digamma', (['self.alpha'], {}), '(self.alpha)\n', (13062, 13074), True, 'import tensorflow as tf\n'), ((2789, 2813), 'tensorflow.diag_part', 'tf.diag_part', (['self.unc_G'], {}), '(self.unc_G)\n', (2801, 2813), True, 'import tensorflow as tf\n'), ((5104, 5118), 'tensorflow.sqrt', 'tf.sqrt', (['D_inv'], {}), '(D_inv)\n', (5111, 5118), True, 'import tensorflow as tf\n'), ((5999, 6022), 'tensorflow.shape', 'tf.shape', (['self.batch_xi'], {}), '(self.batch_xi)\n', (6007, 6022), True, 'import tensorflow as tf\n'), ((6106, 6122), 'tensorflow.shape', 'tf.shape', (['inputs'], {}), '(inputs)\n', (6114, 6122), True, 'import tensorflow as tf\n'), ((6761, 6791), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.batch_Tr_C'], {}), '(self.batch_Tr_C)\n', (6774, 6791), True, 'import tensorflow as tf\n'), ((9230, 9249), 'tensorflow.abs', 'tf.abs', (['self.biases'], {}), '(self.biases)\n', (9236, 9249), True, 'import tensorflow as tf\n'), ((9298, 9314), 'tensorflow.constant', 'tf.constant', (['(2.0)'], {}), '(2.0)\n', (9309, 9314), True, 'import tensorflow as tf\n'), ((12755, 12769), 'tensorflow.log', 'tf.log', (['self.b'], {}), '(self.b)\n', (12761, 12769), True, 'import tensorflow as tf\n'), ((12847, 12864), 'tensorflow.log', 'tf.log', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (12853, 12864), True, 'import tensorflow as tf\n'), ((12955, 12972), 'tensorflow.log', 'tf.log', (['self.beta'], {}), '(self.beta)\n', (12961, 12972), True, 'import tensorflow as tf\n'), ((4456, 4471), 'tensorflow.transpose', 'tf.transpose', (['u'], {}), '(u)\n', (4468, 4471), True, 'import tensorflow as tf\n'), ((4539, 4558), 'tensorflow.matmul', 'tf.matmul', (['D_inv', 'u'], {}), '(D_inv, u)\n', (4548, 4558), True, 'import tensorflow as tf\n'), ((4598, 4613), 'tensorflow.transpose', 'tf.transpose', (['u'], {}), '(u)\n', (4610, 4613), True, 'import tensorflow as tf\n'), ((5047, 5066), 'tensorflow.matmul', 'tf.matmul', (['D_inv', 'u'], {}), '(D_inv, u)\n', (5056, 5066), True, 'import tensorflow as tf\n'), ((5068, 5083), 'tensorflow.transpose', 'tf.transpose', (['u'], {}), '(u)\n', (5080, 5083), True, 'import tensorflow as tf\n'), ((12495, 12517), 'tensorflow.digamma', 'tf.digamma', (['self.alpha'], {}), '(self.alpha)\n', (12505, 12517), True, 'import tensorflow as tf\n'), ((12536, 12553), 'tensorflow.log', 'tf.log', (['self.beta'], {}), '(self.beta)\n', (12542, 12553), True, 'import tensorflow as tf\n'), ((6699, 6740), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(self.batch_mu ** 2)'], {'axis': '(1)'}), '(self.batch_mu ** 2, axis=1)\n', (6712, 6740), True, 'import tensorflow as tf\n'), ((12630, 12652), 'tensorflow.digamma', 'tf.digamma', (['self.alpha'], {}), '(self.alpha)\n', (12640, 12652), True, 'import tensorflow as tf\n'), ((12672, 12689), 'tensorflow.log', 'tf.log', (['self.beta'], {}), '(self.beta)\n', (12678, 12689), True, 'import tensorflow as tf\n'), ((5548, 5570), 'tensorflow.shape', 'tf.shape', (['self.batch_R'], {}), '(self.batch_R)\n', (5556, 5570), True, 'import tensorflow as tf\n')]
# encoding: utf-8 # # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Author: <NAME> (<EMAIL>) # from __future__ import absolute_import, division, unicode_literals import math import sys from math import sqrt from mo_dots import Data, Null, coalesce from mo_future import text from mo_logs import Log from mo_math import OR, almost_equal from mo_math.vendor import strangman DEBUG = True DEBUG_STRANGMAN = False EPSILON = 0.000000001 ABS_EPSILON = sys.float_info.min * 2 # *2 FOR SAFETY if DEBUG_STRANGMAN: try: import numpy as np from scipy import stats import scipy except Exception as e: DEBUG_STRANGMAN = False def chisquare(f_obs, f_exp): try: py_result = strangman.stats.chisquare(f_obs, f_exp) except Exception as e: Log.error("problem with call", e) if DEBUG_STRANGMAN: from mo_testing.fuzzytestcase import assertAlmostEqualValue sp_result = scipy.stats.chisquare(np.array(f_obs), f_exp=np.array(f_exp)) if not assertAlmostEqualValue( sp_result[0], py_result[0], digits=9 ) and assertAlmostEqualValue(sp_result[1], py_result[1], delta=1e-8): Log.error("problem with stats lib") return py_result def Stats2ZeroMoment(stats): # MODIFIED FROM http://statsmodels.sourceforge.net/devel/_modules/statsmodels/stats/moment_helpers.html # ADDED count mc0, mc1, mc2, skew, kurt = ( stats.count, coalesce(stats.mean, 0), coalesce(stats.variance, 0), coalesce(stats.skew, 0), coalesce(stats.kurtosis, 0), ) mz0 = mc0 mz1 = mc1 * mc0 mz2 = (mc2 + mc1 * mc1) * mc0 mc3 = coalesce(skew, 0) * (mc2 ** 1.5) # 3rd central moment mz3 = (mc3 + 3 * mc1 * mc2 + mc1 ** 3) * mc0 # 3rd non-central moment mc4 = (coalesce(kurt, 0) + 3.0) * (mc2 ** 2.0) # 4th central moment mz4 = (mc4 + 4 * mc1 * mc3 + 6 * mc1 * mc1 * mc2 + mc1 ** 4) * mc0 m = ZeroMoment(mz0, mz1, mz2, mz3, mz4) if DEBUG: from mo_testing.fuzzytestcase import assertAlmostEqualValue globals()["DEBUG"] = False try: v = ZeroMoment2Stats(m) assertAlmostEqualValue(v.count, stats.count, places=10) assertAlmostEqualValue(v.mean, stats.mean, places=10) assertAlmostEqualValue(v.variance, stats.variance, places=10) assertAlmostEqualValue(v.skew, stats.skew, places=10) assertAlmostEqualValue(v.kurtosis, stats.kurtosis, places=10) except Exception as e: v = ZeroMoment2Stats(m) Log.error("programmer error") globals()["DEBUG"] = True return m def ZeroMoment2Stats(z_moment): Z = z_moment.S N = Z[0] if N == 0: return Stats() mean = Z[1] / N Z2 = Z[2] / N Z3 = Z[3] / N Z4 = Z[4] / N if N == 1: variance = None skew = None kurtosis = None else: if almost_equal(Z2, mean * mean, digits=9): variance = 0 skew = None kurtosis = None else: variance = Z2 - mean * mean mc3 = Z3 - (3 * mean * variance + mean ** 3) # 3rd central moment mc4 = Z4 - (4 * mean * mc3 + 6 * mean * mean * variance + mean ** 4) skew = mc3 / (variance ** 1.5) kurtosis = (mc4 / (variance ** 2.0)) - 3.0 stats = Stats(count=N, mean=mean, variance=variance, skew=skew, kurtosis=kurtosis) if DEBUG: from mo_testing.fuzzytestcase import assertAlmostEqualValue globals()["DEBUG"] = False v = Null try: v = Stats2ZeroMoment(stats) for i in range(5): assertAlmostEqualValue(v.S[i], Z[i], places=7) except Exception as e: Log.error( "Conversion failed. Programmer error:\nfrom={{from|indent}},\nresult stats={{stats|indent}},\nexpected param={{expected|indent}}", {"from": Z}, stats=stats, expected=v.S, cause=e, ) globals()["DEBUG"] = True return stats class Stats(Data): def __init__(self, **kwargs): Data.__init__(self) self.count = 0 self.mean = None self.variance = None self.skew = None self.kurtosis = None if "samples" in kwargs: s = ZeroMoment2Stats(ZeroMoment.new_instance(kwargs["samples"])) self.count = s.count self.mean = s.mean self.variance = s.variance self.skew = s.skew self.kurtosis = s.kurtosis return if "count" not in kwargs: self.count = 0 self.mean = None self.variance = None self.skew = None self.kurtosis = None elif "mean" not in kwargs: self.count = kwargs["count"] self.mean = None self.variance = None self.skew = None self.kurtosis = None elif "variance" not in kwargs and "std" not in kwargs: self.count = kwargs["count"] self.mean = kwargs["mean"] self.variance = 0 self.skew = None self.kurtosis = None elif "skew" not in kwargs: self.count = kwargs["count"] self.mean = kwargs["mean"] self.variance = ( kwargs["variance"] if "variance" in kwargs else kwargs["std"] ** 2 ) self.skew = None self.kurtosis = None elif "kurtosis" not in kwargs: self.count = kwargs["count"] self.mean = kwargs["mean"] self.variance = ( kwargs["variance"] if "variance" in kwargs else kwargs["std"] ** 2 ) self.skew = kwargs["skew"] self.kurtosis = None else: self.count = kwargs["count"] self.mean = kwargs["mean"] self.variance = ( kwargs["variance"] if "variance" in kwargs else kwargs["std"] ** 2 ) self.skew = kwargs["skew"] self.kurtosis = kwargs["kurtosis"] @property def std(self): return sqrt(self.variance) class ZeroMoment(object): """ ZERO-CENTERED MOMENTS """ def __init__(self, *args): self.S = tuple(args) def __add__(self, other): if isinstance(other, ZeroMoment): return ZeroMoment(*map(add, self.S, other.S)) elif hasattr(other, "__iter__"): return ZeroMoment(*map(add, self.S, ZeroMoment.new_instance(other))) elif other == None: return self else: return ZeroMoment( *map( add, self.S, ( 1, other, pow(other, 2), pow(other, 3), pow(other, 4), pow(other, 2), ), ) ) def __sub__(self, other): if isinstance(other, ZeroMoment): return ZeroMoment(*map(sub, self.S, other.S)) elif hasattr(other, "__iter__"): return ZeroMoment(*map(sub, self.S, ZeroMoment.new_instance(other))) elif other == None: return self else: return ZeroMoment( *map( sub, self.S, (1, other, pow(other, 2), pow(other, 3), pow(other, 4)) ) ) @property def tuple(self): # RETURN AS ORDERED TUPLE return self.S @property def dict(self): # RETURN HASH OF SUMS return {"s" + text(i): m for i, m in enumerate(self.S)} @staticmethod def new_instance(values=None): if values == None: return ZeroMoment() vals = [v for v in values if v != None] return ZeroMoment( len(vals), sum(vals), sum([pow(n, 2) for n in vals]), sum([pow(n, 3) for n in vals]), sum([pow(n, 4) for n in vals]), ) @property def stats(self, *args, **kwargs): return ZeroMoment2Stats(self, *args, **kwargs) def add(a, b): return coalesce(a, 0) + coalesce(b, 0) def sub(a, b): return coalesce(a, 0) - coalesce(b, 0) def ZeroMoment2dict(z): # RETURN HASH OF SUMS return {"s" + text(i): m for i, m in enumerate(z.S)} def median(values, simple=True, mean_weight=0.0): """ RETURN MEDIAN VALUE IF simple=False THEN IN THE EVENT MULTIPLE INSTANCES OF THE MEDIAN VALUE, THE MEDIAN IS INTERPOLATED BASED ON ITS POSITION IN THE MEDIAN RANGE mean_weight IS TO PICK A MEDIAN VALUE IN THE ODD CASE THAT IS CLOSER TO THE MEAN (PICK A MEDIAN BETWEEN TWO MODES IN BIMODAL CASE) """ if OR(v == None for v in values): Log.error("median is not ready to handle None") try: if not values: return Null l = len(values) _sorted = sorted(values) middle = int(l / 2) _median = float(_sorted[middle]) if len(_sorted) == 1: return _median if simple: if l % 2 == 0: return (_sorted[middle - 1] + _median) / 2 return _median # FIND RANGE OF THE median start_index = middle - 1 while start_index > 0 and _sorted[start_index] == _median: start_index -= 1 start_index += 1 stop_index = middle + 1 while stop_index < l and _sorted[stop_index] == _median: stop_index += 1 num_middle = stop_index - start_index if l % 2 == 0: if num_middle == 1: return (_sorted[middle - 1] + _median) / 2 else: return (_median - 0.5) + (middle - start_index) / num_middle else: if num_middle == 1: return (1 - mean_weight) * _median + mean_weight * ( _sorted[middle - 1] + _sorted[middle + 1] ) / 2 else: return (_median - 0.5) + (middle + 0.5 - start_index) / num_middle except Exception as e: Log.error("problem with median of {{values}}", values=values, cause=e) def percentile(values, percent): """ PERCENTILE WITH INTERPOLATION RETURN VALUE AT, OR ABOVE, percentile OF THE VALUES snagged from http://code.activestate.com/recipes/511478-finding-the-percentile-of-the-values/ """ N = sorted(values) if not N: return None k = (len(N) - 1) * percent f = int(math.floor(k)) c = int(math.ceil(k)) if f == c: return N[int(k)] d0 = N[f] * (c - k) d1 = N[c] * (k - f) return d0 + d1 zero = Stats()
[ "mo_dots.Data.__init__", "math.sqrt", "math.ceil", "mo_math.vendor.strangman.stats.chisquare", "math.floor", "mo_testing.fuzzytestcase.assertAlmostEqualValue", "mo_math.almost_equal", "mo_dots.coalesce", "numpy.array", "mo_future.text", "mo_logs.Log.error", "mo_math.OR" ]
[((9098, 9127), 'mo_math.OR', 'OR', (['(v == None for v in values)'], {}), '(v == None for v in values)\n', (9100, 9127), False, 'from mo_math import OR, almost_equal\n'), ((877, 916), 'mo_math.vendor.strangman.stats.chisquare', 'strangman.stats.chisquare', (['f_obs', 'f_exp'], {}), '(f_obs, f_exp)\n', (902, 916), False, 'from mo_math.vendor import strangman\n'), ((1618, 1641), 'mo_dots.coalesce', 'coalesce', (['stats.mean', '(0)'], {}), '(stats.mean, 0)\n', (1626, 1641), False, 'from mo_dots import Data, Null, coalesce\n'), ((1651, 1678), 'mo_dots.coalesce', 'coalesce', (['stats.variance', '(0)'], {}), '(stats.variance, 0)\n', (1659, 1678), False, 'from mo_dots import Data, Null, coalesce\n'), ((1688, 1711), 'mo_dots.coalesce', 'coalesce', (['stats.skew', '(0)'], {}), '(stats.skew, 0)\n', (1696, 1711), False, 'from mo_dots import Data, Null, coalesce\n'), ((1721, 1748), 'mo_dots.coalesce', 'coalesce', (['stats.kurtosis', '(0)'], {}), '(stats.kurtosis, 0)\n', (1729, 1748), False, 'from mo_dots import Data, Null, coalesce\n'), ((1835, 1852), 'mo_dots.coalesce', 'coalesce', (['skew', '(0)'], {}), '(skew, 0)\n', (1843, 1852), False, 'from mo_dots import Data, Null, coalesce\n'), ((3109, 3148), 'mo_math.almost_equal', 'almost_equal', (['Z2', '(mean * mean)'], {'digits': '(9)'}), '(Z2, mean * mean, digits=9)\n', (3121, 3148), False, 'from mo_math import OR, almost_equal\n'), ((4354, 4373), 'mo_dots.Data.__init__', 'Data.__init__', (['self'], {}), '(self)\n', (4367, 4373), False, 'from mo_dots import Data, Null, coalesce\n'), ((6407, 6426), 'math.sqrt', 'sqrt', (['self.variance'], {}), '(self.variance)\n', (6411, 6426), False, 'from math import sqrt\n'), ((8501, 8515), 'mo_dots.coalesce', 'coalesce', (['a', '(0)'], {}), '(a, 0)\n', (8509, 8515), False, 'from mo_dots import Data, Null, coalesce\n'), ((8518, 8532), 'mo_dots.coalesce', 'coalesce', (['b', '(0)'], {}), '(b, 0)\n', (8526, 8532), False, 'from mo_dots import Data, Null, coalesce\n'), ((8561, 8575), 'mo_dots.coalesce', 'coalesce', (['a', '(0)'], {}), '(a, 0)\n', (8569, 8575), False, 'from mo_dots import Data, Null, coalesce\n'), ((8578, 8592), 'mo_dots.coalesce', 'coalesce', (['b', '(0)'], {}), '(b, 0)\n', (8586, 8592), False, 'from mo_dots import Data, Null, coalesce\n'), ((9137, 9184), 'mo_logs.Log.error', 'Log.error', (['"""median is not ready to handle None"""'], {}), "('median is not ready to handle None')\n", (9146, 9184), False, 'from mo_logs import Log\n'), ((10879, 10892), 'math.floor', 'math.floor', (['k'], {}), '(k)\n', (10889, 10892), False, 'import math\n'), ((10906, 10918), 'math.ceil', 'math.ceil', (['k'], {}), '(k)\n', (10915, 10918), False, 'import math\n'), ((952, 985), 'mo_logs.Log.error', 'Log.error', (['"""problem with call"""', 'e'], {}), "('problem with call', e)\n", (961, 985), False, 'from mo_logs import Log\n'), ((1122, 1137), 'numpy.array', 'np.array', (['f_obs'], {}), '(f_obs)\n', (1130, 1137), True, 'import numpy as np\n'), ((1264, 1327), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['sp_result[1]', 'py_result[1]'], {'delta': '(1e-08)'}), '(sp_result[1], py_result[1], delta=1e-08)\n', (1286, 1327), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((1340, 1375), 'mo_logs.Log.error', 'Log.error', (['"""problem with stats lib"""'], {}), "('problem with stats lib')\n", (1349, 1375), False, 'from mo_logs import Log\n'), ((1976, 1993), 'mo_dots.coalesce', 'coalesce', (['kurt', '(0)'], {}), '(kurt, 0)\n', (1984, 1993), False, 'from mo_dots import Data, Null, coalesce\n'), ((2333, 2388), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.count', 'stats.count'], {'places': '(10)'}), '(v.count, stats.count, places=10)\n', (2355, 2388), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((2401, 2454), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.mean', 'stats.mean'], {'places': '(10)'}), '(v.mean, stats.mean, places=10)\n', (2423, 2454), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((2467, 2528), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.variance', 'stats.variance'], {'places': '(10)'}), '(v.variance, stats.variance, places=10)\n', (2489, 2528), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((2541, 2594), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.skew', 'stats.skew'], {'places': '(10)'}), '(v.skew, stats.skew, places=10)\n', (2563, 2594), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((2607, 2668), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.kurtosis', 'stats.kurtosis'], {'places': '(10)'}), '(v.kurtosis, stats.kurtosis, places=10)\n', (2629, 2668), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((8663, 8670), 'mo_future.text', 'text', (['i'], {}), '(i)\n', (8667, 8670), False, 'from mo_future import text\n'), ((10468, 10538), 'mo_logs.Log.error', 'Log.error', (['"""problem with median of {{values}}"""'], {'values': 'values', 'cause': 'e'}), "('problem with median of {{values}}', values=values, cause=e)\n", (10477, 10538), False, 'from mo_logs import Log\n'), ((1145, 1160), 'numpy.array', 'np.array', (['f_exp'], {}), '(f_exp)\n', (1153, 1160), True, 'import numpy as np\n'), ((1177, 1237), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['sp_result[0]', 'py_result[0]'], {'digits': '(9)'}), '(sp_result[0], py_result[0], digits=9)\n', (1199, 1237), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((2748, 2777), 'mo_logs.Log.error', 'Log.error', (['"""programmer error"""'], {}), "('programmer error')\n", (2757, 2777), False, 'from mo_logs import Log\n'), ((3863, 3909), 'mo_testing.fuzzytestcase.assertAlmostEqualValue', 'assertAlmostEqualValue', (['v.S[i]', 'Z[i]'], {'places': '(7)'}), '(v.S[i], Z[i], places=7)\n', (3885, 3909), False, 'from mo_testing.fuzzytestcase import assertAlmostEqualValue\n'), ((3953, 4154), 'mo_logs.Log.error', 'Log.error', (['"""Conversion failed. Programmer error:\nfrom={{from|indent}},\nresult stats={{stats|indent}},\nexpected param={{expected|indent}}"""', "{'from': Z}"], {'stats': 'stats', 'expected': 'v.S', 'cause': 'e'}), '(\n """Conversion failed. Programmer error:\nfrom={{from|indent}},\nresult stats={{stats|indent}},\nexpected param={{expected|indent}}"""\n , {\'from\': Z}, stats=stats, expected=v.S, cause=e)\n', (3962, 4154), False, 'from mo_logs import Log\n'), ((7946, 7953), 'mo_future.text', 'text', (['i'], {}), '(i)\n', (7950, 7953), False, 'from mo_future import text\n')]
from typing import ( TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union, ) import numpy as np import scipy.sparse as sps from irspack.definitions import DenseScoreArray, UserIndexArray from irspack.utils._util_cpp import retrieve_recommend_from_score from irspack.utils.threading import get_n_threads if TYPE_CHECKING: # We should move this module out of "utils". from irspack.recommenders import BaseRecommender class IDMappedRecommender: """A utility class that helps mapping user/item ids to index, retrieving recommendation score, and making a recommendation. Args: recommender: The backend base recommender which transforms user/item ids. user_ids: user_ids which correspods to the rows of ``recommender.X_train_all``. item_ids: item_ids which correspods to the columns of ``recommender.X_train_all``. Raises: ValueError: When recommender and user_ids/item_ids are inconsistent. ValueError: When there is a duplicate in user_ids. ValueError: When there is a duplicate in item_ids. """ def __init__( self, recommender: "BaseRecommender", user_ids: List[Any], item_ids: List[Any] ): if (recommender.n_users != len(user_ids)) or ( recommender.n_items != len(item_ids) ): raise ValueError( "The recommender and user/item ids have inconsistent lengths." ) self.recommender = recommender self.user_ids = user_ids self.item_ids = item_ids self.user_id_to_index = {user_id: i for i, user_id in enumerate(user_ids)} self.item_id_to_index = {item_id: i for i, item_id in enumerate(item_ids)} def _item_id_list_to_index_list(self, ids: Iterable[Any]) -> List[int]: return [self.item_id_to_index[id] for id in ids if id in self.item_id_to_index] def _user_profile_to_data_col( self, profile: Union[List[Any], Dict[Any, float]] ) -> Tuple[List[float], List[int]]: data: List[float] cols: List[int] # data: np.ndarray if isinstance(profile, list): cols = self._item_id_list_to_index_list(profile) data = [1.0] * len(cols) else: data = [] cols = [] for id, score in profile.items(): if id in self.item_id_to_index: data.append(score) cols.append(self.item_id_to_index[id]) return data, cols def _list_of_user_profile_to_matrix( self, users_info: Sequence[Union[List[Any], Dict[Any, float]]] ) -> sps.csr_matrix: data: List[float] = [] indptr: List[int] = [0] col: List[int] = [] indptr_current = 0 for user_info in users_info: data_u, col_u = self._user_profile_to_data_col(user_info) data.extend(data_u) col.extend(col_u) indptr_current += len(col_u) indptr.append(indptr_current) result = sps.csr_matrix( (data, col, indptr), shape=(len(users_info), len(self.item_ids)) ) return result def get_recommendation_for_known_user_id( self, user_id: Any, cutoff: int = 20, allowed_item_ids: Optional[List[Any]] = None, forbidden_item_ids: Optional[List[Any]] = None, ) -> List[Tuple[Any, float]]: """Retrieve recommendation result for a known user. Args: user_id: The target user ID. cutoff: Maximal number of recommendations allowed. allowed_item_ids: If not ``None``, recommend the items within this list. If ``None``, all known item ids can be recommended (except for those in ``item_ids`` argument). Defaults to ``None``. forbidden_item_ids: If not ``None``, never recommend the items within the list. Defaults to None. Raises: RuntimeError: When user_id is not in ``self.user_ids``. Returns: A List of tuples consisting of ``(item_id, score)``. """ if user_id not in self.user_ids: raise RuntimeError(f"User with user_id {user_id} not found.") user_index: UserIndexArray = np.asarray( [self.user_id_to_index[user_id]], dtype=np.int64 ) score = self.recommender.get_score_remove_seen(user_index)[0, :] return self._score_to_recommended_items( score, cutoff=cutoff, allowed_item_ids=allowed_item_ids, forbidden_item_ids=forbidden_item_ids, ) def get_recommendation_for_new_user( self, user_profile: Union[List[Any], Dict[Any, float]], cutoff: int = 20, allowed_item_ids: Optional[List[Any]] = None, forbidden_item_ids: Optional[List[Any]] = None, ) -> List[Tuple[Any, float]]: """Retrieve recommendation result for a previously unseen user using item ids with which he or she interacted. Args: user_profile: User's profile given either as a list of item ids the user had a cotact or a item id-rating dict. Previously unseen item ID will be ignored. cutoff: Maximal number of recommendations allowed. allowed_item_ids: If not ``None``, recommend the items within this list. If ``None``, all known item ids can be recommended (except for those in ``item_ids`` argument). Defaults to ``None``. forbidden_item_ids: If not ``None``, never recommend the items within the list. Defaults to None. Returns: A List of tuples consisting of ``(item_id, score)``. """ data, cols = self._user_profile_to_data_col(user_profile) X_input = sps.csr_matrix( (data, cols, [0, len(cols)]), shape=(1, len(self.item_ids)) ) score = self.recommender.get_score_cold_user_remove_seen(X_input)[0] return self._score_to_recommended_items( score, cutoff, allowed_item_ids=allowed_item_ids, forbidden_item_ids=forbidden_item_ids, ) def get_recommendation_for_new_user_batch( self, user_profiles: Sequence[Union[List[Any], Dict[Any, float]]], cutoff: int = 20, allowed_item_ids: Optional[List[List[Any]]] = None, forbidden_item_ids: Optional[List[List[Any]]] = None, n_threads: Optional[int] = None, ) -> List[List[Tuple[Any, float]]]: """Retrieve recommendation result for a previously unseen users using item ids with which they have interacted. Args: user_profiles: A list of user profiles. Each profile should be either the item ids the user had a cotact, or item-rating dict. Previously unseen item IDs will be ignored. cutoff: Maximal number of recommendations allowed. allowed_item_ids: If not ``None``, defines "a list of list of recommendable item IDs" and ``len(allowed_item_ids)`` must be equal to ``len(item_ids)``. Defaults to ``None``. forbidden_item_ids: If not ``None``, defines "a list of list of forbidden item IDs" and ``len(allowed_item_ids)`` must be equal to ``len(item_ids)`` Defaults to ``None``. Returns: A list of list of tuples consisting of ``(item_id, score)``. Each internal list corresponds to the recommender's recommendation output. """ X_input = self._list_of_user_profile_to_matrix(user_profiles) score = self.recommender.get_score_cold_user_remove_seen(X_input) return self._score_to_recommended_items_batch( score, cutoff, allowed_item_ids=allowed_item_ids, forbidden_item_ids=forbidden_item_ids, n_threads=get_n_threads(n_threads=n_threads), ) def _score_to_recommended_items( self, score: DenseScoreArray, cutoff: int, allowed_item_ids: Optional[List[Any]] = None, forbidden_item_ids: Optional[List[Any]] = None, ) -> List[Tuple[Any, float]]: if allowed_item_ids is not None: allowed_item_indices = np.asarray( self._item_id_list_to_index_list(allowed_item_ids), dtype=np.int64 ) high_score_inds = allowed_item_indices[ score[allowed_item_indices].argsort()[::-1] ] else: high_score_inds = score.argsort()[::-1] recommendations: List[Tuple[Any, float]] = [] for i in high_score_inds: i_int = int(i) score_this = score[i_int] item_id = self.item_ids[i_int] if np.isinf(score_this): continue if forbidden_item_ids is not None: if item_id in forbidden_item_ids: continue recommendations.append((item_id, float(score_this))) if len(recommendations) >= cutoff: break return recommendations def _score_to_recommended_items_batch( self, score: DenseScoreArray, cutoff: int, allowed_item_ids: Optional[List[List[Any]]] = None, forbidden_item_ids: Optional[List[List[Any]]] = None, n_threads: int = 1, ) -> List[List[Tuple[Any, float]]]: if forbidden_item_ids is not None: assert len(forbidden_item_ids) == score.shape[0] if allowed_item_ids is not None: assert len(allowed_item_ids) == score.shape[0] allowed_item_indices: List[List[int]] = [] if allowed_item_ids is not None: allowed_item_indices = [ self._item_id_list_to_index_list(_) for _ in allowed_item_ids ] if forbidden_item_ids is not None: for u, forbidden_ids_per_user in enumerate(forbidden_item_ids): score[ u, self._item_id_list_to_index_list(forbidden_ids_per_user) ] = -np.inf raw_result = retrieve_recommend_from_score( score, allowed_item_indices, cutoff, n_threads=n_threads, ) return [ [ (self.item_ids[item_index], score) for item_index, score in user_wise_raw_result ] for user_wise_raw_result in raw_result ]
[ "irspack.utils.threading.get_n_threads", "numpy.asarray", "irspack.utils._util_cpp.retrieve_recommend_from_score", "numpy.isinf" ]
[((4405, 4465), 'numpy.asarray', 'np.asarray', (['[self.user_id_to_index[user_id]]'], {'dtype': 'np.int64'}), '([self.user_id_to_index[user_id]], dtype=np.int64)\n', (4415, 4465), True, 'import numpy as np\n'), ((10426, 10517), 'irspack.utils._util_cpp.retrieve_recommend_from_score', 'retrieve_recommend_from_score', (['score', 'allowed_item_indices', 'cutoff'], {'n_threads': 'n_threads'}), '(score, allowed_item_indices, cutoff,\n n_threads=n_threads)\n', (10455, 10517), False, 'from irspack.utils._util_cpp import retrieve_recommend_from_score\n'), ((9089, 9109), 'numpy.isinf', 'np.isinf', (['score_this'], {}), '(score_this)\n', (9097, 9109), True, 'import numpy as np\n'), ((8206, 8240), 'irspack.utils.threading.get_n_threads', 'get_n_threads', ([], {'n_threads': 'n_threads'}), '(n_threads=n_threads)\n', (8219, 8240), False, 'from irspack.utils.threading import get_n_threads\n')]
""" Example to read a FITS file. Created on Jul 9, 2019 Be aware that hdus.close () needs to be called to limit the number of open files at a given time. @author: skwok """ import astropy.io.fits as pf from astropy.utils.exceptions import AstropyWarning import warnings import numpy as np from keckdrpframework.models.arguments import Arguments from keckdrpframework.primitives.base_primitive import BasePrimitive def open_nowarning(filename): with warnings.catch_warnings(): warnings.simplefilter("ignore", AstropyWarning) return pf.open(filename, memmap=False) class SimpleFitsReader_LRIS(BasePrimitive): def __init__(self, action, context): """ Initializes the super class. """ BasePrimitive.__init__(self, action, context) def _perform(self): """ Expects action.args.name as fits file name Returns HDUs or (later) data model """ name = self.action.args.name self.logger.debug(f"Reading {name}") out_args = Arguments() out_args.name = name out_args.img = self.readData(name) return out_args def readData(self, name, cutout=True): """ Reads FITS file, mostly from KECK instruments. If there are multiple HDUs, the image is assembled according to the kewyrods DETSEC and DATASEC. Otherwise hdus[0].data is returned. If cutout is TRUE, then only the none-zero portion is returned. """ with open_nowarning(name) as hdus: if len(hdus) == 1: return hdus[0].data else: imgBuf = hdus[1].data for hdu in hdus[2:]: imgBuf = np.concatenate((imgBuf, hdu.data), 1) return imgBuf
[ "warnings.simplefilter", "keckdrpframework.primitives.base_primitive.BasePrimitive.__init__", "keckdrpframework.models.arguments.Arguments", "warnings.catch_warnings", "astropy.io.fits.open", "numpy.concatenate" ]
[((460, 485), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (483, 485), False, 'import warnings\n'), ((495, 542), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'AstropyWarning'], {}), "('ignore', AstropyWarning)\n", (516, 542), False, 'import warnings\n'), ((558, 589), 'astropy.io.fits.open', 'pf.open', (['filename'], {'memmap': '(False)'}), '(filename, memmap=False)\n', (565, 589), True, 'import astropy.io.fits as pf\n'), ((746, 791), 'keckdrpframework.primitives.base_primitive.BasePrimitive.__init__', 'BasePrimitive.__init__', (['self', 'action', 'context'], {}), '(self, action, context)\n', (768, 791), False, 'from keckdrpframework.primitives.base_primitive import BasePrimitive\n'), ((1036, 1047), 'keckdrpframework.models.arguments.Arguments', 'Arguments', ([], {}), '()\n', (1045, 1047), False, 'from keckdrpframework.models.arguments import Arguments\n'), ((1741, 1778), 'numpy.concatenate', 'np.concatenate', (['(imgBuf, hdu.data)', '(1)'], {}), '((imgBuf, hdu.data), 1)\n', (1755, 1778), True, 'import numpy as np\n')]
""" timg_denoise.py """ import numpy as np import torch import torch.nn as nn class Timg_DenoiseNet_LinT_1Layer(nn.Module): def __init__(self): super(Timg_DenoiseNet_LinT_1Layer, self).__init__() self.C = 64 self.K = 13 self.centre = 3/255.0 self.scale = 2.0 self.conv1 = nn.Conv2d(1, self.C, self.K, padding=self.K//2) self.norm1 = nn.BatchNorm2d(self.C) self.relu1 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) # just need time to be above the minimum self.fix_range_t = nn.Threshold(1/255.0, 1/255.0) # nn.init.dirac_(self.conv1.weight) def forward(self, t): t = self.scale * (t - self.centre) t = self.conv1(t) t = self.relu1(t) t = self.comb(t) t = self.fix_range_t(t) return t class Timg_DenoiseNet_LinT(nn.Module): def __init__(self, Tmin=1e-3, Tmax=1e3): super(Timg_DenoiseNet_LinT, self).__init__() self.C = 64 self.Tmin = Tmin self.Tmax = Tmax self.Tmid = 1 self.Tscale = self.Tmid - self.Tmin self.conv1 = nn.Conv2d(1, self.C, 5, padding=2) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn2 = nn.BatchNorm2d(self.C) self.relu2 = nn.ReLU() self.conv3 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn3 = nn.BatchNorm2d(self.C) self.relu3 = nn.ReLU() self.conv4 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn4 = nn.BatchNorm2d(self.C) self.relu4 = nn.ReLU() self.conv5 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn5 = nn.BatchNorm2d(self.C) self.relu5 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) self.fix_range1 = nn.Hardtanh(min_val=self.Tmin, max_val=self.Tmax) self.fix_range2 = nn.Hardtanh(min_val=0, max_val=1) def forward(self, t): t = (1.0/self.Tscale) * (t - self.Tmid) t = self.conv1(t) t = self.relu1(t) t = self.conv2(t) t = self.bn2(t) t = self.relu2(t) t = self.conv3(t) t = self.bn3(t) t = self.relu3(t) t = self.conv4(t) t = self.bn4(t) t = self.relu4(t) t = self.conv5(t) t = self.bn5(t) t = self.relu5(t) t = self.comb(t) t = self.Tmid + (self.Tscale * t) t = self.fix_range1(t) y = torch.pow(t, -1) y = self.fix_range2(y) return y class Timg_DenoiseNet(nn.Module): def __init__(self, Tmin=1e-3, Tmax=1e3): super(Timg_DenoiseNet, self).__init__() self.C = 64 self.Tmin = np.log(Tmin) self.Tmax = np.log(Tmax) # self.conv1 = nn.Conv2d(1, self.C, 3, padding=1) self.conv1 = nn.Conv2d(1, self.C, 5, padding=2) # self.conv1 = nn.Conv2d(1, self.C, 7, padding=3) # self.conv1 = nn.Conv2d(1, self.C, 9, padding=4) # self.conv1 = nn.Conv2d(1, self.C, 11, padding=5) # self.conv1 = nn.Conv2d(1, self.C, 13, padding=6) # self.conv1 = nn.Conv2d(1, self.C, 15, padding=7) # self.conv1 = nn.Conv2d(1, self.C, 17, padding=8) # self.conv1 = nn.Conv2d(1, self.C, 19, padding=9) # self.conv1 = nn.Conv2d(1, self.C, 21, padding=10) self.relu1 = nn.ReLU() # self.conv2 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv2 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn2 = nn.BatchNorm2d(self.C) self.relu2 = nn.ReLU() # self.conv3 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv3 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn3 = nn.BatchNorm2d(self.C) self.relu3 = nn.ReLU() # self.conv4 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv4 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn4 = nn.BatchNorm2d(self.C) self.relu4 = nn.ReLU() # self.conv5 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv5 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn5 = nn.BatchNorm2d(self.C) self.relu5 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) self.fix_range1 = nn.Hardtanh(min_val=self.Tmin, max_val=self.Tmax) self.fix_range2 = nn.Hardtanh(min_val=0, max_val=1) def forward(self, t): logt = torch.log(t) logt = self.conv1(logt) logt = self.relu1(logt) logt = self.conv2(logt) logt = self.bn2(logt) logt = self.relu2(logt) logt = self.conv3(logt) logt = self.bn3(logt) logt = self.relu3(logt) logt = self.conv4(logt) logt = self.bn4(logt) logt = self.relu4(logt) logt = self.conv5(logt) logt = self.bn5(logt) logt = self.relu5(logt) logt = self.comb(logt) logt = self.fix_range1(logt) t = torch.exp(logt) y = torch.pow(t, -1) y = self.fix_range2(y) return y
[ "torch.nn.ReLU", "numpy.log", "torch.nn.Conv2d", "torch.nn.Threshold", "torch.exp", "torch.nn.BatchNorm2d", "torch.pow", "torch.log", "torch.nn.Hardtanh" ]
[((327, 376), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', 'self.C', 'self.K'], {'padding': '(self.K // 2)'}), '(1, self.C, self.K, padding=self.K // 2)\n', (336, 376), True, 'import torch.nn as nn\n'), ((396, 418), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (410, 418), True, 'import torch.nn as nn\n'), ((440, 449), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (447, 449), True, 'import torch.nn as nn\n'), ((471, 494), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', '(1)', '(1)'], {}), '(self.C, 1, 1)\n', (480, 494), True, 'import torch.nn as nn\n'), ((571, 605), 'torch.nn.Threshold', 'nn.Threshold', (['(1 / 255.0)', '(1 / 255.0)'], {}), '(1 / 255.0, 1 / 255.0)\n', (583, 605), True, 'import torch.nn as nn\n'), ((1142, 1176), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', 'self.C', '(5)'], {'padding': '(2)'}), '(1, self.C, 5, padding=2)\n', (1151, 1176), True, 'import torch.nn as nn\n'), ((1198, 1207), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1205, 1207), True, 'import torch.nn as nn\n'), ((1230, 1269), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (1239, 1269), True, 'import torch.nn as nn\n'), ((1289, 1311), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (1303, 1311), True, 'import torch.nn as nn\n'), ((1333, 1342), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1340, 1342), True, 'import torch.nn as nn\n'), ((1365, 1404), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (1374, 1404), True, 'import torch.nn as nn\n'), ((1424, 1446), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (1438, 1446), True, 'import torch.nn as nn\n'), ((1468, 1477), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1475, 1477), True, 'import torch.nn as nn\n'), ((1500, 1539), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (1509, 1539), True, 'import torch.nn as nn\n'), ((1559, 1581), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (1573, 1581), True, 'import torch.nn as nn\n'), ((1603, 1612), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1610, 1612), True, 'import torch.nn as nn\n'), ((1635, 1674), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (1644, 1674), True, 'import torch.nn as nn\n'), ((1694, 1716), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (1708, 1716), True, 'import torch.nn as nn\n'), ((1738, 1747), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1745, 1747), True, 'import torch.nn as nn\n'), ((1769, 1792), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', '(1)', '(1)'], {}), '(self.C, 1, 1)\n', (1778, 1792), True, 'import torch.nn as nn\n'), ((1820, 1869), 'torch.nn.Hardtanh', 'nn.Hardtanh', ([], {'min_val': 'self.Tmin', 'max_val': 'self.Tmax'}), '(min_val=self.Tmin, max_val=self.Tmax)\n', (1831, 1869), True, 'import torch.nn as nn\n'), ((1896, 1929), 'torch.nn.Hardtanh', 'nn.Hardtanh', ([], {'min_val': '(0)', 'max_val': '(1)'}), '(min_val=0, max_val=1)\n', (1907, 1929), True, 'import torch.nn as nn\n'), ((2478, 2494), 'torch.pow', 'torch.pow', (['t', '(-1)'], {}), '(t, -1)\n', (2487, 2494), False, 'import torch\n'), ((2712, 2724), 'numpy.log', 'np.log', (['Tmin'], {}), '(Tmin)\n', (2718, 2724), True, 'import numpy as np\n'), ((2745, 2757), 'numpy.log', 'np.log', (['Tmax'], {}), '(Tmax)\n', (2751, 2757), True, 'import numpy as np\n'), ((2838, 2872), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', 'self.C', '(5)'], {'padding': '(2)'}), '(1, self.C, 5, padding=2)\n', (2847, 2872), True, 'import torch.nn as nn\n'), ((3365, 3374), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3372, 3374), True, 'import torch.nn as nn\n'), ((3460, 3499), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (3469, 3499), True, 'import torch.nn as nn\n'), ((3519, 3541), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (3533, 3541), True, 'import torch.nn as nn\n'), ((3563, 3572), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3570, 3572), True, 'import torch.nn as nn\n'), ((3658, 3697), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (3667, 3697), True, 'import torch.nn as nn\n'), ((3717, 3739), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (3731, 3739), True, 'import torch.nn as nn\n'), ((3761, 3770), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3768, 3770), True, 'import torch.nn as nn\n'), ((3856, 3895), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (3865, 3895), True, 'import torch.nn as nn\n'), ((3915, 3937), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (3929, 3937), True, 'import torch.nn as nn\n'), ((3959, 3968), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3966, 3968), True, 'import torch.nn as nn\n'), ((4054, 4093), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', 'self.C', '(5)'], {'padding': '(2)'}), '(self.C, self.C, 5, padding=2)\n', (4063, 4093), True, 'import torch.nn as nn\n'), ((4113, 4135), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.C'], {}), '(self.C)\n', (4127, 4135), True, 'import torch.nn as nn\n'), ((4157, 4166), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4164, 4166), True, 'import torch.nn as nn\n'), ((4188, 4211), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.C', '(1)', '(1)'], {}), '(self.C, 1, 1)\n', (4197, 4211), True, 'import torch.nn as nn\n'), ((4239, 4288), 'torch.nn.Hardtanh', 'nn.Hardtanh', ([], {'min_val': 'self.Tmin', 'max_val': 'self.Tmax'}), '(min_val=self.Tmin, max_val=self.Tmax)\n', (4250, 4288), True, 'import torch.nn as nn\n'), ((4315, 4348), 'torch.nn.Hardtanh', 'nn.Hardtanh', ([], {'min_val': '(0)', 'max_val': '(1)'}), '(min_val=0, max_val=1)\n', (4326, 4348), True, 'import torch.nn as nn\n'), ((4391, 4403), 'torch.log', 'torch.log', (['t'], {}), '(t)\n', (4400, 4403), False, 'import torch\n'), ((4931, 4946), 'torch.exp', 'torch.exp', (['logt'], {}), '(logt)\n', (4940, 4946), False, 'import torch\n'), ((4959, 4975), 'torch.pow', 'torch.pow', (['t', '(-1)'], {}), '(t, -1)\n', (4968, 4975), False, 'import torch\n')]
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np import jams.const as const def tcherkez(Rstar, Phi=0.3, T=0.056, a2=1.0012, a3=1.0058, a4=1.0161, t1=0.9924, t2=1.0008, g=20e-3, RG=False, Rchl=False, Rcyt=False, fullmodel=True): """ Calculates the Tcherkez model of 13C-discrimiantion in the Calvin cycle. Definition ---------- def tcherkez(Rstar, Phi=0.3, T=0.056, a2=1.0012, a3=1.0058, a4=1.0161, t1=0.9924, t2=1.0008, g=20e-3 RG=False, Rchl=False, Rcyt=False, fullmodel=True): Input ----- Rstar Isotope ratio of assimilated carbon, e.g. of Farquhar et al. (1982) model Optional Input -------------- Phi Vo/Vc: ratio of carboxylateion to oxygentation of Rubisco (default: 0.3) T Relative flux of starch synthesis [mol(C6 of starch)/mol(CO2 assimilated)] (default: 0.056) a2 Inverse fractionation associated with aldolase for the C-2 position of FBP (Fructose-1,6-bisphosphate) (default: 1.0012) a3 Same for C-3 of FBP (default: 1.0058) a4 Same for C-4 of FBP (default: 1.0161) t1 Inverse fractionation associated with trankelotase for C-1 in E4P (erythrose-4-phosphate) and R5P (ribose-5-phosphate) (default: 0.9924) t2 Same for C-2 of X5P (xylulose-5-phosphate) (default: 1.0008) g Isotope discrimination of photorespiratory decarboxylation of Gly (Glycine) (default: 20e-3) RG If True, output isotope ratio of G3P (3-phosphoglyceraldehyde or glyceraldehyde-3-phosphate) (default: False) Rchl If True, output isotope ratio of chloroplastic hexoses and transitory starch (default: False) Rcyt If True, output isotope ratio of cytoplasmic hexoses (default: False) fullmodel If True, output RG, Rchl and Rcyt (default: True) Output ------ RG, Rchl, Rcyt if fullmodel=True Restrictions ------------ If at least one of RG, Rchl or Rcyt is given then fullmode=False. References ---------- <NAME>, <NAME>, <NAME> & <NAME>, Theoretical considerations about carbon isotope distribution in glucose of C3 plants, Functional Plant Biology 31, 857-877, 2004 <NAME>, <NAME>, <NAME>, <NAME> & <NAME>, Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis, Plant, Cell and Environment 31, 941-953, 2008 Examples -------- >>> a = -4.4e-3 >>> b = -27e-3 >>> ca = 353e-6 >>> ci = 0.7*ca >>> Delta = a+(b-a)*ci/ca >>> delta_a1 = -8e-3 >>> Ra1 = (delta_a1+1.)*const.R13VPDB >>> Rstar1 = (1.-Delta)*Ra1 >>> from autostring import astr >>> print(astr((np.array(tcherkez(Rstar1, Phi=0.3, T=0.056))/const.R13VPDB-1.)*1000.,3,pp=True)) ['12.764' '17.125' '12.978'] >>> delta_a2 = -7.8e-3 >>> Ra2 = (delta_a2+1.)*const.R13VPDB >>> Rstar2 = (1.-Delta)*Ra2 >>> R1 = (np.array(tcherkez([Rstar1, Rstar2], Rcyt=True))/const.R13VPDB-1.)*1000. >>> print(astr(R1,3,pp=True)) [['12.978' '13.182']] >>> R1, R2 = tcherkez([Rstar1, Rstar2], Rchl=True, Rcyt=True) >>> print(astr((R1/const.R13VPDB-1.)*1000.,3,pp=True)) ['17.125' '17.330'] >>> print(astr((R2/const.R13VPDB-1.)*1000.,3,pp=True)) ['12.978' '13.182'] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, MC, Jan 2012 Modified, MC, Feb 2013 - ported to Python 3 """ # if (RG | Rchl | Rcyt): fullmodel = False if fullmodel: RG = True Rchl = True Rcyt = True # a2tilde = (1.+0.5*Phi-T) / ((2.*a2+1.)/3.+Phi*(2.*a2-0.5)/3.+T*(a2-2.)) a3tilde = (1.+0.5*Phi-T) / ((2.*a3+1.)/3.+Phi*(2.*a3-0.5)/3.+T*(a3-2.)) t1tilde = (1.+3.*T)/(t1+3.*T)*t1 t2tilde = (1.+3.*T)/(t2+3.*T)*t2 eps = a3*a3tilde epsdash = (t1tilde+1.5*Phi)*a3*a3tilde/(3.*(1.+0.5*Phi-(1.+t2tilde)*a2*a2tilde/3.)) iRG = np.array(Rstar) / (1.+Phi*(0.5-(1.+g)/(2.+g)*(eps+2.*a2*a2tilde*epsdash)/3.)+T*(a4-1.)) iRchl = 1./6.*(epsdash*(1.+(a2*a2tilde*t2tilde)/t2)+eps*(2.+t1tilde/t1)+a4) * iRG iRcyt = 1./6.*(2.*eps+3.*(a2+1.)/(a2+2.)*epsdash*a2tilde+3.*a3tilde/(2.+a3)*(a3+2.*a4/(1.+a4))) * iRG out = [] if RG: out += [iRG] if Rchl: out += [iRchl] if Rcyt: out += [iRcyt] return out if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
[ "numpy.array", "doctest.testmod" ]
[((6383, 6440), 'doctest.testmod', 'doctest.testmod', ([], {'optionflags': 'doctest.NORMALIZE_WHITESPACE'}), '(optionflags=doctest.NORMALIZE_WHITESPACE)\n', (6398, 6440), False, 'import doctest\n'), ((5918, 5933), 'numpy.array', 'np.array', (['Rstar'], {}), '(Rstar)\n', (5926, 5933), True, 'import numpy as np\n')]
import random import numpy as np import cv2 import torch import torch.utils.data as data import logging from . import util class LQGTDataset3D(data.Dataset): ''' Read LQ (Low Quality, here is LR) and GT vti file pairs. If only GT image is provided, generate LQ vti on-the-fly. The pair is ensured by 'sorted' function, so please check the name convention. ''' logger = logging.getLogger('base') def __init__(self, opt): super(LQGTDataset3D, self).__init__() self.opt = opt self.paths_GT = None, None if opt['set_type'] == 'vtk': self.paths_GT = util.get_vtk_paths(opt['dataroot_GT']) # self.paths_LQ = util.get_vtk_paths(opt['dataroot_LQ']) elif opt['set_type'] == 'tecplot': self.paths_GT = util.get_tecplot_paths(opt['dataroot_GT']) # self.paths_LQ = util.get_tecplot_paths(opt['dataroot_LQ']) else: ex = Exception("Type '%s' is not supported" % opt['type']) raise ex assert self.paths_GT, 'Error: GT path is empty.' # if self.paths_LQ and self.paths_GT: # assert len(self.paths_LQ) == len( # self.paths_GT # ), 'GT and LQ datasets have different number of images - {}, {}.'.format( # len(self.paths_LQ), len(self.paths_GT)) self.random_scale_list = [1] def __getitem__(self, index): # cv2.setNumThreads(0) scale = self.opt['scale'] GT_size = self.opt['GT_size'] attr_id = self.opt.get('attr_id', 0) # get GT image GT_path = self.paths_GT[index] vti_GT_generator = util.getTensorGenerator(GT_path, self.opt['data_type']) vti_GT, component_GT = vti_GT_generator.get_array_by_id(attr_id) print('origin GT shape: {}'.format(vti_GT.shape)) if self.opt['phase'] != 'train': vti_GT = util.modcrop_3d(vti_GT, scale) # if self.paths_LQ: # LQ_path = self.paths_LQ[index] # vti_LQ_generator = util.getTensorGenerator(LQ_path) # vti_LQ_generator.set_type(self.opt['type']) # vti_LQ, component_LQ = vti_LQ_generator.get_array_by_id(attr_id) # else: # if self.opt['phase'] == 'train': # # random_scale = random.choice(self.random_scale_list) # # Z_s, Y_s, X_s = vti_GT.shape # # # def _mod(n, random_scale, scale, thres): # # rlt = int(n * random_scale) # # rlt = (rlt // scale) * scale # # return thres if rlt < thres else rlt # # # Z_s = _mod(Z_s, random_scale, scale, GT_size) # # Y_s = _mod(Y_s, random_scale, scale, GT_size) # # X_s = _mod(X_s, random_scale, scale, GT_size) # vti_GT = util.resize_3d(arr=np.copy(vti_GT), newsize=GT_size) # # # using matlab imresize3 # vti_LQ = util.imresize3_np(vti_GT, 1 / scale, True) # if vti_LQ.ndim != 3: # ex = Exception("Error: dims not right") # raise ex if self.opt['phase'] == 'train': Z, Y, X = vti_GT.shape if Z < GT_size or Y < GT_size or X < GT_size: vti_GT = util.resize_3d(np.copy(vti_GT), newsize=GT_size) elif Z > GT_size or Y > GT_size or X > GT_size: vti_GT = util.modcrop_3d(vti_GT, scale) # using matlab imresize3 # vti_LQ = util.imresize3_np(vti_GT, 1 / scale, True) # if vti_LQ.ndim != 2: # ex = Exception("Error: dims not right") # raise ex # Z, Y, X = vti_LQ.shape # LQ_size = GT_size // scale # # # randomly crop # rnd_Z = random.randint(0, max(0, Z - LQ_size)) # rnd_Y = random.randint(0, max(0, Y - LQ_size)) # rnd_X = random.randint(0, max(0, X - LQ_size)) # vti_LQ = vti_LQ[rnd_Z: rnd_Z + LQ_size, rnd_Y: rnd_Y + LQ_size, rnd_X: rnd_X + LQ_size] # rnd_Z_GT, rnd_Y_GT, rnd_X_GT = int(rnd_Z * scale), int(rnd_Y * scale), int(rnd_X * scale) # vti_GT = vti_GT[rnd_Z_GT: rnd_Z_GT + GT_size, rnd_Y_GT: rnd_Y_GT + GT_size, rnd_X_GT: rnd_X_GT + GT_size] # ZYX to XYZ vti_GT = torch.from_numpy(np.ascontiguousarray(vti_GT)).float().unsqueeze(0) print("vti_GT size: {}".format(vti_GT.size())) # vti_LQ = torch.from_numpy(np.ascontiguousarray(vti_LQ)).float().unsqueeze(0) # if LQ_path is None: # LQ_path = GT_path return {'GT': vti_GT, 'GT_path': GT_path} def __len__(self): return len(self.paths_GT)
[ "numpy.copy", "numpy.ascontiguousarray", "logging.getLogger" ]
[((396, 421), 'logging.getLogger', 'logging.getLogger', (['"""base"""'], {}), "('base')\n", (413, 421), False, 'import logging\n'), ((3340, 3355), 'numpy.copy', 'np.copy', (['vti_GT'], {}), '(vti_GT)\n', (3347, 3355), True, 'import numpy as np\n'), ((4421, 4449), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['vti_GT'], {}), '(vti_GT)\n', (4441, 4449), True, 'import numpy as np\n')]
import multiprocessing import threading import numpy as np import os import shutil import matplotlib.pyplot as plt import sys import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.multiprocessing as mp from shared_adam import SharedAdam import math, os import cv2 import torchvision.transforms as transforms import imageio os.environ["OMP_NUM_THREADS"] = "1" device=torch.device("cuda") np.set_printoptions(precision=4,suppress=True) simulation_dir = '../simulation' sys.path.insert(0, simulation_dir) from Wrench_Manipulation_Env import RobotEnv ExName = "Wrench_Manipulation" sys.path.insert(0,'../external/bullet3.git/build_cmake/examples/pybullet') import pybullet def v_wrap(np_array,dtype=np.float32): if np_array.dtype != dtype: np_array = np_array.astype(dtype) return torch.from_numpy(np_array).to(device) def push_and_pull(opt, lnet, gnet, done, s_, bs, ba, br, bdone, gamma): if done: v_s_ = 0. else: v_s_ = lnet.forward(v_wrap(s_[None,:]))[-1].data.cpu().numpy()[0,0] buffer_v_target = [] for r, termination in zip(br[::-1], bdone[::-1]): if termination: v_s_ = 0 v_s_ = r + gamma * v_s_ buffer_v_target.append(v_s_) buffer_v_target.reverse() loss = lnet.loss_func( v_wrap(np.vstack(bs)), v_wrap(np.vstack(ba)), v_wrap(np.array(buffer_v_target)[:, None])) opt.zero_grad() loss.backward() nn.utils.clip_grad_norm(lnet.parameters(),1.0) for lp, gp in zip(lnet.parameters(), gnet.parameters()): gp._grad = lp.grad opt.step() # pull global parameters lnet.load_state_dict(gnet.state_dict()) MAX_EP = 15000 UPDATE_GLOBAL_ITER = 10 GAMMA = 0.9 ENTROPY_BETA = 0.001 def set_init(layers): for layer in layers: nn.init.normal_(layer.weight, mean=0., std=0.01) nn.init.constant_(layer.bias, 0.) class ACNet(nn.Module): def __init__(self): super(ACNet, self).__init__() self.distribution = torch.distributions.Normal self.block1 = nn.Sequential( nn.Conv2d(in_channels=3,out_channels=32,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(32), ) # 60, 80 self.block2 = nn.Sequential( nn.Conv2d(in_channels=32,out_channels=32,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(32), ) # 30, 40 self.block3 = nn.Sequential( nn.Conv2d(in_channels=32,out_channels=64,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(64), ) # 15, 20 self.block4 = nn.Sequential( nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(64), ) # 8, 10 self.block5 = nn.Sequential( nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(128), ) # 4, 5 self.block6 = nn.Sequential( nn.Conv2d(in_channels=128,out_channels=128,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(128), ) # 2, 3 self.fc_a = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.fc_s = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.fc_v = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.mu_layer = nn.Linear(24,6) self.sigma_layer = nn.Linear(24,6) self.v_layer = nn.Linear(24,1) set_init([self.mu_layer, self.sigma_layer, self.v_layer]) def forward(self, im): im = im.view(-1, 120, 160, 3) im = im.permute(0,3,1,2) im = self.block1(im) im = self.block2(im) im = self.block3(im) im = self.block4(im) im = self.block5(im) im = self.block6(im) im = im.reshape(-1, 2 * 3 * 128) x_a = self.fc_a(im) mu = self.mu_layer(x_a) mu = F.tanh(mu) x_s = self.fc_s(im) sigma = self.sigma_layer(x_s) sigma = F.softplus(sigma) * 0.06 + 0.005 x_v= self.fc_v(im) values = self.v_layer(x_v) return mu, sigma, values def choose_action(self, s): self.training = False mu, sigma, _ = self.forward(s) m = self.distribution(mu.view(-1,).data, sigma.view(-1,).data) return m.sample().cpu().numpy(), mu.cpu().detach().numpy(), sigma.cpu().detach().numpy() def loss_func(self, s, a, v_t): self.train() mu, sigma, values = self.forward(s) td = v_t - values c_loss = td.pow(2) m = self.distribution(mu, sigma) log_prob = m.log_prob(a) entropy = 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(m.scale) exp_v = log_prob * td.detach() + ENTROPY_BETA * entropy a_loss = -exp_v total_loss = (a_loss + c_loss).mean() return total_loss class Worker(mp.Process): def __init__(self, gnet, opt, global_ep, global_ep_r, res_queue, wid, SAVE_TOP_DIR): super(Worker, self).__init__() print("wid %d" % wid) self.wid = wid self.step = 0 self.g_ep, self.g_ep_r, self.res_queue = global_ep, global_ep_r, res_queue self.gnet, self.opt = gnet, opt self.random_seed = 42 + self.wid + int(np.log(self.wid * 100 + 1)) print("random_seed",self.random_seed,"self.wid",self.wid) np.random.seed(self.random_seed) self.lnet = ACNet().to(device) self.init_step = 0 self.SAVE_TOP_DIR = SAVE_TOP_DIR def run(self): mean=np.array([0.485, 0.456, 0.406]) std=np.array([0.229, 0.224, 0.225]) mean = np.reshape(mean,(1,1,3)) std = np.reshape(std,(1,1,3)) self.start_pos = [-0.1,-0.4,0.5] self.dt = 1./30.0 if self.wid == 0: self.p_id = pybullet.connect(pybullet.GUI) else: self.p_id = pybullet.connect(pybullet.DIRECT) action_dir = os.path.join(self.SAVE_TOP_DIR,"action.npy") fixture_action = np.zeros((3,)) self.env = RobotEnv(worker_id=self.wid,p_id=pybullet,dt=self.dt,maxSteps=20,fixture_offset=fixture_action) total_step = 1 + self.init_step suc_check = 0 reward_check = 0 episode_check = 0 sigma_check1 = 0 sigma_check2 = 0 total_episode = 0 buffer_s, buffer_a, buffer_r, buffer_done = [], [], [], [] while total_step < MAX_EP: observation = self.env.reset() observation = observation/255.0 observation = (observation - mean)/std observation = np.reshape(observation,(-1,)) while True: action, mu_r, sigma_r = self.lnet.choose_action(v_wrap(observation[None,:])) action[:3] = action[:3].clip(-0.03,0.03) action[3:] = action[3:].clip(-0.05,0.05) # # if action[2] > 0.005: #w action[2] = 0.005 observation_next, reward, done, suc = self.env.step(action) observation_next = observation_next/255.0 observation_next = (observation_next - mean)/std recordGif = False if recordGif and total_step > 10: imageio.mimsave('pokingSthSlightly.gif',self.env.obs_list) return observation_next = np.reshape(observation_next,(-1,)) buffer_s.append(observation) buffer_r.append(reward) buffer_a.append(action) buffer_done.append(done) if total_step % (UPDATE_GLOBAL_ITER + self.wid) == 0 or done: push_and_pull(self.opt, self.lnet, self.gnet, done, observation_next, buffer_s, buffer_a, buffer_r, buffer_done, GAMMA) buffer_s, buffer_a, buffer_r, buffer_done = [], [], [], [] if done: suc_check += suc episode_check += 1 total_episode += 1 observation = observation_next total_step += 1 reward_check += reward if total_step % 100 == 0: current_performance = float(suc_check)/episode_check avg_sigma1 = sigma_check1 / 100.0 avg_sigma2 = sigma_check2 / 100.0 if self.wid == 0: print(self.SAVE_TOP_DIR,"total step %d, avg suc %f, avg reward %f" % (total_step, suc_check / 100.0, reward_check / 100.0)) save_path = os.path.join(self.SAVE_TOP_DIR,str(total_step)+'model.pth.tar') if self.wid == 0 and int(total_step) % 1000 == 0: print("saving to",save_path) torch.save(self.gnet.state_dict(), save_path) suc_check = 0 episode_check = 0 sigma_check1 = 0.0 sigma_check2 = 0.0 if done: break reward_dir = os.path.join(self.SAVE_TOP_DIR,"reward.txt") np.savetxt(reward_dir,np.array([reward_check/100.0]),fmt='%f') print("finising the learning!") torch.cuda.empty_cache() print("empyting the cache!") sys.exit() os._exit(1) if __name__ == "__main__": ExName = 'optimal'#sys.argv[1] #print(ExName) SAVE_TOP_DIR = os.path.join('./wrench/',ExName) if not os.path.exists(SAVE_TOP_DIR): os.makedirs(SAVE_TOP_DIR) mp.set_start_method('spawn') gnet = ACNet() # global network ## loading Load_model_id = '2000' Load_path = os.path.join(SAVE_TOP_DIR,Load_model_id + 'model.pth.tar') #checkpoint = torch.load(Load_path) #gnet.load_state_dict(checkpoint) gnet.to(device) gnet.share_memory() opt = SharedAdam(gnet.parameters(),lr=0.0001) global_ep, global_ep_r, res_queue = mp.Value('i',0), mp.Value('d',0.), mp.Queue() workers = [Worker(gnet, opt, global_ep, global_ep_r, res_queue, i, SAVE_TOP_DIR) for i in range(1)] [w.start() for w in workers] res = [] for worker in workers: worker.init_step = 0 [w.join() for w in workers]
[ "numpy.random.seed", "torch.nn.init.constant_", "torch.device", "pybullet.connect", "torch.nn.functional.tanh", "os.path.join", "imageio.mimsave", "numpy.set_printoptions", "os.path.exists", "Wrench_Manipulation_Env.RobotEnv", "numpy.reshape", "torch.nn.Linear", "math.log", "torch.log", "torch.nn.Conv2d", "torch.multiprocessing.set_start_method", "torch.nn.BatchNorm2d", "torch.multiprocessing.Value", "sys.exit", "torch.from_numpy", "numpy.vstack", "torch.nn.ReLU", "os.makedirs", "numpy.log", "numpy.zeros", "sys.path.insert", "torch.nn.init.normal_", "numpy.array", "os._exit", "torch.cuda.empty_cache", "torch.multiprocessing.Queue", "torch.nn.functional.softplus" ]
[((410, 430), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (422, 430), False, 'import torch\n'), ((432, 479), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(4)', 'suppress': '(True)'}), '(precision=4, suppress=True)\n', (451, 479), True, 'import numpy as np\n'), ((512, 546), 'sys.path.insert', 'sys.path.insert', (['(0)', 'simulation_dir'], {}), '(0, simulation_dir)\n', (527, 546), False, 'import sys\n'), ((624, 699), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""../external/bullet3.git/build_cmake/examples/pybullet"""'], {}), "(0, '../external/bullet3.git/build_cmake/examples/pybullet')\n", (639, 699), False, 'import sys\n'), ((9137, 9170), 'os.path.join', 'os.path.join', (['"""./wrench/"""', 'ExName'], {}), "('./wrench/', ExName)\n", (9149, 9170), False, 'import math, os\n'), ((9242, 9270), 'torch.multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (9261, 9270), True, 'import torch.multiprocessing as mp\n'), ((9362, 9421), 'os.path.join', 'os.path.join', (['SAVE_TOP_DIR', "(Load_model_id + 'model.pth.tar')"], {}), "(SAVE_TOP_DIR, Load_model_id + 'model.pth.tar')\n", (9374, 9421), False, 'import math, os\n'), ((1759, 1808), 'torch.nn.init.normal_', 'nn.init.normal_', (['layer.weight'], {'mean': '(0.0)', 'std': '(0.01)'}), '(layer.weight, mean=0.0, std=0.01)\n', (1774, 1808), True, 'import torch.nn as nn\n'), ((1816, 1850), 'torch.nn.init.constant_', 'nn.init.constant_', (['layer.bias', '(0.0)'], {}), '(layer.bias, 0.0)\n', (1833, 1850), True, 'import torch.nn as nn\n'), ((3792, 3808), 'torch.nn.Linear', 'nn.Linear', (['(24)', '(6)'], {}), '(24, 6)\n', (3801, 3808), True, 'import torch.nn as nn\n'), ((3831, 3847), 'torch.nn.Linear', 'nn.Linear', (['(24)', '(6)'], {}), '(24, 6)\n', (3840, 3847), True, 'import torch.nn as nn\n'), ((3866, 3882), 'torch.nn.Linear', 'nn.Linear', (['(24)', '(1)'], {}), '(24, 1)\n', (3875, 3882), True, 'import torch.nn as nn\n'), ((4285, 4295), 'torch.nn.functional.tanh', 'F.tanh', (['mu'], {}), '(mu)\n', (4291, 4295), True, 'import torch.nn.functional as F\n'), ((5618, 5650), 'numpy.random.seed', 'np.random.seed', (['self.random_seed'], {}), '(self.random_seed)\n', (5632, 5650), True, 'import numpy as np\n'), ((5776, 5807), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (5784, 5807), True, 'import numpy as np\n'), ((5816, 5847), 'numpy.array', 'np.array', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (5824, 5847), True, 'import numpy as np\n'), ((5859, 5886), 'numpy.reshape', 'np.reshape', (['mean', '(1, 1, 3)'], {}), '(mean, (1, 1, 3))\n', (5869, 5886), True, 'import numpy as np\n'), ((5894, 5920), 'numpy.reshape', 'np.reshape', (['std', '(1, 1, 3)'], {}), '(std, (1, 1, 3))\n', (5904, 5920), True, 'import numpy as np\n'), ((6129, 6174), 'os.path.join', 'os.path.join', (['self.SAVE_TOP_DIR', '"""action.npy"""'], {}), "(self.SAVE_TOP_DIR, 'action.npy')\n", (6141, 6174), False, 'import math, os\n'), ((6195, 6209), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (6203, 6209), True, 'import numpy as np\n'), ((6228, 6331), 'Wrench_Manipulation_Env.RobotEnv', 'RobotEnv', ([], {'worker_id': 'self.wid', 'p_id': 'pybullet', 'dt': 'self.dt', 'maxSteps': '(20)', 'fixture_offset': 'fixture_action'}), '(worker_id=self.wid, p_id=pybullet, dt=self.dt, maxSteps=20,\n fixture_offset=fixture_action)\n', (6236, 6331), False, 'from Wrench_Manipulation_Env import RobotEnv\n'), ((8799, 8844), 'os.path.join', 'os.path.join', (['self.SAVE_TOP_DIR', '"""reward.txt"""'], {}), "(self.SAVE_TOP_DIR, 'reward.txt')\n", (8811, 8844), False, 'import math, os\n'), ((8952, 8976), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (8974, 8976), False, 'import torch\n'), ((9014, 9024), 'sys.exit', 'sys.exit', ([], {}), '()\n', (9022, 9024), False, 'import sys\n'), ((9029, 9040), 'os._exit', 'os._exit', (['(1)'], {}), '(1)\n', (9037, 9040), False, 'import math, os\n'), ((9179, 9207), 'os.path.exists', 'os.path.exists', (['SAVE_TOP_DIR'], {}), '(SAVE_TOP_DIR)\n', (9193, 9207), False, 'import math, os\n'), ((9213, 9238), 'os.makedirs', 'os.makedirs', (['SAVE_TOP_DIR'], {}), '(SAVE_TOP_DIR)\n', (9224, 9238), False, 'import math, os\n'), ((9624, 9640), 'torch.multiprocessing.Value', 'mp.Value', (['"""i"""', '(0)'], {}), "('i', 0)\n", (9632, 9640), True, 'import torch.multiprocessing as mp\n'), ((9641, 9659), 'torch.multiprocessing.Value', 'mp.Value', (['"""d"""', '(0.0)'], {}), "('d', 0.0)\n", (9649, 9659), True, 'import torch.multiprocessing as mp\n'), ((9659, 9669), 'torch.multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (9667, 9669), True, 'import torch.multiprocessing as mp\n'), ((832, 858), 'torch.from_numpy', 'torch.from_numpy', (['np_array'], {}), '(np_array)\n', (848, 858), False, 'import torch\n'), ((1285, 1298), 'numpy.vstack', 'np.vstack', (['bs'], {}), '(bs)\n', (1294, 1298), True, 'import numpy as np\n'), ((1312, 1325), 'numpy.vstack', 'np.vstack', (['ba'], {}), '(ba)\n', (1321, 1325), True, 'import numpy as np\n'), ((2022, 2129), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(3)', 'out_channels': '(32)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=(2, 2),\n padding=(1, 1), bias=True)\n', (2031, 2129), True, 'import torch.nn as nn\n'), ((2125, 2134), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2132, 2134), True, 'import torch.nn as nn\n'), ((2142, 2160), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(32)'], {}), '(32)\n', (2156, 2160), True, 'import torch.nn as nn\n'), ((2220, 2329), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(32)', 'out_channels': '(32)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(2, 2\n ), padding=(1, 1), bias=True)\n', (2229, 2329), True, 'import torch.nn as nn\n'), ((2324, 2333), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2331, 2333), True, 'import torch.nn as nn\n'), ((2341, 2359), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(32)'], {}), '(32)\n', (2355, 2359), True, 'import torch.nn as nn\n'), ((2419, 2528), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(32)', 'out_channels': '(64)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=32, out_channels=64, kernel_size=(3, 3), stride=(2, 2\n ), padding=(1, 1), bias=True)\n', (2428, 2528), True, 'import torch.nn as nn\n'), ((2523, 2532), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2530, 2532), True, 'import torch.nn as nn\n'), ((2540, 2558), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2554, 2558), True, 'import torch.nn as nn\n'), ((2618, 2727), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(64)', 'out_channels': '(64)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(2, 2\n ), padding=(1, 1), bias=True)\n', (2627, 2727), True, 'import torch.nn as nn\n'), ((2722, 2731), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2729, 2731), True, 'import torch.nn as nn\n'), ((2739, 2757), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2753, 2757), True, 'import torch.nn as nn\n'), ((2816, 2926), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(64)', 'out_channels': '(128)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=64, out_channels=128, kernel_size=(3, 3), stride=(2, \n 2), padding=(1, 1), bias=True)\n', (2825, 2926), True, 'import torch.nn as nn\n'), ((2921, 2930), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2928, 2930), True, 'import torch.nn as nn\n'), ((2938, 2957), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (2952, 2957), True, 'import torch.nn as nn\n'), ((3015, 3125), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(128)', 'out_channels': '(128)', 'kernel_size': '(3, 3)', 'stride': '(2, 2)', 'padding': '(1, 1)', 'bias': '(True)'}), '(in_channels=128, out_channels=128, kernel_size=(3, 3), stride=(2,\n 2), padding=(1, 1), bias=True)\n', (3024, 3125), True, 'import torch.nn as nn\n'), ((3121, 3130), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3128, 3130), True, 'import torch.nn as nn\n'), ((3138, 3157), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (3152, 3157), True, 'import torch.nn as nn\n'), ((3217, 3244), 'torch.nn.Linear', 'nn.Linear', (['(2 * 3 * 128)', '(128)'], {}), '(2 * 3 * 128, 128)\n', (3226, 3244), True, 'import torch.nn as nn\n'), ((3256, 3265), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3263, 3265), True, 'import torch.nn as nn\n'), ((3277, 3295), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (3286, 3295), True, 'import torch.nn as nn\n'), ((3307, 3316), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3314, 3316), True, 'import torch.nn as nn\n'), ((3328, 3345), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(24)'], {}), '(64, 24)\n', (3337, 3345), True, 'import torch.nn as nn\n'), ((3357, 3366), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3364, 3366), True, 'import torch.nn as nn\n'), ((3415, 3442), 'torch.nn.Linear', 'nn.Linear', (['(2 * 3 * 128)', '(128)'], {}), '(2 * 3 * 128, 128)\n', (3424, 3442), True, 'import torch.nn as nn\n'), ((3454, 3463), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3461, 3463), True, 'import torch.nn as nn\n'), ((3475, 3493), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (3484, 3493), True, 'import torch.nn as nn\n'), ((3505, 3514), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3512, 3514), True, 'import torch.nn as nn\n'), ((3526, 3543), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(24)'], {}), '(64, 24)\n', (3535, 3543), True, 'import torch.nn as nn\n'), ((3555, 3564), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3562, 3564), True, 'import torch.nn as nn\n'), ((3614, 3641), 'torch.nn.Linear', 'nn.Linear', (['(2 * 3 * 128)', '(128)'], {}), '(2 * 3 * 128, 128)\n', (3623, 3641), True, 'import torch.nn as nn\n'), ((3653, 3662), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3660, 3662), True, 'import torch.nn as nn\n'), ((3674, 3692), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (3683, 3692), True, 'import torch.nn as nn\n'), ((3704, 3713), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3711, 3713), True, 'import torch.nn as nn\n'), ((3725, 3742), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(24)'], {}), '(64, 24)\n', (3734, 3742), True, 'import torch.nn as nn\n'), ((3754, 3763), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3761, 3763), True, 'import torch.nn as nn\n'), ((4989, 5007), 'torch.log', 'torch.log', (['m.scale'], {}), '(m.scale)\n', (4998, 5007), False, 'import torch\n'), ((6017, 6047), 'pybullet.connect', 'pybullet.connect', (['pybullet.GUI'], {}), '(pybullet.GUI)\n', (6033, 6047), False, 'import pybullet\n'), ((6076, 6109), 'pybullet.connect', 'pybullet.connect', (['pybullet.DIRECT'], {}), '(pybullet.DIRECT)\n', (6092, 6109), False, 'import pybullet\n'), ((6724, 6754), 'numpy.reshape', 'np.reshape', (['observation', '(-1,)'], {}), '(observation, (-1,))\n', (6734, 6754), True, 'import numpy as np\n'), ((8870, 8902), 'numpy.array', 'np.array', (['[reward_check / 100.0]'], {}), '([reward_check / 100.0])\n', (8878, 8902), True, 'import numpy as np\n'), ((1339, 1364), 'numpy.array', 'np.array', (['buffer_v_target'], {}), '(buffer_v_target)\n', (1347, 1364), True, 'import numpy as np\n'), ((4366, 4383), 'torch.nn.functional.softplus', 'F.softplus', (['sigma'], {}), '(sigma)\n', (4376, 4383), True, 'import torch.nn.functional as F\n'), ((5524, 5550), 'numpy.log', 'np.log', (['(self.wid * 100 + 1)'], {}), '(self.wid * 100 + 1)\n', (5530, 5550), True, 'import numpy as np\n'), ((7402, 7437), 'numpy.reshape', 'np.reshape', (['observation_next', '(-1,)'], {}), '(observation_next, (-1,))\n', (7412, 7437), True, 'import numpy as np\n'), ((4965, 4986), 'math.log', 'math.log', (['(2 * math.pi)'], {}), '(2 * math.pi)\n', (4973, 4986), False, 'import math, os\n'), ((7289, 7348), 'imageio.mimsave', 'imageio.mimsave', (['"""pokingSthSlightly.gif"""', 'self.env.obs_list'], {}), "('pokingSthSlightly.gif', self.env.obs_list)\n", (7304, 7348), False, 'import imageio\n')]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def reorder_image(img, input_order='HWC'): """Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image. """ if input_order not in ['HWC', 'CHW']: raise ValueError( f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") if len(img.shape) == 2: img = img[..., None] return img if input_order == 'CHW': img = img.transpose(1, 2, 0) return img def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype #img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] #out_img = _convert_output_type_range(out_img, img_type) return out_img def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = bgr2ycbcr(img, y_only=True) img = img[..., None] return img * 255.
[ "numpy.dot", "numpy.matmul" ]
[((2452, 2490), 'numpy.dot', 'np.dot', (['img', '[24.966, 128.553, 65.481]'], {}), '(img, [24.966, 128.553, 65.481])\n', (2458, 2490), True, 'import numpy as np\n'), ((2526, 2628), 'numpy.matmul', 'np.matmul', (['img', '[[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, \n 112.0]]'], {}), '(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [\n 65.481, -37.797, 112.0]])\n', (2535, 2628), True, 'import numpy as np\n')]
import os import pytest import numpy as np import easy_dna as dna def test_extract_from_input(tmpdir): parts = [] for i in range(10): part_id = "part_%s" % ("ABCDEFGHAB"[i]) # id is nonunique on purpose alias = "part_%d" % i # alias is unique part_length = np.random.randint(1000, 1500) sequence = dna.random_dna_sequence(part_length) record = dna.sequence_to_biopython_record(sequence, id=part_id) record.name = part_id dna.annotate_record(record, label=part_id, alias=alias) parts.append(record) constructs = [] for position_of_last_part in [8, 10]: # 8: parts A-H; 10: parts A--H and A, B again construct_record = sum(parts[1:position_of_last_part], parts[0]) construct_record.id = "construct_%02d" % (position_of_last_part) construct_record.name = construct_record.id constructs.append(construct_record) target_dir = os.path.join(str(tmpdir), "test_dir") records_dict = dna.extract_from_input( construct_list=constructs, output_path=target_dir ) assert records_dict["processed_report"]["shared_with"].count() == 16 with pytest.raises(TypeError): dna.extract_from_input(output_path=target_dir)
[ "easy_dna.annotate_record", "easy_dna.sequence_to_biopython_record", "easy_dna.random_dna_sequence", "pytest.raises", "numpy.random.randint", "easy_dna.extract_from_input" ]
[((1009, 1082), 'easy_dna.extract_from_input', 'dna.extract_from_input', ([], {'construct_list': 'constructs', 'output_path': 'target_dir'}), '(construct_list=constructs, output_path=target_dir)\n', (1031, 1082), True, 'import easy_dna as dna\n'), ((293, 322), 'numpy.random.randint', 'np.random.randint', (['(1000)', '(1500)'], {}), '(1000, 1500)\n', (310, 322), True, 'import numpy as np\n'), ((342, 378), 'easy_dna.random_dna_sequence', 'dna.random_dna_sequence', (['part_length'], {}), '(part_length)\n', (365, 378), True, 'import easy_dna as dna\n'), ((396, 450), 'easy_dna.sequence_to_biopython_record', 'dna.sequence_to_biopython_record', (['sequence'], {'id': 'part_id'}), '(sequence, id=part_id)\n', (428, 450), True, 'import easy_dna as dna\n'), ((489, 544), 'easy_dna.annotate_record', 'dna.annotate_record', (['record'], {'label': 'part_id', 'alias': 'alias'}), '(record, label=part_id, alias=alias)\n', (508, 544), True, 'import easy_dna as dna\n'), ((1180, 1204), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1193, 1204), False, 'import pytest\n'), ((1214, 1260), 'easy_dna.extract_from_input', 'dna.extract_from_input', ([], {'output_path': 'target_dir'}), '(output_path=target_dir)\n', (1236, 1260), True, 'import easy_dna as dna\n')]