code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# coding=utf-8 import tensorflow as tf import numpy as np import helpers tf.reset_default_graph() sess = tf.InteractiveSession() PAD = 0 EOS = 1 vocab_size = 10 input_embedding_size = 20 encoder_hidden_units = 512 decoder_hidden_units = encoder_hidden_units * 2 # define inputs encoder_input = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs') # encoder_input_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_input_length') decoder_targets = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_target') decoder_input = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_input') # define embedding layer embedding = tf.Variable(tf.random_uniform([vocab_size, input_embedding_size], -1.0, 1.0), dtype=tf.float32) encoder_inputs_embedded = tf.nn.embedding_lookup(embedding, encoder_input, name='encoder_inputs_embedded') decoder_inputs_embedded = tf.nn.embedding_lookup(embedding, decoder_input, name='decoder_inputs_embedded') encoder_cell_fw = tf.contrib.rnn.LSTMCell(encoder_hidden_units) encoder_cell_bw = tf.contrib.rnn.LSTMCell(encoder_hidden_units) ((encoder_fw_outputs, encoder_bw_outputs), (encoder_fw_final_state, encoder_bw_final_state)) = (tf.nn.bidirectional_dynamic_rnn(cell_fw=encoder_cell_fw, cell_bw=encoder_cell_bw, inputs=encoder_inputs_embedded, dtype=tf.float32, time_major=False)) encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2) encoder_final_state_c = tf.concat((encoder_fw_final_state.c, encoder_bw_final_state.c), 1) encoder_final_state_h = tf.concat((encoder_fw_final_state.h, encoder_bw_final_state.h), 1) encoder_final_state = tf.contrib.rnn.LSTMStateTuple(c=encoder_final_state_c, h=encoder_final_state_h) decoder_cell = tf.contrib.rnn.LSTMCell(decoder_hidden_units) encoder_max_time, batch_size = tf.unstack(tf.shape(encoder_input)) print(encoder_max_time) print(batch_size) # decoder_length = encoder_input_length + 3 decoder_outputs, decoder_final_state = tf.nn.dynamic_rnn(decoder_cell, encoder_outputs, initial_state=encoder_final_state, dtype=tf.float32) decoder_logits = tf.contrib.layers.linear(decoder_outputs, vocab_size) decoder_prediction = tf.argmax(decoder_logits, 2) stepwise_cross_entropy = tf.nn.softmax_cross_entropy_with_logits( labels=tf.one_hot(decoder_targets, depth=vocab_size, dtype=tf.float32), logits=decoder_logits) loss = tf.reduce_mean(stepwise_cross_entropy) train_op = tf.train.AdamOptimizer().minimize(loss) sess.run(tf.global_variables_initializer()) batch_ = [[6], [3, 4], [9, 8, 7]] batch_, batch_length_ = helpers.batch(batch_) print('batch_encoded:\n' + str(batch_)) din_, dlen_ = helpers.batch(np.ones(shape=(3, 1), dtype=np.int32), max_sequence_length=4) print('decoder inputs:\n' + str(din_)) pred_ = sess.run(decoder_prediction, feed_dict={ encoder_input: batch_, decoder_input: din_,}) print('decoder predictions:\n' + str(pred_))
[ "tensorflow.reset_default_graph", "numpy.ones", "tensorflow.contrib.layers.linear", "tensorflow.nn.bidirectional_dynamic_rnn", "tensorflow.InteractiveSession", "tensorflow.one_hot", "tensorflow.contrib.rnn.LSTMStateTuple", "tensorflow.concat", "tensorflow.placeholder", "helpers.batch", "tensorflow.nn.embedding_lookup", "tensorflow.global_variables_initializer", "tensorflow.reduce_mean", "tensorflow.random_uniform", "tensorflow.nn.dynamic_rnn", "tensorflow.argmax", "tensorflow.shape", "tensorflow.contrib.rnn.LSTMCell", "tensorflow.train.AdamOptimizer" ]
[((75, 99), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (97, 99), True, 'import tensorflow as tf\n'), ((107, 130), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (128, 130), True, 'import tensorflow as tf\n'), ((298, 371), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '(None, None)', 'dtype': 'tf.int32', 'name': '"""encoder_inputs"""'}), "(shape=(None, None), dtype=tf.int32, name='encoder_inputs')\n", (312, 371), True, 'import tensorflow as tf\n'), ((490, 563), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '(None, None)', 'dtype': 'tf.int32', 'name': '"""decoder_target"""'}), "(shape=(None, None), dtype=tf.int32, name='decoder_target')\n", (504, 563), True, 'import tensorflow as tf\n'), ((580, 652), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '(None, None)', 'dtype': 'tf.int32', 'name': '"""decoder_input"""'}), "(shape=(None, None), dtype=tf.int32, name='decoder_input')\n", (594, 652), True, 'import tensorflow as tf\n'), ((814, 899), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embedding', 'encoder_input'], {'name': '"""encoder_inputs_embedded"""'}), "(embedding, encoder_input, name='encoder_inputs_embedded'\n )\n", (836, 899), True, 'import tensorflow as tf\n'), ((921, 1006), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embedding', 'decoder_input'], {'name': '"""decoder_inputs_embedded"""'}), "(embedding, decoder_input, name='decoder_inputs_embedded'\n )\n", (943, 1006), True, 'import tensorflow as tf\n'), ((1021, 1066), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', (['encoder_hidden_units'], {}), '(encoder_hidden_units)\n', (1044, 1066), True, 'import tensorflow as tf\n'), ((1085, 1130), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', (['encoder_hidden_units'], {}), '(encoder_hidden_units)\n', (1108, 1130), True, 'import tensorflow as tf\n'), ((1233, 1391), 'tensorflow.nn.bidirectional_dynamic_rnn', 'tf.nn.bidirectional_dynamic_rnn', ([], {'cell_fw': 'encoder_cell_fw', 'cell_bw': 'encoder_cell_bw', 'inputs': 'encoder_inputs_embedded', 'dtype': 'tf.float32', 'time_major': '(False)'}), '(cell_fw=encoder_cell_fw, cell_bw=\n encoder_cell_bw, inputs=encoder_inputs_embedded, dtype=tf.float32,\n time_major=False)\n', (1264, 1391), True, 'import tensorflow as tf\n'), ((1651, 1705), 'tensorflow.concat', 'tf.concat', (['(encoder_fw_outputs, encoder_bw_outputs)', '(2)'], {}), '((encoder_fw_outputs, encoder_bw_outputs), 2)\n', (1660, 1705), True, 'import tensorflow as tf\n'), ((1731, 1797), 'tensorflow.concat', 'tf.concat', (['(encoder_fw_final_state.c, encoder_bw_final_state.c)', '(1)'], {}), '((encoder_fw_final_state.c, encoder_bw_final_state.c), 1)\n', (1740, 1797), True, 'import tensorflow as tf\n'), ((1822, 1888), 'tensorflow.concat', 'tf.concat', (['(encoder_fw_final_state.h, encoder_bw_final_state.h)', '(1)'], {}), '((encoder_fw_final_state.h, encoder_bw_final_state.h), 1)\n', (1831, 1888), True, 'import tensorflow as tf\n'), ((1911, 1990), 'tensorflow.contrib.rnn.LSTMStateTuple', 'tf.contrib.rnn.LSTMStateTuple', ([], {'c': 'encoder_final_state_c', 'h': 'encoder_final_state_h'}), '(c=encoder_final_state_c, h=encoder_final_state_h)\n', (1940, 1990), True, 'import tensorflow as tf\n'), ((2060, 2105), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', (['decoder_hidden_units'], {}), '(decoder_hidden_units)\n', (2083, 2105), True, 'import tensorflow as tf\n'), ((2301, 2407), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', (['decoder_cell', 'encoder_outputs'], {'initial_state': 'encoder_final_state', 'dtype': 'tf.float32'}), '(decoder_cell, encoder_outputs, initial_state=\n encoder_final_state, dtype=tf.float32)\n', (2318, 2407), True, 'import tensorflow as tf\n'), ((2478, 2531), 'tensorflow.contrib.layers.linear', 'tf.contrib.layers.linear', (['decoder_outputs', 'vocab_size'], {}), '(decoder_outputs, vocab_size)\n', (2502, 2531), True, 'import tensorflow as tf\n'), ((2553, 2581), 'tensorflow.argmax', 'tf.argmax', (['decoder_logits', '(2)'], {}), '(decoder_logits, 2)\n', (2562, 2581), True, 'import tensorflow as tf\n'), ((2760, 2798), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['stepwise_cross_entropy'], {}), '(stepwise_cross_entropy)\n', (2774, 2798), True, 'import tensorflow as tf\n'), ((2955, 2976), 'helpers.batch', 'helpers.batch', (['batch_'], {}), '(batch_)\n', (2968, 2976), False, 'import helpers\n'), ((703, 767), 'tensorflow.random_uniform', 'tf.random_uniform', (['[vocab_size, input_embedding_size]', '(-1.0)', '(1.0)'], {}), '([vocab_size, input_embedding_size], -1.0, 1.0)\n', (720, 767), True, 'import tensorflow as tf\n'), ((2149, 2172), 'tensorflow.shape', 'tf.shape', (['encoder_input'], {}), '(encoder_input)\n', (2157, 2172), True, 'import tensorflow as tf\n'), ((2860, 2893), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2891, 2893), True, 'import tensorflow as tf\n'), ((3046, 3083), 'numpy.ones', 'np.ones', ([], {'shape': '(3, 1)', 'dtype': 'np.int32'}), '(shape=(3, 1), dtype=np.int32)\n', (3053, 3083), True, 'import numpy as np\n'), ((2660, 2723), 'tensorflow.one_hot', 'tf.one_hot', (['decoder_targets'], {'depth': 'vocab_size', 'dtype': 'tf.float32'}), '(decoder_targets, depth=vocab_size, dtype=tf.float32)\n', (2670, 2723), True, 'import tensorflow as tf\n'), ((2810, 2834), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {}), '()\n', (2832, 2834), True, 'import tensorflow as tf\n')]
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import open3d as o3d from random_geometry_points.plane import Plane def mean_map_entropy(pc_map, map_tips=None, KNN_RAD=1): MIN_KNN = 5 map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) metric = [] for i in range(points.shape[0]): point = points[i] [k, idx, _] = map_tree.search_radius_vector_3d(point, KNN_RAD) if len(idx) > MIN_KNN: cov = np.cov(points[idx].T) det = np.linalg.det(2 * np.pi * np.e * cov) if det > 0: metric.append(0.5 * np.log(det)) return 0 if len(metric) == 0 else np.mean(metric) def mean_plane_variance(pc_map, map_tips=None, KNN_RAD=1): MIN_KNN = 5 map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) metric = [] for i in range(points.shape[0]): point = points[i] [k, idx, _] = map_tree.search_radius_vector_3d(point, KNN_RAD) if len(idx) > MIN_KNN: cov = np.cov(points[idx].T) eigenvalues = np.linalg.eig(cov)[0] metric.append(min(eigenvalues)) return 0 if len(metric) == 0 else np.mean(metric) def orth_mme(pc_map, map_tips, knn_rad=0.5): map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) orth_axes_stats = [] orth_list = map_tips['orth_list'] for k, chosen_points in enumerate(orth_list): metric = [] plane_error = [] for i in range(chosen_points.shape[0]): point = chosen_points[i] [_, idx, _] = map_tree.search_radius_vector_3d(point, knn_rad) if len(idx) > 5: metric.append(mme(points[idx])) avg_metric = np.mean(metric) orth_axes_stats.append(avg_metric) return np.sum(orth_axes_stats) def orth_mpv(pc_map, map_tips, knn_rad=1): map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) orth_axes_stats = [] orth_list = map_tips['orth_list'] for k, chosen_points in enumerate(orth_list): metric = [] plane_error = [] for i in range(chosen_points.shape[0]): point = chosen_points[i] [_, idx, _] = map_tree.search_radius_vector_3d(point, knn_rad) if len(idx) > 5: metric.append(mpv(points[idx])) avg_metric = np.median(metric) orth_axes_stats.append(avg_metric) return np.sum(orth_axes_stats) def mme(points): cov = np.cov(points.T) det = np.linalg.det(2 * np.pi * np.e * cov) return 0.5 * np.log(det) if det > 0 else -math.inf def mpv(points): cov = np.cov(points.T) eigenvalues = np.linalg.eig(cov)[0] return min(eigenvalues) def rpe(T_gt, T_est): seq_len = len(T_gt) err = 0 for i in range(seq_len): for j in range(seq_len): d_gt = T_gt[i] @ np.linalg.inv(T_gt[j]) d_est = T_est[i] @ np.linalg.inv(T_est[j]) dt = d_est[:3, 3] - d_gt[:3, 3] err += np.linalg.norm(dt) ** 2 return err
[ "numpy.sum", "numpy.log", "numpy.median", "numpy.asarray", "open3d.geometry.KDTreeFlann", "numpy.linalg.eig", "numpy.mean", "numpy.linalg.inv", "numpy.linalg.norm", "numpy.linalg.det", "numpy.cov" ]
[((797, 829), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['pc_map'], {}), '(pc_map)\n', (821, 829), True, 'import open3d as o3d\n'), ((843, 868), 'numpy.asarray', 'np.asarray', (['pc_map.points'], {}), '(pc_map.points)\n', (853, 868), True, 'import numpy as np\n'), ((1367, 1399), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['pc_map'], {}), '(pc_map)\n', (1391, 1399), True, 'import open3d as o3d\n'), ((1413, 1438), 'numpy.asarray', 'np.asarray', (['pc_map.points'], {}), '(pc_map.points)\n', (1423, 1438), True, 'import numpy as np\n'), ((1870, 1902), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['pc_map'], {}), '(pc_map)\n', (1894, 1902), True, 'import open3d as o3d\n'), ((1916, 1941), 'numpy.asarray', 'np.asarray', (['pc_map.points'], {}), '(pc_map.points)\n', (1926, 1941), True, 'import numpy as np\n'), ((2441, 2464), 'numpy.sum', 'np.sum', (['orth_axes_stats'], {}), '(orth_axes_stats)\n', (2447, 2464), True, 'import numpy as np\n'), ((2525, 2557), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['pc_map'], {}), '(pc_map)\n', (2549, 2557), True, 'import open3d as o3d\n'), ((2571, 2596), 'numpy.asarray', 'np.asarray', (['pc_map.points'], {}), '(pc_map.points)\n', (2581, 2596), True, 'import numpy as np\n'), ((3115, 3138), 'numpy.sum', 'np.sum', (['orth_axes_stats'], {}), '(orth_axes_stats)\n', (3121, 3138), True, 'import numpy as np\n'), ((3168, 3184), 'numpy.cov', 'np.cov', (['points.T'], {}), '(points.T)\n', (3174, 3184), True, 'import numpy as np\n'), ((3195, 3232), 'numpy.linalg.det', 'np.linalg.det', (['(2 * np.pi * np.e * cov)'], {}), '(2 * np.pi * np.e * cov)\n', (3208, 3232), True, 'import numpy as np\n'), ((3317, 3333), 'numpy.cov', 'np.cov', (['points.T'], {}), '(points.T)\n', (3323, 3333), True, 'import numpy as np\n'), ((1258, 1273), 'numpy.mean', 'np.mean', (['metric'], {}), '(metric)\n', (1265, 1273), True, 'import numpy as np\n'), ((1792, 1807), 'numpy.mean', 'np.mean', (['metric'], {}), '(metric)\n', (1799, 1807), True, 'import numpy as np\n'), ((2365, 2380), 'numpy.mean', 'np.mean', (['metric'], {}), '(metric)\n', (2372, 2380), True, 'import numpy as np\n'), ((3037, 3054), 'numpy.median', 'np.median', (['metric'], {}), '(metric)\n', (3046, 3054), True, 'import numpy as np\n'), ((3352, 3370), 'numpy.linalg.eig', 'np.linalg.eig', (['cov'], {}), '(cov)\n', (3365, 3370), True, 'import numpy as np\n'), ((1068, 1089), 'numpy.cov', 'np.cov', (['points[idx].T'], {}), '(points[idx].T)\n', (1074, 1089), True, 'import numpy as np\n'), ((1108, 1145), 'numpy.linalg.det', 'np.linalg.det', (['(2 * np.pi * np.e * cov)'], {}), '(2 * np.pi * np.e * cov)\n', (1121, 1145), True, 'import numpy as np\n'), ((1639, 1660), 'numpy.cov', 'np.cov', (['points[idx].T'], {}), '(points[idx].T)\n', (1645, 1660), True, 'import numpy as np\n'), ((3250, 3261), 'numpy.log', 'np.log', (['det'], {}), '(det)\n', (3256, 3261), True, 'import numpy as np\n'), ((1687, 1705), 'numpy.linalg.eig', 'np.linalg.eig', (['cov'], {}), '(cov)\n', (1700, 1705), True, 'import numpy as np\n'), ((3553, 3575), 'numpy.linalg.inv', 'np.linalg.inv', (['T_gt[j]'], {}), '(T_gt[j])\n', (3566, 3575), True, 'import numpy as np\n'), ((3607, 3630), 'numpy.linalg.inv', 'np.linalg.inv', (['T_est[j]'], {}), '(T_est[j])\n', (3620, 3630), True, 'import numpy as np\n'), ((3694, 3712), 'numpy.linalg.norm', 'np.linalg.norm', (['dt'], {}), '(dt)\n', (3708, 3712), True, 'import numpy as np\n'), ((1206, 1217), 'numpy.log', 'np.log', (['det'], {}), '(det)\n', (1212, 1217), True, 'import numpy as np\n')]
import torch from torch.utils.data import TensorDataset from torchvision import datasets, transforms from base import BaseDataLoader, BaseDataLoader_2 from torch.utils.data import DataLoader import numpy as np import pandas as pd from .utils import readmts_uci_har, transform_labels class MnistDataLoader(BaseDataLoader): """ MNIST data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True): trsfm = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) self.data_dir = data_dir self.dataset = datasets.MNIST(self.data_dir, train=training, download=True, transform=trsfm) super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers) class HumanActivityRecognitionDataLoader2(BaseDataLoader): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): x_train, y_train, x_test, y_test = readmts_uci_har(data_dir) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) y_train, y_test = transform_labels(y_train, y_test) for i in range(len(x_train)): for j in range(len(x_test)): c = (x_train[i] == x_test[j]) d = c.all() if d: break X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y) dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, validation_split, test_split, num_workers, normalization=True) class HumanActivityRecognitionDataLoader1(BaseDataLoader): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, validation_split, test_split, num_workers, normalization=True) class HumanActivityRecognitionDataLoader3(BaseDataLoader_2): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) n_train = len(x_train) n_test = len(x_test) // 2 n_val = n_test idx_full = np.arange(len(X)) test_idx = idx_full[-n_test:] valid_idx = idx_full[-(n_test+n_val):-n_test] train_idx = idx_full[:n_train] Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, train_idx, valid_idx, test_idx, num_workers, normalization=True) class HumanActivityRecognitionDataLoader(BaseDataLoader_2): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) n_train = len(x_train) n_test = len(x_test) n_val = n_test idx_full = np.arange(len(X)) test_idx = idx_full[-n_test:] train_idx = idx_full[:n_train] np.random.seed(123) np.random.shuffle(train_idx) valid_idx = train_idx[-n_test//2:] train_idx = train_idx[:-n_test//2] Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, train_idx, valid_idx, test_idx, num_workers, normalization=True)
[ "numpy.random.seed", "numpy.random.shuffle", "torchvision.transforms.ToTensor", "numpy.array", "torch.utils.data.TensorDataset", "torchvision.transforms.Normalize", "torchvision.datasets.MNIST", "numpy.concatenate", "torch.from_numpy" ]
[((694, 771), 'torchvision.datasets.MNIST', 'datasets.MNIST', (['self.data_dir'], {'train': 'training', 'download': '(True)', 'transform': 'trsfm'}), '(self.data_dir, train=training, download=True, transform=trsfm)\n', (708, 771), False, 'from torchvision import datasets, transforms\n'), ((1583, 1616), 'numpy.concatenate', 'np.concatenate', (['(x_train, x_test)'], {}), '((x_train, x_test))\n', (1597, 1616), True, 'import numpy as np\n'), ((1629, 1662), 'numpy.concatenate', 'np.concatenate', (['(y_train, y_test)'], {}), '((y_train, y_test))\n', (1643, 1662), True, 'import numpy as np\n'), ((1716, 1735), 'torch.from_numpy', 'torch.from_numpy', (['Y'], {}), '(Y)\n', (1732, 1735), False, 'import torch\n'), ((1755, 1774), 'torch.utils.data.TensorDataset', 'TensorDataset', (['X', 'Y'], {}), '(X, Y)\n', (1768, 1774), False, 'from torch.utils.data import TensorDataset\n'), ((5289, 5322), 'numpy.concatenate', 'np.concatenate', (['(x_train, x_test)'], {}), '((x_train, x_test))\n', (5303, 5322), True, 'import numpy as np\n'), ((5335, 5368), 'numpy.concatenate', 'np.concatenate', (['(y_train, y_test)'], {}), '((y_train, y_test))\n', (5349, 5368), True, 'import numpy as np\n'), ((5503, 5522), 'torch.utils.data.TensorDataset', 'TensorDataset', (['X', 'Y'], {}), '(X, Y)\n', (5516, 5522), False, 'from torch.utils.data import TensorDataset\n'), ((9038, 9071), 'numpy.concatenate', 'np.concatenate', (['(x_train, x_test)'], {}), '((x_train, x_test))\n', (9052, 9071), True, 'import numpy as np\n'), ((9084, 9117), 'numpy.concatenate', 'np.concatenate', (['(y_train, y_test)'], {}), '((y_train, y_test))\n', (9098, 9117), True, 'import numpy as np\n'), ((9510, 9529), 'torch.utils.data.TensorDataset', 'TensorDataset', (['X', 'Y'], {}), '(X, Y)\n', (9523, 9529), False, 'from torch.utils.data import TensorDataset\n'), ((13047, 13080), 'numpy.concatenate', 'np.concatenate', (['(x_train, x_test)'], {}), '((x_train, x_test))\n', (13061, 13080), True, 'import numpy as np\n'), ((13093, 13126), 'numpy.concatenate', 'np.concatenate', (['(y_train, y_test)'], {}), '((y_train, y_test))\n', (13107, 13126), True, 'import numpy as np\n'), ((13335, 13354), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (13349, 13354), True, 'import numpy as np\n'), ((13363, 13391), 'numpy.random.shuffle', 'np.random.shuffle', (['train_idx'], {}), '(train_idx)\n', (13380, 13391), True, 'import numpy as np\n'), ((13613, 13632), 'torch.utils.data.TensorDataset', 'TensorDataset', (['X', 'Y'], {}), '(X, Y)\n', (13626, 13632), False, 'from torch.utils.data import TensorDataset\n'), ((549, 570), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (568, 570), False, 'from torchvision import datasets, transforms\n'), ((584, 626), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.1307,)', '(0.3081,)'], {}), '((0.1307,), (0.3081,))\n', (604, 626), False, 'from torchvision import datasets, transforms\n'), ((1676, 1695), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (1692, 1695), False, 'import torch\n'), ((3747, 3766), 'numpy.array', 'np.array', (['X_signals'], {}), '(X_signals)\n', (3755, 3766), True, 'import numpy as np\n'), ((5417, 5436), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (5433, 5436), False, 'import torch\n'), ((5457, 5476), 'torch.from_numpy', 'torch.from_numpy', (['Y'], {}), '(Y)\n', (5473, 5476), False, 'import torch\n'), ((7496, 7515), 'numpy.array', 'np.array', (['X_signals'], {}), '(X_signals)\n', (7504, 7515), True, 'import numpy as np\n'), ((9424, 9443), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (9440, 9443), False, 'import torch\n'), ((9464, 9483), 'torch.from_numpy', 'torch.from_numpy', (['Y'], {}), '(Y)\n', (9480, 9483), False, 'import torch\n'), ((11505, 11524), 'numpy.array', 'np.array', (['X_signals'], {}), '(X_signals)\n', (11513, 11524), True, 'import numpy as np\n'), ((13527, 13546), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (13543, 13546), False, 'import torch\n'), ((13567, 13586), 'torch.from_numpy', 'torch.from_numpy', (['Y'], {}), '(Y)\n', (13583, 13586), False, 'import torch\n'), ((3510, 3543), 'numpy.array', 'np.array', (['serie'], {'dtype': 'np.float32'}), '(serie, dtype=np.float32)\n', (3518, 3543), True, 'import numpy as np\n'), ((7259, 7292), 'numpy.array', 'np.array', (['serie'], {'dtype': 'np.float32'}), '(serie, dtype=np.float32)\n', (7267, 7292), True, 'import numpy as np\n'), ((11268, 11301), 'numpy.array', 'np.array', (['serie'], {'dtype': 'np.float32'}), '(serie, dtype=np.float32)\n', (11276, 11301), True, 'import numpy as np\n')]
#------------------------------------------------------------------------------- # # Aggregated Magnetic Model # # Author: <NAME> <<EMAIL>> # #------------------------------------------------------------------------------- # Copyright (C) 2018 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- from collections import namedtuple from numpy import inf, zeros, asarray from .._pymm import ( GEOCENTRIC_SPHERICAL, GEODETIC_ABOVE_WGS84, GEOCENTRIC_CARTESIAN, convert, vrot_sph2geod, vrot_sph2cart, ) from .model import GeomagneticModel Component = namedtuple("_Component", ["model", "scale", "parameters"]) def _validity_overlap(validity1, validity2): start1, end1 = validity1 start2, end2 = validity2 start = max(start1, start2) end = min(end1, end2) if end < start: return -inf, -inf return start, end class ComposedGeomagneticModel(GeomagneticModel): """ Composed Earth magnetic field model aggregating multiple models into one. """ def __init__(self, *models): self._parameters = set() self._components = [] self._validity = (-inf, inf) for model in models: self.push(model) def push(self, model, scale=1.0, **parameters): """ Add model. """ self._parameters.update(model.parameters) self._validity = _validity_overlap(self.validity, model.validity) self._components.append(Component(model, scale, parameters)) @property def validity(self): return self._validity @property def parameters(self): """ required parameters. """ return tuple(self._parameters) def eval(self, time, location, input_coordinate_system=GEOCENTRIC_SPHERICAL, output_coordinate_system=GEOCENTRIC_SPHERICAL, **options): # convert input coordinates to spherical coordinates coord_sph = convert( location, input_coordinate_system, GEOCENTRIC_SPHERICAL ) # get output dimension time = asarray(time) location = asarray(location) if time.ndim > (location.ndim - 1): shape = time.shape else: shape = location.shape[:-1] result = zeros(shape + (3,)) final_scale = options.pop("scale", None) for model, scale, params in self._components: args = options.copy() args.update(params) result += model.eval(time, coord_sph, scale=scale, **args) # rotate result to the desired coordinate frame if output_coordinate_system == GEODETIC_ABOVE_WGS84: if input_coordinate_system == GEODETIC_ABOVE_WGS84: coord_out = location else: coord_out = convert( coord_sph, GEOCENTRIC_SPHERICAL, GEODETIC_ABOVE_WGS84 ) result = vrot_sph2geod(result, coord_out[..., 0] - coord_sph[..., 0]) elif output_coordinate_system == GEOCENTRIC_CARTESIAN: result = vrot_sph2cart(result, coord_sph[..., 0], coord_sph[..., 1]) # apply the final scale if final_scale is not None: result *= final_scale return result
[ "numpy.asarray", "numpy.zeros", "collections.namedtuple" ]
[((1678, 1736), 'collections.namedtuple', 'namedtuple', (['"""_Component"""', "['model', 'scale', 'parameters']"], {}), "('_Component', ['model', 'scale', 'parameters'])\n", (1688, 1736), False, 'from collections import namedtuple\n'), ((3161, 3174), 'numpy.asarray', 'asarray', (['time'], {}), '(time)\n', (3168, 3174), False, 'from numpy import inf, zeros, asarray\n'), ((3194, 3211), 'numpy.asarray', 'asarray', (['location'], {}), '(location)\n', (3201, 3211), False, 'from numpy import inf, zeros, asarray\n'), ((3359, 3378), 'numpy.zeros', 'zeros', (['(shape + (3,))'], {}), '(shape + (3,))\n', (3364, 3378), False, 'from numpy import inf, zeros, asarray\n')]
import operator import sqlalchemy import pandas as pd import numpy as np from math import ceil DEFAULT_VARCHAR_LENGTH=100 def get_detected_column_types(df): """ Get data type of each columns ('DATETIME', 'NUMERIC' or 'STRING') Parameters: df (df): pandas dataframe Returns df (df): dataframe that all datatypes are converted (df) """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' for c in df.columns: # Convert column to string col_data = df[c].map(str) col_data = col_data.replace("NaT", None) col_data = col_data.replace("NaN", None) # Check NULL column if(df[c].isnull().values.all()): continue # Check DATETIME try: # Check if it's able to convert column to datetime # if column is datetime, then skip to convert if 'datetime' in str(col_data.dtype): continue df[c] = pd.to_datetime(col_data) continue except ValueError: pass # Check NUMERIC try: # Drop NaN rows series = df[c].dropna() # if column_name is int or float, then skip to convert if 'int' in str(col_data.dtype) or 'float' in str(col_data.dtype): continue # Check if it can be converted to numeric df[c] = pd.to_numeric(series) except ValueError: pass return df def get_max_length_columns(df): """ find maximum length of value in each column and ceil it Parameters: df (df): dataframe Returns arr_max_len_columns (array): array of length for each column arr_max_decimal (array): array of maximum decimal for float, double, and decimal datatype, otherwise its value is zero """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' measurer = np.vectorize(len) arr_max_len_columns = [] arr_max_decimal = [] for i, x in enumerate(measurer(df.values.astype(str)).max(axis=0)): if 'float' in str(df.iloc[:, i].dtype): col_data = df.iloc[:, i].map(str).str.extract('\.(.*)') max_decimal = measurer(col_data.values.astype(str)).max(axis=0)[0] arr_max_decimal.append(max_decimal) else: arr_max_decimal.append(0) arr_max_len_columns.append(ceil(x / 10) * 10) return arr_max_len_columns, arr_max_decimal def convert_df_datatype_to_sqlalchemy_datatype(df): """ convert dataframe's data type into SQLAlchemy's data type Parameters: df (df): dataframe Returns: dtype_dict (dict): dict of data type of each column in SQLAlchemy standard """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' arr_max_len_columns, arr_max_decimal = get_max_length_columns(df) dtype_dict = {} for i, col_name in enumerate(df.columns): if(df[col_name].isnull().values.all()): dtype_dict[col_name] = sqlalchemy.types.VARCHAR(DEFAULT_VARCHAR_LENGTH) elif 'bool' in str(df[col_name].dtype): # Compatible with SQL-Server and MySQL, since MySQL doesn't have BOOLEAN. dtype_dict[col_name] = sqlalchemy.types.INTEGER() elif 'int' in str(df[col_name].dtype): dtype_dict[col_name] = sqlalchemy.types.INTEGER() elif 'float' in str(df[col_name].dtype): if df[col_name].dropna().apply(float.is_integer).all(): dtype_dict[col_name] = sqlalchemy.types.INTEGER() else: dtype_dict[col_name] = sqlalchemy.types.DECIMAL(precision=arr_max_len_columns[i], scale=arr_max_decimal[i]) elif 'datetime' in str(df[col_name].dtype): dtype_dict[col_name] = sqlalchemy.types.DateTime() elif 'object' in str(df[col_name].dtype): # check the limit of varhcar, if the length exeeds, then use TEXT if arr_max_len_columns[i] > 1000: dtype_dict[col_name] = sqlalchemy.types.Text() else: dtype_dict[col_name] = sqlalchemy.types.VARCHAR(length=arr_max_len_columns[i]) else: dtype_dict[col_name] = sqlalchemy.types.VARCHAR(length=arr_max_len_columns[i]) return dtype_dict def get_datatype_each_col(df): """ main function to call sub-function in order to find data type and data length for each column Parameters: df (df): dataframe Returns: dtype_dict (dict): dict of data type of each column in SQLAlchemy standard (dict) """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' df = get_detected_column_types(df) dtype_dict = convert_df_datatype_to_sqlalchemy_datatype(df) del df return dtype_dict
[ "numpy.vectorize", "sqlalchemy.types.DateTime", "math.ceil", "sqlalchemy.types.INTEGER", "sqlalchemy.types.VARCHAR", "pandas.to_datetime", "sqlalchemy.types.Text", "sqlalchemy.types.DECIMAL", "pandas.to_numeric" ]
[((1950, 1967), 'numpy.vectorize', 'np.vectorize', (['len'], {}), '(len)\n', (1962, 1967), True, 'import numpy as np\n'), ((983, 1007), 'pandas.to_datetime', 'pd.to_datetime', (['col_data'], {}), '(col_data)\n', (997, 1007), True, 'import pandas as pd\n'), ((1422, 1443), 'pandas.to_numeric', 'pd.to_numeric', (['series'], {}), '(series)\n', (1435, 1443), True, 'import pandas as pd\n'), ((3058, 3106), 'sqlalchemy.types.VARCHAR', 'sqlalchemy.types.VARCHAR', (['DEFAULT_VARCHAR_LENGTH'], {}), '(DEFAULT_VARCHAR_LENGTH)\n', (3082, 3106), False, 'import sqlalchemy\n'), ((2427, 2439), 'math.ceil', 'ceil', (['(x / 10)'], {}), '(x / 10)\n', (2431, 2439), False, 'from math import ceil\n'), ((3276, 3302), 'sqlalchemy.types.INTEGER', 'sqlalchemy.types.INTEGER', ([], {}), '()\n', (3300, 3302), False, 'import sqlalchemy\n'), ((3385, 3411), 'sqlalchemy.types.INTEGER', 'sqlalchemy.types.INTEGER', ([], {}), '()\n', (3409, 3411), False, 'import sqlalchemy\n'), ((3568, 3594), 'sqlalchemy.types.INTEGER', 'sqlalchemy.types.INTEGER', ([], {}), '()\n', (3592, 3594), False, 'import sqlalchemy\n'), ((3652, 3741), 'sqlalchemy.types.DECIMAL', 'sqlalchemy.types.DECIMAL', ([], {'precision': 'arr_max_len_columns[i]', 'scale': 'arr_max_decimal[i]'}), '(precision=arr_max_len_columns[i], scale=\n arr_max_decimal[i])\n', (3676, 3741), False, 'import sqlalchemy\n'), ((3824, 3851), 'sqlalchemy.types.DateTime', 'sqlalchemy.types.DateTime', ([], {}), '()\n', (3849, 3851), False, 'import sqlalchemy\n'), ((4251, 4306), 'sqlalchemy.types.VARCHAR', 'sqlalchemy.types.VARCHAR', ([], {'length': 'arr_max_len_columns[i]'}), '(length=arr_max_len_columns[i])\n', (4275, 4306), False, 'import sqlalchemy\n'), ((4065, 4088), 'sqlalchemy.types.Text', 'sqlalchemy.types.Text', ([], {}), '()\n', (4086, 4088), False, 'import sqlalchemy\n'), ((4146, 4201), 'sqlalchemy.types.VARCHAR', 'sqlalchemy.types.VARCHAR', ([], {'length': 'arr_max_len_columns[i]'}), '(length=arr_max_len_columns[i])\n', (4170, 4201), False, 'import sqlalchemy\n')]
from typing import Optional, Callable import torch import numpy as np from PIL.Image import Image from ..transforms import TargetHandler class NormalizeBothInputAndTarget: transform: Callable[[Image], Image] target_handler: TargetHandler def __init__( self, transform: Callable[[Image], Image], target_handler: Optional[TargetHandler] = None, ): self.target_handler = target_handler self.transform = transform def forward(self, x: Image) -> torch.Tensor: image_data = np.array(x) std = image_data.std() mean = image_data.mean() erased_img = self.transform(x) erased_img_data = torch.tensor(np.array(erased_img), dtype=torch.float32) normed_img_data = (erased_img_data - mean) / std target = self.target_handler.get() if target is None: raise RuntimeError("target has not generated.") if not isinstance(target, Image): raise TypeError("the generated target must be an PIL.Image") target_data = torch.tensor(np.array(target), dtype=torch.float32) self.target_handler.set((target_data - mean) / std) return normed_img_data
[ "numpy.array" ]
[((554, 565), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (562, 565), True, 'import numpy as np\n'), ((708, 728), 'numpy.array', 'np.array', (['erased_img'], {}), '(erased_img)\n', (716, 728), True, 'import numpy as np\n'), ((1088, 1104), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (1096, 1104), True, 'import numpy as np\n')]
import os import sys import lmdb import json import torch import pickle import random import msgpack import numpy as np import msgpack_numpy # from transformers import AutoTokenizer from lz4.frame import compress, decompress from os.path import exists, abspath, dirname from sklearn.metrics.pairwise import cosine_similarity from PIL import Image, ImageFont, ImageDraw, ImageEnhance import pprint pp = pprint.PrettyPrinter() msgpack_numpy.patch() origin_img_dir = '/data/share/UNITER/origin_imgs/flickr30k/flickr30k-images/' def load_txt_db(db_dir): # db loading env_in = lmdb.open(db_dir, readonly=True, create=False) txn_in = env_in.begin() db = {} for key, value in txn_in.cursor(): db[key] = value print('db length:', len(db)) # db length: 443757 env_in.close() return db def load_img_db(img_dir, conf_th=0.2, max_bb=100, min_bb=10, num_bb=36, compress=False): if conf_th == -1: db_name = f'feat_numbb{num_bb}' name2nbb = defaultdict(lambda: num_bb) else: db_name = f'feat_th{conf_th}_max{max_bb}_min{min_bb}' nbb = f'nbb_th{conf_th}_max{max_bb}_min{min_bb}.json' if not os.path.exists(f'{img_dir}/{nbb}'): # nbb is not pre-computed name2nbb = None else: name2nbb = json.load(open(f'{img_dir}/{nbb}')) # => {'coco_test2015_000000043222.npz': 57, ...} if compress: db_name += '_compressed' if name2nbb is None: if compress: db_name = 'all_compressed' else: db_name = 'all' # db loading env = lmdb.open(f'{img_dir}/{db_name}', readonly=True, create=False) txn = env.begin(buffers=True) return name2nbb, txn def load_single_img(txn, file_name, compress=False): # load single image with its file_name dump = txn.get(file_name.encode('utf-8')) if compress: with io.BytesIO(dump) as reader: img_dump = np.load(reader, allow_pickle=True) img_dump = {'features': img_dump['features'], 'norm_bb': img_dump['norm_bb']} else: img_dump = msgpack.loads(dump, raw=False) return img_dump def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def draw_bounding_box(img_name, img_bb, outline=(0, 0, 0, 255)): source_img = Image.open(origin_img_dir + img_name).convert("RGB") width, height = source_img.size draw = ImageDraw.Draw(source_img, 'RGBA') p1 = (width*img_bb[0], height*img_bb[1]) p2 = (width*img_bb[2], height*img_bb[3]) draw.rectangle((p1, p2), outline=outline, width=2) # draw.text((img_bb[0], img_bb[1]), "something123", font=ImageFont.truetype("font_path123")) return source_img # source_img.save('bb_' + img_name, "JPEG") def crop_bb(img_name, img_bbs): source_img = Image.open(origin_img_dir + img_name).convert("RGB") width, height = source_img.size for i in range(img_bbs.shape[0]): p1 = (width*img_bbs[i][0], height*img_bbs[i][1]) p2 = (width*img_bbs[i][2], height*img_bbs[i][3]) crop = source_img.crop((p1[0], p1[1], p2[0], p2[1])) crop.save('crop_%d.jpg'%(i), 'JPEG') def main(): NUM_LABELS = 1600 # tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') id2tok = json.load(open('id2tok.json')) labels_ids = json.load(open('object_labels_ids.json')) def convert_ids_to_tokens(i): if isinstance(i, int): return id2tok[str(i)] else: i = list(i) return [id2tok[str(ii)] for ii in i] def get_label_str(i): if isinstance(i, int): return convert_ids_to_tokens(labels_ids[i]) else: i = list(i) return [convert_ids_to_tokens(labels_ids[ii]) if ii > 0 else '[BACKGROUND]' for ii in i] def get_hard_labels(soft_labels, top_k=3): if len(soft_labels.shape) < 2: soft_labels = soft_labels.reshape(1, -1) sorted_labels = soft_labels.argsort(axis=-1)[:, ::-1][:, :top_k] sorted_labels = sorted_labels - 1 res = [] for l in sorted_labels: res.append(get_label_str(l)) return res checkpoint = torch.load( "/data/private/cc/experiment/MMP/pretrained_ckpts/pretrained/uniter-base.pt") emb_weight = checkpoint['uniter.embeddings.word_embeddings.weight'] txt_db_old = load_txt_db('/data/share/UNITER/ve/txt_db/ve_train.db') txt_db_new = load_txt_db( '/data/share/UNITER/ve/da/GloVe/seed2/txt_db/ve_train.db') name2nbb, img_db_txn = load_img_db('/data/share/UNITER/ve/img_db/flickr30k') def display(k): d1 = msgpack.loads(decompress(txt_db_old[k.split(b'_')[1]]), raw=False) d2 = msgpack.loads(decompress(txt_db_new[k]), raw=False) # input_1 = tokenizer.convet_ids_to_tokens(d1['input_ids']) # input_2 = tokenizer.convert_ids_to_tokens(d2['input_ids']) input_1 = convert_ids_to_tokens(d1['input_ids']) input_2 = convert_ids_to_tokens(d2['input_ids']) input_3 = convert_ids_to_tokens(d2['mix_input_ids']) hard_labels = get_hard_labels(d2['mix_soft_labels']) # img1 = load_single_img(img_db_txn, d1['img_fname']) img = load_single_img(img_db_txn, d2['img_fname']) origin_img_name = str(k).split('_')[1].split('#')[0] im1 = draw_bounding_box(origin_img_name, img['norm_bb'][d2['mix_index']]) im2 = draw_bounding_box(d2['mix_img_flk_id'], d2['mix_bb'], (200, 0, 0, 255)) cat_im = get_concat_h(im1, im2) cat_im.save('bb_' + origin_img_name + '_' + d2['mix_img_flk_id'], 'JPEG') # crop_bb(origin_img_name, img['norm_bb']) return input_1, input_2, input_3, hard_labels # print(list(txt_db_new.keys())[:10]) pp.pprint(display(list(txt_db_new.keys())[3])) # pp.pprint(display(list(txt_db_new.keys())[1])) # pp.pprint(display(list(txt_db_new.keys())[2])) # import ipdb # ipdb.set_trace() if __name__ == '__main__': main()
[ "msgpack_numpy.patch", "PIL.Image.new", "msgpack.loads", "numpy.load", "torch.load", "os.path.exists", "PIL.Image.open", "pprint.PrettyPrinter", "lmdb.open", "PIL.ImageDraw.Draw", "lz4.frame.decompress" ]
[((403, 425), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {}), '()\n', (423, 425), False, 'import pprint\n'), ((427, 448), 'msgpack_numpy.patch', 'msgpack_numpy.patch', ([], {}), '()\n', (446, 448), False, 'import msgpack_numpy\n'), ((583, 629), 'lmdb.open', 'lmdb.open', (['db_dir'], {'readonly': '(True)', 'create': '(False)'}), '(db_dir, readonly=True, create=False)\n', (592, 629), False, 'import lmdb\n'), ((1610, 1672), 'lmdb.open', 'lmdb.open', (['f"""{img_dir}/{db_name}"""'], {'readonly': '(True)', 'create': '(False)'}), "(f'{img_dir}/{db_name}', readonly=True, create=False)\n", (1619, 1672), False, 'import lmdb\n'), ((2226, 2279), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(im1.width + im2.width, im1.height)'], {}), "('RGB', (im1.width + im2.width, im1.height))\n", (2235, 2279), False, 'from PIL import Image, ImageFont, ImageDraw, ImageEnhance\n'), ((2541, 2575), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['source_img', '"""RGBA"""'], {}), "(source_img, 'RGBA')\n", (2555, 2575), False, 'from PIL import Image, ImageFont, ImageDraw, ImageEnhance\n'), ((4305, 4403), 'torch.load', 'torch.load', (['"""/data/private/cc/experiment/MMP/pretrained_ckpts/pretrained/uniter-base.pt"""'], {}), "(\n '/data/private/cc/experiment/MMP/pretrained_ckpts/pretrained/uniter-base.pt'\n )\n", (4315, 4403), False, 'import torch\n'), ((2136, 2166), 'msgpack.loads', 'msgpack.loads', (['dump'], {'raw': '(False)'}), '(dump, raw=False)\n', (2149, 2166), False, 'import msgpack\n'), ((1169, 1203), 'os.path.exists', 'os.path.exists', (['f"""{img_dir}/{nbb}"""'], {}), "(f'{img_dir}/{nbb}')\n", (1183, 1203), False, 'import os\n'), ((1958, 1992), 'numpy.load', 'np.load', (['reader'], {'allow_pickle': '(True)'}), '(reader, allow_pickle=True)\n', (1965, 1992), True, 'import numpy as np\n'), ((2440, 2477), 'PIL.Image.open', 'Image.open', (['(origin_img_dir + img_name)'], {}), '(origin_img_dir + img_name)\n', (2450, 2477), False, 'from PIL import Image, ImageFont, ImageDraw, ImageEnhance\n'), ((2938, 2975), 'PIL.Image.open', 'Image.open', (['(origin_img_dir + img_name)'], {}), '(origin_img_dir + img_name)\n', (2948, 2975), False, 'from PIL import Image, ImageFont, ImageDraw, ImageEnhance\n'), ((4855, 4880), 'lz4.frame.decompress', 'decompress', (['txt_db_new[k]'], {}), '(txt_db_new[k])\n', (4865, 4880), False, 'from lz4.frame import compress, decompress\n')]
# Solving reinforcement learning problems using pgpelib with parallelization # and with observation normalization # ========================================================================== # # This example demonstrates how to solve locomotion tasks. # The following techniques are used: # # - dynamic population size # - observation normalization # - parallelization (using the ray library) # # Because we are using both parallelization and observation normalization, # we will have to synchronize the observation stats between the remote # workers and the main process. # We demonstrate how to do this synchronization using ray, # however the logic is applicable to other parallelization libraries. from pgpelib import PGPE from pgpelib.policies import Policy, LinearPolicy, MLPPolicy from pgpelib.restore import to_torch_module from pgpelib.runningstat import RunningStat from typing import Tuple, Iterable from numbers import Real import numpy as np import torch import gym import ray import multiprocessing as mp from time import sleep import pickle # Here is the gym environment to solve. ENV_NAME = 'Walker2d-v2' # The environment we are considering to solve is a locomotion problem. # It defines an "alive bonus" to encourage the agent to stand on its # feet without falling. # However, such alive bonuses might drive the evolution process into # generating agents which focus ONLY on standing on their feet (without # progressing), just to collect these bonuses. # We therefore remove this alive bonus by subtracting 1.0 at every # simulator timestep. DECREASE_REWARDS_BY = 1.0 # Ray supports stateful parallelization via remote actors. # An actor is a class instance which lives on different process than # the main process, and which stores its state. # Here, we define a remote actor class (which will be instantiated # multiple times, so that we will be able to use the instances for # parallelized evaluation of our solutions) @ray.remote class Worker: def __init__(self, policy, decrease_rewards_by): policy: Policy self.policy: Policy = policy self.decrease_rewards_by = decrease_rewards_by def set_main_obs_stats(self, rs): # Set the main observation stats of the remote worker. # The goal of this function is to receive the observation # stats from the main process. rs: RunningStat self.policy.set_main_obs_stats(rs) def pop_collected_obs_stats(self): # Pop the observation stats collected by the worker. # At the time of synchronization, the main process will call # this method of each remote worker, and update its main # observation stats with those collected data. return self.policy.pop_collected_obs_stats() def run(self, d): # Run a each solution in the dictionary d. # The dictionary d is expected in this format: # { solution_index1: solution1, # solution_index2: solution2, # ... } # and the result will be: # { solution_index1: (cumulative_reward1, number_of_interactions1) # solution_index2: (cumulative_reward2, number_of_interactions2) # ... } return self.policy.set_params_and_run_all( d, decrease_rewards_by=self.decrease_rewards_by ) # Set the number of workers to be instantiated as the number of CPUs. NUM_WORKERS = mp.cpu_count() # List of workers. # Initialized as a list containing `None`s in the beginning. WORKERS = [None] * NUM_WORKERS def prepare_workers(policy, decrease_rewards_by): # Fill the WORKERS list. # Initialize the ray library. ray.init() # For each index i of WORKERS list, fill the i-th element with a new # worker instance. for i in range(len(WORKERS)): WORKERS[i] = Worker.remote(policy, decrease_rewards_by) Reals = Iterable[Real] def evaluate_solutions(solutions: Iterable[np.ndarray]) -> Tuple[Reals, Reals]: # This function evaluates the given solutions in parallel. # Get the number of solutions nslns = len(solutions) if len(WORKERS) > nslns: # If the number of workers is greater than the number of solutions # then the workers that we are going to actually use here # is the first `nslns` amount of workers, not all of them. workers = WORKERS[:nslns] else: # If the number of solutions is equal to or greater than the # number of workers, then we will use all of the instantiated # workers. workers = WORKERS # Number of workers that are going to be used now. nworkers = len(workers) # To each worker, we aim to send a dictionary, each dictionary being # in this form: # { solution_index1: solution1, solution_index2: solution2, ...} # We keep those dictionaries in the `to_worker` variable. # to_worker[i] stores the dictionary to be sent to the i-th worker. to_worker = [dict() for _ in range(nworkers)] # Iterate over the solutions and assign them one by one to the # workers. i_worker = 0 for i, solution in enumerate(solutions): to_worker[i_worker][i] = solution i_worker = (i_worker + 1) % nworkers # Each worker executes the solution dictionary assigned to itself. # The results are then collected to the list `worker_results`. # The workers do their tasks in parallel. worker_results = ray.get( [ workers[i].run.remote(to_worker[i]) for i in range(nworkers) ] ) # Allocate a list for storing the fitnesses, and another list for # storing the number of interactions. fitnesses = [None] * nslns num_interactions = [None] * nslns # For each worker: for worker_result in worker_results: # For each solution and its index mentioned in the worker's # result dictionary: for i, result in worker_result.items(): fitness, timesteps = result # Store the i-th solution's fitness in the fitnesses list fitnesses[i] = fitness # Store the i-th solution's number of interactions in the # num_interactions list. num_interactions[i] = timesteps # Return the fitnesses and the number of interactions lists. return fitnesses, num_interactions def sync_obs_stats(main_policy: Policy): # This function synchronizes the observation stats of the # main process and of the main workers. # Collect observation stats from the remote workers collected_stats = ray.get( [ worker.pop_collected_obs_stats.remote() for worker in WORKERS ] ) # In the main process, update the main policy's # observation stats with the stats collected from the remote workers. for stats in collected_stats: main_policy.update_main_obs_stats(stats) # To each worker, send the main policy's up-to-date stats. ray.get( [ worker.set_main_obs_stats.remote( main_policy.get_main_obs_stats() ) for worker in WORKERS ] ) def main(): # This is the main function. # The main evolution procedure will be defined here. # Make a linear policy. policy = LinearPolicy( env_name=ENV_NAME, # Name of the environment observation_normalization=True ) # Prepare the workers prepare_workers(policy, DECREASE_REWARDS_BY) # Initial solution x0 = np.zeros(policy.get_parameters_count(), dtype='float32') # The following are the Walker2d-v2 hyperparameters used in the paper: # ClipUp: A Simple and Powerful Optimizer for Distribution-based # Policy Evolution N = policy.get_parameters_count() max_speed = 0.015 center_learning_rate = max_speed / 2.0 radius = max_speed * 15 # Compute the stdev_init from the radius: stdev_init = np.sqrt((radius ** 2) / N) popsize = 100 popsize_max = 800 # Below we initialize our PGPE solver. pgpe = PGPE( solution_length=N, popsize=popsize, popsize_max=popsize_max, num_interactions=int(popsize * 1000 * (3 / 4)), center_init=x0, center_learning_rate=center_learning_rate, optimizer='clipup', optimizer_config={'max_speed': max_speed}, stdev_init=stdev_init, stdev_learning_rate=0.1, stdev_max_change=0.2, solution_ranking=True, dtype='float32' ) num_iterations = 500 # The main loop of the evolutionary computation for i in range(1, 1 + num_iterations): total_episodes = 0 while True: # Get the solutions from the pgpe solver solutions = pgpe.ask() # Evaluate the solutions in parallel and get the fitnesses fitnesses, num_interactions = evaluate_solutions(solutions) sync_obs_stats(policy) # Send the pgpe solver the received fitnesses iteration_finished = pgpe.tell(fitnesses, num_interactions) total_episodes += len(fitnesses) if iteration_finished: break print( "Iteration:", i, " median score:", np.median(fitnesses), " num.episodes:", total_episodes ) print("Visualizing the center solution...") # Get the center solution center_solution = pgpe.center.copy() # Make the gym environment for visualizing the center solution env = gym.make(ENV_NAME) # Load the center solution into the policy policy.set_parameters(center_solution) # Save the policy into a pickle file with open(__file__ + '.pickle', 'wb') as f: pickle.dump(policy, f) # Convert the policy to a PyTorch module net = to_torch_module(policy) while True: print("Please choose: 1> Visualize the agent 2> Quit") response = input(">>") if response == '1': cumulative_reward = 0.0 # Reset the environment, and get the observation of the initial # state into a variable. observation = env.reset() # Visualize the initial state env.render() # Main loop of the trajectory while True: with torch.no_grad(): action = net( torch.as_tensor(observation, dtype=torch.float32) ).numpy() if isinstance(env.action_space, gym.spaces.Box): interaction = action elif isinstance(env.action_space, gym.spaces.Discrete): interaction = int(np.argmax(action)) else: assert False, "Unknown action space" observation, reward, done, info = env.step(interaction) env.render() cumulative_reward += reward if done: break print("cumulative_reward", cumulative_reward) elif response == '2': break else: print('Unrecognized response:', repr(response)) if __name__ == "__main__": main()
[ "ray.init", "pickle.dump", "gym.make", "pgpelib.policies.LinearPolicy", "numpy.argmax", "numpy.median", "multiprocessing.cpu_count", "torch.as_tensor", "pgpelib.restore.to_torch_module", "torch.no_grad", "numpy.sqrt" ]
[((3508, 3522), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3520, 3522), True, 'import multiprocessing as mp\n'), ((3754, 3764), 'ray.init', 'ray.init', ([], {}), '()\n', (3762, 3764), False, 'import ray\n'), ((7389, 7452), 'pgpelib.policies.LinearPolicy', 'LinearPolicy', ([], {'env_name': 'ENV_NAME', 'observation_normalization': '(True)'}), '(env_name=ENV_NAME, observation_normalization=True)\n', (7401, 7452), False, 'from pgpelib.policies import Policy, LinearPolicy, MLPPolicy\n'), ((8030, 8054), 'numpy.sqrt', 'np.sqrt', (['(radius ** 2 / N)'], {}), '(radius ** 2 / N)\n', (8037, 8054), True, 'import numpy as np\n'), ((9655, 9673), 'gym.make', 'gym.make', (['ENV_NAME'], {}), '(ENV_NAME)\n', (9663, 9673), False, 'import gym\n'), ((9942, 9965), 'pgpelib.restore.to_torch_module', 'to_torch_module', (['policy'], {}), '(policy)\n', (9957, 9965), False, 'from pgpelib.restore import to_torch_module\n'), ((9863, 9885), 'pickle.dump', 'pickle.dump', (['policy', 'f'], {}), '(policy, f)\n', (9874, 9885), False, 'import pickle\n'), ((9378, 9398), 'numpy.median', 'np.median', (['fitnesses'], {}), '(fitnesses)\n', (9387, 9398), True, 'import numpy as np\n'), ((10451, 10466), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10464, 10466), False, 'import torch\n'), ((10823, 10840), 'numpy.argmax', 'np.argmax', (['action'], {}), '(action)\n', (10832, 10840), True, 'import numpy as np\n'), ((10526, 10575), 'torch.as_tensor', 'torch.as_tensor', (['observation'], {'dtype': 'torch.float32'}), '(observation, dtype=torch.float32)\n', (10541, 10575), False, 'import torch\n')]
import lue.data_model as ldm import numpy as np import csv def export_partition_shape_results( lue_dataset, csv_writer): # Assert that the number of array shapes for which experiments where # performed is 1 lue_array = lue_dataset.array.array assert lue_array.shape.value.nr_arrays == 1 # For each array shape for which experiments where performed lue_measurement = lue_dataset.benchmark.measurement array_shapes = lue_measurement.array_shape.value[:] assert np.all(array_shapes == array_shapes[0]) count = lue_measurement.duration.value.array_shape[:][0] lue_partition = lue_dataset.partition.partition partition_shape = lue_measurement.partition_shape.value[:] nr_partitions = lue_measurement.nr_partitions.value[:,-1] assert len(partition_shape) == len(nr_partitions) if count == 1: assert False, "Implement!" else: # Write the following columns: # - partition_shape # - nr_partitions # - {mean,std}_duration csv_writer.writerow([ # "partition_shape", "partition_size", "nr_partitions", "mean_duration", "std_duration", ]) mean_duration = \ lue_partition.properties["mean_duration_{}".format(0)].value[:] std_duration = \ lue_partition.properties["std_duration_{}".format(0)].value[:] for n in range(len(partition_shape)): csv_writer.writerow([ # "{},{}".format(*partition_shape[n]), np.prod(partition_shape[n]), nr_partitions[n], mean_duration[n], std_duration[n], ]) def export_strong_scaling_results( lue_dataset, csv_writer): lue_measurement = lue_dataset.benchmark.measurement count = lue_measurement.duration.value.array_shape[:][0] nr_workers = lue_measurement.nr_workers.value[:] sort_idxs = np.argsort(nr_workers) nr_workers = nr_workers[sort_idxs] if count == 1: # Write the following columns: # - nr_workers # - relative_speed_up # - relative_efficiency # - lups csv_writer.writerow([ "nr_workers", "duration", "relative_speed_up", "relative_efficiency", "lups", ]) lue_scaling = lue_dataset.benchmark.scaling duration = lue_measurement.duration.value[:][sort_idxs] relative_speed_up = lue_scaling.relative_speed_up.value[:][sort_idxs] relative_efficiency = lue_scaling.relative_efficiency.value[:][sort_idxs] lups = lue_scaling.lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], duration[n][0], relative_speed_up[n][0], relative_efficiency[n][0], lups[n][0], ]) else: # Write the following columns: # - nr_workers # - {mean,std}_duration # - {mean,std}_relative_efficiency # - {mean,std}_lups csv_writer.writerow([ "nr_workers", "mean_duration", "std_duration", "mean_relative_efficiency", "std_relative_efficiency", "mean_lups", "std_lups", ]) lue_scaling = lue_dataset.benchmark.scaling mean_duration = lue_scaling.mean_duration.value[:][sort_idxs] std_duration = lue_scaling.std_duration.value[:][sort_idxs] mean_relative_efficiency = lue_scaling.mean_relative_efficiency.value[:][sort_idxs] std_relative_efficiency = lue_scaling.std_relative_efficiency.value[:][sort_idxs] mean_lups = lue_scaling.mean_lups.value[:][sort_idxs] std_lups = lue_scaling.std_lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], mean_duration[n], std_duration[n], mean_relative_efficiency[n], std_relative_efficiency[n], mean_lups[n], std_lups[n], ]) def export_weak_scaling_results( lue_dataset, csv_writer): lue_measurement = lue_dataset.benchmark.measurement count = lue_measurement.duration.value.array_shape[:][0] nr_workers = lue_measurement.nr_workers.value[:] sort_idxs = np.argsort(nr_workers) nr_workers = nr_workers[sort_idxs] if count == 1: # Write the following columns: # - nr_workers # - duration # - relative_efficiency # - lups csv_writer.writerow([ "nr_workers", "duration", "relative_efficiency", "lups", ]) lue_scaling = lue_dataset.benchmark.scaling duration = lue_measurement.duration.value[:] relative_efficiency = lue_scaling.relative_efficiency.value[:][sort_idxs] lups = lue_scaling.lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], duration[n][0], relative_efficiency[n][0], lups[n][0], ]) else: # Write the following columns: # - nr_workers # - {mean,std}_duration # - {mean,std}_relative_efficiency # - {mean,std}_lups csv_writer.writerow([ "nr_workers", "mean_duration", "std_duration", "mean_relative_efficiency", "std_relative_efficiency", "mean_lups", "std_lups", ]) lue_scaling = lue_dataset.benchmark.scaling mean_duration = lue_scaling.mean_duration.value[:][sort_idxs] std_duration = lue_scaling.std_duration.value[:][sort_idxs] mean_relative_efficiency = lue_scaling.mean_relative_efficiency.value[:][sort_idxs] std_relative_efficiency = lue_scaling.std_relative_efficiency.value[:][sort_idxs] mean_lups = lue_scaling.mean_lups.value[:][sort_idxs] std_lups = lue_scaling.std_lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], mean_duration[n], std_duration[n], mean_relative_efficiency[n], std_relative_efficiency[n], mean_lups[n], std_lups[n], ]) def export_results( lue_dataset_pathname, csv_file_pathname): lue_dataset = ldm.open_dataset(lue_dataset_pathname, "r") kind = lue_dataset.benchmark.meta_information.kind.value[:][0] with open(csv_file_pathname, "w") as csv_file: csv_writer = csv.writer(csv_file) export_by_kind = { "partition_shape": export_partition_shape_results, "strong_scaling": export_strong_scaling_results, "weak_scaling": export_weak_scaling_results, } export_by_kind[kind](lue_dataset, csv_writer)
[ "csv.writer", "numpy.prod", "numpy.argsort", "lue.data_model.open_dataset", "numpy.all" ]
[((512, 551), 'numpy.all', 'np.all', (['(array_shapes == array_shapes[0])'], {}), '(array_shapes == array_shapes[0])\n', (518, 551), True, 'import numpy as np\n'), ((2065, 2087), 'numpy.argsort', 'np.argsort', (['nr_workers'], {}), '(nr_workers)\n', (2075, 2087), True, 'import numpy as np\n'), ((4753, 4775), 'numpy.argsort', 'np.argsort', (['nr_workers'], {}), '(nr_workers)\n', (4763, 4775), True, 'import numpy as np\n'), ((7092, 7135), 'lue.data_model.open_dataset', 'ldm.open_dataset', (['lue_dataset_pathname', '"""r"""'], {}), "(lue_dataset_pathname, 'r')\n", (7108, 7135), True, 'import lue.data_model as ldm\n'), ((7276, 7296), 'csv.writer', 'csv.writer', (['csv_file'], {}), '(csv_file)\n', (7286, 7296), False, 'import csv\n'), ((1638, 1665), 'numpy.prod', 'np.prod', (['partition_shape[n]'], {}), '(partition_shape[n])\n', (1645, 1665), True, 'import numpy as np\n')]
import os from statistics import mean import numpy as np import matplotlib.pyplot as pyplot from simtk import unit from simtk.openmm.app.pdbfile import PDBFile from foldamers.cg_model.cgmodel import CGModel from foldamers.parameters.reweight import * from foldamers.thermo.calc import * from foldamers.ensembles.ens_build import * from cg_openmm.simulation.rep_exch import * from cg_openmm.simulation.tools import * # Job settings scan_sc_bb_bb_sc_torsions = True calculate_dQ = True calculate_free_energies = True evaluate_heat_capacity = True output_directory = "output" if not os.path.exists(output_directory): os.mkdir(output_directory) # Number of grid points to scan (around initial angle definition) grid_points = 3 # Configure Yank (replica exchange) simulation settings print_frequency = 5 # Number of steps to skip when printing output total_simulation_time = 500.0 * unit.picosecond simulation_time_step = 5.0 * unit.femtosecond number_replicas = 30 min_temp = 1.0 * unit.kelvin max_temp = 400.0 * unit.kelvin temperature_list = get_temperature_list(min_temp, max_temp, number_replicas) # Model settings polymer_length = 12 backbone_lengths = [1] sidechain_lengths = [1] sidechain_positions = [0] include_bond_forces = False include_bond_angle_forces = True include_nonbonded_forces = True include_torsion_forces = True constrain_bonds = True # Bond definitions bond_length = 7.5 * unit.angstrom bond_lengths = { "bb_bb_bond_length": bond_length, "bb_sc_bond_length": bond_length, "sc_sc_bond_length": bond_length, } bond_force_constant = 0 * unit.kilocalorie_per_mole / unit.nanometer / unit.nanometer bond_force_constants = { "bb_bb_bond_k": bond_force_constant, "bb_sc_bond_k": bond_force_constant, "sc_sc_bond_k": bond_force_constant, } # Particle definitions mass = 100.0 * unit.amu masses = {"backbone_bead_masses": mass, "sidechain_bead_masses": mass} r_min = 3.0 * bond_length # Lennard-Jones potential r_min sigma = r_min / (2.0 ** (1 / 6)) # Factor of /(2.0**(1/6)) is applied to convert r_min to sigma sigmas = {"bb_sigma": sigma, "sc_sigma": sigma} epsilon = 0.05 * unit.kilocalorie_per_mole epsilons = {"bb_eps": epsilon, "sc_eps": epsilon} # Bond angle definitions bond_angle_force_constant = 0.0001 * unit.kilocalorie_per_mole / unit.radian / unit.radian bond_angle_force_constants = { "bb_bb_bb_angle_k": bond_angle_force_constant, "bb_bb_sc_angle_k": bond_angle_force_constant, } bb_bb_bb_equil_bond_angle = 120.0 * ( 3.14 / 180.0 ) # OpenMM expects angle definitions in units of radians bb_bb_sc_equil_bond_angle = 120.0 * (3.14 / 180.0) equil_bond_angles = { "bb_bb_bb_angle_0": bb_bb_bb_equil_bond_angle, "bb_bb_sc_angle_0": bb_bb_sc_equil_bond_angle, } # Torsion angle definitions (Used to establish a scanning range below) torsion_force_constant = 0.01 * unit.kilocalorie_per_mole / unit.radian / unit.radian if scan_sc_bb_bb_sc_torsions == True: torsion_force_constants = { "bb_bb_bb_bb_torsion_k": torsion_force_constant, "sc_bb_bb_sc_torsion_k": torsion_force_constant, } bb_bb_bb_bb_equil_torsion_angle = 78.0 * ( 3.14 / 180.0 ) # OpenMM defaults to units of radians for angle definitions sc_bb_bb_sc_equil_torsion_angle = 120.0 * (3.14 / 180.0) equil_torsion_angles = { "bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle, "sc_bb_bb_sc_torsion_0": sc_bb_bb_sc_equil_torsion_angle, } torsion_periodicities = {"bb_bb_bb_bb_period": 1, "sc_bb_bb_sc_period": 1} else: torsion_force_constants = {"bb_bb_bb_bb_torsion_k": torsion_force_constant} bb_bb_bb_bb_equil_torsion_angle = 78.0 * ( 3.14 / 180.0 ) # OpenMM defaults to units of radians for angle definitions equil_torsion_angles = {"bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle} torsion_periodicities = {"bb_bb_bb_bb_period": 1} # Get initial positions from local file positions = PDBFile("helix.pdb").getPositions() # Build a coarse grained model cgmodel = CGModel( polymer_length=polymer_length, backbone_lengths=backbone_lengths, sidechain_lengths=sidechain_lengths, sidechain_positions=sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons, bond_lengths=bond_lengths, bond_force_constants=bond_force_constants, bond_angle_force_constants=bond_angle_force_constants, torsion_force_constants=torsion_force_constants, equil_bond_angles=equil_bond_angles, equil_torsion_angles=equil_torsion_angles, torsion_periodicities=torsion_periodicities, include_nonbonded_forces=include_nonbonded_forces, include_bond_forces=include_bond_forces, include_bond_angle_forces=include_bond_angle_forces, include_torsion_forces=include_torsion_forces, constrain_bonds=constrain_bonds, positions=positions, ) # Run test simulations (NVT) with this coarse-grained model at the minimum and maximum temperatures # to make sure the parameters are reasonable before attempting replica exchange simulations # (If high-T simulations fail then we need to modify the model parameters) test_simulation_time = 50.0 * unit.picosecond print_frequency = 5 temperature = temperature_list[0] output_directory = str("test_" + str(round(temperature._value, 1))) if not os.path.exists(output_directory): os.mkdir(output_directory) run_simulation( cgmodel, output_directory, test_simulation_time, simulation_time_step, temperature, print_frequency, ) temperature = temperature_list[-1] output_directory = str("test_" + str(round(temperature._value, 1))) if not os.path.exists(output_directory): os.mkdir(output_directory) run_simulation( cgmodel, output_directory, test_simulation_time, simulation_time_step, temperature, print_frequency, ) # Reset the output directory output_directory = "output" if not os.path.exists(output_directory): os.mkdir(output_directory) # Create a list of the torsion angles that we will investigate in our parameter scan bb_bb_bb_bb_equil_torsion_angles = [ float(bb_bb_bb_bb_equil_torsion_angle + i * 0.05) for i in range(-grid_points, grid_points, 1) ] if scan_sc_bb_bb_sc_torsions == True: sc_bb_bb_sc_equil_torsion_angles = [ float(sc_bb_bb_sc_equil_torsion_angle + i * 0.05) for i in range(-grid_points, grid_points, 1) ] else: sc_bb_bb_sc_equil_torsion_angles = [0.0] if calculate_dQ: # Set parameters for evaluating native contacts native_structure_contact_distance_cutoff = 1.00 * cgmodel.get_sigma( 0 ) # This distance cutoff determines which nonbonded interactions are considered 'native' contacts native_fraction_cutoff = ( 0.95 # The threshold fraction of native contacts above which a pose is considered 'native' ) nonnative_fraction_cutoff = 0.95 # The threshold fraction of native contacts below which a pose is considered 'nonnative' native_ensemble_size = 10 nonnative_ensemble_size = 10 decorrelate = True # Build arrays to store data for each model parameter scan/grid point dQ_list = [] df_ij_list = [] ddf_ij_list = [] Delta_u_list = [] dDelta_u_list = [] Delta_s_list = [] dDelta_s_list = [] C_v_list = [] dC_v_list = [] # This is where we start evaluating the properties of models with different equilibrium torsion angles for sc_bb_bb_sc_equil_torsion_angle in sc_bb_bb_sc_equil_torsion_angles: for bb_bb_bb_bb_equil_torsion_angle in bb_bb_bb_bb_equil_torsion_angles: if scan_sc_bb_bb_sc_torsions == True: equil_torsion_angles = { "bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle, "sc_bb_bb_sc_torsion_0": sc_bb_bb_sc_equil_torsion_angle, } else: equil_torsion_angles = {"bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle} # Build a coarse grained model that has the torsion parameters for this grid point. positions = PDBFile("helix.pdb").getPositions() cgmodel = CGModel( polymer_length=polymer_length, backbone_lengths=backbone_lengths, sidechain_lengths=sidechain_lengths, sidechain_positions=sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons, bond_lengths=bond_lengths, bond_force_constants=bond_force_constants, bond_angle_force_constants=bond_angle_force_constants, torsion_force_constants=torsion_force_constants, equil_bond_angles=equil_bond_angles, equil_torsion_angles=equil_torsion_angles, torsion_periodicities=torsion_periodicities, include_nonbonded_forces=include_nonbonded_forces, include_bond_forces=include_bond_forces, include_bond_angle_forces=include_bond_angle_forces, include_torsion_forces=include_torsion_forces, constrain_bonds=constrain_bonds, positions=positions, ) if scan_sc_bb_bb_sc_torsions == True: output_data = str( str(output_directory) + "/torsions_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + ".nc" ) file_name = str( str(output_directory) + "/re_min_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + ".pdb" ) else: output_data = str( str(output_directory) + "/torsions_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + ".nc" ) file_name = str( str(output_directory) + "/re_min_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + ".pdb" ) if os.path.exists(file_name): print("\n") print("Reading existing simulation data for a coarse grained model") print( "with bb_bb_bb_bb torsion angles of " + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) if scan_sc_bb_bb_sc_torsions == True: print( "and sc_bb_bb_sc torsion angles of " + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) print("\n") # Search for existing data, and reading it if possible replica_energies, replica_positions, replica_states = read_replica_exchange_data( system=cgmodel.system, topology=cgmodel.topology, temperature_list=temperature_list, output_data=output_data, print_frequency=print_frequency, ) # Find the lowest energy pose for this model native_structure = PDBFile(file_name).getPositions() else: print("\n") print("Performing simulations for a coarse grained model") print( "with bb_bb_bb_bb torsion angles of " + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) if scan_sc_bb_bb_sc_torsions == True: print( "and sc_bb_bb_sc torsion angles of " + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) print("\n") # Run a replica exchange simulation with this cgmodel replica_energies, replica_positions, replica_states = run_replica_exchange( cgmodel.topology, cgmodel.system, cgmodel.positions, temperature_list=temperature_list, simulation_time_step=simulation_time_step, total_simulation_time=total_simulation_time, print_frequency=print_frequency, output_data=output_data, ) native_structure = get_native_structure( replica_positions, replica_energies, temperature_list ) file = open(file_name, "w") PDBFile.writeFile(cgmodel.topology, native_structure, file=file) file.close() if calculate_dQ: native_structure_contact_distance_cutoff = 1.15 * cgmodel.get_sigma( 0 ) # This distance cutoff determines which nonbonded interactions are considered 'native' contacts native_fraction_cutoff = 0.95 # The threshold fraction of native contacts above which a pose is considered 'native' nonnative_fraction_cutoff = 0.95 # The threshold fraction of native contacts below which a pose is considered 'nonnative' native_ensemble_size = 10 nonnative_ensemble_size = 100 decorrelate = True ( native_ensemble, native_ensemble_energies, nonnative_ensemble, nonnative_ensemble_energies, ) = get_ensembles_from_replica_positions( cgmodel, replica_positions, replica_energies, temperature_list, decorrelate=decorrelate, native_fraction_cutoff=native_fraction_cutoff, nonnative_fraction_cutoff=nonnative_fraction_cutoff, native_structure_contact_distance_cutoff=native_structure_contact_distance_cutoff, native_ensemble_size=native_ensemble_size, nonnative_ensemble_size=nonnative_ensemble_size, ) if ( len(native_ensemble_energies) != native_ensemble_size or len(nonnative_ensemble_energies) != nonnative_ensemble_size ): print( "ERROR: attempt to generate native and nonnative ensembles was unsuccessful." ) print( str(len(native_ensemble_energies)) + " native ensemble members were generated (" + str(native_ensemble_size) + " were requested)," ) print( "and " + str(len(nonnative_ensemble_energies)) + " non-native ensemble members were generated (" + str(nonnative_ensemble_size) + " were requested)." ) print( "Try adjusting the 'native_structure_distance_cutoff' parameter (current value=" + str(native_structure_contact_distance_cutoff.__div__(cgmodel.get_sigma(0))) + "*'bb_sigma')," ) print( "and the 'nonnative_fraction_cutoff' parameter (current value=" + str(nonnative_fraction_cutoff) + ")" ) print("to see if either of these approaches fixes the problem.") exit() if scan_sc_bb_bb_sc_torsions == True: nonnative_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + "_nonnative" ) native_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + "_native" ) else: nonnative_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_nonnative" ) native_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_native" ) # We build an ensemble of nonnative poses for energetic comparison with the native pose. if os.path.exists(nonnative_ensemble_directory): nonnative_ensemble, nonnative_ensemble_energies = get_ensemble_data( cgmodel, nonnative_ensemble_directory ) if len(nonnative_ensemble) != nonnative_ensemble_size: print( "ERROR: " + str(len(nonnative_ensemble_energies)) + " nonnative poses were found in existing output folders, but " + str(nonnative_ensemble_size) + " poses were requested." ) print( "This probably means that the requested ensemble size changed since the script was last run." ) exit() else: os.mkdir(nonnative_ensemble_directory) for pose in nonnative_ensemble: cgmodel.positions = pose write_ensemble_pdb(cgmodel, ensemble_directory=nonnative_ensemble_directory) nonnative_ensemble_Q = [] for pose in nonnative_ensemble: Q = fraction_native_contacts(cgmodel, pose, native_structure) nonnative_ensemble_Q.append(Q) nonnative_ensemble_Q = np.array([Q for Q in nonnative_ensemble_Q]) mean_nonnative_contacts = mean(nonnative_ensemble_Q) print( "The mean fraction of native contacts for this model is: " + str(mean_nonnative_contacts) ) # We build an ensemble of native poses in order to understand the energy distribution around the folded state. if os.path.exists(native_ensemble_directory): native_ensemble, native_ensemble_energies = get_ensemble_data( cgmodel, native_ensemble_directory ) if len(native_ensemble_energies) != native_ensemble_size: print( "ERROR: " + str(len(native_ensemble_energies)) + " native poses were found in existing output folders, but " + str(native_ensemble_size) + " poses were requested." ) print( "This probably means that the requested ensemble size changed since the script was last run." ) exit() else: os.mkdir(native_ensemble_directory) for pose in native_ensemble: cgmodel.positions = pose write_ensemble_pdb(cgmodel, ensemble_directory=native_ensemble_directory) # Get the average change in the fraction of native contacts during folding (dQ), # calculated as the difference between the average fraction of native contacts # in the nonnative ensemble. # A large dQ means the model/structure has a stable folded state. # A small dQ means the model/structure does not have a stable folded state. dQ = 1.0 - mean_nonnative_contacts dQ_list.append(dQ) if calculate_free_energies: num_intermediate_states = 1 mbar, E_kn, E_expect, dE_expect, new_temp_list = get_mbar_expectation( replica_energies, temperature_list, num_intermediate_states ) df_ij, ddf_ij = get_free_energy_differences(mbar) df_ij_list.append(df_ij) ddf_ij_list.append(ddf_ij) Delta_s, dDelta_s = get_entropy_differences(mbar) Delta_s_list.append(Delta_s) dDelta_s_list.append(dDelta_s) Delta_u, dDelta_u = get_enthalpy_differences(mbar) Delta_u_list.append(Delta_u) dDelta_u_list.append(dDelta_u) if evaluate_heat_capacity: C_v, dC_v, new_temperature_list = get_heat_capacity( replica_energies, temperature_list, num_intermediate_states=1 ) C_v_list.append(C_v) dC_v_list.append(dC_v) if scan_sc_bb_bb_sc_torsions == True: file_name = "dQ_for_variable_equil_torsion_angles.png" figure = pyplot.figure(1) bb_bb_bb_bb_equil_torsion_angles = np.array( [float(equil_torsion_angle) for equil_torsion_angle in bb_bb_bb_bb_equil_torsion_angles] ) sc_bb_bb_sc_equil_torsion_angles = np.array( [float(equil_torsion_angle) for equil_torsion_angle in sc_bb_bb_sc_equil_torsion_angles] ) x = np.unique(bb_bb_bb_bb_equil_torsion_angles * (180.0 / 3.14)) y = np.unique(sc_bb_bb_sc_equil_torsion_angles * (180.0 / 3.14)) X, Y = np.meshgrid(x, y) Z = dQ_list.reshape(len(x), len(y)) pyplot.xlabel(r"$ \alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )") pyplot.ylabel(r"$ \alpha_{0}^{SC-BB-BB-SC} $ ( Degrees )") pyplot.title("dQ (Change in native contacts during folding)") pyplot.pcolormesh(X, Y, Z) pyplot.colorbar() pyplot.savefig(file_name) pyplot.show() pyplot.close() if calculate_dQ: file_name = "dQ_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) x = np.array([float(angle * (180.0 / 3.14)) for angle in bb_bb_bb_bb_equil_torsion_angles]) y = np.array([float(dQ) for dQ in dQ_list]) pyplot.xlabel(r"$ \alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )") pyplot.ylabel(r"$\Delta$Q") pyplot.title(r"$\Delta$Q (Change in native contacts) during folding") pyplot.plot(x, y) pyplot.savefig(file_name) pyplot.show() pyplot.close() if calculate_free_energies: file_name = "free_energies_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for df_ij, ddf_ij in zip(df_ij_list, ddf_ij_list): df_ij = np.array([df_ij[i][0] for i in range(len(df_ij))]) ddf_ij = np.array([ddf_ij[i][0] for i in range(len(ddf_ij))]) (line,) = pyplot.plot(temperatures, df_ij) line.set_label(legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature (Kelvin)") pyplot.ylabel(r"Dimensionless free energy differences $\mathit{F}$") pyplot.title(r"$\mathit{F}$ for variable $\alpha_{0}^{BB-BB-BB-BB}$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() file_name = "entropies_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for Delta_s in Delta_s_list: delta_s = np.array([Delta_s[i][0] for i in range(len(Delta_s))]) (line,) = pyplot.plot(temperatures, delta_s) line.set_label(legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature (Kelvin)") pyplot.ylabel("Entropy differences ($\Delta$S)") pyplot.title(r"Entropy for variable $\alpha_{0}^{BB-BB-BB-BB}$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() if evaluate_heat_capacity: file_name = "heat_capacity_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for C_v, dC_v in zip(C_v_list, dC_v_list): C_v = np.array([C_v[i] for i in range(len(C_v))]) dC_v = np.array([dC_v[i] for i in range(len(dC_v))]) pyplot.errorbar(temperatures, C_v, yerr=dC_v, figure=figure, label=legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature ( Kelvin )") pyplot.ylabel(r"C$_{v}$ ( kcal/mol * Kelvin )") pyplot.title(r"Heat capacity for variable $\epsilon$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() exit()
[ "matplotlib.pyplot.title", "os.mkdir", "simtk.openmm.app.pdbfile.PDBFile.writeFile", "matplotlib.pyplot.figure", "numpy.unique", "numpy.meshgrid", "matplotlib.pyplot.close", "os.path.exists", "matplotlib.pyplot.colorbar", "foldamers.cg_model.cgmodel.CGModel", "simtk.openmm.app.pdbfile.PDBFile", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "statistics.mean", "matplotlib.pyplot.pcolormesh", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.plot", "numpy.array", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((4025, 4818), 'foldamers.cg_model.cgmodel.CGModel', 'CGModel', ([], {'polymer_length': 'polymer_length', 'backbone_lengths': 'backbone_lengths', 'sidechain_lengths': 'sidechain_lengths', 'sidechain_positions': 'sidechain_positions', 'masses': 'masses', 'sigmas': 'sigmas', 'epsilons': 'epsilons', 'bond_lengths': 'bond_lengths', 'bond_force_constants': 'bond_force_constants', 'bond_angle_force_constants': 'bond_angle_force_constants', 'torsion_force_constants': 'torsion_force_constants', 'equil_bond_angles': 'equil_bond_angles', 'equil_torsion_angles': 'equil_torsion_angles', 'torsion_periodicities': 'torsion_periodicities', 'include_nonbonded_forces': 'include_nonbonded_forces', 'include_bond_forces': 'include_bond_forces', 'include_bond_angle_forces': 'include_bond_angle_forces', 'include_torsion_forces': 'include_torsion_forces', 'constrain_bonds': 'constrain_bonds', 'positions': 'positions'}), '(polymer_length=polymer_length, backbone_lengths=backbone_lengths,\n sidechain_lengths=sidechain_lengths, sidechain_positions=\n sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons,\n bond_lengths=bond_lengths, bond_force_constants=bond_force_constants,\n bond_angle_force_constants=bond_angle_force_constants,\n torsion_force_constants=torsion_force_constants, equil_bond_angles=\n equil_bond_angles, equil_torsion_angles=equil_torsion_angles,\n torsion_periodicities=torsion_periodicities, include_nonbonded_forces=\n include_nonbonded_forces, include_bond_forces=include_bond_forces,\n include_bond_angle_forces=include_bond_angle_forces,\n include_torsion_forces=include_torsion_forces, constrain_bonds=\n constrain_bonds, positions=positions)\n', (4032, 4818), False, 'from foldamers.cg_model.cgmodel import CGModel\n'), ((581, 613), 'os.path.exists', 'os.path.exists', (['output_directory'], {}), '(output_directory)\n', (595, 613), False, 'import os\n'), ((619, 645), 'os.mkdir', 'os.mkdir', (['output_directory'], {}), '(output_directory)\n', (627, 645), False, 'import os\n'), ((5297, 5329), 'os.path.exists', 'os.path.exists', (['output_directory'], {}), '(output_directory)\n', (5311, 5329), False, 'import os\n'), ((5335, 5361), 'os.mkdir', 'os.mkdir', (['output_directory'], {}), '(output_directory)\n', (5343, 5361), False, 'import os\n'), ((5615, 5647), 'os.path.exists', 'os.path.exists', (['output_directory'], {}), '(output_directory)\n', (5629, 5647), False, 'import os\n'), ((5653, 5679), 'os.mkdir', 'os.mkdir', (['output_directory'], {}), '(output_directory)\n', (5661, 5679), False, 'import os\n'), ((5888, 5920), 'os.path.exists', 'os.path.exists', (['output_directory'], {}), '(output_directory)\n', (5902, 5920), False, 'import os\n'), ((5926, 5952), 'os.mkdir', 'os.mkdir', (['output_directory'], {}), '(output_directory)\n', (5934, 5952), False, 'import os\n'), ((21292, 21308), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {}), '(1)\n', (21305, 21308), True, 'import matplotlib.pyplot as pyplot\n'), ((21622, 21682), 'numpy.unique', 'np.unique', (['(bb_bb_bb_bb_equil_torsion_angles * (180.0 / 3.14))'], {}), '(bb_bb_bb_bb_equil_torsion_angles * (180.0 / 3.14))\n', (21631, 21682), True, 'import numpy as np\n'), ((21691, 21751), 'numpy.unique', 'np.unique', (['(sc_bb_bb_sc_equil_torsion_angles * (180.0 / 3.14))'], {}), '(sc_bb_bb_sc_equil_torsion_angles * (180.0 / 3.14))\n', (21700, 21751), True, 'import numpy as np\n'), ((21763, 21780), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (21774, 21780), True, 'import numpy as np\n'), ((21826, 21884), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""$ \\\\alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )"""'], {}), "('$ \\\\alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )')\n", (21839, 21884), True, 'import matplotlib.pyplot as pyplot\n'), ((21889, 21947), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""$ \\\\alpha_{0}^{SC-BB-BB-SC} $ ( Degrees )"""'], {}), "('$ \\\\alpha_{0}^{SC-BB-BB-SC} $ ( Degrees )')\n", (21902, 21947), True, 'import matplotlib.pyplot as pyplot\n'), ((21952, 22013), 'matplotlib.pyplot.title', 'pyplot.title', (['"""dQ (Change in native contacts during folding)"""'], {}), "('dQ (Change in native contacts during folding)')\n", (21964, 22013), True, 'import matplotlib.pyplot as pyplot\n'), ((22018, 22044), 'matplotlib.pyplot.pcolormesh', 'pyplot.pcolormesh', (['X', 'Y', 'Z'], {}), '(X, Y, Z)\n', (22035, 22044), True, 'import matplotlib.pyplot as pyplot\n'), ((22049, 22066), 'matplotlib.pyplot.colorbar', 'pyplot.colorbar', ([], {}), '()\n', (22064, 22066), True, 'import matplotlib.pyplot as pyplot\n'), ((22071, 22096), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['file_name'], {}), '(file_name)\n', (22085, 22096), True, 'import matplotlib.pyplot as pyplot\n'), ((22101, 22114), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (22112, 22114), True, 'import matplotlib.pyplot as pyplot\n'), ((22119, 22133), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (22131, 22133), True, 'import matplotlib.pyplot as pyplot\n'), ((22229, 22245), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {}), '(1)\n', (22242, 22245), True, 'import matplotlib.pyplot as pyplot\n'), ((22396, 22454), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""$ \\\\alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )"""'], {}), "('$ \\\\alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )')\n", (22409, 22454), True, 'import matplotlib.pyplot as pyplot\n'), ((22459, 22486), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""$\\\\Delta$Q"""'], {}), "('$\\\\Delta$Q')\n", (22472, 22486), True, 'import matplotlib.pyplot as pyplot\n'), ((22491, 22560), 'matplotlib.pyplot.title', 'pyplot.title', (['"""$\\\\Delta$Q (Change in native contacts) during folding"""'], {}), "('$\\\\Delta$Q (Change in native contacts) during folding')\n", (22503, 22560), True, 'import matplotlib.pyplot as pyplot\n'), ((22565, 22582), 'matplotlib.pyplot.plot', 'pyplot.plot', (['x', 'y'], {}), '(x, y)\n', (22576, 22582), True, 'import matplotlib.pyplot as pyplot\n'), ((22587, 22612), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['file_name'], {}), '(file_name)\n', (22601, 22612), True, 'import matplotlib.pyplot as pyplot\n'), ((22617, 22630), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (22628, 22630), True, 'import matplotlib.pyplot as pyplot\n'), ((22635, 22649), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (22647, 22649), True, 'import matplotlib.pyplot as pyplot\n'), ((22767, 22783), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {}), '(1)\n', (22780, 22783), True, 'import matplotlib.pyplot as pyplot\n'), ((22996, 23052), 'numpy.array', 'np.array', (['[temperature for temperature in new_temp_list]'], {}), '([temperature for temperature in new_temp_list])\n', (23004, 23052), True, 'import numpy as np\n'), ((23386, 23423), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Temperature (Kelvin)"""'], {}), "('Temperature (Kelvin)')\n", (23399, 23423), True, 'import matplotlib.pyplot as pyplot\n'), ((23428, 23496), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Dimensionless free energy differences $\\\\mathit{F}$"""'], {}), "('Dimensionless free energy differences $\\\\mathit{F}$')\n", (23441, 23496), True, 'import matplotlib.pyplot as pyplot\n'), ((23501, 23571), 'matplotlib.pyplot.title', 'pyplot.title', (['"""$\\\\mathit{F}$ for variable $\\\\alpha_{0}^{BB-BB-BB-BB}$"""'], {}), "('$\\\\mathit{F}$ for variable $\\\\alpha_{0}^{BB-BB-BB-BB}$')\n", (23513, 23571), True, 'import matplotlib.pyplot as pyplot\n'), ((23575, 23603), 'matplotlib.pyplot.legend', 'pyplot.legend', (['legend_labels'], {}), '(legend_labels)\n', (23588, 23603), True, 'import matplotlib.pyplot as pyplot\n'), ((23608, 23633), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['file_name'], {}), '(file_name)\n', (23622, 23633), True, 'import matplotlib.pyplot as pyplot\n'), ((23638, 23651), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (23649, 23651), True, 'import matplotlib.pyplot as pyplot\n'), ((23656, 23670), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (23668, 23670), True, 'import matplotlib.pyplot as pyplot\n'), ((23756, 23772), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {}), '(1)\n', (23769, 23772), True, 'import matplotlib.pyplot as pyplot\n'), ((23985, 24041), 'numpy.array', 'np.array', (['[temperature for temperature in new_temp_list]'], {}), '([temperature for temperature in new_temp_list])\n', (23993, 24041), True, 'import numpy as np\n'), ((24291, 24328), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Temperature (Kelvin)"""'], {}), "('Temperature (Kelvin)')\n", (24304, 24328), True, 'import matplotlib.pyplot as pyplot\n'), ((24333, 24382), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Entropy differences ($\\\\Delta$S)"""'], {}), "('Entropy differences ($\\\\Delta$S)')\n", (24346, 24382), True, 'import matplotlib.pyplot as pyplot\n'), ((24386, 24450), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Entropy for variable $\\\\alpha_{0}^{BB-BB-BB-BB}$"""'], {}), "('Entropy for variable $\\\\alpha_{0}^{BB-BB-BB-BB}$')\n", (24398, 24450), True, 'import matplotlib.pyplot as pyplot\n'), ((24455, 24483), 'matplotlib.pyplot.legend', 'pyplot.legend', (['legend_labels'], {}), '(legend_labels)\n', (24468, 24483), True, 'import matplotlib.pyplot as pyplot\n'), ((24488, 24513), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['file_name'], {}), '(file_name)\n', (24502, 24513), True, 'import matplotlib.pyplot as pyplot\n'), ((24518, 24531), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (24529, 24531), True, 'import matplotlib.pyplot as pyplot\n'), ((24536, 24550), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (24548, 24550), True, 'import matplotlib.pyplot as pyplot\n'), ((24667, 24683), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {}), '(1)\n', (24680, 24683), True, 'import matplotlib.pyplot as pyplot\n'), ((24896, 24952), 'numpy.array', 'np.array', (['[temperature for temperature in new_temp_list]'], {}), '([temperature for temperature in new_temp_list])\n', (24904, 24952), True, 'import numpy as np\n'), ((25261, 25300), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Temperature ( Kelvin )"""'], {}), "('Temperature ( Kelvin )')\n", (25274, 25300), True, 'import matplotlib.pyplot as pyplot\n'), ((25305, 25351), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""C$_{v}$ ( kcal/mol * Kelvin )"""'], {}), "('C$_{v}$ ( kcal/mol * Kelvin )')\n", (25318, 25351), True, 'import matplotlib.pyplot as pyplot\n'), ((25357, 25411), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Heat capacity for variable $\\\\epsilon$"""'], {}), "('Heat capacity for variable $\\\\epsilon$')\n", (25369, 25411), True, 'import matplotlib.pyplot as pyplot\n'), ((25416, 25444), 'matplotlib.pyplot.legend', 'pyplot.legend', (['legend_labels'], {}), '(legend_labels)\n', (25429, 25444), True, 'import matplotlib.pyplot as pyplot\n'), ((25449, 25474), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['file_name'], {}), '(file_name)\n', (25463, 25474), True, 'import matplotlib.pyplot as pyplot\n'), ((25479, 25492), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (25490, 25492), True, 'import matplotlib.pyplot as pyplot\n'), ((25497, 25511), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (25509, 25511), True, 'import matplotlib.pyplot as pyplot\n'), ((3947, 3967), 'simtk.openmm.app.pdbfile.PDBFile', 'PDBFile', (['"""helix.pdb"""'], {}), "('helix.pdb')\n", (3954, 3967), False, 'from simtk.openmm.app.pdbfile import PDBFile\n'), ((8023, 8816), 'foldamers.cg_model.cgmodel.CGModel', 'CGModel', ([], {'polymer_length': 'polymer_length', 'backbone_lengths': 'backbone_lengths', 'sidechain_lengths': 'sidechain_lengths', 'sidechain_positions': 'sidechain_positions', 'masses': 'masses', 'sigmas': 'sigmas', 'epsilons': 'epsilons', 'bond_lengths': 'bond_lengths', 'bond_force_constants': 'bond_force_constants', 'bond_angle_force_constants': 'bond_angle_force_constants', 'torsion_force_constants': 'torsion_force_constants', 'equil_bond_angles': 'equil_bond_angles', 'equil_torsion_angles': 'equil_torsion_angles', 'torsion_periodicities': 'torsion_periodicities', 'include_nonbonded_forces': 'include_nonbonded_forces', 'include_bond_forces': 'include_bond_forces', 'include_bond_angle_forces': 'include_bond_angle_forces', 'include_torsion_forces': 'include_torsion_forces', 'constrain_bonds': 'constrain_bonds', 'positions': 'positions'}), '(polymer_length=polymer_length, backbone_lengths=backbone_lengths,\n sidechain_lengths=sidechain_lengths, sidechain_positions=\n sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons,\n bond_lengths=bond_lengths, bond_force_constants=bond_force_constants,\n bond_angle_force_constants=bond_angle_force_constants,\n torsion_force_constants=torsion_force_constants, equil_bond_angles=\n equil_bond_angles, equil_torsion_angles=equil_torsion_angles,\n torsion_periodicities=torsion_periodicities, include_nonbonded_forces=\n include_nonbonded_forces, include_bond_forces=include_bond_forces,\n include_bond_angle_forces=include_bond_angle_forces,\n include_torsion_forces=include_torsion_forces, constrain_bonds=\n constrain_bonds, positions=positions)\n', (8030, 8816), False, 'from foldamers.cg_model.cgmodel import CGModel\n'), ((10174, 10199), 'os.path.exists', 'os.path.exists', (['file_name'], {}), '(file_name)\n', (10188, 10199), False, 'import os\n'), ((23277, 23309), 'matplotlib.pyplot.plot', 'pyplot.plot', (['temperatures', 'df_ij'], {}), '(temperatures, df_ij)\n', (23288, 23309), True, 'import matplotlib.pyplot as pyplot\n'), ((24180, 24214), 'matplotlib.pyplot.plot', 'pyplot.plot', (['temperatures', 'delta_s'], {}), '(temperatures, delta_s)\n', (24191, 24214), True, 'import matplotlib.pyplot as pyplot\n'), ((25141, 25234), 'matplotlib.pyplot.errorbar', 'pyplot.errorbar', (['temperatures', 'C_v'], {'yerr': 'dC_v', 'figure': 'figure', 'label': 'legend_labels[index]'}), '(temperatures, C_v, yerr=dC_v, figure=figure, label=\n legend_labels[index])\n', (25156, 25234), True, 'import matplotlib.pyplot as pyplot\n'), ((12636, 12700), 'simtk.openmm.app.pdbfile.PDBFile.writeFile', 'PDBFile.writeFile', (['cgmodel.topology', 'native_structure'], {'file': 'file'}), '(cgmodel.topology, native_structure, file=file)\n', (12653, 12700), False, 'from simtk.openmm.app.pdbfile import PDBFile\n'), ((16996, 17040), 'os.path.exists', 'os.path.exists', (['nonnative_ensemble_directory'], {}), '(nonnative_ensemble_directory)\n', (17010, 17040), False, 'import os\n'), ((18316, 18359), 'numpy.array', 'np.array', (['[Q for Q in nonnative_ensemble_Q]'], {}), '([Q for Q in nonnative_ensemble_Q])\n', (18324, 18359), True, 'import numpy as np\n'), ((18398, 18424), 'statistics.mean', 'mean', (['nonnative_ensemble_Q'], {}), '(nonnative_ensemble_Q)\n', (18402, 18424), False, 'from statistics import mean\n'), ((18719, 18760), 'os.path.exists', 'os.path.exists', (['native_ensemble_directory'], {}), '(native_ensemble_directory)\n', (18733, 18760), False, 'import os\n'), ((7969, 7989), 'simtk.openmm.app.pdbfile.PDBFile', 'PDBFile', (['"""helix.pdb"""'], {}), "('helix.pdb')\n", (7976, 7989), False, 'from simtk.openmm.app.pdbfile import PDBFile\n'), ((17844, 17882), 'os.mkdir', 'os.mkdir', (['nonnative_ensemble_directory'], {}), '(nonnative_ensemble_directory)\n', (17852, 17882), False, 'import os\n'), ((19549, 19584), 'os.mkdir', 'os.mkdir', (['native_ensemble_directory'], {}), '(native_ensemble_directory)\n', (19557, 19584), False, 'import os\n'), ((11283, 11301), 'simtk.openmm.app.pdbfile.PDBFile', 'PDBFile', (['file_name'], {}), '(file_name)\n', (11290, 11301), False, 'from simtk.openmm.app.pdbfile import PDBFile\n')]
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for tensorflow_graphics.datasets.features.camera_feature.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow_graphics.datasets.features import camera_feature class CameraFeatureTest(tfds.testing.FeatureExpectationsTestCase): """Test Cases for Camera FeatureConnector.""" def __get_camera_params(self): pose = {'R': np.eye(3).astype(np.float32), 't': np.zeros(3).astype(np.float32)} f = 35. optical_center = (640 / 2, 480 / 2) return pose, f, optical_center def test_simple_camera(self): """Tests camera parameters with fixed focal length, no skew and no aspect ratio.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_intrinsics = np.asarray([[expected_f, 0, expected_center[0]], [0, expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'pose': expected_pose} lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'look_at': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'position': np.array([0, 0, 0], dtype=np.float32) } } raising_pose_entry = { 'f': expected_f, 'optical_center': expected_center, 'pose': np.eye(4) } raising_pose_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': {'rot': np.eye(3), 'trans': np.zeros(3)} } raising_lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'l': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'C': np.array([0, 0, 0], dtype=np.float32) } } self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=lookat_inputs, expected=expected_camera ), tfds.testing.FeatureExpectationItem( value=raising_pose_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_lookat_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_pose_entry, raise_cls=ValueError, raise_msg='Pose needs to be a dictionary' ), ], ) def test_camera_with_aspect_ratio_and_skew(self): """Tests camera parameters with fixed focal length, aspect_ratio and skew.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_aspect_ratio = expected_center[0] / expected_center[1] expected_skew = 0.6 expected_intrinsics = np.asarray( [[expected_f, expected_skew, expected_center[0]], [0, expected_aspect_ratio * expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'skew': expected_skew, 'aspect_ratio': expected_aspect_ratio, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), ], ) def test_full_camera_calibration_matrix(self): """Tests camera parameters with different focal length per camera axis and skew.""" expected_pose, _, expected_optical_center = self.__get_camera_params() expected_skew = 0.6 expected_f = (35., 40.) expected_intrinsics = np.array( [[expected_f[0], expected_skew, expected_optical_center[0]], [0, expected_f[1], expected_optical_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} raising_inputs = {'f': expected_f, 'aspect_ratio': 1.5, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=raising_inputs, raise_cls=ValueError, raise_msg='If aspect ratio is provided, f needs to ' 'be a single float', ), ], ) if __name__ == '__main__': tfds.testing.test_main()
[ "numpy.asarray", "numpy.zeros", "tensorflow_graphics.datasets.features.camera_feature.Camera", "tensorflow_datasets.testing.test_main", "numpy.array", "tensorflow_datasets.testing.FeatureExpectationItem", "numpy.eye" ]
[((7184, 7208), 'tensorflow_datasets.testing.test_main', 'tfds.testing.test_main', ([], {}), '()\n', (7206, 7208), True, 'import tensorflow_datasets as tfds\n'), ((1490, 1609), 'numpy.asarray', 'np.asarray', (['[[expected_f, 0, expected_center[0]], [0, expected_f, expected_center[1]],\n [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[expected_f, 0, expected_center[0]], [0, expected_f,\n expected_center[1]], [0, 0, 1]], dtype=np.float32)\n', (1500, 1609), True, 'import numpy as np\n'), ((4411, 4571), 'numpy.asarray', 'np.asarray', (['[[expected_f, expected_skew, expected_center[0]], [0, expected_aspect_ratio *\n expected_f, expected_center[1]], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[expected_f, expected_skew, expected_center[0]], [0, \n expected_aspect_ratio * expected_f, expected_center[1]], [0, 0, 1]],\n dtype=np.float32)\n', (4421, 4571), True, 'import numpy as np\n'), ((5724, 5875), 'numpy.array', 'np.array', (['[[expected_f[0], expected_skew, expected_optical_center[0]], [0, expected_f\n [1], expected_optical_center[1]], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[expected_f[0], expected_skew, expected_optical_center[0]], [0,\n expected_f[1], expected_optical_center[1]], [0, 0, 1]], dtype=np.float32)\n', (5732, 5875), True, 'import numpy as np\n'), ((2285, 2294), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (2291, 2294), True, 'import numpy as np\n'), ((1998, 2036), 'numpy.array', 'np.array', (['[0, 0, -1]'], {'dtype': 'np.float32'}), '([0, 0, -1], dtype=np.float32)\n', (2006, 2036), True, 'import numpy as np\n'), ((2056, 2093), 'numpy.array', 'np.array', (['[0, 1, 0]'], {'dtype': 'np.float32'}), '([0, 1, 0], dtype=np.float32)\n', (2064, 2093), True, 'import numpy as np\n'), ((2119, 2156), 'numpy.array', 'np.array', (['[0, 0, 0]'], {'dtype': 'np.float32'}), '([0, 0, 0], dtype=np.float32)\n', (2127, 2156), True, 'import numpy as np\n'), ((2422, 2431), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2428, 2431), True, 'import numpy as np\n'), ((2442, 2453), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2450, 2453), True, 'import numpy as np\n'), ((2594, 2632), 'numpy.array', 'np.array', (['[0, 0, -1]'], {'dtype': 'np.float32'}), '([0, 0, -1], dtype=np.float32)\n', (2602, 2632), True, 'import numpy as np\n'), ((2652, 2689), 'numpy.array', 'np.array', (['[0, 1, 0]'], {'dtype': 'np.float32'}), '([0, 1, 0], dtype=np.float32)\n', (2660, 2689), True, 'import numpy as np\n'), ((2708, 2745), 'numpy.array', 'np.array', (['[0, 0, 0]'], {'dtype': 'np.float32'}), '([0, 0, 0], dtype=np.float32)\n', (2716, 2745), True, 'import numpy as np\n'), ((2803, 2826), 'tensorflow_graphics.datasets.features.camera_feature.Camera', 'camera_feature.Camera', ([], {}), '()\n', (2824, 2826), False, 'from tensorflow_graphics.datasets.features import camera_feature\n'), ((4920, 4943), 'tensorflow_graphics.datasets.features.camera_feature.Camera', 'camera_feature.Camera', ([], {}), '()\n', (4941, 4943), False, 'from tensorflow_graphics.datasets.features import camera_feature\n'), ((6385, 6408), 'tensorflow_graphics.datasets.features.camera_feature.Camera', 'camera_feature.Camera', ([], {}), '()\n', (6406, 6408), False, 'from tensorflow_graphics.datasets.features import camera_feature\n'), ((1098, 1107), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (1104, 1107), True, 'import numpy as np\n'), ((1145, 1156), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1153, 1156), True, 'import numpy as np\n'), ((3174, 3249), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'inputs', 'expected': 'expected_camera'}), '(value=inputs, expected=expected_camera)\n', (3209, 3249), True, 'import tensorflow_datasets as tfds\n'), ((3310, 3397), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'lookat_inputs', 'expected': 'expected_camera'}), '(value=lookat_inputs, expected=\n expected_camera)\n', (3345, 3397), True, 'import tensorflow_datasets as tfds\n'), ((3452, 3591), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'raising_pose_inputs', 'raise_cls': 'ValueError', 'raise_msg': '"""Wrong keys for pose feature provided"""'}), "(value=raising_pose_inputs, raise_cls=\n ValueError, raise_msg='Wrong keys for pose feature provided')\n", (3487, 3591), True, 'import tensorflow_datasets as tfds\n'), ((3662, 3803), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'raising_lookat_inputs', 'raise_cls': 'ValueError', 'raise_msg': '"""Wrong keys for pose feature provided"""'}), "(value=raising_lookat_inputs, raise_cls=\n ValueError, raise_msg='Wrong keys for pose feature provided')\n", (3697, 3803), True, 'import tensorflow_datasets as tfds\n'), ((3874, 4005), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'raising_pose_entry', 'raise_cls': 'ValueError', 'raise_msg': '"""Pose needs to be a dictionary"""'}), "(value=raising_pose_entry, raise_cls=\n ValueError, raise_msg='Pose needs to be a dictionary')\n", (3909, 4005), True, 'import tensorflow_datasets as tfds\n'), ((5291, 5366), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'inputs', 'expected': 'expected_camera'}), '(value=inputs, expected=expected_camera)\n', (5326, 5366), True, 'import tensorflow_datasets as tfds\n'), ((6756, 6831), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'inputs', 'expected': 'expected_camera'}), '(value=inputs, expected=expected_camera)\n', (6791, 6831), True, 'import tensorflow_datasets as tfds\n'), ((6892, 7052), 'tensorflow_datasets.testing.FeatureExpectationItem', 'tfds.testing.FeatureExpectationItem', ([], {'value': 'raising_inputs', 'raise_cls': 'ValueError', 'raise_msg': '"""If aspect ratio is provided, f needs to be a single float"""'}), "(value=raising_inputs, raise_cls=\n ValueError, raise_msg=\n 'If aspect ratio is provided, f needs to be a single float')\n", (6927, 7052), True, 'import tensorflow_datasets as tfds\n')]
import ray from ray import serve import requests import os import pickle import numpy as np import asyncio # Models locations RANDOM_FOREST_MODEL_PATH = os.path.join("wine-quality_random_forest.pkl") XGBOOST_MODEL_PATH = os.path.join("wine-quality_xgboost.pkl") GRBOOST_MODEL_PATH = os.path.join("wine-quality_grboost.pkl") # Start Ray ray.init() # Start Serve serve.start() #define deployments @serve.deployment(route_prefix="/randomforest") class RandomForestModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = [ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ] prediction = self.model.predict([input_vector])[0] return {"result": str(prediction)} @serve.deployment(route_prefix="/grboost") class GRBoostModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = np.array([ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ]) prediction = self.model.predict(input_vector.reshape(1,11))[0] return {"result": str(prediction)} @serve.deployment(route_prefix="/xgboost") class XGBoostModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = np.array([ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ]) prediction = self.model.predict(input_vector.reshape(1,11))[0] return {"result": str(prediction)} RandomForestModel.deploy(RANDOM_FOREST_MODEL_PATH) XGBoostModel.deploy(XGBOOST_MODEL_PATH) GRBoostModel.deploy(GRBOOST_MODEL_PATH) @serve.deployment(route_prefix="/speculative") class Speculative: def __init__(self): self.rfhandle = RandomForestModel.get_handle(sync=False) self.xgboosthandle = XGBoostModel.get_handle(sync=False) self.grboosthandle = GRBoostModel.get_handle(sync=False) async def __call__(self, request): payload = await request.json() f1, f2, f3 = await asyncio.gather(self.rfhandle.serve.remote(payload), self.xgboosthandle.serve.remote(payload), self.grboosthandle.serve.remote(payload)) rfresurlt = ray.get(f1)['result'] xgresurlt = ray.get(f2)['result'] grresult = ray.get(f3)['result'] ones = [] zeros = [] if rfresurlt == "1": ones.append("Random forest") else: zeros.append("Random forest") if xgresurlt == "1": ones.append("XGBoost") else: zeros.append("XGBoost") if grresult == "1": ones.append("Gradient boost") else: zeros.append("Gradient boost") if len(ones) >= 2: return {"result": "1", "methods": ones} else: return {"result": "0", "methods": zeros} Speculative.deploy() sample_request_input = { "fixed acidity": -0.70071875, "volatile acidity": 0.34736425, "citric acid": -1.34012182, "residual sugar": -0.16942723, "chlorides": -0.1586918, "free sulfur dioxide": 1.06389977, "total sulfur dioxide": -0.10545198, "density": -0.66075704, "pH": 0.70550789, "sulphates": -0.46118037, "alcohol": 0.26002813, } print(requests.get("http://localhost:8000/randomforest", json=sample_request_input).text) print(requests.get("http://localhost:8000/grboost", json=sample_request_input).text) print(requests.get("http://localhost:8000/xgboost", json=sample_request_input).text) print(requests.get("http://localhost:8000/speculative", json=sample_request_input).text)
[ "ray.init", "ray.serve.deployment", "ray.get", "pickle.load", "numpy.array", "requests.get", "ray.serve.start", "os.path.join" ]
[((155, 201), 'os.path.join', 'os.path.join', (['"""wine-quality_random_forest.pkl"""'], {}), "('wine-quality_random_forest.pkl')\n", (167, 201), False, 'import os\n'), ((223, 263), 'os.path.join', 'os.path.join', (['"""wine-quality_xgboost.pkl"""'], {}), "('wine-quality_xgboost.pkl')\n", (235, 263), False, 'import os\n'), ((285, 325), 'os.path.join', 'os.path.join', (['"""wine-quality_grboost.pkl"""'], {}), "('wine-quality_grboost.pkl')\n", (297, 325), False, 'import os\n'), ((339, 349), 'ray.init', 'ray.init', ([], {}), '()\n', (347, 349), False, 'import ray\n'), ((365, 378), 'ray.serve.start', 'serve.start', ([], {}), '()\n', (376, 378), False, 'from ray import serve\n'), ((400, 446), 'ray.serve.deployment', 'serve.deployment', ([], {'route_prefix': '"""/randomforest"""'}), "(route_prefix='/randomforest')\n", (416, 446), False, 'from ray import serve\n'), ((1264, 1305), 'ray.serve.deployment', 'serve.deployment', ([], {'route_prefix': '"""/grboost"""'}), "(route_prefix='/grboost')\n", (1280, 1305), False, 'from ray import serve\n'), ((2140, 2181), 'ray.serve.deployment', 'serve.deployment', ([], {'route_prefix': '"""/xgboost"""'}), "(route_prefix='/xgboost')\n", (2156, 2181), False, 'from ray import serve\n'), ((3148, 3193), 'ray.serve.deployment', 'serve.deployment', ([], {'route_prefix': '"""/speculative"""'}), "(route_prefix='/speculative')\n", (3164, 3193), False, 'from ray import serve\n'), ((1600, 1898), 'numpy.array', 'np.array', (["[request['fixed acidity'], request['volatile acidity'], request[\n 'citric acid'], request['residual sugar'], request['chlorides'],\n request['free sulfur dioxide'], request['total sulfur dioxide'],\n request['density'], request['pH'], request['sulphates'], request['alcohol']\n ]"], {}), "([request['fixed acidity'], request['volatile acidity'], request[\n 'citric acid'], request['residual sugar'], request['chlorides'],\n request['free sulfur dioxide'], request['total sulfur dioxide'],\n request['density'], request['pH'], request['sulphates'], request[\n 'alcohol']])\n", (1608, 1898), True, 'import numpy as np\n'), ((2476, 2774), 'numpy.array', 'np.array', (["[request['fixed acidity'], request['volatile acidity'], request[\n 'citric acid'], request['residual sugar'], request['chlorides'],\n request['free sulfur dioxide'], request['total sulfur dioxide'],\n request['density'], request['pH'], request['sulphates'], request['alcohol']\n ]"], {}), "([request['fixed acidity'], request['volatile acidity'], request[\n 'citric acid'], request['residual sugar'], request['chlorides'],\n request['free sulfur dioxide'], request['total sulfur dioxide'],\n request['density'], request['pH'], request['sulphates'], request[\n 'alcohol']])\n", (2484, 2774), True, 'import numpy as np\n'), ((4777, 4854), 'requests.get', 'requests.get', (['"""http://localhost:8000/randomforest"""'], {'json': 'sample_request_input'}), "('http://localhost:8000/randomforest', json=sample_request_input)\n", (4789, 4854), False, 'import requests\n'), ((4867, 4939), 'requests.get', 'requests.get', (['"""http://localhost:8000/grboost"""'], {'json': 'sample_request_input'}), "('http://localhost:8000/grboost', json=sample_request_input)\n", (4879, 4939), False, 'import requests\n'), ((4952, 5024), 'requests.get', 'requests.get', (['"""http://localhost:8000/xgboost"""'], {'json': 'sample_request_input'}), "('http://localhost:8000/xgboost', json=sample_request_input)\n", (4964, 5024), False, 'import requests\n'), ((5037, 5113), 'requests.get', 'requests.get', (['"""http://localhost:8000/speculative"""'], {'json': 'sample_request_input'}), "('http://localhost:8000/speculative', json=sample_request_input)\n", (5049, 5113), False, 'import requests\n'), ((563, 577), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (574, 577), False, 'import pickle\n'), ((1417, 1431), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1428, 1431), False, 'import pickle\n'), ((2293, 2307), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2304, 2307), False, 'import pickle\n'), ((3710, 3721), 'ray.get', 'ray.get', (['f1'], {}), '(f1)\n', (3717, 3721), False, 'import ray\n'), ((3752, 3763), 'ray.get', 'ray.get', (['f2'], {}), '(f2)\n', (3759, 3763), False, 'import ray\n'), ((3793, 3804), 'ray.get', 'ray.get', (['f3'], {}), '(f3)\n', (3800, 3804), False, 'import ray\n')]
import keras from keras.layers import Activation from keras.models import load_model from keras import backend as K from keras.utils.generic_utils import get_custom_objects import tensorflow as tf import numpy as np import pandas as pd import timeit import sys import argparse # Constants #window_size = 1024 def windowNoOverlay(data, window_size): # Without overlay windowed_data = [] i = 0 while(i + window_size-1 < len(data)): windowed_data.append(data[i:(i+window_size)]) i += window_size if (i != len(data)): i = len(data) - window_size windowed_data.append(data[i:len(data)]) # add the rest return windowed_data def parser_args(cmd_args): parser = argparse.ArgumentParser(sys.argv[0], description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-e", "--exp", type=str, action="store", default="pairwise_distances", help="Experiment") parser.add_argument("-d", "--dataset", type=str, action="store", default="PigArtPressure", help="Dataset name") return parser.parse_args(cmd_args) # obtaining arguments from command line args = parser_args(sys.argv[1:]) dataset = args.dataset exp = args.exp def swish(x, beta = 1): return (x * K.sigmoid(beta * x)) get_custom_objects().update({'Swish': Activation(swish)}) # Swish Activation #class Swish(Activation): # def __init__(self, activation, **kwargs): # super(Swish, self).__init__(activation, **kwargs) # self.__name__ = 'swish' #def swish(x): # return (K.sigmoid(x) * x) #get_custom_objects().update({'swish': Swish(swish)}) encoder = load_model('../models/' + exp + '/new_train/' + 'encoder_' + dataset + ".h5", compile = False) if (exp == "pairwise_distances"): data = np.genfromtxt('../data/' + exp + '/' + dataset + '.txt', delimiter=' ',) print("Data shape:", data.shape) elif (exp == "similarity_search"): data = np.genfromtxt('../data/' + exp + '/' + dataset + '/' + 'Data.txt', delimiter=' ',) print("Data shape:", data.shape) print("Encoding the queries as well") for i in range(1, 6): query = np.genfromtxt('../data/' + exp + '/' + dataset + '/' + 'Query' + str(i) + '.txt', delimiter=' ',) query.shape = 1, query.shape[0], 1 query = encoder.predict(query) query.shape = query.shape[1] np.savetxt('../data/' + exp + '/' + dataset + '/coded_data/Query' + str (i) + '.txt', query) del query else: data = np.genfromtxt('../data/' + exp + '/' + dataset + '/' + dataset + '_test.txt', delimiter=' ',) print("Data shape:", data.shape) # Getting rid of the NaNs and infs with interpolation if (len(data.shape) == 1): data = np.array(pd.Series(data).interpolate()) serie_length = 1024 # 'Windowing' data = np.array(windowNoOverlay(data, serie_length)) print("Window Data shape:", data.shape) else: serie_length = data.shape[1] print("Serie length:", serie_length) data.shape = data.shape[0], serie_length, 1 # Workaround to load the libraries so it doesn't count in the timer, # in production these libraries would be already loaded coded_data = encoder.predict(data) start = timeit.default_timer() coded_data = encoder.predict(data) print("Coded Data shape:", coded_data.shape) stop = timeit.default_timer() print("Time to code the serie:", stop - start) coded_data.shape = coded_data.shape[0], coded_data.shape[1] if (exp == "similarity_search"): np.savetxt('../data/' + exp + '/' + dataset + '/coded_data/' + 'Data.txt', coded_data) elif(exp == "pairwise_distances"): np.savetxt('../data/' + exp + '/coded_data/' + dataset + '_coded.txt', coded_data) else: np.savetxt('../data/' + exp + '/' + dataset + '/' + dataset + '_coded.txt', coded_data)
[ "keras.models.load_model", "argparse.ArgumentParser", "keras.layers.Activation", "timeit.default_timer", "numpy.savetxt", "numpy.genfromtxt", "keras.utils.generic_utils.get_custom_objects", "pandas.Series", "keras.backend.sigmoid" ]
[((1566, 1662), 'keras.models.load_model', 'load_model', (["('../models/' + exp + '/new_train/' + 'encoder_' + dataset + '.h5')"], {'compile': '(False)'}), "('../models/' + exp + '/new_train/' + 'encoder_' + dataset +\n '.h5', compile=False)\n", (1576, 1662), False, 'from keras.models import load_model\n'), ((3046, 3068), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (3066, 3068), False, 'import timeit\n'), ((3158, 3180), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (3178, 3180), False, 'import timeit\n'), ((681, 794), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['sys.argv[0]'], {'description': '""""""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(sys.argv[0], description='', formatter_class=\n argparse.ArgumentDefaultsHelpFormatter)\n", (704, 794), False, 'import argparse\n'), ((1704, 1775), 'numpy.genfromtxt', 'np.genfromtxt', (["('../data/' + exp + '/' + dataset + '.txt')"], {'delimiter': '""" """'}), "('../data/' + exp + '/' + dataset + '.txt', delimiter=' ')\n", (1717, 1775), True, 'import numpy as np\n'), ((3324, 3414), 'numpy.savetxt', 'np.savetxt', (["('../data/' + exp + '/' + dataset + '/coded_data/' + 'Data.txt')", 'coded_data'], {}), "('../data/' + exp + '/' + dataset + '/coded_data/' + 'Data.txt',\n coded_data)\n", (3334, 3414), True, 'import numpy as np\n'), ((1206, 1225), 'keras.backend.sigmoid', 'K.sigmoid', (['(beta * x)'], {}), '(beta * x)\n', (1215, 1225), True, 'from keras import backend as K\n'), ((1228, 1248), 'keras.utils.generic_utils.get_custom_objects', 'get_custom_objects', ([], {}), '()\n', (1246, 1248), False, 'from keras.utils.generic_utils import get_custom_objects\n'), ((1266, 1283), 'keras.layers.Activation', 'Activation', (['swish'], {}), '(swish)\n', (1276, 1283), False, 'from keras.layers import Activation\n'), ((1854, 1939), 'numpy.genfromtxt', 'np.genfromtxt', (["('../data/' + exp + '/' + dataset + '/' + 'Data.txt')"], {'delimiter': '""" """'}), "('../data/' + exp + '/' + dataset + '/' + 'Data.txt',\n delimiter=' ')\n", (1867, 1939), True, 'import numpy as np\n'), ((2365, 2461), 'numpy.genfromtxt', 'np.genfromtxt', (["('../data/' + exp + '/' + dataset + '/' + dataset + '_test.txt')"], {'delimiter': '""" """'}), "('../data/' + exp + '/' + dataset + '/' + dataset +\n '_test.txt', delimiter=' ')\n", (2378, 2461), True, 'import numpy as np\n'), ((3447, 3533), 'numpy.savetxt', 'np.savetxt', (["('../data/' + exp + '/coded_data/' + dataset + '_coded.txt')", 'coded_data'], {}), "('../data/' + exp + '/coded_data/' + dataset + '_coded.txt',\n coded_data)\n", (3457, 3533), True, 'import numpy as np\n'), ((3537, 3628), 'numpy.savetxt', 'np.savetxt', (["('../data/' + exp + '/' + dataset + '/' + dataset + '_coded.txt')", 'coded_data'], {}), "('../data/' + exp + '/' + dataset + '/' + dataset + '_coded.txt',\n coded_data)\n", (3547, 3628), True, 'import numpy as np\n'), ((2592, 2607), 'pandas.Series', 'pd.Series', (['data'], {}), '(data)\n', (2601, 2607), True, 'import pandas as pd\n')]
import numpy as np from igp2 import AgentState, plot_map from igp2.data import ScenarioConfig, InDScenario from igp2.opendrive.map import Map import matplotlib.pyplot as plt from shapely.ops import unary_union from grit.core.data_processing import get_episode_frames from grit.core.feature_extraction import FeatureExtractor from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D from grit.core.base import get_base_dir def get_feature_extractor(episode_idx=1, scenario_name="bendplatz"): scenario_map = Map.parse_from_opendrive(get_base_dir() + f"/scenarios/maps/{scenario_name}.xodr") return FeatureExtractor(scenario_map, scenario_name, episode_idx) def plot_occlusion(frame_id=153, episode_idx=1, *frame, plot_occlusions=True, all_vehicles=False, scenario_name="bendplatz"): feature_extractor = get_feature_extractor(episode_idx=episode_idx, scenario_name=scenario_name) occlusions = feature_extractor.occlusions[frame_id] scenario_config = ScenarioConfig.load(get_base_dir() + f"/scenarios/configs/{scenario_name}.json") scenario = InDScenario(scenario_config) episode = scenario.load_episode(feature_extractor.episode_idx) # Take a step every 25 recorded frames (1s) # episode_frames contain for each second the list of frames for all vehicles alive that moment episode_frames = get_episode_frames(episode, exclude_parked_cars=False, exclude_bicycles=True, step=25) ego_id = list(occlusions.keys())[0] ego_occlusions = occlusions[ego_id] ego = episode_frames[frame_id][ego_id] plot_map(feature_extractor.scenario_map, scenario_config=scenario_config, plot_buildings=True) if plot_occlusions: lane_occlusions_all = [] for road_occlusions in ego_occlusions: for lane_occlusions in ego_occlusions[road_occlusions]: lane_occlusion = ego_occlusions[road_occlusions][lane_occlusions] if lane_occlusion is not None: lane_occlusions_all.append(lane_occlusion) OcclusionDetector2D.plot_area_from_list(lane_occlusions_all, color="r", alpha=0.5) if all_vehicles: for aid, state in episode_frames[frame_id].items(): plt.text(*state.position, aid) plt.plot(*list(zip(*OcclusionDetector2D.get_box(state).boundary)), color="black") if frame: for aid, state in frame[0].items(): plt.text(*state.position, aid) plt.plot(*list(zip(*OcclusionDetector2D.get_box(state).boundary))) plt.plot(*list(zip(*OcclusionDetector2D.get_box(ego).boundary))) def find_lane_at(point, scenario_name="bendplatz"): scenario_map = Map.parse_from_opendrive(get_base_dir() + f"/scenarios/maps/{scenario_name}.xodr") lanes = scenario_map.lanes_at(point) for lane in lanes: plot_map(scenario_map) lane = scenario_map.get_lane(lane.parent_road.id, lane.id) plt.plot(*list(zip(*[x for x in lane.midline.coords]))) plt.show() def get_occlusions_and_ego(frame=153, episode_idx=1): feature_extractor = get_feature_extractor(episode_idx) occlusions = feature_extractor.occlusions[frame] ego_id = list(occlusions.keys())[0] ego_occlusions = occlusions[ego_id] occlusions = [] for road_occlusions in ego_occlusions: for lane_occlusions in ego_occlusions[road_occlusions]: lane_occlusion = ego_occlusions[road_occlusions][lane_occlusions] if lane_occlusion is not None: occlusions.append(lane_occlusion) occlusions = unary_union(occlusions) return ego_id, occlusions def test_occluded_area_no_vehicle_in_oncoming_lanes(): mfe = get_feature_extractor() lane_path = [mfe.scenario_map.get_lane(8, -1, 0)] ego_id, occlusions = get_occlusions_and_ego() state0 = AgentState(time=0, position=np.array((45.67, -46.72)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(45.67, -46.72) ) state1 = AgentState(time=0, position=np.array((62.88, -20.96)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-120) ) state_ego = AgentState(time=0, position=np.array((43.88, -44.25)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) frame = {ego_id: state_ego, 0: state0, 1: state1} # plot_occlusion(153, 1, frame) oncoming_vehicle_id, oncoming_vehicle_dist = mfe.oncoming_vehicle(0, lane_path, frame) missing = mfe.is_oncoming_vehicle_missing(oncoming_vehicle_dist, lane_path, occlusions) plt.show() assert missing def set_up_frame_ep3_frame100(third_agent_position, third_agent_heading): """ The third agent is the possible oncoming vehicle. State 1 is the target vehicle. """ episode_idx = 3 frame_id = 100 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(1, 1, 0), mfe.scenario_map.get_lane(9, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state0 = AgentState(time=0, position=np.array((45.67, -46.72)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(45.67, -46.72) ) state1 = AgentState(time=0, position=np.array(third_agent_position), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(third_agent_heading) ) state_ego = AgentState(time=0, position=np.array((43.88, -44.25)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) target_id = 0 frame = {target_id: state0, 1: state1, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) oncoming_vehicle_id, oncoming_vehicle_dist = mfe.oncoming_vehicle(target_id, lane_path, frame) missing = mfe.is_oncoming_vehicle_missing(oncoming_vehicle_dist, lane_path, occlusions) plt.show() return missing def test_occluded_area_vehicle_in_oncoming_lanes(): missing = set_up_frame_ep3_frame100((62.88, -20.96), -110) assert missing def test_occluded_area_vehicle_in_oncoming_lanes_2(): missing = set_up_frame_ep3_frame100((60.12, -33.10), 140) assert missing def test_occluded_area_vehicle_in_oncoming_lanes_3(): missing = set_up_frame_ep3_frame100((49.12, -30.13), -45) assert missing def test_occluded_area_vehicle_in_oncoming_lanes_4(): missing = set_up_frame_ep3_frame100((53.81, -38.10), 170) assert not missing def test_occluded_area_vehicle_in_oncoming_lanes_5(): missing = set_up_frame_ep3_frame100((56.46, -38.11), -45) assert missing def test_occluded_area_vehicle_in_oncoming_lanes_6(): missing = set_up_frame_ep3_frame100((55.75, -37.73), 180) assert not missing # Tests for missing vehicle ahead. def test_the_vehicle_in_front_is_hidden(): """ State1 is the possible vehicle in front. """ episode_idx = 6 frame_id = 50 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(1, 1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((34.58, -56.93)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(45.67, -46.72) ) state1 = AgentState(time=0, position=np.array((39.90, -52.22)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) state_ego = AgentState(time=0, position=np.array((34.62, -11.01)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, 1: state1, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert missing def test_vehicle_is_behind(): """ State1 is the possible vehicle in front. """ episode_idx = 6 frame_id = 50 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(3, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((76.54, -11.56)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(76.54, -11.56) ) state1 = AgentState(time=0, position=np.array((68.24, -20.61)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) state_ego = AgentState(time=0, position=np.array((34.62, -11.01)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, 1: state1, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert missing def test_no_vehicle_in_front_2(): """ State1 is the possible vehicle in front. """ episode_idx = 6 frame_id = 50 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(3, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((72.77, -9.44)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(72.77, -9.44) ) state1 = AgentState(time=0, position=np.array((66.29, -16.77)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) state_ego = AgentState(time=0, position=np.array((34.62, -11.01)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, 1: state1, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert not missing def test_occlusion_far_away(): episode_idx = 7 frame_id = 200 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(2, 2, 0), mfe.scenario_map.get_lane(10, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((84.70, -60.43)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(84.70, -60.43) ) state_ego = AgentState(time=0, position=np.array((73.39, -56.32)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert not missing def test_occlusion_close_enough(): episode_idx = 7 frame_id = 200 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(10, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((61.59, -34.41)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(61.59, -34.41) ) state_ego = AgentState(time=0, position=np.array((73.39, -56.32)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, ego_id: state_ego} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert missing def test_occlusion_between_vehicle_in_front(): """ State1 is the possible vehicle in front. """ episode_idx = 6 frame_id = 42 mfe = get_feature_extractor(episode_idx=episode_idx) lane_path = [mfe.scenario_map.get_lane(1, 1, 0), mfe.scenario_map.get_lane(7, -1, 0)] ego_id, occlusions = get_occlusions_and_ego(frame=frame_id, episode_idx=episode_idx) state_target = AgentState(time=0, position=np.array((33.07, -58.33)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=lane_path[0].get_heading_at(33.07, -58.33) ) state1 = AgentState(time=0, position=np.array((43.62, -48.47)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(45) ) state_ego = AgentState(time=0, position=np.array((73.39, -56.32)), velocity=np.array((0, 0)), acceleration=np.array((0, 0)), heading=np.deg2rad(-45) ) target_id = 0 frame = {target_id: state_target, ego_id: state_ego, 1: state1} # plot_occlusion(frame_id, episode_idx, frame) vehicle_in_front_id, vehicle_in_front_dist = mfe.vehicle_in_front(target_id, lane_path, frame) missing = mfe.is_vehicle_in_front_missing(vehicle_in_front_dist, target_id, lane_path, frame, occlusions) plt.show() assert missing # find_lane_at((32.7, -59.4)) # plot_occlusion(42, 5, scenario_name="bendplatz") # plt.show()
[ "grit.core.feature_extraction.FeatureExtractor", "grit.core.data_processing.get_episode_frames", "shapely.ops.unary_union", "matplotlib.pyplot.show", "grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.plot_area_from_list", "numpy.deg2rad", "igp2.plot_map", "grit.core.base.get_base_dir", "matplotlib.pyplot.text", "igp2.data.InDScenario", "numpy.array", "grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.get_box" ]
[((637, 695), 'grit.core.feature_extraction.FeatureExtractor', 'FeatureExtractor', (['scenario_map', 'scenario_name', 'episode_idx'], {}), '(scenario_map, scenario_name, episode_idx)\n', (653, 695), False, 'from grit.core.feature_extraction import FeatureExtractor\n'), ((1118, 1146), 'igp2.data.InDScenario', 'InDScenario', (['scenario_config'], {}), '(scenario_config)\n', (1129, 1146), False, 'from igp2.data import ScenarioConfig, InDScenario\n'), ((1383, 1474), 'grit.core.data_processing.get_episode_frames', 'get_episode_frames', (['episode'], {'exclude_parked_cars': '(False)', 'exclude_bicycles': '(True)', 'step': '(25)'}), '(episode, exclude_parked_cars=False, exclude_bicycles=\n True, step=25)\n', (1401, 1474), False, 'from grit.core.data_processing import get_episode_frames\n'), ((1600, 1698), 'igp2.plot_map', 'plot_map', (['feature_extractor.scenario_map'], {'scenario_config': 'scenario_config', 'plot_buildings': '(True)'}), '(feature_extractor.scenario_map, scenario_config=scenario_config,\n plot_buildings=True)\n', (1608, 1698), False, 'from igp2 import AgentState, plot_map\n'), ((3591, 3614), 'shapely.ops.unary_union', 'unary_union', (['occlusions'], {}), '(occlusions)\n', (3602, 3614), False, 'from shapely.ops import unary_union\n'), ((4984, 4994), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4992, 4994), True, 'import matplotlib.pyplot as plt\n'), ((6701, 6711), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6709, 6711), True, 'import matplotlib.pyplot as plt\n'), ((9196, 9206), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9204, 9206), True, 'import matplotlib.pyplot as plt\n'), ((10809, 10819), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10817, 10819), True, 'import matplotlib.pyplot as plt\n'), ((12424, 12434), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12432, 12434), True, 'import matplotlib.pyplot as plt\n'), ((13752, 13762), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13760, 13762), True, 'import matplotlib.pyplot as plt\n'), ((15033, 15043), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15041, 15043), True, 'import matplotlib.pyplot as plt\n'), ((16715, 16725), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16723, 16725), True, 'import matplotlib.pyplot as plt\n'), ((2070, 2156), 'grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.plot_area_from_list', 'OcclusionDetector2D.plot_area_from_list', (['lane_occlusions_all'], {'color': '"""r"""', 'alpha': '(0.5)'}), "(lane_occlusions_all, color='r',\n alpha=0.5)\n", (2109, 2156), False, 'from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D\n'), ((2852, 2874), 'igp2.plot_map', 'plot_map', (['scenario_map'], {}), '(scenario_map)\n', (2860, 2874), False, 'from igp2 import AgentState, plot_map\n'), ((3014, 3024), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3022, 3024), True, 'import matplotlib.pyplot as plt\n'), ((568, 582), 'grit.core.base.get_base_dir', 'get_base_dir', ([], {}), '()\n', (580, 582), False, 'from grit.core.base import get_base_dir\n'), ((1042, 1056), 'grit.core.base.get_base_dir', 'get_base_dir', ([], {}), '()\n', (1054, 1056), False, 'from grit.core.base import get_base_dir\n'), ((2247, 2277), 'matplotlib.pyplot.text', 'plt.text', (['*state.position', 'aid'], {}), '(*state.position, aid)\n', (2255, 2277), True, 'import matplotlib.pyplot as plt\n'), ((2443, 2473), 'matplotlib.pyplot.text', 'plt.text', (['*state.position', 'aid'], {}), '(*state.position, aid)\n', (2451, 2473), True, 'import matplotlib.pyplot as plt\n'), ((2721, 2735), 'grit.core.base.get_base_dir', 'get_base_dir', ([], {}), '()\n', (2733, 2735), False, 'from grit.core.base import get_base_dir\n'), ((3908, 3933), 'numpy.array', 'np.array', (['(45.67, -46.72)'], {}), '((45.67, -46.72))\n', (3916, 3933), True, 'import numpy as np\n'), ((3968, 3984), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (3976, 3984), True, 'import numpy as np\n'), ((4023, 4039), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (4031, 4039), True, 'import numpy as np\n'), ((4208, 4233), 'numpy.array', 'np.array', (['(62.88, -20.96)'], {}), '((62.88, -20.96))\n', (4216, 4233), True, 'import numpy as np\n'), ((4268, 4284), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (4276, 4284), True, 'import numpy as np\n'), ((4323, 4339), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (4331, 4339), True, 'import numpy as np\n'), ((4373, 4389), 'numpy.deg2rad', 'np.deg2rad', (['(-120)'], {}), '(-120)\n', (4383, 4389), True, 'import numpy as np\n'), ((4488, 4513), 'numpy.array', 'np.array', (['(43.88, -44.25)'], {}), '((43.88, -44.25))\n', (4496, 4513), True, 'import numpy as np\n'), ((4551, 4567), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (4559, 4567), True, 'import numpy as np\n'), ((4609, 4625), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (4617, 4625), True, 'import numpy as np\n'), ((4662, 4676), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (4672, 4676), True, 'import numpy as np\n'), ((5556, 5581), 'numpy.array', 'np.array', (['(45.67, -46.72)'], {}), '((45.67, -46.72))\n', (5564, 5581), True, 'import numpy as np\n'), ((5616, 5632), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (5624, 5632), True, 'import numpy as np\n'), ((5671, 5687), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (5679, 5687), True, 'import numpy as np\n'), ((5856, 5886), 'numpy.array', 'np.array', (['third_agent_position'], {}), '(third_agent_position)\n', (5864, 5886), True, 'import numpy as np\n'), ((5921, 5937), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (5929, 5937), True, 'import numpy as np\n'), ((5976, 5992), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (5984, 5992), True, 'import numpy as np\n'), ((6026, 6057), 'numpy.deg2rad', 'np.deg2rad', (['third_agent_heading'], {}), '(third_agent_heading)\n', (6036, 6057), True, 'import numpy as np\n'), ((6156, 6181), 'numpy.array', 'np.array', (['(43.88, -44.25)'], {}), '((43.88, -44.25))\n', (6164, 6181), True, 'import numpy as np\n'), ((6219, 6235), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (6227, 6235), True, 'import numpy as np\n'), ((6277, 6293), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (6285, 6293), True, 'import numpy as np\n'), ((6330, 6344), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (6340, 6344), True, 'import numpy as np\n'), ((8025, 8050), 'numpy.array', 'np.array', (['(34.58, -56.93)'], {}), '((34.58, -56.93))\n', (8033, 8050), True, 'import numpy as np\n'), ((8091, 8107), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8099, 8107), True, 'import numpy as np\n'), ((8152, 8168), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8160, 8168), True, 'import numpy as np\n'), ((8349, 8373), 'numpy.array', 'np.array', (['(39.9, -52.22)'], {}), '((39.9, -52.22))\n', (8357, 8373), True, 'import numpy as np\n'), ((8409, 8425), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8417, 8425), True, 'import numpy as np\n'), ((8464, 8480), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8472, 8480), True, 'import numpy as np\n'), ((8514, 8528), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (8524, 8528), True, 'import numpy as np\n'), ((8627, 8652), 'numpy.array', 'np.array', (['(34.62, -11.01)'], {}), '((34.62, -11.01))\n', (8635, 8652), True, 'import numpy as np\n'), ((8690, 8706), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8698, 8706), True, 'import numpy as np\n'), ((8748, 8764), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (8756, 8764), True, 'import numpy as np\n'), ((8801, 8816), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (8811, 8816), True, 'import numpy as np\n'), ((9638, 9663), 'numpy.array', 'np.array', (['(76.54, -11.56)'], {}), '((76.54, -11.56))\n', (9646, 9663), True, 'import numpy as np\n'), ((9704, 9720), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (9712, 9720), True, 'import numpy as np\n'), ((9765, 9781), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (9773, 9781), True, 'import numpy as np\n'), ((9962, 9987), 'numpy.array', 'np.array', (['(68.24, -20.61)'], {}), '((68.24, -20.61))\n', (9970, 9987), True, 'import numpy as np\n'), ((10022, 10038), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (10030, 10038), True, 'import numpy as np\n'), ((10077, 10093), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (10085, 10093), True, 'import numpy as np\n'), ((10127, 10141), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (10137, 10141), True, 'import numpy as np\n'), ((10240, 10265), 'numpy.array', 'np.array', (['(34.62, -11.01)'], {}), '((34.62, -11.01))\n', (10248, 10265), True, 'import numpy as np\n'), ((10303, 10319), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (10311, 10319), True, 'import numpy as np\n'), ((10361, 10377), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (10369, 10377), True, 'import numpy as np\n'), ((10414, 10429), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (10424, 10429), True, 'import numpy as np\n'), ((11255, 11279), 'numpy.array', 'np.array', (['(72.77, -9.44)'], {}), '((72.77, -9.44))\n', (11263, 11279), True, 'import numpy as np\n'), ((11320, 11336), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11328, 11336), True, 'import numpy as np\n'), ((11381, 11397), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11389, 11397), True, 'import numpy as np\n'), ((11577, 11602), 'numpy.array', 'np.array', (['(66.29, -16.77)'], {}), '((66.29, -16.77))\n', (11585, 11602), True, 'import numpy as np\n'), ((11637, 11653), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11645, 11653), True, 'import numpy as np\n'), ((11692, 11708), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11700, 11708), True, 'import numpy as np\n'), ((11742, 11756), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (11752, 11756), True, 'import numpy as np\n'), ((11855, 11880), 'numpy.array', 'np.array', (['(34.62, -11.01)'], {}), '((34.62, -11.01))\n', (11863, 11880), True, 'import numpy as np\n'), ((11918, 11934), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11926, 11934), True, 'import numpy as np\n'), ((11976, 11992), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (11984, 11992), True, 'import numpy as np\n'), ((12029, 12044), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (12039, 12044), True, 'import numpy as np\n'), ((12864, 12888), 'numpy.array', 'np.array', (['(84.7, -60.43)'], {}), '((84.7, -60.43))\n', (12872, 12888), True, 'import numpy as np\n'), ((12930, 12946), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (12938, 12946), True, 'import numpy as np\n'), ((12991, 13007), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (12999, 13007), True, 'import numpy as np\n'), ((13194, 13219), 'numpy.array', 'np.array', (['(73.39, -56.32)'], {}), '((73.39, -56.32))\n', (13202, 13219), True, 'import numpy as np\n'), ((13257, 13273), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (13265, 13273), True, 'import numpy as np\n'), ((13315, 13331), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (13323, 13331), True, 'import numpy as np\n'), ((13368, 13383), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (13378, 13383), True, 'import numpy as np\n'), ((14145, 14170), 'numpy.array', 'np.array', (['(61.59, -34.41)'], {}), '((61.59, -34.41))\n', (14153, 14170), True, 'import numpy as np\n'), ((14211, 14227), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (14219, 14227), True, 'import numpy as np\n'), ((14272, 14288), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (14280, 14288), True, 'import numpy as np\n'), ((14475, 14500), 'numpy.array', 'np.array', (['(73.39, -56.32)'], {}), '((73.39, -56.32))\n', (14483, 14500), True, 'import numpy as np\n'), ((14538, 14554), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (14546, 14554), True, 'import numpy as np\n'), ((14596, 14612), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (14604, 14612), True, 'import numpy as np\n'), ((14649, 14664), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (14659, 14664), True, 'import numpy as np\n'), ((15544, 15569), 'numpy.array', 'np.array', (['(33.07, -58.33)'], {}), '((33.07, -58.33))\n', (15552, 15569), True, 'import numpy as np\n'), ((15610, 15626), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (15618, 15626), True, 'import numpy as np\n'), ((15671, 15687), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (15679, 15687), True, 'import numpy as np\n'), ((15868, 15893), 'numpy.array', 'np.array', (['(43.62, -48.47)'], {}), '((43.62, -48.47))\n', (15876, 15893), True, 'import numpy as np\n'), ((15928, 15944), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (15936, 15944), True, 'import numpy as np\n'), ((15983, 15999), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (15991, 15999), True, 'import numpy as np\n'), ((16033, 16047), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (16043, 16047), True, 'import numpy as np\n'), ((16146, 16171), 'numpy.array', 'np.array', (['(73.39, -56.32)'], {}), '((73.39, -56.32))\n', (16154, 16171), True, 'import numpy as np\n'), ((16209, 16225), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (16217, 16225), True, 'import numpy as np\n'), ((16267, 16283), 'numpy.array', 'np.array', (['(0, 0)'], {}), '((0, 0))\n', (16275, 16283), True, 'import numpy as np\n'), ((16320, 16335), 'numpy.deg2rad', 'np.deg2rad', (['(-45)'], {}), '(-45)\n', (16330, 16335), True, 'import numpy as np\n'), ((2578, 2610), 'grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.get_box', 'OcclusionDetector2D.get_box', (['ego'], {}), '(ego)\n', (2605, 2610), False, 'from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D\n'), ((2310, 2344), 'grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.get_box', 'OcclusionDetector2D.get_box', (['state'], {}), '(state)\n', (2337, 2344), False, 'from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D\n'), ((2506, 2540), 'grit.occlusion_detection.occlusion_detection_geometry.OcclusionDetector2D.get_box', 'OcclusionDetector2D.get_box', (['state'], {}), '(state)\n', (2533, 2540), False, 'from grit.occlusion_detection.occlusion_detection_geometry import OcclusionDetector2D\n')]
import glob import json import argparse import os import os.path as path from functools import partial from tqdm import tqdm import pandas as pd import numpy as np import scipy import plotnine as p9 from scipy.stats import bootstrap from nlproar.dataset import SNLIDataset, SSTDataset, IMDBDataset, BabiDataset, MimicDataset def ratio_confint(partial_df): """Implementes a ratio-confidence interval The idea is to project to logits space, then assume a normal distribution, and then project back to the inital space. Method proposed here: https://stats.stackexchange.com/questions/263516 """ column_name = partial_df.loc[:, 'test_metric'].iat[0] x = partial_df.loc[:, column_name].to_numpy() mean = np.mean(x) if np.all(x[0] == x): lower = mean upper = mean else: res = bootstrap((x, ), np.mean, confidence_level=0.95, random_state=np.random.default_rng(0)) lower = res.confidence_interval.low upper = res.confidence_interval.high return pd.Series({ 'lower': lower, 'mean': mean, 'upper': upper, 'format': f'${mean:.0%}^{{+{upper-mean:.1%}}}_{{-{mean-lower:.1%}}}$'.replace('%', '\\%'), 'n': len(x) }) def dataset_stats(Loader, cachedir): dataset = Loader(cachedir=cachedir, model_type='rnn', num_workers=0) dataset.prepare_data() dataset.setup('fit') dataset.setup('test') summaries = {} dataloaders = [ ('train', dataset.train_dataloader()), ('val', dataset.val_dataloader()), ('test', dataset.test_dataloader()) ] for split_name, split_iter in dataloaders: lengths = [] for batch in tqdm(split_iter, desc=f'Summarizing {split_name} split', leave=False): lengths += batch.length.tolist() summaries[split_name] = { 'length': np.mean(lengths), 'count': len(lengths), } return pd.Series({ 'dataset': dataset.name, 'vocab_size': len(dataset.vocabulary), 'train_size': summaries['train']['count'], 'valid_size': summaries['val']['count'], 'test_size': summaries['test']['count'], 'avg_length': np.average( [summary['length'] for summary in summaries.values()], weights=[summary['count'] for summary in summaries.values()] ) }) thisdir = path.dirname(path.realpath(__file__)) parser = argparse.ArgumentParser() parser.add_argument('--persistent-dir', action='store', default=path.realpath(path.join(thisdir, '..')), type=str, help='Directory where all persistent data will be stored') parser.add_argument('--stage', action='store', default='both', type=str, choices=['preprocess', 'plot', 'both'], help='Which export stage should be performed. Mostly just useful for debugging.') if __name__ == "__main__": pd.set_option('display.max_rows', None) args, unknown = parser.parse_known_args() dataset_mapping = pd.DataFrame([ {'dataset': 'sst', 'dataset_pretty': 'SST', 'test_metric': 'f1_test', 'reference': '$81\\%$'}, {'dataset': 'snli', 'dataset_pretty': 'SNLI', 'test_metric': 'f1_test', 'reference': '$88\\%$'}, {'dataset': 'imdb', 'dataset_pretty': 'IMDB', 'test_metric': 'f1_test', 'reference': '$78\\%$'}, {'dataset': 'mimic-a', 'dataset_pretty': 'Anemia', 'test_metric': 'f1_test', 'reference': '$92\\%$'}, {'dataset': 'mimic-d', 'dataset_pretty': 'Diabetes', 'test_metric': 'f1_test', 'reference': '$79\\%$'}, {'dataset': 'babi-1', 'dataset_pretty': 'bAbI-1', 'test_metric': 'acc_test', 'reference': '$100\\%$'}, {'dataset': 'babi-2', 'dataset_pretty': 'bAbI-2', 'test_metric': 'acc_test', 'reference': '$48\\%$'}, {'dataset': 'babi-3', 'dataset_pretty': 'bAbI-3', 'test_metric': 'acc_test', 'reference': '$62\\%$'} ]) model_mapping = pd.DataFrame([ {'model_type': 'rnn', 'model_type_pretty': 'BiLSTM-Attention'}, {'model_type': 'roberta', 'model_type_pretty': 'RoBERTa'} ]) datasets = { 'sst': SSTDataset, 'snli': SNLIDataset, 'imdb': IMDBDataset, 'babi-1': partial(BabiDataset, task=1), 'babi-2': partial(BabiDataset, task=2), 'babi-3': partial(BabiDataset, task=3), 'mimic-d': partial(MimicDataset, subset='diabetes', mimicdir=f'{args.persistent_dir}/mimic'), 'mimic-a': partial(MimicDataset, subset='anemia', mimicdir=f'{args.persistent_dir}/mimic'), } if args.stage in ['both', 'preprocess']: # Read JSON files into dataframe results = [] for file in tqdm(glob.glob(f'{args.persistent_dir}/results/roar/*_s-[0-9].json'), desc='Loading .json files'): with open(file, 'r') as fp: try: results.append(json.load(fp)) except json.decoder.JSONDecodeError: print(f'{file} has a format error') results_df = pd.DataFrame(results) # Summarize each dataset summaries = [] for dataset_loader in tqdm(datasets.values(), desc='Summarizing datasets'): summaries.append(dataset_stats(dataset_loader, cachedir=args.persistent_dir + '/cache')) summaries_df = pd.DataFrame(summaries) df = (results_df .merge(dataset_mapping, on='dataset') .groupby(['dataset', 'dataset_pretty', 'reference', 'model_type']) .apply(ratio_confint) .reset_index() .merge(summaries_df, on='dataset') .merge(model_mapping, on='model_type') .drop(['lower', 'upper', 'n', 'mean', 'dataset', 'model_type'], axis=1) ) if args.stage in ['preprocess']: os.makedirs(f'{args.persistent_dir}/pandas', exist_ok=True) df.to_pickle(f'{args.persistent_dir}/pandas/dataset.pd.pkl.xz') if args.stage in ['plot']: df = pd.read_pickle(f'{args.persistent_dir}/pandas/dataset.pd.pkl.xz') if args.stage in ['both', 'plot']: print(df) print(df .reset_index() .rename(columns={ 'dataset_pretty': 'Dataset', 'format': 'Faithfulness' }) .pivot( index=['Dataset'], columns='model_type_pretty', values='Faithfulness' ) .style.to_latex() ) print(df .reset_index() .rename(columns={ 'dataset_pretty': 'Dataset', 'format': 'Faithfulness' }) .pivot( index=['Dataset', 'train_size', 'valid_size', 'test_size', 'reference'], columns='model_type_pretty', values='Faithfulness' ) .style.to_latex() )
[ "pandas.DataFrame", "functools.partial", "tqdm.tqdm", "json.load", "argparse.ArgumentParser", "os.makedirs", "os.path.join", "os.path.realpath", "numpy.random.default_rng", "numpy.mean", "glob.glob", "pandas.read_pickle", "pandas.set_option", "numpy.all" ]
[((2434, 2459), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2457, 2459), False, 'import argparse\n'), ((737, 747), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (744, 747), True, 'import numpy as np\n'), ((756, 773), 'numpy.all', 'np.all', (['(x[0] == x)'], {}), '(x[0] == x)\n', (762, 773), True, 'import numpy as np\n'), ((2400, 2423), 'os.path.realpath', 'path.realpath', (['__file__'], {}), '(__file__)\n', (2413, 2423), True, 'import os.path as path\n'), ((3041, 3080), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', 'None'], {}), "('display.max_rows', None)\n", (3054, 3080), True, 'import pandas as pd\n'), ((3150, 4014), 'pandas.DataFrame', 'pd.DataFrame', (["[{'dataset': 'sst', 'dataset_pretty': 'SST', 'test_metric': 'f1_test',\n 'reference': '$81\\\\%$'}, {'dataset': 'snli', 'dataset_pretty': 'SNLI',\n 'test_metric': 'f1_test', 'reference': '$88\\\\%$'}, {'dataset': 'imdb',\n 'dataset_pretty': 'IMDB', 'test_metric': 'f1_test', 'reference':\n '$78\\\\%$'}, {'dataset': 'mimic-a', 'dataset_pretty': 'Anemia',\n 'test_metric': 'f1_test', 'reference': '$92\\\\%$'}, {'dataset':\n 'mimic-d', 'dataset_pretty': 'Diabetes', 'test_metric': 'f1_test',\n 'reference': '$79\\\\%$'}, {'dataset': 'babi-1', 'dataset_pretty':\n 'bAbI-1', 'test_metric': 'acc_test', 'reference': '$100\\\\%$'}, {\n 'dataset': 'babi-2', 'dataset_pretty': 'bAbI-2', 'test_metric':\n 'acc_test', 'reference': '$48\\\\%$'}, {'dataset': 'babi-3',\n 'dataset_pretty': 'bAbI-3', 'test_metric': 'acc_test', 'reference':\n '$62\\\\%$'}]"], {}), "([{'dataset': 'sst', 'dataset_pretty': 'SST', 'test_metric':\n 'f1_test', 'reference': '$81\\\\%$'}, {'dataset': 'snli',\n 'dataset_pretty': 'SNLI', 'test_metric': 'f1_test', 'reference':\n '$88\\\\%$'}, {'dataset': 'imdb', 'dataset_pretty': 'IMDB', 'test_metric':\n 'f1_test', 'reference': '$78\\\\%$'}, {'dataset': 'mimic-a',\n 'dataset_pretty': 'Anemia', 'test_metric': 'f1_test', 'reference':\n '$92\\\\%$'}, {'dataset': 'mimic-d', 'dataset_pretty': 'Diabetes',\n 'test_metric': 'f1_test', 'reference': '$79\\\\%$'}, {'dataset': 'babi-1',\n 'dataset_pretty': 'bAbI-1', 'test_metric': 'acc_test', 'reference':\n '$100\\\\%$'}, {'dataset': 'babi-2', 'dataset_pretty': 'bAbI-2',\n 'test_metric': 'acc_test', 'reference': '$48\\\\%$'}, {'dataset':\n 'babi-3', 'dataset_pretty': 'bAbI-3', 'test_metric': 'acc_test',\n 'reference': '$62\\\\%$'}])\n", (3162, 4014), True, 'import pandas as pd\n'), ((4058, 4200), 'pandas.DataFrame', 'pd.DataFrame', (["[{'model_type': 'rnn', 'model_type_pretty': 'BiLSTM-Attention'}, {\n 'model_type': 'roberta', 'model_type_pretty': 'RoBERTa'}]"], {}), "([{'model_type': 'rnn', 'model_type_pretty': 'BiLSTM-Attention'\n }, {'model_type': 'roberta', 'model_type_pretty': 'RoBERTa'}])\n", (4070, 4200), True, 'import pandas as pd\n'), ((1696, 1765), 'tqdm.tqdm', 'tqdm', (['split_iter'], {'desc': 'f"""Summarizing {split_name} split"""', 'leave': '(False)'}), "(split_iter, desc=f'Summarizing {split_name} split', leave=False)\n", (1700, 1765), False, 'from tqdm import tqdm\n'), ((4339, 4367), 'functools.partial', 'partial', (['BabiDataset'], {'task': '(1)'}), '(BabiDataset, task=1)\n', (4346, 4367), False, 'from functools import partial\n'), ((4387, 4415), 'functools.partial', 'partial', (['BabiDataset'], {'task': '(2)'}), '(BabiDataset, task=2)\n', (4394, 4415), False, 'from functools import partial\n'), ((4435, 4463), 'functools.partial', 'partial', (['BabiDataset'], {'task': '(3)'}), '(BabiDataset, task=3)\n', (4442, 4463), False, 'from functools import partial\n'), ((4484, 4570), 'functools.partial', 'partial', (['MimicDataset'], {'subset': '"""diabetes"""', 'mimicdir': 'f"""{args.persistent_dir}/mimic"""'}), "(MimicDataset, subset='diabetes', mimicdir=\n f'{args.persistent_dir}/mimic')\n", (4491, 4570), False, 'from functools import partial\n'), ((4586, 4665), 'functools.partial', 'partial', (['MimicDataset'], {'subset': '"""anemia"""', 'mimicdir': 'f"""{args.persistent_dir}/mimic"""'}), "(MimicDataset, subset='anemia', mimicdir=f'{args.persistent_dir}/mimic')\n", (4593, 4665), False, 'from functools import partial\n'), ((5165, 5186), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (5177, 5186), True, 'import pandas as pd\n'), ((5452, 5475), 'pandas.DataFrame', 'pd.DataFrame', (['summaries'], {}), '(summaries)\n', (5464, 5475), True, 'import pandas as pd\n'), ((5930, 5989), 'os.makedirs', 'os.makedirs', (['f"""{args.persistent_dir}/pandas"""'], {'exist_ok': '(True)'}), "(f'{args.persistent_dir}/pandas', exist_ok=True)\n", (5941, 5989), False, 'import os\n'), ((6106, 6171), 'pandas.read_pickle', 'pd.read_pickle', (['f"""{args.persistent_dir}/pandas/dataset.pd.pkl.xz"""'], {}), "(f'{args.persistent_dir}/pandas/dataset.pd.pkl.xz')\n", (6120, 6171), True, 'import pandas as pd\n'), ((1869, 1885), 'numpy.mean', 'np.mean', (['lengths'], {}), '(lengths)\n', (1876, 1885), True, 'import numpy as np\n'), ((2578, 2602), 'os.path.join', 'path.join', (['thisdir', '""".."""'], {}), "(thisdir, '..')\n", (2587, 2602), True, 'import os.path as path\n'), ((4806, 4869), 'glob.glob', 'glob.glob', (['f"""{args.persistent_dir}/results/roar/*_s-[0-9].json"""'], {}), "(f'{args.persistent_dir}/results/roar/*_s-[0-9].json')\n", (4815, 4869), False, 'import glob\n'), ((903, 927), 'numpy.random.default_rng', 'np.random.default_rng', (['(0)'], {}), '(0)\n', (924, 927), True, 'import numpy as np\n'), ((5020, 5033), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (5029, 5033), False, 'import json\n')]
import numpy as np import matplotlib.pyplot as plt # close all figures plt.close('all') years = np.array([1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014]) usaGDP = np.array([543300000000.,563300000000.,605100000000.,638600000000.,685800000000.,743700000000.,815000000000.,861700000000.,942500000000.,1019900000000.,1075884000000.,1167770000000.,1282449000000.,1428549000000.,1548825000000.,1688923000000.,1877587000000.,2085951000000.,2356571000000.,2632143000000.,2862505000000.,3210956000000.,3344991000000.,3638137000000.,4040693000000.,4346734000000.,4590155000000.,4870217000000.,5252629000000.,5657693000000.,5979589000000.,6174043000000.,6539299000000.,6878718000000.,7308755000000.,7664060000000.,8100201000000.,8608515000000.,9089168000000.,9660624000000.,10284779000000.,10621824000000.,10977514000000.,11510670000000.,12274928000000.,13093726000000.,13855888000000.,14477635000000.,14718582000000.,14418739000000.,14964372000000.,15517926000000.,16163158000000.,16768053000000.,17419000000000.]) # GDP data from the worldbank http://data.worldbank.org/indicator/NY.GDP.MKTP.CD/countries/US?display=graph # CPI data from bureau of labor statistics http://data.bls.gov/pdq/SurveyOutputServlet usaCPI = np.array([29.6, 29.9, 30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8, 40.5, 41.8, 44.4, 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5, 99.6, 103.9, 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, 144.5, 148.2, 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, 184.0, 188.9, 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939, 229.594, 232.957, 236.736]) plt.figure() plt.plot(years, usaGDP) plt.xlabel('Year') plt.ylabel('GDP in Current USD') plt.grid(True) plt.show() # Adjust GDP for 1960 USD usaGDP1960 = usaGDP / (usaCPI / usaCPI[0]) plt.figure() plt.plot(years, usaGDP1960) plt.xlabel('Year') plt.ylabel('GDP adjusted for inflation in 1960 USD') plt.grid(True) plt.show() # Adjust GDP for 2014 USD usaGDP2014 = usaGDP / (usaCPI / usaCPI[-1]) plt.figure() plt.plot(years, usaGDP2014) plt.xlabel('Year') plt.ylabel('GDP adjusted for inflation in 2014 USD') plt.grid(True) plt.show() # population from world bank usaPop = np.array([180671000,183691000,186538000,189242000,191889000,194303000,196560000,198712000,200706000,202677000,205052000,207661000,209896000,211909000,213854000,215973000,218035000,220239000,222585000,225055000,227225000,229466000,231664000,233792000,235825000,237924000,240133000,242289000,244499000,246819000,249623000,252981000,256514000,259919000,263126000,266278000,269394000,272657000,275854000,279040000,282162411,284968955,287625193,290107933,292805298,295516599,298379912,301231207,304093966,306771529,309347057,311721632,314112078,316497531,318857056]) usaGDPpercapita = usaGDP / usaPop plt.figure() plt.plot(years, usaGDPpercapita) plt.xlabel('Year') plt.ylabel('GDP per capita in Current USD') plt.grid(True) plt.show() # adjust GDP per Capita to 1960s numbers usaGDPpercapita1960 = usaGDPpercapita / (usaCPI / usaCPI[0]) plt.figure() plt.plot(years, usaGDPpercapita1960) plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation in 1960 USD') plt.grid(True) plt.show() # adjust GDP per Capita to 2014s numbers usaGDPpercapita2014 = usaGDPpercapita / (usaCPI / usaCPI[-1]) plt.figure() plt.plot(years, usaGDPpercapita2014) plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation to 2014 USD') plt.grid(True) plt.show() # define a function to adjust the CPI based on an over or under estimation of # the inflation rate, where rate is the percent increase or decrease change # where a precentage overesimate of 5% would be inputted as 1.05 def adjustCPI(cpi, rate): demo = [] for i, j in enumerate(cpi): demo.append(j * (rate**i)) return demo # what if we underestimated inflation? cpiOverFive = adjustCPI(usaCPI, 1.005) # what if we underestimated inflation? cpiUnderFive = adjustCPI(usaCPI, 0.995) # adjust GDP per Capita to 2014s numbers usaGDPpercapita2014OverFive = usaGDPpercapita / (cpiOverFive / cpiOverFive[-1]) usaGDPpercapita2014UnderFive = usaGDPpercapita / (cpiUnderFive / cpiUnderFive[-1]) plt.figure() plt.plot(years, usaGDPpercapita2014, label='normal') plt.plot(years, usaGDPpercapita2014OverFive, label='under') plt.plot(years, usaGDPpercapita2014UnderFive, label='over') plt.legend() plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation to 2014 USD') plt.grid(True) plt.show() years2 = np.array([1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014]) usaGNI = np.array([612178550047.646,646233886826.65,692328219512.945,753294530375.941,824183577234.192,868295290971.962,952033980993.251,1027990251284.03,1098553055567.61,1183038457083.86,1320921418184.74,1548458249174.67,1711839855738.22,1842214711486.27,1958767403397.59,2117456144199.84,2401109359261.26,2751769589536.9,3048093901726.34,3303883972259.98,3297652203866.24,3411202239818.87,3828479505092.12,4164905103485.73,4601500378186.56,5200354088055.45,5765196251790.1,5888830786924.1,6029529322891.06,6164277951121.71,6612706041742.15,6883086506452.91,7302781827892.38,7760854970064.45,8184808773787.28,8558708987900.82,8869581532268.98,9425292191447.05,10178500697503.7,10498594829042.2,10776200783181,11589035965657.3,12790914724399.8,13693955258225.3,14345564947204.5,14651211130474,15002428215985,14740580035992.9,15143137264678.1,15727290871234.6,16501015978642.4,17001290051112.6,17611490812741.3]) # GNI data atlas method from the worldbank http://databank.worldbank.org/data/reports.aspx?source=2&country=USA&series=&period=# # CPI data from bureau of labor statistics http://data.bls.gov/pdq/SurveyOutputServlet usaCPI2 = np.array([30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8, 40.5, 41.8, 44.4, 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5, 99.6, 103.9, 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, 144.5, 148.2, 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, 184.0, 188.9, 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939, 229.594, 232.957, 236.736]) plt.figure() plt.plot(years2, usaGNI) plt.xlabel('Year') plt.ylabel('GNI in Current USD') plt.grid(True) plt.show() # Adjust GNI for 1962 USD usaGNI1962 = usaGNI / (usaCPI2 / usaCPI2[0]) plt.figure() plt.plot(years2, usaGNI1962) plt.xlabel('Year') plt.ylabel('GNI adjusted for inflation to 1962 USD') plt.grid(True) plt.show() # Adjust GNI for 2014 USD usaGNI2014 = usaGNI / (usaCPI2 / usaCPI2[-1]) plt.figure() plt.plot(years2, usaGNI2014) plt.xlabel('Year') plt.ylabel('GNI adjusted for inflation to 2014 USD') plt.grid(True) plt.show() # population from world bank usaPop = np.array([186538000,189242000,191889000,194303000,196560000,198712000,200706000,202677000,205052000,207661000,209896000,211909000,213854000,215973000,218035000,220239000,222585000,225055000,227225000,229466000,231664000,233792000,235825000,237924000,240133000,242289000,244499000,246819000,249623000,252981000,256514000,259919000,263126000,266278000,269394000,272657000,275854000,279040000,282162411,284968955,287625193,290107933,292805298,295516599,298379912,301231207,304093966,306771529,309347057,311721632,314112078,316497531,318857056]) usaGNIpercapita = usaGNI / usaPop plt.figure() plt.plot(years2, usaGNIpercapita) plt.xlabel('Year') plt.ylabel('GNI per capita in Current USD') plt.grid(True) plt.show() # adjust GNI per Capita to 1962s numbers usaGNIpercapita1962 = usaGNIpercapita / (usaCPI2 / usaCPI2[0]) plt.figure() plt.plot(years2, usaGNIpercapita1962) plt.xlabel('Year') plt.ylabel('GNI per capita adjusted for inflation to 1962 USD') plt.grid(True) plt.show() # adjust GNI per Capita to 2014s numbers usaGNIpercapita2014 = usaGNIpercapita / (usaCPI2 / usaCPI2[-1]) plt.figure() plt.plot(years2, usaGNIpercapita2014) plt.xlabel('Year') plt.ylabel('GNI per capita adjusted for inflation to 2014 USD') plt.grid(True) plt.show() # close all figs plt.close('all') # save the final plots # plot of the GDP and GNI in current USD plt.figure() plt.plot(years, usaGDP / 1.e12, '-k', label='GDP') plt.plot(years2, usaGNI / 1.e12, '--b', label='GNI') plt.xlabel('Year') plt.ylabel('Trillion USD') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI.png') # plot of GDP and GNI per capita in current USD plt.figure() plt.plot(years, usaGDPpercapita, '-k', label='GDP') plt.plot(years2, usaGNIpercapita, '--b', label='GNI') plt.xlabel('Year') plt.ylabel('USD per capita') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI_perCapita.png') # plot of GDP and GNI per capita in 2014 USD plt.figure() plt.plot(years, usaGDPpercapita2014, '-k', label='GDP') plt.plot(years2, usaGNIpercapita2014, '--b', label='GNI') plt.xlabel('Year') plt.ylabel('USD per capita adjusted for inflation to 2014 levels') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI_perCapita_2014.png') # plot of GDP at 0.5, 1, and 2 perecent estimations # what if CPI has underestimated inflation? cpiUnderHalf = adjustCPI(usaCPI, 1.005) cpiUnderOne = adjustCPI(usaCPI, 1.01) cpiUnderTwo = adjustCPI(usaCPI, 1.02) # what if CPI has overestimated inflation? cpiOverHalf = adjustCPI(usaCPI, 0.995) cpiOverOne = adjustCPI(usaCPI, 0.99) cpiOverTwo = adjustCPI(usaCPI, 0.98) # recalculate GDP basedd on the CPI values usaGDPpercapita2014UnderHalf = usaGDPpercapita / (cpiUnderHalf / cpiUnderHalf[-1]) usaGDPpercapita2014UnderOne = usaGDPpercapita / (cpiUnderOne / cpiUnderOne[-1]) usaGDPpercapita2014UnderTwo = usaGDPpercapita / (cpiUnderTwo / cpiUnderTwo[-1]) usaGDPpercapita2014OverHalf = usaGDPpercapita / (cpiOverHalf / cpiOverHalf[-1]) usaGDPpercapita2014OverOne = usaGDPpercapita / (cpiOverOne / cpiOverOne[-1]) usaGDPpercapita2014OverTwo = usaGDPpercapita / (cpiOverTwo / cpiOverTwo[-1]) plt.figure() plt.plot(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI') plt.plot(years, usaGDPpercapita2014UnderHalf, '--k', label='CPI each year adjusted +0.5%') plt.plot(years, usaGDPpercapita2014OverHalf, '-.k', label='CPI each year adjusted -0.5%') plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation (USD)') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI_perCapita_2014_half.png') plt.figure() plt.plot(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI') plt.plot(years, usaGDPpercapita2014UnderOne, '--k', label='CPI each year adjusted +1.0%') plt.plot(years, usaGDPpercapita2014OverOne, '-.k', label='CPI each year adjusted -1.0%') plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation (USD)') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI_perCapita_2014_one.png') plt.figure() plt.plot(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI') plt.plot(years, usaGDPpercapita2014UnderTwo, '--k', label='CPI each year adjusted +2.0%') plt.plot(years, usaGDPpercapita2014OverTwo, '-.k', label='CPI each year adjusted -2.0%') plt.xlabel('Year') plt.ylabel('GDP per capita adjusted for inflation (USD)') plt.legend(loc=4) plt.grid(True) plt.show() plt.savefig('images/usaGDPandGNI_perCapita_2014_two.png')
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig" ]
[((74, 90), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (83, 90), True, 'import matplotlib.pyplot as plt\n'), ((100, 456), 'numpy.array', 'np.array', (['[1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, \n 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983,\n 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,\n 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,\n 2008, 2009, 2010, 2011, 2012, 2013, 2014]'], {}), '([1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970,\n 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982,\n 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,\n 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,\n 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014])\n', (108, 456), True, 'import numpy as np\n'), ((396, 1409), 'numpy.array', 'np.array', (['[543300000000.0, 563300000000.0, 605100000000.0, 638600000000.0, \n 685800000000.0, 743700000000.0, 815000000000.0, 861700000000.0, \n 942500000000.0, 1019900000000.0, 1075884000000.0, 1167770000000.0, \n 1282449000000.0, 1428549000000.0, 1548825000000.0, 1688923000000.0, \n 1877587000000.0, 2085951000000.0, 2356571000000.0, 2632143000000.0, \n 2862505000000.0, 3210956000000.0, 3344991000000.0, 3638137000000.0, \n 4040693000000.0, 4346734000000.0, 4590155000000.0, 4870217000000.0, \n 5252629000000.0, 5657693000000.0, 5979589000000.0, 6174043000000.0, \n 6539299000000.0, 6878718000000.0, 7308755000000.0, 7664060000000.0, \n 8100201000000.0, 8608515000000.0, 9089168000000.0, 9660624000000.0, \n 10284779000000.0, 10621824000000.0, 10977514000000.0, 11510670000000.0,\n 12274928000000.0, 13093726000000.0, 13855888000000.0, 14477635000000.0,\n 14718582000000.0, 14418739000000.0, 14964372000000.0, 15517926000000.0,\n 16163158000000.0, 16768053000000.0, 17419000000000.0]'], {}), '([543300000000.0, 563300000000.0, 605100000000.0, 638600000000.0, \n 685800000000.0, 743700000000.0, 815000000000.0, 861700000000.0, \n 942500000000.0, 1019900000000.0, 1075884000000.0, 1167770000000.0, \n 1282449000000.0, 1428549000000.0, 1548825000000.0, 1688923000000.0, \n 1877587000000.0, 2085951000000.0, 2356571000000.0, 2632143000000.0, \n 2862505000000.0, 3210956000000.0, 3344991000000.0, 3638137000000.0, \n 4040693000000.0, 4346734000000.0, 4590155000000.0, 4870217000000.0, \n 5252629000000.0, 5657693000000.0, 5979589000000.0, 6174043000000.0, \n 6539299000000.0, 6878718000000.0, 7308755000000.0, 7664060000000.0, \n 8100201000000.0, 8608515000000.0, 9089168000000.0, 9660624000000.0, \n 10284779000000.0, 10621824000000.0, 10977514000000.0, 11510670000000.0,\n 12274928000000.0, 13093726000000.0, 13855888000000.0, 14477635000000.0,\n 14718582000000.0, 14418739000000.0, 14964372000000.0, 15517926000000.0,\n 16163158000000.0, 16768053000000.0, 17419000000000.0])\n', (404, 1409), True, 'import numpy as np\n'), ((1448, 1857), 'numpy.array', 'np.array', (['[29.6, 29.9, 30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8, 40.5, \n 41.8, 44.4, 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5, 99.6,\n 103.9, 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, 144.5, \n 148.2, 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, 184.0, \n 188.9, 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939, \n 229.594, 232.957, 236.736]'], {}), '([29.6, 29.9, 30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8,\n 40.5, 41.8, 44.4, 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5,\n 99.6, 103.9, 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, \n 144.5, 148.2, 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, \n 184.0, 188.9, 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939,\n 229.594, 232.957, 236.736])\n', (1456, 1857), True, 'import numpy as np\n'), ((1837, 1849), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1847, 1849), True, 'import matplotlib.pyplot as plt\n'), ((1850, 1873), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDP'], {}), '(years, usaGDP)\n', (1858, 1873), True, 'import matplotlib.pyplot as plt\n'), ((1874, 1892), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (1884, 1892), True, 'import matplotlib.pyplot as plt\n'), ((1893, 1925), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP in Current USD"""'], {}), "('GDP in Current USD')\n", (1903, 1925), True, 'import matplotlib.pyplot as plt\n'), ((1926, 1940), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1934, 1940), True, 'import matplotlib.pyplot as plt\n'), ((1941, 1951), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1949, 1951), True, 'import matplotlib.pyplot as plt\n'), ((2025, 2037), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2035, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2038, 2065), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDP1960'], {}), '(years, usaGDP1960)\n', (2046, 2065), True, 'import matplotlib.pyplot as plt\n'), ((2066, 2084), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (2076, 2084), True, 'import matplotlib.pyplot as plt\n'), ((2085, 2137), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP adjusted for inflation in 1960 USD"""'], {}), "('GDP adjusted for inflation in 1960 USD')\n", (2095, 2137), True, 'import matplotlib.pyplot as plt\n'), ((2138, 2152), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2146, 2152), True, 'import matplotlib.pyplot as plt\n'), ((2153, 2163), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2161, 2163), True, 'import matplotlib.pyplot as plt\n'), ((2238, 2250), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2248, 2250), True, 'import matplotlib.pyplot as plt\n'), ((2251, 2278), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDP2014'], {}), '(years, usaGDP2014)\n', (2259, 2278), True, 'import matplotlib.pyplot as plt\n'), ((2279, 2297), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (2289, 2297), True, 'import matplotlib.pyplot as plt\n'), ((2298, 2350), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP adjusted for inflation in 2014 USD"""'], {}), "('GDP adjusted for inflation in 2014 USD')\n", (2308, 2350), True, 'import matplotlib.pyplot as plt\n'), ((2351, 2365), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2359, 2365), True, 'import matplotlib.pyplot as plt\n'), ((2366, 2376), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2374, 2376), True, 'import matplotlib.pyplot as plt\n'), ((2418, 3077), 'numpy.array', 'np.array', (['[180671000, 183691000, 186538000, 189242000, 191889000, 194303000, \n 196560000, 198712000, 200706000, 202677000, 205052000, 207661000, \n 209896000, 211909000, 213854000, 215973000, 218035000, 220239000, \n 222585000, 225055000, 227225000, 229466000, 231664000, 233792000, \n 235825000, 237924000, 240133000, 242289000, 244499000, 246819000, \n 249623000, 252981000, 256514000, 259919000, 263126000, 266278000, \n 269394000, 272657000, 275854000, 279040000, 282162411, 284968955, \n 287625193, 290107933, 292805298, 295516599, 298379912, 301231207, \n 304093966, 306771529, 309347057, 311721632, 314112078, 316497531, 318857056\n ]'], {}), '([180671000, 183691000, 186538000, 189242000, 191889000, 194303000,\n 196560000, 198712000, 200706000, 202677000, 205052000, 207661000, \n 209896000, 211909000, 213854000, 215973000, 218035000, 220239000, \n 222585000, 225055000, 227225000, 229466000, 231664000, 233792000, \n 235825000, 237924000, 240133000, 242289000, 244499000, 246819000, \n 249623000, 252981000, 256514000, 259919000, 263126000, 266278000, \n 269394000, 272657000, 275854000, 279040000, 282162411, 284968955, \n 287625193, 290107933, 292805298, 295516599, 298379912, 301231207, \n 304093966, 306771529, 309347057, 311721632, 314112078, 316497531, \n 318857056])\n', (2426, 3077), True, 'import numpy as np\n'), ((3015, 3027), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3025, 3027), True, 'import matplotlib.pyplot as plt\n'), ((3028, 3060), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita'], {}), '(years, usaGDPpercapita)\n', (3036, 3060), True, 'import matplotlib.pyplot as plt\n'), ((3061, 3079), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (3071, 3079), True, 'import matplotlib.pyplot as plt\n'), ((3080, 3123), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita in Current USD"""'], {}), "('GDP per capita in Current USD')\n", (3090, 3123), True, 'import matplotlib.pyplot as plt\n'), ((3124, 3138), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (3132, 3138), True, 'import matplotlib.pyplot as plt\n'), ((3139, 3149), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3147, 3149), True, 'import matplotlib.pyplot as plt\n'), ((3255, 3267), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3265, 3267), True, 'import matplotlib.pyplot as plt\n'), ((3268, 3304), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita1960'], {}), '(years, usaGDPpercapita1960)\n', (3276, 3304), True, 'import matplotlib.pyplot as plt\n'), ((3305, 3323), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (3315, 3323), True, 'import matplotlib.pyplot as plt\n'), ((3324, 3387), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation in 1960 USD"""'], {}), "('GDP per capita adjusted for inflation in 1960 USD')\n", (3334, 3387), True, 'import matplotlib.pyplot as plt\n'), ((3388, 3402), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (3396, 3402), True, 'import matplotlib.pyplot as plt\n'), ((3403, 3413), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3411, 3413), True, 'import matplotlib.pyplot as plt\n'), ((3520, 3532), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3530, 3532), True, 'import matplotlib.pyplot as plt\n'), ((3533, 3569), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014'], {}), '(years, usaGDPpercapita2014)\n', (3541, 3569), True, 'import matplotlib.pyplot as plt\n'), ((3570, 3588), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (3580, 3588), True, 'import matplotlib.pyplot as plt\n'), ((3589, 3652), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation to 2014 USD"""'], {}), "('GDP per capita adjusted for inflation to 2014 USD')\n", (3599, 3652), True, 'import matplotlib.pyplot as plt\n'), ((3653, 3667), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (3661, 3667), True, 'import matplotlib.pyplot as plt\n'), ((3668, 3678), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3676, 3678), True, 'import matplotlib.pyplot as plt\n'), ((4399, 4411), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4409, 4411), True, 'import matplotlib.pyplot as plt\n'), ((4412, 4464), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014'], {'label': '"""normal"""'}), "(years, usaGDPpercapita2014, label='normal')\n", (4420, 4464), True, 'import matplotlib.pyplot as plt\n'), ((4465, 4524), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014OverFive'], {'label': '"""under"""'}), "(years, usaGDPpercapita2014OverFive, label='under')\n", (4473, 4524), True, 'import matplotlib.pyplot as plt\n'), ((4525, 4584), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014UnderFive'], {'label': '"""over"""'}), "(years, usaGDPpercapita2014UnderFive, label='over')\n", (4533, 4584), True, 'import matplotlib.pyplot as plt\n'), ((4585, 4597), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4595, 4597), True, 'import matplotlib.pyplot as plt\n'), ((4598, 4616), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (4608, 4616), True, 'import matplotlib.pyplot as plt\n'), ((4617, 4680), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation to 2014 USD"""'], {}), "('GDP per capita adjusted for inflation to 2014 USD')\n", (4627, 4680), True, 'import matplotlib.pyplot as plt\n'), ((4681, 4695), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (4689, 4695), True, 'import matplotlib.pyplot as plt\n'), ((4696, 4706), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4704, 4706), True, 'import matplotlib.pyplot as plt\n'), ((4718, 5062), 'numpy.array', 'np.array', (['[1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, \n 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985,\n 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,\n 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,\n 2010, 2011, 2012, 2013, 2014]'], {}), '([1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972,\n 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984,\n 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,\n 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,\n 2009, 2010, 2011, 2012, 2013, 2014])\n', (4726, 5062), True, 'import numpy as np\n'), ((5004, 6016), 'numpy.array', 'np.array', (['[612178550047.646, 646233886826.65, 692328219512.945, 753294530375.941, \n 824183577234.192, 868295290971.962, 952033980993.251, 1027990251284.03,\n 1098553055567.61, 1183038457083.86, 1320921418184.74, 1548458249174.67,\n 1711839855738.22, 1842214711486.27, 1958767403397.59, 2117456144199.84,\n 2401109359261.26, 2751769589536.9, 3048093901726.34, 3303883972259.98, \n 3297652203866.24, 3411202239818.87, 3828479505092.12, 4164905103485.73,\n 4601500378186.56, 5200354088055.45, 5765196251790.1, 5888830786924.1, \n 6029529322891.06, 6164277951121.71, 6612706041742.15, 6883086506452.91,\n 7302781827892.38, 7760854970064.45, 8184808773787.28, 8558708987900.82,\n 8869581532268.98, 9425292191447.05, 10178500697503.7, 10498594829042.2,\n 10776200783181, 11589035965657.3, 12790914724399.8, 13693955258225.3, \n 14345564947204.5, 14651211130474, 15002428215985, 14740580035992.9, \n 15143137264678.1, 15727290871234.6, 16501015978642.4, 17001290051112.6,\n 17611490812741.3]'], {}), '([612178550047.646, 646233886826.65, 692328219512.945, \n 753294530375.941, 824183577234.192, 868295290971.962, 952033980993.251,\n 1027990251284.03, 1098553055567.61, 1183038457083.86, 1320921418184.74,\n 1548458249174.67, 1711839855738.22, 1842214711486.27, 1958767403397.59,\n 2117456144199.84, 2401109359261.26, 2751769589536.9, 3048093901726.34, \n 3303883972259.98, 3297652203866.24, 3411202239818.87, 3828479505092.12,\n 4164905103485.73, 4601500378186.56, 5200354088055.45, 5765196251790.1, \n 5888830786924.1, 6029529322891.06, 6164277951121.71, 6612706041742.15, \n 6883086506452.91, 7302781827892.38, 7760854970064.45, 8184808773787.28,\n 8558708987900.82, 8869581532268.98, 9425292191447.05, 10178500697503.7,\n 10498594829042.2, 10776200783181, 11589035965657.3, 12790914724399.8, \n 13693955258225.3, 14345564947204.5, 14651211130474, 15002428215985, \n 14740580035992.9, 15143137264678.1, 15727290871234.6, 16501015978642.4,\n 17001290051112.6, 17611490812741.3])\n', (5012, 6016), True, 'import numpy as np\n'), ((6137, 6535), 'numpy.array', 'np.array', (['[30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8, 40.5, 41.8, 44.4, \n 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5, 99.6, 103.9, \n 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, 144.5, 148.2, \n 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, 184.0, 188.9, \n 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939, 229.594, \n 232.957, 236.736]'], {}), '([30.2, 30.6, 31.0, 31.5, 32.4, 33.4, 34.8, 36.7, 38.8, 40.5, 41.8,\n 44.4, 49.3, 53.8, 56.9, 60.6, 65.2, 72.6, 82.4, 90.9, 96.5, 99.6, 103.9,\n 107.6, 109.6, 113.6, 118.3, 124.0, 130.7, 136.2, 140.3, 144.5, 148.2, \n 152.4, 156.9, 160.5, 163.0, 166.6, 172.2, 177.1, 179.9, 184.0, 188.9, \n 195.3, 201.6, 207.342, 215.303, 214.537, 218.056, 224.939, 229.594, \n 232.957, 236.736])\n', (6145, 6535), True, 'import numpy as np\n'), ((6514, 6526), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6524, 6526), True, 'import matplotlib.pyplot as plt\n'), ((6527, 6551), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNI'], {}), '(years2, usaGNI)\n', (6535, 6551), True, 'import matplotlib.pyplot as plt\n'), ((6552, 6570), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (6562, 6570), True, 'import matplotlib.pyplot as plt\n'), ((6571, 6603), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI in Current USD"""'], {}), "('GNI in Current USD')\n", (6581, 6603), True, 'import matplotlib.pyplot as plt\n'), ((6604, 6618), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (6612, 6618), True, 'import matplotlib.pyplot as plt\n'), ((6619, 6629), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6627, 6629), True, 'import matplotlib.pyplot as plt\n'), ((6705, 6717), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6715, 6717), True, 'import matplotlib.pyplot as plt\n'), ((6718, 6746), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNI1962'], {}), '(years2, usaGNI1962)\n', (6726, 6746), True, 'import matplotlib.pyplot as plt\n'), ((6747, 6765), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (6757, 6765), True, 'import matplotlib.pyplot as plt\n'), ((6766, 6818), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI adjusted for inflation to 1962 USD"""'], {}), "('GNI adjusted for inflation to 1962 USD')\n", (6776, 6818), True, 'import matplotlib.pyplot as plt\n'), ((6819, 6833), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (6827, 6833), True, 'import matplotlib.pyplot as plt\n'), ((6834, 6844), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6842, 6844), True, 'import matplotlib.pyplot as plt\n'), ((6921, 6933), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6931, 6933), True, 'import matplotlib.pyplot as plt\n'), ((6934, 6962), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNI2014'], {}), '(years2, usaGNI2014)\n', (6942, 6962), True, 'import matplotlib.pyplot as plt\n'), ((6963, 6981), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (6973, 6981), True, 'import matplotlib.pyplot as plt\n'), ((6982, 7034), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI adjusted for inflation to 2014 USD"""'], {}), "('GNI adjusted for inflation to 2014 USD')\n", (6992, 7034), True, 'import matplotlib.pyplot as plt\n'), ((7035, 7049), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (7043, 7049), True, 'import matplotlib.pyplot as plt\n'), ((7050, 7060), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7058, 7060), True, 'import matplotlib.pyplot as plt\n'), ((7102, 7734), 'numpy.array', 'np.array', (['[186538000, 189242000, 191889000, 194303000, 196560000, 198712000, \n 200706000, 202677000, 205052000, 207661000, 209896000, 211909000, \n 213854000, 215973000, 218035000, 220239000, 222585000, 225055000, \n 227225000, 229466000, 231664000, 233792000, 235825000, 237924000, \n 240133000, 242289000, 244499000, 246819000, 249623000, 252981000, \n 256514000, 259919000, 263126000, 266278000, 269394000, 272657000, \n 275854000, 279040000, 282162411, 284968955, 287625193, 290107933, \n 292805298, 295516599, 298379912, 301231207, 304093966, 306771529, \n 309347057, 311721632, 314112078, 316497531, 318857056]'], {}), '([186538000, 189242000, 191889000, 194303000, 196560000, 198712000,\n 200706000, 202677000, 205052000, 207661000, 209896000, 211909000, \n 213854000, 215973000, 218035000, 220239000, 222585000, 225055000, \n 227225000, 229466000, 231664000, 233792000, 235825000, 237924000, \n 240133000, 242289000, 244499000, 246819000, 249623000, 252981000, \n 256514000, 259919000, 263126000, 266278000, 269394000, 272657000, \n 275854000, 279040000, 282162411, 284968955, 287625193, 290107933, \n 292805298, 295516599, 298379912, 301231207, 304093966, 306771529, \n 309347057, 311721632, 314112078, 316497531, 318857056])\n', (7110, 7734), True, 'import numpy as np\n'), ((7679, 7691), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7689, 7691), True, 'import matplotlib.pyplot as plt\n'), ((7692, 7725), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNIpercapita'], {}), '(years2, usaGNIpercapita)\n', (7700, 7725), True, 'import matplotlib.pyplot as plt\n'), ((7726, 7744), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (7736, 7744), True, 'import matplotlib.pyplot as plt\n'), ((7745, 7788), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI per capita in Current USD"""'], {}), "('GNI per capita in Current USD')\n", (7755, 7788), True, 'import matplotlib.pyplot as plt\n'), ((7789, 7803), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (7797, 7803), True, 'import matplotlib.pyplot as plt\n'), ((7804, 7814), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7812, 7814), True, 'import matplotlib.pyplot as plt\n'), ((7922, 7934), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7932, 7934), True, 'import matplotlib.pyplot as plt\n'), ((7935, 7972), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNIpercapita1962'], {}), '(years2, usaGNIpercapita1962)\n', (7943, 7972), True, 'import matplotlib.pyplot as plt\n'), ((7973, 7991), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (7983, 7991), True, 'import matplotlib.pyplot as plt\n'), ((7992, 8055), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI per capita adjusted for inflation to 1962 USD"""'], {}), "('GNI per capita adjusted for inflation to 1962 USD')\n", (8002, 8055), True, 'import matplotlib.pyplot as plt\n'), ((8056, 8070), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8064, 8070), True, 'import matplotlib.pyplot as plt\n'), ((8071, 8081), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8079, 8081), True, 'import matplotlib.pyplot as plt\n'), ((8190, 8202), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8200, 8202), True, 'import matplotlib.pyplot as plt\n'), ((8203, 8240), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNIpercapita2014'], {}), '(years2, usaGNIpercapita2014)\n', (8211, 8240), True, 'import matplotlib.pyplot as plt\n'), ((8241, 8259), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (8251, 8259), True, 'import matplotlib.pyplot as plt\n'), ((8260, 8323), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GNI per capita adjusted for inflation to 2014 USD"""'], {}), "('GNI per capita adjusted for inflation to 2014 USD')\n", (8270, 8323), True, 'import matplotlib.pyplot as plt\n'), ((8324, 8338), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8332, 8338), True, 'import matplotlib.pyplot as plt\n'), ((8339, 8349), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8347, 8349), True, 'import matplotlib.pyplot as plt\n'), ((8370, 8386), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (8379, 8386), True, 'import matplotlib.pyplot as plt\n'), ((8456, 8468), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8466, 8468), True, 'import matplotlib.pyplot as plt\n'), ((8469, 8529), 'matplotlib.pyplot.plot', 'plt.plot', (['years', '(usaGDP / 1000000000000.0)', '"""-k"""'], {'label': '"""GDP"""'}), "(years, usaGDP / 1000000000000.0, '-k', label='GDP')\n", (8477, 8529), True, 'import matplotlib.pyplot as plt\n'), ((8520, 8582), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', '(usaGNI / 1000000000000.0)', '"""--b"""'], {'label': '"""GNI"""'}), "(years2, usaGNI / 1000000000000.0, '--b', label='GNI')\n", (8528, 8582), True, 'import matplotlib.pyplot as plt\n'), ((8573, 8591), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (8583, 8591), True, 'import matplotlib.pyplot as plt\n'), ((8592, 8618), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Trillion USD"""'], {}), "('Trillion USD')\n", (8602, 8618), True, 'import matplotlib.pyplot as plt\n'), ((8619, 8636), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (8629, 8636), True, 'import matplotlib.pyplot as plt\n'), ((8637, 8651), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8645, 8651), True, 'import matplotlib.pyplot as plt\n'), ((8652, 8662), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8660, 8662), True, 'import matplotlib.pyplot as plt\n'), ((8663, 8701), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI.png"""'], {}), "('images/usaGDPandGNI.png')\n", (8674, 8701), True, 'import matplotlib.pyplot as plt\n'), ((8752, 8764), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8762, 8764), True, 'import matplotlib.pyplot as plt\n'), ((8765, 8816), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita', '"""-k"""'], {'label': '"""GDP"""'}), "(years, usaGDPpercapita, '-k', label='GDP')\n", (8773, 8816), True, 'import matplotlib.pyplot as plt\n'), ((8817, 8870), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNIpercapita', '"""--b"""'], {'label': '"""GNI"""'}), "(years2, usaGNIpercapita, '--b', label='GNI')\n", (8825, 8870), True, 'import matplotlib.pyplot as plt\n'), ((8871, 8889), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (8881, 8889), True, 'import matplotlib.pyplot as plt\n'), ((8890, 8918), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""USD per capita"""'], {}), "('USD per capita')\n", (8900, 8918), True, 'import matplotlib.pyplot as plt\n'), ((8919, 8936), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (8929, 8936), True, 'import matplotlib.pyplot as plt\n'), ((8937, 8951), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8945, 8951), True, 'import matplotlib.pyplot as plt\n'), ((8952, 8962), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8960, 8962), True, 'import matplotlib.pyplot as plt\n'), ((8963, 9011), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI_perCapita.png"""'], {}), "('images/usaGDPandGNI_perCapita.png')\n", (8974, 9011), True, 'import matplotlib.pyplot as plt\n'), ((9059, 9071), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9069, 9071), True, 'import matplotlib.pyplot as plt\n'), ((9072, 9127), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014', '"""-k"""'], {'label': '"""GDP"""'}), "(years, usaGDPpercapita2014, '-k', label='GDP')\n", (9080, 9127), True, 'import matplotlib.pyplot as plt\n'), ((9128, 9185), 'matplotlib.pyplot.plot', 'plt.plot', (['years2', 'usaGNIpercapita2014', '"""--b"""'], {'label': '"""GNI"""'}), "(years2, usaGNIpercapita2014, '--b', label='GNI')\n", (9136, 9185), True, 'import matplotlib.pyplot as plt\n'), ((9186, 9204), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (9196, 9204), True, 'import matplotlib.pyplot as plt\n'), ((9205, 9271), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""USD per capita adjusted for inflation to 2014 levels"""'], {}), "('USD per capita adjusted for inflation to 2014 levels')\n", (9215, 9271), True, 'import matplotlib.pyplot as plt\n'), ((9272, 9289), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (9282, 9289), True, 'import matplotlib.pyplot as plt\n'), ((9290, 9304), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (9298, 9304), True, 'import matplotlib.pyplot as plt\n'), ((9305, 9315), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9313, 9315), True, 'import matplotlib.pyplot as plt\n'), ((9316, 9369), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI_perCapita_2014.png"""'], {}), "('images/usaGDPandGNI_perCapita_2014.png')\n", (9327, 9369), True, 'import matplotlib.pyplot as plt\n'), ((10269, 10281), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10279, 10281), True, 'import matplotlib.pyplot as plt\n'), ((10282, 10354), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014', '"""-k"""'], {'label': '"""Adjusted to 2014 CPI"""'}), "(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI')\n", (10290, 10354), True, 'import matplotlib.pyplot as plt\n'), ((10355, 10450), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014UnderHalf', '"""--k"""'], {'label': '"""CPI each year adjusted +0.5%"""'}), "(years, usaGDPpercapita2014UnderHalf, '--k', label=\n 'CPI each year adjusted +0.5%')\n", (10363, 10450), True, 'import matplotlib.pyplot as plt\n'), ((10446, 10540), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014OverHalf', '"""-.k"""'], {'label': '"""CPI each year adjusted -0.5%"""'}), "(years, usaGDPpercapita2014OverHalf, '-.k', label=\n 'CPI each year adjusted -0.5%')\n", (10454, 10540), True, 'import matplotlib.pyplot as plt\n'), ((10536, 10554), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (10546, 10554), True, 'import matplotlib.pyplot as plt\n'), ((10555, 10612), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation (USD)"""'], {}), "('GDP per capita adjusted for inflation (USD)')\n", (10565, 10612), True, 'import matplotlib.pyplot as plt\n'), ((10613, 10630), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (10623, 10630), True, 'import matplotlib.pyplot as plt\n'), ((10631, 10645), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (10639, 10645), True, 'import matplotlib.pyplot as plt\n'), ((10646, 10656), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10654, 10656), True, 'import matplotlib.pyplot as plt\n'), ((10657, 10715), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI_perCapita_2014_half.png"""'], {}), "('images/usaGDPandGNI_perCapita_2014_half.png')\n", (10668, 10715), True, 'import matplotlib.pyplot as plt\n'), ((10716, 10728), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10726, 10728), True, 'import matplotlib.pyplot as plt\n'), ((10729, 10801), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014', '"""-k"""'], {'label': '"""Adjusted to 2014 CPI"""'}), "(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI')\n", (10737, 10801), True, 'import matplotlib.pyplot as plt\n'), ((10802, 10896), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014UnderOne', '"""--k"""'], {'label': '"""CPI each year adjusted +1.0%"""'}), "(years, usaGDPpercapita2014UnderOne, '--k', label=\n 'CPI each year adjusted +1.0%')\n", (10810, 10896), True, 'import matplotlib.pyplot as plt\n'), ((10892, 10985), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014OverOne', '"""-.k"""'], {'label': '"""CPI each year adjusted -1.0%"""'}), "(years, usaGDPpercapita2014OverOne, '-.k', label=\n 'CPI each year adjusted -1.0%')\n", (10900, 10985), True, 'import matplotlib.pyplot as plt\n'), ((10981, 10999), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (10991, 10999), True, 'import matplotlib.pyplot as plt\n'), ((11000, 11057), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation (USD)"""'], {}), "('GDP per capita adjusted for inflation (USD)')\n", (11010, 11057), True, 'import matplotlib.pyplot as plt\n'), ((11058, 11075), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (11068, 11075), True, 'import matplotlib.pyplot as plt\n'), ((11076, 11090), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (11084, 11090), True, 'import matplotlib.pyplot as plt\n'), ((11091, 11101), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11099, 11101), True, 'import matplotlib.pyplot as plt\n'), ((11102, 11159), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI_perCapita_2014_one.png"""'], {}), "('images/usaGDPandGNI_perCapita_2014_one.png')\n", (11113, 11159), True, 'import matplotlib.pyplot as plt\n'), ((11160, 11172), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (11170, 11172), True, 'import matplotlib.pyplot as plt\n'), ((11173, 11245), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014', '"""-k"""'], {'label': '"""Adjusted to 2014 CPI"""'}), "(years, usaGDPpercapita2014, '-k', label='Adjusted to 2014 CPI')\n", (11181, 11245), True, 'import matplotlib.pyplot as plt\n'), ((11246, 11340), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014UnderTwo', '"""--k"""'], {'label': '"""CPI each year adjusted +2.0%"""'}), "(years, usaGDPpercapita2014UnderTwo, '--k', label=\n 'CPI each year adjusted +2.0%')\n", (11254, 11340), True, 'import matplotlib.pyplot as plt\n'), ((11336, 11429), 'matplotlib.pyplot.plot', 'plt.plot', (['years', 'usaGDPpercapita2014OverTwo', '"""-.k"""'], {'label': '"""CPI each year adjusted -2.0%"""'}), "(years, usaGDPpercapita2014OverTwo, '-.k', label=\n 'CPI each year adjusted -2.0%')\n", (11344, 11429), True, 'import matplotlib.pyplot as plt\n'), ((11425, 11443), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Year"""'], {}), "('Year')\n", (11435, 11443), True, 'import matplotlib.pyplot as plt\n'), ((11444, 11501), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GDP per capita adjusted for inflation (USD)"""'], {}), "('GDP per capita adjusted for inflation (USD)')\n", (11454, 11501), True, 'import matplotlib.pyplot as plt\n'), ((11502, 11519), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (11512, 11519), True, 'import matplotlib.pyplot as plt\n'), ((11520, 11534), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (11528, 11534), True, 'import matplotlib.pyplot as plt\n'), ((11535, 11545), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11543, 11545), True, 'import matplotlib.pyplot as plt\n'), ((11546, 11603), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""images/usaGDPandGNI_perCapita_2014_two.png"""'], {}), "('images/usaGDPandGNI_perCapita_2014_two.png')\n", (11557, 11603), True, 'import matplotlib.pyplot as plt\n')]
from typing import List, Union import numpy as np def slice_to_list( start: Union[int, None], stop: Union[int, None], step: Union[int, None], size: int = None, ) -> List[int]: if start is None and stop is None: if size is None: raise ValueError("size required when start and stop are None") else: stop = size elif stop is not None: if stop < 0: if size is None: raise ValueError( "size required when using negative stop index") stop = size + stop if stop < 0: raise ValueError("negative stop index out of range") l = list( range( start if start is not None else 0, stop if stop is not None else size, step if step is not None else 1, )) if np.min(l) < 0: raise ValueError("negative start index not allowed") return l
[ "numpy.min" ]
[((862, 871), 'numpy.min', 'np.min', (['l'], {}), '(l)\n', (868, 871), True, 'import numpy as np\n')]
# Load pickled data import cv2 import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.utils import shuffle import tensorflow as tf import MyAlexNet import DataAugmentation as func import glob import csv # TODO: Fill this in based on where you saved the training and testing data training_file = "train.p" validation_file = "valid.p" testing_file = "test.p" with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train, X_train_size, X_train_bbox = train['features'], train['labels'], train['sizes'], train['coords'] X_valid, y_valid, X_valid_size, X_valid_bbox = valid['features'], valid['labels'], valid['sizes'], valid['coords'] X_test, y_test, X_test_size, X_test_bbox = test['features'], test['labels'], test['sizes'], test['coords'] # TODO: Number of training examples n_train = len(X_train_size) # TODO: Number of validation examples print(len(X_valid_size)) n_validation = len(X_valid_size) # TODO: Number of testing examples. n_test = len(X_test_size) # TODO: What's the shape of an traffic sign image? print(X_train.shape) # TODO: How many unique classes/labels there are in the dataset. n_classes = len(np.unique(y_train)) # TODO: Number of training examples n_train = len(X_train_size) # TODO: Number of testing examples. n_test = len(X_test_size) # TODO: What's the shape of an traffic sign image? image_shape = X_train.shape # TODO: How many unique classes/labels there are in the dataset. n_classes = len(np.unique(y_train)) img_size = X_train.shape[1] # Size of input images print(img_size) print("Number of training examples =", n_train) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of classes =", n_classes) ### Data exploration visualization goes here. # Visualizations will be shown in the notebook. num_of_samples = [] plt.figure(figsize=(12, 16.5)) for i in range(0, n_classes): plt.subplot(11, 4, i + 1) x_selected = X_train[y_train == i] plt.imshow(x_selected[0, :, :, :]) # draw the first image of each class plt.title(i) plt.axis('off') num_of_samples.append(len(x_selected)) plt.show() # Plot number of images per class plt.figure(figsize=(12, 4)) plt.bar(range(0, n_classes), num_of_samples) plt.title("Distribution of the training dataset") plt.xlabel("Class number") plt.ylabel("Number of images") plt.show() print("Min number of images in training data per class =", min(num_of_samples)) print("Max number of images in training data per class =", max(num_of_samples)) ### Data exploration visualization goes here. # Visualizations will be shown in the notebook. num_of_samples = [] plt.figure(figsize=(12, 16.5)) for i in range(0, n_classes): plt.subplot(11, 4, i + 1) x_selected = X_valid[y_valid == i] plt.imshow(x_selected[0, :, :, :]) # draw the first image of each class plt.title(i) plt.axis('off') num_of_samples.append(len(x_selected)) plt.show() # Plot number of images per class plt.figure(figsize=(12, 4)) plt.bar(range(0, n_classes), num_of_samples) plt.title("Distribution of the validation dataset") plt.xlabel("Class number") plt.ylabel("Number of images") plt.show() print("Min number of images in vlidation data per class =", min(num_of_samples)) print("Max number of images in validation data per class =", max(num_of_samples)) ### Data exploration visualization goes here. # Visualizations will be shown in the notebook. num_of_samples = [] plt.figure(figsize=(12, 16.5)) for i in range(0, n_classes): plt.subplot(11, 4, i + 1) x_selected = X_test[y_test == i] plt.imshow(x_selected[0, :, :, :]) # draw the first image of each class plt.title(i) plt.axis('off') num_of_samples.append(len(x_selected)) plt.show() # Plot number of images per class plt.figure(figsize=(12, 4)) plt.bar(range(0, n_classes), num_of_samples) plt.title("Distribution of the test dataset") plt.xlabel("Class number") plt.ylabel("Number of images") plt.show() print("Min number of images in test data per class =", min(num_of_samples)) print("Max number of images in test data per class =", max(num_of_samples)) ### For Data Augmentation # X_train_aug = [] # y_train_aug = [] # def create_data(n): # for i in range(100): # img=X_train[i] # X_train_aug.append(img) # y_train_aug.append(y_train[i]) # #Generate n new images out of each input image # for j in range(n): # X_train_aug.append(augment_img(img)) # y_train_aug.append(y_train[i]) # X_train_crop = np.ndarray(shape=[X_train.shape[0],IMAGE_SIZE,IMAGE_SIZE, # 3],dtype = np.uint8) # for i in range(n_train): # X_train_crop[i] = crop_img(X_train[i]) # print(i) print(X_train.shape) print(X_train.dtype) print(y_train.shape) print(y_train.dtype) print(X_valid.shape) print(X_valid.dtype) print(y_valid.shape) print(y_train.dtype) print(X_test.shape) print(X_test.dtype) print(y_test.shape) print(y_test.dtype) filename = "updated_test.p" file = open(filename, 'rb') X_test = pickle.load(file) filename = "updated_train.p" file = open(filename, 'rb') X_train = pickle.load(file) filename = "updated_valid.p" file = open(filename, 'rb') X_valid = pickle.load(file) test = X_train[10000] transformation = func.transform_img(test) augmentation = func.augment_img(test) func.show_imgs(test, transformation, augmentation) print(X_train.shape) print(X_train.dtype) print(y_train.shape) print(y_train.dtype) print(X_valid.shape) print(X_valid.dtype) print(y_valid.shape) print(y_train.dtype) print(X_test.shape) print(X_test.dtype) print(y_test.shape) print(y_test.dtype) # Data Normalization print(np.mean(X_train)) X_train = (X_train - np.mean(X_train)) / 255.0 print(np.mean(X_train)) print(np.mean(X_valid)) X_valid = (X_valid - np.mean(X_valid)) / 255.0 print(np.mean(X_valid)) print(np.mean(X_test)) X_test = (X_test - np.mean(X_test)) / 255.0 print(np.mean(X_test)) ## Shuffle the training dataset print(X_train.shape) print(y_train.shape) X_train, y_train = shuffle(X_train, y_train) print(X_train.shape) print(y_train.shape) print('done') EPOCHS = 90 BATCH_SIZE = 128 print('done') tf.reset_default_graph() x = tf.placeholder(tf.float32, (None, 51, 51, 3)) y = tf.placeholder(tf.int32, (None)) keep_prob = tf.placeholder(tf.float32) # probability to keep units one_hot_y = tf.one_hot(y, 43) print('done') rate = 0.0005 save_file = './new_model.ckpt' logits = MyAlexNet.AlexNet(x) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=one_hot_y) loss_operation = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) Saver = tf.train.Saver() def evaluate(X_data, y_data): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples print('done') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) print("Epoch: ", i) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.75}) validation_accuracy = evaluate(X_valid, y_valid) print("EPOCH {} ...".format(i + 1)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print() Saver.save(sess,save_file) print("Model saved") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver2 = tf.train.import_meta_graph('./Trained Model/final_model.ckpt.meta') saver2.restore(sess, "./Trained Model/final_model.ckpt") test_accuracy = evaluate(X_test, y_test) print("Test Set Accuracy = {:.3f}".format(test_accuracy)) graph = tf.get_default_graph() signs_class=[] with open('signnames.csv', 'rt') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') for row in reader: signs_class.append((row['SignName'])) my_labels = [37,38,17,15,12,13,1,0,35,20,3,5] test = func.load_images("./new_images1/") test_images=X_test_data=np.uint8(np.zeros((len(test),51,51,3))) test_images_labels=np.ndarray(shape=[len(test)],dtype=np.uint8) test_images[0:12]=test[0:12] test_images_labels[0:12]=my_labels[0:12] plt.figure(figsize=(12, 8)) for i in range(len(test)): plt.subplot(3, 4, i+1) plt.imshow(test[i]) plt.title(signs_class[my_labels[i]]) plt.axis('off') plt.show() test_images=(test_images-np.mean(test_images))/255.0 ### Visualize the softmax probabilities here. with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) saver2 = tf.train.import_meta_graph('./Trained Model/final_model.ckpt.meta') saver2.restore(sess, "./Trained Model/final_model.ckpt") new_test_accuracy = evaluate(test_images, test_images_labels) print("New Test Set Accuracy = {:.3f}".format(new_test_accuracy)) softmax_logits = tf.nn.softmax(logits) top_k = tf.nn.top_k(softmax_logits, k=5) with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) saver2 = tf.train.import_meta_graph('./Trained Model/final_model.ckpt.meta') saver2.restore(sess, "./Trained Model/final_model.ckpt") my_softmax_logits = sess.run(softmax_logits, feed_dict={x: test_images, keep_prob: 1.0}) my_top_k = sess.run(top_k, feed_dict={x: test_images, keep_prob: 1.0}) print(len(test)) plt.figure(figsize=(16, 21)) for i in range(12): plt.subplot(12, 2, 2*i+1) plt.imshow(test[i]) plt.title(i) plt.axis('off') plt.subplot(12, 2, 2*i+2) plt.barh(np.arange(1, 6, 1), my_top_k.values[i, :]) labs=[signs_class[j] for j in my_top_k.indices[i]] plt.yticks(np.arange(1, 6, 1), labs) plt.show() my_labels = [3, 11, 1, 12, 38, 34, 18, 25] test = [] for i, img in enumerate(glob.glob('./new_images2/*x.png')): image = func.crop_img(cv2.imread(img)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) test.append(image) test_images=X_test_data=np.uint8(np.zeros((len(test),51,51,3))) test_images_labels=np.ndarray(shape=[len(test)],dtype=np.uint8) test_images[0:len(test)]=test[0:len(test)] test_images_labels[0:len(test)]=my_labels[0:len(test)] plt.figure(figsize=(12, 8)) for i in range(len(test)): plt.subplot(3, 4, i+1) plt.imshow(test[i]) plt.title(signs_class[my_labels[i]]) plt.axis('off') plt.show() test_images=(test_images-np.mean(test_images))/255.0 ### Visualize the softmax probabilities here. with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) saver2 = tf.train.import_meta_graph('./Trained Model/final_model.ckpt.meta') saver2.restore(sess, "./Trained Model/final_model.ckpt") new_test_accuracy = evaluate(test_images, test_images_labels) print("New Test Set Accuracy = {:.3f}".format(new_test_accuracy)) softmax_logits = tf.nn.softmax(logits) top_k = tf.nn.top_k(softmax_logits, k=5) with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) saver2 = tf.train.import_meta_graph('./Trained Model/final_model.ckpt.meta') saver2.restore(sess, "./Trained Model/final_model.ckpt") my_softmax_logits = sess.run(softmax_logits, feed_dict={x: test_images, keep_prob: 1.0}) my_top_k = sess.run(top_k, feed_dict={x: test_images, keep_prob: 1.0}) print(len(test)) plt.figure(figsize=(16, 21)) for i in range(len(test)): plt.subplot(12, 2, 2*i+1) plt.imshow(test[i]) plt.title(i) plt.axis('off') plt.subplot(12, 2, 2*i+2) plt.barh(np.arange(1, 6, 1), my_top_k.values[i, :]) labs=[signs_class[j] for j in my_top_k.indices[i]] plt.yticks(np.arange(1, 6, 1), labs) plt.show() ### Visualize your network's feature maps here. ### Feel free to use as many code cells as needed. # image_input: the test image being fed into the network to produce the feature maps # tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer # activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output # plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry # #def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1): # # Here make sure to preprocess your image_input in a way your network expects # # with size, normalization, ect if needed # # image_input = # # Note: x should be the same name as your network's tensorflow data placeholder variable # # If you get an error tf_activation is not defined it may be having trouble # #accessing the variable from inside a function # activation = tf_activation.eval(session=sess,feed_dict={x : image_input}) # featuremaps = activation.shape[3] # plt.figure(plt_num, figsize=(15,15)) # for featuremap in range(featuremaps): # plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column # plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number # if activation_min != -1 & activation_max != -1: # plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin =activation_min, vmax=activation_max, cmap="gray") # elif activation_max != -1: # plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmax=activation_max, cmap="gray") # elif activation_min !=-1: # plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin=activation_min, cmap="gray") # else: # plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", cmap="gray") # # # # #test1=X_train[6500] #plt.imshow(test1) #test1= (test1- np.mean(test1)) / 255.0 #outputFeatureMap(test1)
[ "matplotlib.pyplot.title", "DataAugmentation.transform_img", "tensorflow.reset_default_graph", "matplotlib.pyplot.figure", "pickle.load", "numpy.mean", "numpy.arange", "glob.glob", "tensorflow.get_default_graph", "numpy.unique", "matplotlib.pyplot.xlabel", "tensorflow.nn.softmax", "tensorflow.one_hot", "tensorflow.nn.softmax_cross_entropy_with_logits", "cv2.cvtColor", "tensorflow.nn.top_k", "matplotlib.pyplot.imshow", "tensorflow.placeholder", "tensorflow.cast", "matplotlib.pyplot.show", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "csv.DictReader", "tensorflow.reduce_mean", "tensorflow.Session", "DataAugmentation.load_images", "DataAugmentation.augment_img", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "tensorflow.train.import_meta_graph", "tensorflow.argmax", "matplotlib.pyplot.axis", "cv2.imread", "DataAugmentation.show_imgs", "MyAlexNet.AlexNet", "sklearn.utils.shuffle", "tensorflow.train.AdamOptimizer", "tensorflow.get_default_session" ]
[((2052, 2082), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 16.5)'}), '(figsize=(12, 16.5))\n', (2062, 2082), True, 'import matplotlib.pyplot as plt\n'), ((2347, 2357), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2355, 2357), True, 'import matplotlib.pyplot as plt\n'), ((2396, 2423), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 4)'}), '(figsize=(12, 4))\n', (2406, 2423), True, 'import matplotlib.pyplot as plt\n'), ((2471, 2520), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of the training dataset"""'], {}), "('Distribution of the training dataset')\n", (2480, 2520), True, 'import matplotlib.pyplot as plt\n'), ((2522, 2548), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Class number"""'], {}), "('Class number')\n", (2532, 2548), True, 'import matplotlib.pyplot as plt\n'), ((2550, 2580), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of images"""'], {}), "('Number of images')\n", (2560, 2580), True, 'import matplotlib.pyplot as plt\n'), ((2582, 2592), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2590, 2592), True, 'import matplotlib.pyplot as plt\n'), ((2879, 2909), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 16.5)'}), '(figsize=(12, 16.5))\n', (2889, 2909), True, 'import matplotlib.pyplot as plt\n'), ((3174, 3184), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3182, 3184), True, 'import matplotlib.pyplot as plt\n'), ((3223, 3250), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 4)'}), '(figsize=(12, 4))\n', (3233, 3250), True, 'import matplotlib.pyplot as plt\n'), ((3298, 3349), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of the validation dataset"""'], {}), "('Distribution of the validation dataset')\n", (3307, 3349), True, 'import matplotlib.pyplot as plt\n'), ((3351, 3377), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Class number"""'], {}), "('Class number')\n", (3361, 3377), True, 'import matplotlib.pyplot as plt\n'), ((3379, 3409), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of images"""'], {}), "('Number of images')\n", (3389, 3409), True, 'import matplotlib.pyplot as plt\n'), ((3411, 3421), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3419, 3421), True, 'import matplotlib.pyplot as plt\n'), ((3711, 3741), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 16.5)'}), '(figsize=(12, 16.5))\n', (3721, 3741), True, 'import matplotlib.pyplot as plt\n'), ((4004, 4014), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4012, 4014), True, 'import matplotlib.pyplot as plt\n'), ((4053, 4080), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 4)'}), '(figsize=(12, 4))\n', (4063, 4080), True, 'import matplotlib.pyplot as plt\n'), ((4128, 4173), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of the test dataset"""'], {}), "('Distribution of the test dataset')\n", (4137, 4173), True, 'import matplotlib.pyplot as plt\n'), ((4175, 4201), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Class number"""'], {}), "('Class number')\n", (4185, 4201), True, 'import matplotlib.pyplot as plt\n'), ((4203, 4233), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of images"""'], {}), "('Number of images')\n", (4213, 4233), True, 'import matplotlib.pyplot as plt\n'), ((4235, 4245), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4243, 4245), True, 'import matplotlib.pyplot as plt\n'), ((5367, 5384), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (5378, 5384), False, 'import pickle\n'), ((5457, 5474), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (5468, 5474), False, 'import pickle\n'), ((5547, 5564), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (5558, 5564), False, 'import pickle\n'), ((5608, 5632), 'DataAugmentation.transform_img', 'func.transform_img', (['test'], {}), '(test)\n', (5626, 5632), True, 'import DataAugmentation as func\n'), ((5649, 5671), 'DataAugmentation.augment_img', 'func.augment_img', (['test'], {}), '(test)\n', (5665, 5671), True, 'import DataAugmentation as func\n'), ((5673, 5723), 'DataAugmentation.show_imgs', 'func.show_imgs', (['test', 'transformation', 'augmentation'], {}), '(test, transformation, augmentation)\n', (5687, 5723), True, 'import DataAugmentation as func\n'), ((6412, 6437), 'sklearn.utils.shuffle', 'shuffle', (['X_train', 'y_train'], {}), '(X_train, y_train)\n', (6419, 6437), False, 'from sklearn.utils import shuffle\n'), ((6550, 6574), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (6572, 6574), True, 'import tensorflow as tf\n'), ((6582, 6627), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '(None, 51, 51, 3)'], {}), '(tf.float32, (None, 51, 51, 3))\n', (6596, 6627), True, 'import tensorflow as tf\n'), ((6633, 6663), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'None'], {}), '(tf.int32, None)\n', (6647, 6663), True, 'import tensorflow as tf\n'), ((6679, 6705), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (6693, 6705), True, 'import tensorflow as tf\n'), ((6748, 6765), 'tensorflow.one_hot', 'tf.one_hot', (['y', '(43)'], {}), '(y, 43)\n', (6758, 6765), True, 'import tensorflow as tf\n'), ((6844, 6864), 'MyAlexNet.AlexNet', 'MyAlexNet.AlexNet', (['x'], {}), '(x)\n', (6861, 6864), False, 'import MyAlexNet\n'), ((6882, 6954), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'logits', 'labels': 'one_hot_y'}), '(logits=logits, labels=one_hot_y)\n', (6921, 6954), True, 'import tensorflow as tf\n'), ((6973, 7002), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {}), '(cross_entropy)\n', (6987, 7002), True, 'import tensorflow as tf\n'), ((7016, 7058), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'rate'}), '(learning_rate=rate)\n', (7038, 7058), True, 'import tensorflow as tf\n'), ((7289, 7305), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (7303, 7305), True, 'import tensorflow as tf\n'), ((9190, 9224), 'DataAugmentation.load_images', 'func.load_images', (['"""./new_images1/"""'], {}), "('./new_images1/')\n", (9206, 9224), True, 'import DataAugmentation as func\n'), ((9428, 9455), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (9438, 9455), True, 'import matplotlib.pyplot as plt\n'), ((9602, 9612), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9610, 9612), True, 'import matplotlib.pyplot as plt\n'), ((10104, 10125), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (10117, 10125), True, 'import tensorflow as tf\n'), ((10135, 10167), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['softmax_logits'], {'k': '(5)'}), '(softmax_logits, k=5)\n', (10146, 10167), True, 'import tensorflow as tf\n'), ((10589, 10617), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 21)'}), '(figsize=(16, 21))\n', (10599, 10617), True, 'import matplotlib.pyplot as plt\n'), ((10922, 10932), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10930, 10932), True, 'import matplotlib.pyplot as plt\n'), ((11408, 11435), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (11418, 11435), True, 'import matplotlib.pyplot as plt\n'), ((11582, 11592), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11590, 11592), True, 'import matplotlib.pyplot as plt\n'), ((12084, 12105), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (12097, 12105), True, 'import tensorflow as tf\n'), ((12115, 12147), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['softmax_logits'], {'k': '(5)'}), '(softmax_logits, k=5)\n', (12126, 12147), True, 'import tensorflow as tf\n'), ((12569, 12597), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 21)'}), '(figsize=(16, 21))\n', (12579, 12597), True, 'import matplotlib.pyplot as plt\n'), ((12909, 12919), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12917, 12919), True, 'import matplotlib.pyplot as plt\n'), ((458, 472), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (469, 472), False, 'import pickle\n'), ((531, 545), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (542, 545), False, 'import pickle\n'), ((600, 614), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (611, 614), False, 'import pickle\n'), ((1345, 1363), 'numpy.unique', 'np.unique', (['y_train'], {}), '(y_train)\n', (1354, 1363), True, 'import numpy as np\n'), ((1661, 1679), 'numpy.unique', 'np.unique', (['y_train'], {}), '(y_train)\n', (1670, 1679), True, 'import numpy as np\n'), ((2119, 2144), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(11)', '(4)', '(i + 1)'], {}), '(11, 4, i + 1)\n', (2130, 2144), True, 'import matplotlib.pyplot as plt\n'), ((2190, 2224), 'matplotlib.pyplot.imshow', 'plt.imshow', (['x_selected[0, :, :, :]'], {}), '(x_selected[0, :, :, :])\n', (2200, 2224), True, 'import matplotlib.pyplot as plt\n'), ((2268, 2280), 'matplotlib.pyplot.title', 'plt.title', (['i'], {}), '(i)\n', (2277, 2280), True, 'import matplotlib.pyplot as plt\n'), ((2286, 2301), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2294, 2301), True, 'import matplotlib.pyplot as plt\n'), ((2946, 2971), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(11)', '(4)', '(i + 1)'], {}), '(11, 4, i + 1)\n', (2957, 2971), True, 'import matplotlib.pyplot as plt\n'), ((3017, 3051), 'matplotlib.pyplot.imshow', 'plt.imshow', (['x_selected[0, :, :, :]'], {}), '(x_selected[0, :, :, :])\n', (3027, 3051), True, 'import matplotlib.pyplot as plt\n'), ((3095, 3107), 'matplotlib.pyplot.title', 'plt.title', (['i'], {}), '(i)\n', (3104, 3107), True, 'import matplotlib.pyplot as plt\n'), ((3113, 3128), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3121, 3128), True, 'import matplotlib.pyplot as plt\n'), ((3778, 3803), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(11)', '(4)', '(i + 1)'], {}), '(11, 4, i + 1)\n', (3789, 3803), True, 'import matplotlib.pyplot as plt\n'), ((3847, 3881), 'matplotlib.pyplot.imshow', 'plt.imshow', (['x_selected[0, :, :, :]'], {}), '(x_selected[0, :, :, :])\n', (3857, 3881), True, 'import matplotlib.pyplot as plt\n'), ((3925, 3937), 'matplotlib.pyplot.title', 'plt.title', (['i'], {}), '(i)\n', (3934, 3937), True, 'import matplotlib.pyplot as plt\n'), ((3943, 3958), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3951, 3958), True, 'import matplotlib.pyplot as plt\n'), ((6025, 6041), 'numpy.mean', 'np.mean', (['X_train'], {}), '(X_train)\n', (6032, 6041), True, 'import numpy as np\n'), ((6098, 6114), 'numpy.mean', 'np.mean', (['X_train'], {}), '(X_train)\n', (6105, 6114), True, 'import numpy as np\n'), ((6125, 6141), 'numpy.mean', 'np.mean', (['X_valid'], {}), '(X_valid)\n', (6132, 6141), True, 'import numpy as np\n'), ((6198, 6214), 'numpy.mean', 'np.mean', (['X_valid'], {}), '(X_valid)\n', (6205, 6214), True, 'import numpy as np\n'), ((6225, 6240), 'numpy.mean', 'np.mean', (['X_test'], {}), '(X_test)\n', (6232, 6240), True, 'import numpy as np\n'), ((6294, 6309), 'numpy.mean', 'np.mean', (['X_test'], {}), '(X_test)\n', (6301, 6309), True, 'import numpy as np\n'), ((7153, 7173), 'tensorflow.argmax', 'tf.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (7162, 7173), True, 'import tensorflow as tf\n'), ((7175, 7198), 'tensorflow.argmax', 'tf.argmax', (['one_hot_y', '(1)'], {}), '(one_hot_y, 1)\n', (7184, 7198), True, 'import tensorflow as tf\n'), ((7237, 7276), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (7244, 7276), True, 'import tensorflow as tf\n'), ((7407, 7431), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (7429, 7431), True, 'import tensorflow as tf\n'), ((7805, 7817), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (7815, 7817), True, 'import tensorflow as tf\n'), ((8587, 8599), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8597, 8599), True, 'import tensorflow as tf\n'), ((8672, 8739), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""./Trained Model/final_model.ckpt.meta"""'], {}), "('./Trained Model/final_model.ckpt.meta')\n", (8698, 8739), True, 'import tensorflow as tf\n'), ((8924, 8946), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (8944, 8946), True, 'import tensorflow as tf\n'), ((9025, 9063), 'csv.DictReader', 'csv.DictReader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (9039, 9063), False, 'import csv\n'), ((9489, 9513), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(4)', '(i + 1)'], {}), '(3, 4, i + 1)\n', (9500, 9513), True, 'import matplotlib.pyplot as plt\n'), ((9517, 9536), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test[i]'], {}), '(test[i])\n', (9527, 9536), True, 'import matplotlib.pyplot as plt\n'), ((9543, 9579), 'matplotlib.pyplot.title', 'plt.title', (['signs_class[my_labels[i]]'], {}), '(signs_class[my_labels[i]])\n', (9552, 9579), True, 'import matplotlib.pyplot as plt\n'), ((9585, 9600), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (9593, 9600), True, 'import matplotlib.pyplot as plt\n'), ((9720, 9743), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (9730, 9743), True, 'import tensorflow as tf\n'), ((9816, 9883), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""./Trained Model/final_model.ckpt.meta"""'], {}), "('./Trained Model/final_model.ckpt.meta')\n", (9842, 9883), True, 'import tensorflow as tf\n'), ((10174, 10197), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (10184, 10197), True, 'import tensorflow as tf\n'), ((10270, 10337), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""./Trained Model/final_model.ckpt.meta"""'], {}), "('./Trained Model/final_model.ckpt.meta')\n", (10296, 10337), True, 'import tensorflow as tf\n'), ((10644, 10673), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(12)', '(2)', '(2 * i + 1)'], {}), '(12, 2, 2 * i + 1)\n', (10655, 10673), True, 'import matplotlib.pyplot as plt\n'), ((10675, 10694), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test[i]'], {}), '(test[i])\n', (10685, 10694), True, 'import matplotlib.pyplot as plt\n'), ((10701, 10713), 'matplotlib.pyplot.title', 'plt.title', (['i'], {}), '(i)\n', (10710, 10713), True, 'import matplotlib.pyplot as plt\n'), ((10719, 10734), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (10727, 10734), True, 'import matplotlib.pyplot as plt\n'), ((10740, 10769), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(12)', '(2)', '(2 * i + 2)'], {}), '(12, 2, 2 * i + 2)\n', (10751, 10769), True, 'import matplotlib.pyplot as plt\n'), ((11015, 11048), 'glob.glob', 'glob.glob', (['"""./new_images2/*x.png"""'], {}), "('./new_images2/*x.png')\n", (11024, 11048), False, 'import glob\n'), ((11108, 11146), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (11120, 11146), False, 'import cv2\n'), ((11469, 11493), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(4)', '(i + 1)'], {}), '(3, 4, i + 1)\n', (11480, 11493), True, 'import matplotlib.pyplot as plt\n'), ((11497, 11516), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test[i]'], {}), '(test[i])\n', (11507, 11516), True, 'import matplotlib.pyplot as plt\n'), ((11523, 11559), 'matplotlib.pyplot.title', 'plt.title', (['signs_class[my_labels[i]]'], {}), '(signs_class[my_labels[i]])\n', (11532, 11559), True, 'import matplotlib.pyplot as plt\n'), ((11565, 11580), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (11573, 11580), True, 'import matplotlib.pyplot as plt\n'), ((11700, 11723), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (11710, 11723), True, 'import tensorflow as tf\n'), ((11796, 11863), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""./Trained Model/final_model.ckpt.meta"""'], {}), "('./Trained Model/final_model.ckpt.meta')\n", (11822, 11863), True, 'import tensorflow as tf\n'), ((12154, 12177), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (12164, 12177), True, 'import tensorflow as tf\n'), ((12250, 12317), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""./Trained Model/final_model.ckpt.meta"""'], {}), "('./Trained Model/final_model.ckpt.meta')\n", (12276, 12317), True, 'import tensorflow as tf\n'), ((12631, 12660), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(12)', '(2)', '(2 * i + 1)'], {}), '(12, 2, 2 * i + 1)\n', (12642, 12660), True, 'import matplotlib.pyplot as plt\n'), ((12662, 12681), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test[i]'], {}), '(test[i])\n', (12672, 12681), True, 'import matplotlib.pyplot as plt\n'), ((12688, 12700), 'matplotlib.pyplot.title', 'plt.title', (['i'], {}), '(i)\n', (12697, 12700), True, 'import matplotlib.pyplot as plt\n'), ((12706, 12721), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (12714, 12721), True, 'import matplotlib.pyplot as plt\n'), ((12727, 12756), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(12)', '(2)', '(2 * i + 2)'], {}), '(12, 2, 2 * i + 2)\n', (12738, 12756), True, 'import matplotlib.pyplot as plt\n'), ((6065, 6081), 'numpy.mean', 'np.mean', (['X_train'], {}), '(X_train)\n', (6072, 6081), True, 'import numpy as np\n'), ((6165, 6181), 'numpy.mean', 'np.mean', (['X_valid'], {}), '(X_valid)\n', (6172, 6181), True, 'import numpy as np\n'), ((6262, 6277), 'numpy.mean', 'np.mean', (['X_test'], {}), '(X_test)\n', (6269, 6277), True, 'import numpy as np\n'), ((7841, 7874), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (7872, 7874), True, 'import tensorflow as tf\n'), ((8005, 8030), 'sklearn.utils.shuffle', 'shuffle', (['X_train', 'y_train'], {}), '(X_train, y_train)\n', (8012, 8030), False, 'from sklearn.utils import shuffle\n'), ((8623, 8656), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8654, 8656), True, 'import tensorflow as tf\n'), ((9639, 9659), 'numpy.mean', 'np.mean', (['test_images'], {}), '(test_images)\n', (9646, 9659), True, 'import numpy as np\n'), ((9767, 9800), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (9798, 9800), True, 'import tensorflow as tf\n'), ((10221, 10254), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (10252, 10254), True, 'import tensorflow as tf\n'), ((10780, 10798), 'numpy.arange', 'np.arange', (['(1)', '(6)', '(1)'], {}), '(1, 6, 1)\n', (10789, 10798), True, 'import numpy as np\n'), ((10895, 10913), 'numpy.arange', 'np.arange', (['(1)', '(6)', '(1)'], {}), '(1, 6, 1)\n', (10904, 10913), True, 'import numpy as np\n'), ((11078, 11093), 'cv2.imread', 'cv2.imread', (['img'], {}), '(img)\n', (11088, 11093), False, 'import cv2\n'), ((11619, 11639), 'numpy.mean', 'np.mean', (['test_images'], {}), '(test_images)\n', (11626, 11639), True, 'import numpy as np\n'), ((11747, 11780), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (11778, 11780), True, 'import tensorflow as tf\n'), ((12201, 12234), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (12232, 12234), True, 'import tensorflow as tf\n'), ((12767, 12785), 'numpy.arange', 'np.arange', (['(1)', '(6)', '(1)'], {}), '(1, 6, 1)\n', (12776, 12785), True, 'import numpy as np\n'), ((12882, 12900), 'numpy.arange', 'np.arange', (['(1)', '(6)', '(1)'], {}), '(1, 6, 1)\n', (12891, 12900), True, 'import numpy as np\n')]
# Third party inports import tensorflow as tf import numpy as np # batch_sizexheightxwidthxdepthxchan def diceLoss(y_true, y_pred): top = 2*tf.reduce_sum(y_true * y_pred, [1, 2, 3]) bottom = tf.maximum(tf.reduce_sum(y_true+y_pred, [1, 2, 3]), 1e-5) dice = tf.reduce_mean(top/bottom) return -dice def gradientLoss(penalty='l1'): def loss(y_true, y_pred): dy = tf.abs(y_pred[:, 1:, :, :, :] - y_pred[:, :-1, :, :, :]) dx = tf.abs(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :]) dz = tf.abs(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :]) if (penalty == 'l2'): dy = dy * dy dx = dx * dx dz = dz * dz d = tf.reduce_mean(dx)+tf.reduce_mean(dy)+tf.reduce_mean(dz) return d/3.0 return loss def gradientLoss2D(): def loss(y_true, y_pred): dy = tf.abs(y_pred[:, 1:, :, :] - y_pred[:, :-1, :, :]) dx = tf.abs(y_pred[:, :, 1:, :] - y_pred[:, :, :-1, :]) dy = dy * dy dx = dx * dx d = tf.reduce_mean(dx)+tf.reduce_mean(dy) return d/2.0 return loss def cc3D(win=[9, 9, 9], voxel_weights=None): def loss(I, J): I2 = I*I J2 = J*J IJ = I*J filt = tf.ones([win[0], win[1], win[2], 1, 1]) I_sum = tf.nn.conv3d(I, filt, [1, 1, 1, 1, 1], "SAME") J_sum = tf.nn.conv3d(J, filt, [1, 1, 1, 1, 1], "SAME") I2_sum = tf.nn.conv3d(I2, filt, [1, 1, 1, 1, 1], "SAME") J2_sum = tf.nn.conv3d(J2, filt, [1, 1, 1, 1, 1], "SAME") IJ_sum = tf.nn.conv3d(IJ, filt, [1, 1, 1, 1, 1], "SAME") win_size = win[0]*win[1]*win[2] u_I = I_sum/win_size u_J = J_sum/win_size cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size cc = cross*cross / (I_var*J_var+1e-5) # if(voxel_weights is not None): # cc = cc * voxel_weights return -1.0*tf.reduce_mean(cc) return loss def cc2D(win=[9, 9]): def loss(I, J): I2 = tf.multiply(I, I) J2 = tf.multiply(J, J) IJ = tf.multiply(I, J) sum_filter = tf.ones([win[0], win[1], 1, 1]) I_sum = tf.nn.conv2d(I, sum_filter, [1, 1, 1, 1], "SAME") J_sum = tf.nn.conv2d(J, sum_filter, [1, 1, 1, 1], "SAME") I2_sum = tf.nn.conv2d(I2, sum_filter, [1, 1, 1, 1], "SAME") J2_sum = tf.nn.conv2d(J2, sum_filter, [1, 1, 1, 1], "SAME") IJ_sum = tf.nn.conv2d(IJ, sum_filter, [1, 1, 1, 1], "SAME") win_size = win[0]*win[1] u_I = I_sum/win_size u_J = J_sum/win_size cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size cc = cross*cross / (I_var*J_var + np.finfo(float).eps) return -1.0*tf.reduce_mean(cc) return loss
[ "tensorflow.ones", "tensorflow.abs", "tensorflow.reduce_sum", "tensorflow.reduce_mean", "tensorflow.nn.conv3d", "tensorflow.multiply", "numpy.finfo", "tensorflow.nn.conv2d" ]
[((272, 300), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(top / bottom)'], {}), '(top / bottom)\n', (286, 300), True, 'import tensorflow as tf\n'), ((148, 189), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(y_true * y_pred)', '[1, 2, 3]'], {}), '(y_true * y_pred, [1, 2, 3])\n', (161, 189), True, 'import tensorflow as tf\n'), ((214, 255), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(y_true + y_pred)', '[1, 2, 3]'], {}), '(y_true + y_pred, [1, 2, 3])\n', (227, 255), True, 'import tensorflow as tf\n'), ((393, 449), 'tensorflow.abs', 'tf.abs', (['(y_pred[:, 1:, :, :, :] - y_pred[:, :-1, :, :, :])'], {}), '(y_pred[:, 1:, :, :, :] - y_pred[:, :-1, :, :, :])\n', (399, 449), True, 'import tensorflow as tf\n'), ((463, 519), 'tensorflow.abs', 'tf.abs', (['(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :])'], {}), '(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :])\n', (469, 519), True, 'import tensorflow as tf\n'), ((533, 589), 'tensorflow.abs', 'tf.abs', (['(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :])'], {}), '(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :])\n', (539, 589), True, 'import tensorflow as tf\n'), ((870, 920), 'tensorflow.abs', 'tf.abs', (['(y_pred[:, 1:, :, :] - y_pred[:, :-1, :, :])'], {}), '(y_pred[:, 1:, :, :] - y_pred[:, :-1, :, :])\n', (876, 920), True, 'import tensorflow as tf\n'), ((934, 984), 'tensorflow.abs', 'tf.abs', (['(y_pred[:, :, 1:, :] - y_pred[:, :, :-1, :])'], {}), '(y_pred[:, :, 1:, :] - y_pred[:, :, :-1, :])\n', (940, 984), True, 'import tensorflow as tf\n'), ((1251, 1290), 'tensorflow.ones', 'tf.ones', (['[win[0], win[1], win[2], 1, 1]'], {}), '([win[0], win[1], win[2], 1, 1])\n', (1258, 1290), True, 'import tensorflow as tf\n'), ((1308, 1354), 'tensorflow.nn.conv3d', 'tf.nn.conv3d', (['I', 'filt', '[1, 1, 1, 1, 1]', '"""SAME"""'], {}), "(I, filt, [1, 1, 1, 1, 1], 'SAME')\n", (1320, 1354), True, 'import tensorflow as tf\n'), ((1371, 1417), 'tensorflow.nn.conv3d', 'tf.nn.conv3d', (['J', 'filt', '[1, 1, 1, 1, 1]', '"""SAME"""'], {}), "(J, filt, [1, 1, 1, 1, 1], 'SAME')\n", (1383, 1417), True, 'import tensorflow as tf\n'), ((1435, 1482), 'tensorflow.nn.conv3d', 'tf.nn.conv3d', (['I2', 'filt', '[1, 1, 1, 1, 1]', '"""SAME"""'], {}), "(I2, filt, [1, 1, 1, 1, 1], 'SAME')\n", (1447, 1482), True, 'import tensorflow as tf\n'), ((1500, 1547), 'tensorflow.nn.conv3d', 'tf.nn.conv3d', (['J2', 'filt', '[1, 1, 1, 1, 1]', '"""SAME"""'], {}), "(J2, filt, [1, 1, 1, 1, 1], 'SAME')\n", (1512, 1547), True, 'import tensorflow as tf\n'), ((1565, 1612), 'tensorflow.nn.conv3d', 'tf.nn.conv3d', (['IJ', 'filt', '[1, 1, 1, 1, 1]', '"""SAME"""'], {}), "(IJ, filt, [1, 1, 1, 1, 1], 'SAME')\n", (1577, 1612), True, 'import tensorflow as tf\n'), ((2136, 2153), 'tensorflow.multiply', 'tf.multiply', (['I', 'I'], {}), '(I, I)\n', (2147, 2153), True, 'import tensorflow as tf\n'), ((2167, 2184), 'tensorflow.multiply', 'tf.multiply', (['J', 'J'], {}), '(J, J)\n', (2178, 2184), True, 'import tensorflow as tf\n'), ((2198, 2215), 'tensorflow.multiply', 'tf.multiply', (['I', 'J'], {}), '(I, J)\n', (2209, 2215), True, 'import tensorflow as tf\n'), ((2238, 2269), 'tensorflow.ones', 'tf.ones', (['[win[0], win[1], 1, 1]'], {}), '([win[0], win[1], 1, 1])\n', (2245, 2269), True, 'import tensorflow as tf\n'), ((2287, 2336), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['I', 'sum_filter', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(I, sum_filter, [1, 1, 1, 1], 'SAME')\n", (2299, 2336), True, 'import tensorflow as tf\n'), ((2353, 2402), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['J', 'sum_filter', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(J, sum_filter, [1, 1, 1, 1], 'SAME')\n", (2365, 2402), True, 'import tensorflow as tf\n'), ((2420, 2470), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['I2', 'sum_filter', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(I2, sum_filter, [1, 1, 1, 1], 'SAME')\n", (2432, 2470), True, 'import tensorflow as tf\n'), ((2488, 2538), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['J2', 'sum_filter', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(J2, sum_filter, [1, 1, 1, 1], 'SAME')\n", (2500, 2538), True, 'import tensorflow as tf\n'), ((2556, 2606), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['IJ', 'sum_filter', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(IJ, sum_filter, [1, 1, 1, 1], 'SAME')\n", (2568, 2606), True, 'import tensorflow as tf\n'), ((746, 764), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dz'], {}), '(dz)\n', (760, 764), True, 'import tensorflow as tf\n'), ((1041, 1059), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dx'], {}), '(dx)\n', (1055, 1059), True, 'import tensorflow as tf\n'), ((1060, 1078), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dy'], {}), '(dy)\n', (1074, 1078), True, 'import tensorflow as tf\n'), ((2043, 2061), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cc'], {}), '(cc)\n', (2057, 2061), True, 'import tensorflow as tf\n'), ((2971, 2989), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cc'], {}), '(cc)\n', (2985, 2989), True, 'import tensorflow as tf\n'), ((708, 726), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dx'], {}), '(dx)\n', (722, 726), True, 'import tensorflow as tf\n'), ((727, 745), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dy'], {}), '(dy)\n', (741, 745), True, 'import tensorflow as tf\n'), ((2930, 2945), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (2938, 2945), True, 'import numpy as np\n')]
from __future__ import annotations import re from pathlib import Path from logging import getLogger, Logger from fileinput import hook_compressed from dataclasses import dataclass, field, fields from typing import Iterator, get_type_hints, Generator import numpy as np import numpy.typing as npt from pysam import TabixFile from .data import Data from .genotypes import GenotypesRefAlt @dataclass class Extra: """ An extra field on a line in the .hap file Attributes ---------- name: str The name of the extra field fmt: str = "s" The python fmt string of the field value; indicates how to format the value description: str = "" A description of the extra field """ name: str fmt: str = "s" description: str = "" _type: type = field(init=False, repr=False) def __post_init(self): if self.fmt.endswith("s"): self._type = str elif self.fmt.endswith("d"): self._type = int elif self.fmt.endswith("f"): self._type = float else: raise ValueError("Unsupported extra type '{}'!".format(self.fmt[-1])) @classmethod def from_hap_spec(cls, line: str) -> Extra: """ Convert an "extra" line in the header of a .hap file into an Extra object Parameters ---------- line: str An "extra" field, as it appears declared in the header Returns ------- Extra An Extra object """ line = line[3:].split("\t") return cls(name=line[0], fmt=line[1], description=line[2]) def to_hap_spec(self, line_type_symbol: str) -> str: """ Convert an Extra object into a header line in the .hap format spec Parameters ---------- hap_id: str The ID of the haplotype associated with this variant Returns ------- str A valid variant line (V) in the .hap format spec """ return ( "#" + line_type_symbol + "\t" + "\t".join((self.name, self.fmt, self.description)) ) @property def fmt_str(self) -> str: """ Convert an Extra into a fmt string Retruns ------- str A python format string (ex: "{beta:.3f}") """ return "{" + self.name + ":" + self.fmt + "}" # We declare this class to be a dataclass to automatically define __init__ and a few # other methods. @dataclass class Variant: """ A variant within the .hap format spec In order to use this class with the Haplotypes class, you should 1) add properties to the class for each of extra fields 2) override the _extras property to describe the header declaration Attributes ---------- start: int The chromosomal start position of the variant end: int The chromosomal end position of the variant In most cases this will be the same as the start position id: str The variant's unique ID allele: str The allele of this variant within the Haplotype _extras: tuple[Extra] Extra fields for the haplotype Examples -------- Let's extend this class and add an extra field called "score" >>> from dataclasses import dataclass, field >>> @dataclass >>> class CustomVariant(Variant): ... score: float ... _extras: tuple = ( ... Extra("score", ".3f", "Importance of inclusion"), ... ) """ start: int end: int id: str allele: str _extras: tuple = field(default=tuple(), init=False, repr=False) @property def ID(self): """ Create an alias for the id property """ return self.id @property # TODO: use @cached_property in py3.8 def _fmt(self): extras = "" if len(self._extras): extras = "\t" + "\t".join(extra.fmt_str for extra in self._extras) return "V\t{hap:s}\t{start:d}\t{end:d}\t{id:s}\t{allele:s}" + extras @classmethod def from_hap_spec(cls: Variant, line: str) -> tuple[str, Variant]: """ Convert a variant line into a Variant object in the .hap format spec Note that this implementation does NOT support having more extra fields than appear in the header Parameters ---------- line: str A variant (V) line from the .hap file Returns ------- tuple[str, Variant] The haplotype ID and Variant object for the variant """ assert line[0] == "V", "Attempting to init a Variant with a non-V line" line = line[2:].split("\t") hap_id = line[0] var_fields = {} idx = 1 for name, val in get_type_hints(cls).items(): if not name.startswith("_"): var_fields[name] = val(line[idx]) idx += 1 return hap_id, cls(**var_fields) def to_hap_spec(self, hap_id: str) -> str: """ Convert a Variant object into a variant line in the .hap format spec Parameters ---------- hap_id: str The ID of the haplotype associated with this variant Returns ------- str A valid variant line (V) in the .hap format spec """ return self._fmt.format(**self.__dict__, hap=hap_id) @classmethod def extras_head(cls) -> tuple: """ Return the header lines of the extra fields that are supported Returns ------- tuple The header lines of the extra fields """ return tuple(extra.to_hap_spec("V") for extra in cls._extras) # We declare this class to be a dataclass to automatically define __init__ and a few # other methods. @dataclass class Haplotype: """ A haplotype within the .hap format spec In order to use this class with the Haplotypes class, you should 1) add properties to the class for each of extra fields 2) override the _extras property to describe the header declaration Attributes ---------- chrom: str The contig to which this haplotype belongs start: int The chromosomal start position of the haplotype end: int The chromosomal end position of the haplotype id: str The haplotype's unique ID variants: list[Variant] A list of the variants in this haplotype _extras: tuple[Extra] Extra fields for the haplotype Examples -------- Let's extend this class and add an extra field called "ancestry" >>> from dataclasses import dataclass, field >>> @dataclass >>> class CustomHaplotype(Haplotype): ... ancestry: str ... _extras: tuple = ( ... Extra("ancestry", "s", "Local ancestry"), ... ) """ chrom: str start: int end: int id: str variants: tuple = field(default_factory=tuple, init=False) _extras: tuple = field(default=tuple(), init=False, repr=False) @property def ID(self): """ Create an alias for the id property """ return self.id @property # TODO: use @cached_property in py3.8 def _fmt(self): extras = "" if len(self._extras): extras = "\t" + "\t".join(extra.fmt_str for extra in self._extras) return "H\t{chrom:s}\t{start:d}\t{end:d}\t{id:s}" + extras @property # TODO: use @cached_property in py3.8 def varIDs(self): return {var.id for var in self.variants} @classmethod def from_hap_spec( cls: Haplotype, line: str, variants: tuple = tuple() ) -> Haplotype: """ Convert a variant line into a Haplotype object in the .hap format spec Note that this implementation does NOT support having more extra fields than appear in the header Parameters ---------- line: str A variant (H) line from the .hap file Returns ------- Haplotype The Haplotype object for the variant """ assert line[0] == "H", "Attempting to init a Haplotype with a non-H line" line = line[2:].split("\t") hap_fields = {} idx = 0 for name, val in get_type_hints(cls).items(): if name != "variants" and not name.startswith("_"): hap_fields[name] = val(line[idx]) idx += 1 hap = cls(**hap_fields) hap.variants = variants return hap def to_hap_spec(self) -> str: """ Convert a Haplotype object into a haplotype line in the .hap format spec Returns ------- str A valid haplotype line (H) in the .hap format spec """ return self._fmt.format(**self.__dict__) @classmethod def extras_head(cls) -> tuple: """ Return the header lines of the extra fields that are supported Returns ------- tuple The header lines of the extra fields """ return tuple(extra.to_hap_spec("H") for extra in cls._extras) def transform( self, genotypes: GenotypesRefAlt, samples: list[str] = None ) -> npt.NDArray[bool]: """ Transform a genotypes matrix via the current haplotype Each entry in the returned matrix denotes the presence of the current haplotype in each chromosome of each sample in the Genotypes object Parameters ---------- genotypes : GenotypesRefAlt The genotypes which to transform using the current haplotype If the genotypes have not been loaded into the Genotypes object yet, this method will call Genotypes.read(), while loading only the needed variants samples : list[str], optional See documentation for :py:attr:`~.Genotypes.read` Returns ------- npt.NDArray[bool] A 2D matrix of shape (num_samples, 2) where each entry in the matrix denotes the presence of the haplotype in one chromosome of a sample """ var_IDs = self.varIDs # check: have the genotypes been loaded yet? # if not, we can load just the variants we need if genotypes.unset(): start = min(var.start for var in self.variants) end = max(var.end for var in self.variants) region = f"{self.chrom}:{start}-{end}" genotypes.read(region=region, samples=samples, variants=var_IDs) genotypes.check_biallelic(discard_also=True) genotypes.check_phase() # create a dict where the variants are keyed by ID var_dict = { var["id"]: var["ref"] for var in genotypes.variants if var["id"] in var_IDs } var_idxs = [ idx for idx, var in enumerate(genotypes.variants) if var["id"] in var_IDs ] missing_IDs = var_IDs - var_dict.keys() if len(missing_IDs): raise ValueError( f"Variants {missing_IDs} are present in haplotype '{self.id}' but " "absent in the provided genotypes" ) # create a np array denoting the alleles that we want alleles = [int(var.allele != var_dict[var.id]) for var in self.variants] allele_arr = np.array([[[al] for al in alleles]]) # shape: (1, n, 1) # look for the presence of each allele in each chromosomal strand # and then just AND them together return np.all(allele_arr == genotypes.data[:, var_idxs], axis=1) class Haplotypes(Data): """ A class for processing haplotypes from a file Attributes ---------- fname: Path The path to the file containing the data data: dict[str, Haplotype] A dict of Haplotype objects keyed by their IDs types: dict A dict of class names keyed by the symbol denoting their line type Ex: {'H': Haplotype, 'V': Variant} version: str A string denoting the current file format version log: Logger A logging instance for recording debug statements. Examples -------- Parsing a basic .hap file without any extra fields is simple: >>> haplotypes = Haplotypes.load('tests/data/basic.hap') >>> haps = haplotypes.data # a dictionary of Haplotype objects If the .hap file contains extra fields, you'll need to call the read() method manually. You'll also need to create Haplotype and Variant subclasses that support the extra fields and then specify the names of the classes when you initialize the Haplotypes object: >>> haplotypes = Haplotypes('tests/data/simphenotype.hap', HaptoolsHaplotype) >>> haplotypes.read() >>> haps = haplotypes.data # a dictionary of Haplotype objects """ def __init__( self, fname: Path, haplotype: type[Haplotype] = Haplotype, variant: type[Variant] = Variant, log: Logger = None, ): super().__init__(fname, log) self.data = None self.types = {"H": haplotype, "V": variant} self.version = "0.0.1" @classmethod def load( cls: Haplotypes, fname: Path, region: str = None, haplotypes: set[str] = None ) -> Haplotypes: """ Load haplotypes from a .hap file Read the file contents Parameters ---------- fname: Path See documentation for :py:attr:`~.Data.fname` region: str, optional See documentation for :py:meth:`~.Haplotypes.read` haplotypes: list[str], optional See documentation for :py:meth:`~.Haplotypes.read` Returns ------- Haplotypes A Haplotypes object with the data loaded into its properties """ haps = cls(fname) haps.read(region, haplotypes) return haps def check_header(self, lines: list[str], check_version=False): """ Check 1) that the version number matches and 2) that extra fields declared in # the .haps file can be handled by the the Variant and Haplotype classes # provided in __init__() Parameters ---------- lines: list[str] Header lines from the .hap file check_version: bool = False Whether to also check the version of the file Raises ------ ValueError If any of the header lines are not supported """ self.log.info("Checking header") if check_version: version_line = lines[0].split("\t") assert version_line[1] == "version", ( "The version of the format spec must be declared as the first line of" " the header." ) if version_line[2] != self.version: self.log.warning( f"The version of the provided .hap file is {version_line} but this" f" tool expected {self.version}" ) expected_lines = [ line for line_type in self.types.values() for line in line_type.extras_head() ] for line in lines: if line[1] in self.types.keys(): try: expected_lines.remove(line) except ValueError: # extract the name of the extra field name = line.split("\t", maxsplit=1)[1] raise ValueError( f"The extra field '{name}' is declared in the header of the" " .hap file but is not accepted by this tool." ) # if there are any fields left... if expected_lines: names = [line.split("\t", maxsplit=2)[1] for line in expected_lines] raise ValueError( "Expected the input .hap file to have these extra fields, but they " f"don't seem to be declared in the header: {*names,}" ) def _line_type(self, line: str) -> type: """ Return the type of line that this line matches Parameters ---------- line: str A line of the .hap file Returns ------- type The name of the class corresponding with the type of this line """ line_types = self.types.keys() if line[0] in line_types: return line[0] else: # if none of the lines matched, return None return None def read(self, region: str = None, haplotypes: set[str] = None): """ Read haplotypes from a .hap file into a list stored in :py:attr:`~.Haplotypes.data` Parameters ---------- region: str, optional The region from which to extract haplotypes; ex: 'chr1:1234-34566' or 'chr7' For this to work, the .hap file must be indexed and the seqname must match! Defaults to loading all haplotypes haplotypes: list[str], optional A list of haplotype IDs corresponding to a subset of the haplotypes to extract Defaults to loading haplotypes from all samples For this to work, the .hap file must be indexed """ super().read() self.data = {} var_haps = {} for line in self.__iter__(region, haplotypes): if isinstance(line, Haplotype): self.data[line.id] = line elif isinstance(line, Variant): hap_id = line.hap del line.hap # store the variant for later var_haps.setdefault(hap_id, []).append(line) for hap in var_haps: self.data[hap].variants = tuple(var_haps[hap]) def __iter__( self, region: str = None, haplotypes: set[str] = None ) -> Iterator[Variant | Haplotype]: """ Read haplotypes from a .hap file line by line without storing anything Parameters ---------- region: str, optional The region from which to extract haplotypes; ex: 'chr1:1234-34566' or 'chr7' For this to work, the .hap file must be indexed and the seqname must match! Defaults to loading all haplotypes haplotypes: list[str], optional A list of haplotype IDs corresponding to a subset of the haplotypes to extract Defaults to loading haplotypes from all samples For this to work, the .hap file must be indexed Yields ------ Iterator[Variant|Haplotype] An iterator over each line in the file, where each line is encoded as a Variant or Haplotype containing each of the class properties Examples -------- If you're worried that the contents of the .hap file will be large, you may opt to parse the file line-by-line instead of loading it all into memory at once. In cases like these, you can use the __iter__() method in a for-loop: >>> haplotypes = Haplotypes('tests/data/basic.hap') >>> for line in haplotypes: ... print(line) Call the function manually to pass it the region or haplotypes params: >>> haplotypes = Haplotypes('tests/data/basic.hap.gz') >>> for line in haplotypes.__iter__( ... region='21:26928472-26941960', haplotypes={"chr21.q.3365*1"} ... ): ... print(line) """ # if the user requested a specific region or set of haplotypes, then we should # handle it using tabix # else, we use a regular text opener if region or haplotypes: haps_file = TabixFile(str(self.fname)) self.check_header(list(haps_file.header)) if region: region_positions = region.split(":", maxsplit=1)[1] # fetch region # we already know that each line will start with an H, so we don't # need to check that for line in haps_file.fetch(region): hap = self.types["H"].from_hap_spec(line) if haplotypes is not None: if hap.id not in haplotypes: continue haplotypes.remove(hap.id) yield hap else: for line in haps_file.fetch(): # we only want lines that start with an H line_type = self._line_type(line) if line_type == "H": hap = self.types["H"].from_hap_spec(line) if hap.id in haplotypes: yield hap haplotypes.remove(hap.id) elif line_type > "H": # if we've already passed all of the H's, we can just exit # We assume the file has been sorted so that all of the H lines # come before the V lines break # query for the variants of each haplotype for hap_id in self.data: # exclude variants outside the desired region hap_region = hap_id if region: hap_region = hap_id + ":" + region_positions # fetch region # we already know that each line will start with a V, so we don't # need to check that for line in haps_file.fetch(hap_region): line_type = self._line_type(line) if line_type == "V": var = self.types["V"].from_hap_spec(line)[1] # add the haplotype, since otherwise, the user won't know # which haplotype this variant belongs to var.hap = hap_id yield var else: self.log.warning( "Check that chromosomes are distinct from your hap IDs!" ) haps_file.close() else: # the file is not indexed, so we can't assume it's sorted, either # use hook_compressed to automatically handle gz files with hook_compressed(self.fname, mode="rt") as haps: self.log.info("Not taking advantage of indexing.") header_lines = [] for line in haps: line = line.rstrip("\n") line_type = self._line_type(line) if line[0] == "#": # store header for later try: header_lines.append(line) except AttributeError: # this happens when we encounter a line beginning with a # # after already having seen an H or V line # in this case, it's usually just a comment, so we can ignore pass else: if header_lines: self.check_header(header_lines) header_lines = None self.log.info("Finished reading header.") if line_type == "H": yield self.types["H"].from_hap_spec(line) elif line_type == "V": hap_id, var = self.types["V"].from_hap_spec(line) # add the haplotype, since otherwise, the user won't know # which haplotype this variant belongs to var.hap = hap_id yield var else: self.log.warning( f"Ignoring unsupported line type '{line[0]}'" ) def to_str(self) -> Generator[str, None, None]: """ Create a string representation of this Haplotype Yields ------ Generator[str, None, None] A list of lines (strings) to include in the output """ yield "#\tversion\t" + self.version for line_type in self.types: yield from self.types[line_type].extras_head() for hap in self.data.values(): yield self.types["H"].to_hap_spec(hap) for hap in self.data.values(): for var in hap.variants: yield self.types["V"].to_hap_spec(var, hap.id) def __repr__(self): return "\n".join(self.to_str()) def write(self): """ Write the contents of this Haplotypes object to the file given by fname Parameters ---------- file: TextIO A file-like object to which this Haplotypes object should be written. Examples -------- To write to a .hap file, you must first initialize a Haplotypes object and then fill out the data property: >>> haplotypes = Haplotypes('tests/data/basic.hap') >>> haplotypes.data = {'H1': Haplotype('chr1', 0, 10, 'H1')} >>> haplotypes.write() """ with hook_compressed(self.fname, mode="wt") as haps: for line in self.to_str(): haps.write(line + "\n") def transform( self, genotypes: GenotypesRefAlt, hap_gts: GenotypesRefAlt, samples: list[str] = None, low_memory: bool = False, ) -> GenotypesRefAlt: """ Transform a genotypes matrix via the current haplotype Each entry in the returned matrix denotes the presence of each haplotype in each chromosome of each sample in the Genotypes object Parameters ---------- genotypes : GenotypesRefAlt The genotypes which to transform using the current haplotype If the genotypes have not been loaded into the Genotypes object yet, this method will call Genotypes.read(), while loading only the needed variants hap_gts: GenotypesRefAlt An empty GenotypesRefAlt object into which the haplotype genotypes should be stored samples : list[str], optional See documentation for :py:attr:`~.Genotypes.read` low_memory : bool, optional If True, each haplotype's genotypes will be loaded one at a time. Returns ------- GenotypesRefAlt A Genotypes object composed of haplotypes instead of regular variants. """ hap_gts.samples = genotypes.samples hap_gts.variants = np.array( [(hap.id, hap.chrom, hap.start, 0, "A", "T") for hap in self.data.values()], dtype=[ ("id", "U50"), ("chrom", "U10"), ("pos", np.uint32), ("aaf", np.float64), ("ref", "U100"), ("alt", "U100"), ], ) self.log.info( f"Transforming a set of genotypes from {len(genotypes.variants)} total " f"variants with a list of {len(self.data)} haplotypes" ) hap_gts.data = np.concatenate( tuple( hap.transform(genotypes, samples)[:, np.newaxis] for hap in self.data.values() ), axis=1, ).astype(np.uint8)
[ "typing.get_type_hints", "fileinput.hook_compressed", "dataclasses.field", "numpy.array", "numpy.all" ]
[((805, 834), 'dataclasses.field', 'field', ([], {'init': '(False)', 'repr': '(False)'}), '(init=False, repr=False)\n', (810, 834), False, 'from dataclasses import dataclass, field, fields\n'), ((7026, 7066), 'dataclasses.field', 'field', ([], {'default_factory': 'tuple', 'init': '(False)'}), '(default_factory=tuple, init=False)\n', (7031, 7066), False, 'from dataclasses import dataclass, field, fields\n'), ((11472, 11508), 'numpy.array', 'np.array', (['[[[al] for al in alleles]]'], {}), '([[[al] for al in alleles]])\n', (11480, 11508), True, 'import numpy as np\n'), ((11660, 11717), 'numpy.all', 'np.all', (['(allele_arr == genotypes.data[:, var_idxs])'], {'axis': '(1)'}), '(allele_arr == genotypes.data[:, var_idxs], axis=1)\n', (11666, 11717), True, 'import numpy as np\n'), ((25545, 25583), 'fileinput.hook_compressed', 'hook_compressed', (['self.fname'], {'mode': '"""wt"""'}), "(self.fname, mode='wt')\n", (25560, 25583), False, 'from fileinput import hook_compressed\n'), ((4855, 4874), 'typing.get_type_hints', 'get_type_hints', (['cls'], {}), '(cls)\n', (4869, 4874), False, 'from typing import Iterator, get_type_hints, Generator\n'), ((8390, 8409), 'typing.get_type_hints', 'get_type_hints', (['cls'], {}), '(cls)\n', (8404, 8409), False, 'from typing import Iterator, get_type_hints, Generator\n'), ((22559, 22597), 'fileinput.hook_compressed', 'hook_compressed', (['self.fname'], {'mode': '"""rt"""'}), "(self.fname, mode='rt')\n", (22574, 22597), False, 'from fileinput import hook_compressed\n')]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # TODO: pass ft_cse to use fine-tuned feature # TODO: pass fine_steps -1 to use fine samples from absl import flags, app import sys sys.path.insert(0,'') sys.path.insert(0,'third_party') import numpy as np from matplotlib import pyplot as plt import matplotlib import torch import os import glob import pdb import cv2 import trimesh from scipy.spatial.transform import Rotation as R import imageio from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match from utils.colors import label_colormap from nnutils.train_utils import v2s_trainer from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam,\ Kmatinv, K2mat, K2inv, sample_xy, resample_dp,\ raycast from nnutils.loss_utils import kp_reproj, feat_match, kp_reproj_loss from ext_utils.util_flow import write_pfm from ext_utils.flowlib import cat_imgflo opts = flags.FLAGS def construct_rays(dp_feats_rsmp, model, xys, rand_inds, Rmat, Tmat, Kinv, near_far, flip=True): device = dp_feats_rsmp.device bs,nsample,_ =xys.shape opts = model.opts embedid=model.embedid embedid = embedid.long().to(device)[:,None] rays = raycast(xys, Rmat, Tmat, Kinv, near_far) rtk_vec = rays['rtk_vec'] del rays feats_at_samp = [dp_feats_rsmp[i].view(model.num_feat,-1).T\ [rand_inds[i].long()] for i in range(bs)] feats_at_samp = torch.stack(feats_at_samp,0) # bs,ns,num_feat # TODO implement for se3 if opts.lbs and model.num_bone_used>0: bone_rts = model.nerf_body_rts(embedid) bone_rts = bone_rts.repeat(1,nsample,1) # TODO rearrange inputs feats_at_samp = feats_at_samp.view(-1, model.num_feat) xys = xys.view(-1,1,2) if flip: rtk_vec = rtk_vec.view(bs//2,2,-1).flip(1).view(rtk_vec.shape) bone_rts = bone_rts.view(bs//2,2,-1).flip(1).view(bone_rts.shape) rays = {'rtk_vec': rtk_vec, 'bone_rts': bone_rts} return rays, feats_at_samp, xys def match_frames(trainer, idxs, nsample=200): idxs = [int(i) for i in idxs.split(' ')] bs = len(idxs) opts = trainer.opts device = trainer.device model = trainer.model model.eval() # load frames and aux data for dataset in trainer.evalloader.dataset.datasets: dataset.load_pair = False batch = [] for i in idxs: batch.append( trainer.evalloader.dataset[i] ) batch = trainer.evalloader.collate_fn(batch) model.set_input(batch) rtk = model.rtk Rmat = rtk[:,:3,:3] Tmat = rtk[:,:3,3] Kmat = K2mat(rtk[:,3,:]) kaug = model.kaug # according to cropping, p = Kaug Kmat P Kaug = K2inv(kaug) Kinv = Kmatinv(Kaug.matmul(Kmat)) near_far = model.near_far[model.frameid.long()] dp_feats_rsmp = model.dp_feats # construct rays for sampled pixels rand_inds, xys = sample_xy(opts.img_size, bs, nsample, device,return_all=False) rays, feats_at_samp, xys = construct_rays(dp_feats_rsmp, model, xys, rand_inds, Rmat, Tmat, Kinv, near_far) model.update_delta_rts(rays) # re-project with torch.no_grad(): pts_pred = feat_match(model.nerf_feat, model.embedding_xyz, feats_at_samp, model.latest_vars['obj_bound'],grid_size=20,is_training=False) pts_pred = pts_pred.view(bs,nsample,3) xy_reproj = kp_reproj(pts_pred, model.nerf_models, model.embedding_xyz, rays) # draw imgs_trg = model.imgs.view(bs//2,2,-1).flip(1).view(model.imgs.shape) xy_reproj = xy_reproj.view(bs,nsample,2) xys = xys.view(bs,nsample, 2) sil_at_samp = torch.stack([model.masks[i].view(-1,1)[rand_inds[i]] \ for i in range(bs)],0) # bs,ns,1 for i in range(bs): img1 = model.imgs[i] img2 = imgs_trg[i] img = torch.cat([img1, img2],2) valid_idx = sil_at_samp[i].bool()[...,0] p1s = xys[i][valid_idx] p2s = xy_reproj[i][valid_idx] p2s[...,0] = p2s[...,0] + img1.shape[2] img = draw_lines(img, p1s,p2s) cv2.imwrite('tmp/match_%04d.png'%i, img) # visualize matching error if opts.render_size<=128: with torch.no_grad(): rendered, rand_inds = model.nerf_render(rtk, kaug, model.embedid, nsample=opts.nsample, ndepth=opts.ndepth) xyz_camera = rendered['xyz_camera_vis'][0].reshape(opts.render_size**2,-1) xyz_canonical = rendered['xyz_canonical_vis'][0].reshape(opts.render_size**2,-1) skip_idx = len(xyz_camera)//50 # vis 50 rays trimesh.Trimesh(xyz_camera[0::skip_idx].reshape(-1,3).cpu()).\ export('tmp/match_camera_pts.obj') trimesh.Trimesh(xyz_canonical[0::skip_idx].reshape(-1,3).cpu()).\ export('tmp/match_canonical_pts.obj') vis_match(rendered, model.masks, model.imgs, bs,opts.img_size, opts.ndepth) ## construct rays for all pixels #rand_inds, xys = sample_xy(opts.img_size, bs, nsample, device,return_all=True) #rays, feats_at_samp, xys = construct_rays(dp_feats_rsmp, model, xys, rand_inds, # Rmat, Tmat, Kinv, near_far, flip=False) #with torch.no_grad(): # pts_pred = feat_match(model.nerf_feat, model.embedding_xyz, feats_at_samp, # model.latest_vars['obj_bound'],grid_size=20,is_training=False) # pts_pred = pts_pred.view(bs,opts.render_size**2,3) # proj_err = kp_reproj_loss(pts_pred, xys, model.nerf_models, # model.embedding_xyz, rays) # proj_err = proj_err.view(pts_pred.shape[:-1]+(1,)) # proj_err = proj_err/opts.img_size * 2 # results = {} # results['proj_err'] = proj_err ## visualize current error stats #feat_err=model.latest_vars['fp_err'][:,0] #proj_err=model.latest_vars['fp_err'][:,1] #feat_err = feat_err[feat_err>0] #proj_err = proj_err[proj_err>0] #print('feat-med: %f'%(np.median(feat_err))) #print('proj-med: %f'%(np.median(proj_err))) #plt.hist(feat_err,bins=100) #plt.savefig('tmp/viser_feat_err.jpg') #plt.clf() #plt.hist(proj_err,bins=100) #plt.savefig('tmp/viser_proj_err.jpg') # visualize codes with torch.no_grad(): fid = torch.Tensor(range(0,len(model.impath))).cuda().long() D=model.pose_code(fid) D = D.view(len(fid),-1) ##TODO #px = torch.Tensor(range(len(D))).cuda() #py = px*2 #pz = px*5+1 #D = torch.stack([px,py,pz],-1) D = D-D.mean(0)[None] A = D.T.matmul(D)/D.shape[0] # fxf U,S,V=torch.svd(A) # code_proj_3d=D.matmul(V[:,:3]) cmap = matplotlib.cm.get_cmap('cool') time = np.asarray(range(len(model.impath))) time = time/time.max() code_proj_3d=code_proj_3d.detach().cpu().numpy() trimesh.Trimesh(code_proj_3d, vertex_colors=cmap(time)).export('tmp/0.obj') #plt.figure(figsize=(16,16)) plot_stack = [] weight_dir = opts.model_path.rsplit('/',1)[0] bne_path = sorted(glob.glob('%s/%s-*bne-mrender*.jpg'%\ (weight_dir, opts.seqname))) img_path = model.impath.copy() ## remove the last img for each video to make shape consistent with bone renders #for i in model.data_offset[1:][::-1]: # img_path.remove(img_path[i-1]) # code_proj_3d = np.delete(code_proj_3d, i-1,0) # plot the first video img_path = img_path [:model.data_offset[1]-2] code_proj_3d = code_proj_3d[:model.data_offset[1]-2] try: bne_path = bne_path [:model.data_offset[1]-2] except: pass for i in range(len(code_proj_3d)): plt.plot(code_proj_3d[i,0], code_proj_3d[i,1], color=cmap(time[i]), marker='o') plt.annotate(str(i), (code_proj_3d[i,0], code_proj_3d[i,1])) plt.xlim(code_proj_3d[:,0].min(), code_proj_3d[:,0].max()) plt.ylim(code_proj_3d[:,1].min(), code_proj_3d[:,1].max()) fig = plt.gcf() fig.canvas.draw() plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) plot = plot.reshape(fig.canvas.get_width_height()[::-1] + (3,)) print('plot pose code of frame id:%03d'%i) if len(bne_path) == len(code_proj_3d): bneimg = cv2.imread(bne_path[i]) bneimg = cv2.resize(bneimg,\ (bneimg.shape[1]*plot.shape[0]//bneimg.shape[0], plot.shape[0])) img=cv2.imread(img_path[i])[:,:,::-1] img = cv2.resize(img,\ (img.shape[1]*plot.shape[0]//img.shape[0], plot.shape[0])) plot = np.hstack([img, bneimg, plot]) plot_stack.append(plot) save_vid('tmp/code', plot_stack, suffix='.mp4', upsample_frame=150.,fps=30) save_vid('tmp/code', plot_stack, suffix='.gif', upsample_frame=150.,fps=30) # vis dps cv2.imwrite('tmp/match_dpc.png', model.dp_vis[model.dps[0].long()].cpu().numpy()*255) def main(_): opts.img_size=opts.render_size trainer = v2s_trainer(opts, is_eval=True) data_info = trainer.init_dataset() trainer.define_model(data_info) #write matching function img_match = match_frames(trainer, opts.match_frames) if __name__ == '__main__': app.run(main)
[ "matplotlib.cm.get_cmap", "torch.cat", "nnutils.loss_utils.feat_match", "glob.glob", "torch.no_grad", "nnutils.geom_utils.sample_xy", "nnutils.train_utils.v2s_trainer", "cv2.imwrite", "nnutils.loss_utils.kp_reproj", "utils.io.vis_match", "cv2.resize", "torch.svd", "numpy.hstack", "utils.io.draw_lines", "matplotlib.pyplot.gcf", "torch.stack", "nnutils.geom_utils.raycast", "sys.path.insert", "utils.io.save_vid", "cv2.imread", "absl.app.run", "nnutils.geom_utils.K2inv", "nnutils.geom_utils.K2mat" ]
[((204, 226), 'sys.path.insert', 'sys.path.insert', (['(0)', '""""""'], {}), "(0, '')\n", (219, 226), False, 'import sys\n'), ((226, 259), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""third_party"""'], {}), "(0, 'third_party')\n", (241, 259), False, 'import sys\n'), ((1284, 1324), 'nnutils.geom_utils.raycast', 'raycast', (['xys', 'Rmat', 'Tmat', 'Kinv', 'near_far'], {}), '(xys, Rmat, Tmat, Kinv, near_far)\n', (1291, 1324), False, 'from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam, Kmatinv, K2mat, K2inv, sample_xy, resample_dp, raycast\n'), ((1516, 1545), 'torch.stack', 'torch.stack', (['feats_at_samp', '(0)'], {}), '(feats_at_samp, 0)\n', (1527, 1545), False, 'import torch\n'), ((2683, 2702), 'nnutils.geom_utils.K2mat', 'K2mat', (['rtk[:, 3, :]'], {}), '(rtk[:, 3, :])\n', (2688, 2702), False, 'from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam, Kmatinv, K2mat, K2inv, sample_xy, resample_dp, raycast\n'), ((2777, 2788), 'nnutils.geom_utils.K2inv', 'K2inv', (['kaug'], {}), '(kaug)\n', (2782, 2788), False, 'from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam, Kmatinv, K2mat, K2inv, sample_xy, resample_dp, raycast\n'), ((2977, 3040), 'nnutils.geom_utils.sample_xy', 'sample_xy', (['opts.img_size', 'bs', 'nsample', 'device'], {'return_all': '(False)'}), '(opts.img_size, bs, nsample, device, return_all=False)\n', (2986, 3040), False, 'from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam, Kmatinv, K2mat, K2inv, sample_xy, resample_dp, raycast\n'), ((9389, 9420), 'nnutils.train_utils.v2s_trainer', 'v2s_trainer', (['opts'], {'is_eval': '(True)'}), '(opts, is_eval=True)\n', (9400, 9420), False, 'from nnutils.train_utils import v2s_trainer\n'), ((9615, 9628), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (9622, 9628), False, 'from absl import flags, app\n'), ((3236, 3251), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3249, 3251), False, 'import torch\n'), ((3272, 3405), 'nnutils.loss_utils.feat_match', 'feat_match', (['model.nerf_feat', 'model.embedding_xyz', 'feats_at_samp', "model.latest_vars['obj_bound']"], {'grid_size': '(20)', 'is_training': '(False)'}), "(model.nerf_feat, model.embedding_xyz, feats_at_samp, model.\n latest_vars['obj_bound'], grid_size=20, is_training=False)\n", (3282, 3405), False, 'from nnutils.loss_utils import kp_reproj, feat_match, kp_reproj_loss\n'), ((3478, 3543), 'nnutils.loss_utils.kp_reproj', 'kp_reproj', (['pts_pred', 'model.nerf_models', 'model.embedding_xyz', 'rays'], {}), '(pts_pred, model.nerf_models, model.embedding_xyz, rays)\n', (3487, 3543), False, 'from nnutils.loss_utils import kp_reproj, feat_match, kp_reproj_loss\n'), ((3957, 3983), 'torch.cat', 'torch.cat', (['[img1, img2]', '(2)'], {}), '([img1, img2], 2)\n', (3966, 3983), False, 'import torch\n'), ((4164, 4189), 'utils.io.draw_lines', 'draw_lines', (['img', 'p1s', 'p2s'], {}), '(img, p1s, p2s)\n', (4174, 4189), False, 'from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match\n'), ((4197, 4239), 'cv2.imwrite', 'cv2.imwrite', (["('tmp/match_%04d.png' % i)", 'img'], {}), "('tmp/match_%04d.png' % i, img)\n", (4208, 4239), False, 'import cv2\n'), ((6438, 6453), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6451, 6453), False, 'import torch\n'), ((6819, 6831), 'torch.svd', 'torch.svd', (['A'], {}), '(A)\n', (6828, 6831), False, 'import torch\n'), ((6888, 6918), 'matplotlib.cm.get_cmap', 'matplotlib.cm.get_cmap', (['"""cool"""'], {}), "('cool')\n", (6910, 6918), False, 'import matplotlib\n'), ((9028, 9105), 'utils.io.save_vid', 'save_vid', (['"""tmp/code"""', 'plot_stack'], {'suffix': '""".mp4"""', 'upsample_frame': '(150.0)', 'fps': '(30)'}), "('tmp/code', plot_stack, suffix='.mp4', upsample_frame=150.0, fps=30)\n", (9036, 9105), False, 'from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match\n'), ((9128, 9205), 'utils.io.save_vid', 'save_vid', (['"""tmp/code"""', 'plot_stack'], {'suffix': '""".gif"""', 'upsample_frame': '(150.0)', 'fps': '(30)'}), "('tmp/code', plot_stack, suffix='.gif', upsample_frame=150.0, fps=30)\n", (9136, 9205), False, 'from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match\n'), ((4313, 4328), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4326, 4328), False, 'import torch\n'), ((4983, 5059), 'utils.io.vis_match', 'vis_match', (['rendered', 'model.masks', 'model.imgs', 'bs', 'opts.img_size', 'opts.ndepth'], {}), '(rendered, model.masks, model.imgs, bs, opts.img_size, opts.ndepth)\n', (4992, 5059), False, 'from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match\n'), ((7285, 7350), 'glob.glob', 'glob.glob', (["('%s/%s-*bne-mrender*.jpg' % (weight_dir, opts.seqname))"], {}), "('%s/%s-*bne-mrender*.jpg' % (weight_dir, opts.seqname))\n", (7294, 7350), False, 'import glob\n'), ((8288, 8297), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (8295, 8297), True, 'from matplotlib import pyplot as plt\n'), ((8611, 8634), 'cv2.imread', 'cv2.imread', (['bne_path[i]'], {}), '(bne_path[i])\n', (8621, 8634), False, 'import cv2\n'), ((8660, 8751), 'cv2.resize', 'cv2.resize', (['bneimg', '(bneimg.shape[1] * plot.shape[0] // bneimg.shape[0], plot.shape[0])'], {}), '(bneimg, (bneimg.shape[1] * plot.shape[0] // bneimg.shape[0],\n plot.shape[0]))\n', (8670, 8751), False, 'import cv2\n'), ((8837, 8915), 'cv2.resize', 'cv2.resize', (['img', '(img.shape[1] * plot.shape[0] // img.shape[0], plot.shape[0])'], {}), '(img, (img.shape[1] * plot.shape[0] // img.shape[0], plot.shape[0]))\n', (8847, 8915), False, 'import cv2\n'), ((8952, 8982), 'numpy.hstack', 'np.hstack', (['[img, bneimg, plot]'], {}), '([img, bneimg, plot])\n', (8961, 8982), True, 'import numpy as np\n'), ((8781, 8804), 'cv2.imread', 'cv2.imread', (['img_path[i]'], {}), '(img_path[i])\n', (8791, 8804), False, 'import cv2\n')]
# This script is for the rotate function import numpy as np import matplotlib.pyplot as plt import cv2 def rotate(image, degree, output_path): """ Rotates an OpenCV 2 / NumPy image about it's centre by the given degree (in degrees). The returned image will be large enough to hold the entire new image, with a black background Arguments: ----------------------------- image: path of input file degree: int of degree Output: ----------------------------- an image file in .png format """ # exception handling try: image = plt.imread(image) except AttributeError: print("Please type in a string as the path for the input image file.") raise except TypeError: print("Please provide a string as the path for the input image file.") raise except FileNotFoundError: print("The input file/path does not exist, please double check it. ") raise except OSError: print("The input file is not an image.") raise except Exception as e: print("General Error:") print(e) raise # Get the image size image_size = (image.shape[1], image.shape[0]) image_center = tuple(np.array(image_size) / 2) # Convert the OpenCV 3x2 rotation matrix to 3x3 rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, degree, 1.0), [0, 0, 1]]) rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2]) # Shorthand for below calcs image_w2 = image_size[0] * 0.5 image_h2 = image_size[1] * 0.5 # Obtain the rotated coordinates of the image corners rotated_coords = [ (np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0], (np.array([image_w2, image_h2]) * rot_mat_notranslate).A[0], (np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0], (np.array([image_w2, -image_h2]) * rot_mat_notranslate).A[0], ] # Find the size of the new image x_coords = [pt[0] for pt in rotated_coords] x_pos = [x for x in x_coords if x > 0] x_neg = [x for x in x_coords if x < 0] y_coords = [pt[1] for pt in rotated_coords] y_pos = [y for y in y_coords if y > 0] y_neg = [y for y in y_coords if y < 0] right_bound = max(x_pos) left_bound = min(x_neg) top_bound = max(y_pos) bot_bound = min(y_neg) new_w = int(abs(right_bound - left_bound)) new_h = int(abs(top_bound - bot_bound)) # We require a translation matrix to keep the image centred trans_mat = np.matrix( [ [1, 0, int(new_w * 0.5 - image_w2)], [0, 1, int(new_h * 0.5 - image_h2)], [0, 0, 1], ] ) # Compute the tranform for the combined rotation and translation affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :] # Apply the transform result = cv2.warpAffine(image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR) # exception handling try: plt.imshow(result) plt.savefig(output_path) except FileNotFoundError: print("The output path does not exist.") raise except AttributeError: print("Please provide a string as the path for the output image file.") raise except TypeError: print("Please provide a string as the path for the output image file.") raise except Exception as e: print("Other exceptions, please check your input and output. ") print(e) raise
[ "numpy.matrix", "matplotlib.pyplot.imshow", "cv2.warpAffine", "numpy.array", "matplotlib.pyplot.imread", "cv2.getRotationMatrix2D", "matplotlib.pyplot.savefig" ]
[((1446, 1474), 'numpy.matrix', 'np.matrix', (['rot_mat[0:2, 0:2]'], {}), '(rot_mat[0:2, 0:2])\n', (1455, 1474), True, 'import numpy as np\n'), ((2875, 2948), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'affine_mat', '(new_w, new_h)'], {'flags': 'cv2.INTER_LINEAR'}), '(image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR)\n', (2889, 2948), False, 'import cv2\n'), ((601, 618), 'matplotlib.pyplot.imread', 'plt.imread', (['image'], {}), '(image)\n', (611, 618), True, 'import matplotlib.pyplot as plt\n'), ((2992, 3010), 'matplotlib.pyplot.imshow', 'plt.imshow', (['result'], {}), '(result)\n', (3002, 3010), True, 'import matplotlib.pyplot as plt\n'), ((3019, 3043), 'matplotlib.pyplot.savefig', 'plt.savefig', (['output_path'], {}), '(output_path)\n', (3030, 3043), True, 'import matplotlib.pyplot as plt\n'), ((1251, 1271), 'numpy.array', 'np.array', (['image_size'], {}), '(image_size)\n', (1259, 1271), True, 'import numpy as np\n'), ((1355, 1405), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['image_center', 'degree', '(1.0)'], {}), '(image_center, degree, 1.0)\n', (1378, 1405), False, 'import cv2\n'), ((2784, 2804), 'numpy.matrix', 'np.matrix', (['trans_mat'], {}), '(trans_mat)\n', (2793, 2804), True, 'import numpy as np\n'), ((2807, 2825), 'numpy.matrix', 'np.matrix', (['rot_mat'], {}), '(rot_mat)\n', (2816, 2825), True, 'import numpy as np\n'), ((1669, 1700), 'numpy.array', 'np.array', (['[-image_w2, image_h2]'], {}), '([-image_w2, image_h2])\n', (1677, 1700), True, 'import numpy as np\n'), ((1739, 1769), 'numpy.array', 'np.array', (['[image_w2, image_h2]'], {}), '([image_w2, image_h2])\n', (1747, 1769), True, 'import numpy as np\n'), ((1808, 1840), 'numpy.array', 'np.array', (['[-image_w2, -image_h2]'], {}), '([-image_w2, -image_h2])\n', (1816, 1840), True, 'import numpy as np\n'), ((1879, 1910), 'numpy.array', 'np.array', (['[image_w2, -image_h2]'], {}), '([image_w2, -image_h2])\n', (1887, 1910), True, 'import numpy as np\n')]
#****************************************************************************** # # MantaGen # Copyright 2018 <NAME>, <NAME>, <NAME> # # This program is free software, distributed under the terms of the # Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # #****************************************************************************** from manta import * import numpy from random import randint from scenes.scene import Scene from scenes.volumes import * from scenes.functions import * from util.logger import * def instantiate_scene(**kwargs): # instantiate independent of name , TODO replace? info(kwargs) return SmokeBuoyantScene(**kwargs) class SmokeBuoyantScene(Scene): #---------------------------------------------------------------------------------- def __init__(self, **kwargs): super(SmokeBuoyantScene,self).__init__(**kwargs) # optionally, init more grids etc. self.max_iter_fac = 2 self.accuracy = 5e-4 self.max_source_count = int(kwargs.get("max_source_count", 5)) self.velocity_scale = float(kwargs.get("velocity_scale", self.resolution.y * 0.05)) self.use_inflow_sources = kwargs.get("use_inflow_sources", "True") == "True" self.open_bound = kwargs.get("use_open_bound", "True") == "True" self.sources = [] self.source_strengths = [] # smoke sims need to track the density self.density = self.solver.create(RealGrid, name="Density") noise = self.solver.create(NoiseField, loadFromFile=True) noise.posScale = vec3(40) * numpy.random.uniform(low=0.25, high=1.) noise.posOffset = random_vec3s(vmin=0.0) * 100. noise.clamp = True noise.clampNeg = 0 noise.clampPos = 1. noise.valOffset = 0.15 noise.timeAnim = 0.4 * numpy.random.uniform(low=0.2, high=1.) self.noise = noise info("SmokeBuoyantScene initialized") #---------------------------------------------------------------------------------- def set_velocity(self, volume, velocity): if self.dimension == 2: velocity.z = 0.0 volume.applyToGrid(solver=self.solver, grid=self.vel, value=velocity) #---------------------------------------------------------------------------------- # sources used as smoke inflow in the following def add_source(self, volume): shape = volume.shape(self.solver) self.sources.append(shape) self.source_strengths.append(numpy.random.uniform(low=0.5, high=1.)) #---------------------------------------------------------------------------------- def _create_scene(self): super(SmokeBuoyantScene, self)._create_scene() self.sources = [] self.source_strengths = [] self.density.setConst(0) self.vel.setConst(vec3(0)) is3d = (self.dimension > 2) self.flags.initDomain(boundaryWidth=self.boundary) self.flags.fillGrid() if self.open_bound: setOpenBound(self.flags, self.boundary, 'yY', CellType_TypeOutflow|CellType_TypeEmpty) # formerly initialize_smoke_scene(scene): source_count = randint(1, self.max_source_count) for i in range(source_count): volume = random_box(center_min=[0.2, 0.1, 0.2], center_max=[0.8, 0.6, 0.8], size_min=[0.005, 0.005, 0.005], size_max=[0.2, 0.2, 0.2], is3d=is3d) self.add_source(volume) src, sstr = self.sources[-1], self.source_strengths[-1] densityInflow(flags=self.flags, density=self.density, noise=self.noise, shape=src, scale=2.0*sstr, sigma=0.5) if self.show_gui: # central view is more interesting for smoke self._gui.setPlane(self.resolution.z // 2) info("SmokeBuoyantScene created with {} sources".format(len(self.sources))) #================================================================================== # SIMULATION #---------------------------------------------------------------------------------- def _compute_simulation_step(self): # Note - sources are turned off earlier, the more there are in the scene for i in range(len(self.sources)): if self.use_inflow_sources: src, sstr = self.sources[i], self.source_strengths[i] densityInflow(flags=self.flags, density=self.density, noise=self.noise, shape=src, scale=2.0*sstr, sigma=0.5) advectSemiLagrange(flags=self.flags, vel=self.vel, grid=self.density, order=2, clampMode=2) advectSemiLagrange(flags=self.flags, vel=self.vel, grid=self.vel , order=2, clampMode=2) vorticityConfinement(vel=self.vel, flags=self.flags, strength=0.1) addBuoyancy(density=self.density, vel=self.vel, gravity=0.2*self.gravity, flags=self.flags) setWallBcs(flags=self.flags, vel=self.vel) solvePressure(flags=self.flags, vel=self.vel, pressure=self.pressure, cgMaxIterFac=self.max_iter_fac, cgAccuracy=self.accuracy)
[ "numpy.random.uniform", "random.randint" ]
[((3221, 3254), 'random.randint', 'randint', (['(1)', 'self.max_source_count'], {}), '(1, self.max_source_count)\n', (3228, 3254), False, 'from random import randint\n'), ((1630, 1670), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'low': '(0.25)', 'high': '(1.0)'}), '(low=0.25, high=1.0)\n', (1650, 1670), False, 'import numpy\n'), ((1871, 1910), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'low': '(0.2)', 'high': '(1.0)'}), '(low=0.2, high=1.0)\n', (1891, 1910), False, 'import numpy\n'), ((2547, 2586), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'low': '(0.5)', 'high': '(1.0)'}), '(low=0.5, high=1.0)\n', (2567, 2586), False, 'import numpy\n')]
""" Generates a path on the given occupancy grid (map of the environment) """ import networkx as nx from grid_loader import Grid import numpy as np def euclidean(node1, node2): x1, y1 = node1 x2, y2 = node2 return ((x1-x2)**2+(y1-y2)**2)**0.5 class AStar: # Constructor def __init__(self): self.graph = None self.grid_res = None # m / pixel def load_grid(self, grid_obj: Grid, occ_thresh = 0.5): """ Load a given Grid object into a networkx graph The edges are given a weight 1 and the occupied cells are removed Parameters: - grid_obj: Grid A Grid object that is to be loaded for path finding - occ_thresh: float (default: 0.5) A threshold value for depicting occupied cell If cell value >= occ_thresh, it is considered occupied and removed Returns: - removed_nodes: int The number of nodes that were removed from grid (number of occupied cells) """ self.grid_res = grid_obj.grid_res # Useful for translation from px to m and back self.graph = nx.grid_2d_graph(grid_obj.w, grid_obj.h) removed_nodes = 0 for i in range(grid_obj.w): for j in range(grid_obj.h): if grid_obj.grid_data[i, j] >= occ_thresh: # Occupied self.graph.remove_node((i, j)) removed_nodes += 1 # Set edge properties of the graph nx.set_edge_attributes(self.graph, {e: 1 for e in self.graph.edges()}, "cost") return removed_nodes # Return a route of [x, y] points def get_route(self, start, end, heuristic = euclidean, weight = 0.5): start_px = tuple((np.array(start) / self.grid_res).astype(int)) end_px = tuple((np.array(end) / self.grid_res).astype(int)) astar_path = nx.astar_path(self.graph, start_px, end_px, heuristic=lambda n1, n2: weight*heuristic(n1, n2), weight="cost") astar_path = np.array(astar_path) astar_path_m = astar_path * self.grid_res return astar_path_m
[ "numpy.array", "networkx.grid_2d_graph" ]
[((1256, 1296), 'networkx.grid_2d_graph', 'nx.grid_2d_graph', (['grid_obj.w', 'grid_obj.h'], {}), '(grid_obj.w, grid_obj.h)\n', (1272, 1296), True, 'import networkx as nx\n'), ((2139, 2159), 'numpy.array', 'np.array', (['astar_path'], {}), '(astar_path)\n', (2147, 2159), True, 'import numpy as np\n'), ((1861, 1876), 'numpy.array', 'np.array', (['start'], {}), '(start)\n', (1869, 1876), True, 'import numpy as np\n'), ((1931, 1944), 'numpy.array', 'np.array', (['end'], {}), '(end)\n', (1939, 1944), True, 'import numpy as np\n')]
import numpy as np import collections import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.manifold import MDS from time import time from warnings import warn class ForestSim(): def __init__(self, forest): # TODO : adapt if non sklearn forest used self.forest = forest def fit(self, X, y = 2, randomize = False, nb_repet = 1, keep_all_mat = False): self.X = np.float32(X) #used in tree.apply function self.y = y self.n = self.X.shape[0] self.similarity_matrix = np.zeros((self.n,self.n)) # True to keep all sim matrices if keep_all_mat: self.co_ocs = [] # create the target vector if needed if not isinstance(self.y, collections.Sequence): self.y_ = np.random.choice(self.y, size = (self.n,)) else: self.y_ = self.y t0 = time() for repet_id in range(nb_repet): t = time() print("Fitting - {}/{} iteration".format(repet_id,nb_repet)) # random seed to have changing bootstrapping in forest.fit np.random.seed(repet_id) if randomize: np.random.shuffle(self.y_) self.forest.fit(self.X,self.y_) # check inplace op sim = self.calculate_a_sim_mat() self.similarity_matrix += sim if keep_all_mat: self.co_ocs.append(sim) print("Took {} seconds".format(np.round(time()-t, decimals=2))) print("Total time : {} seconds".format(np.round(time()-t0, decimals=2))) self.similarity_matrix /= nb_repet return (self) def calculate_a_sim_mat(self): co_oc = np.zeros((self.n,self.n)) for iter_, dt in enumerate(self.forest.estimators_): leafs_id = dt.tree_.apply(self.X) ser = pd.DataFrame(data={"ser":leafs_id, "ones":1}) ser = ser.pivot(columns="ser").fillna(0) ser = ser.dot(ser.T) co_oc+= ser.values # pondération par unique n of leaf a reflechir co_oc = co_oc/len(self.forest.estimators_) return (co_oc) # should we return a copy ? def get_similarity_matrix(self): return (self.similarity_matrix) def get_distance_matrix(self): return (np.sqrt(1-self.similarity_matrix)) # use sklearn.manifold.MDS kwags def apply_MDS(self,n_instance=100, dissimilarity = "precomputed",**kwargs): np.random.seed(0) if isinstance(n_instance,int) and 0<n_instance and n_instance<=self.n: idx = np.random.choice(self.n,n_instance,replace=False) elif isinstance(n_instance,float) and 0<n_instance and n_instance<=1: idx = np.random.choice(self.n,int(self.n*n_instance),replace=False) else: warn("invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]") idx = np.arange(self.n) if len(idx) == self.n: print("Computing MDS on all {} instances.".format(self.n)) else: print("Computing MDS on {} / {} instances.".format(len(idx),self.n)) kwargs.update({"dissimilarity":dissimilarity}) if "dissimilarity" not in kwargs.keys(): print("Computing non precomputed MDS - set dissimilarity to precomputed to use the distance matrix") mds = MDS(**kwargs) self.X_mds = mds.fit_transform(self.X[idx,:]) else: print("Computing MDS on precomputed dissimilarities.") mds = MDS(**kwargs) dist_mat_ = self.get_distance_matrix()[idx][:,idx] self.X_mds = mds.fit_transform(dist_mat_) return (self.X_mds) def project_MDS_2D(self, **kwargs): # TODO : add saving options # TODO : add the necessary sampling, then stratified sampling... plt.figure(figsize=(8,8)) sns.scatterplot(x = self.X_mds[:,0], y=self.X_mds[:,1] ) plt.show() def main(): # should be able to take a standard csv file somewhere, apply one of the two methods, and output the sim mat in a csv file print("work in progress") if __name__ == "__main__": main()
[ "pandas.DataFrame", "numpy.random.seed", "matplotlib.pyplot.show", "seaborn.scatterplot", "numpy.float32", "numpy.zeros", "time.time", "matplotlib.pyplot.figure", "numpy.arange", "numpy.random.choice", "warnings.warn", "sklearn.manifold.MDS", "numpy.random.shuffle", "numpy.sqrt" ]
[((405, 418), 'numpy.float32', 'np.float32', (['X'], {}), '(X)\n', (415, 418), True, 'import numpy as np\n'), ((515, 541), 'numpy.zeros', 'np.zeros', (['(self.n, self.n)'], {}), '((self.n, self.n))\n', (523, 541), True, 'import numpy as np\n'), ((796, 802), 'time.time', 'time', ([], {}), '()\n', (800, 802), False, 'from time import time\n'), ((1470, 1496), 'numpy.zeros', 'np.zeros', (['(self.n, self.n)'], {}), '((self.n, self.n))\n', (1478, 1496), True, 'import numpy as np\n'), ((2006, 2041), 'numpy.sqrt', 'np.sqrt', (['(1 - self.similarity_matrix)'], {}), '(1 - self.similarity_matrix)\n', (2013, 2041), True, 'import numpy as np\n'), ((2155, 2172), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2169, 2172), True, 'import numpy as np\n'), ((3349, 3375), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (3359, 3375), True, 'import matplotlib.pyplot as plt\n'), ((3377, 3432), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'self.X_mds[:, 0]', 'y': 'self.X_mds[:, 1]'}), '(x=self.X_mds[:, 0], y=self.X_mds[:, 1])\n', (3392, 3432), True, 'import seaborn as sns\n'), ((3442, 3452), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3450, 3452), True, 'import matplotlib.pyplot as plt\n'), ((718, 758), 'numpy.random.choice', 'np.random.choice', (['self.y'], {'size': '(self.n,)'}), '(self.y, size=(self.n,))\n', (734, 758), True, 'import numpy as np\n'), ((845, 851), 'time.time', 'time', ([], {}), '()\n', (849, 851), False, 'from time import time\n'), ((982, 1006), 'numpy.random.seed', 'np.random.seed', (['repet_id'], {}), '(repet_id)\n', (996, 1006), True, 'import numpy as np\n'), ((1604, 1651), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'ser': leafs_id, 'ones': 1}"}), "(data={'ser': leafs_id, 'ones': 1})\n", (1616, 1651), True, 'import pandas as pd\n'), ((2255, 2306), 'numpy.random.choice', 'np.random.choice', (['self.n', 'n_instance'], {'replace': '(False)'}), '(self.n, n_instance, replace=False)\n', (2271, 2306), True, 'import numpy as np\n'), ((2935, 2948), 'sklearn.manifold.MDS', 'MDS', ([], {}), '(**kwargs)\n', (2938, 2948), False, 'from sklearn.manifold import MDS\n'), ((3073, 3086), 'sklearn.manifold.MDS', 'MDS', ([], {}), '(**kwargs)\n', (3076, 3086), False, 'from sklearn.manifold import MDS\n'), ((1028, 1054), 'numpy.random.shuffle', 'np.random.shuffle', (['self.y_'], {}), '(self.y_)\n', (1045, 1054), True, 'import numpy as np\n'), ((2459, 2533), 'warnings.warn', 'warn', (['"""invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]"""'], {}), "('invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]')\n", (2463, 2533), False, 'from warnings import warn\n'), ((2543, 2560), 'numpy.arange', 'np.arange', (['self.n'], {}), '(self.n)\n', (2552, 2560), True, 'import numpy as np\n'), ((1345, 1351), 'time.time', 'time', ([], {}), '()\n', (1349, 1351), False, 'from time import time\n'), ((1271, 1277), 'time.time', 'time', ([], {}), '()\n', (1275, 1277), False, 'from time import time\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """CNN_using_persistence_images_on_patch.py The aim of this script is to perform the training of a CNN using persistence images as a input. This script is inspired from this script: BorgwardtLab/ADNI_MRI_Analysis/blob/mixed_CNN/mixed_CNN/run_Sarah.py To get real time information into the model training and structure, run $ tensorboard --logdir logs/fit once this script has been started. NOTES: - One loaded, the "big" 100x100x3 images aren't that big (>400MB in RAM) so NO GENERATOR NEEDED """ __author__ = "<NAME>" __email__ = "<EMAIL>" import dotenv import datetime import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import numpy as np import pandas as pd from tqdm import tqdm import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from itertools import islice import shutil print(tf.test.gpu_device_name()) DOTENV_KEY2VAL = dotenv.dotenv_values() tf.random.set_seed(42) N_BINS = 1000 N_FILTERS = 4 KERNEL_SIZE = 4 DROPOUT_RATE = 0.3 ################################################################################ # Functions ################################################################################ persistence_image_location = ( DOTENV_KEY2VAL["DATA_DIR"] + "/global_persistence_images/" ) partitions_location = DOTENV_KEY2VAL["DATA_DIR"] + "/partitions/" diagnosis_json = ( DOTENV_KEY2VAL["DATA_DIR"] + "/collected_diagnoses_complete.json" ) def make_model(input_shape): """Makes a keras model. Args: input_shape (tuple): input shape of the neural network num_classes (int): number of classes involved Returns: keral.Model: model ready to be trained """ inputs = keras.Input(shape=input_shape) tower_1 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 0:1]) tower_1 = layers.BatchNormalization()(tower_1) tower_1 = layers.MaxPooling2D()(tower_1) tower_2 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 1:2]) tower_2 = layers.BatchNormalization()(tower_2) tower_2 = layers.MaxPooling2D()(tower_2) tower_3 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 2:]) tower_3 = layers.BatchNormalization()(tower_3) tower_3 = layers.MaxPooling2D()(tower_3) merged = layers.concatenate([tower_1, tower_2, tower_3], axis=1) merged = layers.Flatten()(merged) x = layers.Dense(500, activation="relu")(merged) x = layers.Dropout(DROPOUT_RATE)(x) x = layers.Dense(500, activation="relu")(merged) x = layers.Dropout(DROPOUT_RATE)(x) outputs = layers.Dense(1, activation="sigmoid")(x) return keras.Model(inputs, outputs) def get_partitions(partitions_location): partition = [] labels = [] for root, dirs, files in os.walk(partitions_location): for file in files: if file.split("_")[0] == "partition": partition.append( np.load( partitions_location + file, allow_pickle=True ).item() ) elif file.split("_")[0] == "labels": labels.append( np.load( partitions_location + file, allow_pickle=True ).item() ) else: print(f"File {file} is neither partition nor labels file") return partition, labels ################################################################################ # Main ################################################################################ def main(): ############################################################################ # Data loading and processing ############################################################################ inits = 3 partitions, labels = get_partitions(partitions_location) histories = [] for partition, label in zip(partitions, labels): for i in range(inits): # Make sure there aren't the same patients in train and test X_train_lst = [] y_train_lst = [] for image in tqdm(partition["train"]): X_train_lst.append( np.load(persistence_image_location + image + ".npy") ) y_train_lst.append(label[image]) X_train, y_train = ( np.stack(X_train_lst, axis=0).reshape( len(X_train_lst), N_BINS, N_BINS, 3 ), np.vstack(y_train_lst), ) print("Training data loadede") X_val_lst = [] y_val_lst = [] for image in tqdm(partition["validation"]): X_val_lst.append( np.load(persistence_image_location + image + ".npy") ) y_val_lst.append(label[image]) X_val, y_val = ( np.stack(X_val_lst, axis=0).reshape( len(X_val_lst), N_BINS, N_BINS, 3 ), np.vstack(y_val_lst), ) print("Validation data loadede") #################################################################### # Model definition #################################################################### model = make_model(input_shape=(N_BINS, N_BINS, 3)) tf.keras.utils.plot_model( model, to_file="model.png", show_shapes=True, show_layer_names=True, rankdir="TB", expand_nested=True, dpi=96, ) #################################################################### # Model training #################################################################### epochs = 100 tensorboard_logs = "logs/fit" if os.path.exists(tensorboard_logs): shutil.rmtree(tensorboard_logs) log_dir = "logs/fit/" + datetime.datetime.now().strftime( "%Y%m%d-%H%M%S" ) callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1 ), tf.keras.callbacks.EarlyStopping( monitor="val_accuracy", min_delta=0.001, patience=10, verbose=0, mode="auto", baseline=None, restore_best_weights=True, ), tf.keras.callbacks.ModelCheckpoint( filepath="model_weights", save_weights_only=True, monitor="val_accuracy", mode="max", save_best_only=True, ), ] lr = keras.optimizers.schedules.ExponentialDecay( 0.01, decay_steps=30, decay_rate=0.6, staircase=True ) model.compile( optimizer=keras.optimizers.Adam( learning_rate=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False, ), loss="binary_crossentropy", metrics=[ keras.metrics.BinaryAccuracy(name="accuracy"), keras.metrics.Precision(name="precision"), keras.metrics.Recall(name="recall"), keras.metrics.AUC(name="auc"), ], # run_eagerly=True, ) history = model.fit( X_train, y_train, epochs=epochs, callbacks=callbacks, batch_size=16, validation_data=(X_val, y_val), ) histories.append(history) ############################################################################ # Model evaluation ############################################################################ # Mosly already included into the training procedure. last_acc = [] last_val_acc = [] last_val_prec = [] last_val_rec = [] last_val_auc = [] for hist in histories: last_acc.append(max(hist.history["accuracy"])) last_val_acc.append(max(hist.history["val_accuracy"])) last_val_prec.append(max(hist.history["val_precision"])) last_val_rec.append(max(hist.history["val_recall"])) last_val_auc.append(max(hist.history["val_auc"])) print( f"The mean training accuracy over the folds is {np.mean(last_acc)}, pm {np.std(last_acc)}" ) print( f"The mean validation accuracy over the folds is {np.mean(last_val_acc)}, pm {np.std(last_val_acc)}" ) print( f"The mean validation precision over the folds is {np.mean(last_val_prec)}, pm {np.std(last_val_prec)}" ) print( f"The mean validation recall over the folds is {np.mean(last_val_rec)}, pm {np.std(last_val_rec)}" ) print( f"The mean validation auc over the folds is {np.mean(last_val_auc)}, pm {np.std(last_val_auc)}" ) ############################################################################ # Model evaluation ############################################################################ # Here we actually extract the id of the samples that are misclassified # y_pred = model.predict(X_train) # difference = np.round(y_train - y_pred) # index = np.nonzero(difference) # y_pred = model.predict(X_val) # difference = np.round(y_val - y_pred) # index_2 = np.nonzero(difference) # df_misclassified_train = pd.DataFrame( # np.array(partitions[0]["train"])[index[0]] # ) # df_misclassified_val = pd.DataFrame( # np.array(partitions[0]["validation"])[index_2[0]] # ) # df_misclassified = pd.concat( # [df_misclassified_train, df_misclassified_val] # ) # df_misclassified.to_csv( # DOTENV_KEY2VAL["GEN_DATA_DIR"] + "misclassification.csv" # ) if __name__ == "__main__": main()
[ "tensorflow.random.set_seed", "numpy.load", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Dense", "os.walk", "tensorflow.keras.callbacks.ModelCheckpoint", "tensorflow.keras.layers.concatenate", "numpy.mean", "tensorflow.keras.metrics.BinaryAccuracy", "shutil.rmtree", "tensorflow.keras.callbacks.EarlyStopping", "tensorflow.keras.layers.Flatten", "tensorflow.keras.layers.BatchNormalization", "numpy.std", "tensorflow.keras.Input", "os.path.exists", "tensorflow.keras.utils.plot_model", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.metrics.Precision", "dotenv.dotenv_values", "datetime.datetime.now", "numpy.stack", "tqdm.tqdm", "tensorflow.keras.metrics.AUC", "tensorflow.keras.layers.Dropout", "tensorflow.keras.Model", "tensorflow.test.gpu_device_name", "tensorflow.keras.optimizers.schedules.ExponentialDecay", "numpy.vstack", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.metrics.Recall", "tensorflow.keras.callbacks.TensorBoard" ]
[((934, 956), 'dotenv.dotenv_values', 'dotenv.dotenv_values', ([], {}), '()\n', (954, 956), False, 'import dotenv\n'), ((957, 979), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['(42)'], {}), '(42)\n', (975, 979), True, 'import tensorflow as tf\n'), ((889, 914), 'tensorflow.test.gpu_device_name', 'tf.test.gpu_device_name', ([], {}), '()\n', (912, 914), True, 'import tensorflow as tf\n'), ((1742, 1772), 'tensorflow.keras.Input', 'keras.Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (1753, 1772), False, 'from tensorflow import keras\n'), ((2446, 2501), 'tensorflow.keras.layers.concatenate', 'layers.concatenate', (['[tower_1, tower_2, tower_3]'], {'axis': '(1)'}), '([tower_1, tower_2, tower_3], axis=1)\n', (2464, 2501), False, 'from tensorflow.keras import layers\n'), ((2792, 2820), 'tensorflow.keras.Model', 'keras.Model', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (2803, 2820), False, 'from tensorflow import keras\n'), ((2928, 2956), 'os.walk', 'os.walk', (['partitions_location'], {}), '(partitions_location)\n', (2935, 2956), False, 'import os\n'), ((1788, 1860), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (1801, 1860), False, 'from tensorflow.keras import layers\n'), ((1911, 1938), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (1936, 1938), False, 'from tensorflow.keras import layers\n'), ((1962, 1983), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (1981, 1983), False, 'from tensorflow.keras import layers\n'), ((2008, 2080), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (2021, 2080), False, 'from tensorflow.keras import layers\n'), ((2131, 2158), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (2156, 2158), False, 'from tensorflow.keras import layers\n'), ((2182, 2203), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (2201, 2203), False, 'from tensorflow.keras import layers\n'), ((2228, 2300), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (2241, 2300), False, 'from tensorflow.keras import layers\n'), ((2350, 2377), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (2375, 2377), False, 'from tensorflow.keras import layers\n'), ((2401, 2422), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (2420, 2422), False, 'from tensorflow.keras import layers\n'), ((2515, 2531), 'tensorflow.keras.layers.Flatten', 'layers.Flatten', ([], {}), '()\n', (2529, 2531), False, 'from tensorflow.keras import layers\n'), ((2548, 2584), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(500)'], {'activation': '"""relu"""'}), "(500, activation='relu')\n", (2560, 2584), False, 'from tensorflow.keras import layers\n'), ((2601, 2629), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['DROPOUT_RATE'], {}), '(DROPOUT_RATE)\n', (2615, 2629), False, 'from tensorflow.keras import layers\n'), ((2641, 2677), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(500)'], {'activation': '"""relu"""'}), "(500, activation='relu')\n", (2653, 2677), False, 'from tensorflow.keras import layers\n'), ((2694, 2722), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['DROPOUT_RATE'], {}), '(DROPOUT_RATE)\n', (2708, 2722), False, 'from tensorflow.keras import layers\n'), ((2740, 2777), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (2752, 2777), False, 'from tensorflow.keras import layers\n'), ((4278, 4302), 'tqdm.tqdm', 'tqdm', (["partition['train']"], {}), "(partition['train'])\n", (4282, 4302), False, 'from tqdm import tqdm\n'), ((4844, 4873), 'tqdm.tqdm', 'tqdm', (["partition['validation']"], {}), "(partition['validation'])\n", (4848, 4873), False, 'from tqdm import tqdm\n'), ((5595, 5735), 'tensorflow.keras.utils.plot_model', 'tf.keras.utils.plot_model', (['model'], {'to_file': '"""model.png"""', 'show_shapes': '(True)', 'show_layer_names': '(True)', 'rankdir': '"""TB"""', 'expand_nested': '(True)', 'dpi': '(96)'}), "(model, to_file='model.png', show_shapes=True,\n show_layer_names=True, rankdir='TB', expand_nested=True, dpi=96)\n", (5620, 5735), True, 'import tensorflow as tf\n'), ((6136, 6168), 'os.path.exists', 'os.path.exists', (['tensorboard_logs'], {}), '(tensorboard_logs)\n', (6150, 6168), False, 'import os\n'), ((7120, 7221), 'tensorflow.keras.optimizers.schedules.ExponentialDecay', 'keras.optimizers.schedules.ExponentialDecay', (['(0.01)'], {'decay_steps': '(30)', 'decay_rate': '(0.6)', 'staircase': '(True)'}), '(0.01, decay_steps=30,\n decay_rate=0.6, staircase=True)\n', (7163, 7221), False, 'from tensorflow import keras\n'), ((6186, 6217), 'shutil.rmtree', 'shutil.rmtree', (['tensorboard_logs'], {}), '(tensorboard_logs)\n', (6199, 6217), False, 'import shutil\n'), ((6377, 6442), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'log_dir', 'histogram_freq': '(1)'}), '(log_dir=log_dir, histogram_freq=1)\n', (6407, 6442), True, 'import tensorflow as tf\n'), ((6498, 6658), 'tensorflow.keras.callbacks.EarlyStopping', 'tf.keras.callbacks.EarlyStopping', ([], {'monitor': '"""val_accuracy"""', 'min_delta': '(0.001)', 'patience': '(10)', 'verbose': '(0)', 'mode': '"""auto"""', 'baseline': 'None', 'restore_best_weights': '(True)'}), "(monitor='val_accuracy', min_delta=0.001,\n patience=10, verbose=0, mode='auto', baseline=None,\n restore_best_weights=True)\n", (6530, 6658), True, 'import tensorflow as tf\n'), ((6827, 6976), 'tensorflow.keras.callbacks.ModelCheckpoint', 'tf.keras.callbacks.ModelCheckpoint', ([], {'filepath': '"""model_weights"""', 'save_weights_only': '(True)', 'monitor': '"""val_accuracy"""', 'mode': '"""max"""', 'save_best_only': '(True)'}), "(filepath='model_weights',\n save_weights_only=True, monitor='val_accuracy', mode='max',\n save_best_only=True)\n", (6861, 6976), True, 'import tensorflow as tf\n'), ((8923, 8940), 'numpy.mean', 'np.mean', (['last_acc'], {}), '(last_acc)\n', (8930, 8940), True, 'import numpy as np\n'), ((8947, 8963), 'numpy.std', 'np.std', (['last_acc'], {}), '(last_acc)\n', (8953, 8963), True, 'import numpy as np\n'), ((9041, 9062), 'numpy.mean', 'np.mean', (['last_val_acc'], {}), '(last_val_acc)\n', (9048, 9062), True, 'import numpy as np\n'), ((9069, 9089), 'numpy.std', 'np.std', (['last_val_acc'], {}), '(last_val_acc)\n', (9075, 9089), True, 'import numpy as np\n'), ((9168, 9190), 'numpy.mean', 'np.mean', (['last_val_prec'], {}), '(last_val_prec)\n', (9175, 9190), True, 'import numpy as np\n'), ((9197, 9218), 'numpy.std', 'np.std', (['last_val_prec'], {}), '(last_val_prec)\n', (9203, 9218), True, 'import numpy as np\n'), ((9294, 9315), 'numpy.mean', 'np.mean', (['last_val_rec'], {}), '(last_val_rec)\n', (9301, 9315), True, 'import numpy as np\n'), ((9322, 9342), 'numpy.std', 'np.std', (['last_val_rec'], {}), '(last_val_rec)\n', (9328, 9342), True, 'import numpy as np\n'), ((9415, 9436), 'numpy.mean', 'np.mean', (['last_val_auc'], {}), '(last_val_auc)\n', (9422, 9436), True, 'import numpy as np\n'), ((9443, 9463), 'numpy.std', 'np.std', (['last_val_auc'], {}), '(last_val_auc)\n', (9449, 9463), True, 'import numpy as np\n'), ((4360, 4412), 'numpy.load', 'np.load', (["(persistence_image_location + image + '.npy')"], {}), "(persistence_image_location + image + '.npy')\n", (4367, 4412), True, 'import numpy as np\n'), ((4680, 4702), 'numpy.vstack', 'np.vstack', (['y_train_lst'], {}), '(y_train_lst)\n', (4689, 4702), True, 'import numpy as np\n'), ((4929, 4981), 'numpy.load', 'np.load', (["(persistence_image_location + image + '.npy')"], {}), "(persistence_image_location + image + '.npy')\n", (4936, 4981), True, 'import numpy as np\n'), ((5239, 5259), 'numpy.vstack', 'np.vstack', (['y_val_lst'], {}), '(y_val_lst)\n', (5248, 5259), True, 'import numpy as np\n'), ((7301, 7401), 'tensorflow.keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': '(1e-07)', 'amsgrad': '(False)'}), '(learning_rate=lr, beta_1=0.9, beta_2=0.999, epsilon=\n 1e-07, amsgrad=False)\n', (7322, 7401), False, 'from tensorflow import keras\n'), ((6255, 6278), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6276, 6278), False, 'import datetime\n'), ((7607, 7652), 'tensorflow.keras.metrics.BinaryAccuracy', 'keras.metrics.BinaryAccuracy', ([], {'name': '"""accuracy"""'}), "(name='accuracy')\n", (7635, 7652), False, 'from tensorflow import keras\n'), ((7674, 7715), 'tensorflow.keras.metrics.Precision', 'keras.metrics.Precision', ([], {'name': '"""precision"""'}), "(name='precision')\n", (7697, 7715), False, 'from tensorflow import keras\n'), ((7737, 7772), 'tensorflow.keras.metrics.Recall', 'keras.metrics.Recall', ([], {'name': '"""recall"""'}), "(name='recall')\n", (7757, 7772), False, 'from tensorflow import keras\n'), ((7794, 7823), 'tensorflow.keras.metrics.AUC', 'keras.metrics.AUC', ([], {'name': '"""auc"""'}), "(name='auc')\n", (7811, 7823), False, 'from tensorflow import keras\n'), ((3089, 3143), 'numpy.load', 'np.load', (['(partitions_location + file)'], {'allow_pickle': '(True)'}), '(partitions_location + file, allow_pickle=True)\n', (3096, 3143), True, 'import numpy as np\n'), ((4538, 4567), 'numpy.stack', 'np.stack', (['X_train_lst'], {'axis': '(0)'}), '(X_train_lst, axis=0)\n', (4546, 4567), True, 'import numpy as np\n'), ((5101, 5128), 'numpy.stack', 'np.stack', (['X_val_lst'], {'axis': '(0)'}), '(X_val_lst, axis=0)\n', (5109, 5128), True, 'import numpy as np\n'), ((3315, 3369), 'numpy.load', 'np.load', (['(partitions_location + file)'], {'allow_pickle': '(True)'}), '(partitions_location + file, allow_pickle=True)\n', (3322, 3369), True, 'import numpy as np\n')]
"""A simple, 2D peridynamics simulation example.""" import argparse import cProfile from io import StringIO import numpy as np import pathlib from peridynamics import Model from peridynamics.model import initial_crack_helper from peridynamics.integrators import Euler from pstats import SortKey, Stats mesh_file = pathlib.Path(__file__).parent.absolute() / "test.msh" @initial_crack_helper def is_crack(x, y): """Determine whether a pair of particles define the crack.""" output = 0 crack_length = 0.3 p1 = x p2 = y if x[0] > y[0]: p2 = x p1 = y # 1e-6 makes it fall one side of central line of particles if p1[0] < 0.5 + 1e-6 and p2[0] > 0.5 + 1e-6: # draw a straight line between them m = (p2[1] - p1[1]) / (p2[0] - p1[0]) c = p1[1] - m * p1[0] # height a x = 0.5 height = m * 0.5 + c if (height > 0.5 * (1 - crack_length) and height < 0.5 * (1 + crack_length)): output = 1 return output def boundary_function(model, u, step): """ Apply a load to the system. Particles on each of the sides of the system are pulled apart with increasing time step. """ load_rate = 0.00001 u[model.lhs, 1:3] = np.zeros((len(model.lhs), 2)) u[model.rhs, 1:3] = np.zeros((len(model.rhs), 2)) u[model.lhs, 0] = ( -0.5 * step * load_rate * np.ones(len(model.rhs)) ) u[model.rhs, 0] = ( 0.5 * step * load_rate * np.ones(len(model.rhs)) ) return u def main(): """Conduct a peridynamics simulation.""" parser = argparse.ArgumentParser() parser.add_argument('--profile', action='store_const', const=True) args = parser.parse_args() if args.profile: profile = cProfile.Profile() profile.enable() model = Model(mesh_file, horizon=0.1, critical_strain=0.005, elastic_modulus=0.05, initial_crack=is_crack) # Set left-hand side and right-hand side of boundary indices = np.arange(model.nnodes) model.lhs = indices[model.coords[:, 0] < 1.5*model.horizon] model.rhs = indices[model.coords[:, 0] > 1.0 - 1.5*model.horizon] integrator = Euler(dt=1e-3) u, damage, *_ = model.simulate( steps=100, integrator=integrator, boundary_function=boundary_function, write=1000 ) if args.profile: profile.disable() s = StringIO() stats = Stats(profile, stream=s).sort_stats(SortKey.CUMULATIVE) stats.print_stats() print(s.getvalue()) if __name__ == "__main__": main()
[ "io.StringIO", "argparse.ArgumentParser", "peridynamics.Model", "pstats.Stats", "cProfile.Profile", "pathlib.Path", "numpy.arange", "peridynamics.integrators.Euler" ]
[((1611, 1636), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1634, 1636), False, 'import argparse\n'), ((1836, 1938), 'peridynamics.Model', 'Model', (['mesh_file'], {'horizon': '(0.1)', 'critical_strain': '(0.005)', 'elastic_modulus': '(0.05)', 'initial_crack': 'is_crack'}), '(mesh_file, horizon=0.1, critical_strain=0.005, elastic_modulus=0.05,\n initial_crack=is_crack)\n', (1841, 1938), False, 'from peridynamics import Model\n'), ((2025, 2048), 'numpy.arange', 'np.arange', (['model.nnodes'], {}), '(model.nnodes)\n', (2034, 2048), True, 'import numpy as np\n'), ((2201, 2216), 'peridynamics.integrators.Euler', 'Euler', ([], {'dt': '(0.001)'}), '(dt=0.001)\n', (2206, 2216), False, 'from peridynamics.integrators import Euler\n'), ((1779, 1797), 'cProfile.Profile', 'cProfile.Profile', ([], {}), '()\n', (1795, 1797), False, 'import cProfile\n'), ((2437, 2447), 'io.StringIO', 'StringIO', ([], {}), '()\n', (2445, 2447), False, 'from io import StringIO\n'), ((315, 337), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (327, 337), False, 'import pathlib\n'), ((2464, 2488), 'pstats.Stats', 'Stats', (['profile'], {'stream': 's'}), '(profile, stream=s)\n', (2469, 2488), False, 'from pstats import SortKey, Stats\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/tslasso.main.ipynb (unless otherwise specified). __all__ = ['run_exp'] # Cell from ..atomgeom.features import get_features,get_D_feats_feats from ..atomgeom.utils import get_atoms_4 from ..simulations.rigidethanol import get_rigid_ethanol_data from ..utils.utils import get_234_indices, get_atoms3_full, get_atoms4_full, data_stream_custom_range, get_cosines from ..geometry.geometry import get_geom, get_wlpca_tangent_sel, get_rm_tangent_sel from ..statistics.normalization import normalize_L212 from ..optimization.gradientgrouplasso import get_sr_lambda_parallel from ..optimization.utils import get_selected_function_ids,get_selected_functions_lm2 from ..utils.replicates import Replicate, get_supports_brute_tslasso,get_supports_lasso from megaman.embedding import SpectralEmbedding import dill as pickle import os import sys import numpy as np import itertools from itertools import permutations,combinations from sklearn.decomposition import TruncatedSVD import pathos from pathos.multiprocessing import ProcessingPool as Pool # Cell def run_exp(positions, hparams): d = hparams.d n_components = hparams.n_components atoms2_feat = hparams.atoms2_feat atoms3_feat = hparams.atoms3_feat atoms4_feat = hparams.atoms4_feat atoms2_dict = hparams.atoms2_dict atoms3_dict = hparams.atoms3_dict atoms4_dict = hparams.atoms4_dict diagram = hparams.diagram ii = np.asarray(hparams.ii) jj = np.asarray(hparams.jj) outfile = hparams.outdir + '/' + hparams.name + 'results_tslasso' #load geometric features natoms = positions.shape[1] n = positions.shape[0] atoms2 = np.asarray(list(itertools.combinations(range(natoms), 2))) atoms2full = atoms2 atoms3 = np.asarray(list(itertools.combinations(range(natoms), 3))) atoms4 = np.asarray(list(itertools.combinations(range(natoms), 4))) atoms3full = get_atoms3_full(atoms3) atoms4full = get_atoms4_full(atoms4) if atoms2_feat: atoms2_feats = atoms2full else: atoms2_feats = np.asarray([]) if atoms3_feat: atoms3_feats = atoms3full else: atoms3_feats = np.asarray([]) if atoms4_feat: atoms4_feats = atoms4full else: atoms4_feats = np.asarray([]) #compute rotation/translation invariant featureization cores = pathos.multiprocessing.cpu_count() - 1 pool = Pool(cores) print('feature dimensions',atoms2_feats.shape, atoms3_feats.shape,atoms4_feats.shape) #import pdb;pdb.set_trace results = pool.map(lambda i: get_features(positions[i], atoms2 = atoms2_feats, atoms3 = atoms3_feats, atoms4 = atoms4_feats), data_stream_custom_range(list(range(n)))) data = np.vstack([np.hstack(results[i]) for i in range(n)]) data = data - np.mean(data, axis = 0) #apply SVD svd = TruncatedSVD(n_components=50) data_svd = svd.fit_transform(data) #compute geometry radius = hparams.radius n_neighbors = hparams.n_neighbors geom = get_geom(data_svd, radius, n_neighbors) print('computing embedding (for comparison)') spectral_embedding = SpectralEmbedding(n_components=n_components,eigen_solver='arpack',geom=geom) embed_spectral = spectral_embedding.fit_transform(data_svd) embedding = embed_spectral #obtain gradients if atoms2_dict: atoms2_dicts = atoms2full else: atoms2_dicts = np.asarray([]) if atoms3_dict: atoms3_dicts = atoms3full else: atoms3_dicts = np.asarray([]) if atoms4_dict and not diagram: atoms4_dicts = atoms4full elif atoms4_dict: atoms4_dicts= get_atoms_4(natoms, ii, jj)[0] else: atoms4_dicts = np.asarray([]) p = len(atoms2_dicts) + len(atoms3_dicts) + len(atoms4_dicts) #get gradients replicates = {} nreps = hparams.nreps nsel = hparams.nsel for r in range(nreps): #print(i) replicates[r] = Replicate(nsel = nsel, n = 10000) replicates[r].tangent_bases_M = get_wlpca_tangent_sel(data_svd, geom, replicates[r].selected_points, d) D_feats_feats = np.asarray([get_D_feats_feats(positions[replicates[r].selected_points[i]], atoms2in = atoms2_feats, atoms3in = atoms3_feats, atoms4in = atoms4_feats, atoms2out = atoms2_dicts, atoms3out = atoms3_dicts, atoms4out = atoms4_dicts) for i in range(nsel)]) replicates[r].dg_x = np.asarray([svd.transform(D_feats_feats[i].transpose()).transpose() for i in range(nsel)]) replicates[r].dg_x_normalized = normalize_L212(replicates[r].dg_x) replicates[r].dg_M = np.einsum('i b p, i b d -> i d p', replicates[r].dg_x_normalized, replicates[r].tangent_bases_M) #run ts lasso gl_itermax= hparams.gl_itermax reg_l2 = hparams.reg_l2 max_search = hparams.max_search d = hparams.d tol = hparams.tol learning_rate = hparams.learning_rate for r in range(nreps): replicates[r].results = get_sr_lambda_parallel(np.asarray([np.identity(d) for i in range(nsel)]), replicates[r].dg_M, gl_itermax,reg_l2, max_search, d, tol,learning_rate) replicates[r].get_ordered_axes() replicates[r].sel_l = replicates[r].get_selection_lambda() #get manifold lasso support selected_functions_unique = np.asarray(np.unique(get_selected_function_ids(replicates,d)), dtype = int) support_tensor_lasso, supports_lasso = get_supports_lasso(replicates,p,d) #get two stage support selected_functions_lm2 = get_selected_functions_lm2(replicates) support_tensor_ts, supports_ts = get_supports_brute_tslasso(replicates,nreps,p,d,selected_functions_lm2) selected_functions_unique_twostage = np.asarray(np.unique(supports_ts), dtype = int)#np.unique(np.asarray(np.where(support_tensor_ts > 0.)[0], dtype = int)) pool.close() pool.restart() #compute function values for plotting... needs 'order234' for full computation print('computing selected function values lasso, ' + str(selected_functions_unique)) selected_function_values = pool.map( lambda i: get_features(positions[i], atoms2 = np.asarray([]), atoms3 = np.asarray([]), atoms4 = atoms4_dicts[selected_functions_unique]), data_stream_custom_range(list(range(n)))) selected_function_values_array = np.vstack([np.hstack(selected_function_values[i]) for i in range(n)]) print('computing selected function values two stage, ' + str(selected_functions_unique_twostage)) selected_function_values_brute = pool.map( lambda i: get_features(positions[i], atoms2 = np.asarray([]), atoms3 = np.asarray([]), atoms4 = atoms4_dicts[selected_functions_unique_twostage]), data_stream_custom_range(list(range(n)))) selected_function_values_array_brute = np.vstack([np.hstack(selected_function_values_brute[i]) for i in range(n)]) #remove large gradient arrays print('prep save') replicates_small = {} for r in range(nreps): replicates_small[r] = Replicate(nsel=nsel, n=n, selected_points=replicates[r].selected_points) replicates_small[r].dg_M = replicates[r].dg_M replicates_small[r].cs_reorder = replicates[r].cs_reorder replicates_small[r].xaxis_reorder = replicates[r].xaxis_reorder print('getting cosines') cosine = get_cosines(replicates[0].dg_M) replicates_small[0].cosine_abs = np.mean(np.abs(cosine), axis = 0) #prepare to save results = {} results['replicates_small'] = replicates_small results['data'] = data_svd results['embed'] = embedding results['supports_ts'] = support_tensor_ts, supports_ts results['supports_lasso'] = support_tensor_lasso, supports_lasso results['supports_lasso_values'] = selected_function_values results['supports_ts_values'] = selected_function_values_brute results['selected_lasso'] = selected_functions_unique results['selected_ts'] = selected_functions_unique_twostage results['geom'] = geom results['dictionary'] = {} results['dictionary']['atoms2'] = atoms2_dicts results['dictionary']['atoms3'] = atoms3_dicts results['dictionary']['atoms4'] = atoms4_dicts #save with open(outfile,'wb') as output: pickle.dump(results, output, pickle.HIGHEST_PROTOCOL)
[ "numpy.abs", "pathos.multiprocessing.cpu_count", "sklearn.decomposition.TruncatedSVD", "numpy.asarray", "numpy.einsum", "numpy.identity", "numpy.hstack", "megaman.embedding.SpectralEmbedding", "numpy.mean", "dill.dump", "pathos.multiprocessing.ProcessingPool", "numpy.unique" ]
[((1456, 1478), 'numpy.asarray', 'np.asarray', (['hparams.ii'], {}), '(hparams.ii)\n', (1466, 1478), True, 'import numpy as np\n'), ((1488, 1510), 'numpy.asarray', 'np.asarray', (['hparams.jj'], {}), '(hparams.jj)\n', (1498, 1510), True, 'import numpy as np\n'), ((2422, 2433), 'pathos.multiprocessing.ProcessingPool', 'Pool', (['cores'], {}), '(cores)\n', (2426, 2433), True, 'from pathos.multiprocessing import ProcessingPool as Pool\n'), ((2959, 2988), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': '(50)'}), '(n_components=50)\n', (2971, 2988), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((3245, 3323), 'megaman.embedding.SpectralEmbedding', 'SpectralEmbedding', ([], {'n_components': 'n_components', 'eigen_solver': '"""arpack"""', 'geom': 'geom'}), "(n_components=n_components, eigen_solver='arpack', geom=geom)\n", (3262, 3323), False, 'from megaman.embedding import SpectralEmbedding\n'), ((2079, 2093), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2089, 2093), True, 'import numpy as np\n'), ((2182, 2196), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2192, 2196), True, 'import numpy as np\n'), ((2285, 2299), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2295, 2299), True, 'import numpy as np\n'), ((2372, 2406), 'pathos.multiprocessing.cpu_count', 'pathos.multiprocessing.cpu_count', ([], {}), '()\n', (2404, 2406), False, 'import pathos\n'), ((2909, 2930), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (2916, 2930), True, 'import numpy as np\n'), ((3527, 3541), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3537, 3541), True, 'import numpy as np\n'), ((3629, 3643), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3639, 3643), True, 'import numpy as np\n'), ((4821, 4921), 'numpy.einsum', 'np.einsum', (['"""i b p, i b d -> i d p"""', 'replicates[r].dg_x_normalized', 'replicates[r].tangent_bases_M'], {}), "('i b p, i b d -> i d p', replicates[r].dg_x_normalized,\n replicates[r].tangent_bases_M)\n", (4830, 4921), True, 'import numpy as np\n'), ((5911, 5933), 'numpy.unique', 'np.unique', (['supports_ts'], {}), '(supports_ts)\n', (5920, 5933), True, 'import numpy as np\n'), ((7922, 7936), 'numpy.abs', 'np.abs', (['cosine'], {}), '(cosine)\n', (7928, 7936), True, 'import numpy as np\n'), ((8753, 8806), 'dill.dump', 'pickle.dump', (['results', 'output', 'pickle.HIGHEST_PROTOCOL'], {}), '(results, output, pickle.HIGHEST_PROTOCOL)\n', (8764, 8806), True, 'import dill as pickle\n'), ((2849, 2870), 'numpy.hstack', 'np.hstack', (['results[i]'], {}), '(results[i])\n', (2858, 2870), True, 'import numpy as np\n'), ((3822, 3836), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3832, 3836), True, 'import numpy as np\n'), ((6669, 6707), 'numpy.hstack', 'np.hstack', (['selected_function_values[i]'], {}), '(selected_function_values[i])\n', (6678, 6707), True, 'import numpy as np\n'), ((7291, 7335), 'numpy.hstack', 'np.hstack', (['selected_function_values_brute[i]'], {}), '(selected_function_values_brute[i])\n', (7300, 7335), True, 'import numpy as np\n'), ((5213, 5227), 'numpy.identity', 'np.identity', (['d'], {}), '(d)\n', (5224, 5227), True, 'import numpy as np\n'), ((6380, 6394), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6390, 6394), True, 'import numpy as np\n'), ((6448, 6462), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6458, 6462), True, 'import numpy as np\n'), ((6987, 7001), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6997, 7001), True, 'import numpy as np\n'), ((7055, 7069), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (7065, 7069), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import pandas as pd from pyGDM2 import (structures, materials, core, linear, fields, propagators, tools) def get_spectrum(geometry, step, wavelengths): '''Obtains a uv-vis spectra for a specified geometry''' material = materials.gold() struct = structures.struct(step, geometry, material, verbose=False) struct = structures.center_struct(struct) field_generator = fields.plane_wave kwargs = dict(theta=0, inc_angle=180) efield = fields.efield(field_generator, wavelengths=wavelengths, kwargs=kwargs) dyads = propagators.DyadsQuasistatic123(n1 = 1.33, n2 = 1.33, n3 = 1.33) sim = core.simulation(struct, efield, dyads) sim.scatter(verbose=False) field_kwargs = tools.get_possible_field_params_spectra(sim) config_idx = 0 wl, spectrum = tools.calculate_spectrum(sim, field_kwargs[config_idx], linear.extinct) abs_ = spectrum.T[2]/np.max(spectrum.T[2]) return abs_, geometry def obtain_spectra(step, radius_mean, radius_std, wavelength): '''Calculates the absorption spectra of polydisperse gold spheres that have a normally distributed radius. Inputs: - step: The step size used for the calculation. - radius_mean: The mean of the normal distribution used to calculate the radius of the sphere - radius_std: The std of the normal distribution used to calculate the radius of the sphere - wavelength: A 1-d array of the wavelength values to calculate the absorption spectra Outputs: - array: A 2d array of the wavelengths and Intensity values. ''' n_spheres = 7 radius_list = [] for i in range(n_spheres): # Normal distribution parameters for Sphere Radius radius_mean = 6 radius_std = 3 r = (np.random.randn(1)[0]*radius_std + radius_mean)/step radius_list.append(r) geometry = structures.sphere(step, R=r, mesh='cube') loc_array = np.array([[0,0,0],[0,0,1],[0,0,-1],[1,0,0],[-1,0,0],[0,1,0],[0,-1,0]]) sphere = np.hstack((geometry[:,0].reshape(-1,1) + 30*loc_array[i,0]*radius_mean, geometry[:,1].reshape(-1,1) + 30*loc_array[i,1]*radius_mean, geometry[:,2].reshape(-1,1)+ 30*loc_array[i,2]*radius_mean)) if i == 0: sample = sphere else: sample = np.vstack((sample, sphere)) I, g = get_spectrum(geometry, step, wavelength) array = np.hstack((wavelength.reshape(-1,1), I.reshape(-1,1))) return array
[ "numpy.random.randn", "pyGDM2.materials.gold", "pyGDM2.tools.calculate_spectrum", "pyGDM2.structures.center_struct", "pyGDM2.structures.struct", "pyGDM2.core.simulation", "numpy.max", "pyGDM2.structures.sphere", "numpy.array", "pyGDM2.propagators.DyadsQuasistatic123", "pyGDM2.fields.efield", "pyGDM2.tools.get_possible_field_params_spectra", "numpy.vstack" ]
[((322, 338), 'pyGDM2.materials.gold', 'materials.gold', ([], {}), '()\n', (336, 338), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((352, 410), 'pyGDM2.structures.struct', 'structures.struct', (['step', 'geometry', 'material'], {'verbose': '(False)'}), '(step, geometry, material, verbose=False)\n', (369, 410), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((424, 456), 'pyGDM2.structures.center_struct', 'structures.center_struct', (['struct'], {}), '(struct)\n', (448, 456), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((553, 623), 'pyGDM2.fields.efield', 'fields.efield', (['field_generator'], {'wavelengths': 'wavelengths', 'kwargs': 'kwargs'}), '(field_generator, wavelengths=wavelengths, kwargs=kwargs)\n', (566, 623), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((660, 718), 'pyGDM2.propagators.DyadsQuasistatic123', 'propagators.DyadsQuasistatic123', ([], {'n1': '(1.33)', 'n2': '(1.33)', 'n3': '(1.33)'}), '(n1=1.33, n2=1.33, n3=1.33)\n', (691, 718), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((736, 774), 'pyGDM2.core.simulation', 'core.simulation', (['struct', 'efield', 'dyads'], {}), '(struct, efield, dyads)\n', (751, 774), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((825, 869), 'pyGDM2.tools.get_possible_field_params_spectra', 'tools.get_possible_field_params_spectra', (['sim'], {}), '(sim)\n', (864, 869), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((909, 980), 'pyGDM2.tools.calculate_spectrum', 'tools.calculate_spectrum', (['sim', 'field_kwargs[config_idx]', 'linear.extinct'], {}), '(sim, field_kwargs[config_idx], linear.extinct)\n', (933, 980), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((1035, 1056), 'numpy.max', 'np.max', (['spectrum.T[2]'], {}), '(spectrum.T[2])\n', (1041, 1056), True, 'import numpy as np\n'), ((2015, 2056), 'pyGDM2.structures.sphere', 'structures.sphere', (['step'], {'R': 'r', 'mesh': '"""cube"""'}), "(step, R=r, mesh='cube')\n", (2032, 2056), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((2077, 2172), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 1], [0, 0, -1], [1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0]\n ]'], {}), '([[0, 0, 0], [0, 0, 1], [0, 0, -1], [1, 0, 0], [-1, 0, 0], [0, 1, 0\n ], [0, -1, 0]])\n', (2085, 2172), True, 'import numpy as np\n'), ((2441, 2468), 'numpy.vstack', 'np.vstack', (['(sample, sphere)'], {}), '((sample, sphere))\n', (2450, 2468), True, 'import numpy as np\n'), ((1913, 1931), 'numpy.random.randn', 'np.random.randn', (['(1)'], {}), '(1)\n', (1928, 1931), True, 'import numpy as np\n')]
import numpy as np with open("data.txt") as f: draws = np.array([int(d) for d in f.readline().split(",")]) boards = np.array([[[int(n) for n in r.split()] for r in b.split("\n")] for b in f.read()[1:].split("\n\n")]) def bingo(data: np.ndarray, fill: int): """ Returns horizontal (rows) and vertical (columns) bingo. TRUE if bingo. FALSE if not. """ transposed_data = np.transpose(data) return any(np.equal(data, [fill for _ in range(5)]).all(1)) or \ any(np.equal(transposed_data, [fill for _ in range(5)]).all(1)) def one(d_data: np.ndarray, b_data: np.ndarray) -> int: """ To guarantee victory against the giant squid, figure out which board will win first. What will your final score be if you choose that board? """ # If number is drawn, replace with {fill} fill = -1 for draw in d_data: # Replace drawn number by -1 b_data = np.where(b_data == draw, fill, b_data) for board in b_data: if bingo(board, fill): return np.sum(np.where(board == fill, 0, board)) * draw return -1 def two(d_data: np.ndarray, b_data: np.ndarray) -> int: """ Figure out which board will win last. Once it wins, what would its final score be? """ # If number is drawn, replace with {fill} fill = -1 # List of completed bingo boards completed_idx = [] for draw in d_data: # Replace drawn number by -1 b_data = np.where(b_data == draw, fill, b_data) for board, i in zip(b_data, range(len(b_data))): if bingo(board, fill) and i not in completed_idx: completed_idx.append(i) if len(completed_idx) == len(b_data): return np.sum(np.where(board == fill, 0, board)) * draw return -1 print(f"1. {one(draws, boards)}") print(f"2. {two(draws, boards)}")
[ "numpy.where", "numpy.transpose" ]
[((396, 414), 'numpy.transpose', 'np.transpose', (['data'], {}), '(data)\n', (408, 414), True, 'import numpy as np\n'), ((924, 962), 'numpy.where', 'np.where', (['(b_data == draw)', 'fill', 'b_data'], {}), '(b_data == draw, fill, b_data)\n', (932, 962), True, 'import numpy as np\n'), ((1478, 1516), 'numpy.where', 'np.where', (['(b_data == draw)', 'fill', 'b_data'], {}), '(b_data == draw, fill, b_data)\n', (1486, 1516), True, 'import numpy as np\n'), ((1058, 1091), 'numpy.where', 'np.where', (['(board == fill)', '(0)', 'board'], {}), '(board == fill, 0, board)\n', (1066, 1091), True, 'import numpy as np\n'), ((1766, 1799), 'numpy.where', 'np.where', (['(board == fill)', '(0)', 'board'], {}), '(board == fill, 0, board)\n', (1774, 1799), True, 'import numpy as np\n')]
import igraph as ig import numpy as np from scipy.special import betaln g = ig.Graph.Read_GML('karate.txt') X = np.array(g.get_adjacency().data) def irm(X, T, a, b, A, random_seed = 42): N = len(X) z = np.ones([N,1]) Z = [] np.random.seed(random_seed) for t in range(T): # for T iterations for n in range(N): # for each node n #nn = index mask without currently sampled node n nn = [_ for _ in range(N)] nn.remove(n) X_ = X[np.ix_(nn,nn)] #adjacency matrix without currently sampled node # K = n. of components K = len(z[0]) # Delete empty component if present if K > 1: idx = np.argwhere(np.sum(z[nn], 0) == 0) z = np.delete(z, idx, axis=1) K -= len(idx) # m = n. of nodes in each component m = np.sum(z[nn], 0)[np.newaxis] M = np.tile(m, (K, 1)) # M1 = n. of links between components without current node M1 = z[nn].T @ X_ @ z[nn] - np.diag(np.sum(X_@z[nn]*z[nn], 0) / 2) # M0 = n. of non-links between components without current node M0 = m.T@m - np.diag((m*(m+1) / 2).flatten()) - M1 # r = n. of links from current node to components r = z[nn].T @ X[nn, n] R = np.tile(r, (K, 1)) # lik matrix of current node sampled to each component likelihood = betaln(M1+R+a, M0+M-R+b) - betaln(M1+a, M0+b) # lik of current node to new component likelihood_n = betaln(r+a, m-r+b) - betaln(a,b) logLik = np.sum(np.concatenate([likelihood, likelihood_n]), 1) logPrior = np.log(np.append(m, A)) logPost = logPrior + logLik # Convert from log probabilities, normalized to max P = np.exp(logPost-max(logPost)) # Assignment through random draw fron unif(0,1), taking first value from prob. vector draw = np.random.rand() i = np.argwhere(draw<np.cumsum(P)/sum(P))[0] # Assignment of current node to component i z[n,:] = 0 if i == K: # If new component: add new column to partition matrix z = np.hstack((z, np.zeros((N,1)))) z[n,i] = 1 # Delete empty component if present idx = np.argwhere(np.all(z[..., :] == 0, axis=0)) z = np.delete(z, idx, axis=1) Z.append(z) print(z) print(m) return Z T = 500 a = 1 b = 1 A = 10 Z = irm(X, T, a, b, A) for i in range(1, 11): print(np.sum(Z[-i], 0))
[ "numpy.sum", "numpy.random.seed", "numpy.concatenate", "igraph.Graph.Read_GML", "numpy.ix_", "numpy.zeros", "numpy.ones", "scipy.special.betaln", "numpy.append", "numpy.cumsum", "numpy.tile", "numpy.random.rand", "numpy.delete", "numpy.all" ]
[((77, 108), 'igraph.Graph.Read_GML', 'ig.Graph.Read_GML', (['"""karate.txt"""'], {}), "('karate.txt')\n", (94, 108), True, 'import igraph as ig\n'), ((212, 227), 'numpy.ones', 'np.ones', (['[N, 1]'], {}), '([N, 1])\n', (219, 227), True, 'import numpy as np\n'), ((243, 270), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (257, 270), True, 'import numpy as np\n'), ((2486, 2511), 'numpy.delete', 'np.delete', (['z', 'idx'], {'axis': '(1)'}), '(z, idx, axis=1)\n', (2495, 2511), True, 'import numpy as np\n'), ((2663, 2679), 'numpy.sum', 'np.sum', (['Z[-i]', '(0)'], {}), '(Z[-i], 0)\n', (2669, 2679), True, 'import numpy as np\n'), ((951, 969), 'numpy.tile', 'np.tile', (['m', '(K, 1)'], {}), '(m, (K, 1))\n', (958, 969), True, 'import numpy as np\n'), ((1401, 1419), 'numpy.tile', 'np.tile', (['r', '(K, 1)'], {}), '(r, (K, 1))\n', (1408, 1419), True, 'import numpy as np\n'), ((2063, 2079), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2077, 2079), True, 'import numpy as np\n'), ((2442, 2472), 'numpy.all', 'np.all', (['(z[..., :] == 0)'], {'axis': '(0)'}), '(z[..., :] == 0, axis=0)\n', (2448, 2472), True, 'import numpy as np\n'), ((509, 523), 'numpy.ix_', 'np.ix_', (['nn', 'nn'], {}), '(nn, nn)\n', (515, 523), True, 'import numpy as np\n'), ((784, 809), 'numpy.delete', 'np.delete', (['z', 'idx'], {'axis': '(1)'}), '(z, idx, axis=1)\n', (793, 809), True, 'import numpy as np\n'), ((906, 922), 'numpy.sum', 'np.sum', (['z[nn]', '(0)'], {}), '(z[nn], 0)\n', (912, 922), True, 'import numpy as np\n'), ((1513, 1547), 'scipy.special.betaln', 'betaln', (['(M1 + R + a)', '(M0 + M - R + b)'], {}), '(M1 + R + a, M0 + M - R + b)\n', (1519, 1547), False, 'from scipy.special import betaln\n'), ((1540, 1562), 'scipy.special.betaln', 'betaln', (['(M1 + a)', '(M0 + b)'], {}), '(M1 + a, M0 + b)\n', (1546, 1562), False, 'from scipy.special import betaln\n'), ((1637, 1661), 'scipy.special.betaln', 'betaln', (['(r + a)', '(m - r + b)'], {}), '(r + a, m - r + b)\n', (1643, 1661), False, 'from scipy.special import betaln\n'), ((1658, 1670), 'scipy.special.betaln', 'betaln', (['a', 'b'], {}), '(a, b)\n', (1664, 1670), False, 'from scipy.special import betaln\n'), ((1699, 1741), 'numpy.concatenate', 'np.concatenate', (['[likelihood, likelihood_n]'], {}), '([likelihood, likelihood_n])\n', (1713, 1741), True, 'import numpy as np\n'), ((1776, 1791), 'numpy.append', 'np.append', (['m', 'A'], {}), '(m, A)\n', (1785, 1791), True, 'import numpy as np\n'), ((741, 757), 'numpy.sum', 'np.sum', (['z[nn]', '(0)'], {}), '(z[nn], 0)\n', (747, 757), True, 'import numpy as np\n'), ((1103, 1132), 'numpy.sum', 'np.sum', (['(X_ @ z[nn] * z[nn])', '(0)'], {}), '(X_ @ z[nn] * z[nn], 0)\n', (1109, 1132), True, 'import numpy as np\n'), ((2329, 2345), 'numpy.zeros', 'np.zeros', (['(N, 1)'], {}), '((N, 1))\n', (2337, 2345), True, 'import numpy as np\n'), ((2113, 2125), 'numpy.cumsum', 'np.cumsum', (['P'], {}), '(P)\n', (2122, 2125), True, 'import numpy as np\n')]
import sys sys.path.append('./model') import argparse import torch import numpy as np from model.model import NCNet import torchvision.transforms as transforms from dataloader import TrainLoader, ValLoader from loss import WeakLoss import torch.optim as optim import json import os ## Parameters parser = argparse.ArgumentParser(description='Nc-Net Training') ## Input / Output parser.add_argument('--outDir', type=str, help='output model directory') parser.add_argument('--resumePth', type=str, help='resume model path') parser.add_argument('--featExtractorPth', type=str, default = 'model/FeatureExtractor/resnet18.pth', help='feature extractor path') parser.add_argument('--imgDir', type=str, default = 'data/pf-pascal/JPEGImages/', help='image Directory') parser.add_argument('--trainCSV', type=str, default = 'data/pf-pascal/train.csv', help='train csv') parser.add_argument('--valCSV', type=str, default = 'data/pf-pascal/val.csv', help='val csv') parser.add_argument('--imgSize', type=int, default = 400, help='train image size') ## learning parameter parser.add_argument('--lr', type=float, default=5e-4, help='learning rate') parser.add_argument('--batchSize', type=int, default=16, help='batch size') parser.add_argument('--nbEpoch', type=int, default=5, help='number of training epochs') parser.add_argument('--neighConsKernel', nargs='+', type=int, default=[5,5,5], help='kernels sizes in neigh. cons.') parser.add_argument('--neighConsChannel', nargs='+', type=int, default=[16,16,1], help='channels in neigh. cons') parser.add_argument('--finetuneFeatExtractor', action='store_true', help='whether fine-tuning feature extractor') parser.add_argument('--featExtractor', type=str, default='ResNet18Conv4', choices=['ResNet18Conv4', 'ResNet18Conv5'], help='feature extractor') parser.add_argument('--cuda', action='store_true', help='GPU setting') parser.add_argument('--softmaxMM', action='store_true', help='whether use softmax Mutual Matching') args = parser.parse_args() print(args) ## Set seed torch.manual_seed(1) if args.cuda: torch.cuda.manual_seed(1) else : raise RuntimeError('CPU Version is not supported yet.') np.random.seed(1) ## Initial Model model = NCNet(kernel_sizes=args.neighConsKernel, channels=args.neighConsChannel, featExtractor = args.featExtractor, featExtractorPth = args.featExtractorPth, finetuneFeatExtractor = args.finetuneFeatExtractor, softmaxMutualMatching = args.softmaxMM) if not args.finetuneFeatExtractor: msg = '\nIgnore the gradient for the parameters in the feature extractor' print (msg) for p in model.featExtractor.parameters(): p.requires_grad=False if args.resumePth : msg = '\nResume from {}'.format(args.resumePth) model.load_state_dict(torch.load(args.resumePth)) if args.cuda : model.cuda() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr) ## Train Val DataLoader normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization trainTransform = transforms.Compose([transforms.RandomResizedCrop(args.imgSize), transforms.ToTensor(), normalize,]) valTransform = transforms.Compose([transforms.Resize(args.imgSize), transforms.CenterCrop(args.imgSize), transforms.ToTensor(), normalize,]) trainLoader = TrainLoader(batchSize=args.batchSize, pairCSV=args.trainCSV, imgDir = args.imgDir, trainTransform = trainTransform) valLoader = ValLoader(batchSize=args.batchSize, pairCSV=args.valCSV, imgDir = args.imgDir, valTransform = valTransform) if not os.path.exists(args.outDir) : os.mkdir(args.outDir) # Train bestValLoss = np.inf history = {'TrainLoss' : [], 'ValLoss' : []} outHistory = os.path.join(args.outDir, 'history.json') outModel = os.path.join(args.outDir, 'netBest.pth') for epoch in range(1, args.nbEpoch + 1) : trainLoss = 0. valLoss = 0. for i, batch in enumerate(trainLoader) : optimizer.zero_grad() if args.cuda : batch['source_image'] = batch['source_image'].cuda() batch['target_image'] = batch['target_image'].cuda() loss = WeakLoss(model, batch, args.softmaxMM) loss.backward() optimizer.step() trainLoss += loss.item() if i % 30 == 29 : msg = '\nEpoch {:d}, Batch {:d}, Train Loss : {:.4f}'.format(epoch, i + 1, trainLoss / (i + 1)) print (msg) ## Validation trainLoss = trainLoss / len(trainLoader) with torch.no_grad() : for i, batch in enumerate(valLoader) : if args.cuda : batch['source_image'] = batch['source_image'].cuda() batch['target_image'] = batch['target_image'].cuda() loss = WeakLoss(model, batch, args.softmaxMM) valLoss += loss.item() valLoss = valLoss / len(valLoader) msg = 'Epoch {:d}, Train Loss : {:.4f}, Val Loss : {:.4f}'.format(epoch, trainLoss , valLoss) with open(outHistory, 'w') as f : json.dump(history, f) print (msg) if valLoss < bestValLoss : msg = 'Validation Loss Improved from {:.4f} to {:.4f}'.format(bestValLoss, valLoss) print (msg) bestValLoss = valLoss torch.save(model.state_dict(), outModel) finalOut = os.path.join(args.outDir, 'netBest{:.3f}.pth'.format(bestValLoss)) cmd = 'mv {} {}'.format(outModel, finalOut) os.system(cmd)
[ "os.mkdir", "numpy.random.seed", "argparse.ArgumentParser", "model.model.NCNet", "loss.WeakLoss", "torchvision.transforms.Normalize", "torch.no_grad", "os.path.join", "sys.path.append", "torch.load", "os.path.exists", "dataloader.ValLoader", "torchvision.transforms.CenterCrop", "json.dump", "torch.manual_seed", "dataloader.TrainLoader", "torch.cuda.manual_seed", "os.system", "torchvision.transforms.Resize", "torchvision.transforms.RandomResizedCrop", "torchvision.transforms.ToTensor" ]
[((12, 38), 'sys.path.append', 'sys.path.append', (['"""./model"""'], {}), "('./model')\n", (27, 38), False, 'import sys\n'), ((311, 365), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Nc-Net Training"""'}), "(description='Nc-Net Training')\n", (334, 365), False, 'import argparse\n'), ((2024, 2044), 'torch.manual_seed', 'torch.manual_seed', (['(1)'], {}), '(1)\n', (2041, 2044), False, 'import torch\n'), ((2157, 2174), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (2171, 2174), True, 'import numpy as np\n'), ((2201, 2448), 'model.model.NCNet', 'NCNet', ([], {'kernel_sizes': 'args.neighConsKernel', 'channels': 'args.neighConsChannel', 'featExtractor': 'args.featExtractor', 'featExtractorPth': 'args.featExtractorPth', 'finetuneFeatExtractor': 'args.finetuneFeatExtractor', 'softmaxMutualMatching': 'args.softmaxMM'}), '(kernel_sizes=args.neighConsKernel, channels=args.neighConsChannel,\n featExtractor=args.featExtractor, featExtractorPth=args.\n featExtractorPth, finetuneFeatExtractor=args.finetuneFeatExtractor,\n softmaxMutualMatching=args.softmaxMM)\n', (2206, 2448), False, 'from model.model import NCNet\n'), ((3034, 3100), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (3054, 3100), True, 'import torchvision.transforms as transforms\n'), ((3589, 3705), 'dataloader.TrainLoader', 'TrainLoader', ([], {'batchSize': 'args.batchSize', 'pairCSV': 'args.trainCSV', 'imgDir': 'args.imgDir', 'trainTransform': 'trainTransform'}), '(batchSize=args.batchSize, pairCSV=args.trainCSV, imgDir=args.\n imgDir, trainTransform=trainTransform)\n', (3600, 3705), False, 'from dataloader import TrainLoader, ValLoader\n'), ((3825, 3932), 'dataloader.ValLoader', 'ValLoader', ([], {'batchSize': 'args.batchSize', 'pairCSV': 'args.valCSV', 'imgDir': 'args.imgDir', 'valTransform': 'valTransform'}), '(batchSize=args.batchSize, pairCSV=args.valCSV, imgDir=args.imgDir,\n valTransform=valTransform)\n', (3834, 3932), False, 'from dataloader import TrainLoader, ValLoader\n'), ((4177, 4218), 'os.path.join', 'os.path.join', (['args.outDir', '"""history.json"""'], {}), "(args.outDir, 'history.json')\n", (4189, 4218), False, 'import os\n'), ((4230, 4270), 'os.path.join', 'os.path.join', (['args.outDir', '"""netBest.pth"""'], {}), "(args.outDir, 'netBest.pth')\n", (4242, 4270), False, 'import os\n'), ((5914, 5928), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (5923, 5928), False, 'import os\n'), ((2063, 2088), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(1)'], {}), '(1)\n', (2085, 2088), False, 'import torch\n'), ((4023, 4050), 'os.path.exists', 'os.path.exists', (['args.outDir'], {}), '(args.outDir)\n', (4037, 4050), False, 'import os\n'), ((4058, 4079), 'os.mkdir', 'os.mkdir', (['args.outDir'], {}), '(args.outDir)\n', (4066, 4079), False, 'import os\n'), ((2836, 2862), 'torch.load', 'torch.load', (['args.resumePth'], {}), '(args.resumePth)\n', (2846, 2862), False, 'import torch\n'), ((3163, 3205), 'torchvision.transforms.RandomResizedCrop', 'transforms.RandomResizedCrop', (['args.imgSize'], {}), '(args.imgSize)\n', (3191, 3205), True, 'import torchvision.transforms as transforms\n'), ((3244, 3265), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3263, 3265), True, 'import torchvision.transforms as transforms\n'), ((3354, 3385), 'torchvision.transforms.Resize', 'transforms.Resize', (['args.imgSize'], {}), '(args.imgSize)\n', (3371, 3385), True, 'import torchvision.transforms as transforms\n'), ((3425, 3460), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['args.imgSize'], {}), '(args.imgSize)\n', (3446, 3460), True, 'import torchvision.transforms as transforms\n'), ((3500, 3521), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3519, 3521), True, 'import torchvision.transforms as transforms\n'), ((4618, 4656), 'loss.WeakLoss', 'WeakLoss', (['model', 'batch', 'args.softmaxMM'], {}), '(model, batch, args.softmaxMM)\n', (4626, 4656), False, 'from loss import WeakLoss\n'), ((5007, 5022), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5020, 5022), False, 'import torch\n'), ((5530, 5551), 'json.dump', 'json.dump', (['history', 'f'], {}), '(history, f)\n', (5539, 5551), False, 'import json\n'), ((5264, 5302), 'loss.WeakLoss', 'WeakLoss', (['model', 'batch', 'args.softmaxMM'], {}), '(model, batch, args.softmaxMM)\n', (5272, 5302), False, 'from loss import WeakLoss\n')]
# encoding: utf-8 """ @author: liaoxingyu @contact: <EMAIL> """ import torchvision.transforms as T import random import numpy as np import PIL from .transforms import RandomErasing class AddGaussianNoise(object): def __call__(self, img): std = random.uniform(0, 1.0) if std > 0.5: return img # Convert to ndarray img = np.asarray(img).copy() noise = np.random.normal(size=img.shape, scale=std).astype(np.uint8) img += noise img = np.clip(img, 0, 255) # Convert back to PIL image img = PIL.Image.fromarray(img) return img def build_transforms(cfg, is_train=True): normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ hard train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_DOWN), T.Resize(cfg.INPUT.SIZE_UP), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), T.Pad(padding=cfg.INPUT.PADDING), T.RandomRotation(cfg.INPUT.DEGREE), T.ColorJitter(0.6,0.9,0.7), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), #AddGaussianNoise(), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ init test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform def build_transforms2(cfg, is_train=True): #print('++++ easy') normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ easy train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TRAIN), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), #T.Pad(cfg.INPUT.PADDING), T.ColorJitter(0.4,0.6,0.7), T.RandomRotation(cfg.INPUT.DEGREE), #T.ColorJitter(0.4,0.6,0.7), T.Pad(cfg.INPUT.PADDING), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ easy test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform def build_transforms3(cfg, is_train=True): normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ init train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TRAIN), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), T.Pad(cfg.INPUT.PADDING), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ init test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform
[ "torchvision.transforms.ColorJitter", "torchvision.transforms.RandomHorizontalFlip", "random.uniform", "torchvision.transforms.RandomRotation", "numpy.asarray", "numpy.clip", "torchvision.transforms.ToTensor", "torchvision.transforms.Pad", "numpy.random.normal", "PIL.Image.fromarray", "torchvision.transforms.Normalize", "torchvision.transforms.RandomCrop", "torchvision.transforms.Resize" ]
[((691, 754), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (702, 754), True, 'import torchvision.transforms as T\n'), ((1655, 1718), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (1666, 1718), True, 'import torchvision.transforms as T\n'), ((2593, 2656), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (2604, 2656), True, 'import torchvision.transforms as T\n'), ((259, 281), 'random.uniform', 'random.uniform', (['(0)', '(1.0)'], {}), '(0, 1.0)\n', (273, 281), False, 'import random\n'), ((506, 526), 'numpy.clip', 'np.clip', (['img', '(0)', '(255)'], {}), '(img, 0, 255)\n', (513, 526), True, 'import numpy as np\n'), ((578, 602), 'PIL.Image.fromarray', 'PIL.Image.fromarray', (['img'], {}), '(img)\n', (597, 602), False, 'import PIL\n'), ((371, 386), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (381, 386), True, 'import numpy as np\n'), ((410, 453), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'img.shape', 'scale': 'std'}), '(size=img.shape, scale=std)\n', (426, 453), True, 'import numpy as np\n'), ((853, 882), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_DOWN'], {}), '(cfg.INPUT.SIZE_DOWN)\n', (861, 882), True, 'import torchvision.transforms as T\n'), ((896, 923), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_UP'], {}), '(cfg.INPUT.SIZE_UP)\n', (904, 923), True, 'import torchvision.transforms as T\n'), ((937, 977), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (959, 977), True, 'import torchvision.transforms as T\n'), ((991, 1023), 'torchvision.transforms.Pad', 'T.Pad', ([], {'padding': 'cfg.INPUT.PADDING'}), '(padding=cfg.INPUT.PADDING)\n', (996, 1023), True, 'import torchvision.transforms as T\n'), ((1037, 1071), 'torchvision.transforms.RandomRotation', 'T.RandomRotation', (['cfg.INPUT.DEGREE'], {}), '(cfg.INPUT.DEGREE)\n', (1053, 1071), True, 'import torchvision.transforms as T\n'), ((1085, 1113), 'torchvision.transforms.ColorJitter', 'T.ColorJitter', (['(0.6)', '(0.9)', '(0.7)'], {}), '(0.6, 0.9, 0.7)\n', (1098, 1113), True, 'import torchvision.transforms as T\n'), ((1125, 1159), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (1137, 1159), True, 'import torchvision.transforms as T\n'), ((1206, 1218), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (1216, 1218), True, 'import torchvision.transforms as T\n'), ((1438, 1467), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (1446, 1467), True, 'import torchvision.transforms as T\n'), ((1481, 1493), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (1491, 1493), True, 'import torchvision.transforms as T\n'), ((1817, 1847), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (1825, 1847), True, 'import torchvision.transforms as T\n'), ((1861, 1901), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (1883, 1901), True, 'import torchvision.transforms as T\n'), ((1954, 1982), 'torchvision.transforms.ColorJitter', 'T.ColorJitter', (['(0.4)', '(0.6)', '(0.7)'], {}), '(0.4, 0.6, 0.7)\n', (1967, 1982), True, 'import torchvision.transforms as T\n'), ((1994, 2028), 'torchvision.transforms.RandomRotation', 'T.RandomRotation', (['cfg.INPUT.DEGREE'], {}), '(cfg.INPUT.DEGREE)\n', (2010, 2028), True, 'import torchvision.transforms as T\n'), ((2083, 2107), 'torchvision.transforms.Pad', 'T.Pad', (['cfg.INPUT.PADDING'], {}), '(cfg.INPUT.PADDING)\n', (2088, 2107), True, 'import torchvision.transforms as T\n'), ((2121, 2155), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2133, 2155), True, 'import torchvision.transforms as T\n'), ((2169, 2181), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2179, 2181), True, 'import torchvision.transforms as T\n'), ((2401, 2430), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (2409, 2430), True, 'import torchvision.transforms as T\n'), ((2444, 2456), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2454, 2456), True, 'import torchvision.transforms as T\n'), ((2755, 2785), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2763, 2785), True, 'import torchvision.transforms as T\n'), ((2799, 2839), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (2821, 2839), True, 'import torchvision.transforms as T\n'), ((2853, 2877), 'torchvision.transforms.Pad', 'T.Pad', (['cfg.INPUT.PADDING'], {}), '(cfg.INPUT.PADDING)\n', (2858, 2877), True, 'import torchvision.transforms as T\n'), ((2891, 2925), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2903, 2925), True, 'import torchvision.transforms as T\n'), ((2939, 2951), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2949, 2951), True, 'import torchvision.transforms as T\n'), ((3171, 3200), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (3179, 3200), True, 'import torchvision.transforms as T\n'), ((3214, 3226), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (3224, 3226), True, 'import torchvision.transforms as T\n')]
import h5py from signal_filter.fft import LowPassFilter from signal_filter.mpi_signal_filter import SignalFilter h5_path = 'giv_raw.h5' h5_f = h5py.File(h5_path, mode='r+') h5_grp = h5_f['Measurement_000/Channel_000'] h5_main = h5_grp['Raw_Data'] samp_rate = h5_grp.attrs['IO_samp_rate_[Hz]'] num_spectral_pts = h5_main.shape[1] frequency_filters = [LowPassFilter(num_spectral_pts, samp_rate, 10E+3)] noise_tol = 1E-6 sig_filt = SignalFilter(h5_main, frequency_filters=frequency_filters, noise_threshold=noise_tol, write_filtered=True, write_condensed=False, num_pix=1, verbose=True) h5_filt_grp = sig_filt.compute() # VERIFICATION here: row_ind = 20 actual_line = h5_filt_grp['Filtered_Data'][row_ind] h5_ref_path = '/home/syz/giv/pzt_nanocap_6_just_translation_filt_resh_copy.h5' h5_ref_file = h5py.File(h5_ref_path, mode='r') h5_ref_grp = h5_ref_file[h5_filt_grp.name] ref_line = h5_ref_grp['Filtered_Data'][row_ind] import numpy as np print('Actual line close to reference:') print(np.max(np.abs(actual_line - ref_line))) print(np.allclose(actual_line, ref_line)) """ single_AO = h5_grp['Spectroscopic_Values'][0, :500] import numpy as np row_ind = 20 # read data for a specific scan line raw_line_resp = h5_main[row_ind] # break this up into pixels: raw_line_mat = np.reshape(raw_line_resp, (-1, single_AO.size)) filt_line_resp = h5_filt_grp['Filtered_Data'][row_ind] filt_line_mat = np.reshape(filt_line_resp, (-1, single_AO.size)) import pyUSID as usid fig, axes = usid.plot_utils.plot_curves(single_AO, [raw_line_mat, filt_line_mat], use_rainbow_plots=False, x_label='Bias (V)', y_label='Current (nA)', subtitle_prefix='Pixel', title=None, num_plots=9) fig.savefig('result.png', format='png', ) savefig(os.path.join(other_figures_folder, file_name + '.png'), format='png', dpi=300) """ h5_f.close()
[ "h5py.File", "numpy.abs", "numpy.allclose", "signal_filter.fft.LowPassFilter", "signal_filter.mpi_signal_filter.SignalFilter" ]
[((145, 174), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r+"""'}), "(h5_path, mode='r+')\n", (154, 174), False, 'import h5py\n'), ((434, 597), 'signal_filter.mpi_signal_filter.SignalFilter', 'SignalFilter', (['h5_main'], {'frequency_filters': 'frequency_filters', 'noise_threshold': 'noise_tol', 'write_filtered': '(True)', 'write_condensed': '(False)', 'num_pix': '(1)', 'verbose': '(True)'}), '(h5_main, frequency_filters=frequency_filters, noise_threshold=\n noise_tol, write_filtered=True, write_condensed=False, num_pix=1,\n verbose=True)\n', (446, 597), False, 'from signal_filter.mpi_signal_filter import SignalFilter\n'), ((857, 889), 'h5py.File', 'h5py.File', (['h5_ref_path'], {'mode': '"""r"""'}), "(h5_ref_path, mode='r')\n", (866, 889), False, 'import h5py\n'), ((354, 405), 'signal_filter.fft.LowPassFilter', 'LowPassFilter', (['num_spectral_pts', 'samp_rate', '(10000.0)'], {}), '(num_spectral_pts, samp_rate, 10000.0)\n', (367, 405), False, 'from signal_filter.fft import LowPassFilter\n'), ((1094, 1128), 'numpy.allclose', 'np.allclose', (['actual_line', 'ref_line'], {}), '(actual_line, ref_line)\n', (1105, 1128), True, 'import numpy as np\n'), ((1055, 1085), 'numpy.abs', 'np.abs', (['(actual_line - ref_line)'], {}), '(actual_line - ref_line)\n', (1061, 1085), True, 'import numpy as np\n')]
#!/usr/bin/env python import os, sys, subprocess from os.path import basename,dirname import h5py from netCDF4 import Dataset import numpy as np import numpy.ma as ma import gdal from gdalconst import * from osgeo import ogr, osr from datetime import datetime, date def createImgSCISAT(fileAbsPath): # read info from netcdf ncfile = Dataset(fileAbsPath, 'r') latitude = ncfile.groups['ACE-FTS-v2.2'].latitude longitude = ncfile.groups['ACE-FTS-v2.2'].longitude datestart = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].start_time,'%Y-%m-%d %H:%M:%S+00') dateend = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].end_time,'%Y-%m-%d %H:%M:%S+00') ozone = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['O3'][:] heightLevels = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['z'][:] numBand = len(ozone) ncfile.close() #common vars no_value = -9999 minValue = ma.min(ozone) maxValue = ma.max(ozone) ma.set_fill_value(ozone, no_value) ozone = ozone.filled() #ma.set_fill_value(heightLevels, no_value) #heightLevels = heightLevels.filled() sizeX = 1 sizeY = 1 dataType = gdal.GDT_Float32 resolution = 1.0 # in degree driver = gdal.GetDriverByName('GTiff' ) outFile = 'ACE-FTS_L2_ozone_'+datestart.strftime('%Y%m%d.%H%M%S')+'.tif' #create tiff dst_ds = driver.Create(outFile, sizeX, sizeY, numBand, dataType) for i in range(numBand): dst_ds.GetRasterBand(i+1).WriteArray(np.expand_dims(np.expand_dims(ozone[i],axis=0),axis=0)) # The computed stat produces this warning # Warning 1: Lost metadata writing to GeoTIFF ... too large to fit in tag. # An additional *.aux.xml is added #if ozone[i] != no_value: # dst_ds.GetRasterBand(i+1).ComputeStatistics(False) dst_ds.GetRasterBand(i+1).SetNoDataValue(no_value) #set geotrasform matrix top_left_x = longitude - (resolution / 2) w_e_pixel_resolution = resolution top_left_y = latitude - (resolution / 2) n_s_pixel_resolution = - resolution coord = [top_left_x, w_e_pixel_resolution, 0, top_left_y,0, n_s_pixel_resolution] dst_ds.SetGeoTransform(coord) srs = osr.SpatialReference() srs.SetWellKnownGeogCS('WGS84') dst_ds.SetProjection(srs.ExportToWkt()) #set metadata dst_ds.SetMetadataItem('GLOBAL_MAX',str(maxValue)) dst_ds.SetMetadataItem('GLOBAL_MIN',str(minValue)) dst_ds.SetMetadataItem('TIME_END', dateend.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('TIME_START', datestart.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('VERTICAL_LEVELS_NUMBER', str(len(heightLevels))) dst_ds.SetMetadataItem('VERTICAL_LEVELS', ','.join(str(x) for x in heightLevels)) dst_ds =None return [outFile] if __name__ == '__main__': if len(sys.argv) != 2: sys.exit('\nUsage: %s L2_SCISAT_file \n' % sys.argv[0] ) else: if not os.path.exists(sys.argv[1]): sys.exit('\nERROR: File %s was not found!\n' % sys.argv[1]) fileAbsPath = sys.argv[1] outFileName = createImgSCISAT(fileAbsPath) exit(0) # else: # Module is imported from another module
[ "netCDF4.Dataset", "numpy.ma.min", "gdal.GetDriverByName", "numpy.ma.set_fill_value", "os.path.exists", "numpy.expand_dims", "datetime.datetime.strptime", "sys.exit", "osgeo.osr.SpatialReference", "numpy.ma.max" ]
[((343, 368), 'netCDF4.Dataset', 'Dataset', (['fileAbsPath', '"""r"""'], {}), "(fileAbsPath, 'r')\n", (350, 368), False, 'from netCDF4 import Dataset\n'), ((495, 582), 'datetime.datetime.strptime', 'datetime.strptime', (["ncfile.groups['ACE-FTS-v2.2'].start_time", '"""%Y-%m-%d %H:%M:%S+00"""'], {}), "(ncfile.groups['ACE-FTS-v2.2'].start_time,\n '%Y-%m-%d %H:%M:%S+00')\n", (512, 582), False, 'from datetime import datetime, date\n'), ((592, 677), 'datetime.datetime.strptime', 'datetime.strptime', (["ncfile.groups['ACE-FTS-v2.2'].end_time", '"""%Y-%m-%d %H:%M:%S+00"""'], {}), "(ncfile.groups['ACE-FTS-v2.2'].end_time,\n '%Y-%m-%d %H:%M:%S+00')\n", (609, 677), False, 'from datetime import datetime, date\n'), ((957, 970), 'numpy.ma.min', 'ma.min', (['ozone'], {}), '(ozone)\n', (963, 970), True, 'import numpy.ma as ma\n'), ((986, 999), 'numpy.ma.max', 'ma.max', (['ozone'], {}), '(ozone)\n', (992, 999), True, 'import numpy.ma as ma\n'), ((1004, 1038), 'numpy.ma.set_fill_value', 'ma.set_fill_value', (['ozone', 'no_value'], {}), '(ozone, no_value)\n', (1021, 1038), True, 'import numpy.ma as ma\n'), ((1265, 1294), 'gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (1285, 1294), False, 'import gdal\n'), ((2258, 2280), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (2278, 2280), False, 'from osgeo import ogr, osr\n'), ((2959, 3016), 'sys.exit', 'sys.exit', (['("""\nUsage: %s L2_SCISAT_file \n""" % sys.argv[0])'], {}), '("""\nUsage: %s L2_SCISAT_file \n""" % sys.argv[0])\n', (2967, 3016), False, 'import os, sys, subprocess\n'), ((3041, 3068), 'os.path.exists', 'os.path.exists', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (3055, 3068), False, 'import os, sys, subprocess\n'), ((3082, 3143), 'sys.exit', 'sys.exit', (['("""\nERROR: File %s was not found!\n""" % sys.argv[1])'], {}), '("""\nERROR: File %s was not found!\n""" % sys.argv[1])\n', (3090, 3143), False, 'import os, sys, subprocess\n'), ((1554, 1586), 'numpy.expand_dims', 'np.expand_dims', (['ozone[i]'], {'axis': '(0)'}), '(ozone[i], axis=0)\n', (1568, 1586), True, 'import numpy as np\n')]
"""Class for converter.""" import numpy as np import math import cmath import scipy import logging from scipy import signal from scipy.integrate import odeint,ode #from converter_utilities import plot_signal, plot_FFT import converter_utilities import config from models import InverterModels class PowerElectronicConverter: """ Converter base class. Attributes: count (int): Number of converter objects. """ count = 0 #Object count def __init__(self,model_type): """Creates an instance of `Converter`. Args: fsw (float): Switching frequency in Hz. Raises: ValueError: If parameters corresponding to `Sinverter_rated` are not available. """ PowerElectronicConverter.count = PowerElectronicConverter.count+1 #Increment count to keep track of number of converter model instances self.name = 'converter_'+str(PowerElectronicConverter.count) #Generate a name for the instance self.model_type = model_type """ if self.model_type is 'switching': assert self.signal_type is 'square_wave' or self.signal_type is 'sinePWM', 'Switching model needs square or sine PWM as switching signal!' if self.model_type is 'average': assert self.signal_type is 'duty_cycle', 'Average model needs duty_cycle as switching signal!' """ def check_model_type(self,model_type): """Check if model type is valid.""" assert model_type in self.model_types, f'{model_type} is not a valid model type!' def show_spec(self): """Print the specs.""" print('Model type:{}'.format(self.model_type)) print('Switching signal type:{}'.format(self.signal_type)) def calc_primary(self,signal): """Calculate the primary switch.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Sprimary = int(signal) return Sprimary def calc_complimentary(self,signal): """Calculate the complimentary.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Scomplimentary = int(not signal) return Scomplimentary def calc_average(self,m): """Calculate average voltage.""" return Vdc #Current controller dynamics class PowerElectronicInverter(PowerElectronicConverter,InverterModels): """ Inverter class. Attributes: (): """ Rf = 0.01 Lf = 1.0e-3 Rload = 1.0 inverter_types = ['single_phase_half_bridge','single_phase_full_bridge', 'three_phase_full_bridge'] model_types = ['EMT_switching','EMT_average','dynamic_phasor'] def __init__(self,Vdc,model_type = 'EMT_average',inverter_type='single_phase_half_bridge'): """Creates an instance of `Converter`. Args: Vdc (float): DC link voltage. Raises: ValueError: To be added. """ self.check_model_type(model_type) super().__init__(model_type) #Initialize converter class (base class) self.update_Vdc(Vdc) self.inverter_type =inverter_type @property #Decorator used for auto updating def y(self): """List of initial states""" return [self.ia, 0.0] def update_Vdc(self,Vdc): """Update DC link voltage.""" self.Vdc = Vdc """ def control_signal_calc(self,signals,t): Calculate control signal. if self.model_type is 'EMT_switching': signals = self.switching_signal_calc(signals,t) control_signal = signals['switching'] elif self.model_type is 'EMT_average': signals = self.average_signal_calc(signals,t) control_signal = signals['modulating'] elif self.model_type is 'dynamicphasor': pass return control_signal """ def setup_model(self): """Initialize mode.""" self.initialize_model() self.vt_calc = self.select_vt_model() self.vpcc_calc = self.select_vpcc_model() self.ODE_model = self.select_ODE_model() #self.control_signal_calc = self.select_control_signal() def select_control_signal(self): """Select the control signal suitable for the problem.""" if self.model_type is 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.switching_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.modulating_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.phasor_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return control_signal def select_vt_model(self): """Get the terminal voltage model.""" if self.model_type == 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_switching elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_switching elif self.inverter_type == 'three_phase_full_bridge': vt_model = self.three_phase_full_bridge_switching else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_average elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_average elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'dynamicphasor': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_phasor elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_phasor elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') print(type(vt_model)) return vt_model def select_vpcc_model(self,grid=None): """Get the PCC voltage model.""" if not grid: vpcc_model = self.v_load_model() return vpcc_model def select_ODE_model(self): """Select ODE model.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_EMT elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_dynamicphasor elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return ODE_model def initialize_model(self): """Initialize mode.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.ia = 0.0 elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.iaR = 0.0 self.iaI = 0.0 if self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError """ def vta_calc(self,Vdc,control_signal): Calculate inverter terminal voltage. if self.model_type is 'switching': vta = self.half_bridge_switching(Vdc,control_signal) elif self.model_type is 'average': vta = self.half_bridge_average(Vdc,control_signal) return vta """ def v_load_model(self): """Calculate voltage across load at PCC.""" return self.Rload*self.ia def ODE_model_switching(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage switching_signal = self.control_signal_calc(t) self.vta = self.half_bridge_switching(Vdc,switching_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def ODE_model_average(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage modulating_signal = self.control_signal_calc(t) self.vta = self.half_bridge_average(Vdc,modulating_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def power_calc(self,v,i): """Calcuate instantaneous power.""" return v*i def show_states(self): """Show states.""" print('Inverter states:{}'.format(self.y))
[ "numpy.array" ]
[((10519, 10535), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (10527, 10535), True, 'import numpy as np\n'), ((11081, 11097), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (11089, 11097), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Mon May 4 12:48:05 2020 @author: sven """ import numpy as np def nearfield(f,c,theta): """ Compute the nearfield Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- Rnf : numeric Range of the nearfield for the given conditions in meters [m]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) Rnf = (2*a)**2 / lmbd return Rnf def eba(f,c,theta): """ Compute the equivalent beam angle for a circular transducer. Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- EBA : numeric equivalent beam angle in dB [dB]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) EBA = 10 * np.log10( 5.78 / ( ( k * a ) ** 2))#equivalent beam angle in steradians return EBA def vol_samp(f,c,theta,tau,R,start=0): f = f*1000 Rtot = R+start Vtot = 10**(eba(f,c,theta)/10) * Rtot**2 * c * tau / 2 V0 = 10**(eba(f,c,theta)/10) * start**2 * c * tau / 2 V = Vtot - V0 return V def footprint_radius(theta,R): return R * np.tan(theta * np.pi / 180 / 2) def footprint_area(theta, R): return np.pi * footprint_radius(theta,R)**2 ''' vol_samp(f=200,c=1450,theta=9.8,tau=6/1000,R=10) vol_samp(f=1000,c=1450,theta=4,tau=6/1000,R=10) #Zonar nearfield(200,1480,9.8) nearfield(1000,1480,4) c=1450;f=200000 0.045**2/(c/f) c=1450;f=1000000 0.022**2/(c/f) '''
[ "numpy.sin", "numpy.log10", "numpy.tan" ]
[((1024, 1053), 'numpy.log10', 'np.log10', (['(5.78 / (k * a) ** 2)'], {}), '(5.78 / (k * a) ** 2)\n', (1032, 1053), True, 'import numpy as np\n'), ((1356, 1387), 'numpy.tan', 'np.tan', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (1362, 1387), True, 'import numpy as np\n'), ((504, 535), 'numpy.sin', 'np.sin', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (510, 535), True, 'import numpy as np\n'), ((979, 1010), 'numpy.sin', 'np.sin', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (985, 1010), True, 'import numpy as np\n')]
import pandas as pd import numpy as np class regout(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) stat_names=['coeff', 'se', 't', 'p>t', 'CI_low', 'CI_high'] var_names=['mpg', 'length', '_cons'] tsls_std = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 1906.786380881755, -.6921935160784805, .4910734473693195, -5121.889227450638, 2482.158888664433, ], [-217.1947537663291, 420.1260089670161, -.5169752624941175, .6067801835089433, -1054.902223005562, 620.5127154729038, ], [75092.75604853875, 119511.8053379244, .6283291917163411, .5318043826192644, -163207.0155842729, 313392.5276813505, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [3635834.30231614, 799471.1768877679, -227680006.992276, ], [799471.1768877679, 176505.8634105533, -50197751.5841309, ], [-227680006.992276, -50197751.5841309, 14283071615.12995, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.97987798611259, pF=.0230019984382644, ) tsls_robust = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2357.647789772478, -.5598228773265894, .5773622437125422, -6020.881343525829, 3381.151004739624, ], [-217.1947537663291, 503.6720846601052, -.4312225362120266, .6676130605679584, -1221.488366543325, 787.0988590106673, ], [75092.75604853875, 144765.6412502902, .5187194654752942, .6055693972498957, -213561.7342143963, 363747.2463114738, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5558503.100619048, 1185986.375722446, -341107563.0831394, ], [1185986.375722446, 253685.5688658562, -72904288.91181517, ], [-341107563.0831394, -72904288.91181517, 20957090886.60773, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.406896316082843, pF=.0386511725211229, ) tsls_cluster = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2257.567862016117, -.5846403076514384, .5625396644960171, -5902.971584635199, 3263.241245848994, ], [-217.1947537663291, 486.3497477085017, -.4465814052329, .6579283787885248, -1204.537232491913, 770.1477249592547, ], [75092.75604853875, 139493.4175166438, .5383247280437371, .5937601902027558, -208093.9367907353, 358279.4488878128, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5096612.65160802, 1096219.32167181, -314686204.683651, ], [1096219.32167181, 236536.0770961233, -67830404.58467865, ], [-314686204.683651, -67830404.58467865, 19458413530.47272, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.125695274137819, pF=.0563657644983311, )
[ "numpy.array" ]
[((278, 673), 'numpy.array', 'np.array', (['[[-1319.865169393102, 1906.786380881755, -0.6921935160784805, \n 0.4910734473693195, -5121.889227450638, 2482.158888664433], [-\n 217.1947537663291, 420.1260089670161, -0.5169752624941175, \n 0.6067801835089432, -1054.902223005562, 620.5127154729038], [\n 75092.75604853875, 119511.8053379244, 0.628329191716341, \n 0.5318043826192644, -163207.0155842729, 313392.5276813505]]'], {}), '([[-1319.865169393102, 1906.786380881755, -0.6921935160784805, \n 0.4910734473693195, -5121.889227450638, 2482.158888664433], [-\n 217.1947537663291, 420.1260089670161, -0.5169752624941175, \n 0.6067801835089432, -1054.902223005562, 620.5127154729038], [\n 75092.75604853875, 119511.8053379244, 0.628329191716341, \n 0.5318043826192644, -163207.0155842729, 313392.5276813505]])\n', (286, 673), True, 'import numpy as np\n'), ((734, 930), 'numpy.array', 'np.array', (['[[3635834.30231614, 799471.1768877679, -227680006.992276], [\n 799471.1768877679, 176505.8634105533, -50197751.5841309], [-\n 227680006.992276, -50197751.5841309, 14283071615.12995]]'], {}), '([[3635834.30231614, 799471.1768877679, -227680006.992276], [\n 799471.1768877679, 176505.8634105533, -50197751.5841309], [-\n 227680006.992276, -50197751.5841309, 14283071615.12995]])\n', (742, 930), True, 'import numpy as np\n'), ((1185, 1581), 'numpy.array', 'np.array', (['[[-1319.865169393102, 2357.647789772478, -0.5598228773265894, \n 0.5773622437125422, -6020.881343525829, 3381.151004739624], [-\n 217.1947537663291, 503.6720846601052, -0.4312225362120266, \n 0.6676130605679584, -1221.488366543325, 787.0988590106673], [\n 75092.75604853875, 144765.6412502902, 0.5187194654752942, \n 0.6055693972498957, -213561.7342143963, 363747.2463114738]]'], {}), '([[-1319.865169393102, 2357.647789772478, -0.5598228773265894, \n 0.5773622437125422, -6020.881343525829, 3381.151004739624], [-\n 217.1947537663291, 503.6720846601052, -0.4312225362120266, \n 0.6676130605679584, -1221.488366543325, 787.0988590106673], [\n 75092.75604853875, 144765.6412502902, 0.5187194654752942, \n 0.6055693972498957, -213561.7342143963, 363747.2463114738]])\n', (1193, 1581), True, 'import numpy as np\n'), ((1641, 1842), 'numpy.array', 'np.array', (['[[5558503.100619048, 1185986.375722446, -341107563.0831394], [\n 1185986.375722446, 253685.5688658562, -72904288.91181517], [-\n 341107563.0831394, -72904288.91181517, 20957090886.60773]]'], {}), '([[5558503.100619048, 1185986.375722446, -341107563.0831394], [\n 1185986.375722446, 253685.5688658562, -72904288.91181517], [-\n 341107563.0831394, -72904288.91181517, 20957090886.60773]])\n', (1649, 1842), True, 'import numpy as np\n'), ((2099, 2492), 'numpy.array', 'np.array', (['[[-1319.865169393102, 2257.567862016117, -0.5846403076514384, \n 0.5625396644960171, -5902.971584635199, 3263.241245848994], [-\n 217.1947537663291, 486.3497477085017, -0.4465814052329, \n 0.6579283787885248, -1204.537232491913, 770.1477249592547], [\n 75092.75604853875, 139493.4175166438, 0.5383247280437371, \n 0.5937601902027558, -208093.9367907353, 358279.4488878128]]'], {}), '([[-1319.865169393102, 2257.567862016117, -0.5846403076514384, \n 0.5625396644960171, -5902.971584635199, 3263.241245848994], [-\n 217.1947537663291, 486.3497477085017, -0.4465814052329, \n 0.6579283787885248, -1204.537232491913, 770.1477249592547], [\n 75092.75604853875, 139493.4175166438, 0.5383247280437371, \n 0.5937601902027558, -208093.9367907353, 358279.4488878128]])\n', (2107, 2492), True, 'import numpy as np\n'), ((2552, 2748), 'numpy.array', 'np.array', (['[[5096612.65160802, 1096219.32167181, -314686204.683651], [1096219.32167181,\n 236536.0770961233, -67830404.58467865], [-314686204.683651, -\n 67830404.58467865, 19458413530.47272]]'], {}), '([[5096612.65160802, 1096219.32167181, -314686204.683651], [\n 1096219.32167181, 236536.0770961233, -67830404.58467865], [-\n 314686204.683651, -67830404.58467865, 19458413530.47272]])\n', (2560, 2748), True, 'import numpy as np\n')]
# Author: <NAME> # MIT license (see LICENCE.txt in the top-level folder) import unittest import numpy as np from numpy import random from numpy import linalg as LA from sklearn.linear_model import LinearRegression, LogisticRegression from single_neuron import models as models from single_neuron import math_utils as math_utils datasets_n = 50 max_ds_n = 10000 max_features_n = 100 max_abs_value = 1000 min_epochs = 100 max_epochs = 10000 min_lr = 1e-9 max_lr = 1e-5 def generate_synthetic_datasets(N_max, m_max, gaussian=False): N_train = random.randint(3, N_max + 1) N_valid = random.randint(3, N_max + 1) m = random.randint(2, m_max + 1) if gaussian: # we are generating a synthetic dataset based on a multivariate Gaussian # distribution. In order to generate the latter, we need a mean vector # (easy) and a positive definite matrix for the covariances. This matrix # is way more tricky to sample and I don' t know what is the best way. # My current brute-force approach is the following: (a) I sample m # vectors; (b) I take all the possible inner products (Gram matrix) as # the covariance matrix and (c) if the covariance matrix is singular, I # go back to step (b). mu = 2 * (random.rand(m) - 0.5) * max_abs_value Cov = np.zeros([m, m]) while LA.matrix_rank(Cov) != m: a = 2 * (random.rand(m) - 0.5) * max_abs_value X = a * random.rand(m, m) Cov = X.T.dot(X) train_ds = random.multivariate_normal(mu, Cov, N_train) valid_ds = random.multivariate_normal(mu, Cov, N_valid) else: # uniformly random datasets train_ds = 2 * (random.rand(N_train, m) - 0.5) * max_abs_value valid_ds = 2 * (random.rand(N_valid, m) - 0.5) * max_abs_value return train_ds, valid_ds class TestLinearNeuron(unittest.TestCase): def setUp(self): """ Prepare a few synthetic datasets for the tests. Two categories of datasets: One random without any implied structure and one that arises from a predefined distribution. """ self.train_X = [] self.valid_X = [] self.train_y = [] self.valid_y = [] for ds_i in range(0, datasets_n): # make sure that there are some datasets with extremely small values if ds_i < 10: N_max = 7 else: N_max = max_ds_n if ds_i < 10: m_max = 2 else: m_max = max_features_n #gaussian = random.rand() < 0.5 gaussian = True train_ds, valid_ds = generate_synthetic_datasets(N_max, m_max, gaussian) # we use the last column as the target variable self.train_X.append(train_ds[:, :-1]) self.valid_X.append(valid_ds[:, :-1]) self.train_y.append(train_ds[:, -1]) self.valid_y.append(valid_ds[:, -1]) self.lin_model = LinearRegression() def test_rmse_is_equal_with_sklearn(self): pass def test_params_are_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass class TestReluNeuron(unittest.TestCase): def test_rmse_is_equal_with_sklearn(self): pass def test_initialization_with_negatives_leads_to_zero_gradients(self): pass def test_initialization_does_not_matter(self): pass class TestLogisticNeuron(unittest.TestCase): def test_ce_is_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass
[ "numpy.zeros", "sklearn.linear_model.LinearRegression", "numpy.linalg.matrix_rank", "numpy.random.randint", "numpy.random.multivariate_normal", "numpy.random.rand" ]
[((551, 579), 'numpy.random.randint', 'random.randint', (['(3)', '(N_max + 1)'], {}), '(3, N_max + 1)\n', (565, 579), False, 'from numpy import random\n'), ((594, 622), 'numpy.random.randint', 'random.randint', (['(3)', '(N_max + 1)'], {}), '(3, N_max + 1)\n', (608, 622), False, 'from numpy import random\n'), ((631, 659), 'numpy.random.randint', 'random.randint', (['(2)', '(m_max + 1)'], {}), '(2, m_max + 1)\n', (645, 659), False, 'from numpy import random\n'), ((1359, 1375), 'numpy.zeros', 'np.zeros', (['[m, m]'], {}), '([m, m])\n', (1367, 1375), True, 'import numpy as np\n'), ((1569, 1613), 'numpy.random.multivariate_normal', 'random.multivariate_normal', (['mu', 'Cov', 'N_train'], {}), '(mu, Cov, N_train)\n', (1595, 1613), False, 'from numpy import random\n'), ((1633, 1677), 'numpy.random.multivariate_normal', 'random.multivariate_normal', (['mu', 'Cov', 'N_valid'], {}), '(mu, Cov, N_valid)\n', (1659, 1677), False, 'from numpy import random\n'), ((3207, 3225), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (3223, 3225), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((1390, 1409), 'numpy.linalg.matrix_rank', 'LA.matrix_rank', (['Cov'], {}), '(Cov)\n', (1404, 1409), True, 'from numpy import linalg as LA\n'), ((1495, 1512), 'numpy.random.rand', 'random.rand', (['m', 'm'], {}), '(m, m)\n', (1506, 1512), False, 'from numpy import random\n'), ((1298, 1312), 'numpy.random.rand', 'random.rand', (['m'], {}), '(m)\n', (1309, 1312), False, 'from numpy import random\n'), ((1749, 1772), 'numpy.random.rand', 'random.rand', (['N_train', 'm'], {}), '(N_train, m)\n', (1760, 1772), False, 'from numpy import random\n'), ((1820, 1843), 'numpy.random.rand', 'random.rand', (['N_valid', 'm'], {}), '(N_valid, m)\n', (1831, 1843), False, 'from numpy import random\n'), ((1437, 1451), 'numpy.random.rand', 'random.rand', (['m'], {}), '(m)\n', (1448, 1451), False, 'from numpy import random\n')]
import tensorflow as tf import numpy as np from model import decoder,vae import cv2 vae.load_weights("vae_cnn.h5") lv = np.load("lv.npy") fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter("output.avi", fourcc, 30.0, (208, 120)) for i in range(1000): data = lv[i].reshape(1,128) img = decoder.predict(data) img = np.array(img).reshape(120,208,1) img = img * 255 img = np.array(img).astype("uint8") img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) video.write(img) video.release()
[ "numpy.load", "cv2.VideoWriter_fourcc", "model.decoder.predict", "cv2.cvtColor", "numpy.array", "cv2.VideoWriter", "model.vae.load_weights" ]
[((85, 115), 'model.vae.load_weights', 'vae.load_weights', (['"""vae_cnn.h5"""'], {}), "('vae_cnn.h5')\n", (101, 115), False, 'from model import decoder, vae\n'), ((121, 138), 'numpy.load', 'np.load', (['"""lv.npy"""'], {}), "('lv.npy')\n", (128, 138), True, 'import numpy as np\n'), ((148, 179), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (170, 179), False, 'import cv2\n'), ((188, 243), 'cv2.VideoWriter', 'cv2.VideoWriter', (['"""output.avi"""', 'fourcc', '(30.0)', '(208, 120)'], {}), "('output.avi', fourcc, 30.0, (208, 120))\n", (203, 243), False, 'import cv2\n'), ((309, 330), 'model.decoder.predict', 'decoder.predict', (['data'], {}), '(data)\n', (324, 330), False, 'from model import decoder, vae\n'), ((444, 481), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_GRAY2RGB'], {}), '(img, cv2.COLOR_GRAY2RGB)\n', (456, 481), False, 'import cv2\n'), ((341, 354), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (349, 354), True, 'import numpy as np\n'), ((404, 417), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (412, 417), True, 'import numpy as np\n')]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu") class Bert_Base(nn.Module): def __init__(self, opt): super(Bert_Base, self).__init__() self.opt = opt #self.tokenizer = BertTokenizer.from_pretrained(model_path) def forward(self, inputs, use_hidden_state=False): text_raw_indices, text_raw_indices_mask, aspect_position_text = inputs[0], inputs[1], inputs[2] ctx = self.opt.bse.get_vector(text_raw_indices) ctx_len = torch.sum(text_raw_indices_mask != 0, dim=1) vectors = [] aspect_vectors = [] asp_len = [] for idx, vector in enumerate(ctx): # print(aspect_position_text[idx]) # print(vector.size()) #vector = torch.stack(vector) left, right = aspect_position_text[idx].split('_') vector = [np.asarray(each, dtype=float) for each in vector] aspect_vector = vector[int(left):int(right)] # if self.opt.device: # vector = vector.cpu() # aspect_vector = aspect_vector.cpu() pad_number = self.opt.max_seq_len - len(vector) + 2 #ctx_len.append(len(vector)) vector = np.asarray(vector, dtype=float) vector = vector[1:-1] vector = np.concatenate((vector, np.zeros((pad_number, self.opt.embed_dim)))) vector = vector.astype('float32') vector = torch.from_numpy(vector) #pad_tuple = (0, 0, left, 0) #vector = F.pad(vector, pad_tuple, 'constant', 0) pad_number = self.opt.max_seq_len - len(aspect_vector) asp_len.append(len(aspect_vector)) aspect_vector = np.asarray(aspect_vector) aspect_vector = np.concatenate((aspect_vector, np.zeros((pad_number, self.opt.embed_dim)))) aspect_vector = aspect_vector.astype('float32') aspect_vector = torch.from_numpy(aspect_vector) if self.opt.device: vector = vector.to(self.opt.device) aspect_vector = aspect_vector.to(self.opt.device) vectors.append(vector) aspect_vectors.append(aspect_vector) ctx = torch.stack(vectors) asp = torch.stack(aspect_vectors) asp_len = torch.from_numpy(np.asarray(asp_len)) #ctx_len = torch.from_numpy(np.asarray(ctx_len)) if self.opt.device: asp_len = asp_len.to(self.opt.device) ctx_len = ctx_len.to(self.opt.device) ctx.requires_grad = False asp.requires_grad = False # print(vectors.size()) # print(aspect_vectors.size()) return ctx, asp, ctx_len, asp_len
[ "torch.stack", "numpy.asarray", "numpy.zeros", "torch.cuda.is_available", "torch.device", "torch.sum", "torch.from_numpy" ]
[((98, 123), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (121, 123), False, 'import torch\n'), ((133, 176), 'torch.device', 'torch.device', (["('cuda' if USE_CUDA else 'cpu')"], {}), "('cuda' if USE_CUDA else 'cpu')\n", (145, 176), False, 'import torch\n'), ((603, 647), 'torch.sum', 'torch.sum', (['(text_raw_indices_mask != 0)'], {'dim': '(1)'}), '(text_raw_indices_mask != 0, dim=1)\n', (612, 647), False, 'import torch\n'), ((2324, 2344), 'torch.stack', 'torch.stack', (['vectors'], {}), '(vectors)\n', (2335, 2344), False, 'import torch\n'), ((2359, 2386), 'torch.stack', 'torch.stack', (['aspect_vectors'], {}), '(aspect_vectors)\n', (2370, 2386), False, 'import torch\n'), ((1332, 1363), 'numpy.asarray', 'np.asarray', (['vector'], {'dtype': 'float'}), '(vector, dtype=float)\n', (1342, 1363), True, 'import numpy as np\n'), ((1555, 1579), 'torch.from_numpy', 'torch.from_numpy', (['vector'], {}), '(vector)\n', (1571, 1579), False, 'import torch\n'), ((1826, 1851), 'numpy.asarray', 'np.asarray', (['aspect_vector'], {}), '(aspect_vector)\n', (1836, 1851), True, 'import numpy as np\n'), ((2044, 2075), 'torch.from_numpy', 'torch.from_numpy', (['aspect_vector'], {}), '(aspect_vector)\n', (2060, 2075), False, 'import torch\n'), ((2422, 2441), 'numpy.asarray', 'np.asarray', (['asp_len'], {}), '(asp_len)\n', (2432, 2441), True, 'import numpy as np\n'), ((970, 999), 'numpy.asarray', 'np.asarray', (['each'], {'dtype': 'float'}), '(each, dtype=float)\n', (980, 999), True, 'import numpy as np\n'), ((1443, 1485), 'numpy.zeros', 'np.zeros', (['(pad_number, self.opt.embed_dim)'], {}), '((pad_number, self.opt.embed_dim))\n', (1451, 1485), True, 'import numpy as np\n'), ((1911, 1953), 'numpy.zeros', 'np.zeros', (['(pad_number, self.opt.embed_dim)'], {}), '((pad_number, self.opt.embed_dim))\n', (1919, 1953), True, 'import numpy as np\n')]
import glob import os import time import cv2 import numpy as np from Pre_Processing import frameManipulator commands = ['bin', 'lay', 'place', 'set'] prepositions = ['at', 'by', 'in', 'with'] colors = ['blue', 'green', 'red', 'white'] adverbs = ['again', 'now', 'please', 'soon'] alphabet = [chr(x) for x in range(ord('a'), ord('z') + 1)] numbers = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] categories = ['Adverb', 'Alphabet', 'Commands', 'Colors', 'Numbers', 'Prepositions'] commonCNNDataPath = 'D:/CNN-Test-Images/' def getVideoFrames(videoPath): """Function to return a video's frames in a list""" vidcap = cv2.VideoCapture(videoPath) success, image = vidcap.read() allFrames = [] while success: allFrames.append(image) success, image = vidcap.read() return allFrames def stackFramesToImage(listOfFrames): """Function to concat frames into a single picture""" if len(listOfFrames) < frameManipulator.FPS: return None newList = [np.hstack(listOfFrames[:5]), np.hstack(listOfFrames[5:10]), np.hstack(listOfFrames[10:15]), np.hstack(listOfFrames[15:20]), np.hstack(listOfFrames[20:25]), np.hstack(listOfFrames[25:30])] return np.vstack(newList) def saveImage(image, imagePath): """Function to save an image in grayscale to a specific path""" if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) index = len(os.listdir(imagePath)) imagePath = imagePath + '/{}.jpg'.format(index) cv2.imwrite(imagePath, image) def createCNNDataDirectories(): """Function to create label directories for each category for training the CNN""" for command in commands: dirName = commonCNNDataPath + '/Commands/{}/'.format(command) if not os.path.exists(dirName): os.makedirs(dirName) for preposition in prepositions: dirName = commonCNNDataPath + '/Prepositions/{}/'.format(preposition) if not os.path.exists(dirName): os.makedirs(dirName) for color in colors: dirName = commonCNNDataPath + '/Colors/{}/'.format(color) if not os.path.exists(dirName): os.makedirs(dirName) for adverb in adverbs: dirName = commonCNNDataPath + '/Adverb/{}/'.format(adverb) if not os.path.exists(dirName): os.makedirs(dirName) for letter in alphabet: dirName = commonCNNDataPath + '/Alphabet/{}/'.format(letter) if not os.path.exists(dirName): os.makedirs(dirName) for number in numbers: dirName = commonCNNDataPath + '/Numbers/{}/'.format(number) if not os.path.exists(dirName): os.makedirs(dirName) def extractLipsHaarCascade(haarDetector, frame): """Function to extract lips from a frame""" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) roi_gray = 0 faces = haarDetector.detectMultiScale(gray, 1.3, 5) if len(faces) == 0: roi_gray = cv2.resize(gray, (150, 100)) return roi_gray for (x, y, w, h) in faces: roi_gray = gray[y + (2 * h // 3):y + h, x:x + w] roi_gray = cv2.resize(roi_gray, (150, 100)) return roi_gray def prepareSingleVideoForCNN(path, haarDetector): """Function to prepare a single video to be redy for CNN training""" vidData = frameManipulator.getVideoDataFromPath(path) videoFrames = getVideoFrames(path) videoFrames = [extractLipsHaarCascade(haarDetector, x) for x in videoFrames] if len(videoFrames) != 0: stackedImage = stackFramesToImage(videoFrames) videoLabel = vidData.identifier.split('_')[0] imageSavePath = commonCNNDataPath + vidData.category + '/{}'.format(videoLabel) saveImage(stackedImage, imageSavePath) else: print("Error in finding video with path: {}".format(path)) def prepareDataSetForCNN(firstSpeaker, secondSpeaker): """Function that traverses the whole dataset and creates new directory for the CNN""" detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') for i in range(firstSpeaker, secondSpeaker): for category in categories: sTime = time.time() videoPath = "../New-DataSet-Videos/S{}/{}/".format(i, category) + "*.mp4" vidList = glob.glob(videoPath) def f(x): return x.replace("\\", '/') vidList = [f(x) for x in vidList] for j in vidList: prepareSingleVideoForCNN(j, detector) print("Finished category : {}, for speaker: {}".format(category, i)) print("In:{} Seconds".format(time.time() - sTime)) print("Finished Speaker {}".format(i)) def main(): startTime = time.time() firstSpeaker = 23 secondSpeaker = 24 createCNNDataDirectories() prepareDataSetForCNN(firstSpeaker, secondSpeaker) print("Finished preparing the videos in {} seconds".format(time.time() - startTime)) if __name__ == "__main__": main()
[ "cv2.resize", "os.makedirs", "cv2.cvtColor", "cv2.imwrite", "Pre_Processing.frameManipulator.getVideoDataFromPath", "os.path.exists", "time.time", "cv2.VideoCapture", "numpy.hstack", "cv2.CascadeClassifier", "glob.glob", "os.listdir", "numpy.vstack" ]
[((654, 681), 'cv2.VideoCapture', 'cv2.VideoCapture', (['videoPath'], {}), '(videoPath)\n', (670, 681), False, 'import cv2\n'), ((1243, 1261), 'numpy.vstack', 'np.vstack', (['newList'], {}), '(newList)\n', (1252, 1261), True, 'import numpy as np\n'), ((1546, 1575), 'cv2.imwrite', 'cv2.imwrite', (['imagePath', 'image'], {}), '(imagePath, image)\n', (1557, 1575), False, 'import cv2\n'), ((2840, 2879), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (2852, 2879), False, 'import cv2\n'), ((3153, 3185), 'cv2.resize', 'cv2.resize', (['roi_gray', '(150, 100)'], {}), '(roi_gray, (150, 100))\n', (3163, 3185), False, 'import cv2\n'), ((3345, 3388), 'Pre_Processing.frameManipulator.getVideoDataFromPath', 'frameManipulator.getVideoDataFromPath', (['path'], {}), '(path)\n', (3382, 3388), False, 'from Pre_Processing import frameManipulator\n'), ((4023, 4111), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (["(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')"], {}), "(cv2.data.haarcascades +\n 'haarcascade_frontalface_default.xml')\n", (4044, 4111), False, 'import cv2\n'), ((4775, 4786), 'time.time', 'time.time', ([], {}), '()\n', (4784, 4786), False, 'import time\n'), ((1029, 1056), 'numpy.hstack', 'np.hstack', (['listOfFrames[:5]'], {}), '(listOfFrames[:5])\n', (1038, 1056), True, 'import numpy as np\n'), ((1058, 1087), 'numpy.hstack', 'np.hstack', (['listOfFrames[5:10]'], {}), '(listOfFrames[5:10])\n', (1067, 1087), True, 'import numpy as np\n'), ((1089, 1119), 'numpy.hstack', 'np.hstack', (['listOfFrames[10:15]'], {}), '(listOfFrames[10:15])\n', (1098, 1119), True, 'import numpy as np\n'), ((1136, 1166), 'numpy.hstack', 'np.hstack', (['listOfFrames[15:20]'], {}), '(listOfFrames[15:20])\n', (1145, 1166), True, 'import numpy as np\n'), ((1168, 1198), 'numpy.hstack', 'np.hstack', (['listOfFrames[20:25]'], {}), '(listOfFrames[20:25])\n', (1177, 1198), True, 'import numpy as np\n'), ((1200, 1230), 'numpy.hstack', 'np.hstack', (['listOfFrames[25:30]'], {}), '(listOfFrames[25:30])\n', (1209, 1230), True, 'import numpy as np\n'), ((1411, 1450), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (1423, 1450), False, 'import cv2\n'), ((1467, 1488), 'os.listdir', 'os.listdir', (['imagePath'], {}), '(imagePath)\n', (1477, 1488), False, 'import os\n'), ((2996, 3024), 'cv2.resize', 'cv2.resize', (['gray', '(150, 100)'], {}), '(gray, (150, 100))\n', (3006, 3024), False, 'import cv2\n'), ((1810, 1833), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (1824, 1833), False, 'import os\n'), ((1847, 1867), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (1858, 1867), False, 'import os\n'), ((1999, 2022), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (2013, 2022), False, 'import os\n'), ((2036, 2056), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (2047, 2056), False, 'import os\n'), ((2164, 2187), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (2178, 2187), False, 'import os\n'), ((2201, 2221), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (2212, 2221), False, 'import os\n'), ((2332, 2355), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (2346, 2355), False, 'import os\n'), ((2369, 2389), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (2380, 2389), False, 'import os\n'), ((2503, 2526), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (2517, 2526), False, 'import os\n'), ((2540, 2560), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (2551, 2560), False, 'import os\n'), ((2672, 2695), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (2686, 2695), False, 'import os\n'), ((2709, 2729), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (2720, 2729), False, 'import os\n'), ((4213, 4224), 'time.time', 'time.time', ([], {}), '()\n', (4222, 4224), False, 'import time\n'), ((4333, 4353), 'glob.glob', 'glob.glob', (['videoPath'], {}), '(videoPath)\n', (4342, 4353), False, 'import glob\n'), ((4981, 4992), 'time.time', 'time.time', ([], {}), '()\n', (4990, 4992), False, 'import time\n'), ((4675, 4686), 'time.time', 'time.time', ([], {}), '()\n', (4684, 4686), False, 'import time\n')]
import numpy as np import math from pressiotools import linalg as la def read_binary_array(fileName, nCols): # read a numpy array from a binary file "fileName" if nCols==1: return np.fromfile(fileName) else: array = np.fromfile(fileName) nRows = int(len(array) / float(nCols)) return array.reshape((nCols,nRows)).T def read_ascii_array(fileName, nCols): # read a numpy array from an ascii file "fileName" return np.asfortranarray(np.loadtxt(fileName)) def read_array(fileName, nCols, isBinary=True): if isBinary: return read_binary_array(fileName,nCols) else: return read_ascii_array(fileName,nCols) def read_array_distributed(comm, rootFileName, nCols, isBinary=True): # Read an array from binary or ascii files with the name specified # by the string rootFileName # Each local array segment will be read from a file rootFileName.XX.YY, # where XX is the number of ranks and YY is the local rank rank = comm.Get_rank() size = comm.Get_size() nDigit = int(math.log10(size)) + 1 myFileName = "{}.{}.{:0{width}d}".format(rootFileName,size,rank,width=nDigit) myArr = read_array(myFileName,nCols,isBinary) if nCols==1: return la.Vector(myArr) else: return la.MultiVector(myArr)
[ "numpy.fromfile", "pressiotools.linalg.MultiVector", "pressiotools.linalg.Vector", "math.log10", "numpy.loadtxt" ]
[((190, 211), 'numpy.fromfile', 'np.fromfile', (['fileName'], {}), '(fileName)\n', (201, 211), True, 'import numpy as np\n'), ((232, 253), 'numpy.fromfile', 'np.fromfile', (['fileName'], {}), '(fileName)\n', (243, 253), True, 'import numpy as np\n'), ((459, 479), 'numpy.loadtxt', 'np.loadtxt', (['fileName'], {}), '(fileName)\n', (469, 479), True, 'import numpy as np\n'), ((1191, 1207), 'pressiotools.linalg.Vector', 'la.Vector', (['myArr'], {}), '(myArr)\n', (1200, 1207), True, 'from pressiotools import linalg as la\n'), ((1227, 1248), 'pressiotools.linalg.MultiVector', 'la.MultiVector', (['myArr'], {}), '(myArr)\n', (1241, 1248), True, 'from pressiotools import linalg as la\n'), ((1014, 1030), 'math.log10', 'math.log10', (['size'], {}), '(size)\n', (1024, 1030), False, 'import math\n')]
import numpy as np import sys # convert any index to a 4 tuple def unpackIndex(i, default): a = b = c = d = default if type(i) == int: d = i elif len(i) == 1: d = i[0] elif len(i) == 2: c = i[0] d = i[1] elif len(i) == 3: b = i[0] c = i[1] d = i[2] else: a = i[0] b = i[1] c = i[2] d = i[3] return (a, b, c, d) def convert(path): # load the file arr = np.load(path + ".npy") # open the output file with open(("../cifar10/" + path + ".c").lower(), "w") as f: # get dimensions (a, b, c, d) = unpackIndex(arr.shape, 1) arr = arr.reshape((a, b, c, d)) # write head f.write('#include "../include/deep_cyber.h"\n') f.write('\n') f.write('const uint8_t ' + path.upper() + '_DATA[' + str(arr.view(np.uint8).flatten().shape[0]) + '] = {\n') # write data for ai in range(a): for bi in range(b): for ci in range(c): for di in range(d): elem_arr = np.zeros((1), dtype=np.float32) elem_arr[0] = arr[ai, bi, ci, di] elem = elem_arr.view(np.uint8).flatten() e = elem.shape[0] for ei in range(e): if ai == a - 1 and bi == b - 1 and ci == c - 1 and di == d - 1 and ei == e - 1: break f.write('\t' + hex(elem[ei]) + ',\n') # write tail elem_arr = np.zeros((1), dtype=np.float32) elem_arr[0] = arr.flatten()[-1] elem = elem_arr.view(np.uint8).flatten() e = elem.shape[0] f.write('\t' + hex(elem[-1]) + '};\n') f.write('\n') f.write('Tensor ' + path.upper() + ' = {' + str(a) + ', ' + str(b) + ', ' + str(c) + ', ' + str(d) + ', (float*)' + path.upper() + '_DATA};\n') convert("c1b") convert("c1w") convert("c2b") convert("c2w") convert("c3b") convert("c3w") convert("c4b") convert("c4w") convert("d1b") convert("d1w") convert("d2b") convert("d2w")
[ "numpy.load", "numpy.zeros" ]
[((479, 501), 'numpy.load', 'np.load', (["(path + '.npy')"], {}), "(path + '.npy')\n", (486, 501), True, 'import numpy as np\n'), ((1660, 1689), 'numpy.zeros', 'np.zeros', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (1668, 1689), True, 'import numpy as np\n'), ((1138, 1167), 'numpy.zeros', 'np.zeros', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (1146, 1167), True, 'import numpy as np\n')]
x1=[] x2=[] x3=[] import sys import numpy as np f1 = open("light_gbm.txt") for line in f1: x1.append(float((line.strip().split('\t')[1]))) #print x1 f2 = open("simese_cnn.txt") for line in f2: x2.append(0.5 + 0.5*float((line.strip().split('\t')[1]))) #print x2 f3 = open("matchpyramid.txt") for line in f3: x3.append(float((line.strip().split('\t')[1]))) #print x3 x1=np.asarray(x1) x2=np.asarray(x2) x3=np.asarray(x3) f=np.vstack((x1,x2)) f=np.vstack((f,x3)) y_pred=f[0]/3+f[1]/3+f[2]/3 #print pred.shape #print pred for i in range(len(y_pred)): if y_pred[i]>0.31: y_pred[i]=1 else: y_pred[i]=0 output_file=sys.argv[1] with open(output_file, 'w') as fo: print("\nemsembling...\n") lineno = 1 for pred in y_pred: fo.write('{}\t{}\n'.format(lineno, int(pred))) lineno += 1
[ "numpy.asarray", "numpy.vstack" ]
[((385, 399), 'numpy.asarray', 'np.asarray', (['x1'], {}), '(x1)\n', (395, 399), True, 'import numpy as np\n'), ((403, 417), 'numpy.asarray', 'np.asarray', (['x2'], {}), '(x2)\n', (413, 417), True, 'import numpy as np\n'), ((421, 435), 'numpy.asarray', 'np.asarray', (['x3'], {}), '(x3)\n', (431, 435), True, 'import numpy as np\n'), ((438, 457), 'numpy.vstack', 'np.vstack', (['(x1, x2)'], {}), '((x1, x2))\n', (447, 457), True, 'import numpy as np\n'), ((459, 477), 'numpy.vstack', 'np.vstack', (['(f, x3)'], {}), '((f, x3))\n', (468, 477), True, 'import numpy as np\n')]
""" Module with a function for plotting spectra. """ import os import math import warnings import itertools from typing import Optional, Union, Tuple, List import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from typeguard import typechecked from matplotlib.ticker import AutoMinorLocator, MultipleLocator from species.core import box, constants from species.read import read_filter from species.util import plot_util @typechecked def plot_spectrum(boxes: list, filters: Optional[List[str]] = None, residuals: Optional[box.ResidualsBox] = None, plot_kwargs: Optional[List[Optional[dict]]] = None, xlim: Optional[Tuple[float, float]] = None, ylim: Optional[Tuple[float, float]] = None, ylim_res: Optional[Tuple[float, float]] = None, scale: Optional[Tuple[str, str]] = None, title: Optional[str] = None, offset: Optional[Tuple[float, float]] = None, legend: Optional[Union[str, dict, Tuple[float, float], List[Optional[Union[dict, str, Tuple[float, float]]]]]] = None, figsize: Optional[Tuple[float, float]] = (10., 5.), object_type: str = 'planet', quantity: str = 'flux density', output: str = 'spectrum.pdf'): """ Parameters ---------- boxes : list(species.core.box, ) Boxes with data. filters : list(str, ), None Filter IDs for which the transmission profile is plotted. Not plotted if set to None. residuals : species.core.box.ResidualsBox, None Box with residuals of a fit. Not plotted if set to None. plot_kwargs : list(dict, ), None List with dictionaries of keyword arguments for each box. For example, if the ``boxes`` are a ``ModelBox`` and ``ObjectBox``: .. code-block:: python plot_kwargs=[{'ls': '-', 'lw': 1., 'color': 'black'}, {'spectrum_1': {'marker': 'o', 'ms': 3., 'color': 'tab:brown', 'ls': 'none'}, 'spectrum_2': {'marker': 'o', 'ms': 3., 'color': 'tab:blue', 'ls': 'none'}, 'Paranal/SPHERE.IRDIS_D_H23_3': {'marker': 's', 'ms': 4., 'color': 'tab:cyan', 'ls': 'none'}, 'Paranal/SPHERE.IRDIS_D_K12_1': [{'marker': 's', 'ms': 4., 'color': 'tab:orange', 'ls': 'none'}, {'marker': 's', 'ms': 4., 'color': 'tab:red', 'ls': 'none'}], 'Paranal/NACO.Lp': {'marker': 's', 'ms': 4., 'color': 'tab:green', 'ls': 'none'}, 'Paranal/NACO.Mp': {'marker': 's', 'ms': 4., 'color': 'tab:green', 'ls': 'none'}}] For an ``ObjectBox``, the dictionary contains items for the different spectrum and filter names stored with :func:`~species.data.database.Database.add_object`. In case both and ``ObjectBox`` and a ``SynphotBox`` are provided, then the latter can be set to ``None`` in order to use the same (but open) symbols as the data from the ``ObjectBox``. Note that if a filter name is duplicated in an ``ObjectBox`` (Paranal/SPHERE.IRDIS_D_K12_1 in the example) then a list with two dictionaries should be provided. Colors are automatically chosen if ``plot_kwargs`` is set to ``None``. xlim : tuple(float, float) Limits of the wavelength axis. ylim : tuple(float, float) Limits of the flux axis. ylim_res : tuple(float, float), None Limits of the residuals axis. Automatically chosen (based on the minimum and maximum residual value) if set to None. scale : tuple(str, str), None Scale of the x and y axes ('linear' or 'log'). The scale is set to ``('linear', 'linear')`` if set to ``None``. title : str Title. offset : tuple(float, float) Offset for the label of the x- and y-axis. legend : str, tuple, dict, list(dict, dict), None Location of the legend (str or tuple(float, float)) or a dictionary with the ``**kwargs`` of ``matplotlib.pyplot.legend``, for example ``{'loc': 'upper left', 'fontsize: 12.}``. Alternatively, a list with two values can be provided to separate the model and data handles in two legends. Each of these two elements can be set to ``None``. For example, ``[None, {'loc': 'upper left', 'fontsize: 12.}]``, if only the data points should be included in a legend. figsize : tuple(float, float) Figure size. object_type : str Object type ('planet' or 'star'). With 'planet', the radius and mass are expressed in Jupiter units. With 'star', the radius and mass are expressed in solar units. quantity: str The quantity of the y-axis ('flux density', 'flux', or 'magnitude'). output : str Output filename. Returns ------- NoneType None """ mpl.rcParams['font.serif'] = ['Bitstream Vera Serif'] mpl.rcParams['font.family'] = 'serif' plt.rc('axes', edgecolor='black', linewidth=2.2) plt.rcParams['axes.axisbelow'] = False if plot_kwargs is None: plot_kwargs = [] elif plot_kwargs is not None and len(boxes) != len(plot_kwargs): raise ValueError(f'The number of \'boxes\' ({len(boxes)}) should be equal to the ' f'number of items in \'plot_kwargs\' ({len(plot_kwargs)}).') if residuals is not None and filters is not None: plt.figure(1, figsize=figsize) gridsp = mpl.gridspec.GridSpec(3, 1, height_ratios=[1, 3, 1]) gridsp.update(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) ax1 = plt.subplot(gridsp[1, 0]) ax2 = plt.subplot(gridsp[0, 0]) ax3 = plt.subplot(gridsp[2, 0]) elif residuals is not None: plt.figure(1, figsize=figsize) gridsp = mpl.gridspec.GridSpec(2, 1, height_ratios=[4, 1]) gridsp.update(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) ax1 = plt.subplot(gridsp[0, 0]) ax2 = None ax3 = plt.subplot(gridsp[1, 0]) elif filters is not None: plt.figure(1, figsize=figsize) gridsp = mpl.gridspec.GridSpec(2, 1, height_ratios=[1, 4]) gridsp.update(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) ax1 = plt.subplot(gridsp[1, 0]) ax2 = plt.subplot(gridsp[0, 0]) ax3 = None else: plt.figure(1, figsize=figsize) gridsp = mpl.gridspec.GridSpec(1, 1) gridsp.update(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) ax1 = plt.subplot(gridsp[0, 0]) ax2 = None ax3 = None if residuals is not None: labelbottom = False else: labelbottom = True if scale is None: scale = ('linear', 'linear') ax1.set_xscale(scale[0]) ax1.set_yscale(scale[1]) if filters is not None: ax2.set_xscale(scale[0]) if residuals is not None: ax3.set_xscale(scale[0]) ax1.tick_params(axis='both', which='major', colors='black', labelcolor='black', direction='in', width=1, length=5, labelsize=12, top=True, bottom=True, left=True, right=True, labelbottom=labelbottom) ax1.tick_params(axis='both', which='minor', colors='black', labelcolor='black', direction='in', width=1, length=3, labelsize=12, top=True, bottom=True, left=True, right=True, labelbottom=labelbottom) if filters is not None: ax2.tick_params(axis='both', which='major', colors='black', labelcolor='black', direction='in', width=1, length=5, labelsize=12, top=True, bottom=True, left=True, right=True, labelbottom=False) ax2.tick_params(axis='both', which='minor', colors='black', labelcolor='black', direction='in', width=1, length=3, labelsize=12, top=True, bottom=True, left=True, right=True, labelbottom=False) if residuals is not None: ax3.tick_params(axis='both', which='major', colors='black', labelcolor='black', direction='in', width=1, length=5, labelsize=12, top=True, bottom=True, left=True, right=True) ax3.tick_params(axis='both', which='minor', colors='black', labelcolor='black', direction='in', width=1, length=3, labelsize=12, top=True, bottom=True, left=True, right=True) if scale[0] == 'linear': ax1.xaxis.set_minor_locator(AutoMinorLocator(5)) if scale[1] == 'linear': ax1.yaxis.set_minor_locator(AutoMinorLocator(5)) # ax1.set_yticks([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0]) # ax3.set_yticks([-2., 0., 2.]) if filters is not None and scale[0] == 'linear': ax2.xaxis.set_minor_locator(AutoMinorLocator(5)) if residuals is not None and scale[0] == 'linear': ax3.xaxis.set_minor_locator(AutoMinorLocator(5)) if residuals is not None and filters is not None: ax1.set_xlabel('') ax2.set_xlabel('') ax3.set_xlabel('Wavelength (µm)', fontsize=13) elif residuals is not None: ax1.set_xlabel('') ax3.set_xlabel('Wavelength (µm)', fontsize=11) elif filters is not None: ax1.set_xlabel('Wavelength (µm)', fontsize=13) ax2.set_xlabel('') else: ax1.set_xlabel('Wavelength (µm)', fontsize=13) if filters is not None: ax2.set_ylabel('Transmission', fontsize=13) if residuals is not None: if quantity == 'flux density': ax3.set_ylabel(r'$\Delta$$\mathregular{F}_\lambda$ ($\sigma$)', fontsize=11) elif quantity == 'flux': ax3.set_ylabel(r'$\Delta$$\mathregular{F}_\lambda$ ($\sigma$)', fontsize=11) if xlim is None: ax1.set_xlim(0.6, 6.) else: ax1.set_xlim(xlim[0], xlim[1]) if quantity == 'magnitude': scaling = 1. ax1.set_ylabel('Flux contrast (mag)', fontsize=13) if ylim: ax1.set_ylim(ylim[0], ylim[1]) else: if ylim: ax1.set_ylim(ylim[0], ylim[1]) ylim = ax1.get_ylim() exponent = math.floor(math.log10(ylim[1])) scaling = 10.**exponent if quantity == 'flux density': ylabel = r'$\mathregular{F}_\lambda$ (10$^{'+str(exponent)+r'}$ W m$^{-2}$ µm$^{-1}$)' elif quantity == 'flux': ylabel = r'$\lambda$$\mathregular{F}_\lambda$ (10$^{'+str(exponent)+r'}$ W m$^{-2}$)' ax1.set_ylabel(ylabel, fontsize=11) ax1.set_ylim(ylim[0]/scaling, ylim[1]/scaling) if ylim[0] < 0.: ax1.axhline(0.0, ls='--', lw=0.7, color='gray', dashes=(2, 4), zorder=0.5) else: if quantity == 'flux density': ax1.set_ylabel(r'$\mathregular{F}_\lambda$ (W m$^{-2}$ µm$^{-1}$)', fontsize=11) elif quantity == 'flux': ax1.set_ylabel(r'$\lambda$$\mathregular{F}_\lambda$ (W m$^{-2}$)', fontsize=11) scaling = 1. xlim = ax1.get_xlim() if filters is not None: ax2.set_xlim(xlim[0], xlim[1]) ax2.set_ylim(0., 1.) if residuals is not None: ax3.set_xlim(xlim[0], xlim[1]) if offset is not None and residuals is not None and filters is not None: ax3.get_xaxis().set_label_coords(0.5, offset[0]) ax1.get_yaxis().set_label_coords(offset[1], 0.5) ax2.get_yaxis().set_label_coords(offset[1], 0.5) ax3.get_yaxis().set_label_coords(offset[1], 0.5) elif offset is not None and filters is not None: ax1.get_xaxis().set_label_coords(0.5, offset[0]) ax1.get_yaxis().set_label_coords(offset[1], 0.5) ax2.get_yaxis().set_label_coords(offset[1], 0.5) elif offset is not None and residuals is not None: ax3.get_xaxis().set_label_coords(0.5, offset[0]) ax1.get_yaxis().set_label_coords(offset[1], 0.5) ax3.get_yaxis().set_label_coords(offset[1], 0.5) elif offset is not None: ax1.get_xaxis().set_label_coords(0.5, offset[0]) ax1.get_yaxis().set_label_coords(offset[1], 0.5) else: ax1.get_xaxis().set_label_coords(0.5, -0.12) ax1.get_yaxis().set_label_coords(-0.1, 0.5) for j, boxitem in enumerate(boxes): flux_scaling = 1. if j < len(boxes): plot_kwargs.append(None) if isinstance(boxitem, (box.SpectrumBox, box.ModelBox)): wavelength = boxitem.wavelength flux = boxitem.flux if isinstance(wavelength[0], (np.float32, np.float64)): data = np.array(flux, dtype=np.float64) masked = np.ma.array(data, mask=np.isnan(data)) if isinstance(boxitem, box.ModelBox): param = boxitem.parameters par_key, par_unit, par_label = plot_util.quantity_unit( param=list(param.keys()), object_type=object_type) label = '' newline = False for i, item in enumerate(par_key): if item[:4] == 'teff': value = f'{param[item]:.0f}' elif item in ['logg', 'feh', 'fsed', 'lognorm_ext', 'powerlaw_ext', 'ism_ext']: value = f'{param[item]:.1f}' elif item in ['co']: value = f'{param[item]:.2f}' elif item[:6] == 'radius': if object_type == 'planet': value = f'{param[item]:.1f}' # if item == 'radius_1': # value = f'{param[item]:.0f}' # else: # value = f'{param[item]:.1f}' elif object_type == 'star': value = f'{param[item]*constants.R_JUP/constants.R_SUN:.1f}' elif item == 'mass': if object_type == 'planet': value = f'{param[item]:.0f}' elif object_type == 'star': value = f'{param[item]*constants.M_JUP/constants.M_SUN:.1f}' elif item == 'luminosity': value = f'{np.log10(param[item]):.2f}' else: continue # if len(label) > 80 and newline == False: # label += '\n' # newline = True if par_unit[i] is None: label += f'{par_label[i]} = {value}' else: label += f'{par_label[i]} = {value} {par_unit[i]}' if i < len(par_key)-1: label += ', ' else: label = None if plot_kwargs[j]: kwargs_copy = plot_kwargs[j].copy() if 'label' in kwargs_copy: if kwargs_copy['label'] is None: label = None else: label = kwargs_copy['label'] del kwargs_copy['label'] if quantity == 'flux': flux_scaling = wavelength ax1.plot(wavelength, flux_scaling*masked/scaling, zorder=2, label=label, **kwargs_copy) else: if quantity == 'flux': flux_scaling = wavelength ax1.plot(wavelength, flux_scaling*masked/scaling, lw=0.5, label=label, zorder=2) elif isinstance(wavelength[0], (np.ndarray)): for i, item in enumerate(wavelength): data = np.array(flux[i], dtype=np.float64) masked = np.ma.array(data, mask=np.isnan(data)) if isinstance(boxitem.name[i], bytes): label = boxitem.name[i].decode('utf-8') else: label = boxitem.name[i] if quantity == 'flux': flux_scaling = item ax1.plot(item, flux_scaling*masked/scaling, lw=0.5, label=label) elif isinstance(boxitem, list): for i, item in enumerate(boxitem): wavelength = item.wavelength flux = item.flux data = np.array(flux, dtype=np.float64) masked = np.ma.array(data, mask=np.isnan(data)) if quantity == 'flux': flux_scaling = wavelength if plot_kwargs[j]: ax1.plot(wavelength, flux_scaling*masked/scaling, zorder=1, **plot_kwargs[j]) else: ax1.plot(wavelength, flux_scaling*masked/scaling, color='gray', lw=0.2, alpha=0.5, zorder=1) elif isinstance(boxitem, box.PhotometryBox): label_check = [] for i, item in enumerate(boxitem.wavelength): transmission = read_filter.ReadFilter(boxitem.filter_name[i]) fwhm = transmission.filter_fwhm() if quantity == 'flux': flux_scaling = item if plot_kwargs[j]: if 'label' in plot_kwargs[j] and plot_kwargs[j]['label'] not in label_check: label_check.append(plot_kwargs[j]['label']) elif 'label' in plot_kwargs[j] and plot_kwargs[j]['label'] in label_check: del plot_kwargs[j]['label'] if boxitem.flux[i][1] is None: ax1.errorbar(item, flux_scaling*boxitem.flux[i][0]/scaling, xerr=fwhm/2., yerr=None, zorder=3, **plot_kwargs[j]) else: ax1.errorbar(item, flux_scaling*boxitem.flux[i][0]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[i][1]/scaling, zorder=3, **plot_kwargs[j]) else: if boxitem.flux[i][1] is None: ax1.errorbar(item, flux_scaling*boxitem.flux[i][0]/scaling, xerr=fwhm/2., yerr=None, marker='s', ms=6, color='black', zorder=3) else: ax1.errorbar(item, flux_scaling*boxitem.flux[i][0]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[i][1]/scaling, marker='s', ms=6, color='black', zorder=3) elif isinstance(boxitem, box.ObjectBox): if boxitem.spectrum is not None: spec_list = [] wavel_list = [] for item in boxitem.spectrum: spec_list.append(item) wavel_list.append(boxitem.spectrum[item][0][0, 0]) sort_index = np.argsort(wavel_list) spec_sort = [] for i in range(sort_index.size): spec_sort.append(spec_list[sort_index[i]]) for key in spec_sort: masked = np.ma.array(boxitem.spectrum[key][0], mask=np.isnan(boxitem.spectrum[key][0])) if quantity == 'flux': flux_scaling = masked[:, 0] if not plot_kwargs[j] or key not in plot_kwargs[j]: plot_obj = ax1.errorbar(masked[:, 0], flux_scaling*masked[:, 1]/scaling, yerr=flux_scaling*masked[:, 2]/scaling, ms=2, marker='s', zorder=2.5, ls='none') if plot_kwargs[j] is None: plot_kwargs[j] = {} plot_kwargs[j][key] = {'marker': 's', 'ms': 2., 'ls': 'none', 'color': plot_obj[0].get_color()} else: ax1.errorbar(masked[:, 0], flux_scaling*masked[:, 1]/scaling, yerr=flux_scaling*masked[:, 2]/scaling, zorder=2.5, **plot_kwargs[j][key]) if boxitem.flux is not None: filter_list = [] wavel_list = [] for item in boxitem.flux: read_filt = read_filter.ReadFilter(item) filter_list.append(item) wavel_list.append(read_filt.mean_wavelength()) sort_index = np.argsort(wavel_list) filter_sort = [] for i in range(sort_index.size): filter_sort.append(filter_list[sort_index[i]]) for item in filter_sort: transmission = read_filter.ReadFilter(item) wavelength = transmission.mean_wavelength() fwhm = transmission.filter_fwhm() if not plot_kwargs[j] or item not in plot_kwargs[j]: if not plot_kwargs[j]: plot_kwargs[j] = {} if quantity == 'flux': flux_scaling = wavelength if isinstance(boxitem.flux[item][0], np.ndarray): for i in range(boxitem.flux[item].shape[1]): plot_obj = ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item][0, i]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[item][1, i]/scaling, marker='s', ms=5, zorder=3) else: plot_obj = ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item][0]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[item][1]/scaling, marker='s', ms=5, zorder=3) plot_kwargs[j][item] = {'marker': 's', 'ms': 5., 'color': plot_obj[0].get_color()} else: if quantity == 'flux': flux_scaling = wavelength if isinstance(boxitem.flux[item][0], np.ndarray): if not isinstance(plot_kwargs[j][item], list): raise ValueError(f'A list with {boxitem.flux[item].shape[1]} ' f'dictionaries are required because the filter ' f'{item} has {boxitem.flux[item].shape[1]} ' f'values.') for i in range(boxitem.flux[item].shape[1]): ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item][0, i]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[item][1, i]/scaling, zorder=3, **plot_kwargs[j][item][i]) else: if boxitem.flux[item][1] == 0.: ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item][0]/scaling, xerr=fwhm/2., yerr=0.5*flux_scaling*boxitem.flux[item][0]/scaling, uplims=True, capsize=2., capthick=0., zorder=3, **plot_kwargs[j][item]) else: ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item][0]/scaling, xerr=fwhm/2., yerr=flux_scaling*boxitem.flux[item][1]/scaling, zorder=3, **plot_kwargs[j][item]) elif isinstance(boxitem, box.SynphotBox): for i, find_item in enumerate(boxes): if isinstance(find_item, box.ObjectBox): obj_index = i break for item in boxitem.flux: transmission = read_filter.ReadFilter(item) wavelength = transmission.mean_wavelength() fwhm = transmission.filter_fwhm() if quantity == 'flux': flux_scaling = wavelength if not plot_kwargs[obj_index] or item not in plot_kwargs[obj_index]: ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item]/scaling, xerr=fwhm/2., yerr=None, alpha=0.7, marker='s', ms=5, zorder=4, mfc='white') else: if isinstance(plot_kwargs[obj_index][item], list): # In case of multiple photometry values for the same filter, use the # plot_kwargs of the first data point kwargs_copy = plot_kwargs[obj_index][item][0].copy() if 'label' in kwargs_copy: del kwargs_copy['label'] ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item]/scaling, xerr=fwhm/2., yerr=None, zorder=4, mfc='white', **kwargs_copy) else: kwargs_copy = plot_kwargs[obj_index][item].copy() if 'label' in kwargs_copy: del kwargs_copy['label'] if 'mfc' in kwargs_copy: del kwargs_copy['mfc'] ax1.errorbar(wavelength, flux_scaling*boxitem.flux[item]/scaling, xerr=fwhm/2., yerr=None, zorder=4, mfc='white', **kwargs_copy) if filters is not None: for i, item in enumerate(filters): transmission = read_filter.ReadFilter(item) data = transmission.get_filter() ax2.plot(data[:, 0], data[:, 1], '-', lw=0.7, color='black', zorder=1) if residuals is not None: for i, find_item in enumerate(boxes): if isinstance(find_item, box.ObjectBox): obj_index = i break res_max = 0. if residuals.photometry is not None: for item in residuals.photometry: if not plot_kwargs[obj_index] or item not in plot_kwargs[obj_index]: ax3.plot(residuals.photometry[item][0], residuals.photometry[item][1], marker='s', ms=5, linestyle='none', zorder=2) else: if residuals.photometry[item].ndim == 1: ax3.errorbar(residuals.photometry[item][0], residuals.photometry[item][1], zorder=2, **plot_kwargs[obj_index][item]) elif residuals.photometry[item].ndim == 2: for i in range(residuals.photometry[item].shape[1]): if isinstance(plot_kwargs[obj_index][item], list): ax3.errorbar(residuals.photometry[item][0, i], residuals.photometry[item][1, i], zorder=2, **plot_kwargs[obj_index][item][i]) else: ax3.errorbar(residuals.photometry[item][0, i], residuals.photometry[item][1, i], zorder=2, **plot_kwargs[obj_index][item]) res_max = np.nanmax(np.abs(residuals.photometry[item][1])) if residuals.spectrum is not None: for key, value in residuals.spectrum.items(): if not plot_kwargs[obj_index] or key not in plot_kwargs[obj_index]: ax3.errorbar(value[:, 0], value[:, 1], marker='o', ms=2, ls='none', zorder=1) else: ax3.errorbar(value[:, 0], value[:, 1], zorder=1, **plot_kwargs[obj_index][key]) max_tmp = np.nanmax(np.abs(value[:, 1])) if max_tmp > res_max: res_max = max_tmp res_lim = math.ceil(1.1*res_max) if res_lim > 10.: res_lim = 5. ax3.axhline(0., ls='--', lw=0.7, color='gray', dashes=(2, 4), zorder=0.5) # ax3.axhline(-2.5, ls=':', lw=0.7, color='gray', dashes=(1, 4), zorder=0.5) # ax3.axhline(2.5, ls=':', lw=0.7, color='gray', dashes=(1, 4), zorder=0.5) if ylim_res is None: ax3.set_ylim(-res_lim, res_lim) else: ax3.set_ylim(ylim_res[0], ylim_res[1]) if filters is not None: ax2.set_ylim(0., 1.1) print(f'Plotting spectrum: {output}...', end='', flush=True) if title is not None: if filters: ax2.set_title(title, y=1.02, fontsize=13) else: ax1.set_title(title, y=1.02, fontsize=13) handles, labels = ax1.get_legend_handles_labels() if handles and legend is not None: if isinstance(legend, list): model_handles = [] data_handles = [] model_labels = [] data_labels = [] for i, item in enumerate(handles): if isinstance(item, mpl.lines.Line2D): model_handles.append(item) model_labels.append(labels[i]) elif isinstance(item, mpl.container.ErrorbarContainer): data_handles.append(item) data_labels.append(labels[i]) else: warnings.warn(f'The object type {item} is not implemented for the legend.') if legend[0] is not None: if isinstance(legend[0], (str, tuple)): leg_1 = ax1.legend(model_handles, model_labels, loc=legend[0], fontsize=10., frameon=False) else: leg_1 = ax1.legend(model_handles, model_labels, **legend[0]) else: leg_1 = None if legend[1] is not None: if isinstance(legend[1], (str, tuple)): leg_2 = ax1.legend(data_handles, data_labels, loc=legend[1], fontsize=8, frameon=False) else: leg_2 = ax1.legend(data_handles, data_labels, **legend[1]) if leg_1 is not None: ax1.add_artist(leg_1) elif isinstance(legend, (str, tuple)): ax1.legend(loc=legend, fontsize=8, frameon=False) else: ax1.legend(**legend) # filters = ['Paranal/SPHERE.ZIMPOL_N_Ha', # 'MUSE/Hbeta', # 'ALMA/855'] # # filters = ['Paranal/SPHERE.IRDIS_B_Y', # 'MKO/NSFCam.J', # 'Paranal/SPHERE.IRDIS_D_H23_2', # 'Paranal/SPHERE.IRDIS_D_H23_3', # 'Paranal/SPHERE.IRDIS_D_K12_1', # 'Paranal/SPHERE.IRDIS_D_K12_2', # 'Paranal/NACO.Lp', # 'Paranal/NACO.NB405', # 'Paranal/NACO.Mp'] # # for i, item in enumerate(filters): # readfilter = read_filter.ReadFilter(item) # filter_wavelength = readfilter.mean_wavelength() # filter_width = readfilter.filter_fwhm() # # # if i == 5: # # ax1.errorbar(filter_wavelength, 1.3e4, xerr=filter_width/2., color='dimgray', elinewidth=2.5, zorder=10) # # else: # # ax1.errorbar(filter_wavelength, 6e3, xerr=filter_width/2., color='dimgray', elinewidth=2.5, zorder=10) # # if i == 0: # ax1.text(filter_wavelength, 1e-2, r'H$\alpha$', ha='center', va='center', fontsize=10, color='black') # elif i == 1: # ax1.text(filter_wavelength, 1e-2, r'H$\beta$', ha='center', va='center', fontsize=10, color='black') # elif i == 2: # ax1.text(filter_wavelength, 1e-2, 'ALMA\nband 7 rms', ha='center', va='center', fontsize=8, color='black') # # if i == 0: # ax1.text(filter_wavelength, 1.4, 'Y', ha='center', va='center', fontsize=10, color='black') # elif i == 1: # ax1.text(filter_wavelength, 1.4, 'J', ha='center', va='center', fontsize=10, color='black') # elif i == 2: # ax1.text(filter_wavelength-0.04, 1.4, 'H2', ha='center', va='center', fontsize=10, color='black') # elif i == 3: # ax1.text(filter_wavelength+0.04, 1.4, 'H3', ha='center', va='center', fontsize=10, color='black') # elif i == 4: # ax1.text(filter_wavelength, 1.4, 'K1', ha='center', va='center', fontsize=10, color='black') # elif i == 5: # ax1.text(filter_wavelength, 1.4, 'K2', ha='center', va='center', fontsize=10, color='black') # elif i == 6: # ax1.text(filter_wavelength, 1.4, 'L$\'$', ha='center', va='center', fontsize=10, color='black') # elif i == 7: # ax1.text(filter_wavelength, 1.4, 'NB4.05', ha='center', va='center', fontsize=10, color='black') # elif i == 8: # ax1.text(filter_wavelength, 1.4, 'M$\'}$', ha='center', va='center', fontsize=10, color='black') # # ax1.text(1.26, 0.58, 'VLT/SPHERE', ha='center', va='center', fontsize=8., color='slateblue', rotation=43.) # ax1.text(2.5, 1.28, 'VLT/SINFONI', ha='left', va='center', fontsize=8., color='darkgray') plt.savefig(os.getcwd()+'/'+output, bbox_inches='tight') plt.clf() plt.close() print(' [DONE]')
[ "matplotlib.pyplot.subplot", "numpy.abs", "matplotlib.pyplot.clf", "math.ceil", "matplotlib.pyplot.close", "os.getcwd", "species.read.read_filter.ReadFilter", "numpy.isnan", "numpy.argsort", "numpy.log10", "matplotlib.pyplot.figure", "matplotlib.ticker.AutoMinorLocator", "math.log10", "matplotlib.pyplot.rc", "numpy.array", "warnings.warn", "matplotlib.gridspec.GridSpec" ]
[((5193, 5241), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'edgecolor': '"""black"""', 'linewidth': '(2.2)'}), "('axes', edgecolor='black', linewidth=2.2)\n", (5199, 5241), True, 'import matplotlib.pyplot as plt\n'), ((33899, 33908), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (33906, 33908), True, 'import matplotlib.pyplot as plt\n'), ((33913, 33924), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (33922, 33924), True, 'import matplotlib.pyplot as plt\n'), ((5649, 5679), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': 'figsize'}), '(1, figsize=figsize)\n', (5659, 5679), True, 'import matplotlib.pyplot as plt\n'), ((5697, 5749), 'matplotlib.gridspec.GridSpec', 'mpl.gridspec.GridSpec', (['(3)', '(1)'], {'height_ratios': '[1, 3, 1]'}), '(3, 1, height_ratios=[1, 3, 1])\n', (5718, 5749), True, 'import matplotlib as mpl\n'), ((5841, 5866), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[1, 0]'], {}), '(gridsp[1, 0])\n', (5852, 5866), True, 'import matplotlib.pyplot as plt\n'), ((5881, 5906), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[0, 0]'], {}), '(gridsp[0, 0])\n', (5892, 5906), True, 'import matplotlib.pyplot as plt\n'), ((5921, 5946), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[2, 0]'], {}), '(gridsp[2, 0])\n', (5932, 5946), True, 'import matplotlib.pyplot as plt\n'), ((28610, 28634), 'math.ceil', 'math.ceil', (['(1.1 * res_max)'], {}), '(1.1 * res_max)\n', (28619, 28634), False, 'import math\n'), ((5988, 6018), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': 'figsize'}), '(1, figsize=figsize)\n', (5998, 6018), True, 'import matplotlib.pyplot as plt\n'), ((6036, 6085), 'matplotlib.gridspec.GridSpec', 'mpl.gridspec.GridSpec', (['(2)', '(1)'], {'height_ratios': '[4, 1]'}), '(2, 1, height_ratios=[4, 1])\n', (6057, 6085), True, 'import matplotlib as mpl\n'), ((6177, 6202), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[0, 0]'], {}), '(gridsp[0, 0])\n', (6188, 6202), True, 'import matplotlib.pyplot as plt\n'), ((6236, 6261), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[1, 0]'], {}), '(gridsp[1, 0])\n', (6247, 6261), True, 'import matplotlib.pyplot as plt\n'), ((8746, 8765), 'matplotlib.ticker.AutoMinorLocator', 'AutoMinorLocator', (['(5)'], {}), '(5)\n', (8762, 8765), False, 'from matplotlib.ticker import AutoMinorLocator, MultipleLocator\n'), ((8833, 8852), 'matplotlib.ticker.AutoMinorLocator', 'AutoMinorLocator', (['(5)'], {}), '(5)\n', (8849, 8852), False, 'from matplotlib.ticker import AutoMinorLocator, MultipleLocator\n'), ((9039, 9058), 'matplotlib.ticker.AutoMinorLocator', 'AutoMinorLocator', (['(5)'], {}), '(5)\n', (9055, 9058), False, 'from matplotlib.ticker import AutoMinorLocator, MultipleLocator\n'), ((9152, 9171), 'matplotlib.ticker.AutoMinorLocator', 'AutoMinorLocator', (['(5)'], {}), '(5)\n', (9168, 9171), False, 'from matplotlib.ticker import AutoMinorLocator, MultipleLocator\n'), ((26258, 26286), 'species.read.read_filter.ReadFilter', 'read_filter.ReadFilter', (['item'], {}), '(item)\n', (26280, 26286), False, 'from species.read import read_filter\n'), ((6301, 6331), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': 'figsize'}), '(1, figsize=figsize)\n', (6311, 6331), True, 'import matplotlib.pyplot as plt\n'), ((6349, 6398), 'matplotlib.gridspec.GridSpec', 'mpl.gridspec.GridSpec', (['(2)', '(1)'], {'height_ratios': '[1, 4]'}), '(2, 1, height_ratios=[1, 4])\n', (6370, 6398), True, 'import matplotlib as mpl\n'), ((6490, 6515), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[1, 0]'], {}), '(gridsp[1, 0])\n', (6501, 6515), True, 'import matplotlib.pyplot as plt\n'), ((6530, 6555), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[0, 0]'], {}), '(gridsp[0, 0])\n', (6541, 6555), True, 'import matplotlib.pyplot as plt\n'), ((6594, 6624), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': 'figsize'}), '(1, figsize=figsize)\n', (6604, 6624), True, 'import matplotlib.pyplot as plt\n'), ((6642, 6669), 'matplotlib.gridspec.GridSpec', 'mpl.gridspec.GridSpec', (['(1)', '(1)'], {}), '(1, 1)\n', (6663, 6669), True, 'import matplotlib as mpl\n'), ((6761, 6786), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gridsp[0, 0]'], {}), '(gridsp[0, 0])\n', (6772, 6786), True, 'import matplotlib.pyplot as plt\n'), ((10410, 10429), 'math.log10', 'math.log10', (['ylim[1]'], {}), '(ylim[1])\n', (10420, 10429), False, 'import math\n'), ((12879, 12911), 'numpy.array', 'np.array', (['flux'], {'dtype': 'np.float64'}), '(flux, dtype=np.float64)\n', (12887, 12911), True, 'import numpy as np\n'), ((33850, 33861), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (33859, 33861), False, 'import os\n'), ((16940, 16972), 'numpy.array', 'np.array', (['flux'], {'dtype': 'np.float64'}), '(flux, dtype=np.float64)\n', (16948, 16972), True, 'import numpy as np\n'), ((28010, 28047), 'numpy.abs', 'np.abs', (['residuals.photometry[item][1]'], {}), '(residuals.photometry[item][1])\n', (28016, 28047), True, 'import numpy as np\n'), ((28493, 28512), 'numpy.abs', 'np.abs', (['value[:, 1]'], {}), '(value[:, 1])\n', (28499, 28512), True, 'import numpy as np\n'), ((12960, 12974), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (12968, 12974), True, 'import numpy as np\n'), ((16274, 16309), 'numpy.array', 'np.array', (['flux[i]'], {'dtype': 'np.float64'}), '(flux[i], dtype=np.float64)\n', (16282, 16309), True, 'import numpy as np\n'), ((17565, 17611), 'species.read.read_filter.ReadFilter', 'read_filter.ReadFilter', (['boxitem.filter_name[i]'], {}), '(boxitem.filter_name[i])\n', (17587, 17611), False, 'from species.read import read_filter\n'), ((30037, 30112), 'warnings.warn', 'warnings.warn', (['f"""The object type {item} is not implemented for the legend."""'], {}), "(f'The object type {item} is not implemented for the legend.')\n", (30050, 30112), False, 'import warnings\n'), ((17021, 17035), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (17029, 17035), True, 'import numpy as np\n'), ((19453, 19475), 'numpy.argsort', 'np.argsort', (['wavel_list'], {}), '(wavel_list)\n', (19463, 19475), True, 'import numpy as np\n'), ((21097, 21119), 'numpy.argsort', 'np.argsort', (['wavel_list'], {}), '(wavel_list)\n', (21107, 21119), True, 'import numpy as np\n'), ((16362, 16376), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (16370, 16376), True, 'import numpy as np\n'), ((20926, 20954), 'species.read.read_filter.ReadFilter', 'read_filter.ReadFilter', (['item'], {}), '(item)\n', (20948, 20954), False, 'from species.read import read_filter\n'), ((21347, 21375), 'species.read.read_filter.ReadFilter', 'read_filter.ReadFilter', (['item'], {}), '(item)\n', (21369, 21375), False, 'from species.read import read_filter\n'), ((24531, 24559), 'species.read.read_filter.ReadFilter', 'read_filter.ReadFilter', (['item'], {}), '(item)\n', (24553, 24559), False, 'from species.read import read_filter\n'), ((19772, 19806), 'numpy.isnan', 'np.isnan', (['boxitem.spectrum[key][0]'], {}), '(boxitem.spectrum[key][0])\n', (19780, 19806), True, 'import numpy as np\n'), ((14716, 14737), 'numpy.log10', 'np.log10', (['param[item]'], {}), '(param[item])\n', (14724, 14737), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # # Tests if the Fitzhugh-Nagumo toy model runs. # # This file is part of PINTS (https://github.com/pints-team/pints/) which is # released under the BSD 3-clause license. See accompanying LICENSE.md for # copyright notice and full license details. # import unittest import pints import pints.toy import numpy as np class TestFitzhughNagumoModel(unittest.TestCase): """ Tests if the Fitzhugh-Nagumo toy model runs. """ def test_run(self): # Test basic properties model = pints.toy.FitzhughNagumoModel() self.assertEqual(model.n_parameters(), 3) self.assertEqual(model.n_outputs(), 2) # Test simulation x = model.suggested_parameters() times = model.suggested_times() values = model.simulate(x, times) self.assertEqual(values.shape, (len(times), 2)) # Simulation with sensitivities values, dvalues_dp = model.simulateS1(x, times) self.assertEqual(values.shape, (len(times), 2)) self.assertEqual(dvalues_dp.shape, (len(times), 2, 3)) # Test alternative starting position model = pints.toy.FitzhughNagumoModel([0.1, 0.1]) values = model.simulate(x, times) self.assertEqual(values.shape, (len(times), 2)) # Times can't be negative times = [-1, 2, 3, 4] self.assertRaises(ValueError, model.simulate, x, times) # Initial value must have size 2 pints.toy.FitzhughNagumoModel([1, 1]) self.assertRaises(ValueError, pints.toy.FitzhughNagumoModel, [1]) def test_values(self): # value-based tests of Fitzhugh-Nagumo model parameters = [0.2, 0.4, 2.5] y0 = [-2, 1.5] times = np.linspace(0, 20, 201) model = pints.toy.FitzhughNagumoModel(y0) values = model.simulate(parameters, times) self.assertAlmostEqual(values[200, 0], 1.675726, places=6) self.assertAlmostEqual(values[200, 1], -0.226142, places=6) def test_sensitivities(self): # compares sensitivities against standards model = pints.toy.FitzhughNagumoModel([2, 3]) parameters = [0.2, 0.7, 2.8] # Test with initial point t=0 included in range sols, sens = model.simulateS1(parameters, [0, 7, 12]) self.assertAlmostEqual(sens[1, 0, 2], 5.01378, 5) self.assertAlmostEqual(sens[2, 1, 1], 0.82883, 4) # Test without initial point in range sols, sens = model.simulateS1(parameters, [7, 12]) self.assertAlmostEqual(sens[0, 0, 2], 5.01378, 5) self.assertAlmostEqual(sens[1, 1, 1], 0.82883, 4) # Test without any points in range sols, sens = model.simulateS1(parameters, []) self.assertEqual(sols.shape, (0, 2)) self.assertEqual(sens.shape, (0, 2, 3)) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.linspace", "pints.toy.FitzhughNagumoModel" ]
[((2848, 2863), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2861, 2863), False, 'import unittest\n'), ((529, 560), 'pints.toy.FitzhughNagumoModel', 'pints.toy.FitzhughNagumoModel', ([], {}), '()\n', (558, 560), False, 'import pints\n'), ((1142, 1183), 'pints.toy.FitzhughNagumoModel', 'pints.toy.FitzhughNagumoModel', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (1171, 1183), False, 'import pints\n'), ((1461, 1498), 'pints.toy.FitzhughNagumoModel', 'pints.toy.FitzhughNagumoModel', (['[1, 1]'], {}), '([1, 1])\n', (1490, 1498), False, 'import pints\n'), ((1730, 1753), 'numpy.linspace', 'np.linspace', (['(0)', '(20)', '(201)'], {}), '(0, 20, 201)\n', (1741, 1753), True, 'import numpy as np\n'), ((1770, 1803), 'pints.toy.FitzhughNagumoModel', 'pints.toy.FitzhughNagumoModel', (['y0'], {}), '(y0)\n', (1799, 1803), False, 'import pints\n'), ((2092, 2129), 'pints.toy.FitzhughNagumoModel', 'pints.toy.FitzhughNagumoModel', (['[2, 3]'], {}), '([2, 3])\n', (2121, 2129), False, 'import pints\n')]
import math import numpy as np ## Real Data: # %% Kinect Color Camera color_cam_matrix = np.array([ 1.0526303338534365e+03, 0., 9.3528526085572480e+02, 0., 1.0534191001014469e+03, 5.2225718970556716e+02, 0., 0., 1. ]).reshape(3,3) color_distortion_coeffs = np.array([ 4.5467150011699140e-02, -7.4470107942918126e-02, -6.1697129558609537e-03, -2.5667037404509380e-03, -1.4503959457133547e-02 ]).reshape(1,5) color_rotation = np.eye(3) color_projection = np.array([ 1.0526303338534365e+03, 0., 9.3528526085572480e+02, 0., 0., 1.0534191001014469e+03, 5.2225718970556716e+02, 0., 0., 0., 1., 0., 0., 0., 0., 1. ]).reshape(4,4) # %% Kinect IR Camera ir_cam_matrix = np.array([ 3.5706872738709285e+02, 0., 2.5037220752105404e+02, 0., 3.5700920458183873e+02, 2.0803230739018434e+02, 0., 0., 1. ]).reshape(3,3) ir_distortion_coeffs = np.array([ 5.5998048975189132e-02, -2.5691440815038830e-01, -5.3889184410447575e-03, -1.6922667364749613e-03, 1.9674519800098919e-01 ]).reshape(1,5) ir_rotation = np.eye(3) ir_projection = np.array([ 3.5706872738709285e+02, 0., 2.5037220752105404e+02, 0., 0., 3.5700920458183873e+02, 2.0803230739018434e+02, 0., 0., 0., 1., 0., 0., 0., 0., 1. ]).reshape(4,4) depthShift = -2.7989551644219979e+01 # %% Pose Calibration between depth and color rotation = np.array([ 9.9997222955499243e-01, -7.4399336788120839e-03, 4.3301925190808763e-04, 7.4347723554060875e-03, 9.9991294780487039e-01, 1.0900503300210780e-02, -5.1408057825089366e-04, -1.0896981188819882e-02, 9.9994049399058227e-01 ]).reshape(3,3) translation = np.array([ -5.2291985456630448e-02, -1.9227292627499695e-04, 1.7173350151375650e-03 ]).reshape(3,1) essential = np.array([ -1.2669151118394222e-05, -1.7150903228939863e-03, -2.1098130088050980e-04, 1.6904050298585356e-03, -5.8260164046387006e-04, 5.2289617408374921e-02, -1.9651142111198186e-04, -5.2288863822328481e-02, -5.6992570216587654e-04 ]).reshape(3,3) fundamental = np.array([ -8.8142664830290771e-09, -1.1934330447023842e-06, 1.9806702972926870e-04, 1.1751792885051283e-06, -4.0509553642475600e-07, 1.2770218257581496e-02, -7.4941574482561516e-04, -3.6972004067303506e-02, 1. ]).reshape(3,3) # %% Color Params color_height = 1080 color_width = 1920 color_fov_x = 360 / math.pi * math.atan2(color_width, 2 * color_cam_matrix[0,0]) color_fov_y = 360 / math.pi * math.atan2(color_height, 2 * color_cam_matrix[1,1] ) color_fx = color_cam_matrix[0,0] color_fy = color_cam_matrix[1,1] color_cx = color_cam_matrix[0,2] color_cy = color_cam_matrix[1,2] color_fx color_fy color_fov_x color_fov_y # %% IR Field of View, Width, Height computation ir_width = 512 ir_height = 424 ir_aspect = ir_width / ir_height depth_fov_x = 360 / math.pi * math.atan2(ir_width, 2 * color_cam_matrix[0,0]) depth_fov_y = 360 / math.pi * math.atan2(ir_height, 2 * color_cam_matrix[1,1]) ir_fx = ir_cam_matrix[0,0] ir_fy = ir_cam_matrix[1,1] ir_cx = ir_cam_matrix[0,2] ir_cy = ir_cam_matrix[1,2] ## transform into camera frame. useful for reconstruction! T_magic_to_cam = np.array([ [0. ,-1. , 0. , 0. ], [0. , 0. ,-1. , 0. ], [1. , 0. , 0. , 0. ], [0. , 0. , 0. , 1.0]]) ## Simulation Camera Params # %% znear = 0.1 zfar = 12 sim_width = 192 sim_height = 108 # sim_width = 720 * 4 # sim_height = 405 * 4 old_sim_fovy = 60 * math.pi / 180 old_sim_fovx = 2 * math.atan(math.tan(old_sim_fovy / 2) * sim_width / sim_height) old_sim_fovy * 180 / math.pi old_sim_fovx * 180 / math.pi old_sim_focal_y = (sim_height / 2) / math.tan(old_sim_fovy / 2) old_sim_focal_x = (sim_width / 2 ) / math.tan(old_sim_fovx / 2) old_sim_proj_matrix = np.array([[old_sim_focal_x, 0, sim_width / 2], [0, old_sim_focal_y, sim_height / 2], [0, 0, 1]]) # new sim cam Params, using color fov_y sim_focal_y = (sim_height / 2) / math.tan(color_fov_y * 3.14 / 180.0 / 2) sim_focal_x = sim_focal_y sim_proj_matrix = np.array([[sim_focal_x, 0, sim_width / 2], [0, sim_focal_y, sim_height / 2], [0, 0, 1]]) # checking that these are reasonable color_fov_x = 360 / math.pi * math.atan2(color_width, 2 * color_cam_matrix[0,0]) color_fov_y = 360 / math.pi * math.atan2(color_height, 2 * color_cam_matrix[1,1] ) color_fov_x color_fov_y test_sim_fov_y = 360 / math.pi * math.atan2(sim_height, 2 * sim_proj_matrix[1,1] ) test_sim_fov_x = 360 / math.pi * math.atan2(sim_width, 2 * sim_proj_matrix[0,0] ) # fake real sim cam Params (ie, size is the full 1920 x 1080) fake_focal_y = (color_height / 2) / math.tan(color_fov_y * 3.14 / 180.0 / 2) fake_focal_x = (color_width / 2) / math.tan(color_fov_x * 3.14 / 180.0 / 2) fake_proj_matrix = np.array([[fake_focal_x, 0, color_width / 2], [0, fake_focal_y, color_height / 2], [0, 0, 1]]) if __name__ == '__main__': np.set_printoptions(suppress=True) print(' \n simulated cam matrix: \n\t', str(np.round(fake_proj_matrix,0)).replace('\n', '\n\t')) print(' \n real cam matrix: \n\t', str(np.round(color_cam_matrix,0)).replace('\n', '\n\t')) print(' \n ') print(color_fov_y)
[ "numpy.set_printoptions", "math.atan2", "math.tan", "numpy.array", "numpy.eye", "numpy.round" ]
[((425, 434), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (431, 434), True, 'import numpy as np\n'), ((991, 1000), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (997, 1000), True, 'import numpy as np\n'), ((3004, 3109), 'numpy.array', 'np.array', (['[[0.0, -1.0, 0.0, 0.0], [0.0, 0.0, -1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 1.0]]'], {}), '([[0.0, -1.0, 0.0, 0.0], [0.0, 0.0, -1.0, 0.0], [1.0, 0.0, 0.0, 0.0\n ], [0.0, 0.0, 0.0, 1.0]])\n', (3012, 3109), True, 'import numpy as np\n'), ((3649, 3750), 'numpy.array', 'np.array', (['[[old_sim_focal_x, 0, sim_width / 2], [0, old_sim_focal_y, sim_height / 2],\n [0, 0, 1]]'], {}), '([[old_sim_focal_x, 0, sim_width / 2], [0, old_sim_focal_y, \n sim_height / 2], [0, 0, 1]])\n', (3657, 3750), True, 'import numpy as np\n'), ((3970, 4062), 'numpy.array', 'np.array', (['[[sim_focal_x, 0, sim_width / 2], [0, sim_focal_y, sim_height / 2], [0, 0, 1]]'], {}), '([[sim_focal_x, 0, sim_width / 2], [0, sim_focal_y, sim_height / 2],\n [0, 0, 1]])\n', (3978, 4062), True, 'import numpy as np\n'), ((4753, 4852), 'numpy.array', 'np.array', (['[[fake_focal_x, 0, color_width / 2], [0, fake_focal_y, color_height / 2], [\n 0, 0, 1]]'], {}), '([[fake_focal_x, 0, color_width / 2], [0, fake_focal_y, \n color_height / 2], [0, 0, 1]])\n', (4761, 4852), True, 'import numpy as np\n'), ((2239, 2290), 'math.atan2', 'math.atan2', (['color_width', '(2 * color_cam_matrix[0, 0])'], {}), '(color_width, 2 * color_cam_matrix[0, 0])\n', (2249, 2290), False, 'import math\n'), ((2320, 2372), 'math.atan2', 'math.atan2', (['color_height', '(2 * color_cam_matrix[1, 1])'], {}), '(color_height, 2 * color_cam_matrix[1, 1])\n', (2330, 2372), False, 'import math\n'), ((2692, 2740), 'math.atan2', 'math.atan2', (['ir_width', '(2 * color_cam_matrix[0, 0])'], {}), '(ir_width, 2 * color_cam_matrix[0, 0])\n', (2702, 2740), False, 'import math\n'), ((2770, 2819), 'math.atan2', 'math.atan2', (['ir_height', '(2 * color_cam_matrix[1, 1])'], {}), '(ir_height, 2 * color_cam_matrix[1, 1])\n', (2780, 2819), False, 'import math\n'), ((3536, 3562), 'math.tan', 'math.tan', (['(old_sim_fovy / 2)'], {}), '(old_sim_fovy / 2)\n', (3544, 3562), False, 'import math\n'), ((3600, 3626), 'math.tan', 'math.tan', (['(old_sim_fovx / 2)'], {}), '(old_sim_fovx / 2)\n', (3608, 3626), False, 'import math\n'), ((3885, 3925), 'math.tan', 'math.tan', (['(color_fov_y * 3.14 / 180.0 / 2)'], {}), '(color_fov_y * 3.14 / 180.0 / 2)\n', (3893, 3925), False, 'import math\n'), ((4191, 4242), 'math.atan2', 'math.atan2', (['color_width', '(2 * color_cam_matrix[0, 0])'], {}), '(color_width, 2 * color_cam_matrix[0, 0])\n', (4201, 4242), False, 'import math\n'), ((4272, 4324), 'math.atan2', 'math.atan2', (['color_height', '(2 * color_cam_matrix[1, 1])'], {}), '(color_height, 2 * color_cam_matrix[1, 1])\n', (4282, 4324), False, 'import math\n'), ((4385, 4434), 'math.atan2', 'math.atan2', (['sim_height', '(2 * sim_proj_matrix[1, 1])'], {}), '(sim_height, 2 * sim_proj_matrix[1, 1])\n', (4395, 4434), False, 'import math\n'), ((4469, 4517), 'math.atan2', 'math.atan2', (['sim_width', '(2 * sim_proj_matrix[0, 0])'], {}), '(sim_width, 2 * sim_proj_matrix[0, 0])\n', (4479, 4517), False, 'import math\n'), ((4617, 4657), 'math.tan', 'math.tan', (['(color_fov_y * 3.14 / 180.0 / 2)'], {}), '(color_fov_y * 3.14 / 180.0 / 2)\n', (4625, 4657), False, 'import math\n'), ((4693, 4733), 'math.tan', 'math.tan', (['(color_fov_x * 3.14 / 180.0 / 2)'], {}), '(color_fov_x * 3.14 / 180.0 / 2)\n', (4701, 4733), False, 'import math\n'), ((4944, 4978), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (4963, 4978), True, 'import numpy as np\n'), ((90, 207), 'numpy.array', 'np.array', (['[1052.6303338534365, 0.0, 935.2852608557248, 0.0, 1053.419100101447, \n 522.2571897055672, 0.0, 0.0, 1.0]'], {}), '([1052.6303338534365, 0.0, 935.2852608557248, 0.0, \n 1053.419100101447, 522.2571897055672, 0.0, 0.0, 1.0])\n', (98, 207), True, 'import numpy as np\n'), ((258, 384), 'numpy.array', 'np.array', (['[0.04546715001169914, -0.07447010794291813, -0.006169712955860954, -\n 0.002566703740450938, -0.014503959457133547]'], {}), '([0.04546715001169914, -0.07447010794291813, -0.006169712955860954,\n -0.002566703740450938, -0.014503959457133547])\n', (266, 384), True, 'import numpy as np\n'), ((454, 610), 'numpy.array', 'np.array', (['[1052.6303338534365, 0.0, 935.2852608557248, 0.0, 0.0, 1053.419100101447, \n 522.2571897055672, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]'], {}), '([1052.6303338534365, 0.0, 935.2852608557248, 0.0, 0.0, \n 1053.419100101447, 522.2571897055672, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,\n 0.0, 1.0])\n', (462, 610), True, 'import numpy as np\n'), ((663, 783), 'numpy.array', 'np.array', (['[357.06872738709285, 0.0, 250.37220752105404, 0.0, 357.00920458183873, \n 208.03230739018434, 0.0, 0.0, 1.0]'], {}), '([357.06872738709285, 0.0, 250.37220752105404, 0.0, \n 357.00920458183873, 208.03230739018434, 0.0, 0.0, 1.0])\n', (671, 783), True, 'import numpy as np\n'), ((828, 952), 'numpy.array', 'np.array', (['[0.05599804897518913, -0.2569144081503883, -0.0053889184410447575, -\n 0.0016922667364749613, 0.1967451980009892]'], {}), '([0.05599804897518913, -0.2569144081503883, -0.0053889184410447575,\n -0.0016922667364749613, 0.1967451980009892])\n', (836, 952), True, 'import numpy as np\n'), ((1017, 1177), 'numpy.array', 'np.array', (['[357.06872738709285, 0.0, 250.37220752105404, 0.0, 0.0, 357.00920458183873,\n 208.03230739018434, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]'], {}), '([357.06872738709285, 0.0, 250.37220752105404, 0.0, 0.0, \n 357.00920458183873, 208.03230739018434, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, \n 0.0, 0.0, 1.0])\n', (1025, 1177), True, 'import numpy as np\n'), ((1282, 1499), 'numpy.array', 'np.array', (['[0.9999722295549924, -0.007439933678812084, 0.00043301925190808763, \n 0.0074347723554060875, 0.9999129478048704, 0.01090050330021078, -\n 0.0005140805782508937, -0.010896981188819882, 0.9999404939905823]'], {}), '([0.9999722295549924, -0.007439933678812084, 0.00043301925190808763,\n 0.0074347723554060875, 0.9999129478048704, 0.01090050330021078, -\n 0.0005140805782508937, -0.010896981188819882, 0.9999404939905823])\n', (1290, 1499), True, 'import numpy as np\n'), ((1549, 1628), 'numpy.array', 'np.array', (['[-0.05229198545663045, -0.00019227292627499695, 0.001717335015137565]'], {}), '([-0.05229198545663045, -0.00019227292627499695, 0.001717335015137565])\n', (1557, 1628), True, 'import numpy as np\n'), ((1661, 1898), 'numpy.array', 'np.array', (['[-1.2669151118394222e-05, -0.0017150903228939863, -0.0002109813008805098, \n 0.0016904050298585356, -0.0005826016404638701, 0.05228961740837492, -\n 0.00019651142111198186, -0.05228886382232848, -0.0005699257021658765]'], {}), '([-1.2669151118394222e-05, -0.0017150903228939863, -\n 0.0002109813008805098, 0.0016904050298585356, -0.0005826016404638701, \n 0.05228961740837492, -0.00019651142111198186, -0.05228886382232848, -\n 0.0005699257021658765])\n', (1669, 1898), True, 'import numpy as np\n'), ((1924, 2137), 'numpy.array', 'np.array', (['[-8.814266483029077e-09, -1.1934330447023842e-06, 0.0001980670297292687, \n 1.1751792885051283e-06, -4.05095536424756e-07, 0.012770218257581496, -\n 0.0007494157448256152, -0.036972004067303506, 1.0]'], {}), '([-8.814266483029077e-09, -1.1934330447023842e-06, \n 0.0001980670297292687, 1.1751792885051283e-06, -4.05095536424756e-07, \n 0.012770218257581496, -0.0007494157448256152, -0.036972004067303506, 1.0])\n', (1932, 2137), True, 'import numpy as np\n'), ((3386, 3412), 'math.tan', 'math.tan', (['(old_sim_fovy / 2)'], {}), '(old_sim_fovy / 2)\n', (3394, 3412), False, 'import math\n'), ((5027, 5056), 'numpy.round', 'np.round', (['fake_proj_matrix', '(0)'], {}), '(fake_proj_matrix, 0)\n', (5035, 5056), True, 'import numpy as np\n'), ((5123, 5152), 'numpy.round', 'np.round', (['color_cam_matrix', '(0)'], {}), '(color_cam_matrix, 0)\n', (5131, 5152), True, 'import numpy as np\n')]
from deeplearning import tf_util as U from init import make_env_fn, make_model_fn from collections import namedtuple import os, argparse, json import numpy as np def eval_robot(args, env, pi): rewards = [] lengths = [] for j in range(args.nepisodes): rewards.append(0) lengths.append(0) done = False ob = env.reset() while not done: ac = pi.actor.mode(ob[None])[0] ob, rew, done, _ = env.step(ac) rewards[-1] += rew lengths[-1] += 1 return np.mean(lengths), np.mean(rewards) def main(args): U.reset() with open(os.path.join(args.logdir, 'hyps.json'), 'r') as f: hyps = json.load(f) train_args = namedtuple('Args', hyps.keys())(**hyps) env_fn = make_env_fn(train_args) model_fn = make_model_fn(train_args) env = env_fn(0) model = model_fn(env) model.build('model', 1, 1) model.sampler.build('model', 1, 1) sess = U.make_session() sess.__enter__() U.initialize() t = U.Experiment(args.logdir).load(args.ckpt) ls = [] rs = [] for i in range(args.samples): env.update_robot(model.sampler.sample(args.stochastic)[0]) l,r = eval_robot(args, env, model) ls.append(l) rs.append(r) if not args.stochastic: break os.makedirs(os.path.join(args.logdir, 'eval'), exist_ok=True) with open(os.path.join(args.logdir, 'eval', '{}.json'.format(t)), 'w') as f: json.dump({'l':ls, 'r':rs}, f) sess.__exit__(None, None, None) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Evaluate a Checkpoint') parser.add_argument('logdir', type=str, help='log directory') parser.add_argument('-t', '--ckpt', type=int, default=None, help='which checkpoint file to use') parser.add_argument('-n', '--nepisodes', type=int, default=1, help='n episodes to show') parser.add_argument('-s', '--samples', type=int, default=1, help='# of robots to sample') parser.add_argument('--stochastic', type=bool, default=True, help='If false, eval the mode of the robot distribution') main(parser.parse_args())
[ "json.dump", "json.load", "deeplearning.tf_util.initialize", "argparse.ArgumentParser", "init.make_env_fn", "deeplearning.tf_util.reset", "deeplearning.tf_util.make_session", "numpy.mean", "init.make_model_fn", "os.path.join", "deeplearning.tf_util.Experiment" ]
[((601, 610), 'deeplearning.tf_util.reset', 'U.reset', ([], {}), '()\n', (608, 610), True, 'from deeplearning import tf_util as U\n'), ((775, 798), 'init.make_env_fn', 'make_env_fn', (['train_args'], {}), '(train_args)\n', (786, 798), False, 'from init import make_env_fn, make_model_fn\n'), ((814, 839), 'init.make_model_fn', 'make_model_fn', (['train_args'], {}), '(train_args)\n', (827, 839), False, 'from init import make_env_fn, make_model_fn\n'), ((969, 985), 'deeplearning.tf_util.make_session', 'U.make_session', ([], {}), '()\n', (983, 985), True, 'from deeplearning import tf_util as U\n'), ((1011, 1025), 'deeplearning.tf_util.initialize', 'U.initialize', ([], {}), '()\n', (1023, 1025), True, 'from deeplearning import tf_util as U\n'), ((1602, 1662), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Evaluate a Checkpoint"""'}), "(description='Evaluate a Checkpoint')\n", (1625, 1662), False, 'import os, argparse, json\n'), ((545, 561), 'numpy.mean', 'np.mean', (['lengths'], {}), '(lengths)\n', (552, 561), True, 'import numpy as np\n'), ((563, 579), 'numpy.mean', 'np.mean', (['rewards'], {}), '(rewards)\n', (570, 579), True, 'import numpy as np\n'), ((692, 704), 'json.load', 'json.load', (['f'], {}), '(f)\n', (701, 704), False, 'import os, argparse, json\n'), ((1355, 1388), 'os.path.join', 'os.path.join', (['args.logdir', '"""eval"""'], {}), "(args.logdir, 'eval')\n", (1367, 1388), False, 'import os, argparse, json\n'), ((1494, 1526), 'json.dump', 'json.dump', (["{'l': ls, 'r': rs}", 'f'], {}), "({'l': ls, 'r': rs}, f)\n", (1503, 1526), False, 'import os, argparse, json\n'), ((626, 664), 'os.path.join', 'os.path.join', (['args.logdir', '"""hyps.json"""'], {}), "(args.logdir, 'hyps.json')\n", (638, 664), False, 'import os, argparse, json\n'), ((1034, 1059), 'deeplearning.tf_util.Experiment', 'U.Experiment', (['args.logdir'], {}), '(args.logdir)\n', (1046, 1059), True, 'from deeplearning import tf_util as U\n')]
#!/usr/bin/python import numpy as np # Construct an array by executing a function over each coordinate. def f(x, y): return 2*x + y + 1 a = np.fromfunction(f, (5, 4), dtype=int) print(a) # anonymous functoin b = np.fromfunction(lambda x, y: 2*x + y, (2, 2)) print(b)
[ "numpy.fromfunction" ]
[((148, 185), 'numpy.fromfunction', 'np.fromfunction', (['f', '(5, 4)'], {'dtype': 'int'}), '(f, (5, 4), dtype=int)\n', (163, 185), True, 'import numpy as np\n'), ((221, 268), 'numpy.fromfunction', 'np.fromfunction', (['(lambda x, y: 2 * x + y)', '(2, 2)'], {}), '(lambda x, y: 2 * x + y, (2, 2))\n', (236, 268), True, 'import numpy as np\n')]
# import curses and GPIO import curses import serial import time from picamera.array import PiRGBArray from picamera import PiCamera import cv2 import numpy as np ser = serial.Serial("/dev/ttyUSB0", "9600") serLidar = serial.Serial("/dev/ttyACM0", "115200") cap = cv2.VideoCapture(0) piCam = False #check if picamera exists try: camera = PiCamera() camera.resolution = (224,224) camera.framerate = 20 rawCapture = PiRGBArray(camera, size=(224,224)) piCam = True except: print("Pi camera does not exist, using USB camera") # Get the curses window, turn off echoing of keyboard to screen, turn on # instant (no waiting) key response, and use special values for cursor keys screen = curses.initscr() curses.noecho() curses.cbreak() screen.keypad(True) keyRec = open('key_strokes.txt','w+') train_data = [] try: while True: distString = serLidar.readline() dist = 1000 try: dist = int(distString.decode("utf-8")) except: print("can't convert dist") if piCam == True: for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): image_np = np.array(frame.array) rawCapture.truncate(0) char = screen.getch() key = [0,0,0,0,1] if char == ord('x'): np.save("train_data.npy", train_data) ser.write(b'5') keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() break elif char == ord('w') and dist > 100: ser.write(b'1') key = [1,0,0,0,0] elif char == ord('s') and dist > 100: ser.write(b'2') key = [0,1,0,0,0] elif char == ord('a') and dist > 100: ser.write(b'3') key = [0,0,1,0,0] elif char == ord('d') and dist > 100: ser.write(b'4') key = [0,0,0,1,0] elif char == ord(' '): ser.write(b'5') key = [0,0,0,0,1] val_dict = {"input":key, "image":image_np} train_data.append(val_dict) keyRec.write(str(key)+"\n") if len(train_data) % 100 == 0: np.save("train_data.npy", train_data) #no pi camera, using USB else: ret, image_np = cap.read() char = screen.getch() key = [0,0,0,0,1] if char == ord('x'): np.save("train_data.npy", train_data) ser.write(b'5') keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() break elif char == ord('w') and dist > 100: ser.write(b'1') key = [1,0,0,0,0] elif char == ord('s') and dist > 100: ser.write(b'2') key = [0,1,0,0,0] elif char == ord('a') and dist > 100: ser.write(b'3') key = [0,0,1,0,0] elif char == ord('d') and dist > 100: ser.write(b'4') key = [0,0,0,1,0] elif char == ord(' '): ser.write(b'5') key = [0,0,0,0,1] val_dict = {"input":key, "image":image_np} train_data.append(val_dict) keyRec.write(str(key)+"\n") if len(train_data) % 100 == 0: np.save("train_data.npy", train_data) finally: #Close down curses properly, inc turn echo back on! keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin()
[ "serial.Serial", "numpy.save", "curses.noecho", "curses.initscr", "curses.endwin", "cv2.VideoCapture", "curses.cbreak", "numpy.array", "picamera.array.PiRGBArray", "curses.nocbreak", "curses.echo", "picamera.PiCamera" ]
[((170, 207), 'serial.Serial', 'serial.Serial', (['"""/dev/ttyUSB0"""', '"""9600"""'], {}), "('/dev/ttyUSB0', '9600')\n", (183, 207), False, 'import serial\n'), ((219, 258), 'serial.Serial', 'serial.Serial', (['"""/dev/ttyACM0"""', '"""115200"""'], {}), "('/dev/ttyACM0', '115200')\n", (232, 258), False, 'import serial\n'), ((265, 284), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (281, 284), False, 'import cv2\n'), ((705, 721), 'curses.initscr', 'curses.initscr', ([], {}), '()\n', (719, 721), False, 'import curses\n'), ((722, 737), 'curses.noecho', 'curses.noecho', ([], {}), '()\n', (735, 737), False, 'import curses\n'), ((739, 754), 'curses.cbreak', 'curses.cbreak', ([], {}), '()\n', (752, 754), False, 'import curses\n'), ((343, 353), 'picamera.PiCamera', 'PiCamera', ([], {}), '()\n', (351, 353), False, 'from picamera import PiCamera\n'), ((431, 466), 'picamera.array.PiRGBArray', 'PiRGBArray', (['camera'], {'size': '(224, 224)'}), '(camera, size=(224, 224))\n', (441, 466), False, 'from picamera.array import PiRGBArray\n'), ((4006, 4023), 'curses.nocbreak', 'curses.nocbreak', ([], {}), '()\n', (4021, 4023), False, 'import curses\n'), ((4043, 4056), 'curses.echo', 'curses.echo', ([], {}), '()\n', (4054, 4056), False, 'import curses\n'), ((4061, 4076), 'curses.endwin', 'curses.endwin', ([], {}), '()\n', (4074, 4076), False, 'import curses\n'), ((1186, 1207), 'numpy.array', 'np.array', (['frame.array'], {}), '(frame.array)\n', (1194, 1207), True, 'import numpy as np\n'), ((2822, 2859), 'numpy.save', 'np.save', (['"""train_data.npy"""', 'train_data'], {}), "('train_data.npy', train_data)\n", (2829, 2859), True, 'import numpy as np\n'), ((2939, 2956), 'curses.nocbreak', 'curses.nocbreak', ([], {}), '()\n', (2954, 2956), False, 'import curses\n'), ((2976, 2989), 'curses.echo', 'curses.echo', ([], {}), '()\n', (2987, 2989), False, 'import curses\n'), ((3006, 3021), 'curses.endwin', 'curses.endwin', ([], {}), '()\n', (3019, 3021), False, 'import curses\n'), ((3880, 3917), 'numpy.save', 'np.save', (['"""train_data.npy"""', 'train_data'], {}), "('train_data.npy', train_data)\n", (3887, 3917), True, 'import numpy as np\n'), ((1410, 1447), 'numpy.save', 'np.save', (['"""train_data.npy"""', 'train_data'], {}), "('train_data.npy', train_data)\n", (1417, 1447), True, 'import numpy as np\n'), ((1539, 1556), 'curses.nocbreak', 'curses.nocbreak', ([], {}), '()\n', (1554, 1556), False, 'import curses\n'), ((1576, 1589), 'curses.echo', 'curses.echo', ([], {}), '()\n', (1587, 1589), False, 'import curses\n'), ((1610, 1625), 'curses.endwin', 'curses.endwin', ([], {}), '()\n', (1623, 1625), False, 'import curses\n'), ((2568, 2605), 'numpy.save', 'np.save', (['"""train_data.npy"""', 'train_data'], {}), "('train_data.npy', train_data)\n", (2575, 2605), True, 'import numpy as np\n')]
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. import numpy as np import popart import torch from op_tester import op_tester def test_asinh(op_tester): # create test data # Notice: as asinh(x) = ln(x + sqrt(x^2 + 1)), absolute precision # deteriorates for larger negative numbers as you will have ln(0.0001). d1 = np.array([ -30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = np.arcsinh(d1) return [out] op_tester.setPatterns(['DecomposeBinaryConstScalar'], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'infer') def test_asinh_inplace(op_tester): # create test data d1 = np.array([ -30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = np.arcsinh(d1) return [out] op_tester.setPatterns(['InPlace', 'DecomposeBinaryConstScalar'], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'infer') def test_asinh_grad(op_tester): # create test data d1 = np.array([ -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def derivative_asinh(x): return 1 / (np.sqrt(np.power(x, 2) + 1)) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i1, popart.reservedGradientPrefix() + o, ] def reference(ref_data): out = np.arcsinh(d1) d__o = derivative_asinh(d1) * ref_data.getOutputTensorGrad(0) return [out, d__o, None] op_tester.setPatterns([ 'SubtractArg1GradOp', 'LogGradOp', 'SqrtGradOp', 'PowArg0GradOp', 'DecomposeBinaryConstScalar' ], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'train')
[ "op_tester.op_tester.setPatterns", "numpy.power", "op_tester.op_tester.run", "popart.reservedGradientPrefix", "numpy.array", "numpy.arcsinh" ]
[((342, 461), 'numpy.array', 'np.array', (['[-30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, \n 100.0, 2001.0]'], {'dtype': 'np.float32'}), '([-30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, \n 10.0, 100.0, 2001.0], dtype=np.float32)\n', (350, 461), True, 'import numpy as np\n'), ((747, 833), 'op_tester.op_tester.setPatterns', 'op_tester.setPatterns', (["['DecomposeBinaryConstScalar']"], {'enableRuntimeAsserts': '(False)'}), "(['DecomposeBinaryConstScalar'], enableRuntimeAsserts=\n False)\n", (768, 833), False, 'from op_tester import op_tester\n'), ((859, 906), 'op_tester.op_tester.run', 'op_tester.run', (['init_builder', 'reference', '"""infer"""'], {}), "(init_builder, reference, 'infer')\n", (872, 906), False, 'from op_tester import op_tester\n'), ((976, 1095), 'numpy.array', 'np.array', (['[-30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, \n 100.0, 2001.0]'], {'dtype': 'np.float32'}), '([-30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, \n 10.0, 100.0, 2001.0], dtype=np.float32)\n', (984, 1095), True, 'import numpy as np\n'), ((1381, 1477), 'op_tester.op_tester.setPatterns', 'op_tester.setPatterns', (["['InPlace', 'DecomposeBinaryConstScalar']"], {'enableRuntimeAsserts': '(False)'}), "(['InPlace', 'DecomposeBinaryConstScalar'],\n enableRuntimeAsserts=False)\n", (1402, 1477), False, 'from op_tester import op_tester\n'), ((1504, 1551), 'op_tester.op_tester.run', 'op_tester.run', (['init_builder', 'reference', '"""infer"""'], {}), "(init_builder, reference, 'infer')\n", (1517, 1551), False, 'from op_tester import op_tester\n'), ((1618, 1730), 'numpy.array', 'np.array', (['[-20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0]'], {'dtype': 'np.float32'}), '([-20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, \n 100.0, 2001.0], dtype=np.float32)\n', (1626, 1730), True, 'import numpy as np\n'), ((2299, 2450), 'op_tester.op_tester.setPatterns', 'op_tester.setPatterns', (["['SubtractArg1GradOp', 'LogGradOp', 'SqrtGradOp', 'PowArg0GradOp',\n 'DecomposeBinaryConstScalar']"], {'enableRuntimeAsserts': '(False)'}), "(['SubtractArg1GradOp', 'LogGradOp', 'SqrtGradOp',\n 'PowArg0GradOp', 'DecomposeBinaryConstScalar'], enableRuntimeAsserts=False)\n", (2320, 2450), False, 'from op_tester import op_tester\n'), ((2499, 2546), 'op_tester.op_tester.run', 'op_tester.run', (['init_builder', 'reference', '"""train"""'], {}), "(init_builder, reference, 'train')\n", (2512, 2546), False, 'from op_tester import op_tester\n'), ((706, 720), 'numpy.arcsinh', 'np.arcsinh', (['d1'], {}), '(d1)\n', (716, 720), True, 'import numpy as np\n'), ((1340, 1354), 'numpy.arcsinh', 'np.arcsinh', (['d1'], {}), '(d1)\n', (1350, 1354), True, 'import numpy as np\n'), ((2176, 2190), 'numpy.arcsinh', 'np.arcsinh', (['d1'], {}), '(d1)\n', (2186, 2190), True, 'import numpy as np\n'), ((2035, 2066), 'popart.reservedGradientPrefix', 'popart.reservedGradientPrefix', ([], {}), '()\n', (2064, 2066), False, 'import popart\n'), ((2085, 2116), 'popart.reservedGradientPrefix', 'popart.reservedGradientPrefix', ([], {}), '()\n', (2114, 2116), False, 'import popart\n'), ((1824, 1838), 'numpy.power', 'np.power', (['x', '(2)'], {}), '(x, 2)\n', (1832, 1838), True, 'import numpy as np\n')]
# painting.py import os import cv2 as cv import numpy as np from matplotlib import pyplot as plt from preprocess import Kmeans from monitor import Monitor import tkinter as tk import csv from utils import BlankImg class Painting(): def __init__(self, K, shape): #self.radius = 3 self.K = K self.size = shape self.count = 0 self.fixcount = 0 self.brush_size = 3 self.img = np.zeros((self.size)) for i in range(0, self.size[0]): for j in range(0, self.size[1]): self.img[i, j, 0] = self.img[i, j, 1] = self.img[i, j, 2] = 255 def Painting(self): img = BlankImg(self.size) self.color_list = [] for i in range(0, self.K): filename = "./points/" + str(i) + "_point.csv" with open(filename, newline='') as csvfile: rows = csv.reader(csvfile) for row in rows: print(row) if (len(row) != 2): r, g, b = int(row[3]), int(row[4]), int(row[5]) self.color_list.append((r, g, b)) else: x = int(row[0]) y = int(row[1]) for a in range(x-self.brush_size, x+self.brush_size): for b in range(y-self.brush_size, y+self.brush_size): if (a >= 0 and a <= self.size[0]-1): if (b >= 0 and b <= self.size[1]-1): img[a, b, 0] = r img[a ,b ,1] = g img[a ,b, 2] = b save_name = "./painting/" + str(i) + ".png" cv.imwrite(save_name, img) words = "finished " + str(i) print (words) return (self.color_list) def DectectImg(self, targetname, comparename): target_img = cv.imread(targetname) compare_img = cv.imread(comparename) different_img = BlankImg(self.size) for x in range(0, self.size[0]): for y in range(0, self.size[1]): if (int(target_img[x, y, 0]) != int(compare_img[x, y, 0])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] else: if (int(target_img[x, y, 1]) != int(compare_img[x, y, 1])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] else: if (int(target_img[x, y, 2]) != int(compare_img[x, y, 2])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] save_name = "./difference/" + str(self.count) + ".png" cv.imwrite(save_name, different_img) self.count += 1 """ def DectectImg(self, targetname, comparedname): targetimg = cv.imread(targetname) comparedimg = cv.imread(comparedname) print (type(targetimg)) print (type(comparedimg)) fiximg = np.zeros((self.size)) for x in range(0, self.size[0]): for y in range(0, self.size[1]): if (targetimg[x, y, 0] == comparedimg[x, y, 0] and \ targetimg[x, y, 1] == comparedimg[x, y, 1] and \ targetimg[x, y, 2] == comparedimg[x, y, 2]): fiximg[x, y, 0] = fiximg[x, y, 1] = fiximg[x, y, 2] = 255 else: fiximg[x, y, 0] = targetimg[x, y, 0] fiximg[x, y, 1] = targetimg[x, y, 1] fiximg[x, y, 2] = targetimg[x, y, 2] save_name = "./fixpoint/" + str(self.fixcount) + "_fix.png" cv.imwrite(save_name, fiximg) print ("save name: ", save_name) self.fixcount += 1 return (save_name) """ if __name__ == "__main__": K = 298 filename = "K_298_1_2.png" img = cv.imread(filename) size = img.shape new = Painting(K, size) #filename = "./points/0_line.csv" color_list = new.Painting() comparename = "./painting/297.png" new.DectectImg(filename, comparename) print ("finished.")
[ "csv.reader", "cv2.imwrite", "utils.BlankImg", "numpy.zeros", "cv2.imread" ]
[((4358, 4377), 'cv2.imread', 'cv.imread', (['filename'], {}), '(filename)\n', (4367, 4377), True, 'import cv2 as cv\n'), ((436, 455), 'numpy.zeros', 'np.zeros', (['self.size'], {}), '(self.size)\n', (444, 455), True, 'import numpy as np\n'), ((663, 682), 'utils.BlankImg', 'BlankImg', (['self.size'], {}), '(self.size)\n', (671, 682), False, 'from utils import BlankImg\n'), ((2002, 2023), 'cv2.imread', 'cv.imread', (['targetname'], {}), '(targetname)\n', (2011, 2023), True, 'import cv2 as cv\n'), ((2046, 2068), 'cv2.imread', 'cv.imread', (['comparename'], {}), '(comparename)\n', (2055, 2068), True, 'import cv2 as cv\n'), ((2093, 2112), 'utils.BlankImg', 'BlankImg', (['self.size'], {}), '(self.size)\n', (2101, 2112), False, 'from utils import BlankImg\n'), ((3179, 3215), 'cv2.imwrite', 'cv.imwrite', (['save_name', 'different_img'], {}), '(save_name, different_img)\n', (3189, 3215), True, 'import cv2 as cv\n'), ((885, 904), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (895, 904), False, 'import csv\n'), ((1794, 1820), 'cv2.imwrite', 'cv.imwrite', (['save_name', 'img'], {}), '(save_name, img)\n', (1804, 1820), True, 'import cv2 as cv\n')]
from itertools import chain, combinations import numpy as np from numpy.testing import assert_allclose from wpca.tests.tools import assert_allclose_upto_sign from wpca.utils import orthonormalize, random_orthonormal, weighted_mean def test_orthonormalize(): rand = np.random.RandomState(42) X = rand.randn(3, 4) X2 = orthonormalize(X) assert_allclose_upto_sign(X[0] / np.linalg.norm(X[0]), X2[0]) assert_allclose(np.dot(X2, X2.T), np.eye(X2.shape[0]), atol=1E-15) def test_random_orthonormal(): def check_random_orthonormal(N, M, rows): X = random_orthonormal(N, M, rows=rows, random_state=42) assert X.shape == (N, M) if rows: C = np.dot(X, X.T) else: C = np.dot(X.T, X) assert_allclose(C, np.eye(C.shape[0]), atol=1E-15) for M in [5]: for N in range(1, M + 1): yield check_random_orthonormal, N, M, True yield check_random_orthonormal, M, N, False def test_weighted_mean(): def check_weighted_mean(shape, axis): rand = np.random.RandomState(0) x = rand.rand(*shape) w = rand.rand(*shape) wm = weighted_mean(x, w, axis) assert_allclose(wm, np.average(x, axis, w)) assert_allclose(wm, (w * x).sum(axis) / w.sum(axis)) for ndim in range(1, 5): shape = tuple(range(3, 3 + ndim)) axis_tuples = chain(*(combinations(range(ndim), nax) for nax in range(ndim + 1))) for axis in chain([None], range(ndim), axis_tuples): yield check_weighted_mean, shape, axis
[ "numpy.average", "numpy.eye", "wpca.utils.orthonormalize", "numpy.random.RandomState", "numpy.linalg.norm", "numpy.dot", "wpca.utils.random_orthonormal", "wpca.utils.weighted_mean" ]
[((273, 298), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (294, 298), True, 'import numpy as np\n'), ((333, 350), 'wpca.utils.orthonormalize', 'orthonormalize', (['X'], {}), '(X)\n', (347, 350), False, 'from wpca.utils import orthonormalize, random_orthonormal, weighted_mean\n'), ((437, 453), 'numpy.dot', 'np.dot', (['X2', 'X2.T'], {}), '(X2, X2.T)\n', (443, 453), True, 'import numpy as np\n'), ((455, 474), 'numpy.eye', 'np.eye', (['X2.shape[0]'], {}), '(X2.shape[0])\n', (461, 474), True, 'import numpy as np\n'), ((579, 631), 'wpca.utils.random_orthonormal', 'random_orthonormal', (['N', 'M'], {'rows': 'rows', 'random_state': '(42)'}), '(N, M, rows=rows, random_state=42)\n', (597, 631), False, 'from wpca.utils import orthonormalize, random_orthonormal, weighted_mean\n'), ((1065, 1089), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (1086, 1089), True, 'import numpy as np\n'), ((1163, 1188), 'wpca.utils.weighted_mean', 'weighted_mean', (['x', 'w', 'axis'], {}), '(x, w, axis)\n', (1176, 1188), False, 'from wpca.utils import orthonormalize, random_orthonormal, weighted_mean\n'), ((388, 408), 'numpy.linalg.norm', 'np.linalg.norm', (['X[0]'], {}), '(X[0])\n', (402, 408), True, 'import numpy as np\n'), ((698, 712), 'numpy.dot', 'np.dot', (['X', 'X.T'], {}), '(X, X.T)\n', (704, 712), True, 'import numpy as np\n'), ((743, 757), 'numpy.dot', 'np.dot', (['X.T', 'X'], {}), '(X.T, X)\n', (749, 757), True, 'import numpy as np\n'), ((785, 803), 'numpy.eye', 'np.eye', (['C.shape[0]'], {}), '(C.shape[0])\n', (791, 803), True, 'import numpy as np\n'), ((1217, 1239), 'numpy.average', 'np.average', (['x', 'axis', 'w'], {}), '(x, axis, w)\n', (1227, 1239), True, 'import numpy as np\n')]
import numpy as np from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D def main(): mu_0 = np.sqrt(10.0**(-6)) correlation_length = 1.0 # Typical correlation length for Gaussian spectrum. x = 20.0 y = 0.0 z = 40.0 plane = (1,0,1) #f_resolution = wavenumber_resolution / (2.0*np.pi) spatial_resolution = 0.05 N = 100 min_wavenumber = 0.01 max_wavenumber = 10.0 wavenumber_resolution = (max_wavenumber - min_wavenumber) / N """Create an object to describe an Gaussian turbulence spectrum.""" g = Gaussian2DTemp(plane=plane, a=correlation_length, mu_0=mu_0, wavenumber_resolution=wavenumber_resolution, max_mode_order=N) """Create an object to describe a VonKarman turbulence spectrum.""" s = VonKarman2DTemp(plane=plane, a=correlation_length, mu_0=mu_0, wavenumber_resolution=wavenumber_resolution, max_mode_order=N) g.plot_mode_amplitudes('Gaussian2DTemp_mode_amplitudes.png') s.plot_mode_amplitudes('VonKarman2DTemp_mode_amplitudes.png') c = Comparison([g, s]) c.plot_mode_amplitudes('Gaussian2DTemp_and_VonKarman2DTemp_mode_amplitudes.png') field_g = Field2D(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=g) field_s = Field2D(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=s) field_g.generate().plot('Gaussian2DTemp_field.png') field_s.generate().plot('VonKarman2DTemp_field.png') if __name__ == '__main__': main()
[ "acoustics.turbulence.Comparison", "acoustics.turbulence.Field2D", "acoustics.turbulence.Gaussian2DTemp", "numpy.sqrt", "acoustics.turbulence.VonKarman2DTemp" ]
[((134, 153), 'numpy.sqrt', 'np.sqrt', (['(10.0 ** -6)'], {}), '(10.0 ** -6)\n', (141, 153), True, 'import numpy as np\n'), ((647, 774), 'acoustics.turbulence.Gaussian2DTemp', 'Gaussian2DTemp', ([], {'plane': 'plane', 'a': 'correlation_length', 'mu_0': 'mu_0', 'wavenumber_resolution': 'wavenumber_resolution', 'max_mode_order': 'N'}), '(plane=plane, a=correlation_length, mu_0=mu_0,\n wavenumber_resolution=wavenumber_resolution, max_mode_order=N)\n', (661, 774), False, 'from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D\n'), ((856, 984), 'acoustics.turbulence.VonKarman2DTemp', 'VonKarman2DTemp', ([], {'plane': 'plane', 'a': 'correlation_length', 'mu_0': 'mu_0', 'wavenumber_resolution': 'wavenumber_resolution', 'max_mode_order': 'N'}), '(plane=plane, a=correlation_length, mu_0=mu_0,\n wavenumber_resolution=wavenumber_resolution, max_mode_order=N)\n', (871, 984), False, 'from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D\n'), ((1126, 1144), 'acoustics.turbulence.Comparison', 'Comparison', (['[g, s]'], {}), '([g, s])\n', (1136, 1144), False, 'from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D\n'), ((1259, 1332), 'acoustics.turbulence.Field2D', 'Field2D', ([], {'x': 'x', 'y': 'y', 'z': 'z', 'spatial_resolution': 'spatial_resolution', 'spectrum': 'g'}), '(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=g)\n', (1266, 1332), False, 'from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D\n'), ((1347, 1420), 'acoustics.turbulence.Field2D', 'Field2D', ([], {'x': 'x', 'y': 'y', 'z': 'z', 'spatial_resolution': 'spatial_resolution', 'spectrum': 's'}), '(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=s)\n', (1354, 1420), False, 'from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D\n')]
import torch as th from tqdm import tqdm from . import BaseFlow, register_flow from ..models import build_model from ..models.GATNE import NSLoss import torch from tqdm.auto import tqdm from numpy import random import dgl from ..sampler.GATNE_sampler import NeighborSampler, generate_pairs @register_flow("GATNE_trainer") class GATNE(BaseFlow): def __init__(self, args): super(GATNE, self).__init__(args) self.model = build_model(self.model_name).build_model_from_args(self.args, self.hg).to(self.device) self.train_pairs = None self.train_dataloader = None self.nsloss = None self.neighbor_sampler = None self.orig_val_hg = self.task.val_hg self.orig_test_hg = self.task.test_hg self.preprocess() self.train() def preprocess(self): assert len(self.hg.ntypes) == 1 bidirected_hg = dgl.to_bidirected(dgl.to_simple(self.hg.to('cpu'))) all_walks = [] for etype in self.hg.etypes: nodes = torch.unique(bidirected_hg.edges(etype=etype)[0]).repeat(self.args.rw_walks) traces, types = dgl.sampling.random_walk( bidirected_hg, nodes, metapath=[etype] * (self.args.rw_length - 1) ) all_walks.append(traces) self.train_pairs = generate_pairs(all_walks, self.args.window_size, self.args.num_workers) self.neighbor_sampler = NeighborSampler(bidirected_hg, [self.args.neighbor_samples]) self.train_dataloader = torch.utils.data.DataLoader( self.train_pairs, batch_size=self.args.batch_size, collate_fn=self.neighbor_sampler.sample, shuffle=True, num_workers=self.args.num_workers, pin_memory=True, ) self.nsloss = NSLoss(self.hg.num_nodes(), self.args.neg_size, self.args.dim).to(self.device) self.optimizer = torch.optim.Adam( [{"params": self.model.parameters()}, {"params": self.nsloss.parameters()}], lr=self.args.learning_rate ) return def train(self): best_score = 0 patience = 0 for self.epoch in range(self.args.max_epoch): self._full_train_step() cur_score = self._full_test_step() if cur_score > best_score: best_score = cur_score patience = 0 else: patience += 1 if patience > self.args.patience: self.logger.train_info(f'Early Stop!\tEpoch:{self.epoch:03d}.') break def _full_train_step(self): self.model.train() random.shuffle(self.train_pairs) data_iter = tqdm( self.train_dataloader, desc="epoch %d" % self.epoch, total=(len(self.train_pairs) + (self.args.batch_size - 1)) // self.args.batch_size, ) avg_loss = 0.0 for i, (block, head_invmap, tails, block_types) in enumerate(data_iter): self.optimizer.zero_grad() # embs: [batch_size, edge_type_count, embedding_size] block_types = block_types.to(self.device) embs = self.model(block[0].to(self.device))[head_invmap] embs = embs.gather( 1, block_types.view(-1, 1, 1).expand(embs.shape[0], 1, embs.shape[2]) )[:, 0] loss = self.nsloss( block[0].dstdata[dgl.NID][head_invmap].to(self.device), embs, tails.to(self.device), ) loss.backward() self.optimizer.step() avg_loss += loss.item() post_fix = { "epoch": self.epoch, "iter": i, "avg_loss": avg_loss / (i + 1), "loss": loss.item(), } data_iter.set_postfix(post_fix) def _full_test_step(self): self.model.eval() # {'1': {}, '2': {}} final_model = dict( zip(self.hg.etypes, [th.empty(self.hg.num_nodes(), self.args.dim) for _ in range(len(self.hg.etypes))])) for i in tqdm(range(self.hg.num_nodes()), desc='Evaluating...'): train_inputs = ( torch.tensor([i for _ in range(len(self.hg.etypes))]) .unsqueeze(1) .to(self.device) ) # [i, i] train_types = ( torch.tensor(list(range(len(self.hg.etypes)))).unsqueeze(1).to(self.device) ) # [0, 1] pairs = torch.cat( (train_inputs, train_inputs, train_types), dim=1 ) # (2, 3) ( train_blocks, train_invmap, fake_tails, train_types, ) = self.neighbor_sampler.sample(pairs) node_emb = self.model(train_blocks[0].to(self.device))[train_invmap] node_emb = node_emb.gather( 1, train_types.to(self.device) .view(-1, 1, 1) .expand(node_emb.shape[0], 1, node_emb.shape[2]), )[:, 0] for j in range(len(self.hg.etypes)): final_model[self.hg.etypes[j]][i] = node_emb[j].detach() metric = {} score = [] for etype in self.hg.etypes: self.task.val_hg = dgl.edge_type_subgraph(self.orig_val_hg, [etype]) self.task.test_hg = dgl.edge_type_subgraph(self.orig_test_hg, [etype]) for split in ['test', 'valid']: n_embedding = {self.hg.ntypes[0]: final_model[etype].to(self.device)} res = self.task.evaluate(n_embedding=n_embedding, mode=split) metric[split] = res if split == 'valid': score.append(res.get('roc_auc')) self.logger.train_info(etype + self.logger.metric2str(metric)) avg_score = sum(score) / len(score) return avg_score
[ "torch.utils.data.DataLoader", "torch.cat", "dgl.sampling.random_walk", "dgl.edge_type_subgraph", "numpy.random.shuffle" ]
[((1512, 1706), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['self.train_pairs'], {'batch_size': 'self.args.batch_size', 'collate_fn': 'self.neighbor_sampler.sample', 'shuffle': '(True)', 'num_workers': 'self.args.num_workers', 'pin_memory': '(True)'}), '(self.train_pairs, batch_size=self.args.\n batch_size, collate_fn=self.neighbor_sampler.sample, shuffle=True,\n num_workers=self.args.num_workers, pin_memory=True)\n', (1539, 1706), False, 'import torch\n'), ((2652, 2684), 'numpy.random.shuffle', 'random.shuffle', (['self.train_pairs'], {}), '(self.train_pairs)\n', (2666, 2684), False, 'from numpy import random\n'), ((1128, 1225), 'dgl.sampling.random_walk', 'dgl.sampling.random_walk', (['bidirected_hg', 'nodes'], {'metapath': '([etype] * (self.args.rw_length - 1))'}), '(bidirected_hg, nodes, metapath=[etype] * (self.\n args.rw_length - 1))\n', (1152, 1225), False, 'import dgl\n'), ((4539, 4598), 'torch.cat', 'torch.cat', (['(train_inputs, train_inputs, train_types)'], {'dim': '(1)'}), '((train_inputs, train_inputs, train_types), dim=1)\n', (4548, 4598), False, 'import torch\n'), ((5363, 5412), 'dgl.edge_type_subgraph', 'dgl.edge_type_subgraph', (['self.orig_val_hg', '[etype]'], {}), '(self.orig_val_hg, [etype])\n', (5385, 5412), False, 'import dgl\n'), ((5445, 5495), 'dgl.edge_type_subgraph', 'dgl.edge_type_subgraph', (['self.orig_test_hg', '[etype]'], {}), '(self.orig_test_hg, [etype])\n', (5467, 5495), False, 'import dgl\n')]
import argparse import torch from torch import nn from torch import optim from torchvision import transforms, datasets, models from collections import OrderedDict from PIL import Image import numpy as np import json #Take inputs from user parser = argparse.ArgumentParser() parser.add_argument('path_to_image', type=str, help='Set path to image', default='./flowers/test/1/image_06743.jpg') parser.add_argument('checkpoint', type=str, help='Load checkpoint', default='./checkpoint.pth') parser.add_argument('--top_k', type=int, help='Return top k most likely classes', default=5) parser.add_argument('--category_names', type=str, help='Use a mapping of categories to real names', default='cat_to_name.json') parser.add_argument('--gpu', type=str, help='Use GPU for inference', default='cpu') args = parser.parse_args() def load_checkpoint(filepath): checkpoint = torch.load(filepath) if checkpoint['model'] == "vgg16": model = models.vgg16(pretrained=True) elif checkpoint['model'] == "densenet121": model = models.densenet121(pretrained=True) model.eval() model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] epoch = checkpoint['epoch'] return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' #Perform transformations, convert to tensor and normalize transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) #Open image and apply transformation pil_image = Image.open(image) pil_image = transform(pil_image) #Convert to numpy array np_image = np.array(pil_image) return np_image def predict(image_path, model, topk, device): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' model = load_checkpoint(model) model.eval() model.to(device) np_image = process_image(image_path) #numpy array returned torch_image = torch.from_numpy(np_image).to(device) #convert to tensor torch_image = torch_image.unsqueeze_(0) torch_image = torch_image.float() #returns float tensor of single dimension (1 column) with torch.no_grad(): output = model.forward(torch_image) ps = torch.exp(output) #taking top 5 probabilities and their indices if topk is None: probs, indices = torch.topk(ps, 1) else: probs, indices = torch.topk(ps, topk) #invert class_to_idx inv_class_to_idx = {index: cls for cls, index in model.class_to_idx.items()} classes = [] for index in indices.cpu().numpy()[0]: #iterating through indices classes.append(inv_class_to_idx[index]) return probs.cpu().numpy()[0], classes # Print the most likely image class and it's associated probability # map with json if args.gpu == "gpu": device = "cuda:0" elif args.gpu == "cpu": device = "cpu" probs, classes = predict(args.path_to_image, args.checkpoint, args.top_k, device) if args.category_names is not None: with open(args.category_names, 'r') as f: cat_to_name = json.load(f) classes = [cat_to_name[c] for c in classes] print("Most probable class:", classes[0]) print("Probability :", probs[0]) if args.top_k is not None: print("\nTop",args.top_k,"probable classes and their probabilities are") for index in range(len(classes)): print(classes[index],":",probs[index])
[ "torch.from_numpy", "json.load", "torch.topk", "argparse.ArgumentParser", "torch.load", "torchvision.models.densenet121", "torchvision.transforms.Normalize", "PIL.Image.open", "torchvision.transforms.ToTensor", "torch.exp", "numpy.array", "torchvision.transforms.CenterCrop", "torchvision.models.vgg16", "torch.no_grad", "torchvision.transforms.Resize" ]
[((250, 275), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (273, 275), False, 'import argparse\n'), ((870, 890), 'torch.load', 'torch.load', (['filepath'], {}), '(filepath)\n', (880, 890), False, 'import torch\n'), ((1899, 1916), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (1909, 1916), False, 'from PIL import Image\n'), ((2002, 2021), 'numpy.array', 'np.array', (['pil_image'], {}), '(pil_image)\n', (2010, 2021), True, 'import numpy as np\n'), ((946, 975), 'torchvision.models.vgg16', 'models.vgg16', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (958, 975), False, 'from torchvision import transforms, datasets, models\n'), ((2568, 2583), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2581, 2583), False, 'import torch\n'), ((2644, 2661), 'torch.exp', 'torch.exp', (['output'], {}), '(output)\n', (2653, 2661), False, 'import torch\n'), ((2765, 2782), 'torch.topk', 'torch.topk', (['ps', '(1)'], {}), '(ps, 1)\n', (2775, 2782), False, 'import torch\n'), ((2818, 2838), 'torch.topk', 'torch.topk', (['ps', 'topk'], {}), '(ps, topk)\n', (2828, 2838), False, 'import torch\n'), ((3507, 3519), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3516, 3519), False, 'import json\n'), ((1039, 1074), 'torchvision.models.densenet121', 'models.densenet121', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (1057, 1074), False, 'from torchvision import transforms, datasets, models\n'), ((1530, 1552), 'torchvision.transforms.Resize', 'transforms.Resize', (['(256)'], {}), '(256)\n', (1547, 1552), False, 'from torchvision import transforms, datasets, models\n'), ((1591, 1617), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['(224)'], {}), '(224)\n', (1612, 1617), False, 'from torchvision import transforms, datasets, models\n'), ((1656, 1677), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1675, 1677), False, 'from torchvision import transforms, datasets, models\n'), ((1715, 1781), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (1735, 1781), False, 'from torchvision import transforms, datasets, models\n'), ((2361, 2387), 'torch.from_numpy', 'torch.from_numpy', (['np_image'], {}), '(np_image)\n', (2377, 2387), False, 'import torch\n')]
from setuptools import Extension, setup from Cython.Build import cythonize import numpy as np import os.path as osp __version__ = '1.1.4' url = 'https://github.com/jannessm/quadric-mesh-simplification' files = [ 'simplify.c', 'array.c', 'clean_mesh.c', 'contract_pair.c', 'edges.c', 'maths.c', 'mesh_inversion.c', 'pair_heap.c', 'pair.c', 'preserve_bounds.c', 'q.c', 'targets.c', 'upper_tri.c', 'valid_pairs.c', 'test_utils.c' ] src_path = osp.join(osp.dirname(osp.abspath(__file__)), 'quad_mesh_simplify') ext_modules = [ Extension( 'simplify', [osp.join(src_path, 'c', f) for f in files] + [osp.join(src_path,'simplify.pyx')], # extra_compile_args=['-fopenmp'], # extra_link_args=['-fopenmp'], include_dirs=[np.get_include()], define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_17_API_VERSION")], ), ] ext_modules = cythonize(ext_modules) with open("README.md", "r") as fh: long_description = fh.read() def parse_requirements(filename): """Load requirements from a pip requirements file.""" lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] setup( name='quad_mesh_simplify', version=__version__, author='<NAME>', url=url, description="Simplify meshes including vertex features.", long_description=long_description, long_description_content_type="text/markdown", install_requires=parse_requirements("requirements.txt"), python_requires=">=3.6.3", ext_modules=ext_modules, zip_safe=False, )
[ "os.path.abspath", "Cython.Build.cythonize", "os.path.join", "numpy.get_include" ]
[((850, 872), 'Cython.Build.cythonize', 'cythonize', (['ext_modules'], {}), '(ext_modules)\n', (859, 872), False, 'from Cython.Build import cythonize\n'), ((480, 501), 'os.path.abspath', 'osp.abspath', (['__file__'], {}), '(__file__)\n', (491, 501), True, 'import os.path as osp\n'), ((572, 598), 'os.path.join', 'osp.join', (['src_path', '"""c"""', 'f'], {}), "(src_path, 'c', f)\n", (580, 598), True, 'import os.path as osp\n'), ((618, 652), 'os.path.join', 'osp.join', (['src_path', '"""simplify.pyx"""'], {}), "(src_path, 'simplify.pyx')\n", (626, 652), True, 'import os.path as osp\n'), ((741, 757), 'numpy.get_include', 'np.get_include', ([], {}), '()\n', (755, 757), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Feb 9 17:53:39 2019 @author: alankar """ import numpy as np import matplotlib.pyplot as plt from scipy.special.orthogonal import p_roots #Legendre Polynomial roots from scipy import constants def gauss_quad(func,a,b,n,*args):#Legendre [x,w] = p_roots(n+1) I_G = 0.5*(b-a)*np.sum(w*func(0.5*(b-a)*x+0.5*(b+a),*args)) return I_G V = 1000*1e-6 #m^3 rho = 6.022e28 #m^-3 thetaD = 428 #K def CV(T): N = 50 f = lambda x:(x**4*np.exp(x))/(np.exp(x)-1)**2 return 9*V*rho*constants.k*(T/thetaD)**3*gauss_quad(f,0,thetaD/T,N) Temperature = np.linspace(5,500,1000) Heat_cap = np.array([CV(T) for T in Temperature]) plt.figure(figsize=(13,10)) plt.plot(Temperature,Heat_cap) plt.grid() plt.title(r'Debye Heat capacity $C_V(T)$ in a solid',size=25,y=1.02) plt.xlabel(r'$T$',size=22) plt.ylabel(r'$C_V(T)$',size=22) plt.tick_params(axis='both', which='major', labelsize=15) plt.tick_params(axis='both', which='minor', labelsize=12) plt.savefig('9.png') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.special.orthogonal.p_roots", "matplotlib.pyplot.figure", "numpy.exp", "numpy.linspace", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig" ]
[((634, 659), 'numpy.linspace', 'np.linspace', (['(5)', '(500)', '(1000)'], {}), '(5, 500, 1000)\n', (645, 659), True, 'import numpy as np\n'), ((712, 740), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(13, 10)'}), '(figsize=(13, 10))\n', (722, 740), True, 'import matplotlib.pyplot as plt\n'), ((740, 771), 'matplotlib.pyplot.plot', 'plt.plot', (['Temperature', 'Heat_cap'], {}), '(Temperature, Heat_cap)\n', (748, 771), True, 'import matplotlib.pyplot as plt\n'), ((771, 781), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (779, 781), True, 'import matplotlib.pyplot as plt\n'), ((782, 851), 'matplotlib.pyplot.title', 'plt.title', (['"""Debye Heat capacity $C_V(T)$ in a solid"""'], {'size': '(25)', 'y': '(1.02)'}), "('Debye Heat capacity $C_V(T)$ in a solid', size=25, y=1.02)\n", (791, 851), True, 'import matplotlib.pyplot as plt\n'), ((851, 877), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$T$"""'], {'size': '(22)'}), "('$T$', size=22)\n", (861, 877), True, 'import matplotlib.pyplot as plt\n'), ((878, 909), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$C_V(T)$"""'], {'size': '(22)'}), "('$C_V(T)$', size=22)\n", (888, 909), True, 'import matplotlib.pyplot as plt\n'), ((910, 967), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""major"""', 'labelsize': '(15)'}), "(axis='both', which='major', labelsize=15)\n", (925, 967), True, 'import matplotlib.pyplot as plt\n'), ((968, 1025), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""minor"""', 'labelsize': '(12)'}), "(axis='both', which='minor', labelsize=12)\n", (983, 1025), True, 'import matplotlib.pyplot as plt\n'), ((1026, 1046), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""9.png"""'], {}), "('9.png')\n", (1037, 1046), True, 'import matplotlib.pyplot as plt\n'), ((1047, 1057), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1055, 1057), True, 'import matplotlib.pyplot as plt\n'), ((317, 331), 'scipy.special.orthogonal.p_roots', 'p_roots', (['(n + 1)'], {}), '(n + 1)\n', (324, 331), False, 'from scipy.special.orthogonal import p_roots\n'), ((513, 522), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (519, 522), True, 'import numpy as np\n'), ((525, 534), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (531, 534), True, 'import numpy as np\n')]
import numpy as np #import matplotlib.pyplot as plt import shapely.geometry from scipy.ndimage.morphology import binary_dilation from scipy.ndimage import label from multiprocessing import Pool def voxels_to_polygon(image_stack, pixel_size, center=(0.5, 0.5)): """Take a stack of images and produce a stack of shapely polygons. The images are interpreted as a solid shape with boundary along the pixel exterior edge. Thus an image eith a single nonzero pixel will return a square polygon with sidelength equal to the pixel_size. IN: image_stack: list of binary (1.0,0) numpy array 2d images each depicting a single connected region of 1.0 surrounded by 0.0. pixel_size: The absolute pixel size of the input images. Used to make the output polygons coordinates real spaced. center: the relative origin of the image, axis=0 is x and axis=1 is y increasing with increasingf index. For instance center=(0.5,0.5) will select the centre of the image as the orign. OUT: polygon_stack: list of shapely.geometry.polygons each representing the bound of the corresponding input binary image. """ polygon_stack = [pixels_to_polygon(image, pixel_size, center) for image in image_stack] return polygon_stack def check_input(image): """Check that the provided image consists of a single connected domain of pixels. """ # Check that the input image has no floating pixels. labeled_array, num_features = label(image.astype(int) + 1) assert num_features == 1, "The input image must contain a single solid domain of connected pixels but it appears " \ "to have floating pixels " # # Check that the input image has no holes. s = np.sum(np.abs(image.astype(int)[1:, :] - image.astype(int)[0:-1, :]), axis=0) assert np.alltrue( s <= 2), "The input image must contain a single solid domain of connected pixels but it appears to have holes" # def pixels_to_polygon(image, pixel_size, center=(0.5, 0.5)): """Take a single image and produce a shapely polygon. """ check_input(image) expanded_image = expand_image(image, factor=3) indices = get_image_boundary_index(expanded_image) coordinates = indices_to_coordinates(indices, pixel_size / 3., center, expanded_image) polygon = shapely.geometry.Polygon(coordinates) # show_polygon_and_image(polygon, image, pixel_size, center) #<= DEBUG return polygon def expand_image(image, factor): """Expand 2d binary image so that each pixel is split by copying into factor x factor number of pixels. """ expanded_image = np.repeat(image, factor, axis=1) expanded_image = np.repeat(expanded_image, factor, axis=0) return expanded_image def get_image_boundary_index(image): """Find the pixel indices of the boundary pixels of a binary image. """ boundary_image = get_boundary_image(image) bound_indx = np.where(boundary_image == 1) ix, iy = bound_indx[0][0], bound_indx[1][0] # starting index indices = [(ix, iy)] while (not len(indices) == np.sum(boundary_image)): # Walk around border and save boundary pixel indices mask = np.zeros(boundary_image.shape) mask[np.max([0, ix - 1]):ix + 2, iy] = 1 mask[ix, np.max([iy - 1]):iy + 2] = 1 neighbour_indx = np.where(boundary_image * mask) for ix, iy in zip(neighbour_indx[0], neighbour_indx[1]): if (ix, iy) not in indices: indices.append((ix, iy)) break indices = sparse_indices(indices) return indices def get_boundary_image(image): """Return a pixel image with 1 along the boundary if the assumed object in image. """ k = np.ones((3, 3), dtype=int) dilation = binary_dilation(image == 0, k, border_value=1) boundary_image = dilation * image return boundary_image def sparse_indices(indices): """Remove uneccesary nodes in the polygon (three nodes on a line is uneccesary). """ new_indices = [] for i in range(0, len(indices) - 1): if not (indices[i - 1][0] == indices[i][0] == indices[i + 1][0] or \ indices[i - 1][1] == indices[i][1] == indices[i + 1][1]): new_indices.append(indices[i]) return new_indices def indices_to_coordinates(indices, pixel_size, center, image): """Compute real space coordinates of image boundary form set of pixel indices. """ dx = image.shape[1] * center[0] dy = image.shape[0] * center[1] coordinates = [] for c in indices: # Verified by simulated nonsymmetric grain ycoord = pixel_size * (c[1] + 0.5 - dx + (c[1] % 3 - 1) * 0.5) xcoord = pixel_size * (-c[0] - 0.5 + dy - (c[0] % 3 - 1) * 0.5) coordinates.append((xcoord, ycoord)) return coordinates def get_path_for_pos(args): arr, all_entry, all_exit, all_nhat, all_L, all_nsegs, \ bad_lines, xray_endpoints, sample_polygon, zpos = args for i, ang, dty in arr: # Translate and rotate the xray endpoints according to ytrans and angle c, s = np.cos(np.radians(-ang)), np.sin(np.radians(-ang)) rotz = np.array([[c, -s], [s, c]]) rx = rotz.dot(xray_endpoints + np.array([[0, 0], [dty, dty]])) xray_polygon = shapely.geometry.LineString([rx[:, 0], rx[:, 1]]) # compute the intersections between beam and sample in sample coordinates intersection_points = get_intersection(xray_polygon, sample_polygon, zpos) if intersection_points is None: # If a measurement missed the sample or graced a corner, we skipp ahead bad_lines.append(int(i)) else: # make a measurement at the current setting entry, exit, nhat, L, nsegs = get_quanteties(intersection_points) # save the measurement results in global lists all_entry.append(entry) all_exit.append(exit) all_nhat.append(nhat) all_L.append(L) all_nsegs.append(nsegs) return all_entry, all_exit, all_nhat, all_L, all_nsegs, bad_lines def get_integral_paths(angles, ytrans, zpos, sample_polygon, nprocs, show_geom=False): """Compute entry-exit points for a scanrange. """ # Instantiate lists to contain all measurements all_entry, all_exit, all_nhat, all_L, all_nsegs, bad_lines = [], [], [], [], [], [] xray_endpoints = get_xray_endpoints(sample_polygon) # Loop over all experimental settings split_arrays = np.array_split(list(zip(range(len(angles)), angles, ytrans)), nprocs) # split_arrays = np.array_split(np.array(list(enumerate(zip(angles, ytrans)))), 2) args = [(arr, all_entry, all_exit, all_nhat, all_L, all_nsegs, bad_lines, xray_endpoints, sample_polygon, zpos) for arr in split_arrays] with Pool(nprocs) as p: out = p.map(get_path_for_pos, args) # Unpack the multicore results all_entry, all_exit, all_nhat, all_L, all_nsegs, bad_lines = [], [], [], [], [], [] for o in out: for i, l in enumerate([all_entry, all_exit, all_nhat, all_L, all_nsegs, bad_lines]): l.extend(o[i]) # repack lists of measurements into numpy arrays of desired format entry, exit, nhat, L, nsegs = repack(all_entry, all_exit, all_nhat, all_L, all_nsegs) return entry, exit, nhat, L, nsegs, bad_lines def get_xray_endpoints(sample_polygon): """Calculate endpoitns of xray line segement. The lenght of the line segment is adapted to make sure xray always convers the full length of the sample. """ xc, yc = sample_polygon.exterior.xy xmin = np.min(xc) xmax = np.max(xc) ymin = np.min(yc) ymax = np.max(yc) D = np.sqrt((xmax - xmin) ** 2 + (ymax - ymin) ** 2) return np.array([[-1.1 * D, 1.1 * D], [0, 0]]) def get_intersection(xray_polygon, sample_polygon, z): """Compute the 3d coordinates of intersection between xray and sample. """ intersection = sample_polygon.intersection(xray_polygon) if intersection.is_empty or isinstance(intersection, shapely.geometry.point.Point): # we missed the sample with the beam intersection_points = None elif isinstance(intersection, shapely.geometry.linestring.LineString): # we got a single line segment intersection intersection_points = np.zeros((2, 3)) intersection_points[:2, :2] = np.array(intersection.xy).T intersection_points[:, 2] = z elif isinstance(intersection, shapely.geometry.multilinestring.MultiLineString): # we got multiple line segments intersection intersection_points = np.zeros((2 * len(intersection.geoms), 3)) for i, line_segment in enumerate(intersection.geoms): intersection_points[2 * i:2 * (i + 1), :2] = np.array(line_segment.xy).T intersection_points[:, 2] = z return intersection_points def get_quanteties(intersection_points): nsegs = intersection_points.shape[0] // 2 entry, exit = [], [] p1 = intersection_points[0, :] p2 = intersection_points[1, :] nhat = list((p2 - p1) / np.linalg.norm(p2 - p1)) L = 0 for i in range(nsegs): p1 = intersection_points[2 * i, :] p2 = intersection_points[2 * i + 1, :] entry.extend(list(p1)) exit.extend(list(p2)) length = np.linalg.norm(p2 - p1) L += length return entry, exit, nhat, L, nsegs def repack(all_entry, all_exit, all_nhat, all_L, all_nsegs): """Repack global measurement list into numpy arrays of desired format. """ N = len(all_L) p = max(max(all_nsegs), 1) nsegs = np.array(all_nsegs).reshape(1, N) L = np.array(all_L).reshape(1, N) entry = np.zeros((3 * p, N)) for i, en in enumerate(all_entry): entry[:len(en[:]), i] = en[:] exit = np.zeros((3 * p, N)) for i, ex in enumerate(all_exit): exit[:len(ex[:]), i] = ex[:] nhat = np.array(all_nhat).T return entry, exit, nhat, L, nsegs # def show_polygon_and_image(polygon, image, pixel_size, center): # """Plot a image and polygon for debugging purposes # """ # fig, ax = plt.subplots(1, 2, figsize=(12, 6)) # fig.suptitle('Center at ' + str(center)) # xc, yc = polygon.exterior.xy # xcenter = image.shape[1] * pixel_size * center[0] # ycenter = image.shape[0] * pixel_size * center[1] # ax[0].imshow(image, cmap='gray') # ax[0].set_title('Pixel image') # ax[0].arrow(int(image.shape[1] * center[0]), int(image.shape[0] * center[1]), \ # image.shape[0] // 4, 0, color='r', head_width=0.15) # y # ax[0].text(int(image.shape[1] * center[0]) + image.shape[1] // 4, int(image.shape[0] * center[1]) + 0.25, \ # 'y', color='r') # ax[0].arrow(int(image.shape[1] * center[0]), int(image.shape[0] * center[1]), \ # 0, -image.shape[1] // 4, color='r', head_width=0.15) # x # ax[0].text(int(image.shape[1] * center[0]) + 0.25, int(image.shape[0] * center[1]) - image.shape[1] // 4, \ # 'x', color='r') # ax[1].set_title('Polygon representation') # ax[1].fill(xc, yc, c='gray', zorder=1) # ax[1].scatter(xc, yc, c='r', zorder=2) # ax[1].grid(True) # ax[1].scatter(0, 0, c='b', zorder=3) # ax[1].set_xlim([-xcenter, image.shape[1] * pixel_size - xcenter]) # ax[1].set_ylim([-ycenter, image.shape[0] * pixel_size - ycenter]) # ax[1].set_xlabel('x') # ax[1].set_ylabel('y') # plt.show()
[ "numpy.radians", "numpy.sum", "scipy.ndimage.morphology.binary_dilation", "numpy.zeros", "numpy.ones", "numpy.min", "numpy.where", "numpy.max", "numpy.array", "multiprocessing.Pool", "numpy.alltrue", "numpy.linalg.norm", "numpy.sqrt", "numpy.repeat" ]
[((1932, 1950), 'numpy.alltrue', 'np.alltrue', (['(s <= 2)'], {}), '(s <= 2)\n', (1942, 1950), True, 'import numpy as np\n'), ((2742, 2774), 'numpy.repeat', 'np.repeat', (['image', 'factor'], {'axis': '(1)'}), '(image, factor, axis=1)\n', (2751, 2774), True, 'import numpy as np\n'), ((2796, 2837), 'numpy.repeat', 'np.repeat', (['expanded_image', 'factor'], {'axis': '(0)'}), '(expanded_image, factor, axis=0)\n', (2805, 2837), True, 'import numpy as np\n'), ((3048, 3077), 'numpy.where', 'np.where', (['(boundary_image == 1)'], {}), '(boundary_image == 1)\n', (3056, 3077), True, 'import numpy as np\n'), ((3848, 3874), 'numpy.ones', 'np.ones', (['(3, 3)'], {'dtype': 'int'}), '((3, 3), dtype=int)\n', (3855, 3874), True, 'import numpy as np\n'), ((3890, 3936), 'scipy.ndimage.morphology.binary_dilation', 'binary_dilation', (['(image == 0)', 'k'], {'border_value': '(1)'}), '(image == 0, k, border_value=1)\n', (3905, 3936), False, 'from scipy.ndimage.morphology import binary_dilation\n'), ((7754, 7764), 'numpy.min', 'np.min', (['xc'], {}), '(xc)\n', (7760, 7764), True, 'import numpy as np\n'), ((7776, 7786), 'numpy.max', 'np.max', (['xc'], {}), '(xc)\n', (7782, 7786), True, 'import numpy as np\n'), ((7798, 7808), 'numpy.min', 'np.min', (['yc'], {}), '(yc)\n', (7804, 7808), True, 'import numpy as np\n'), ((7820, 7830), 'numpy.max', 'np.max', (['yc'], {}), '(yc)\n', (7826, 7830), True, 'import numpy as np\n'), ((7839, 7887), 'numpy.sqrt', 'np.sqrt', (['((xmax - xmin) ** 2 + (ymax - ymin) ** 2)'], {}), '((xmax - xmin) ** 2 + (ymax - ymin) ** 2)\n', (7846, 7887), True, 'import numpy as np\n'), ((7899, 7938), 'numpy.array', 'np.array', (['[[-1.1 * D, 1.1 * D], [0, 0]]'], {}), '([[-1.1 * D, 1.1 * D], [0, 0]])\n', (7907, 7938), True, 'import numpy as np\n'), ((9838, 9858), 'numpy.zeros', 'np.zeros', (['(3 * p, N)'], {}), '((3 * p, N))\n', (9846, 9858), True, 'import numpy as np\n'), ((9948, 9968), 'numpy.zeros', 'np.zeros', (['(3 * p, N)'], {}), '((3 * p, N))\n', (9956, 9968), True, 'import numpy as np\n'), ((3301, 3331), 'numpy.zeros', 'np.zeros', (['boundary_image.shape'], {}), '(boundary_image.shape)\n', (3309, 3331), True, 'import numpy as np\n'), ((3452, 3483), 'numpy.where', 'np.where', (['(boundary_image * mask)'], {}), '(boundary_image * mask)\n', (3460, 3483), True, 'import numpy as np\n'), ((5277, 5304), 'numpy.array', 'np.array', (['[[c, -s], [s, c]]'], {}), '([[c, -s], [s, c]])\n', (5285, 5304), True, 'import numpy as np\n'), ((6950, 6962), 'multiprocessing.Pool', 'Pool', (['nprocs'], {}), '(nprocs)\n', (6954, 6962), False, 'from multiprocessing import Pool\n'), ((9460, 9483), 'numpy.linalg.norm', 'np.linalg.norm', (['(p2 - p1)'], {}), '(p2 - p1)\n', (9474, 9483), True, 'import numpy as np\n'), ((10056, 10074), 'numpy.array', 'np.array', (['all_nhat'], {}), '(all_nhat)\n', (10064, 10074), True, 'import numpy as np\n'), ((3200, 3222), 'numpy.sum', 'np.sum', (['boundary_image'], {}), '(boundary_image)\n', (3206, 3222), True, 'import numpy as np\n'), ((8469, 8485), 'numpy.zeros', 'np.zeros', (['(2, 3)'], {}), '((2, 3))\n', (8477, 8485), True, 'import numpy as np\n'), ((9229, 9252), 'numpy.linalg.norm', 'np.linalg.norm', (['(p2 - p1)'], {}), '(p2 - p1)\n', (9243, 9252), True, 'import numpy as np\n'), ((9753, 9772), 'numpy.array', 'np.array', (['all_nsegs'], {}), '(all_nsegs)\n', (9761, 9772), True, 'import numpy as np\n'), ((9795, 9810), 'numpy.array', 'np.array', (['all_L'], {}), '(all_L)\n', (9803, 9810), True, 'import numpy as np\n'), ((5218, 5234), 'numpy.radians', 'np.radians', (['(-ang)'], {}), '(-ang)\n', (5228, 5234), True, 'import numpy as np\n'), ((5244, 5260), 'numpy.radians', 'np.radians', (['(-ang)'], {}), '(-ang)\n', (5254, 5260), True, 'import numpy as np\n'), ((5344, 5374), 'numpy.array', 'np.array', (['[[0, 0], [dty, dty]]'], {}), '([[0, 0], [dty, dty]])\n', (5352, 5374), True, 'import numpy as np\n'), ((8524, 8549), 'numpy.array', 'np.array', (['intersection.xy'], {}), '(intersection.xy)\n', (8532, 8549), True, 'import numpy as np\n'), ((3345, 3364), 'numpy.max', 'np.max', (['[0, ix - 1]'], {}), '([0, ix - 1])\n', (3351, 3364), True, 'import numpy as np\n'), ((3398, 3414), 'numpy.max', 'np.max', (['[iy - 1]'], {}), '([iy - 1])\n', (3404, 3414), True, 'import numpy as np\n'), ((8920, 8945), 'numpy.array', 'np.array', (['line_segment.xy'], {}), '(line_segment.xy)\n', (8928, 8945), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import copy import os import datetime import time from functools import reduce # Function that provide some information about the cvs files def infos(old_df_names, months): """ Print informations about databases input: - dataframe - months output: - months, number of NaN values in each column """ for i in range(len(old_df_names)): df = pd.read_csv(old_df_names[i]) print('Month %s :' %months[i]) for i in df.columns: print('\t- {} has number of Nan : {:d} ({:.2f}%)'.format(i, int(df[i].isna().sum()), (int(df[i].isna().sum())/len(df))*100)) print('Total number of rows: {:d}'.format(len(df))) print('\n') return # Function that clean the databases from NaN values def clean_dataframe(df): """ Clean the dataframe, removing NaN from columns input: - dataframe output: - cleaned dataframe """ df.dropna(inplace = True) return df # Function that create new csv files def make_new_csv(old_df_names, df_names): """ Make new csv files input: - dataframe output: - new csv files """ for i in range(len(old_df_names)): df = pd.read_csv(old_df_names[i]) # cleaning function df = clean_dataframe(df) df.to_csv(df_names[i], index=False) return # RQ1 functions # RQ1.1 functions def compute_average_session(df_names): """ Compute average number of times users perform view/cart/purchase within each session input: - list of names of csv files to open output: - series of average of each operation """ # init the daily average dict average_session_dict = {} for i in range(len(df_names)): average_session_dict[i] = {} # load the ith dataframe, taking the event_type and user_session columns df = pd.read_csv(df_names[i], usecols=['event_type', 'user_session']) for j in df['event_type'].unique(): #print('{} of {:d} has average of : {:.2f} ' .format(j, i, float(df[df['event_type'] == j].groupby(['user_session']).count().mean()))) average_session_dict[i][j] = df[df['event_type'] == j].groupby(['user_session']).count().mean() average_session_df = pd.DataFrame(average_session_dict).mean(axis=1) return average_session_df def plot_average_session(average_session_df, months): """ plots the average number of times users perform each operation """ # plot average_session_df fig = plt.figure() X = np.arange(len(average_session_df)) plt.bar(X, average_session_df) plt.xticks(np.arange(len(average_session_df)),average_session_df.index) plt.ylabel("average operation per session") plt.xlabel("operations") plt.title("Average number of times users perform each operation within a session") plt.grid(color ='silver', linestyle = ':') fig.set_figwidth(15) fig.set_figheight(5) return # RQ1.2 functions def compute_average_view_cart(df_names, months): """ Compute average number of times a user views a product before adding it to the cart input: - list of names of csv files to open output: - the average of how many times a product is viewed before to be added to the cart """ # init a dataframe with index as every months and column as the mean for each user df_mean_database = pd.DataFrame(index=months, columns=['mean']) for i in range(len(df_names)): # load the ith dataframe, taking the event_time, event_type, product_id, user_id columns df = pd.read_csv(df_names[i], usecols=['event_time','event_type', 'product_id', 'user_id'], nrows=100000, parse_dates=['event_time']) # cut off the 'purchase' variable from event_type df_2 = df[df['event_type'] != 'purchase'] df_3 = df_2[df_2.event_type=='view'].groupby(by=['product_id']).agg(view=('event_type', 'count')) df_4 = df_2[df_2.event_type=='cart'].groupby(by=['product_id']).agg(cart=('event_type', 'count')) # get dataframe where event_type is equal to 'cart' df_cart = df_2[df_2['event_type']=='cart'] # init a dataframe with index as every user and column as the mean for each user df_mean_user = pd.DataFrame(index=df_cart['user_id'].unique(), columns=['mean']) df_cart.groupby(by=['user_id']).count() for user in df_cart['user_id'].unique(): # get dataframe with one user at a time df_user = df_2[df_2['user_id'] == user] # init the dict where the key are the products and the values are the mean of each product product_dict = {} for prod in df_user['product_id'].unique(): # get dataframe with one product at a time df_product = df_user[df_user['product_id'] == prod] df_product_2 = df_product.copy() product_dict[prod] = [] # init a list to append how many times 'view' appears before 'cart' for each product product_lst = [] # check if at least a 'view' exist in the dataframe otherwise pass if any(df_product_2['event_type'] == 'view') == True: df_product_2_time = df_product_2[df_product_2['event_type'] == 'view'].event_time.reset_index(drop=True)[0] # check if there are some 'cart' event before the 'view' event (only for the first time of seeing the 'cart') if any(df_product_2[df_product_2['event_type'] == 'cart'].event_time <= df_product_2_time) == True: df_product_3 = df_product_2[df_product_2.event_time <= df_product_2_time] # drop any 'cart' events at the beginning df_product_2 = df_product_2.drop(labels=df_product_3[df_product_3['event_type'] == 'cart'].index) # count how many times 'view' is before 'cart' if any(df_product_2['event_type'] == 'view') == True: for index, row in df_product_2.iterrows(): if row['event_type'] == 'cart': product_lst.append(np.sum(df_product_2[df_product['event_type'] == 'view'].event_time < row['event_time'])) df_product_2 = df_product_2[df_product_2.event_time > row['event_time']] # compute mean for each product if len(product_lst) > 0: product_dict[prod] = [i for i in product_lst if i != 0] product_dict[prod] = np.mean(product_dict[prod]) else: product_dict[prod].append(0) # compute mean for each user try: df_mean_user.loc[user,'mean'] = round(pd.DataFrame(product_dict).mean(axis=1)[0], 2) except ValueError: df_mean_user.loc[user,'mean'] = round(product_dict[prod], 2) # compute final average for a user for a product df_mean_user.dropna(inplace=True) mean_prod_user = np.mean(df_mean_user) # add final average per month df_mean_database.loc[months[i], 'mean'] = round(mean_prod_user[0], 2) df_mean_database.dropna(inplace=True) final_mean = np.mean(df_mean_database) return final_mean # RQ1.3 functions def compute_probability_cart_purchase(df_names, months): """ Compute the probability that products are bought once is added to the cart input: - list of names of csv files to open output: - probability products are purchased once are added to the cart """ # init dictionary to merge each monthly datasets df_database = {} for i in range(len(df_names)): # load the ith dataframe, taking only the event_type df = pd.read_csv(df_names[i], usecols=['event_type']) # cut off the view variable from event_type df_database[months[i]] = df[df['event_type'] != 'view'] # function to concatenate each dataset merged_df = pd.concat([df_database[months[i]] for i in range(len(df_database))]) # compute probability as the ratio between purchase and cart events prob = round(merged_df[merged_df['event_type'] == 'purchase'].shape[0] / merged_df[merged_df['event_type'] == 'cart'].shape[0], 4) * 100 return prob # RQ1.4 functions def compute_average_time_removed_item(df_names, months): """ Compute the average time an item stays in the cart before being removed input: - list of names of csv files to open output: - average time """ df_mean_database = pd.DataFrame(index=months, columns=['mean']) for i in range(len(df_names)): # load the ith dataframe, taking only the df = pd.read_csv(df_names[i], usecols=['event_time', 'event_type', 'product_id'], nrows=100000, parse_dates=['event_time']) # cut off the view variable from event_type df_2 = df[df['event_type'] != 'view'] # init the dict where the key are the products and the values are the mean of each product product_dict = {} # loop through the event_type 'purchase' to find unique product_id for prod in df_2[df_2['event_type'] == 'purchase']['product_id'].unique(): df_product = df_2[df_2['product_id'] == prod] # check if at least a 'cart' event exist if df_product['event_type'].str.contains('cart').any(): pass else: continue # check if there are some 'purchase' event before the 'cart' event (only for the first time of seeing the 'purchase') if any(df_product[df_product['event_type'] == 'purchase'].event_time <= df_product[df_product['event_type'] == 'cart'].event_time.reset_index(drop=True)[0]) == True: df_3 = df_product[df_product.event_time <= df_product[df_product['event_type'] == 'cart'].event_time.reset_index(drop=True)[0]] # drop any 'cart' events at the beginning df_product = df_product.drop(labels=df_3[df_3['event_type'] == 'purchase'].index) # check if there are some 'cart' event before the 'purchase' event (only for the last time of seeing the 'cart') if any(df_product[df_product['event_type'] == 'cart'].event_time >= df_product[df_product['event_type'] == 'purchase'].event_time.reset_index(drop=True)[len(df_product[df_product['event_type'] == 'purchase'])-1]) == True: df_3 = df_product[df_product.event_time >= df_product[df_product['event_type'] == 'purchase'].event_time.reset_index(drop=True)[len(df_product[df_product['event_type'] == 'purchase'])-1]] # drop any 'cart' events at the beginning df_product = df_product.drop(labels=df_3[df_3['event_type'] == 'cart'].index) # check if at least a 'cart' event exist if df_product['event_type'].str.contains('cart').any(): pass else: continue # check if at least a 'purchase' event exist if df_product['event_type'].str.contains('purchase').any(): pass else: continue dist_prod = df_product.event_time[df_product.event_type == 'purchase'].values - df_product.event_time[df_product.event_type == 'cart'].values product_dict[prod] = [] product_dict[prod].append(np.mean(dist_prod)) # add final average per month df_mean_database.loc[months[i], 'mean'] = pd.DataFrame(product_dict).mean(axis=1)[0] # RQ1.5 functions def compute_average_time_first_view(df_names, months): """ Compute the average time an item stays in the cart between the first time view and purchase/addition to cart input: - list of names of csv files to open output: - average time """ df_mean_database = pd.DataFrame(index=months, columns=['mean']) for i in range(len(df_names)): # load the ith dataframe, taking only the df = pd.read_csv(df_names[i], usecols=['event_time', 'event_type', 'product_id'], parse_dates=['event_time']) # cut off the view variable from event_type df_3 = df[df['event_type'] != 'view'] # init the dict where the key are the products and the values are the mean of each product product_dict = {} # loop through the event_type 'purchase' to find unique product_id for prod in df_3['product_id'].unique(): df_product = df[df['product_id'] == prod] # check if at least a 'view' event exist if df_product['event_type'].str.contains('view').any(): pass else: continue # check if there are some 'purchase' event before the 'view' event (only for the first time of seeing the 'purchase') if any(df_product[df_product['event_type'] == 'purchase'].event_time <= df_product[df_product['event_type'] == 'view'].event_time.reset_index(drop=True)[0]) == True: df_3 = df_product[df_product.event_time <= df_product[df_product['event_type'] == 'view'].event_time.reset_index(drop=True)[0]] # drop any 'cart' events at the beginning df_product = df_product.drop(labels=df_3[df_3['event_type'] == 'purchase'].index) # check if there are some 'cart' event before the 'view' event (only for the first time of seeing the 'purchase') if any(df_product[df_product['event_type'] == 'cart'].event_time <= df_product[df_product['event_type'] == 'view'].event_time.reset_index(drop=True)[0]) == True: df_3 = df_product[df_product.event_time <= df_product[df_product['event_type'] == 'view'].event_time.reset_index(drop=True)[0]] # drop any 'cart' events at the beginning df_product = df_product.drop(labels=df_3[df_3['event_type'] == 'cart'].index) # check if at least a 'purchase' event exist if df_product['event_type'].str.contains('purchase').any(): pass else: continue # check if at least a 'cart' event exist if df_product['event_type'].str.contains('cart').any(): pass else: continue product_dict[prod] = [] df_product.drop_duplicates(subset=['event_type'], keep='first', inplace=True) df_product.reset_index(inplace=True) product_dict[prod].append(df_product.event_time[1] - df_product.event_time[0]) # add final average per month df_mean_database.loc[months[i], 'mean'] = pd.DataFrame(product_dict).mean(axis=1)[0] return df_mean_database # RQ2 functions def compute_number_sold_per_category(df_names, months): """ Compute the most sold product per category input: - list of names of csv files to open output: - number of sold product per category """ # init a dataframe with index as months and column as most sold product df_final = {} for i in range(len(df_names)): # load the ith dataframe, taking only the df = pd.read_csv(df_names[i], usecols=['product_id', 'category_code', 'event_type']) df = df[df['event_type'] == 'purchase'] new = df['category_code'].str.split(".", expand=True) df['category_1'] = new[0] df.drop(columns=['category_code', 'event_type'], inplace=True) df_final[months[i]] = df.groupby(by=['category_1']).count().sort_values('product_id', ascending=False) df_final = [df_final[months[i]] for i in range(len(df_final))] return df_final def plot_number_sold_per_category(df_final, months): """ plot the number of sold product per category per month """ # plot number of sold product per category pe moth using subplots fig, a = plt.subplots(4,2) # Plot 1 df_final[0].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[0][0]) a[0][0].set(title=months[0], xlabel='Categories', ylabel='Total Sales') a[0][0].tick_params(labelrotation=45) a[0][0].get_legend().remove() a[0][0].grid(color ='silver', linestyle = ':') # Plot 2 df_final[1].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[0][1]) a[0][1].set(title=months[1], xlabel='Categories', ylabel='Total Sales') a[0][1].tick_params(labelrotation=45) a[0][1].get_legend().remove() a[0][1].grid(color ='silver', linestyle = ':') # Plot 3 df_final[2].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[1][0]) a[1][0].set(title=months[2], xlabel='Categories', ylabel='Total Sales') a[1][0].tick_params(labelrotation=45) a[1][0].get_legend().remove() a[1][0].grid(color ='silver', linestyle = ':') # Plot 4 df_final[3].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[1][1]) a[1][1].set(title=months[3], xlabel='Categories', ylabel='Total Sales') a[1][1].tick_params(labelrotation=45) a[1][1].get_legend().remove() a[1][1].grid(color ='silver', linestyle = ':') # Plot 5 df_final[4].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[2][0]) a[2][0].set(title=months[4], xlabel='Categories', ylabel='Total Sales') a[2][0].tick_params(labelrotation=45) a[2][0].get_legend().remove() a[2][0].grid(color ='silver', linestyle = ':') # Plot 6 df_final[5].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[2][1]) a[2][1].set(title=months[5], xlabel='Categories', ylabel='Total Sales') a[2][1].tick_params(labelrotation=45) a[2][1].get_legend().remove() a[2][1].grid(color ='silver', linestyle = ':') # Plot 7 df_final[6].reset_index().plot(kind='bar', y='product_id', x='category_1', ax=a[3][0]) a[3][0].set(title=months[6], xlabel='Categories', ylabel='Total Sales') a[3][0].tick_params(labelrotation=45) a[3][0].get_legend().remove() a[3][0].grid(color ='silver', linestyle = ':') a[3][1].axis('off') # Title the figure fig.suptitle('Category of the most trending products overall', fontsize=14, fontweight='bold') fig.set_figwidth(20) fig.set_figheight(50) plt.show() return def plot_most_visited_subcategories(df_names, months): """ plot the most visited subcategories """ # init a dataframe with index as months and column as most sold product df_final = {} for i in range(len(df_names)): # load the ith dataframe, taking only the df = pd.read_csv(df_names[i], usecols=['event_type', 'category_code']) # take only the view events df = df[df['event_type'] == 'view'] # split the categories into subcategories new = df['category_code'].str.split(".", expand=True) df['subcategory'] = new[1] df.drop(columns=['category_code'], inplace=True) # group the subcategories and sort in descending order the relative values df_final[months[i]] = df.groupby(by=['subcategory']).count().sort_values('event_type', ascending=False) # build a pool of lists df_final = [df_final[months[i]] for i in range(len(df_final))] # concat each list of month merged_df = pd.concat([df_final[i] for i in range(len(df_final))]).reset_index() df_tot = merged_df.groupby(by=['subcategory']).sum().sort_values('event_type', ascending=False).rename(columns={'event_type': 'view'}).reset_index() # plot most visited subcategories fig = plt.figure() X = np.arange(len(df_tot)) plt.barh(X, df_tot['view']) plt.yticks(np.arange(len(df_tot)),df_tot['subcategory']) plt.ylabel("views") plt.xlabel("subcategories") plt.title("Most visited subcategories") plt.grid(color ='silver', linestyle = ':') fig.set_figwidth(15) fig.set_figheight(15) plt.show() return def plot_10_most_sold(df_final, months): """ plot the 10 most sold product per category """ # concat the dataset merged_df = pd.concat([df_final[i] for i in range(len(df_final))]).reset_index() # group together by category in descending order df_tot = merged_df.groupby(by=['category_1']).sum().sort_values('product_id', ascending=False).rename(columns={'event_type': 'view'})[:10] return df_tot # RQ3 functions # Function used for showing the values of the bars in the plots of RQ3 def plot_values_in_barh(y): for index, value in enumerate(y): plt.text(value, index, str(round(value, 2))) # Function that given a category in input, returns a plot with the average price per brand for the selected category def plot_average_price_per_category(category, df_names): # Initializing an empty list where we will put every grouped-by DataFrame later on l = [] # Starting a for loop to read every DataFrame for i in range(len(df_names)): # Selecting the columns to use for this task data = pd.read_csv(df_names[i], usecols=['category_code', 'brand', 'price']) # For every category_code and brand, calculating the average price of the products, then i reset the index # because i do not want to work with MultiIndex a = data.groupby(['category_code', 'brand']).mean().reset_index() # Appending the DataFrame analyzed for 1 month to the list l l.append(a) # Concatenating every DataFrame of each month grouped by category_code and brand in one DataFrame that will not # be memory expensive final = pd.concat(l) # Grouping again by category_code and brand after the concatenation. We reset again the index for the same # reason as before final2 = final.groupby(['category_code', 'brand']).mean().reset_index() # Selecting the category_code we want to analyze fplot = final2.loc[final2['category_code'] == category] # Setting the values to show in the plot at the end of the bars y = list(fplot['price']) # Assigning a variable to the plot end = fplot.plot(x='brand', kind='barh', figsize=(20, 60)) # Returning the plot and calling the function to show the prices on the top of the bars return end, plot_values_in_barh(y) # Function that returns for each category, the brand with the highest price def brand_with_highest_price_for_category(df_names): # Initializing an empty list where we will put our Dataframes later on l = [] # Starting a for loop to read every DataFrame for i in range(len(df_names)): # Selecting the columns to use for this task data = pd.read_csv(df_names[i], usecols=['category_code', 'brand', 'price']) # For every category_code and brand, calculating the average price of the products a = data.groupby(['category_code', 'brand']).mean() # Selecting the rows with the higher average price for each category a1 = a.loc[a.groupby(level='category_code')['price'].idxmax()] # Appending the analyzed DataFrame for 1 month to the list l l.append(a1) # Concatenating every DataFrame of each month grouped by category_code and brand in one DataFrame that will not # be memory expensive final = pd.concat(l) # Resetting the index because i do not want to work with MultiIndex rfinal = final.reset_index() # Selecting again only the rows with the higher average price for category after concatenating the DataFrames last_final = rfinal.loc[rfinal.groupby('category_code')['price'].idxmax()] # Return the output return last_final.sort_values(by=['price']) # RQ4 functions # Function that is used to see if the prices of different brands are significantly different def average_price_per_brand(df_names): # Initializing an empty list l = [] # Starting the loop to read the dataframes of every month for i in range(len(df_names)): # Selecting just the columns referring to the brand and price data = pd.read_csv(df_names[i], usecols=['brand', 'price']) # Grouping by brand and calculating the average price per brand a = data.groupby('brand').mean() # Appending the obtained DataFrame regarding the results of one month in the starting empty list l.append(a) # Concatenating every DataFrame of each month in one DataFrame that will not be memory expensive t = pd.concat(l) # Resetting the index because i do not want to work with MultiIndex rt = t.reset_index() # Grouping by brand the full DataFrame regarding all months and calculating the mean price u = rt.groupby('brand').mean() # Returning the Dataframe, the minimum and the maximum to compare the results return u, u.min(), u.max() # Function that is used to reduce the number of data we want to analyze for the RQ4 def make_df_purchase(df_names, months): df_purchase = {} # Reading the data of all months and selecting only purchase events from the DataFrame for i in range(len(df_names)): data = pd.read_csv(df_names[i], usecols=['brand', 'price', 'event_type']) df_purchase[months[i]] = data[data['event_type'] == 'purchase'] # Appending the results of every months to a dictionary return df_purchase # Function that returns the profit of every brand in each month def earning_per_month(df_purchase, months): dict_earning = {} # Calculating the earning per month of each brand grouping by brand and doing the sum of the prices of every sold # product for i in range(len(df_purchase)): data = df_purchase[months[i]] dict_earning[months[i]] = data.groupby('brand', as_index=False).sum() return dict_earning # Function that given a brand in input, returns the total profit for month of that brand def brand_per_month(brand, dict_earning, months): df_profit = {} # For every month selecting the profit from the dictionary of earnings created before. If there is no profit for the # selected brand, we set it equal to 0 for i in range(len(months)): try: df_profit[months[i]] = dict_earning[months[i]].loc[dict_earning[months[i]].brand == brand, 'price'].values[ 0] except IndexError: df_profit[months[i]] = 0 return df_profit # Function that given the earnings of every brand, returns the top 3 brands that have suffered the biggest losses # between one month and the previous one def find_3_worst_brand(dict_earning, months): # Selecting the dictionary obtained from the total profits of the brands and then merging them in one DataFrame # where on the columns we have the months and on the rows we have the brands. The values are the earnings of each # brand for every month data_frames = [dict_earning[months[i]] for i in range(len(dict_earning))] df_merged = reduce(lambda left, right: pd.merge(left, right, on=['brand'], how='outer'), data_frames) df_merged.set_index('brand', inplace=True) df_merged.set_axis(months, axis=1, inplace=True) # Transposing the DataFrame and applying the pct_change to calculate the percentage change between every month # and the month before df_pct = df_merged.T.pct_change() worst_brand = [] worst_value = [] worst_months = [] # Selecting the minimum of the percentage change(which means the bigger loss) in our DataFrame, the brand that # corresponds to it and the month that refers to it. We append those values to the lists we defined before for i in range(0, 3): worst_brand.append(df_pct.min().sort_values().index[i]) worst_value.append(round(abs(df_pct.min().sort_values()[i]) * 100, 2)) L = list(df_pct[df_pct[worst_brand[i]] == df_pct.min().sort_values()[i]].index.values) worst_months.append(''.join(L)) # Showing the result of the request for j in range(0, 3): print('{} lost {}% bewteen {} and the month before'.format(worst_brand[j], worst_value[j], worst_months[j]), end=' \n') return #RQ5 #Function that create a plot that for each day of the week shows the hourly average of visitors def plot_hour_avg(df_names,months): ''' create a plot input: -dataframe -months output: -plot ''' for i in range(len(df_names)): df=pd.read_csv(df_names[i],parse_dates=['event_time'],usecols=['event_time','user_id']) #hourly averege of visitors for each day domenica=df[df.event_time.dt.dayofweek==0].groupby(df.event_time.dt.hour).user_id.count() lunedi=df[df.event_time.dt.dayofweek==1].groupby(df.event_time.dt.hour).user_id.count() martedi=df[df.event_time.dt.dayofweek==2].groupby(df.event_time.dt.hour).user_id.count() mercoledi=df[df.event_time.dt.dayofweek==3].groupby(df.event_time.dt.hour).user_id.count() giovedi=df[df.event_time.dt.dayofweek==4].groupby(df.event_time.dt.hour).user_id.count() venerdi=df[df.event_time.dt.dayofweek==5].groupby(df.event_time.dt.hour).user_id.count() sabato=df[df.event_time.dt.dayofweek==6].groupby(df.event_time.dt.hour).user_id.count() plt.figure(figsize=[10.0,5.0]) plt.plot(domenica, '-o', color='royalblue', label = 'SUNDAY') plt.plot(lunedi, '-o', color='green', label = 'MONDAY') plt.plot(martedi, '-o', color='red', label = 'TUESDAY') plt.plot(mercoledi, '-o', color='yellow', label = 'WEDNESDAY') plt.plot(giovedi, '-o', color='orange', label = 'THURSDAY') plt.plot(venerdi, '-o', color='violet', label = 'FRIDAY') plt.plot(sabato, '-o', color='grey', label = 'SATURDAY') plt.xlabel('HOUR') plt.ylabel('VISITORS') plt.title("Daily average - %s " %months[i]) plt.xticks(range(0,24)) plt.legend() plt.show() return #RQ6 #Function that calculates the overall conversion rate of the products, creates the plot of the number of purchases by category and shows the conversion rate of each category in descending order def conversion_rate(df_names,months): """ calculate overall conversion rate plot of purchase by category calculate conversion rate for each category input: - dataframe - months output: - overall conversion rate for each month - conversion rate for each category of each month - plot of purchase by category of each month """ for i in range(len(df_names)): dataset=pd.read_csv(df_names[i],usecols=['event_type','category_code']) #NUMBER OF ALL PURCHASE PRODUCTS purchase=dataset[dataset.event_type=='purchase'] totpurc=len(purchase) #NUMBER OF ALL VIEW PRODUCTS view=dataset[dataset.event_type=='view'] totview=len(view) #OVERALL CONVERSION RATE OF STORE cr=totpurc/totview print ('Overall conversion rate of %s'%months[i]) print (cr) #CREATE A NEW COLUMN WITH THE SPLITTED CATEGORY NAME new = dataset['category_code'].str.split(".", expand=True) dataset['category_name'] = new[0] dataset.drop(columns=['category_code'], inplace=True) #NUMBER OF PURCHASE FOR CATEGORY purc_4_category=dataset[dataset.event_type=='purchase'].groupby('category_name').agg(purchase=('event_type','count')) #NUMBER OF VIEW FOR CATEGORY view_4_category=dataset[dataset.event_type=='view'].groupby('category_name').agg(view=('event_type','count')) #PLOT OF NUMBER OF PURCHASE FOR CATEGORY fig = plt.figure() purc_4_category.plot.bar(figsize = (18, 7), title='Number of purchase of %s'%months[i]) plt.show() #CONVERSION RATE FOR CATEGORY cr_4_cat=(purc_4_category.purchase/view_4_category.view) dec=cr_4_cat.sort_values(axis=0, ascending=False) print ('Conversion rate of each category of %s'%months[i]) print(dec, end='\n') return #RQ7 #Function that demonstrates the Pareto's principle def pareto(df_names,months): """ Apply Pareto's principle input: - dataframe - months output: - dimostration if Pareto's principle is apply for each month """ for i in range(len(df_names)): dataset=pd.read_csv(df_names[i],usecols=['user_id','event_type','price']) #PURCHASE BY USERS purchase_by_user=dataset[dataset.event_type == 'purchase'].groupby(dataset.user_id).agg(number_of_purchases=('user_id','count'),total_spent=('price','sum')) purchase_by_user=purchase_by_user.sort_values('total_spent',ascending=False) #20% OF USERS user_20=int(len(purchase_by_user)*20/100) purch_by_user20=purchase_by_user[:user_20] #TOTAL SPENT BY 20% OF USERS spent_by_20=purch_by_user20.agg('sum') #TOTAL PROFIT OF STORE profit=dataset[dataset.event_type == 'purchase'].groupby(dataset.event_type).agg(gain=('price','sum')) #80% OF STORE'S TOTAL PROFIT profit_80=(profit*80)/100 #PERCENTAGE CHANGE BETWEEN 80% OF PROFIT AND 20% OF USERS percent=int((float( spent_by_20.total_spent)/float(profit_80.gain))*100) print("%d%% of the profit for the month of %s comes from 20%% of the user's purchases"%(percent,months[i])) if (percent >= 80): print ("For the month of %s Pareto's principle is applied." %months[i]) else: print ("For the month of %s Pareto's principle isn't applied." %months[i]) return
[ "matplotlib.pyplot.title", "pandas.DataFrame", "matplotlib.pyplot.show", "numpy.sum", "matplotlib.pyplot.plot", "pandas.read_csv", "matplotlib.pyplot.bar", "matplotlib.pyplot.legend", "pandas.merge", "matplotlib.pyplot.subplots", "matplotlib.pyplot.barh", "matplotlib.pyplot.figure", "numpy.mean", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "pandas.concat" ]
[((2627, 2639), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2637, 2639), True, 'import matplotlib.pyplot as plt\n'), ((2687, 2717), 'matplotlib.pyplot.bar', 'plt.bar', (['X', 'average_session_df'], {}), '(X, average_session_df)\n', (2694, 2717), True, 'import matplotlib.pyplot as plt\n'), ((2798, 2841), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""average operation per session"""'], {}), "('average operation per session')\n", (2808, 2841), True, 'import matplotlib.pyplot as plt\n'), ((2846, 2870), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""operations"""'], {}), "('operations')\n", (2856, 2870), True, 'import matplotlib.pyplot as plt\n'), ((2875, 2962), 'matplotlib.pyplot.title', 'plt.title', (['"""Average number of times users perform each operation within a session"""'], {}), "(\n 'Average number of times users perform each operation within a session')\n", (2884, 2962), True, 'import matplotlib.pyplot as plt\n'), ((2962, 3001), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'color': '"""silver"""', 'linestyle': '""":"""'}), "(color='silver', linestyle=':')\n", (2970, 3001), True, 'import matplotlib.pyplot as plt\n'), ((3505, 3549), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'months', 'columns': "['mean']"}), "(index=months, columns=['mean'])\n", (3517, 3549), True, 'import pandas as pd\n'), ((7516, 7541), 'numpy.mean', 'np.mean', (['df_mean_database'], {}), '(df_mean_database)\n', (7523, 7541), True, 'import numpy as np\n'), ((8905, 8949), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'months', 'columns': "['mean']"}), "(index=months, columns=['mean'])\n", (8917, 8949), True, 'import pandas as pd\n'), ((12325, 12369), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'months', 'columns': "['mean']"}), "(index=months, columns=['mean'])\n", (12337, 12369), True, 'import pandas as pd\n'), ((16476, 16494), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(2)'], {}), '(4, 2)\n', (16488, 16494), True, 'import matplotlib.pyplot as plt\n'), ((18846, 18856), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (18854, 18856), True, 'import matplotlib.pyplot as plt\n'), ((20151, 20163), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (20161, 20163), True, 'import matplotlib.pyplot as plt\n'), ((20199, 20226), 'matplotlib.pyplot.barh', 'plt.barh', (['X', "df_tot['view']"], {}), "(X, df_tot['view'])\n", (20207, 20226), True, 'import matplotlib.pyplot as plt\n'), ((20292, 20311), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""views"""'], {}), "('views')\n", (20302, 20311), True, 'import matplotlib.pyplot as plt\n'), ((20316, 20343), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""subcategories"""'], {}), "('subcategories')\n", (20326, 20343), True, 'import matplotlib.pyplot as plt\n'), ((20348, 20387), 'matplotlib.pyplot.title', 'plt.title', (['"""Most visited subcategories"""'], {}), "('Most visited subcategories')\n", (20357, 20387), True, 'import matplotlib.pyplot as plt\n'), ((20392, 20431), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'color': '"""silver"""', 'linestyle': '""":"""'}), "(color='silver', linestyle=':')\n", (20400, 20431), True, 'import matplotlib.pyplot as plt\n'), ((20490, 20500), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20498, 20500), True, 'import matplotlib.pyplot as plt\n'), ((22138, 22150), 'pandas.concat', 'pd.concat', (['l'], {}), '(l)\n', (22147, 22150), True, 'import pandas as pd\n'), ((23788, 23800), 'pandas.concat', 'pd.concat', (['l'], {}), '(l)\n', (23797, 23800), True, 'import pandas as pd\n'), ((24948, 24960), 'pandas.concat', 'pd.concat', (['l'], {}), '(l)\n', (24957, 24960), True, 'import pandas as pd\n'), ((491, 519), 'pandas.read_csv', 'pd.read_csv', (['old_df_names[i]'], {}), '(old_df_names[i])\n', (502, 519), True, 'import pandas as pd\n'), ((1312, 1340), 'pandas.read_csv', 'pd.read_csv', (['old_df_names[i]'], {}), '(old_df_names[i])\n', (1323, 1340), True, 'import pandas as pd\n'), ((1979, 2043), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_type', 'user_session']"}), "(df_names[i], usecols=['event_type', 'user_session'])\n", (1990, 2043), True, 'import pandas as pd\n'), ((3695, 3828), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_time', 'event_type', 'product_id', 'user_id']", 'nrows': '(100000)', 'parse_dates': "['event_time']"}), "(df_names[i], usecols=['event_time', 'event_type', 'product_id',\n 'user_id'], nrows=100000, parse_dates=['event_time'])\n", (3706, 3828), True, 'import pandas as pd\n'), ((7311, 7332), 'numpy.mean', 'np.mean', (['df_mean_user'], {}), '(df_mean_user)\n', (7318, 7332), True, 'import numpy as np\n'), ((8058, 8106), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_type']"}), "(df_names[i], usecols=['event_type'])\n", (8069, 8106), True, 'import pandas as pd\n'), ((9049, 9171), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_time', 'event_type', 'product_id']", 'nrows': '(100000)', 'parse_dates': "['event_time']"}), "(df_names[i], usecols=['event_time', 'event_type', 'product_id'],\n nrows=100000, parse_dates=['event_time'])\n", (9060, 9171), True, 'import pandas as pd\n'), ((12469, 12577), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_time', 'event_type', 'product_id']", 'parse_dates': "['event_time']"}), "(df_names[i], usecols=['event_time', 'event_type', 'product_id'],\n parse_dates=['event_time'])\n", (12480, 12577), True, 'import pandas as pd\n'), ((15755, 15834), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['product_id', 'category_code', 'event_type']"}), "(df_names[i], usecols=['product_id', 'category_code', 'event_type'])\n", (15766, 15834), True, 'import pandas as pd\n'), ((19177, 19242), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_type', 'category_code']"}), "(df_names[i], usecols=['event_type', 'category_code'])\n", (19188, 19242), True, 'import pandas as pd\n'), ((21580, 21649), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['category_code', 'brand', 'price']"}), "(df_names[i], usecols=['category_code', 'brand', 'price'])\n", (21591, 21649), True, 'import pandas as pd\n'), ((23175, 23244), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['category_code', 'brand', 'price']"}), "(df_names[i], usecols=['category_code', 'brand', 'price'])\n", (23186, 23244), True, 'import pandas as pd\n'), ((24548, 24600), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['brand', 'price']"}), "(df_names[i], usecols=['brand', 'price'])\n", (24559, 24600), True, 'import pandas as pd\n'), ((25589, 25655), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['brand', 'price', 'event_type']"}), "(df_names[i], usecols=['brand', 'price', 'event_type'])\n", (25600, 25655), True, 'import pandas as pd\n'), ((28925, 29016), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'parse_dates': "['event_time']", 'usecols': "['event_time', 'user_id']"}), "(df_names[i], parse_dates=['event_time'], usecols=['event_time',\n 'user_id'])\n", (28936, 29016), True, 'import pandas as pd\n'), ((29748, 29779), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[10.0, 5.0]'}), '(figsize=[10.0, 5.0])\n', (29758, 29779), True, 'import matplotlib.pyplot as plt\n'), ((29787, 29846), 'matplotlib.pyplot.plot', 'plt.plot', (['domenica', '"""-o"""'], {'color': '"""royalblue"""', 'label': '"""SUNDAY"""'}), "(domenica, '-o', color='royalblue', label='SUNDAY')\n", (29795, 29846), True, 'import matplotlib.pyplot as plt\n'), ((29857, 29910), 'matplotlib.pyplot.plot', 'plt.plot', (['lunedi', '"""-o"""'], {'color': '"""green"""', 'label': '"""MONDAY"""'}), "(lunedi, '-o', color='green', label='MONDAY')\n", (29865, 29910), True, 'import matplotlib.pyplot as plt\n'), ((29921, 29974), 'matplotlib.pyplot.plot', 'plt.plot', (['martedi', '"""-o"""'], {'color': '"""red"""', 'label': '"""TUESDAY"""'}), "(martedi, '-o', color='red', label='TUESDAY')\n", (29929, 29974), True, 'import matplotlib.pyplot as plt\n'), ((29985, 30045), 'matplotlib.pyplot.plot', 'plt.plot', (['mercoledi', '"""-o"""'], {'color': '"""yellow"""', 'label': '"""WEDNESDAY"""'}), "(mercoledi, '-o', color='yellow', label='WEDNESDAY')\n", (29993, 30045), True, 'import matplotlib.pyplot as plt\n'), ((30056, 30113), 'matplotlib.pyplot.plot', 'plt.plot', (['giovedi', '"""-o"""'], {'color': '"""orange"""', 'label': '"""THURSDAY"""'}), "(giovedi, '-o', color='orange', label='THURSDAY')\n", (30064, 30113), True, 'import matplotlib.pyplot as plt\n'), ((30124, 30179), 'matplotlib.pyplot.plot', 'plt.plot', (['venerdi', '"""-o"""'], {'color': '"""violet"""', 'label': '"""FRIDAY"""'}), "(venerdi, '-o', color='violet', label='FRIDAY')\n", (30132, 30179), True, 'import matplotlib.pyplot as plt\n'), ((30190, 30244), 'matplotlib.pyplot.plot', 'plt.plot', (['sabato', '"""-o"""'], {'color': '"""grey"""', 'label': '"""SATURDAY"""'}), "(sabato, '-o', color='grey', label='SATURDAY')\n", (30198, 30244), True, 'import matplotlib.pyplot as plt\n'), ((30255, 30273), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""HOUR"""'], {}), "('HOUR')\n", (30265, 30273), True, 'import matplotlib.pyplot as plt\n'), ((30282, 30304), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""VISITORS"""'], {}), "('VISITORS')\n", (30292, 30304), True, 'import matplotlib.pyplot as plt\n'), ((30313, 30357), 'matplotlib.pyplot.title', 'plt.title', (["('Daily average - %s ' % months[i])"], {}), "('Daily average - %s ' % months[i])\n", (30322, 30357), True, 'import matplotlib.pyplot as plt\n'), ((30397, 30409), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (30407, 30409), True, 'import matplotlib.pyplot as plt\n'), ((30418, 30428), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (30426, 30428), True, 'import matplotlib.pyplot as plt\n'), ((31069, 31134), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['event_type', 'category_code']"}), "(df_names[i], usecols=['event_type', 'category_code'])\n", (31080, 31134), True, 'import pandas as pd\n'), ((32136, 32148), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (32146, 32148), True, 'import matplotlib.pyplot as plt\n'), ((32253, 32263), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (32261, 32263), True, 'import matplotlib.pyplot as plt\n'), ((32831, 32899), 'pandas.read_csv', 'pd.read_csv', (['df_names[i]'], {'usecols': "['user_id', 'event_type', 'price']"}), "(df_names[i], usecols=['user_id', 'event_type', 'price'])\n", (32842, 32899), True, 'import pandas as pd\n'), ((2370, 2404), 'pandas.DataFrame', 'pd.DataFrame', (['average_session_dict'], {}), '(average_session_dict)\n', (2382, 2404), True, 'import pandas as pd\n'), ((27434, 27482), 'pandas.merge', 'pd.merge', (['left', 'right'], {'on': "['brand']", 'how': '"""outer"""'}), "(left, right, on=['brand'], how='outer')\n", (27442, 27482), True, 'import pandas as pd\n'), ((11855, 11873), 'numpy.mean', 'np.mean', (['dist_prod'], {}), '(dist_prod)\n', (11862, 11873), True, 'import numpy as np\n'), ((6798, 6825), 'numpy.mean', 'np.mean', (['product_dict[prod]'], {}), '(product_dict[prod])\n', (6805, 6825), True, 'import numpy as np\n'), ((11965, 11991), 'pandas.DataFrame', 'pd.DataFrame', (['product_dict'], {}), '(product_dict)\n', (11977, 11991), True, 'import pandas as pd\n'), ((15226, 15252), 'pandas.DataFrame', 'pd.DataFrame', (['product_dict'], {}), '(product_dict)\n', (15238, 15252), True, 'import pandas as pd\n'), ((6385, 6477), 'numpy.sum', 'np.sum', (["(df_product_2[df_product['event_type'] == 'view'].event_time < row[\n 'event_time'])"], {}), "(df_product_2[df_product['event_type'] == 'view'].event_time < row[\n 'event_time'])\n", (6391, 6477), True, 'import numpy as np\n'), ((7022, 7048), 'pandas.DataFrame', 'pd.DataFrame', (['product_dict'], {}), '(product_dict)\n', (7034, 7048), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- """ Created on Tue Jun 7 16:12:33 2016 @author: rmcleod """ import numpy as np import matplotlib.pyplot as plt import os, os.path, glob mcFRCFiles = glob.glob( "FRC/*mcFRC.npy" ) zorroFRCFiles = glob.glob( "FRC/*zorroFRC.npy" ) zorroFRCs = [None] * len( zorroFRCFiles) for J in np.arange( len(zorroFRCFiles) ): zorroFRCs[J] = np.load( zorroFRCFiles[J] ) mcFRCs = [None] * len( mcFRCFiles) for J in np.arange( len(mcFRCFiles) ): mcFRCs[J] = np.load( mcFRCFiles[J] ) zorroMeanFRC = np.mean( np.array(zorroFRCs), axis=0 ) mcMeanFRC = np.mean( np.array(mcFRCs), axis=0 ) plt.figure() plt.plot( mcMeanFRC, '.-', color='firebrick', label='MotionCorr' ) plt.plot( zorroMeanFRC, '.-', color='black', label='Zorro' ) plt.title( "Mean FRC Re-aligned from MotionCorr" ) plt.legend() plt.xlim( [0,len(mcMeanFRC)] ) plt.savefig( "Dataset_mean_MC_vs_Zorro.png" )
[ "matplotlib.pyplot.title", "numpy.load", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.array", "glob.glob", "matplotlib.pyplot.savefig" ]
[((177, 204), 'glob.glob', 'glob.glob', (['"""FRC/*mcFRC.npy"""'], {}), "('FRC/*mcFRC.npy')\n", (186, 204), False, 'import os, os.path, glob\n'), ((223, 253), 'glob.glob', 'glob.glob', (['"""FRC/*zorroFRC.npy"""'], {}), "('FRC/*zorroFRC.npy')\n", (232, 253), False, 'import os, os.path, glob\n'), ((621, 633), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (631, 633), True, 'import matplotlib.pyplot as plt\n'), ((634, 698), 'matplotlib.pyplot.plot', 'plt.plot', (['mcMeanFRC', '""".-"""'], {'color': '"""firebrick"""', 'label': '"""MotionCorr"""'}), "(mcMeanFRC, '.-', color='firebrick', label='MotionCorr')\n", (642, 698), True, 'import matplotlib.pyplot as plt\n'), ((701, 759), 'matplotlib.pyplot.plot', 'plt.plot', (['zorroMeanFRC', '""".-"""'], {'color': '"""black"""', 'label': '"""Zorro"""'}), "(zorroMeanFRC, '.-', color='black', label='Zorro')\n", (709, 759), True, 'import matplotlib.pyplot as plt\n'), ((762, 810), 'matplotlib.pyplot.title', 'plt.title', (['"""Mean FRC Re-aligned from MotionCorr"""'], {}), "('Mean FRC Re-aligned from MotionCorr')\n", (771, 810), True, 'import matplotlib.pyplot as plt\n'), ((813, 825), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (823, 825), True, 'import matplotlib.pyplot as plt\n'), ((857, 900), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Dataset_mean_MC_vs_Zorro.png"""'], {}), "('Dataset_mean_MC_vs_Zorro.png')\n", (868, 900), True, 'import matplotlib.pyplot as plt\n'), ((361, 386), 'numpy.load', 'np.load', (['zorroFRCFiles[J]'], {}), '(zorroFRCFiles[J])\n', (368, 386), True, 'import numpy as np\n'), ((488, 510), 'numpy.load', 'np.load', (['mcFRCFiles[J]'], {}), '(mcFRCFiles[J])\n', (495, 510), True, 'import numpy as np\n'), ((542, 561), 'numpy.array', 'np.array', (['zorroFRCs'], {}), '(zorroFRCs)\n', (550, 561), True, 'import numpy as np\n'), ((593, 609), 'numpy.array', 'np.array', (['mcFRCs'], {}), '(mcFRCs)\n', (601, 609), True, 'import numpy as np\n')]
import numpy as np from pyutai import trees from potentials import cluster def cpd_size(cpd): return np.prod(cpd.cardinality) def unique_values(cpd): unique, _ = np.unique(cpd.values, return_counts=True) return len(unique) def stats(net): if not net.endswith('.bif'): raise ValueError('Net format not supported. Expected .bif, got {net}') file_ = read.read(f'networks/{net}') model = file_.get_model() cpds = model.get_cpds() unique_values = statistics.mean(_unique_values(cpd) for cpd in cpds) max_values = max( ((i, _unique_values(cpd)) for i, cpd in enumerate(cpds)), key=lambda x: x[1]) print( f'Net: {net}. Mean unique value: {unique_values:.2f}. Biggest cpd: {max_values}' ) def tree_from_cpd(cpd, selector): if selector is None: pass else: selector = selector(cpd.values, cpd.variables) cardinality_ = dict(zip(cpd.variables, cpd.cardinality)) return trees.Tree.from_array(cpd.values, cpd.variables, cardinality_, selector=selector) def cluster_from_cpd(cpd): return cluster.Cluster.from_array(cpd.values, cpd.variables)
[ "numpy.unique", "pyutai.trees.Tree.from_array", "numpy.prod", "potentials.cluster.Cluster.from_array" ]
[((107, 131), 'numpy.prod', 'np.prod', (['cpd.cardinality'], {}), '(cpd.cardinality)\n', (114, 131), True, 'import numpy as np\n'), ((174, 215), 'numpy.unique', 'np.unique', (['cpd.values'], {'return_counts': '(True)'}), '(cpd.values, return_counts=True)\n', (183, 215), True, 'import numpy as np\n'), ((978, 1064), 'pyutai.trees.Tree.from_array', 'trees.Tree.from_array', (['cpd.values', 'cpd.variables', 'cardinality_'], {'selector': 'selector'}), '(cpd.values, cpd.variables, cardinality_, selector=\n selector)\n', (999, 1064), False, 'from pyutai import trees\n'), ((1197, 1250), 'potentials.cluster.Cluster.from_array', 'cluster.Cluster.from_array', (['cpd.values', 'cpd.variables'], {}), '(cpd.values, cpd.variables)\n', (1223, 1250), False, 'from potentials import cluster\n')]
import os,sys import datetime as dt import numpy as np try: #for python 3.0 or later from urllib.request import urlopen except ImportError: #Fall back to python 2 urllib2 from urllib2 import urlopen import requests from multiprocessing import Pool import drms from shutil import move import glob ###Remove proxy server variables from Lockheed after using the proxy server to connect to the google calendar 2019/02/20 <NAME> ##os.environ.pop("http_proxy" ) ##os.environ.pop("https_proxy") class dark_times: def __init__(self,time, irisweb='http://iris.lmsal.com/health-safety/timeline/iris_tim_archive/{2}/IRIS_science_timeline_{0}.V{1:2d}.txt', simpleb=False,complexa=False,tol=50): """ A python class used for finding and downloading IRIS dark observations. This module requires that parameters be specified in a parameter file in this directory. The parameter file's name must be "parameter_file" and contain the three following lines: Line1: email address registered with JSOC (e.g. <EMAIL>) Line2: A base directory containing the level 1 IRIS dark files. The program will concatenate YYYY/MM/simpleb/ or YYYY/MM/complexa/ onto the base directory Line3: A base directory containing the level 0 IRIS dark files. The program will concatenate simpleb/YYYY/MM/ or complexa/YYYY/MM/ onto the base directory Example three lines below: <EMAIL> /data/alisdair/IRIS_LEVEL1_DARKS/ /data/alisdair/opabina/scratch/joan/iris/newdat/orbit/level0/ The program will create the level0 and level1 directories as needed. Parameters ---------- time: str A string containing the date the dark observations started based on the IRIS calibration-as-run calendar in YYYY/MM/DD format (e.g. test = gdf.dark_times(time,simpleb=True)) irisweb: string, optional A formatted text string which corresponds to the location of the IRIS timeline files (Default = 'http://iris.lmsal.com/health-safety/timeline/iris_tim_archive/{2}/IRIS_science_timeline_{0}.V{1:2d}.txt'). The {0} character string corresponds the date of the timeline uploaded in YYYYMMDD format, while {1:2d} corresponds to the highest number version of the timeline, which I assume is the timeline uploaded to the spacecraft. simpleb: boolean, optional Whether to download simpleb darks can only perform simpleb or complexa darks per call (Default = False). complexa: boolean, optional Whether to download complexa darks can only perform simpleb or complexa darks per call (Default = False). tol: int, optional The number of darks in a directory before the program decides to download. If greater than tolerance than it will not download any new darks if less than tolerance then it will download the new darks (Default = 50). Returns ------- None Just downloads files and creates required directories. """ #web page location of IRIS timeline self.irisweb = irisweb #.replace('IRIS',time+'/IRIS') self.otime = dt.datetime.strptime(time,'%Y/%m/%d') self.stime = self.otime.strftime('%Y%m%d') #Type of dark to download simple B or complex A self.complexa = complexa self.simpleb = simpleb #Minimum number of dark files reqiured to run self.tol = tol #read lines in parameter file parU = open('parameter_file','r') pars = parU.readlines() parU.close() #update parameters based on new parameter file #get email address self.email = pars[0].strip() #get level 1/download base directory (without simpleb or complexa subdirectory bdir = pars[1].strip() #get level 0 directory ldir = pars[2].strip() if complexa: self.obsid = 'OBSID=4203400000' if simpleb: self.obsid = 'OBSID=4202000003' #make the download directory if self.simpleb: self.bdir = bdir+'/{0}/simpleB/'.format(self.otime.strftime('%Y/%m')) self.ldir = ldir+'/simpleB/{0}/'.format(self.otime.strftime('%Y/%m')) else: self.bdir = bdir+'/{0}/complexA/'.format(self.otime.strftime('%Y/%m')) self.ldir = ldir+'/complexA/{0}/'.format(self.otime.strftime('%Y/%m')) def request_files(self): #First check that any time line exists for given day searching = True sb = 0 #searching backwards days to correct for weekend or multiday timelines while searching: #look in iris's timeline structure self.stime = (self.otime-dt.timedelta(days=sb)).strftime('%Y%m%d') irispath = (self.otime-dt.timedelta(days=sb)).strftime('%Y/%m/%d') inurl = self.irisweb.format(self.stime,0,irispath).replace(' ','0') #searching for V00 file verision resp = requests.head(inurl) #leave loop if V00 is found if resp.status_code == 200: searching =False else: sb += 1 #look one day back if timeline is missing if sb >= 9: searching = False #dont look back more than 9 days sys.stdout.write('FAILED, IRIS timeline does not exist')#printing this will cause the c-shell script to fail too sys.exit(1) # exit the python script check = True v = 0 #timeline version #get lastest timeline version while check == True: inurl = self.irisweb.format(self.stime, v,irispath).replace(' ','0') resp = requests.head(inurl) if resp.status_code != 200: check = False v+=-1 inurl = self.irisweb.format(self.stime, v,irispath).replace(' ','0') else: v+=1 #get the timeline file information for request timeline res = urlopen(inurl) self.res = res #Need to add decode because python 3 is wonderful 2019/01/16 <NAME> self.timeline = res.read().decode('utf-8') def get_start_end(self): #lines with OBSID=obsid self.lines = [] for line in self.timeline.split('\n'): if self.obsid in line: self.lines.append(line) #get the last set of OBSIDs (useful for eclipse season) #Query from start to end time 2019/01/02 <NAME> self.sta_dark = self.lines[0][3:20] self.end_dark = self.lines[-1][3:20] self.sta_dark_dt = self.create_dt_object(self.sta_dark) self.end_dark_dt = self.create_dt_object(self.end_dark) self.sta_dark_dt = self.sta_dark_dt-dt.timedelta(minutes=1) self.end_dark_dt = self.end_dark_dt+dt.timedelta(minutes=1) #create datetime objects using doy in timeline def create_dt_object(self,dtobj): splt = dtobj.split(':') obj = dt.datetime(int(splt[0]),1,1,int(splt[2]),int(splt[3]))+dt.timedelta(days=int(splt[1])-1) #convert doy to datetime obj return obj #set up JSOC query for darks def dark_query(self): #use drms module to download from JSOC (https://pypi.python.org/pypi/drms) client = drms.Client(email=self.email,verbose=False) fmt = '%Y.%m.%d_%H:%M' self.qstr = 'iris.lev1[{0}_TAI-{1}_TAI][][? IMG_TYPE ~ "DARK" ?]'.format(self.sta_dark_dt.strftime(fmt),self.end_dark_dt.strftime(fmt)) self.expt = client.export(self.qstr) #setup string to pass write to sswidl for download ### fmt = '%Y-%m-%dT%H:%M:%S' ### self.response = client.query(jsoc.Time(self.sta_dark_dt.strftime(fmt),self.end_dark_dt.strftime(fmt)),jsoc.Series('iris.lev1'), ### jsoc.Notify('<EMAIL>'),jsoc.Segment('image')) ### self.get_darks(client) def get_darks(self,client): #### import time #### wait = True #### #### request = client.request_data(self.response) #### waittime = 60.*5. #five minute wait to check on data completion #### time.sleep(waittime) # #### #### while wait: #### stat = client.check_request(request) #### if stat == 1: #### temp.sleep(waittime) #### elif stat == 0: #### wait = False #### elif stat > 1: #### break #jump out of loop if you get an error # check to make sure directory does not exist if not os.path.exists(self.bdir): os.makedirs(self.bdir) #also make level0 directory if not os.path.exists(self.ldir): os.makedirs(self.ldir) #get number of records try: index = np.arange(np.size(self.expt.urls.url)) if index[-1] < self.tol: #make sure to have at least 50 darks in archive before downloading sys.stdout.write("FAILED, LESS THAN {0:2d} DARKS IN ARCHIVE".format(self.tol)) sys.exit(1) except: #exit nicely if no records exist sys.stdout.write("FAILED, No JSOC record exists") sys.exit(1) #check to see if darks are already downloaded Added 2017/03/20 #make sure the downloaded files are on the same day added 2017/12/05 (<NAME>) if len(glob.glob(self.bdir+'/iris.lev1.{0}*.fits'.format(self.otime.strftime('%Y-%m-%d')))) < self.tol: #Dowloand the data using drms in par. (will fuss about mounted drive ocassionaly) for ii in index: self.download_par(ii) #DRMS DOES NOT WORK IN PARALELL #### pool = Pool(processes=4) #### outf = pool.map(self.download_par,index) #### pool.close() ### self.expt.download(bdir,1,fname_from_rec=True) #download the data #### res = client.get_request(request,path=bdir,progress=True) #### res.wait() # def download_par(self,index): # get file from JSOC outf = self.expt.download(self.bdir,index,fname_from_rec=True) #format output file fils = str(outf['download'].values[0]) fils = fils.split('/')[-1] nout = fils[:14]+'-'+fils[14:16]+'-'+fils[16:24]+fils[26:] #create new file name in same as previous format if os.path.isfile(str(outf['download'].values[0])): move(str(outf['download'].values[0]),self.bdir+nout) #run to completion def run_all(self): self.request_files() self.get_start_end() self.dark_query()
[ "sys.stdout.write", "numpy.size", "requests.head", "os.makedirs", "os.path.exists", "datetime.datetime.strptime", "datetime.timedelta", "drms.Client", "urllib2.urlopen", "sys.exit" ]
[((3268, 3306), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['time', '"""%Y/%m/%d"""'], {}), "(time, '%Y/%m/%d')\n", (3288, 3306), True, 'import datetime as dt\n'), ((6072, 6086), 'urllib2.urlopen', 'urlopen', (['inurl'], {}), '(inurl)\n', (6079, 6086), False, 'from urllib2 import urlopen\n'), ((7346, 7390), 'drms.Client', 'drms.Client', ([], {'email': 'self.email', 'verbose': '(False)'}), '(email=self.email, verbose=False)\n', (7357, 7390), False, 'import drms\n'), ((5089, 5109), 'requests.head', 'requests.head', (['inurl'], {}), '(inurl)\n', (5102, 5109), False, 'import requests\n'), ((5763, 5783), 'requests.head', 'requests.head', (['inurl'], {}), '(inurl)\n', (5776, 5783), False, 'import requests\n'), ((6824, 6847), 'datetime.timedelta', 'dt.timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (6836, 6847), True, 'import datetime as dt\n'), ((6892, 6915), 'datetime.timedelta', 'dt.timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (6904, 6915), True, 'import datetime as dt\n'), ((8611, 8636), 'os.path.exists', 'os.path.exists', (['self.bdir'], {}), '(self.bdir)\n', (8625, 8636), False, 'import os, sys\n'), ((8650, 8672), 'os.makedirs', 'os.makedirs', (['self.bdir'], {}), '(self.bdir)\n', (8661, 8672), False, 'import os, sys\n'), ((8724, 8749), 'os.path.exists', 'os.path.exists', (['self.ldir'], {}), '(self.ldir)\n', (8738, 8749), False, 'import os, sys\n'), ((8763, 8785), 'os.makedirs', 'os.makedirs', (['self.ldir'], {}), '(self.ldir)\n', (8774, 8785), False, 'import os, sys\n'), ((5371, 5427), 'sys.stdout.write', 'sys.stdout.write', (['"""FAILED, IRIS timeline does not exist"""'], {}), "('FAILED, IRIS timeline does not exist')\n", (5387, 5427), False, 'import os, sys\n'), ((5500, 5511), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5508, 5511), False, 'import os, sys\n'), ((8861, 8888), 'numpy.size', 'np.size', (['self.expt.urls.url'], {}), '(self.expt.urls.url)\n', (8868, 8888), True, 'import numpy as np\n'), ((9105, 9116), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9113, 9116), False, 'import os, sys\n'), ((9181, 9230), 'sys.stdout.write', 'sys.stdout.write', (['"""FAILED, No JSOC record exists"""'], {}), "('FAILED, No JSOC record exists')\n", (9197, 9230), False, 'import os, sys\n'), ((9243, 9254), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9251, 9254), False, 'import os, sys\n'), ((4836, 4857), 'datetime.timedelta', 'dt.timedelta', ([], {'days': 'sb'}), '(days=sb)\n', (4848, 4857), True, 'import datetime as dt\n'), ((4913, 4934), 'datetime.timedelta', 'dt.timedelta', ([], {'days': 'sb'}), '(days=sb)\n', (4925, 4934), True, 'import datetime as dt\n')]
"""Candid Covariance-Free Incremental PCA (CCIPCA).""" import numpy as np from scipy import linalg from sklearn.utils import check_array from sklearn.utils.validation import FLOAT_DTYPES from sklearn.base import BaseEstimator from sklearn.preprocessing import normalize import copy class CCIPCA(BaseEstimator): """Candid Covariance-Free Incremental PCA (CCIPCA). Parameters ---------- n_components : int or None, (default=None) Number of components to keep. If ``n_components `` is ``None``, then ``n_components`` is set to ``min(n_samples, n_features)``. copy : bool, (default=True) If False, X will be overwritten. ``copy=False`` can be used to save memory but is unsafe for general use. References Candid Covariance-free Incremental Principal Component Analysis """ def __init__(self, n_components=10, amnesic=2, copy=True): self.__name__ = 'Incremental Projection on Latent Space (IPLS)' self.n_components = n_components self.amnesic = amnesic self.n = 0 self.copy = copy self.x_rotations = None self.sum_x = None self.n_features = None self.eign_values = None self.x_mean = None def normalize(self, x): return normalize(x[:, np.newaxis], axis=0).ravel() def fit(self, X, Y=None): X = check_array(X, dtype=FLOAT_DTYPES, copy=self.copy) n_samples, n_features = X.shape if self.n == 0: self.n_features = n_features self.x_rotations = np.zeros((n_features, self.n_components)) self.eign_values = np.zeros((self.n_components)) self.incremental_mean = 1 for j in range(0, n_samples): self.n = self.n + 1 u = X[j] old_mean = (self.n-1)/self.n*self.incremental_mean new_mean = 1/self.n*u self.incremental_mean = old_mean+new_mean if self.n == 1: self.x_rotations[:, 0] = u self.sum_x = u else: u = u - self.incremental_mean self.sum_x = self.sum_x + u k = min(self.n, self.n_components) for i in range(1, k+1): if i == self.n: self.x_rotations[:, i - 1] = u else: w1, w2 = (self.n-1-self.amnesic)/self.n, (self.n+self.amnesic)/self.n v_norm = self.normalize(self.x_rotations[:, i-1]) v_norm = np.expand_dims(v_norm, axis=1) self.x_rotations[:, i - 1] = w1 * self.x_rotations[:, i - 1] + w2*u*np.dot(u.T, v_norm)[0] v_norm = self.normalize(self.x_rotations[:, i-1]) v_norm = np.expand_dims(v_norm, axis=1) u = u - (np.dot(u.T, v_norm)*v_norm)[:, 0] return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data.""" X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) X -= self.incremental_mean w_rotation = np.zeros(self.x_rotations.shape) for c in range(0, self.n_components): w_rotation[:, c] = self.normalize(self.x_rotations[:, c]) return np.dot(X, w_rotation)
[ "sklearn.utils.check_array", "numpy.zeros", "numpy.expand_dims", "sklearn.preprocessing.normalize", "numpy.dot" ]
[((1416, 1466), 'sklearn.utils.check_array', 'check_array', (['X'], {'dtype': 'FLOAT_DTYPES', 'copy': 'self.copy'}), '(X, dtype=FLOAT_DTYPES, copy=self.copy)\n', (1427, 1466), False, 'from sklearn.utils import check_array\n'), ((3110, 3155), 'sklearn.utils.check_array', 'check_array', (['X'], {'copy': 'copy', 'dtype': 'FLOAT_DTYPES'}), '(X, copy=copy, dtype=FLOAT_DTYPES)\n', (3121, 3155), False, 'from sklearn.utils import check_array\n'), ((3218, 3250), 'numpy.zeros', 'np.zeros', (['self.x_rotations.shape'], {}), '(self.x_rotations.shape)\n', (3226, 3250), True, 'import numpy as np\n'), ((3389, 3410), 'numpy.dot', 'np.dot', (['X', 'w_rotation'], {}), '(X, w_rotation)\n', (3395, 3410), True, 'import numpy as np\n'), ((1611, 1652), 'numpy.zeros', 'np.zeros', (['(n_features, self.n_components)'], {}), '((n_features, self.n_components))\n', (1619, 1652), True, 'import numpy as np\n'), ((1685, 1712), 'numpy.zeros', 'np.zeros', (['self.n_components'], {}), '(self.n_components)\n', (1693, 1712), True, 'import numpy as np\n'), ((1326, 1361), 'sklearn.preprocessing.normalize', 'normalize', (['x[:, np.newaxis]'], {'axis': '(0)'}), '(x[:, np.newaxis], axis=0)\n', (1335, 1361), False, 'from sklearn.preprocessing import normalize\n'), ((2613, 2643), 'numpy.expand_dims', 'np.expand_dims', (['v_norm'], {'axis': '(1)'}), '(v_norm, axis=1)\n', (2627, 2643), True, 'import numpy as np\n'), ((2859, 2889), 'numpy.expand_dims', 'np.expand_dims', (['v_norm'], {'axis': '(1)'}), '(v_norm, axis=1)\n', (2873, 2889), True, 'import numpy as np\n'), ((2733, 2752), 'numpy.dot', 'np.dot', (['u.T', 'v_norm'], {}), '(u.T, v_norm)\n', (2739, 2752), True, 'import numpy as np\n'), ((2920, 2939), 'numpy.dot', 'np.dot', (['u.T', 'v_norm'], {}), '(u.T, v_norm)\n', (2926, 2939), True, 'import numpy as np\n')]
import warnings warnings.filterwarnings('ignore', category=UserWarning, append=True) RAMS_Units=dict() # winds RAMS_Units['UC']='m s-1' RAMS_Units['VC']='m s-1' RAMS_Units['WC']='m s-1' # potential temperature RAMS_Units['THETA']='K' RAMS_Units['PI']='J kg-1 K-1' RAMS_Units['DN0']='kg m-3' # water vapour mixing ratio: RAMS_Units['RV']='kg kg-1' # hydrometeor mass mixing ratios: mass_mixing_ratios=['RCP','RDP','RRP','RPP','RSP','RAP','RGP','RHP'] for variable in mass_mixing_ratios: RAMS_Units[variable]='kg kg-1' # hydrometeor number mixing ratios: mass_mixing_ratios=['CCP','CDP','CRP','CPP','CSP','CAP','CGP','CHP'] for variable in mass_mixing_ratios: RAMS_Units[variable]='kg-1' #hydrometeor precipitation rates: precipitation_rates=['PCPRR','PCPRD','PCPRS','PCPRH','PCPRP','PCPRA','PCPRG'] for variable in precipitation_rates: RAMS_Units[variable]='kg m-2' # hydrometeor precipitation accumulated: precipitation_accumulated=['ACCPR','ACCPD','ACCPS','ACCPH','ACCPP','ACCPA','ACCPG'] for variable in precipitation_accumulated: RAMS_Units[variable]='kg m-2 s-1' # radiation: RAMS_Units['LWUP']='W m-2' RAMS_Units['LWDN']='W m-2' RAMS_Units['SWUP']='W m-2' RAMS_Units['SWDN']='W m-2' # individual microphysics processes accumulated RAMS_processes_mass=[ 'NUCCLDRT', 'NUCICERT', 'INUCHOMRT', 'INUCCONTR', 'INUCIFNRT', 'INUCHAZRT', 'VAPCLDT', 'VAPRAINT', 'VAPPRIST', 'VAPSNOWT', 'VAPAGGRT', 'VAPGRAUT', 'VAPHAILT', 'VAPDRIZT', 'MELTSNOWT', 'MELTAGGRT', 'MELTGRAUT', 'MELTHAILT', 'RIMECLDSNOWT', 'RIMECLDAGGRT', 'RIMECLDGRAUT', 'RIMECLDHAILT', 'RAIN2PRT', 'RAIN2SNT', 'RAIN2AGT', 'RAIN2GRT', 'RAIN2HAT', 'AGGRSELFPRIST', 'AGGRSELFSNOWT', 'AGGRPRISSNOWT' ] for variable in RAMS_processes_mass: RAMS_Units[variable]='kg kg-1' # grouped microphysics processes accumulated: RAMS_processes_mass_grouped=[ 'VAPLIQT', 'VAPICET', 'MELTICET', 'CLD2RAINT', 'RIMECLDT', 'RAIN2ICET', 'ICE2RAINT', 'AGGREGATET' ] for variable in RAMS_processes_mass_grouped: RAMS_Units[variable]='kg kg-1' # grouped microphysics processes instantaneous: RAMS_processes_mass_grouped_instantaneous=[ 'VAPLIQ', 'VAPICE', 'MELTICE', 'CLD2RAIN', 'RIMECLD', 'RAIN2ICE', 'ICE2RAIN', 'NUCCLDR', 'NUCICER' ] for variable in RAMS_processes_mass_grouped_instantaneous: RAMS_Units[variable]='kg kg-1 s-1' RAMS_standard_name=dict() variable_list_derive=[ 'air_temperature', 'air_pressure', 'temperature', 'air_density', 'OLR', 'LWC', 'IWC', 'LWP', 'IWP', 'IWV', 'airmass', 'airmass_path', 'surface_precipitation', 'surface_precipitation_average', 'surface_precipitation_accumulated', 'surface_precipitation_instantaneous', 'LWup_TOA', 'LWup_sfc', 'LWdn_TOA', 'LWdn_sfc', 'SWup_TOA', 'SWup_sfc', 'SWdn_TOA', 'SWdn_sfc' ] def variable_list(filenames): from iris import load cubelist=load(filenames[0]) variable_list = [cube.name() for cube in cubelist] return variable_list def load(filenames,variable,mode='auto',**kwargs): if variable in variable_list_derive: variable_cube=deriveramscube(filenames,variable,**kwargs) else: variable_cube=loadramscube(filenames,variable,**kwargs) # if mode=='auto': # variable_list_file=variable_list(filenames) # if variable in variable_list_file: # variable_cube=loadramscube(filenames,variable,**kwargs) # elif variable in variable_list_derive: # variable_cube=deriveramscube(filenames,variable,**kwargs) # elif variable in variable_dict_pseudonym.keys(): # variable_load=variable_dict_pseudonym[variable] # variable_cube=loadramscube(filenames,variable_load,**kwargs) # else: # raise SystemExit('variable not found') # elif mode=='file': # variable_list_file=variable_list(filenames) # if variable in variable_list_file: # variable_cube=loadramscube(filenames,variable,**kwargs) # elif mode=='derive': # variable_cube=deriveramscube(filenames,variable,**kwargs) # elif mode=='pseudonym': # variable_load=variable_dict_pseudonym[variable] # variable_cube=loadramscube(filenames,variable_load,**kwargs) # else: # print("mode=",mode) # raise SystemExit('unknown mode') return variable_cube def loadramscube(filenames,variable,**kwargs): if type(filenames) is list: variable_cube=loadramscube_mult(filenames,variable,**kwargs) elif type(filenames) is str: variable_cube=loadramscube_single(filenames,variable,**kwargs) else: print("filenames=",filenames) raise SystemExit('Type of input unknown: Must be str of list') return variable_cube def loadramscube_single(filenames,variable,constraint=None,add_coordinates=None): from iris import load_cube variable_cube=load_cube(filenames,variable) variable_cube.units=RAMS_Units[variable] variable_cube=addcoordinates(filenames, variable,variable_cube,add_coordinates=add_coordinates) return variable_cube def loadramscube_mult(filenames,variable,constraint=None,add_coordinates=None): from iris.cube import CubeList cube_list=[] for i in range(len(filenames)): cube_list.append(loadramscube_single(filenames[i],variable,add_coordinates=add_coordinates) ) for member in cube_list: member.attributes={} variable_cubes=CubeList(cube_list) variable_cube=variable_cubes.merge_cube() variable_cube=variable_cube.extract(constraint) return variable_cube def readramsheader(filename): from numpy import array searchfile = open(filename, "r") coord_dict=dict() variable_dict=dict() coord_part=False i_variable=0 n_variable=0 for i,line in enumerate(searchfile): if (i==0): num_variables=int(line[:-1]) if (i>0 and i<=num_variables): line_split=line[:-1].split() variable_dict[line_split[0]]=int(line_split[2]) if ('__') in line: coord_part=True i_variable=i variable_name=line[2:-1] variable_list=[] if coord_part: if (i==i_variable+1): n_variable=int(line[:-1]) if n_variable>0: if (i>=i_variable+2 and i<=i_variable+1+n_variable): try: value_out=array(float(line[:-1])) except: value_out=line[:-1] variable_list.append(value_out) if (i==i_variable+1+n_variable): coord_dict[variable_name]=array(variable_list) coord_part=False # else: # coord_part=False return variable_dict, coord_dict def addcoordinates(filename, variable,variable_cube,**kwargs): filename_header=filename[:-5]+'head.txt' domain=filename[-4] variable_dict, coord_dict=readramsheader(filename_header) variable_cube=add_dim_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,**kwargs) variable_cube=add_aux_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,**kwargs) return variable_cube def make_time_coord(coord_dict): from datetime import datetime,timedelta from iris import coords timestr=str(int(coord_dict['iyear1'][0]))+str(int(coord_dict['imonth1'][0])).zfill(2)+str(int(coord_dict['idate1'][0])).zfill(2)+str(int(coord_dict['itime1'][0])).zfill(4) timeobj = datetime.strptime(timestr,"%Y%m%d%H%M")+timedelta(seconds=1)*coord_dict['time'][0] if timeobj<datetime(100,1,1): base_date=datetime(1,1,1) else: base_date=datetime(1970,1,1) time_units='days since '+ base_date.strftime('%Y-%m-%d') time_days=(timeobj - base_date).total_seconds() / timedelta(days=1).total_seconds() time_coord=coords.DimCoord(time_days, standard_name='time', long_name='time', var_name='time', units=time_units, bounds=None, attributes=None, coord_system=None, circular=False) return time_coord def make_model_level_number_coordinate(n_level): from iris import coords from numpy import arange MODEL_LEVEL_NUMBER=arange(0,n_level) model_level_number=coords.AuxCoord(MODEL_LEVEL_NUMBER, standard_name='model_level_number', units='1') return model_level_number def add_dim_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,add_coordinates=None): from iris import coords import numpy as np # from iris import coord_systems # coord_system=coord_systems.LambertConformal(central_lat=MOAD_CEN_LAT, central_lon=CEN_LON, false_easting=0.0, false_northing=0.0, secant_latitudes=(TRUELAT1, TRUELAT2)) coord_system=None if (variable_dict[variable]==3): time_coord=make_time_coord(coord_dict) variable_cube.add_aux_coord(time_coord) z_coord=coords.DimCoord(coord_dict['ztn01'], standard_name='geopotential_height', long_name='z', var_name='z', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(z_coord,0) model_level_number_coord=make_model_level_number_coordinate(len(z_coord.points)) variable_cube.add_aux_coord(model_level_number_coord,0) x_coord=coords.DimCoord(np.arange(len(coord_dict['xtn0'+domain])), long_name='x', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(x_coord,2) y_coord=coords.DimCoord(np.arange(len(coord_dict['ytn0'+domain])), long_name='y', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(y_coord,1) projection_x_coord=coords.DimCoord(coord_dict['xtn0'+domain], standard_name='projection_x_coordinate', long_name='x', var_name='x', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_x_coord,(2)) projection_y_coord=coords.DimCoord(coord_dict['ytn0'+domain], standard_name='projection_y_coordinate', long_name='y', var_name='y', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_y_coord,(1)) elif (variable_dict[variable]==2): x_coord=coords.DimCoord(np.arange(len(coord_dict['xtn0'+domain])), long_name='x', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(x_coord,1) y_coord=coords.DimCoord(np.arange(len(coord_dict['ytn0'+domain])), long_name='y', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(y_coord,0) projection_x_coord=coords.DimCoord(coord_dict['xtn0'+domain], standard_name='projection_x_coordinate', long_name='x', var_name='x', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_x_coord,(1)) projection_y_coord=coords.DimCoord(coord_dict['ytn0'+domain], standard_name='projection_y_coordinate', long_name='y', var_name='y', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_y_coord,(0)) time_coord=make_time_coord(coord_dict) variable_cube.add_aux_coord(time_coord) return variable_cube def add_aux_coordinates(filename,variable,variable_cube,variable_dict, coord_dict,domain,**kwargs): from iris import load_cube,coords coord_system=None latitude=load_cube(filename,'GLAT').core_data() longitude=load_cube(filename,'GLON').core_data() lat_coord=coords.AuxCoord(latitude, standard_name='latitude', long_name='latitude', var_name='latitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) lon_coord=coords.AuxCoord(longitude, standard_name='longitude', long_name='longitude', var_name='longitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) if (variable_dict[variable]==3): variable_cube.add_aux_coord(lon_coord,(1,2)) variable_cube.add_aux_coord(lat_coord,(1,2)) elif (variable_dict[variable]==2): variable_cube.add_aux_coord(lon_coord,(0,1)) variable_cube.add_aux_coord(lat_coord,(0,1)) # add_coordinates=kwargs.pop('add_coordinates') # if type(add_coordinates)!=list: # add_coordinates1=add_coordinates # add_coordinates=[] # add_coordinates.append(add_coordinates1) # for coordinate in add_coordinates: # if coordinate=='latlon': # latitude=load_cube(filename,'GLAT').data # longitude=load_cube(filename,'GLON').data # lat_coord=coords.AuxCoord(latitude, standard_name='latitude', long_name='latitude', var_name='latitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) # lon_coord=coords.AuxCoord(longitude, standard_name='longitude', long_name='longitude', var_name='longitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) # if (variable_dict[variable]==3): # variable_cube.add_aux_coord(lon_coord,(1,2)) # variable_cube.add_aux_coord(lat_coord,(1,2)) # elif (variable_dict[variable]==2): # variable_cube.add_aux_coord(lon_coord,(0,1)) # variable_cube.add_aux_coord(lat_coord,(0,1)) return variable_cube def calculate_rams_LWC(filenames,**kwargs): RCP=loadramscube(filenames, 'RCP',**kwargs) RDP=loadramscube(filenames, 'RDP',**kwargs) RRP=loadramscube(filenames, 'RRP',**kwargs) LWC=RCP+RDP+RRP LWC.rename('liquid water content') #LWC.rename('mass_concentration_of_liquid_water_in_air') return LWC # def calculate_rams_IWC(filenames,**kwargs): RPP=loadramscube(filenames, 'RPP',**kwargs) RSP=loadramscube(filenames, 'RSP',**kwargs) RAP=loadramscube(filenames, 'RAP',**kwargs) RGP=loadramscube(filenames, 'RGP',**kwargs) RHP=loadramscube(filenames, 'RHP',**kwargs) IWC=RPP+RSP+RAP+RGP+RHP IWC.rename('ice water content') #IWC.rename('mass_concentration_of_ice_water_in_air') return IWC def calculate_rams_airmass(filenames,**kwargs): from iris.coords import AuxCoord from numpy import diff rho=loadramscube(filenames,'DN0',**kwargs) z=rho.coord('geopotential_height') z_dim=rho.coord_dims('geopotential_height') z_diff=AuxCoord(mydiff(z.points),var_name='z_diff') rho.add_aux_coord(z_diff,data_dims=z_dim) dx=diff(rho.coord('projection_x_coordinate').points[0:2]) dy=diff(rho.coord('projection_y_coordinate').points[0:2]) Airmass=rho*rho.coord('z_diff')*dx*dy Airmass.remove_coord('z_diff') Airmass.rename('mass_of_air') Airmass.units='kg' return Airmass def calculate_rams_airmass_path(filenames,**kwargs): from iris.coords import AuxCoord rho=loadramscube(filenames,'DN0',**kwargs) z=rho.coord('geopotential_height') z_dim=rho.coord_dims('geopotential_height') z_diff=AuxCoord(mydiff(z.points),var_name='z_diff') rho.add_aux_coord(z_diff,data_dims=z_dim) Airmass=rho*rho.coord('z_diff') Airmass.remove_coord('z_diff') Airmass.rename('airmass_path') Airmass.units='kg m-2' return Airmass def calculate_rams_air_temperature(filenames,**kwargs): from iris.coords import AuxCoord theta=loadramscube(filenames,'THETA',**kwargs) pi=loadramscube(filenames,'PI',**kwargs) cp=AuxCoord(1004,long_name='cp',units='J kg-1 K-1') t=theta*pi/cp t.rename('air_temperature') return t def calculate_rams_air_pressure(filenames,**kwargs): from iris.coords import AuxCoord pi=loadramscube(filenames,'PI',**kwargs) cp=AuxCoord(1004,long_name='cp',units='J kg-1 K-1') rd=AuxCoord(287,long_name='rd',units='J kg-1 K-1') p = 100000 * (pi/cp)**(cp.points/rd.points) # Pressure in Pa p.rename('air_pressure') p.units='Pa' return p def calculate_rams_density(filenames,**kwargs): rho=loadramscube(filenames,'DN0',**kwargs) rho.rename('air_density') rho.units='kg m-3' return rho def calculate_rams_LWP(filenames,**kwargs): from iris.analysis import SUM LWC=deriveramscube(filenames,'LWC',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) LWP=(LWC*Airmass).collapsed(('geopotential_height'),SUM) LWP.rename('liquid water path') #LWP.rename('atmosphere_mass_content_of_cloud_liquid_water') return LWP # def calculate_rams_IWP(filenames,**kwargs): from iris.analysis import SUM IWC=deriveramscube(filenames,'IWC',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) IWP=(IWC*Airmass).collapsed(('geopotential_height'),SUM) IWP.rename('ice water path') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return IWP def calculate_rams_IWV(filenames,**kwargs): from iris.analysis import SUM RV=loadramscube(filenames,'RV',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) IWV=(RV*Airmass).collapsed(('geopotential_height'),SUM) IWV.rename('integrated water vapor') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return IWV # Radiation fluxed at the top of the atmospere and at the surface def calculate_rams_LWup_TOA(filenames,**kwargs): from iris import Constraint LWUP=loadramscube(filenames,'LWUP',**kwargs) LWup_TOA=LWUP.extract(Constraint(model_level_number=LWUP.coord('model_level_number').points[-1])) LWup_TOA.rename('LWup_TOA') return LWup_TOA def calculate_rams_LWup_sfc(filenames,**kwargs): from iris import Constraint LWUP=loadramscube(filenames,'LWUP',**kwargs) LWup_sfc=LWUP.extract(Constraint(model_level_number=0)) LWup_sfc.rename('LWup_sfc') return LWup_sfc def calculate_rams_LWdn_TOA(filenames,**kwargs): from iris import Constraint LWDN=loadramscube(filenames,'LWDN',**kwargs) LWdn_TOA=LWDN.extract(Constraint(model_level_number=LWDN.coord('model_level_number').points[-1])) LWdn_TOA.rename('LWdn_TOA') return LWdn_TOA def calculate_rams_LWdn_sfc(filenames,**kwargs): from iris import Constraint LWDN=loadramscube(filenames,'LWDN',**kwargs) LWdn_sfc=LWDN.extract(Constraint(model_level_number=0)) LWdn_sfc.rename('LWdn_sfc') return LWdn_sfc def calculate_rams_SWup_TOA(filenames,**kwargs): from iris import Constraint SWUP=loadramscube(filenames,'SWUP',**kwargs) SWup_TOA=SWUP.extract(Constraint(model_level_number=SWUP.coord('model_level_number').points[-1])) SWup_TOA.rename('SWup_TOA') return SWup_TOA def calculate_rams_SWup_sfc(filenames,**kwargs): from iris import Constraint SWUP=loadramscube(filenames,'SWUP',**kwargs) SWup_sfc=SWUP.extract(Constraint(model_level_number=0)) SWup_sfc.rename('SWup_sfc') return SWup_sfc def calculate_rams_SWdn_TOA(filenames,**kwargs): from iris import Constraint SWDN=loadramscube(filenames,'SWDN',**kwargs) SWdn_TOA=SWDN.extract(Constraint(model_level_number=SWDN.coord('model_level_number').points[-1])) SWdn_TOA.rename('SWdn_TOA') return SWdn_TOA def calculate_rams_SWdn_sfc(filenames,**kwargs): from iris import Constraint SWDN=loadramscube(filenames,'SWDN',**kwargs) SWdn_sfc=SWDN.extract(Constraint(model_level_number=0)) SWdn_sfc.rename('SWdn_sfc') return SWdn_sfc def calculate_rams_surface_precipitation_instantaneous(filenames,**kwargs): PCPRR=loadramscube(filenames,'PCPRR',**kwargs) PCPRD=loadramscube(filenames,'PCPRD',**kwargs) PCPRS=loadramscube(filenames,'PCPRS',**kwargs) PCPRP=loadramscube(filenames,'PCPRP',**kwargs) PCPRA=loadramscube(filenames,'PCPRA',**kwargs) PCPRH=loadramscube(filenames,'PCPRH',**kwargs) PCPRG=loadramscube(filenames,'PCPRG',**kwargs) surface_precip=PCPRR+PCPRD+PCPRS+PCPRP+PCPRA+PCPRG+PCPRH surface_precip.rename('surface_precipitation_instantaneous') return surface_precip def calculate_rams_surface_precipitation_accumulated(filenames,**kwargs): ACCPR=loadramscube(filenames,'ACCPR',**kwargs) ACCPD=loadramscube(filenames,'ACCPD',**kwargs) ACCPS=loadramscube(filenames,'ACCPS',**kwargs) ACCPP=loadramscube(filenames,'ACCPP',**kwargs) ACCPA=loadramscube(filenames,'ACCPA',**kwargs) ACCPH=loadramscube(filenames,'ACCPH',**kwargs) ACCPG=loadramscube(filenames,'ACCPG',**kwargs) surface_precip_acc=ACCPR+ACCPD+ACCPS+ACCPP+ACCPA+ACCPG+ACCPH surface_precip_acc.rename('surface_precipitation_accumulated') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return surface_precip_acc def calculate_rams_surface_precipitation_average(filenames,**kwargs): from dask.array import concatenate surface_precip_accum=calculate_rams_surface_precipitation_accumulated(filenames,**kwargs) #caclulate timestep in hours time_coord=surface_precip_accum.coord('time') dt=(time_coord.units.num2date(time_coord.points[1])-time_coord.units.num2date(time_coord.points[0])).total_seconds()/3600. #divide difference in precip between timesteps (in mm/h) by timestep (in h): surface_precip=surface_precip_accum surface_precip.data=concatenate((0*surface_precip.core_data()[[1],:,:],surface_precip.core_data()[1:,:,:]-surface_precip.core_data()[:-1:,:,:]),axis=0)/dt surface_precip.rename('surface_precipitation_average') surface_precip.units= 'mm/h' return surface_precip def mydiff(A): import numpy as np d1=np.diff(A) d=np.zeros(A.shape) d[0]=d1[0] d[1:-1]=0.5*(d1[0:-1]+d1[1:]) d[-1]=d1[-1] return d def deriveramscube(filenames,variable,**kwargs): # if variable in ['temperature','air_temperature']: # variable_cube=calculate_rams_temperature(filenames,**kwargs) # #variable_cube_out=addcoordinates(filenames, 'T',variable_cube,add_coordinates) # elif variable == 'density': # variable_cube=calculate_rams_density(filenames,**kwargs) if variable == 'LWC': variable_cube=calculate_rams_LWC(filenames,**kwargs) elif variable == 'IWC': variable_cube=calculate_rams_IWC(filenames,**kwargs) elif variable == 'LWP': variable_cube=calculate_rams_LWP(filenames,**kwargs) elif variable == 'IWP': variable_cube=calculate_rams_IWP(filenames,**kwargs) elif variable == 'IWV': variable_cube=calculate_rams_IWV(filenames,**kwargs) elif variable == 'airmass': variable_cube=calculate_rams_airmass(filenames,**kwargs) elif variable == 'air_temperature': variable_cube=calculate_rams_air_temperature(filenames,**kwargs) elif variable=='air_pressure': variable_cube=calculate_rams_air_pressure(filenames,**kwargs) elif variable == 'air_density': variable_cube=calculate_rams_density(filenames,**kwargs) elif variable == 'airmass_path': variable_cube=calculate_rams_airmass_path(filenames,**kwargs) elif variable == 'surface_precipitation_average': variable_cube=calculate_rams_surface_precipitation_average(filenames,**kwargs) elif variable == 'surface_precipitation_accumulated': variable_cube=calculate_rams_surface_precipitation_accumulated(filenames,**kwargs) elif (variable == 'surface_precipitation_instantaneous') or (variable == 'surface_precipitation'): variable_cube=calculate_rams_surface_precipitation_instantaneous(filenames,**kwargs) elif (variable == 'LWup_TOA'): variable_cube=calculate_rams_LWup_TOA(filenames,**kwargs) elif (variable == 'LWup_sfc'): variable_cube=calculate_rams_LWup_sfc(filenames,**kwargs) elif (variable == 'LWdn_TOA'): variable_cube=calculate_rams_LWdn_TOA(filenames,**kwargs) elif (variable == 'LWdn_sfc'): variable_cube=calculate_rams_LWdn_sfc(filenames,**kwargs) elif (variable == 'SWup_TOA'): variable_cube=calculate_rams_SWup_TOA(filenames,**kwargs) elif (variable == 'SWup_sfc'): variable_cube=calculate_rams_SWup_sfc(filenames,**kwargs) elif (variable == 'SWdn_TOA'): variable_cube=calculate_rams_SWdn_TOA(filenames,**kwargs) elif (variable == 'SWdn_sfc'): variable_cube=calculate_rams_SWdn_sfc(filenames,**kwargs) else: raise NameError(variable, 'is not a known variable') return variable_cube
[ "iris.coords.AuxCoord", "warnings.filterwarnings", "iris.cube.CubeList", "numpy.zeros", "iris.load", "iris.Constraint", "datetime.datetime", "datetime.datetime.strptime", "iris.load_cube", "iris.coords.DimCoord", "numpy.arange", "numpy.diff", "datetime.timedelta", "numpy.array" ]
[((16, 84), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'UserWarning', 'append': '(True)'}), "('ignore', category=UserWarning, append=True)\n", (39, 84), False, 'import warnings\n'), ((2997, 3015), 'iris.load', 'load', (['filenames[0]'], {}), '(filenames[0])\n', (3001, 3015), False, 'from iris import load\n'), ((5014, 5044), 'iris.load_cube', 'load_cube', (['filenames', 'variable'], {}), '(filenames, variable)\n', (5023, 5044), False, 'from iris import load_cube, coords\n'), ((5569, 5588), 'iris.cube.CubeList', 'CubeList', (['cube_list'], {}), '(cube_list)\n', (5577, 5588), False, 'from iris.cube import CubeList\n'), ((8120, 8296), 'iris.coords.DimCoord', 'coords.DimCoord', (['time_days'], {'standard_name': '"""time"""', 'long_name': '"""time"""', 'var_name': '"""time"""', 'units': 'time_units', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'None', 'circular': '(False)'}), "(time_days, standard_name='time', long_name='time', var_name\n ='time', units=time_units, bounds=None, attributes=None, coord_system=\n None, circular=False)\n", (8135, 8296), False, 'from iris import load_cube, coords\n'), ((8443, 8461), 'numpy.arange', 'arange', (['(0)', 'n_level'], {}), '(0, n_level)\n', (8449, 8461), False, 'from numpy import arange\n'), ((8484, 8570), 'iris.coords.AuxCoord', 'coords.AuxCoord', (['MODEL_LEVEL_NUMBER'], {'standard_name': '"""model_level_number"""', 'units': '"""1"""'}), "(MODEL_LEVEL_NUMBER, standard_name='model_level_number',\n units='1')\n", (8499, 8570), False, 'from iris import load_cube, coords\n'), ((11882, 12058), 'iris.coords.AuxCoord', 'coords.AuxCoord', (['latitude'], {'standard_name': '"""latitude"""', 'long_name': '"""latitude"""', 'var_name': '"""latitude"""', 'units': '"""degrees"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(latitude, standard_name='latitude', long_name='latitude',\n var_name='latitude', units='degrees', bounds=None, attributes=None,\n coord_system=coord_system)\n", (11897, 12058), False, 'from iris import load_cube, coords\n'), ((12065, 12245), 'iris.coords.AuxCoord', 'coords.AuxCoord', (['longitude'], {'standard_name': '"""longitude"""', 'long_name': '"""longitude"""', 'var_name': '"""longitude"""', 'units': '"""degrees"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(longitude, standard_name='longitude', long_name='longitude',\n var_name='longitude', units='degrees', bounds=None, attributes=None,\n coord_system=coord_system)\n", (12080, 12245), False, 'from iris import load_cube, coords\n'), ((15855, 15905), 'iris.coords.AuxCoord', 'AuxCoord', (['(1004)'], {'long_name': '"""cp"""', 'units': '"""J kg-1 K-1"""'}), "(1004, long_name='cp', units='J kg-1 K-1')\n", (15863, 15905), False, 'from iris.coords import AuxCoord\n'), ((16110, 16160), 'iris.coords.AuxCoord', 'AuxCoord', (['(1004)'], {'long_name': '"""cp"""', 'units': '"""J kg-1 K-1"""'}), "(1004, long_name='cp', units='J kg-1 K-1')\n", (16118, 16160), False, 'from iris.coords import AuxCoord\n'), ((16166, 16215), 'iris.coords.AuxCoord', 'AuxCoord', (['(287)'], {'long_name': '"""rd"""', 'units': '"""J kg-1 K-1"""'}), "(287, long_name='rd', units='J kg-1 K-1')\n", (16174, 16215), False, 'from iris.coords import AuxCoord\n'), ((21921, 21931), 'numpy.diff', 'np.diff', (['A'], {}), '(A)\n', (21928, 21931), True, 'import numpy as np\n'), ((21938, 21955), 'numpy.zeros', 'np.zeros', (['A.shape'], {}), '(A.shape)\n', (21946, 21955), True, 'import numpy as np\n'), ((7756, 7796), 'datetime.datetime.strptime', 'datetime.strptime', (['timestr', '"""%Y%m%d%H%M"""'], {}), "(timestr, '%Y%m%d%H%M')\n", (7773, 7796), False, 'from datetime import datetime, timedelta\n'), ((7855, 7874), 'datetime.datetime', 'datetime', (['(100)', '(1)', '(1)'], {}), '(100, 1, 1)\n', (7863, 7874), False, 'from datetime import datetime, timedelta\n'), ((7892, 7909), 'datetime.datetime', 'datetime', (['(1)', '(1)', '(1)'], {}), '(1, 1, 1)\n', (7900, 7909), False, 'from datetime import datetime, timedelta\n'), ((7936, 7956), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (7944, 7956), False, 'from datetime import datetime, timedelta\n'), ((9174, 9352), 'iris.coords.DimCoord', 'coords.DimCoord', (["coord_dict['ztn01']"], {'standard_name': '"""geopotential_height"""', 'long_name': '"""z"""', 'var_name': '"""z"""', 'units': '"""m"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(coord_dict['ztn01'], standard_name='geopotential_height',\n long_name='z', var_name='z', units='m', bounds=None, attributes=None,\n coord_system=coord_system)\n", (9189, 9352), False, 'from iris import load_cube, coords\n'), ((9982, 10173), 'iris.coords.DimCoord', 'coords.DimCoord', (["coord_dict['xtn0' + domain]"], {'standard_name': '"""projection_x_coordinate"""', 'long_name': '"""x"""', 'var_name': '"""x"""', 'units': '"""m"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(coord_dict['xtn0' + domain], standard_name=\n 'projection_x_coordinate', long_name='x', var_name='x', units='m',\n bounds=None, attributes=None, coord_system=coord_system)\n", (9997, 10173), False, 'from iris import load_cube, coords\n'), ((10250, 10441), 'iris.coords.DimCoord', 'coords.DimCoord', (["coord_dict['ytn0' + domain]"], {'standard_name': '"""projection_y_coordinate"""', 'long_name': '"""y"""', 'var_name': '"""y"""', 'units': '"""m"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(coord_dict['ytn0' + domain], standard_name=\n 'projection_y_coordinate', long_name='y', var_name='y', units='m',\n bounds=None, attributes=None, coord_system=coord_system)\n", (10265, 10441), False, 'from iris import load_cube, coords\n'), ((18126, 18158), 'iris.Constraint', 'Constraint', ([], {'model_level_number': '(0)'}), '(model_level_number=0)\n', (18136, 18158), False, 'from iris import Constraint\n'), ((18654, 18686), 'iris.Constraint', 'Constraint', ([], {'model_level_number': '(0)'}), '(model_level_number=0)\n', (18664, 18686), False, 'from iris import Constraint\n'), ((19182, 19214), 'iris.Constraint', 'Constraint', ([], {'model_level_number': '(0)'}), '(model_level_number=0)\n', (19192, 19214), False, 'from iris import Constraint\n'), ((19710, 19742), 'iris.Constraint', 'Constraint', ([], {'model_level_number': '(0)'}), '(model_level_number=0)\n', (19720, 19742), False, 'from iris import Constraint\n'), ((7796, 7816), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (7805, 7816), False, 'from datetime import datetime, timedelta\n'), ((10970, 11161), 'iris.coords.DimCoord', 'coords.DimCoord', (["coord_dict['xtn0' + domain]"], {'standard_name': '"""projection_x_coordinate"""', 'long_name': '"""x"""', 'var_name': '"""x"""', 'units': '"""m"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(coord_dict['xtn0' + domain], standard_name=\n 'projection_x_coordinate', long_name='x', var_name='x', units='m',\n bounds=None, attributes=None, coord_system=coord_system)\n", (10985, 11161), False, 'from iris import load_cube, coords\n'), ((11238, 11429), 'iris.coords.DimCoord', 'coords.DimCoord', (["coord_dict['ytn0' + domain]"], {'standard_name': '"""projection_y_coordinate"""', 'long_name': '"""y"""', 'var_name': '"""y"""', 'units': '"""m"""', 'bounds': 'None', 'attributes': 'None', 'coord_system': 'coord_system'}), "(coord_dict['ytn0' + domain], standard_name=\n 'projection_y_coordinate', long_name='y', var_name='y', units='m',\n bounds=None, attributes=None, coord_system=coord_system)\n", (11253, 11429), False, 'from iris import load_cube, coords\n'), ((11776, 11803), 'iris.load_cube', 'load_cube', (['filename', '"""GLAT"""'], {}), "(filename, 'GLAT')\n", (11785, 11803), False, 'from iris import load_cube, coords\n'), ((11829, 11856), 'iris.load_cube', 'load_cube', (['filename', '"""GLON"""'], {}), "(filename, 'GLON')\n", (11838, 11856), False, 'from iris import load_cube, coords\n'), ((8071, 8088), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (8080, 8088), False, 'from datetime import datetime, timedelta\n'), ((6854, 6874), 'numpy.array', 'array', (['variable_list'], {}), '(variable_list)\n', (6859, 6874), False, 'from numpy import array\n')]
"""PPO Agent for CRMDPs.""" import torch import random import numpy as np from typing import Generator, List from safe_grid_agents.common.utils import track_metrics from safe_grid_agents.common.agents.policy_cnn import PPOCNNAgent from safe_grid_agents.types import Rollout from ai_safety_gridworlds.environments.tomato_crmdp import REWARD_FACTOR def _get_agent_position(board, agent_value): x_pos, y_pos = np.unravel_index( np.argwhere(np.ravel(board) == agent_value), board.shape ) x_pos, y_pos = x_pos.flat[0], y_pos.flat[0] return x_pos, y_pos def _manhatten_distance(x1, x2, y1, y2): return abs(x1 - x2) + abs(y1 - y2) def d_tomato_crmdp(X, Y): assert X.shape == Y.shape return REWARD_FACTOR * np.sum(X != Y) def d_toy_gridworlds(X, Y): assert X.shape == Y.shape X = X[0, ...] Y = Y[0, ...] # toy gridworlds use value 0 to denote the agent on the board X_pos_x, X_pos_y = _get_agent_position(X, agent_value=0) Y_pos_x, Y_pos_y = _get_agent_position(Y, agent_value=0) return _manhatten_distance(X_pos_x, Y_pos_x, X_pos_y, Y_pos_y) def d_trans_boat(X, Y): assert X.shape == Y.shape X_initial, X_final = X[0, ...], X[1, ...] Y_initial, Y_final = Y[0, ...], Y[1, ...] # deepmind gridworlds use value 2 to denote the agent on the board X_initial_pos_x, X_initial_pos_y = _get_agent_position(X_initial, agent_value=2) Y_initial_pos_x, Y_initial_pos_y = _get_agent_position(Y_initial, agent_value=2) X_final_pos_x, X_final_pos_y = _get_agent_position(X_final, agent_value=2) Y_final_pos_x, Y_final_pos_y = _get_agent_position(Y_final, agent_value=2) X_direction_x = X_final_pos_x - X_initial_pos_x X_direction_y = X_final_pos_y - X_initial_pos_y Y_direction_x = Y_final_pos_x - Y_initial_pos_x Y_direction_y = Y_final_pos_y - Y_initial_pos_y initial_position_distance = _manhatten_distance( X_initial_pos_x, Y_initial_pos_x, X_initial_pos_y, Y_initial_pos_y ) direction_distance = int(X_direction_x != Y_direction_x) direction_distance += int(X_direction_y != Y_direction_y) return initial_position_distance + direction_distance ENV_TO_D = { "corners": d_toy_gridworlds, "way": d_toy_gridworlds, "tomato-crmdp": d_tomato_crmdp, "trans-boat": d_trans_boat, } class PPOCRMDPAgent(PPOCNNAgent): """PPO Agent for CRMDPs.""" def __init__(self, env, args) -> None: super().__init__(env, args) self.states = dict() self.d = ENV_TO_D[args.env_alias] self.epsilon = 1e-3 self.rllb = dict() self.state_memory_cap = 0 def _mark_state_corrupt(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [False, reward] def _mark_state_safe(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [True, reward] def _is_state_corrupt(self, board) -> bool: if board.tostring() in self.states: return not self.states[board.tostring()][0] else: return False def _iterate_safe_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _iterate_corrupt_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if not self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _update_rllb(self) -> None: """Update the reward lower Lipschitz bound.""" for corrupt_board, corrupt_reward in self._iterate_corrupt_states(): board_string = corrupt_board.tostring() rllb = self.rllb.get(board_string, None) for safe_board, safe_reward in self._iterate_safe_states(): bound = safe_reward - self.d(safe_board, corrupt_board) if rllb is None or bound > rllb: rllb = bound self.rllb[board_string] = rllb def _get_TLV(self, boardX, rewardX, state_iterator) -> float: """Return the total Lipschitz violation of a state X w.r.t a set of states. Each state is only added once to the TLV.""" TLV = 0 unique_states = set() for boardY, rewardY in state_iterator: if boardY.tostring() not in unique_states: TLV += max(0, abs(rewardX - rewardY) - self.d(boardY, boardX)) unique_states.add(boardY.tostring()) return TLV def _purge_memory(self) -> None: """Drop random noncorrupt states from the memory for performance reasons.""" if len(self.states) > self.state_memory_cap: to_remove = [ state for state in random.sample( self.states.keys(), len(self.states) - self.state_memory_cap / 2 ) if self.states[state][0] ] for state in to_remove: del self.states[state] # we might have too many corrupt states, so update the bounds if len(self.states) > 2 * self.state_memory_cap / 3: self.state_memory_cap *= 2 def get_modified_reward(self, board, reward) -> float: """Return the reward to use for optimizing the policy based on the rllb.""" if self._is_state_corrupt(board): return self.rllb[board.tostring()] else: return reward def get_modified_rewards_for_rollout(self, boards, rewards) -> List[float]: """ Returns a list of rewards for a given rollout that has been updated based on the rllb. """ new_rewards = [] for i in range(len(rewards)): new_rewards.append(self.get_modified_reward(boards[i], rewards[i])) return new_rewards def identify_corruption_in_trajectory(self, boards, rewards) -> None: """Perform detection of corrupt states on a trajectory. Updates the set of safe states and corrupt states with all new states, that are being visited in this trajectory. Then updates the self.rllb dict, so that we can get the modified reward function. """ boards = np.array(boards) rewards = np.array(rewards) TLV = np.zeros(len(boards)) for i in range(len(boards)): TLV[i] = self._get_TLV(boards[i], rewards[i], zip(boards, rewards)) TLV_sort_idx = np.argsort(TLV)[::-1] non_corrupt_idx = list(range(len(boards))) added_corrupt_states = False # iterate over all states in the trajectory in order decreasing by their TLV for i in range(len(boards)): idx = TLV_sort_idx[i] if not added_corrupt_states: # performance improvement new_TLV = TLV[idx] else: new_TLV = self._get_TLV( boards[idx], rewards[idx], zip(boards[non_corrupt_idx], rewards[non_corrupt_idx]), ) if new_TLV <= self.epsilon: if not self._is_state_corrupt(boards[idx]): self._mark_state_safe(boards[idx], rewards[idx]) break else: self._mark_state_corrupt(boards[idx], rewards[idx]) non_corrupt_idx.remove(idx) added_corrupt_states = True if added_corrupt_states: self._update_rllb() def gather_rollout(self, env, env_state, history, args) -> Rollout: """Gather a single rollout from an old policy. Based on the gather_rollout function of the regular PPO agents. This version also tracks the successor states of each action. Based on this the corrupted states can be detected before performing the training step.""" state, reward, done, info = env_state done = False rollout = Rollout(states=[], actions=[], rewards=[], returns=[]) successors = [] for r in range(self.rollouts): successors_r = [] # Rollout loop states, actions, rewards, returns = [], [], [], [] while not done: with torch.no_grad(): action = self.old_policy.act_explore(state) successor, reward, done, info = env.step(action) # Maybe cheat if args.cheat: reward = info["hidden_reward"] # In case the agent is drunk, use the actual action they took try: action = info["extra_observations"]["actual_actions"] except KeyError: pass # Store data from experience states.append(state) # .flatten()) actions.append(action) rewards.append(float(reward)) successors_r.append(successor) state = successor history["t"] += 1 if r != 0: history["episode"] += 1 self.identify_corruption_in_trajectory(successors_r, rewards) rewards = self.get_modified_rewards_for_rollout(successors_r, rewards) returns = self.get_discounted_returns(rewards) history = track_metrics(history, env) rollout.states.append(states) rollout.actions.append(actions) rollout.rewards.append(rewards) rollout.returns.append(returns) successors.append(successors_r) self.state_memory_cap = max(self.state_memory_cap, 20 * len(states)) self._purge_memory() state = env.reset() done = False return rollout
[ "numpy.sum", "safe_grid_agents.types.Rollout", "numpy.ravel", "numpy.argsort", "numpy.array", "numpy.reshape", "safe_grid_agents.common.utils.track_metrics", "torch.no_grad", "numpy.fromstring" ]
[((743, 757), 'numpy.sum', 'np.sum', (['(X != Y)'], {}), '(X != Y)\n', (749, 757), True, 'import numpy as np\n'), ((6632, 6648), 'numpy.array', 'np.array', (['boards'], {}), '(boards)\n', (6640, 6648), True, 'import numpy as np\n'), ((6667, 6684), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (6675, 6684), True, 'import numpy as np\n'), ((8363, 8417), 'safe_grid_agents.types.Rollout', 'Rollout', ([], {'states': '[]', 'actions': '[]', 'rewards': '[]', 'returns': '[]'}), '(states=[], actions=[], rewards=[], returns=[])\n', (8370, 8417), False, 'from safe_grid_agents.types import Rollout\n'), ((6863, 6878), 'numpy.argsort', 'np.argsort', (['TLV'], {}), '(TLV)\n', (6873, 6878), True, 'import numpy as np\n'), ((9768, 9795), 'safe_grid_agents.common.utils.track_metrics', 'track_metrics', (['history', 'env'], {}), '(history, env)\n', (9781, 9795), False, 'from safe_grid_agents.common.utils import track_metrics\n'), ((453, 468), 'numpy.ravel', 'np.ravel', (['board'], {}), '(board)\n', (461, 468), True, 'import numpy as np\n'), ((3317, 3379), 'numpy.fromstring', 'np.fromstring', (['board_str'], {'dtype': 'np.float32', 'count': 'self.n_input'}), '(board_str, dtype=np.float32, count=self.n_input)\n', (3330, 3379), True, 'import numpy as np\n'), ((3404, 3439), 'numpy.reshape', 'np.reshape', (['board', 'self.board_shape'], {}), '(board, self.board_shape)\n', (3414, 3439), True, 'import numpy as np\n'), ((3685, 3747), 'numpy.fromstring', 'np.fromstring', (['board_str'], {'dtype': 'np.float32', 'count': 'self.n_input'}), '(board_str, dtype=np.float32, count=self.n_input)\n', (3698, 3747), True, 'import numpy as np\n'), ((3772, 3807), 'numpy.reshape', 'np.reshape', (['board', 'self.board_shape'], {}), '(board, self.board_shape)\n', (3782, 3807), True, 'import numpy as np\n'), ((8651, 8666), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8664, 8666), False, 'import torch\n')]
"""Miscellaneous functions and helpers for the uclasm package.""" import numpy as np def one_hot(idx, length): """Return a 1darray of zeros with a single one in the idx'th entry.""" one_hot = np.zeros(length, dtype=np.bool) one_hot[idx] = True return one_hot def index_map(args): """Return a dict mapping elements to their indices. Parameters ---------- args : Iterable[str] Strings to be mapped to their indices. """ return {elm: idx for idx, elm in enumerate(args)} # TODO: change the name of this function def invert(dict_of_sets): """TODO: Docstring.""" new_dict = {} for k, v in dict_of_sets.items(): for x in v: new_dict[x] = new_dict.get(x, set()) | set([k]) return new_dict def values_map_to_same_key(dict_of_sets): """TODO: Docstring.""" matches = {} # get the sets of candidates for key, val_set in dict_of_sets.items(): frozen_val_set = frozenset(val_set) matches[frozen_val_set] = matches.get(frozen_val_set, set()) | {key} return matches def apply_index_map_to_cols(df, cols, values): """Replace df[cols] with their indexes as taken from names. Parameters ---------- df : DataFrame To be modified inplace. cols : Iterable[str] Columns of df to operate on. values : Iterable[str] Values expected to be present in df[cols] to be replaced with their corresponding indexes. """ val_to_idx = index_map(values) df[cols] = df[cols].applymap(val_to_idx.get)
[ "numpy.zeros" ]
[((202, 233), 'numpy.zeros', 'np.zeros', (['length'], {'dtype': 'np.bool'}), '(length, dtype=np.bool)\n', (210, 233), True, 'import numpy as np\n')]
# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest import numpy as np from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData class TrainedAttackerTest(absltest.TestCase): def test_base_attacker_train_and_predict(self): base_attacker = models.TrainedAttacker() self.assertRaises(NotImplementedError, base_attacker.train_model, [], []) self.assertRaises(AssertionError, base_attacker.predict, []) def test_predict_before_training(self): lr_attacker = models.LogisticRegressionAttacker() self.assertRaises(AssertionError, lr_attacker.predict, []) def test_create_attacker_data_loss_only(self): attack_input = AttackInputData( loss_train=np.array([1, 3]), loss_test=np.array([2, 4])) attacker_data = models.create_attacker_data(attack_input, 2) self.assertLen(attacker_data.features_all, 4) def test_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16])) attacker_data = models.create_attacker_data(attack_input, balance=False) self.assertLen(attacker_data.features_all, 5) self.assertLen(attacker_data.fold_indices, 5) self.assertEmpty(attacker_data.left_out_indices) def test_unbalanced_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16])) attacker_data = models.create_attacker_data(attack_input, balance=True) self.assertLen(attacker_data.features_all, 5) self.assertLen(attacker_data.fold_indices, 4) self.assertLen(attacker_data.left_out_indices, 1) self.assertIn(attacker_data.left_out_indices[0], [0, 1, 2]) def test_balanced_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15], [17, 18]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16, 19])) attacker_data = models.create_attacker_data(attack_input) self.assertLen(attacker_data.features_all, 6) self.assertLen(attacker_data.fold_indices, 6) self.assertEmpty(attacker_data.left_out_indices) if __name__ == '__main__': absltest.main()
[ "absl.testing.absltest.main", "tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.LogisticRegressionAttacker", "tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.TrainedAttacker", "numpy.array", "tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.create_attacker_data" ]
[((3202, 3217), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (3215, 3217), False, 'from absl.testing import absltest\n'), ((964, 988), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.TrainedAttacker', 'models.TrainedAttacker', ([], {}), '()\n', (986, 988), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((1193, 1228), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.LogisticRegressionAttacker', 'models.LogisticRegressionAttacker', ([], {}), '()\n', (1226, 1228), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((1463, 1507), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.create_attacker_data', 'models.create_attacker_data', (['attack_input', '(2)'], {}), '(attack_input, 2)\n', (1490, 1507), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((1858, 1914), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.create_attacker_data', 'models.create_attacker_data', (['attack_input'], {'balance': '(False)'}), '(attack_input, balance=False)\n', (1885, 1914), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((2379, 2434), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.create_attacker_data', 'models.create_attacker_data', (['attack_input'], {'balance': '(True)'}), '(attack_input, balance=True)\n', (2406, 2434), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((2976, 3017), 'tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.models.create_attacker_data', 'models.create_attacker_data', (['attack_input'], {}), '(attack_input)\n', (3003, 3017), False, 'from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models\n'), ((1397, 1413), 'numpy.array', 'np.array', (['[1, 3]'], {}), '([1, 3])\n', (1405, 1413), True, 'import numpy as np\n'), ((1425, 1441), 'numpy.array', 'np.array', (['[2, 4]'], {}), '([2, 4])\n', (1433, 1441), True, 'import numpy as np\n'), ((1671, 1705), 'numpy.array', 'np.array', (['[[1, 2], [5, 6], [8, 9]]'], {}), '([[1, 2], [5, 6], [8, 9]])\n', (1679, 1705), True, 'import numpy as np\n'), ((1727, 1757), 'numpy.array', 'np.array', (['[[10, 11], [14, 15]]'], {}), '([[10, 11], [14, 15]])\n', (1735, 1757), True, 'import numpy as np\n'), ((1778, 1798), 'numpy.array', 'np.array', (['[3, 7, 10]'], {}), '([3, 7, 10])\n', (1786, 1798), True, 'import numpy as np\n'), ((1818, 1836), 'numpy.array', 'np.array', (['[12, 16]'], {}), '([12, 16])\n', (1826, 1836), True, 'import numpy as np\n'), ((2192, 2226), 'numpy.array', 'np.array', (['[[1, 2], [5, 6], [8, 9]]'], {}), '([[1, 2], [5, 6], [8, 9]])\n', (2200, 2226), True, 'import numpy as np\n'), ((2248, 2278), 'numpy.array', 'np.array', (['[[10, 11], [14, 15]]'], {}), '([[10, 11], [14, 15]])\n', (2256, 2278), True, 'import numpy as np\n'), ((2299, 2319), 'numpy.array', 'np.array', (['[3, 7, 10]'], {}), '([3, 7, 10])\n', (2307, 2319), True, 'import numpy as np\n'), ((2339, 2357), 'numpy.array', 'np.array', (['[12, 16]'], {}), '([12, 16])\n', (2347, 2357), True, 'import numpy as np\n'), ((2775, 2809), 'numpy.array', 'np.array', (['[[1, 2], [5, 6], [8, 9]]'], {}), '([[1, 2], [5, 6], [8, 9]])\n', (2783, 2809), True, 'import numpy as np\n'), ((2831, 2871), 'numpy.array', 'np.array', (['[[10, 11], [14, 15], [17, 18]]'], {}), '([[10, 11], [14, 15], [17, 18]])\n', (2839, 2871), True, 'import numpy as np\n'), ((2892, 2912), 'numpy.array', 'np.array', (['[3, 7, 10]'], {}), '([3, 7, 10])\n', (2900, 2912), True, 'import numpy as np\n'), ((2932, 2954), 'numpy.array', 'np.array', (['[12, 16, 19]'], {}), '([12, 16, 19])\n', (2940, 2954), True, 'import numpy as np\n')]
# %% import sys, os import pandas as pd import networkx as nx # import matplotlib.pyplot as plt import numpy as np import pickle base_file_path = os.path.abspath(os.path.join(os.curdir, '..','..', '..')) # should point to the level above the src directory data_path = os.path.join(base_file_path, 'data', 'Intercity_Dallas') # (grocery_demand, fitness_demand, pharmacy_demand, physician_demand, hotel_demand, religion_demand, restaurant_demand) # Entity indexes # 0 - groceries # 1 - fitness # 2 - pharmacy # 3 - physician # 4 - hotel # 5 - religion # 6 - restaurant # Data processing parameters fitness_freq = 94/12 # visits per unique visitor per month pharmacy_freq = 35/12 # visits per unique visitor per month physician_freq = 1 # visits per unique visitor per month hotel_freq = 1 # visits per unique visitor per month # religion_freq = 25/12 # visits per unique visitor per month grocery_freq = 2 # visits per unique visitor per month restaurant_freq = 1 # Assume each restaurant-goer only visits a given restaurant once per month (if at all) month_day_time_conversion = 1/30 # months/day min_demand_val = 5 # %% # First get a list of the counties in Dallas MSA county_fitness = pd.read_excel(os.path.join(data_path,'TX_Fitness_County.xlsx')) counties = list(county_fitness.CNTY_NM.unique()) num_counties = len(counties) print(counties) county_data = dict() for county in counties: county_data[county] = {'index' : counties.index(county)} # %% # In county data, save a list of the block groups belonging to each county. for county in counties: county_data[county]['bg_list'] = set() # Load and store block-group statistics bg_info = dict() # Save population data by county print('Processing population data...') population_data = pd.read_excel(os.path.join(data_path, 'Population_bg_Dallas.xlsx')) for index, row in population_data.iterrows(): county = row['NAME'] if county in counties: bg_id = row['GEO_ID'] population = row['Population'] bg_info[bg_id] = dict() bg_info[bg_id]['county'] = county bg_info[bg_id]['population'] = population county_data[county]['bg_list'].add(bg_id) # Save devices data by county print('Processing device data...') device_data = pd.read_excel(os.path.join(data_path, 'TX_Devices_bg.xlsx')) for index, row in device_data.iterrows(): bg_id = row['census_block_group'] if bg_id in bg_info.keys(): devices = row['number_devices_residing'] bg_info[bg_id]['devices'] = devices # %% # Create arrays to store population and related data devices = np.zeros((num_counties,)) populations = np.zeros((num_counties,)) # Now save populations and device counts by county for county in counties: county_data[county]['population'] = 0 county_data[county]['devices'] = 0 # Iterate over the block groups in each county and add the population and device count for bg_id in county_data[county]['bg_list']: county_data[county]['population'] = county_data[county]['population'] + bg_info[bg_id]['population'] county_data[county]['devices'] = county_data[county]['devices'] + bg_info[bg_id]['devices'] devices[county_data[county]['index']] = county_data[county]['devices'] populations[county_data[county]['index']] = county_data[county]['population'] # %% # Create a map from safegraph ID to county sgid_to_county = dict() fitness_county = pd.read_excel(os.path.join(data_path, 'TX_Fitness_County.xlsx')) for index, row in fitness_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county grocery_county = pd.read_excel(os.path.join(data_path, 'TX_Grocery_County.xlsx')) for index, row in grocery_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county hmotel_county = pd.read_excel(os.path.join(data_path, 'TX_HMotel_County.xlsx')) for index, row in hmotel_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county pharmacy_county = pd.read_excel(os.path.join(data_path, 'TX_Pharmacy_County.xlsx')) for index, row in pharmacy_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county physician_county = pd.read_excel(os.path.join(data_path, 'TX_Physician_County.xlsx')) for index, row in physician_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM_1'] sgid_to_county[sgid] = county restaurant_county = pd.read_excel(os.path.join(data_path, 'TX_Restaurant_County.xlsx')) for index, row in restaurant_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county # %% # Create arrays to store demand data fitness_demand = np.zeros((num_counties,1)) pharmacy_demand = np.zeros((num_counties,1)) physician_demand = np.zeros((num_counties,1)) hotel_demand = np.zeros((num_counties,1)) religion_demand = np.zeros((num_counties,1)) grocery_demand = np.zeros((num_counties,1)) restaurant_demand = np.zeros((num_counties,1)) # %% # Process grocery data print('Processing grocery data...') grocery_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Grocery.xlsx')) grocery_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in grocery_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] grocery_demand_dest_mat[origin_ind, destination_ind] = \ int(grocery_demand_dest_mat[origin_ind, destination_ind] + (count * grocery_freq)) for i in range(num_counties): for j in range(num_counties): grocery_demand_dest_mat[i,j] = grocery_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['grocery_demand_dest'] = grocery_demand_dest_mat[i, :] for i in range(num_counties): grocery_demand[i] = np.sum(grocery_demand_dest_mat[i,:]) if grocery_demand[i] <= min_demand_val: grocery_demand[i] = min_demand_val county_data[counties[i]]['grocery_demand'] = grocery_demand[i] # %% # Process fintess data print('Processing fitness data...') fitness_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Fitness.xlsx')) fitness_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in fitness_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] fitness_demand_dest_mat[origin_ind, destination_ind] = \ int(fitness_demand_dest_mat[origin_ind, destination_ind] + (count * fitness_freq)) for i in range(num_counties): for j in range(num_counties): fitness_demand_dest_mat[i,j] = fitness_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['fitness_demand_dest'] = fitness_demand_dest_mat[i, :] for i in range(num_counties): fitness_demand[i] = np.sum(fitness_demand_dest_mat[i,:]) if fitness_demand[i] <= min_demand_val: fitness_demand[i] = min_demand_val county_data[counties[i]]['fitness_demand'] = fitness_demand[i] # %% # Process pharmacy data print('Processing pharmacy data...') pharmacy_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Pharmacy.xlsx')) pharmacy_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in pharmacy_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] pharmacy_demand_dest_mat[origin_ind, destination_ind] = \ int(pharmacy_demand_dest_mat[origin_ind, destination_ind] + (count * pharmacy_freq)) for i in range(num_counties): for j in range(num_counties): pharmacy_demand_dest_mat[i,j] = pharmacy_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['pharmacy_demand_dest'] = pharmacy_demand_dest_mat[i, :] for i in range(num_counties): pharmacy_demand[i] = np.sum(pharmacy_demand_dest_mat[i,:]) if pharmacy_demand[i] <= min_demand_val: pharmacy_demand[i] = min_demand_val county_data[counties[i]]['pharmacy_demand'] = pharmacy_demand[i] # %% # Process physician data print('Processing physician data...') physician_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Physician.xlsx')) physician_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in physician_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] physician_demand_dest_mat[origin_ind, destination_ind] = \ int(physician_demand_dest_mat[origin_ind, destination_ind] + (count * physician_freq)) for i in range(num_counties): for j in range(num_counties): physician_demand_dest_mat[i,j] = physician_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['physician_demand_dest'] = physician_demand_dest_mat[i, :] for i in range(num_counties): physician_demand[i] = np.sum(physician_demand_dest_mat[i,:]) if physician_demand[i] <= min_demand_val: physician_demand[i] = min_demand_val county_data[counties[i]]['physician_demand'] = physician_demand[i] # %% # Process hotel data print('Processing hotel data...') hotel_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_HotelMotel.xlsx')) hotel_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in hotel_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] hotel_demand_dest_mat[origin_ind, destination_ind] = \ int(hotel_demand_dest_mat[origin_ind, destination_ind] + (count * hotel_freq)) for i in range(num_counties): for j in range(num_counties): hotel_demand_dest_mat[i,j] = hotel_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['hotel_demand_dest'] = hotel_demand_dest_mat[i, :] for i in range(num_counties): hotel_demand[i] = np.sum(hotel_demand_dest_mat[i,:]) if hotel_demand[i] <= min_demand_val: hotel_demand[i] = min_demand_val county_data[counties[i]]['hotel_demand'] = hotel_demand[i] # %% # Process restaurant data print('Processing restaurant data...') restaurant_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Restaurant.xlsx')) restaurant_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in restaurant_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] restaurant_demand_dest_mat[origin_ind, destination_ind] = \ int(restaurant_demand_dest_mat[origin_ind, destination_ind] + (count * restaurant_freq)) for i in range(num_counties): for j in range(num_counties): restaurant_demand_dest_mat[i,j] = restaurant_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['restaurant_demand_dest'] = restaurant_demand_dest_mat[i, :] for i in range(num_counties): restaurant_demand[i] = np.sum(restaurant_demand_dest_mat[i,:]) if restaurant_demand[i] <= min_demand_val: restaurant_demand[i] = min_demand_val county_data[counties[i]]['restaurant_demand'] = restaurant_demand[i] # %% # Save the results # First check if the save directory exists if not os.path.isdir(os.path.join(data_path, 'data_processing_outputs')): os.mkdir(os.path.join(data_path, 'data_processing_outputs')) demand_array=np.concatenate((grocery_demand, fitness_demand, pharmacy_demand, physician_demand, hotel_demand, restaurant_demand), axis=1) demand_array.shape print(demand_array) np.save(os.path.join(data_path, 'data_processing_outputs', 'demand_array_dallas.npy'), demand_array) np.save(os.path.join(data_path, 'data_processing_outputs', 'populations_array_dallas.npy'), populations) pickle.dump(county_data, open(os.path.join(data_path, 'data_processing_outputs', 'county_data.p'), 'wb')) # %%
[ "numpy.zeros", "os.path.join", "numpy.sum", "numpy.concatenate" ]
[((269, 325), 'os.path.join', 'os.path.join', (['base_file_path', '"""data"""', '"""Intercity_Dallas"""'], {}), "(base_file_path, 'data', 'Intercity_Dallas')\n", (281, 325), False, 'import sys, os\n'), ((2582, 2607), 'numpy.zeros', 'np.zeros', (['(num_counties,)'], {}), '((num_counties,))\n', (2590, 2607), True, 'import numpy as np\n'), ((2622, 2647), 'numpy.zeros', 'np.zeros', (['(num_counties,)'], {}), '((num_counties,))\n', (2630, 2647), True, 'import numpy as np\n'), ((4778, 4805), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (4786, 4805), True, 'import numpy as np\n'), ((4823, 4850), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (4831, 4850), True, 'import numpy as np\n'), ((4869, 4896), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (4877, 4896), True, 'import numpy as np\n'), ((4911, 4938), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (4919, 4938), True, 'import numpy as np\n'), ((4956, 4983), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (4964, 4983), True, 'import numpy as np\n'), ((5000, 5027), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (5008, 5027), True, 'import numpy as np\n'), ((5047, 5074), 'numpy.zeros', 'np.zeros', (['(num_counties, 1)'], {}), '((num_counties, 1))\n', (5055, 5074), True, 'import numpy as np\n'), ((5253, 5291), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (5261, 5291), True, 'import numpy as np\n'), ((6486, 6524), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (6494, 6524), True, 'import numpy as np\n'), ((7725, 7763), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (7733, 7763), True, 'import numpy as np\n'), ((8984, 9022), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (8992, 9022), True, 'import numpy as np\n'), ((10242, 10280), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (10250, 10280), True, 'import numpy as np\n'), ((11464, 11502), 'numpy.zeros', 'np.zeros', (['(num_counties, num_counties)'], {}), '((num_counties, num_counties))\n', (11472, 11502), True, 'import numpy as np\n'), ((12784, 12912), 'numpy.concatenate', 'np.concatenate', (['(grocery_demand, fitness_demand, pharmacy_demand, physician_demand,\n hotel_demand, restaurant_demand)'], {'axis': '(1)'}), '((grocery_demand, fitness_demand, pharmacy_demand,\n physician_demand, hotel_demand, restaurant_demand), axis=1)\n', (12798, 12912), True, 'import numpy as np\n'), ((163, 204), 'os.path.join', 'os.path.join', (['os.curdir', '""".."""', '""".."""', '""".."""'], {}), "(os.curdir, '..', '..', '..')\n", (175, 204), False, 'import sys, os\n'), ((1207, 1256), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Fitness_County.xlsx"""'], {}), "(data_path, 'TX_Fitness_County.xlsx')\n", (1219, 1256), False, 'import sys, os\n'), ((1769, 1821), 'os.path.join', 'os.path.join', (['data_path', '"""Population_bg_Dallas.xlsx"""'], {}), "(data_path, 'Population_bg_Dallas.xlsx')\n", (1781, 1821), False, 'import sys, os\n'), ((2260, 2305), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Devices_bg.xlsx"""'], {}), "(data_path, 'TX_Devices_bg.xlsx')\n", (2272, 2305), False, 'import sys, os\n'), ((3419, 3468), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Fitness_County.xlsx"""'], {}), "(data_path, 'TX_Fitness_County.xlsx')\n", (3431, 3468), False, 'import sys, os\n'), ((3638, 3687), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Grocery_County.xlsx"""'], {}), "(data_path, 'TX_Grocery_County.xlsx')\n", (3650, 3687), False, 'import sys, os\n'), ((3856, 3904), 'os.path.join', 'os.path.join', (['data_path', '"""TX_HMotel_County.xlsx"""'], {}), "(data_path, 'TX_HMotel_County.xlsx')\n", (3868, 3904), False, 'import sys, os\n'), ((4074, 4124), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Pharmacy_County.xlsx"""'], {}), "(data_path, 'TX_Pharmacy_County.xlsx')\n", (4086, 4124), False, 'import sys, os\n'), ((4297, 4348), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Physician_County.xlsx"""'], {}), "(data_path, 'TX_Physician_County.xlsx')\n", (4309, 4348), False, 'import sys, os\n'), ((4525, 4577), 'os.path.join', 'os.path.join', (['data_path', '"""TX_Restaurant_County.xlsx"""'], {}), "(data_path, 'TX_Restaurant_County.xlsx')\n", (4537, 4577), False, 'import sys, os\n'), ((5169, 5225), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_Grocery.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_Grocery.xlsx')\n", (5181, 5225), False, 'import sys, os\n'), ((6117, 6154), 'numpy.sum', 'np.sum', (['grocery_demand_dest_mat[i, :]'], {}), '(grocery_demand_dest_mat[i, :])\n', (6123, 6154), True, 'import numpy as np\n'), ((6402, 6458), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_Fitness.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_Fitness.xlsx')\n", (6414, 6458), False, 'import sys, os\n'), ((7351, 7388), 'numpy.sum', 'np.sum', (['fitness_demand_dest_mat[i, :]'], {}), '(fitness_demand_dest_mat[i, :])\n', (7357, 7388), True, 'import numpy as np\n'), ((7639, 7696), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_Pharmacy.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_Pharmacy.xlsx')\n", (7651, 7696), False, 'import sys, os\n'), ((8599, 8637), 'numpy.sum', 'np.sum', (['pharmacy_demand_dest_mat[i, :]'], {}), '(pharmacy_demand_dest_mat[i, :])\n', (8605, 8637), True, 'import numpy as np\n'), ((8896, 8954), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_Physician.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_Physician.xlsx')\n", (8908, 8954), False, 'import sys, os\n'), ((9867, 9906), 'numpy.sum', 'np.sum', (['physician_demand_dest_mat[i, :]'], {}), '(physician_demand_dest_mat[i, :])\n', (9873, 9906), True, 'import numpy as np\n'), ((10157, 10216), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_HotelMotel.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_HotelMotel.xlsx')\n", (10169, 10216), False, 'import sys, os\n'), ((11089, 11124), 'numpy.sum', 'np.sum', (['hotel_demand_dest_mat[i, :]'], {}), '(hotel_demand_dest_mat[i, :])\n', (11095, 11124), True, 'import numpy as np\n'), ((11374, 11433), 'os.path.join', 'os.path.join', (['data_path', '"""Intercity_Dallas_Restaurant.xlsx"""'], {}), "(data_path, 'Intercity_Dallas_Restaurant.xlsx')\n", (11386, 11433), False, 'import sys, os\n'), ((12356, 12396), 'numpy.sum', 'np.sum', (['restaurant_demand_dest_mat[i, :]'], {}), '(restaurant_demand_dest_mat[i, :])\n', (12362, 12396), True, 'import numpy as np\n'), ((12956, 13033), 'os.path.join', 'os.path.join', (['data_path', '"""data_processing_outputs"""', '"""demand_array_dallas.npy"""'], {}), "(data_path, 'data_processing_outputs', 'demand_array_dallas.npy')\n", (12968, 13033), False, 'import sys, os\n'), ((13057, 13143), 'os.path.join', 'os.path.join', (['data_path', '"""data_processing_outputs"""', '"""populations_array_dallas.npy"""'], {}), "(data_path, 'data_processing_outputs',\n 'populations_array_dallas.npy')\n", (13069, 13143), False, 'import sys, os\n'), ((12652, 12702), 'os.path.join', 'os.path.join', (['data_path', '"""data_processing_outputs"""'], {}), "(data_path, 'data_processing_outputs')\n", (12664, 12702), False, 'import sys, os\n'), ((12718, 12768), 'os.path.join', 'os.path.join', (['data_path', '"""data_processing_outputs"""'], {}), "(data_path, 'data_processing_outputs')\n", (12730, 12768), False, 'import sys, os\n'), ((13185, 13252), 'os.path.join', 'os.path.join', (['data_path', '"""data_processing_outputs"""', '"""county_data.p"""'], {}), "(data_path, 'data_processing_outputs', 'county_data.p')\n", (13197, 13252), False, 'import sys, os\n')]
from cv2 import cv2 import numpy as np import anki_vector from anki_vector.util import distance_mm, speed_mmps, degrees def empty(a): pass robot=anki_vector.Robot() robot.connect() robot.camera.init_camera_feed() robot.behavior.set_lift_height(0.0) robot.behavior.set_head_angle(degrees(0)) cv2.namedWindow("TrackBars") cv2.resizeWindow("TrackBars", 640, 600) cv2.createTrackbar("Hue Min", "TrackBars", 10, 179, empty) cv2.createTrackbar("Hue Max", "TrackBars", 47, 179, empty) cv2.createTrackbar("Sat Min", "TrackBars", 66, 255, empty) cv2.createTrackbar("Sat Max", "TrackBars", 186, 255, empty) cv2.createTrackbar("Val Min", "TrackBars", 171, 255, empty) cv2.createTrackbar("Val Max", "TrackBars", 255, 255, empty) while True: h_min = cv2.getTrackbarPos("Hue Min", "TrackBars") h_max = cv2.getTrackbarPos("Hue Max", "TrackBars") s_min = cv2.getTrackbarPos("Sat Min", "TrackBars") s_max = cv2.getTrackbarPos("Sat Max", "TrackBars") v_min = cv2.getTrackbarPos("Val Min", "TrackBars") v_max = cv2.getTrackbarPos("Val Max", "TrackBars") img = np.array(robot.camera.latest_image.raw_image) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) imgBlur = cv2.GaussianBlur(img, (3,3), 1) imgHSV = cv2.cvtColor(imgBlur, cv2.COLOR_BGR2HSV) print(h_min, h_max, s_min, s_max, v_min, v_max) lower = np.array([h_min, s_min, v_min]) upper = np.array([h_max, s_max, v_max]) mask = cv2.inRange(imgHSV, lower, upper) # Alternative method to find the Ball: Approximation of the area with a Polygon. contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.02*peri,True) objCor = len(approx) # Number of corners print(objCor) x, y, w, h = cv2.boundingRect(approx) if objCor > 6: cv2.circle(img, center=(int(x+w/2), int(y+h/2)), radius=int((h)/2), color=(0, 255, 0), thickness=3) cv2.imshow("Camera", img) cv2.imshow("Mask", mask) if cv2.waitKey(1) & 0xFF == ord('q'): break
[ "cv2.cv2.namedWindow", "cv2.cv2.arcLength", "anki_vector.Robot", "cv2.cv2.boundingRect", "cv2.cv2.resizeWindow", "cv2.cv2.getTrackbarPos", "cv2.cv2.findContours", "cv2.cv2.inRange", "cv2.cv2.approxPolyDP", "anki_vector.util.degrees", "cv2.cv2.createTrackbar", "numpy.array", "cv2.cv2.GaussianBlur", "cv2.cv2.waitKey", "cv2.cv2.cvtColor", "cv2.cv2.imshow" ]
[((154, 173), 'anki_vector.Robot', 'anki_vector.Robot', ([], {}), '()\n', (171, 173), False, 'import anki_vector\n'), ((301, 329), 'cv2.cv2.namedWindow', 'cv2.namedWindow', (['"""TrackBars"""'], {}), "('TrackBars')\n", (316, 329), False, 'from cv2 import cv2\n'), ((330, 369), 'cv2.cv2.resizeWindow', 'cv2.resizeWindow', (['"""TrackBars"""', '(640)', '(600)'], {}), "('TrackBars', 640, 600)\n", (346, 369), False, 'from cv2 import cv2\n'), ((370, 428), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Hue Min"""', '"""TrackBars"""', '(10)', '(179)', 'empty'], {}), "('Hue Min', 'TrackBars', 10, 179, empty)\n", (388, 428), False, 'from cv2 import cv2\n'), ((429, 487), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Hue Max"""', '"""TrackBars"""', '(47)', '(179)', 'empty'], {}), "('Hue Max', 'TrackBars', 47, 179, empty)\n", (447, 487), False, 'from cv2 import cv2\n'), ((488, 546), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Sat Min"""', '"""TrackBars"""', '(66)', '(255)', 'empty'], {}), "('Sat Min', 'TrackBars', 66, 255, empty)\n", (506, 546), False, 'from cv2 import cv2\n'), ((547, 606), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Sat Max"""', '"""TrackBars"""', '(186)', '(255)', 'empty'], {}), "('Sat Max', 'TrackBars', 186, 255, empty)\n", (565, 606), False, 'from cv2 import cv2\n'), ((607, 666), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Val Min"""', '"""TrackBars"""', '(171)', '(255)', 'empty'], {}), "('Val Min', 'TrackBars', 171, 255, empty)\n", (625, 666), False, 'from cv2 import cv2\n'), ((667, 726), 'cv2.cv2.createTrackbar', 'cv2.createTrackbar', (['"""Val Max"""', '"""TrackBars"""', '(255)', '(255)', 'empty'], {}), "('Val Max', 'TrackBars', 255, 255, empty)\n", (685, 726), False, 'from cv2 import cv2\n'), ((288, 298), 'anki_vector.util.degrees', 'degrees', (['(0)'], {}), '(0)\n', (295, 298), False, 'from anki_vector.util import distance_mm, speed_mmps, degrees\n'), ((757, 799), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Hue Min"""', '"""TrackBars"""'], {}), "('Hue Min', 'TrackBars')\n", (775, 799), False, 'from cv2 import cv2\n'), ((812, 854), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Hue Max"""', '"""TrackBars"""'], {}), "('Hue Max', 'TrackBars')\n", (830, 854), False, 'from cv2 import cv2\n'), ((867, 909), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Sat Min"""', '"""TrackBars"""'], {}), "('Sat Min', 'TrackBars')\n", (885, 909), False, 'from cv2 import cv2\n'), ((922, 964), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Sat Max"""', '"""TrackBars"""'], {}), "('Sat Max', 'TrackBars')\n", (940, 964), False, 'from cv2 import cv2\n'), ((977, 1019), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Val Min"""', '"""TrackBars"""'], {}), "('Val Min', 'TrackBars')\n", (995, 1019), False, 'from cv2 import cv2\n'), ((1032, 1074), 'cv2.cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""Val Max"""', '"""TrackBars"""'], {}), "('Val Max', 'TrackBars')\n", (1050, 1074), False, 'from cv2 import cv2\n'), ((1086, 1131), 'numpy.array', 'np.array', (['robot.camera.latest_image.raw_image'], {}), '(robot.camera.latest_image.raw_image)\n', (1094, 1131), True, 'import numpy as np\n'), ((1142, 1178), 'cv2.cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2BGR'], {}), '(img, cv2.COLOR_RGB2BGR)\n', (1154, 1178), False, 'from cv2 import cv2\n'), ((1193, 1225), 'cv2.cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(3, 3)', '(1)'], {}), '(img, (3, 3), 1)\n', (1209, 1225), False, 'from cv2 import cv2\n'), ((1238, 1278), 'cv2.cv2.cvtColor', 'cv2.cvtColor', (['imgBlur', 'cv2.COLOR_BGR2HSV'], {}), '(imgBlur, cv2.COLOR_BGR2HSV)\n', (1250, 1278), False, 'from cv2 import cv2\n'), ((1344, 1375), 'numpy.array', 'np.array', (['[h_min, s_min, v_min]'], {}), '([h_min, s_min, v_min])\n', (1352, 1375), True, 'import numpy as np\n'), ((1388, 1419), 'numpy.array', 'np.array', (['[h_max, s_max, v_max]'], {}), '([h_max, s_max, v_max])\n', (1396, 1419), True, 'import numpy as np\n'), ((1431, 1464), 'cv2.cv2.inRange', 'cv2.inRange', (['imgHSV', 'lower', 'upper'], {}), '(imgHSV, lower, upper)\n', (1442, 1464), False, 'from cv2 import cv2\n'), ((1580, 1646), 'cv2.cv2.findContours', 'cv2.findContours', (['mask', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (1596, 1646), False, 'from cv2 import cv2\n'), ((2037, 2062), 'cv2.cv2.imshow', 'cv2.imshow', (['"""Camera"""', 'img'], {}), "('Camera', img)\n", (2047, 2062), False, 'from cv2 import cv2\n'), ((2067, 2091), 'cv2.cv2.imshow', 'cv2.imshow', (['"""Mask"""', 'mask'], {}), "('Mask', mask)\n", (2077, 2091), False, 'from cv2 import cv2\n'), ((1687, 1711), 'cv2.cv2.arcLength', 'cv2.arcLength', (['cnt', '(True)'], {}), '(cnt, True)\n', (1700, 1711), False, 'from cv2 import cv2\n'), ((1729, 1769), 'cv2.cv2.approxPolyDP', 'cv2.approxPolyDP', (['cnt', '(0.02 * peri)', '(True)'], {}), '(cnt, 0.02 * peri, True)\n', (1745, 1769), False, 'from cv2 import cv2\n'), ((1859, 1883), 'cv2.cv2.boundingRect', 'cv2.boundingRect', (['approx'], {}), '(approx)\n', (1875, 1883), False, 'from cv2 import cv2\n'), ((2100, 2114), 'cv2.cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2111, 2114), False, 'from cv2 import cv2\n')]
from __future__ import absolute_import from unittest import TestCase, skip from ..wcs import WCS import numpy as np import os import re import sys from astropy.io import fits from astropy.modeling import (models, fitting, Model) import matplotlib.pyplot as plt from ccdproc import CCDData class TestWCSBase(TestCase): def setUp(self): self.data_path = os.path.join( os.path.dirname(sys.modules['goodman_pipeline'].__file__), 'data/test_data/wcs_data') self.wcs = WCS() @staticmethod def _recover_lines(ccd): lines_pixel = [] lines_angstrom = [] pixel_keywords = ccd.header['GSP_P*'] for pixel_key in pixel_keywords: if re.match(r'GSP_P\d{3}', pixel_key) is not None: angstrom_key = re.sub('GSP_P', 'GSP_A', pixel_key) if int(ccd.header[angstrom_key]) != 0: lines_pixel.append(float(ccd.header[pixel_key])) lines_angstrom.append(float(ccd.header[angstrom_key])) return lines_pixel, lines_angstrom class TestWCS(TestWCSBase): # def test_wcs__call__(self): # self.assertRaisesRegex(SystemExit, '1', self.wcs) # self.assertRaises(SystemExit, self.wcs) def test_fit_chebyshev(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom) self.assertIsInstance(model, Model) self.assertEqual(model.__class__.__name__, ccd.header['GSP_FUNC']) self.assertEqual(model.degree, ccd.header['GSP_ORDR']) for i in range(model.degree + 1): self.assertAlmostEqual(model.__getattribute__('c{:d}'.format(i)).value, ccd.header['GSP_C{:03d}'.format(i)]) def test_fit_linear(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom, model_name='linear') self.assertIsInstance(model, Model) def test_fit_invalid(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) self.assertRaisesRegex(NotImplementedError, 'The model invalid is not implemented', self.wcs.fit, pixel, angstrom, 'invalid') self.assertRaises(NotImplementedError, self.wcs.fit, pixel, angstrom, 'invalid') def test_fit__unable_to_fit(self): pixel = [0, 1, 2, 3] angstrom = [20, 30, 40] # self.assertRaisesRegex(ValueError, # 'x and y should have the same shape', # self.wcs.fit, pixel, angstrom) self.assertRaises(ValueError, self.wcs.fit, pixel, angstrom) def test_read__linear(self): test_file = os.path.join(self.data_path, 'linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(self.wcs.get_model(), Model) def test_read__log_linear(self): test_file = os.path.join(self.data_path, 'log-linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') # # result = self.wcs.read(ccd=ccd) # # self.assertIsInstance(result, list) # self.assertEqual(len(result), 2) # self.assertIsInstance(self.wcs.get_model(), Model) self.assertRaises(NotImplementedError, self.wcs.read, ccd) def test_read__non_linear_chebyshev(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_cheb.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(self.wcs.model, Model) self.assertEqual(self.wcs.model.__class__.__name__, 'Chebyshev1D') def test_read__non_linear_legendre(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_legendre.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(self.wcs.model, Model) self.assertEqual(self.wcs.model.__class__.__name__, 'Legendre1D') def test_read__non_linear_lspline(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_linear-spline.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') # self.wcs.read(ccd=ccd) self.assertRaises(NotImplementedError, self.wcs.read, ccd) self.assertRaisesRegex(NotImplementedError, 'Linear spline is not implemented', self.wcs.read, ccd) def test_read__non_linear_cspline(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_cubic-spline.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') self.assertRaises(NotImplementedError, self.wcs.read, ccd) self.assertRaisesRegex(NotImplementedError, 'Cubic spline is not implemented', self.wcs.read, ccd) def test_write_fits_wcs(self): self.assertRaises(NotImplementedError, self.wcs.write_fits_wcs, None, None) def test_read__invalid(self): test_file = os.path.join(self.data_path, 'linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') ccd.wcs.wcs.ctype[0] = 'INVALID' self.assertRaisesRegex(NotImplementedError, 'CTYPE INVALID is not recognized', self.wcs.read, ccd) self.assertRaises(NotImplementedError, self.wcs.read, ccd) def test_write_gsp_wcs(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom) self.assertIsInstance(model, Model) blank_ccd = CCDData(data=np.ones(ccd.data.shape), meta=fits.Header(), unit='adu') blank_ccd.header.set('GSP_WREJ', value=None, comment='empty') new_ccd = self.wcs.write_gsp_wcs(ccd=blank_ccd, model=model) self.assertEqual(new_ccd.header['GSP_FUNC'], ccd.header['GSP_FUNC']) self.assertEqual(new_ccd.header['GSP_ORDR'], ccd.header['GSP_ORDR']) self.assertEqual(new_ccd.header['GSP_NPIX'], ccd.header['GSP_NPIX']) for i in range(model.degree + 1): self.assertAlmostEqual(new_ccd.header['GSP_C{:03d}'.format(i)], ccd.header['GSP_C{:03d}'.format(i)]) def test_read_gsp_wcs(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read_gsp_wcs(ccd=ccd) self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(self.wcs.get_model(), Model) def test_get_model_is_None(self): self.wcs.model = None self.assertIsNone(self.wcs.get_model()) def test_get_model_is_not_None(self): self.wcs.model = models.Chebyshev1D(degree=3) self.assertIsInstance(self.wcs.get_model(), Model) def test_pm_none(self): # test_file = os.path.join(self.data_path, # 'non-linear_fits_solution_cheb.fits') # self.assertTrue(os.path.isfile(test_file)) # # ccd = CCDData.read(test_file, unit='adu') # # WAT2_001 = 'wtype = multispec spec1 = "1 1 2 1. 1.5114461210693 4096 0. 834.39 864' # WAT2_002 = '.39 1. 0. 1 3 1616.37 3259.98 5115.64008185559 535.515983711607 -0.7' # WAT2_003 = '79265625182385"' # # dtype = -1 self.assertRaises(NotImplementedError, self.wcs._none)
[ "ccdproc.CCDData.read", "os.path.dirname", "re.match", "numpy.ones", "os.path.isfile", "astropy.modeling.models.Chebyshev1D", "astropy.io.fits.Header", "os.path.join", "re.sub" ]
[((1309, 1371), 'os.path.join', 'os.path.join', (['self.data_path', '"""goodman_comp_400M1_HgArNe.fits"""'], {}), "(self.data_path, 'goodman_comp_400M1_HgArNe.fits')\n", (1321, 1371), False, 'import os\n'), ((1419, 1454), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (1431, 1454), False, 'from ccdproc import CCDData\n'), ((2003, 2065), 'os.path.join', 'os.path.join', (['self.data_path', '"""goodman_comp_400M1_HgArNe.fits"""'], {}), "(self.data_path, 'goodman_comp_400M1_HgArNe.fits')\n", (2015, 2065), False, 'import os\n'), ((2113, 2148), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (2125, 2148), False, 'from ccdproc import CCDData\n'), ((2446, 2508), 'os.path.join', 'os.path.join', (['self.data_path', '"""goodman_comp_400M1_HgArNe.fits"""'], {}), "(self.data_path, 'goodman_comp_400M1_HgArNe.fits')\n", (2458, 2508), False, 'import os\n'), ((2556, 2591), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (2568, 2591), False, 'from ccdproc import CCDData\n'), ((3535, 3592), 'os.path.join', 'os.path.join', (['self.data_path', '"""linear_fits_solution.fits"""'], {}), "(self.data_path, 'linear_fits_solution.fits')\n", (3547, 3592), False, 'import os\n'), ((3692, 3727), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (3704, 3727), False, 'from ccdproc import CCDData\n'), ((3972, 4033), 'os.path.join', 'os.path.join', (['self.data_path', '"""log-linear_fits_solution.fits"""'], {}), "(self.data_path, 'log-linear_fits_solution.fits')\n", (3984, 4033), False, 'import os\n'), ((4133, 4168), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (4145, 4168), False, 'from ccdproc import CCDData\n'), ((4516, 4582), 'os.path.join', 'os.path.join', (['self.data_path', '"""non-linear_fits_solution_cheb.fits"""'], {}), "(self.data_path, 'non-linear_fits_solution_cheb.fits')\n", (4528, 4582), False, 'import os\n'), ((4682, 4717), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (4694, 4717), False, 'from ccdproc import CCDData\n'), ((4954, 5024), 'os.path.join', 'os.path.join', (['self.data_path', '"""non-linear_fits_solution_legendre.fits"""'], {}), "(self.data_path, 'non-linear_fits_solution_legendre.fits')\n", (4966, 5024), False, 'import os\n'), ((5124, 5159), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (5136, 5159), False, 'from ccdproc import CCDData\n'), ((5394, 5469), 'os.path.join', 'os.path.join', (['self.data_path', '"""non-linear_fits_solution_linear-spline.fits"""'], {}), "(self.data_path, 'non-linear_fits_solution_linear-spline.fits')\n", (5406, 5469), False, 'import os\n'), ((5569, 5604), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (5581, 5604), False, 'from ccdproc import CCDData\n'), ((5941, 6015), 'os.path.join', 'os.path.join', (['self.data_path', '"""non-linear_fits_solution_cubic-spline.fits"""'], {}), "(self.data_path, 'non-linear_fits_solution_cubic-spline.fits')\n", (5953, 6015), False, 'import os\n'), ((6115, 6150), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (6127, 6150), False, 'from ccdproc import CCDData\n'), ((6614, 6671), 'os.path.join', 'os.path.join', (['self.data_path', '"""linear_fits_solution.fits"""'], {}), "(self.data_path, 'linear_fits_solution.fits')\n", (6626, 6671), False, 'import os\n'), ((6771, 6806), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (6783, 6806), False, 'from ccdproc import CCDData\n'), ((7171, 7233), 'os.path.join', 'os.path.join', (['self.data_path', '"""goodman_comp_400M1_HgArNe.fits"""'], {}), "(self.data_path, 'goodman_comp_400M1_HgArNe.fits')\n", (7183, 7233), False, 'import os\n'), ((7281, 7316), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (7293, 7316), False, 'from ccdproc import CCDData\n'), ((8235, 8297), 'os.path.join', 'os.path.join', (['self.data_path', '"""goodman_comp_400M1_HgArNe.fits"""'], {}), "(self.data_path, 'goodman_comp_400M1_HgArNe.fits')\n", (8247, 8297), False, 'import os\n'), ((8397, 8432), 'ccdproc.CCDData.read', 'CCDData.read', (['test_file'], {'unit': '"""adu"""'}), "(test_file, unit='adu')\n", (8409, 8432), False, 'from ccdproc import CCDData\n'), ((8811, 8839), 'astropy.modeling.models.Chebyshev1D', 'models.Chebyshev1D', ([], {'degree': '(3)'}), '(degree=3)\n', (8829, 8839), False, 'from astropy.modeling import models, fitting, Model\n'), ((395, 452), 'os.path.dirname', 'os.path.dirname', (["sys.modules['goodman_pipeline'].__file__"], {}), "(sys.modules['goodman_pipeline'].__file__)\n", (410, 452), False, 'import os\n'), ((3650, 3675), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (3664, 3675), False, 'import os\n'), ((4091, 4116), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (4105, 4116), False, 'import os\n'), ((4640, 4665), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (4654, 4665), False, 'import os\n'), ((5082, 5107), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (5096, 5107), False, 'import os\n'), ((5527, 5552), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (5541, 5552), False, 'import os\n'), ((6073, 6098), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (6087, 6098), False, 'import os\n'), ((6729, 6754), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (6743, 6754), False, 'import os\n'), ((8356, 8381), 'os.path.isfile', 'os.path.isfile', (['test_file'], {}), '(test_file)\n', (8370, 8381), False, 'import os\n'), ((722, 756), 're.match', 're.match', (['"""GSP_P\\\\d{3}"""', 'pixel_key'], {}), "('GSP_P\\\\d{3}', pixel_key)\n", (730, 756), False, 'import re\n'), ((801, 836), 're.sub', 're.sub', (['"""GSP_P"""', '"""GSP_A"""', 'pixel_key'], {}), "('GSP_P', 'GSP_A', pixel_key)\n", (807, 836), False, 'import re\n'), ((7516, 7539), 'numpy.ones', 'np.ones', (['ccd.data.shape'], {}), '(ccd.data.shape)\n', (7523, 7539), True, 'import numpy as np\n'), ((7572, 7585), 'astropy.io.fits.Header', 'fits.Header', ([], {}), '()\n', (7583, 7585), False, 'from astropy.io import fits\n')]
from sciapp.action import Free import scipy.ndimage as ndimg import numpy as np, wx # from imagepy import IPy #matplotlib.use('WXAgg') import matplotlib.pyplot as plt def block(arr): img = np.zeros((len(arr),30,30), dtype=np.uint8) img.T[:] = arr return np.hstack(img) class Temperature(Free): title = 'Temperature Difference' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10,11,12]) ys = np.array([1,2,1,2,2,3,8,9,8,10,9,10], dtype=np.float32) ds = ndimg.convolve1d(ys, [0,1,-1]) lbs = ['Jan','Feb','Mar','Apr','May','June', 'Jul','Aug','Sep','Oct','Nov','Dec'] plt.xticks(xs, lbs) plt.plot(xs, ys, '-o', label='Temperature') plt.plot(xs, ds, '-o', label='Difference') plt.grid() plt.gca().legend() plt.title('Temperature in XX') plt.xlabel('Month') plt.ylabel('Temperature (C)') plt.show() self.app.show_img([block((ys-ys.min())*(180/ys.max()-ys.min()))], 'Temperature') self.app.show_img([block((ds-ds.min())*(180/ds.max()-ds.min()))], 'Difference') class Shake(Free): title = 'Shake Damping' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10]) ys = np.array([10,-9,8,-7,6,-5,4,-3,2,-1], dtype=np.float32) ds = ndimg.convolve1d(ys, [1/3,1/3,1/3]) print(ds) plt.plot(xs, ys, '-o', label='Shake') plt.plot(xs, ds, '-o', label='Damping') plt.grid() plt.gca().legend() plt.title('Shake Damping') plt.xlabel('Time') plt.ylabel('Amplitude') plt.show() self.app.show_img([block(ys*10+128)], 'Shake') self.app.show_img([block(ds*10+128)], 'Damping') class Inertia(Free): title = 'Psychological Inertia' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10]) ys = np.array([90,88,93,95,91,70,89,92,94,89], dtype=np.float32) ds = ndimg.convolve1d(ys, [1/3,1/3,1/3]) print(ds) plt.plot(xs, ys, '-o', label='Psychological') plt.plot(xs, ds, '-o', label='Inertia') plt.grid() plt.gca().legend() plt.title('Psychological Inertia') plt.xlabel('Time') plt.ylabel('Score') plt.show() self.app.show_img([block((ys-80)*3+80)], 'Psychological') self.app.show_img([block((ds-80)*3+80)], 'Inertia') class GaussCore(Free): title = 'Gaussian Core' asyn = False def run(self, para = None): x, y = np.ogrid[-3:3:10j, -3:3:10j] z = np.exp(-(x ** 2 + y ** 2)/1) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) z = np.exp(-(x ** 2 + y ** 2)/4) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) plt.show() class LoGCore(Free): title = 'Laplace of Gaussian Core' asyn = False def run(self, para = None): plt.figure() x = np.linspace(-3,3,50) y = np.exp(-x**2) dy = np.exp(-x**2)*(4*x**2-2) plt.plot(x, y, label='Gauss') plt.plot(x, -dy, label="Gauss''") plt.grid() plt.legend() x, y = np.ogrid[-3:3:20j, -3:3:20j] z = (4*x**2-2)*np.exp(-y**2-x**2)+(4*y**2-2)*np.exp(-x**2-y**2) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, -z) plt.show() class DogCore(Free): title = 'Difference of Gaussian Core' asyn = False def run(self, para = None): plt.figure() x = np.linspace(-3,3,50) y = np.exp(-x**2) yy = np.exp(-x**2/4)/2 plt.plot(x, y, label='sigma = 1') plt.plot(x, yy, label='sigma = 2') plt.plot(x, y-yy, 'r', lw=3, label="Difference") plt.grid() plt.legend() x, y = np.ogrid[-3:3:20j, -3:3:20j] z = np.exp(-(x ** 2 + y ** 2)/1)-np.exp(-(x ** 2 + y ** 2)/4)/2 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) plt.show() class LaplaceSharp(Free): title = 'Show how to Laplace Sharp' asyn = False def run(self, para = None): x = np.linspace(-10,10,300) y = np.arctan(x) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() ax0.set_title('y = arctan(x)') ax0.plot(x, y) ax0.grid() ax1.set_title("y = arctan(x)'") ax1.plot(x, y) ax1.plot(x, 1/(x**2+1)) ax1.grid() ax2.set_title("y = arctan(x)''") ax2.plot(x, y) ax2.plot(x, (2*x)/(x**4+2*x**2+1)) ax2.grid() ax3.set_title("y = arctan(x) + arctan(x)''") ax3.plot(x, y) ax3.plot(x, y+(2*x)/(x**4+2*x**2+1)) ax3.grid() fig.tight_layout() plt.show() self.app.show_img([(((y*70)+128)*np.ones((30,1))).astype(np.uint8)], 'tan(x)') self.app.show_img([((100/(x**2+1))*np.ones((30,1))).astype(np.uint8)], "tan(x)'") self.app.show_img([((((2*x)/(x**4+2*x**2+1)*70)+128)* np.ones((30,1))).astype(np.uint8)], "tan(x))''") self.app.show_img([((((y+(2*x)/(x**4+2*x**2+1))*70)+128)* np.ones((30,1))).astype(np.uint8)], "tan(x)+tan(x)''") class UnSharp(Free): title = 'Show how to Unsharp Mask' asyn = False def run(self, para = None): x = np.linspace(-10,10,300) y = np.arctan(x) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() gy = ndimg.gaussian_filter1d(y, 30) ax0, ax1, ax2, ax3 = axes.flatten() ax0.set_title('y = arctan(x)') ax0.plot(x, y) ax0.grid() ax1.set_title("gaussian") ax1.plot(x, y) ax1.plot(x, gy) ax1.grid() ax2.set_title("y = arctan(x) - gaussian") ax2.plot(x, y) ax2.plot(x, y-gy) ax2.grid() ax3.set_title("y = arctan(x) + diff") ax3.plot(x, y) ax3.plot(x, y+2*(y-gy)) ax3.grid() fig.tight_layout() plt.show() self.app.show_img([((y*70+128)*np.ones((30,1))).astype(np.uint8)], 'tan(x)') self.app.show_img([((gy*70+128)*np.ones((30,1))).astype(np.uint8)], 'gaussian') self.app.show_img([(((y-gy)*100+128)*np.ones((30,1))).astype(np.uint8)], 'arctan(x) - gaussian') self.app.show_img([(((y+2*(y-gy))*70+128)*np.ones((30,1))).astype(np.uint8)], "arctan(x) + diff") plgs = [Temperature, Shake, Inertia, GaussCore, LoGCore, DogCore, LaplaceSharp, UnSharp]
[ "matplotlib.pyplot.title", "scipy.ndimage.gaussian_filter1d", "numpy.ones", "matplotlib.pyplot.figure", "numpy.exp", "matplotlib.pyplot.gca", "numpy.linspace", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "scipy.ndimage.convolve1d", "matplotlib.pyplot.legend", "numpy.hstack", "numpy.arctan", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.plot", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((258, 272), 'numpy.hstack', 'np.hstack', (['img'], {}), '(img)\n', (267, 272), True, 'import numpy as np, wx\n'), ((384, 433), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])\n', (392, 433), True, 'import numpy as np, wx\n'), ((430, 496), 'numpy.array', 'np.array', (['[1, 2, 1, 2, 2, 3, 8, 9, 8, 10, 9, 10]'], {'dtype': 'np.float32'}), '([1, 2, 1, 2, 2, 3, 8, 9, 8, 10, 9, 10], dtype=np.float32)\n', (438, 496), True, 'import numpy as np, wx\n'), ((493, 525), 'scipy.ndimage.convolve1d', 'ndimg.convolve1d', (['ys', '[0, 1, -1]'], {}), '(ys, [0, 1, -1])\n', (509, 525), True, 'import scipy.ndimage as ndimg\n'), ((619, 638), 'matplotlib.pyplot.xticks', 'plt.xticks', (['xs', 'lbs'], {}), '(xs, lbs)\n', (629, 638), True, 'import matplotlib.pyplot as plt\n'), ((642, 685), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ys', '"""-o"""'], {'label': '"""Temperature"""'}), "(xs, ys, '-o', label='Temperature')\n", (650, 685), True, 'import matplotlib.pyplot as plt\n'), ((688, 730), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ds', '"""-o"""'], {'label': '"""Difference"""'}), "(xs, ds, '-o', label='Difference')\n", (696, 730), True, 'import matplotlib.pyplot as plt\n'), ((733, 743), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (741, 743), True, 'import matplotlib.pyplot as plt\n'), ((768, 798), 'matplotlib.pyplot.title', 'plt.title', (['"""Temperature in XX"""'], {}), "('Temperature in XX')\n", (777, 798), True, 'import matplotlib.pyplot as plt\n'), ((801, 820), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Month"""'], {}), "('Month')\n", (811, 820), True, 'import matplotlib.pyplot as plt\n'), ((823, 852), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Temperature (C)"""'], {}), "('Temperature (C)')\n", (833, 852), True, 'import matplotlib.pyplot as plt\n'), ((856, 866), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (864, 866), True, 'import matplotlib.pyplot as plt\n'), ((1128, 1169), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\n', (1136, 1169), True, 'import numpy as np, wx\n'), ((1168, 1232), 'numpy.array', 'np.array', (['[10, -9, 8, -7, 6, -5, 4, -3, 2, -1]'], {'dtype': 'np.float32'}), '([10, -9, 8, -7, 6, -5, 4, -3, 2, -1], dtype=np.float32)\n', (1176, 1232), True, 'import numpy as np, wx\n'), ((1231, 1274), 'scipy.ndimage.convolve1d', 'ndimg.convolve1d', (['ys', '[1 / 3, 1 / 3, 1 / 3]'], {}), '(ys, [1 / 3, 1 / 3, 1 / 3])\n', (1247, 1274), True, 'import scipy.ndimage as ndimg\n'), ((1281, 1318), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ys', '"""-o"""'], {'label': '"""Shake"""'}), "(xs, ys, '-o', label='Shake')\n", (1289, 1318), True, 'import matplotlib.pyplot as plt\n'), ((1321, 1360), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ds', '"""-o"""'], {'label': '"""Damping"""'}), "(xs, ds, '-o', label='Damping')\n", (1329, 1360), True, 'import matplotlib.pyplot as plt\n'), ((1363, 1373), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1371, 1373), True, 'import matplotlib.pyplot as plt\n'), ((1398, 1424), 'matplotlib.pyplot.title', 'plt.title', (['"""Shake Damping"""'], {}), "('Shake Damping')\n", (1407, 1424), True, 'import matplotlib.pyplot as plt\n'), ((1427, 1445), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (1437, 1445), True, 'import matplotlib.pyplot as plt\n'), ((1448, 1471), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude"""'], {}), "('Amplitude')\n", (1458, 1471), True, 'import matplotlib.pyplot as plt\n'), ((1474, 1484), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1482, 1484), True, 'import matplotlib.pyplot as plt\n'), ((1691, 1732), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\n', (1699, 1732), True, 'import numpy as np, wx\n'), ((1731, 1799), 'numpy.array', 'np.array', (['[90, 88, 93, 95, 91, 70, 89, 92, 94, 89]'], {'dtype': 'np.float32'}), '([90, 88, 93, 95, 91, 70, 89, 92, 94, 89], dtype=np.float32)\n', (1739, 1799), True, 'import numpy as np, wx\n'), ((1798, 1841), 'scipy.ndimage.convolve1d', 'ndimg.convolve1d', (['ys', '[1 / 3, 1 / 3, 1 / 3]'], {}), '(ys, [1 / 3, 1 / 3, 1 / 3])\n', (1814, 1841), True, 'import scipy.ndimage as ndimg\n'), ((1848, 1893), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ys', '"""-o"""'], {'label': '"""Psychological"""'}), "(xs, ys, '-o', label='Psychological')\n", (1856, 1893), True, 'import matplotlib.pyplot as plt\n'), ((1896, 1935), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ds', '"""-o"""'], {'label': '"""Inertia"""'}), "(xs, ds, '-o', label='Inertia')\n", (1904, 1935), True, 'import matplotlib.pyplot as plt\n'), ((1938, 1948), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1946, 1948), True, 'import matplotlib.pyplot as plt\n'), ((1973, 2007), 'matplotlib.pyplot.title', 'plt.title', (['"""Psychological Inertia"""'], {}), "('Psychological Inertia')\n", (1982, 2007), True, 'import matplotlib.pyplot as plt\n'), ((2010, 2028), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (2020, 2028), True, 'import matplotlib.pyplot as plt\n'), ((2031, 2050), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Score"""'], {}), "('Score')\n", (2041, 2050), True, 'import matplotlib.pyplot as plt\n'), ((2053, 2063), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2061, 2063), True, 'import matplotlib.pyplot as plt\n'), ((2315, 2345), 'numpy.exp', 'np.exp', (['(-(x ** 2 + y ** 2) / 1)'], {}), '(-(x ** 2 + y ** 2) / 1)\n', (2321, 2345), True, 'import numpy as np, wx\n'), ((2352, 2364), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2362, 2364), True, 'import matplotlib.pyplot as plt\n'), ((2445, 2475), 'numpy.exp', 'np.exp', (['(-(x ** 2 + y ** 2) / 4)'], {}), '(-(x ** 2 + y ** 2) / 4)\n', (2451, 2475), True, 'import numpy as np, wx\n'), ((2482, 2494), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2492, 2494), True, 'import matplotlib.pyplot as plt\n'), ((2571, 2581), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2579, 2581), True, 'import matplotlib.pyplot as plt\n'), ((2686, 2698), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2696, 2698), True, 'import matplotlib.pyplot as plt\n'), ((2705, 2727), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(50)'], {}), '(-3, 3, 50)\n', (2716, 2727), True, 'import numpy as np, wx\n'), ((2732, 2747), 'numpy.exp', 'np.exp', (['(-x ** 2)'], {}), '(-x ** 2)\n', (2738, 2747), True, 'import numpy as np, wx\n'), ((2780, 2809), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'label': '"""Gauss"""'}), "(x, y, label='Gauss')\n", (2788, 2809), True, 'import matplotlib.pyplot as plt\n'), ((2812, 2845), 'matplotlib.pyplot.plot', 'plt.plot', (['x', '(-dy)'], {'label': '"""Gauss\'\'"""'}), '(x, -dy, label="Gauss\'\'")\n', (2820, 2845), True, 'import matplotlib.pyplot as plt\n'), ((2848, 2858), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (2856, 2858), True, 'import matplotlib.pyplot as plt\n'), ((2861, 2873), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2871, 2873), True, 'import matplotlib.pyplot as plt\n'), ((2986, 2998), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2996, 2998), True, 'import matplotlib.pyplot as plt\n'), ((3076, 3086), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3084, 3086), True, 'import matplotlib.pyplot as plt\n'), ((3195, 3207), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3205, 3207), True, 'import matplotlib.pyplot as plt\n'), ((3214, 3236), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(50)'], {}), '(-3, 3, 50)\n', (3225, 3236), True, 'import numpy as np, wx\n'), ((3241, 3256), 'numpy.exp', 'np.exp', (['(-x ** 2)'], {}), '(-x ** 2)\n', (3247, 3256), True, 'import numpy as np, wx\n'), ((3282, 3315), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'label': '"""sigma = 1"""'}), "(x, y, label='sigma = 1')\n", (3290, 3315), True, 'import matplotlib.pyplot as plt\n'), ((3318, 3352), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yy'], {'label': '"""sigma = 2"""'}), "(x, yy, label='sigma = 2')\n", (3326, 3352), True, 'import matplotlib.pyplot as plt\n'), ((3356, 3406), 'matplotlib.pyplot.plot', 'plt.plot', (['x', '(y - yy)', '"""r"""'], {'lw': '(3)', 'label': '"""Difference"""'}), "(x, y - yy, 'r', lw=3, label='Difference')\n", (3364, 3406), True, 'import matplotlib.pyplot as plt\n'), ((3407, 3417), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3415, 3417), True, 'import matplotlib.pyplot as plt\n'), ((3420, 3432), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3430, 3432), True, 'import matplotlib.pyplot as plt\n'), ((3545, 3557), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3555, 3557), True, 'import matplotlib.pyplot as plt\n'), ((3634, 3644), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3642, 3644), True, 'import matplotlib.pyplot as plt\n'), ((3759, 3784), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(300)'], {}), '(-10, 10, 300)\n', (3770, 3784), True, 'import numpy as np, wx\n'), ((3789, 3801), 'numpy.arctan', 'np.arctan', (['x'], {}), '(x)\n', (3798, 3801), True, 'import numpy as np, wx\n'), ((3817, 3847), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)'}), '(nrows=2, ncols=2)\n', (3829, 3847), True, 'import matplotlib.pyplot as plt\n'), ((4280, 4290), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4288, 4290), True, 'import matplotlib.pyplot as plt\n'), ((4790, 4815), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(300)'], {}), '(-10, 10, 300)\n', (4801, 4815), True, 'import numpy as np, wx\n'), ((4820, 4832), 'numpy.arctan', 'np.arctan', (['x'], {}), '(x)\n', (4829, 4832), True, 'import numpy as np, wx\n'), ((4847, 4877), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)'}), '(nrows=2, ncols=2)\n', (4859, 4877), True, 'import matplotlib.pyplot as plt\n'), ((4923, 4953), 'scipy.ndimage.gaussian_filter1d', 'ndimg.gaussian_filter1d', (['y', '(30)'], {}), '(y, 30)\n', (4946, 4953), True, 'import scipy.ndimage as ndimg\n'), ((5344, 5354), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5352, 5354), True, 'import matplotlib.pyplot as plt\n'), ((2753, 2768), 'numpy.exp', 'np.exp', (['(-x ** 2)'], {}), '(-x ** 2)\n', (2759, 2768), True, 'import numpy as np, wx\n'), ((3262, 3281), 'numpy.exp', 'np.exp', (['(-x ** 2 / 4)'], {}), '(-x ** 2 / 4)\n', (3268, 3281), True, 'import numpy as np, wx\n'), ((3477, 3507), 'numpy.exp', 'np.exp', (['(-(x ** 2 + y ** 2) / 1)'], {}), '(-(x ** 2 + y ** 2) / 1)\n', (3483, 3507), True, 'import numpy as np, wx\n'), ((746, 755), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (753, 755), True, 'import matplotlib.pyplot as plt\n'), ((1376, 1385), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1383, 1385), True, 'import matplotlib.pyplot as plt\n'), ((1951, 1960), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1958, 1960), True, 'import matplotlib.pyplot as plt\n'), ((2929, 2953), 'numpy.exp', 'np.exp', (['(-y ** 2 - x ** 2)'], {}), '(-y ** 2 - x ** 2)\n', (2935, 2953), True, 'import numpy as np, wx\n'), ((2959, 2983), 'numpy.exp', 'np.exp', (['(-x ** 2 - y ** 2)'], {}), '(-x ** 2 - y ** 2)\n', (2965, 2983), True, 'import numpy as np, wx\n'), ((3506, 3536), 'numpy.exp', 'np.exp', (['(-(x ** 2 + y ** 2) / 4)'], {}), '(-(x ** 2 + y ** 2) / 4)\n', (3512, 3536), True, 'import numpy as np, wx\n'), ((4326, 4342), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (4333, 4342), True, 'import numpy as np, wx\n'), ((4409, 4425), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (4416, 4425), True, 'import numpy as np, wx\n'), ((4515, 4531), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (4522, 4531), True, 'import numpy as np, wx\n'), ((4627, 4643), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (4634, 4643), True, 'import numpy as np, wx\n'), ((5388, 5404), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (5395, 5404), True, 'import numpy as np, wx\n'), ((5468, 5484), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (5475, 5484), True, 'import numpy as np, wx\n'), ((5555, 5571), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (5562, 5571), True, 'import numpy as np, wx\n'), ((5659, 5675), 'numpy.ones', 'np.ones', (['(30, 1)'], {}), '((30, 1))\n', (5666, 5675), True, 'import numpy as np, wx\n')]
import pandas as pd import numpy as np from texttable import Texttable from cape_privacy.pandas import dtypes from cape_privacy.pandas.transformations import NumericPerturbation from cape_privacy.pandas.transformations import DatePerturbation from cape_privacy.pandas.transformations import NumericRounding from cape_privacy.pandas.transformations import Tokenizer from faker import Faker from anonympy.pandas import utils_pandas as _utils from sklearn.decomposition import PCA class dfAnonymizer(object): """ Initializes pandas DataFrame as a dfAnonymizer object. Parameters: ---------- df: pandas DataFrame Returns: ---------- dfAnonymizer object Raises ---------- Exception: * If ``df`` is not a DataFrame See also ---------- dfAnonymizer.to_df : Return a DataFrame Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset Contructing dfAnonymizer object: >>> df = load_dataset() >>> anonym = dfAnonymizer(df) >>> anonym.to_df() name age ... email ssn 0 Bruce 33 ... <EMAIL> 343554334 1 Tony 48 ... <EMAIL> 656564664 """ def __init__(self, df: pd.DataFrame): if df.__class__.__name__ != "DataFrame": raise Exception(f"{df} is not a pandas DataFrame.") # Private Attributes self._df = df.copy() self._df2 = df.copy() self._methods_applied = {} self._synthetic_data = 'Synthetic Data' self._tokenization = 'Tokenization' self._numeric_perturbation = 'Numeric Perturbation' self._datetime_perturbation = 'Datetime Perturbation' self._round = 'Generalization - Rounding' self._bin = 'Generalization - Binning' self._drop = 'Column Suppression' self._sample = 'Resampling' self._PCA = 'PCA Masking' self._email = 'Partial Masking' # Public Attributes self.anonymized_columns = [] self.columns = self._df.columns.tolist() self.unanonymized_columns = self.columns.copy() self.numeric_columns = _utils.get_numeric_columns(self._df) self.categorical_columns = _utils.get_categorical_columns(self._df) self.datetime_columns = _utils.get_datetime_columns(self._df) self._available_methods = _utils.av_methods self._fake_methods = _utils.faker_methods def __str__(self): return self._info().draw() def __repr__(self): return self._info().draw() def _dtype_checker(self, column: str): ''' Returns the dtype of the column Parameters ---------- column: str Returns ---------- dtype: numpy dtype ''' dtype = self._df[column].dtype if dtype == np.float32: return dtypes.Float elif dtype == np.float64: return dtypes.Double elif dtype == np.byte: return dtypes.Byte elif dtype == np.short: return dtypes.Short elif dtype == np.int32: return dtypes.Integer elif dtype == np.int64: return dtypes.Long else: return None def anonymize(self, methods=None, locale=['en_US'], seed=None, inplace=True): ''' Anonymize all columns using different methods for each dtype. If dictionary is not provided, for numerical columns ``numeric_rounding`` is applied. ``categorical_fake`` and ``categorical_tokenization`` for categorical columns and ``datetime_noise`` or ``datetime_fake`` are applied for columns of datetime type. Parameters ---------- methods : Optional[Dict[str, str]], default None {column_name: anonympy_method}. Call ``available_methods`` for list of all methods. locale : str or List[str], default ['en_US'] See https://faker.readthedocs.io/en/master/locales.html for all faker's locales. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. seed : Optional[int], default None Pass an integer for reproducible output across multiple function calls. Returns ---------- If inplace is False, pandas Series or DataFrame is returned See Also -------- dfAnonymizer.categorical_fake_auto : Replace values with synthetically generated ones Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset, \ available_methods >>> df = load_dataset() >>> anonym = dfAnonymizer(df) If methods None: >>> anonym.anonymize(inplace = False) name age ... email ssn 0 <NAME> 30 ... <EMAIL> 718-51-5290 1 <NAME> 50 ... <EMAIL> 684-81-8137 Passing a dict for specifying which methods to apply: >>> available_methods('numeric') numeric_noise numeric_binning numeric_masking numeric_rounding >>> anonym.anonymize({'name':'categorical_fake', ... 'age':'numeric_noise', ... 'email':'categorical_email_masking', ... 'salary': 'numeric_rounding'}, inplace = False) name age email salary 0 <NAME> 37 <EMAIL> 60000.0 1 <NAME> 52 <EMAIL> 50000.0 ''' if not methods: if inplace: # try synthetic data self.categorical_fake_auto(locale=locale, seed=seed) # if there are still columns left unanonymized if self.unanonymized_columns: for column in self.unanonymized_columns.copy(): if column in self.numeric_columns: self.numeric_rounding(column) elif column in self.categorical_columns: self.categorical_tokenization(column, key=str(seed)) elif column in self.datetime_columns: self.datetime_noise(column, seed=seed) else: # try synthetic data temp = self.categorical_fake_auto(locale=locale, inplace=False, seed=seed) unanonymized = self.unanonymized_columns.copy() if isinstance(temp, pd.DataFrame): unanonymized = [column for column in unanonymized if column not in temp.columns.to_list()] elif isinstance(temp, pd.Series): unanonymized.remove(temp.name) temp = pd.DataFrame(temp) else: # if temp is a already a dataframe temp = pd.DataFrame() if unanonymized: for column in unanonymized: if column in self.numeric_columns: temp[column] = self.numeric_rounding(column, inplace=False) elif column in self.categorical_columns: temp[column] = self.categorical_tokenization( column, inplace=False, key=str(seed)) elif column in self.datetime_columns: temp[column] = self.datetime_noise(column, inplace=False, seed=seed) return temp # if dictionary with methods was passed else: if inplace: for key, value in methods.items(): # numeric if value == "numeric_noise": self.numeric_noise(key, seed=seed) elif value == "numeric_binning": self.numeric_binning(key) elif value == "numeric_masking": self.numeric_masking(key) elif value == "numeric_rounding": self.numeric_rounding(key) # categorical elif value == "categorical_fake": self.categorical_fake(key, seed=seed) elif value == "categorical_resampling": self.categorical_resampling(key, seed=seed) elif value == "categorical_tokenization": self.categorical_tokenization(key, key=str(seed)) elif value == "categorical_email_masking": self.categorical_email_masking(key) # datetime elif value == "datetime_fake": self.datetime_fake(key, seed=seed) elif value == "datetime_noise": self.datetime_noise(key, seed=seed) # drop elif value == "column_suppression": self.column_suppression(key) else: temp = pd.DataFrame() for key, value in methods.items(): # numeric if value == "numeric_noise": temp[key] = self.numeric_noise(key, inplace=False, seed=seed) elif value == "numeric_binning": temp[key] = self.numeric_binning(key, inplace=False) elif value == "numeric_masking": temp[key] = self.numeric_masking(key, inplace=False) elif value == "numeric_rounding": temp[key] = self.numeric_rounding(key, inplace=False) # categorical elif value == "categorical_fake": temp[key] = self.categorical_fake(key, inplace=False, seed=seed) elif value == "categorical_resampling": temp[key] = self.categorical_resampling(key, inplace=False, seed=seed) elif value == "categorical_tokenization": temp[key] = self.categorical_tokenization( key, inplace=False, key=str(seed)) elif value == 'categorical_email_masking': temp[key] = self.categorical_email_masking( key, inplace=False) # datetime elif value == "datetime_fake": temp[key] = self.datetime_fake(key, inplace=False, seed=seed) elif value == "datetime_noise": temp[key] = self.datetime_noise(key, inplace=False, seed=seed) # drop elif value == "column_suppression": pass if len(temp.columns) > 1: return temp elif len(temp.columns) == 1: return pd.Series(temp[temp.columns[0]]) def _fake_column(self, column, method, locale=['en_US'], seed=None, inplace=True): ''' Anonymize pandas Series object using synthetic data generator Based on faker.Faker. Parameters ---------- column : str Column name which data will be substituted. method : str Method name. List of all methods ``fake_methods``. locale : str or List[str], default ['en_US'] See https://faker.readthedocs.io/en/master/locales.html for all faker's locales. seed : Optional[int], default None Pass an integer for reproducible output across multiple function calls. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- None if inplace is True, else pandas Series is returned See also ---------- dfAnonymizer.categorical_fake : Replace values with synthetically generated ones by specifying which methods to apply ''' Faker.seed(seed) fake = Faker(locale=locale) method = getattr(fake, method) faked = self._df[column].apply(lambda x: method()) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = faked self.unanonymized_columns.remove(column) self.anonymized_columns.append(column) self._methods_applied[column] = self._synthetic_data else: return faked def categorical_fake(self, columns, locale=['en_US'], seed=None, inplace=True): ''' Replace data with synthetic data using faker's generator. To see the list of all faker's methods, call ``fake_methods``. If column name and faker's method are similar, then pass a string or a list of strings for `columns` argument Otherwise, pass a dictionary with column name as a key and faker's method as a value `{col_name: fake_method}`. Parameters ---------- columns : Union[str, List[str], Dict[str, str]] If a string or list of strings is passed, function will assume that method name is same as column name. locale : str or List[str], default ['en_US'] See https://faker.readthedocs.io/en/master/locales.html for all faker's locales. seed : Optional[int], default None Pass an integer for reproducible output across multiple function calls. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- None if inplace is True, else pandas Series or pandas DataFrame is returned See Also -------- dfAnonymizer.categorical_fake_auto : Replace values with synthetically generated ones Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) If methods are not specified, locale Great Britain: >>> anonym.categorical_fake(['name', 'email', 'ssn'], ... locale = 'en_GB', ... inplace = False) name email ssn 0 <NAME> <EMAIL> ZZ 180372 T 1 <NAME> <EMAIL> ZZ780511T Passing a specific method, locale Russia: >>> fake_methods('n') name, name_female, name_male, name_nonbinary, nic_handle, nic_handles, null_boolean, numerify >>> anonym.categorical_fake({'name': 'name_nonbinary', 'web': 'url'}, ... locale = 'ru_RU', ... inplace = False) name web 0 <NAME> https://shestakov.biz 1 <NAME> https://monetka.net ''' # if a single column is passed (str) if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] if inplace: self._fake_column(columns, columns, inplace=True, seed=seed, locale=locale) else: return self._fake_column(columns, columns, inplace=False, seed=seed, locale=locale) # if a list of columns is passed elif isinstance(columns, list): temp = pd.DataFrame() if inplace: for column in columns: self._fake_column(column, column, inplace=True, seed=seed, locale=locale) else: for column in columns: faked = self._fake_column(column, column, inplace=False, seed=seed, locale=locale) temp[column] = faked return temp # if a dictionary with column name and method name is passed elif isinstance(columns, dict): temp = pd.DataFrame() if inplace: for column, method in columns.items(): self._fake_column(column, method, inplace=True, seed=seed, locale=locale) else: for column, method in columns.items(): faked = self._fake_column(column, method, inplace=False, seed=seed, locale=locale) temp[column] = faked if len(columns) == 1: return temp[column] else: return temp def categorical_fake_auto(self, locale=['en_US'], seed=None, inplace=True): ''' Anonymize only those column which names are in ``fake_methods`` list. Parameters ---------- locale : str or List[str], default ['en_US'] See https://faker.readthedocs.io/en/master/locales.html for all faker's locales. seed : Optional[int], default None Pass an integer for reproducible output across multiple function calls. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- None if inplace = True, else an anonymized pandas Series or pandas DataFrame See also ---------- dfAnonymizer.categorical_fake : Replace values with synthetically generated ones by specifying which methods to apply Notes ---------- In order to produce synthetic data, column name should have same name as faker's method name Function will go over all columns and if column name mathces any faker's method, values will be replaced. Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset, fake_methods Change column names so the function can understand which method to apply: >>> df = load_dataset() >>> fake_methods('n') name, name_female, name_male, name_nonbinary, nic_handle, nic_handles, null_boolean, numerify >>> df.rename(columns={'name': 'name_female'}, inplace = True) >>> anonym = dfAnonymizer(df) Calling the method without specifying which methods to apply, locale Japan: >>> anonym.categorical_fake_auto(local = 'ja_JP', ... inplace = False) name_female email ssn 0 西村 あすか <EMAIL> 783-28-2531 1 山口 直子 <EMAIL> 477-58-9577 ''' temp = pd.DataFrame() for column in self.columns: func = column.strip().lower() if func in _utils._fake_methods: if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._fake_column(column, func, inplace=True, seed=seed, locale=locale) else: temp[column] = self._fake_column(column, func, inplace=False, seed=seed, locale=locale) if not inplace: if len(temp.columns) > 1: return temp elif len(temp.columns) == 1: return pd.Series(temp[temp.columns[0]]) else: return None def numeric_noise(self, columns, MIN=-10, MAX=10, seed=None, inplace=True): ''' Add uniform random noise Based on cape-privacy's NumericPerturbation function. Mask a numeric pandas Series/DataFrame by adding uniform random noise to each value. The amount of noise is drawn from the interval [min, max). Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. MIN : (int, float), default -10 The values generated will be greater then or equal to min. MAX : (int, float), default 10 The values generated will be less than max. seed : int, default None To initialize the random generator. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser: pandas Series or pandas DataFrame with uniform random noise added See also ---------- dfAnonymizer.numeric_binning : Bin values into discrete intervals dfAnonymizer.numeric_masking : Apply PCA masking to numeric values dfAnonymizer.numeric_rounding : Round values to the given number Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Applying numeric perturbation: >>> anonym.numeric_noise('age', inplace = False) 0 29 1 48 dtype: int64 ''' # If a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] dtype = self._dtype_checker(columns) noise = NumericPerturbation(dtype=dtype, min=MIN, max=MAX, seed=seed) ser = noise(self._df[columns].copy()).astype(dtype) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._numeric_perturbation else: return ser.astype(dtype) # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: dtype = self._dtype_checker(column) noise = NumericPerturbation(dtype=dtype, min=MIN, max=MAX, seed=seed) ser = noise(self._df[column].copy()).astype(dtype) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._numeric_perturbation # noqa: E501 else: temp[column] = ser if not inplace: return temp def datetime_noise(self, columns, frequency=("MONTH", "DAY"), MIN=(-10, -5, -5), MAX=(10, 5, 5), seed=None, inplace=True): ''' Add uniform random noise to a Pandas series of timestamps Based on cape-privacy's DatePerturbation function Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. frequency : Union[str, Tuple[str]], default ("MONTH", "DAY") One or more frequencies to perturbate MIN : Union[int, Tuple[int, ...]], default (-10, -5, -5) The values generated will be greater then or equal to min. MAX : Union[int, Tuple[int, ...]], default (10, 5, 5) The values generated will be less than max. seed : int, default None To initialize the random generator. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser: pandas Series or pandas DataFrame See also ---------- dfAnonymizer.datetime_fake : Replace values with synthetic dates Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Calling the method with specifying the frequency to perturbate: >>> anonym.datetime_noise('birthdate', frequency=('YEAR', 'MONTH', 'DAY'), inplace = False) 0 1916-03-16 1 1971-04-24 Name: birthdate, dtype: datetime64[ns] ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] noise = DatePerturbation(frequency=frequency, min=MIN, max=MAX, seed=seed) ser = noise(self._df[columns].copy()) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._datetime_perturbation # noqa: E501 else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: noise = DatePerturbation(frequency=frequency, min=MIN, max=MAX, seed=seed) ser = noise(self._df[column].copy()) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._datetime_perturbation # noqa: E501 else: temp[column] = ser if not inplace: return temp def numeric_rounding(self, columns, precision=None, inplace=True): ''' Round each value in the Pandas Series to the given number Based on cape-privacy's NumericRounding. Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. precision : int, default None The number of digits. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- pandas Series or pandas DataFrame if inplace = False, else None See also ---------- dfAnonymizer.numeric_binning : Bin values into discrete intervals dfAnonymizer.numeric_masking : Apply PCA masking dfAnonymizer.numeric_noise : Add uniform random noise Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Apply Numeric Rounding: >>> anonym.numeric_rounding(['age', 'salary'], inplace = False) age salary 0 30 60000.0 1 50 50000.0 ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] dtype = self._dtype_checker(columns) if precision is None: precision = len(str(int(self._df[columns].mean()))) - 1 rounding = NumericRounding(dtype=dtype, precision=-precision) ser = rounding(self._df[columns].copy()).astype(dtype) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._round else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: dtype = self._dtype_checker(column) precision = len(str(int(self._df[column].mean()))) - 1 rounding = NumericRounding(dtype=dtype, precision=-precision) ser = rounding(self._df[column].copy()) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._round else: temp[column] = ser.astype(dtype) if not inplace: return temp def numeric_masking(self, columns, inplace=True): ''' Apply PCA masking to a column/columns Based on sklearn's PCA function Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : pandas Series or pandas DataFrame See also ---------- dfAnonymizer.numeric_binning : Bin values into discrete intervals dfAnonymizer.numeric_rounding : Apply PCA masking dfAnonymizer.numeric_noise : Round values to the given number Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Apply PCA Masking: >>> num_cols = anonym.numeric_columns >>> anonym.numeric_masking(num_cols, inplace = False) age salary 0 -4954.900676 5.840671e-15 1 4954.900676 5.840671e-15 ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] pca = PCA(n_components=1) ser = pd.DataFrame(pca.fit_transform(self._df[[columns]]), columns=[columns]) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser[columns] self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._PCA else: return ser[columns] # if a list of columns is passed else: if not inplace: pca = PCA(n_components=len(columns)) return pd.DataFrame(pca.fit_transform(self._df[columns]), columns=columns) else: for column in columns: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._PCA pca = PCA(n_components=len(columns)) self._df[columns] = pca.fit_transform(self._df[columns]) def categorical_tokenization(self, columns, max_token_len=10, key=None, inplace=True): ''' Maps a string to a token (hexadecimal string) to obfuscate it. Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. max_token_len : int, default 10 Control the token length. key : str, default None String or Byte String. If not specified, key will be set to a random byte string. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : pandas Series or pandas DataFrame See also ---------- dfAnonymizer.categorical_fake : Replace values with synthetically generated ones by specifying which methods to apply dfAnonymizer.categorical_resampling : Resample values from the same distribution dfAnonymizer.categorical_email_masking : Apply partial masking to emails Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Passing only categorical columns: >>> anonym.categorical_columns ['name', 'web', 'email', 'ssn'] >>> anonym.categorical_tokenization(['name', 'web', 'email', 'ssn'], inplace = False) name web email ssn 0 a6488532f8 f8516a7ce9 a07981a4d6 9285bc9cb7 1 f7231e5026 44dfa9af8e 25ca1a128b a7a16a7c7d ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] tokenize = Tokenizer(max_token_len=max_token_len, key=key) ser = tokenize(self._df[columns]) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._tokenization else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: tokenize = Tokenizer(max_token_len=max_token_len, key=key) ser = tokenize(self._df[column]) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._tokenization else: temp[column] = ser if not inplace: return temp def _mask(self, s): ''' Mask a single email Parameters ---------- s : str string to mask. Returns ---------- masked : str See also ---------- dfAnonymizer.categorical_email_masking : Apply partial masking to email ''' lo = s.find('@') if lo > 0: masked = s[0] + '*****' + s[lo-1:] return masked else: raise Exception('Invalid Email') def categorical_email_masking(self, columns, inplace=True): ''' Apply Partial Masking to emails. Parameters ---------- columns: Union[str, List[str]] Column name or a list of column names. inplace: Optional[bool] = True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : pandas Series or pandas DataFrame See also ---------- dfAnonymizer.categorical_fake : Replace values with synthetically generated ones by specifying which methods to apply dfAnonymizer.categorical_resampling : Resample values from the same distribution dfAnonymizer.categorical_tokenization : Map a string to a token Notes ---------- Applicable only to column with email strings. Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Calling the method on email column: >>> anonym.categorical_email_masking('email', inplace=False) 0 <EMAIL> 1 <EMAIL> Name: email, dtype: object ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] ser = self._df[columns].apply(lambda x: self._mask(x)) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._email else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: ser = self._df[column].apply(lambda x: self._mask(x)) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._email else: temp[column] = ser if not inplace: return temp def datetime_fake(self, columns, pattern='%Y-%m-%d', end_datetime=None, seed=None, locale=['en_US'], inplace=True): ''' Replace Column's values with synthetic dates between January 1, 1970 and now. Based on faker `date()` method Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. pattern : str, default '%Y-%m-%d' end_datetime : Union[datetime.date, datetime.datetime, datetime.timedelta, str, int, None], default None locale : str or List[str], default ['en_US'] See https://faker.readthedocs.io/en/master/locales.html for all faker's locales. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : pandas Series or pandas DataFrame See also ---------- dfAnonymizer.datetime_noise : Add uniform random noise to the column Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Calling the method with specifying the datetime column >>> anonym.datetime_fake('birthdate', inplace = False) 0 2018-04-09 1 2005-05-28 Name: birthdate, dtype: datetime64[ns] ''' Faker.seed(seed) fake = Faker(locale=locale) # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] ser = self._df[columns].apply(lambda x: pd.to_datetime(fake.date( pattern=pattern, end_datetime=end_datetime))) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._synthetic_data else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: ser = self._df[column].apply( lambda x: pd.to_datetime(fake.date( pattern=pattern, end_datetime=end_datetime))) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._synthetic_data else: temp[column] = ser if not inplace: return temp def column_suppression(self, columns, inplace=True): ''' Redact a column (drop) Based on pandas `drop` method Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : None if inplace = True, else pandas Series or pandas DataFrame Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) >>> anonym.to_df() name age ... email ssn 0 Bruce 33 ... <EMAIL> 343554334 1 Tony 48 ... <EMAIL> 656564664 Dropping `ssn` column >>> anonym.column_suppression('ssn', inplace = False) name age ... web email # noqa: E501 0 Bruce 33 ... http://www.alandrosenburgcpapc.co.uk <EMAIL> 1 Tony 48 ... http://www.capgeminiamerica.co.uk <EMAIL> ''' # if single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df.drop(columns, axis=1, inplace=True) self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._drop else: return self._df2.drop(columns, axis=1, inplace=False) # if a list of columns is passed else: if inplace: for column in columns: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df.drop(column, axis=1, inplace=True) self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._drop else: return self._df2.drop(columns, axis=1, inplace=False) def numeric_binning(self, columns, bins=4, inplace=True): ''' Bin values into discrete intervals. Based on pandas `cut` method Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. bins : int, default 4 the number of equal-width bins in the range of `bins` inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : None if inplace = True, else pandas Series or pandas DataFrame See also ---------- dfAnonymizer.numeric_noise : Add uniform random noise dfAnonymizer.numeric_masking : Apply PCA masking to numeric values dfAnonymizer.numeric_rounding : Round values to the given number Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Call the method with specifying the number of bins: >>> anonym.numeric_binning('age', bins = 2, inplace = False) 0 (33.0, 40.0] 1 (40.0, 48.0] Name: age, dtype: category ''' # if a single column is passed if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] ser = pd.cut(self._df[columns], bins=bins, precision=0) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = ser self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._bin else: return ser # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: ser = pd.cut(self._df[column], bins=bins, precision=0) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = ser self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._bin else: temp[column] = ser if not inplace: return temp def categorical_resampling(self, columns, seed=None, inplace=True): ''' Sampling from the same distribution Parameters ---------- columns : Union[str, List[str]] Column name or a list of column names. inplace : bool, default True If True the changes will be applied to `dfAnonymizer` obejct, else output is returned. Returns ---------- ser : None if inplace = True, else pandas Series or pandas DataFrame See also: ---------- dfAnonymizer.categorical_fake : Replace values with synthetically generated ones by specifying which methods to apply dfAnonymizer.categorical_email_masking : Apply partial masking to email column dfAnonymizer.categorical_tokenization : Map a string to a token Notes ---------- This method should be used on categorical data with finite number of unique elements. Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) >>> anonym.categorical_resampling('name', inplace =False) 0 Bruce 1 Bruce dtype: object ''' # if a single column is passed np.random.seed(seed) if isinstance(columns, str) or (len(columns) == 1 and isinstance(columns, list)): if isinstance(columns, list): columns = columns[0] counts = self._df[columns].value_counts(normalize=True) if inplace: if columns in self.anonymized_columns: print(f'`{columns}` column already anonymized!') else: self._df[columns] = np.random.choice(counts.index, p=counts.values, size=len(self._df)) self.anonymized_columns.append(columns) self.unanonymized_columns.remove(columns) self._methods_applied[columns] = self._sample else: return pd.Series(np.random.choice(counts.index, p=counts.values, size=len(self._df))) # if a list of columns is passed else: temp = pd.DataFrame() for column in columns: counts = self._df[column].value_counts(normalize=True) if inplace: if column in self.anonymized_columns: print(f'`{column}` column already anonymized!') else: self._df[column] = np.random.choice(counts.index, p=counts.values, size=len(self._df)) self.anonymized_columns.append(column) self.unanonymized_columns.remove(column) self._methods_applied[column] = self._sample else: temp[column] = np.random.choice(counts.index, p=counts.values, size=len(self._df)) if not inplace: return temp def _info(self): ''' Print a summary of the a DataFrame. Which columns have been anonymized and which haven't. Returns ---------- None See also ---------- dfAnonymizer.info : Print a summy of the DataFrame Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) Method gets called when the instance of `dfAnonymizer` object is called >>> anonym +-------------------------------+ | Total number of columns: 7 | +===============================+ | Anonymized Column -> Method: | +-------------------------------+ | Unanonymized Columns: | | - name | | - age | | - birthdate | | - salary | | - web | | - email | | - ssn | +-------------------------------+ ''' t = Texttable(max_width=150) header = f'Total number of columns: {self._df.shape[1]}' row1 = 'Anonymized Column -> Method: ' for column in self.anonymized_columns: row1 += '\n- ' + column + ' -> ' + \ self._methods_applied.get(column) row2 = 'Unanonymized Columns: \n' row2 += '\n'.join([f'- {i}' for i in self.unanonymized_columns]) t.add_rows([[header], [row1], [row2]]) return t def info(self): ''' Print a summary of the a DataFrame. Which columns have been anonymized using which methods. `status = 1 ` means the column have been anonymized and `status = 0 ` means the contrary. Returns ---------- None Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) >>> anonym.info() +-----------+--------+--------+ | Column | Status | Method | +===========+========+========+ | name | 0 | | +-----------+--------+--------+ | age | 0 | | +-----------+--------+--------+ | birthdate | 0 | | +-----------+--------+--------+ | salary | 0 | | +-----------+--------+--------+ | web | 0 | | +-----------+--------+--------+ | email | 0 | | +-----------+--------+--------+ | ssn | 0 | | +-----------+--------+--------+ ''' t = Texttable(150) t.header(['Column', 'Status', 'Type', 'Method']) for i in range(len(self.columns)): column = self.columns[i] if column in self.anonymized_columns: status = 1 method = self._methods_applied[column] else: status = 0 method = '' if column in self.numeric_columns: dtype = 'numeric' elif column in self.categorical_columns: dtype = 'categorical' elif column in self.datetime_columns: dtype = 'datetime' else: dtype = str(self._df[column].dtype) row = [column, status, dtype, method] t.add_row(row) print(t.draw()) def to_df(self): ''' Convert dfAnonymizer object back to pandas DataFrame Returns ---------- DataFrame object Examples ---------- >>> from anonympy.pandas import dfAnonymizer >>> from anonympy.pandas.utils_pandas import load_dataset >>> df = load_dataset() >>> anonym = dfAnonymizer(df) >>> anonym.to_df() name age ... email ssn 0 Bruce 33 ... <EMAIL> 343554334 1 Tony 48 ... <EMAIL> 656564664 ''' return self._df.copy()
[ "pandas.DataFrame", "cape_privacy.pandas.transformations.DatePerturbation", "numpy.random.seed", "faker.Faker", "faker.Faker.seed", "anonympy.pandas.utils_pandas.get_datetime_columns", "anonympy.pandas.utils_pandas.get_categorical_columns", "anonympy.pandas.utils_pandas.get_numeric_columns", "pandas.cut", "cape_privacy.pandas.transformations.NumericPerturbation", "sklearn.decomposition.PCA", "pandas.Series", "cape_privacy.pandas.transformations.Tokenizer", "texttable.Texttable", "cape_privacy.pandas.transformations.NumericRounding" ]
[((2237, 2273), 'anonympy.pandas.utils_pandas.get_numeric_columns', '_utils.get_numeric_columns', (['self._df'], {}), '(self._df)\n', (2263, 2273), True, 'from anonympy.pandas import utils_pandas as _utils\n'), ((2309, 2349), 'anonympy.pandas.utils_pandas.get_categorical_columns', '_utils.get_categorical_columns', (['self._df'], {}), '(self._df)\n', (2339, 2349), True, 'from anonympy.pandas import utils_pandas as _utils\n'), ((2382, 2419), 'anonympy.pandas.utils_pandas.get_datetime_columns', '_utils.get_datetime_columns', (['self._df'], {}), '(self._df)\n', (2409, 2419), True, 'from anonympy.pandas import utils_pandas as _utils\n'), ((13962, 13978), 'faker.Faker.seed', 'Faker.seed', (['seed'], {}), '(seed)\n', (13972, 13978), False, 'from faker import Faker\n'), ((13994, 14014), 'faker.Faker', 'Faker', ([], {'locale': 'locale'}), '(locale=locale)\n', (13999, 14014), False, 'from faker import Faker\n'), ((22107, 22121), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (22119, 22121), True, 'import pandas as pd\n'), ((45869, 45885), 'faker.Faker.seed', 'Faker.seed', (['seed'], {}), '(seed)\n', (45879, 45885), False, 'from faker import Faker\n'), ((45901, 45921), 'faker.Faker', 'Faker', ([], {'locale': 'locale'}), '(locale=locale)\n', (45906, 45921), False, 'from faker import Faker\n'), ((54921, 54941), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (54935, 54941), True, 'import numpy as np\n'), ((58339, 58363), 'texttable.Texttable', 'Texttable', ([], {'max_width': '(150)'}), '(max_width=150)\n', (58348, 58363), False, 'from texttable import Texttable\n'), ((60062, 60076), 'texttable.Texttable', 'Texttable', (['(150)'], {}), '(150)\n', (60071, 60076), False, 'from texttable import Texttable\n'), ((25382, 25443), 'cape_privacy.pandas.transformations.NumericPerturbation', 'NumericPerturbation', ([], {'dtype': 'dtype', 'min': 'MIN', 'max': 'MAX', 'seed': 'seed'}), '(dtype=dtype, min=MIN, max=MAX, seed=seed)\n', (25401, 25443), False, 'from cape_privacy.pandas.transformations import NumericPerturbation\n'), ((26178, 26192), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (26190, 26192), True, 'import pandas as pd\n'), ((29307, 29373), 'cape_privacy.pandas.transformations.DatePerturbation', 'DatePerturbation', ([], {'frequency': 'frequency', 'min': 'MIN', 'max': 'MAX', 'seed': 'seed'}), '(frequency=frequency, min=MIN, max=MAX, seed=seed)\n', (29323, 29373), False, 'from cape_privacy.pandas.transformations import DatePerturbation\n'), ((30086, 30100), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (30098, 30100), True, 'import pandas as pd\n'), ((32784, 32834), 'cape_privacy.pandas.transformations.NumericRounding', 'NumericRounding', ([], {'dtype': 'dtype', 'precision': '(-precision)'}), '(dtype=dtype, precision=-precision)\n', (32799, 32834), False, 'from cape_privacy.pandas.transformations import NumericRounding\n'), ((33423, 33437), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (33435, 33437), True, 'import pandas as pd\n'), ((35844, 35863), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (35847, 35863), False, 'from sklearn.decomposition import PCA\n'), ((39436, 39483), 'cape_privacy.pandas.transformations.Tokenizer', 'Tokenizer', ([], {'max_token_len': 'max_token_len', 'key': 'key'}), '(max_token_len=max_token_len, key=key)\n', (39445, 39483), False, 'from cape_privacy.pandas.transformations import Tokenizer\n'), ((40058, 40072), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (40070, 40072), True, 'import pandas as pd\n'), ((43539, 43553), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (43551, 43553), True, 'import pandas as pd\n'), ((46912, 46926), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (46924, 46926), True, 'import pandas as pd\n'), ((52186, 52235), 'pandas.cut', 'pd.cut', (['self._df[columns]'], {'bins': 'bins', 'precision': '(0)'}), '(self._df[columns], bins=bins, precision=0)\n', (52192, 52235), True, 'import pandas as pd\n'), ((52756, 52770), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (52768, 52770), True, 'import pandas as pd\n'), ((56095, 56109), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (56107, 56109), True, 'import pandas as pd\n'), ((9956, 9970), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (9968, 9970), True, 'import pandas as pd\n'), ((18114, 18128), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (18126, 18128), True, 'import pandas as pd\n'), ((26304, 26365), 'cape_privacy.pandas.transformations.NumericPerturbation', 'NumericPerturbation', ([], {'dtype': 'dtype', 'min': 'MIN', 'max': 'MAX', 'seed': 'seed'}), '(dtype=dtype, min=MIN, max=MAX, seed=seed)\n', (26323, 26365), False, 'from cape_privacy.pandas.transformations import NumericPerturbation\n'), ((30161, 30227), 'cape_privacy.pandas.transformations.DatePerturbation', 'DatePerturbation', ([], {'frequency': 'frequency', 'min': 'MIN', 'max': 'MAX', 'seed': 'seed'}), '(frequency=frequency, min=MIN, max=MAX, seed=seed)\n', (30177, 30227), False, 'from cape_privacy.pandas.transformations import DatePerturbation\n'), ((33624, 33674), 'cape_privacy.pandas.transformations.NumericRounding', 'NumericRounding', ([], {'dtype': 'dtype', 'precision': '(-precision)'}), '(dtype=dtype, precision=-precision)\n', (33639, 33674), False, 'from cape_privacy.pandas.transformations import NumericRounding\n'), ((40136, 40183), 'cape_privacy.pandas.transformations.Tokenizer', 'Tokenizer', ([], {'max_token_len': 'max_token_len', 'key': 'key'}), '(max_token_len=max_token_len, key=key)\n', (40145, 40183), False, 'from cape_privacy.pandas.transformations import Tokenizer\n'), ((52829, 52877), 'pandas.cut', 'pd.cut', (['self._df[column]'], {'bins': 'bins', 'precision': '(0)'}), '(self._df[column], bins=bins, precision=0)\n', (52835, 52877), True, 'import pandas as pd\n'), ((18980, 18994), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (18992, 18994), True, 'import pandas as pd\n'), ((23190, 23222), 'pandas.Series', 'pd.Series', (['temp[temp.columns[0]]'], {}), '(temp[temp.columns[0]])\n', (23199, 23222), True, 'import pandas as pd\n'), ((7305, 7323), 'pandas.DataFrame', 'pd.DataFrame', (['temp'], {}), '(temp)\n', (7317, 7323), True, 'import pandas as pd\n'), ((7410, 7424), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7422, 7424), True, 'import pandas as pd\n'), ((12688, 12720), 'pandas.Series', 'pd.Series', (['temp[temp.columns[0]]'], {}), '(temp[temp.columns[0]])\n', (12697, 12720), True, 'import pandas as pd\n')]
import csv import random import re import sys import tqdm import numpy as np import torch from torch.utils.data import TensorDataset from transformers.tokenization_bert import BertTokenizer def load_glove_txt(file_path="glove.840B.300d.txt"): results = {} num_file = sum([1 for i in open(file_path, "r", encoding='utf8')]) with open(file_path, 'r', encoding='utf8') as infile: for line in tqdm.tqdm(infile, total=num_file): data = line.strip().split(' ') word = data[0] results[word] = 1 return results def clean_str(string): # string = re.sub("[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub("\'s", " \'s", string) string = re.sub("\'ve", " \'ve", string) string = re.sub("n\'t", " n\'t", string) string = re.sub("\'re", " \'re", string) string = re.sub("\'d", " \'d", string) string = re.sub("\'ll", " \'ll", string) string = re.sub('"', " ", string) string = re.sub("'", " ", string) string = re.sub("`", " ", string) string = re.sub(r"\\", " ", string) string = re.sub(r"[\[\]<>/&#\^$%{}‘\.…*]", " ", string) # string = re.sub(",", " , ", string) # string = re.sub("!", " ! ", string) # string = re.sub("\(", " \( ", string) # string = re.sub("\)", " \) ", string) # string = re.sub("\?", " \? ", string) # string = re.sub("\\\?", "?", string) # string = re.sub("\s{2,}", " ", string) # string = re.sub("-", ' ', string) return string.strip().split() def shuffle_data(x, y): idx = list(range(len(x))) np.random.shuffle(idx) new_x = [] new_y = [] for id_ in idx: new_x.append(x[id_]) new_y.append(y[id_]) return new_x, new_y def read_TREC(cv=None, scale_rate=1): data = {} def read(mode): x, y = [], [] with open("data/TREC/" + mode + ".tsv", "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) for line in reader: x.append(clean_str(line[0])) y.append(line[1]) if mode == "train": label2data = {} for x_, y_ in zip(x, y): if y_ not in label2data: label2data[y_] = [x_] else: label2data[y_].append(x_) new_train_x = [] new_train_y = [] for y_ in label2data.keys(): train_idx = max(int(len(label2data[y_]) * scale_rate), 1) for x_ in label2data[y_][:train_idx]: new_train_x.append(x_) new_train_y.append(y_) x, y = shuffle_data(new_train_x, new_train_y) data["train_x"], data["train_y"] = x, y else: data["test_x"], data["test_y"] = x, y read("train") read("test") return data def read_SST1(cv=None, scale_rate=1): data = {} def read(mode): x, y = [], [] with open("data/SST1/" + mode + ".tsv", "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) for line in reader: y.append(line[1]) x.append(clean_str(line[0])) # x.append(line[0]) if mode == "train": with open("data/SST1/stsa.fine.phrases.train", "r", encoding="utf-8", errors='ignore') as f: for line in f: y.append(line[0]) x.append(clean_str(line[2:])) label2data = {} for x_, y_ in zip(x, y): if y_ not in label2data: label2data[y_] = [x_] else: label2data[y_].append(x_) new_train_x = [] new_train_y = [] for y_ in label2data.keys(): train_idx = max(int(len(label2data[y_]) * scale_rate), 1) for x_ in label2data[y_][:train_idx]: new_train_x.append(x_) new_train_y.append(y_) x, y = shuffle_data(new_train_x, new_train_y) data["train_x"], data["train_y"] = x, y else: data["test_x"], data["test_y"] = x, y read("train") read("test") return data def read_SST2(cv=None, scale_rate=1): data = {} def read(mode): x, y = [], [] with open("data/SST2/" + mode + ".tsv", "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) for line in reader: y.append(line[1]) x.append(clean_str(line[0])) # x.append(line[0]) if mode == "train": with open("data/SST2/stsa.binary.phrases.train", "r", encoding="utf-8", errors='ignore') as f: for line in f: y.append(line[0]) x.append(clean_str(line[2:])) label2data = {} for x_, y_ in zip(x, y): if y_ not in label2data: label2data[y_] = [x_] else: label2data[y_].append(x_) new_train_x = [] new_train_y = [] for y_ in label2data.keys(): train_idx = max(int(len(label2data[y_]) * scale_rate), 1) for x_ in label2data[y_][:train_idx]: new_train_x.append(x_) new_train_y.append(y_) x, y = shuffle_data(new_train_x, new_train_y) data["train_x"], data["train_y"] = x, y else: data["test_x"], data["test_y"] = x, y read("train") read("test") return data def read_SUBJ(cv=0, scale_rate=1): data = {} x, y = [], [] with open("data/SUBJ/subj.all", "r", encoding="utf-8", errors='ignore') as f: # reader = csv.reader(f, delimiter="\t", quotechar=None) for line in f: x.append(clean_str(line[2:])) # x.append(line[0]) y.append(line[0]) idx = list(range(len(x))) np.random.shuffle(idx) test_index = cv # 0-9 train_x = [] train_y = [] test_x = [] test_y = [] for i, id_ in enumerate(idx): index = i % 10 if index == test_index: test_x.append(x[id_]) test_y.append(y[id_]) else: train_x.append(x[id_]) train_y.append(y[id_]) label2data = {} for x_, y_ in zip(train_x, train_y): if y_ not in label2data: label2data[y_] = [x_] else: label2data[y_].append(x_) new_train_x = [] new_train_y = [] for y_ in label2data.keys(): train_idx = max(int(len(label2data[y_]) * scale_rate), 1) for x_ in label2data[y_][:train_idx]: new_train_x.append(x_) new_train_y.append(y_) train_x, train_y = shuffle_data(new_train_x, new_train_y) data["train_x"], data["train_y"] = train_x, train_y data["test_x"], data["test_y"] = test_x, test_y return data def read_MR(cv=0, scale_rate=1): data = {} x, y = [], [] with open("data/MR/rt-polarity.pos", "r", encoding="utf-8") as f: for line in f: if line[-1] == "\n": line = line[:-1] x.append(clean_str(line)) y.append(1) with open("data/MR/rt-polarity.neg", "r", encoding="utf-8") as f: for line in f: if line[-1] == "\n": line = line[:-1] x.append(clean_str(line)) y.append(0) idx = list(range(len(x))) np.random.shuffle(idx) test_index = cv # 0-9 # dev_index = (cv+1)%10 train_x = [] train_y = [] test_x = [] test_y = [] for i, id_ in enumerate(idx): index = i % 10 if index == test_index: test_x.append(x[id_]) test_y.append(y[id_]) else: train_x.append(x[id_]) train_y.append(y[id_]) label2data = {} for x_, y_ in zip(train_x, train_y): if y_ not in label2data: label2data[y_] = [x_] else: label2data[y_].append(x_) new_train_x = [] new_train_y = [] for y_ in label2data.keys(): train_idx = max(int(len(label2data[y_]) * scale_rate), 1) for x_ in label2data[y_][:train_idx]: new_train_x.append(x_) new_train_y.append(y_) train_x, train_y = shuffle_data(new_train_x, new_train_y) data["train_x"], data["train_y"] = train_x, train_y data["test_x"], data["test_y"] = test_x, test_y return data def refind_sent(sent, g_dict): new_sent = [] for word in sent: if word in g_dict: new_sent.append(word) elif '-' in word: for wd in word.split('-'): new_sent.append(wd) elif '\/' in word: for wd in word.split('\/'): new_sent.append(wd) elif word.lower() in g_dict: new_sent.append(word.lower()) else: continue return new_sent def preprocess_data(data, VOCAB_SIZE, MAX_SENT_LEN, dtype='train'): x = [] for sent in data[dtype + "_x"]: sent_tmp = [data['word_to_idx']["<BOS>"]] for word in sent: if len(sent_tmp) < MAX_SENT_LEN - 1: sent_tmp.append(data['word_to_idx'][word]) sent_tmp.append(data['word_to_idx']["<EOS>"]) if len(sent_tmp) < MAX_SENT_LEN: sent_tmp += [VOCAB_SIZE + 1] * (MAX_SENT_LEN - len(sent_tmp)) x.append(sent_tmp) y = [data["classes"].index(c) for c in data[dtype + "_y"]] x = torch.LongTensor(x) y = torch.LongTensor(y) return x, y def load_dataset(options): mod = sys.modules[__name__] if options.classifier != 'BERT': data = getattr(mod, f"read_{options.dataset}")(cv=options.cv, scale_rate=options.scale_rate) g_dict = load_glove_txt() for i in range(len(data['train_x'])): data['train_x'][i] = refind_sent(data['train_x'][i], g_dict) for i in range(len(data['test_x'])): data['test_x'][i] = refind_sent(data['test_x'][i], g_dict) data["vocab"] = sorted( list(set([w for sent in data["train_x"] + data["test_x"] for w in sent] + ["<BOS>", "<EOS>"]))) data["classes"] = sorted(list(set(data["train_y"]))) data["word_to_idx"] = {w: i for i, w in enumerate(data["vocab"])} data["idx_to_word"] = {i: w for i, w in enumerate(data["vocab"])} options.VOCAB_SIZE = len(data["vocab"]) if not hasattr(options, 'MAX_SENT_LEN'): options.MAX_SENT_LEN = max([len(sent) for sent in data["train_x"] + data["test_x"]]) options.CLASS_SIZE = len(data["classes"]) train_x, train_y = preprocess_data(data, options.VOCAB_SIZE, options.MAX_SENT_LEN, 'train') train_set = TensorDataset(train_x, train_y) test_x, test_y = preprocess_data(data, options.VOCAB_SIZE, options.MAX_SENT_LEN, 'test') test_set = TensorDataset(test_x, test_y) return train_set, test_set, data else: data = {} dset = getattr(mod, f"{options.dataset}_Processor")(cv=options.cv) train_examples = dset.train_examples test_examples = dset.test_examples data['tokenizer'] = BertTokenizer(vocab_file='./bert-base-uncased/vocab.txt' , do_basic_tokenize=True) data["classes"] = sorted(list(set([z.label for z in train_examples]))) options.CLASS_SIZE = len(data["classes"]) options.VOCAB_SIZE = len(data['tokenizer'].vocab) if not hasattr(options, 'MAX_SENT_LEN'): setattr(options, 'MAX_SENT_LEN', max([len(example.text_a.split(' ')) for example in train_examples + test_examples]) + 2) # print("max",max([len(example.text_a.split(' ')) for example in train_examples + test_examples])) train_set = _make_data_loader(train_examples, data["classes"], data['tokenizer'], options.MAX_SENT_LEN) test_set = _make_data_loader(test_examples, data["classes"], data['tokenizer'], options.MAX_SENT_LEN) return train_set, test_set, data def _make_data_loader(examples, label_list, tokenizer, MAX_SEQ_LENGTH): all_features = _convert_examples_to_features( examples=examples, label_list=label_list, max_seq_length=MAX_SEQ_LENGTH, tokenizer=tokenizer, output_mode='classification') all_input_ids = torch.tensor( [f.input_ids for f in all_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in all_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in all_features], dtype=torch.long) all_label_ids = torch.tensor( [f.label_id for f in all_features], dtype=torch.long) all_ids = torch.arange(len(examples)) dataset = TensorDataset( all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_ids) return dataset def _convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): """Loads a data file into a list of `InputBatch`s.""" label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding # print(len(input_ids),len(input_mask),len(segment_ids),max_seq_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal # percent of tokens from each, since if one sequence is very short then each # token that's truncated likely contains more information than a longer # sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def csv_reader(filename): print('read file:', filename) f = open(filename, 'r', encoding='utf8') reader = csv.reader(f, delimiter="\t", quotechar=None) return reader class InputExample: """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id def __getitem__(self, item): return [self.input_ids, self.input_mask, self.segment_ids, self.label_id][item] class DatasetProcessor: def get_train_examples(self): raise NotImplementedError def get_dev_examples(self): raise NotImplementedError def get_test_examples(self): raise NotImplementedError def get_labels(self): raise NotImplementedError class SST1_Processor(DatasetProcessor): """Processor for the SST-5 data set.""" def __init__(self, cv=0): train_file = "./data/SST1/train.tsv" test_file = "./data/SST1/test.tsv" print("processing train_file{},test_file".format(train_file, test_file)) self._train_set, self._test_set = csv_reader(train_file), csv_reader(test_file) self.train_examples, self.test_examples = self.get_train_examples(), self.get_test_examples() x, y = [], [] with open("data/SST1/stsa.fine.phrases.train", "r", encoding="utf-8", errors='ignore') as f: for line in f: y.append(line[0]) x.append(line[2:]) self.train_examples_extra = self._create_examples(zip(x, y), "train") self.train_examples = self.train_examples + self.train_examples_extra def get_train_examples(self): """See base class.""" examples = self._create_examples(self._train_set, "train") print('getting train examples,len = ', len(examples)) return examples def get_test_examples(self): """See base class.""" examples = self._create_examples(self._test_set, "test") print('getting test examples,len = ', len(examples)) return examples def get_labels(self): """See base class.""" label_set = set() for example in self.train_examples: label_set.add(example.label) return sorted(list(label_set)) def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, data) in enumerate(dataset): guid = "%s-%s" % (set_type, i) examples.append(InputExample( guid=guid, text_a=data[0], label=data[1] )) # return examples return examples class SST2_Processor(DatasetProcessor): """Processor for the SST-5 data set.""" def __init__(self, cv=0): train_file = "./data/SST2/train.tsv" test_file = "./data/SST2/test.tsv" x, y = [], [] with open("data/SST2/stsa.binary.phrases.train", "r", encoding="utf-8", errors='ignore') as f: for line in f: y.append(line[0]) x.append(line[2:]) self.train_examples_extra = self._create_examples(zip(x, y), "train") print("processing train_file{},test_file".format(train_file, test_file)) self._train_set, self._test_set = csv_reader(train_file), csv_reader(test_file) self.train_examples, self.test_examples = self.get_train_examples(), self.get_test_examples() self.train_examples = self.train_examples + self.train_examples_extra def get_train_examples(self): """See base class.""" examples = self._create_examples(self._train_set, "train") print('getting train examples,len = ', len(examples)) return examples def get_test_examples(self): """See base class.""" examples = self._create_examples(self._test_set, "test") print('getting test examples,len = ', len(examples)) return examples def get_labels(self): """See base class.""" label_set = set() for example in self.train_examples: label_set.add(example.label) return sorted(list(label_set)) def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, data) in enumerate(dataset): guid = "%s-%s" % (set_type, i) examples.append(InputExample( guid=guid, text_a=data[0], label=data[1] )) # return examples return examples class TREC_Processor(DatasetProcessor): """Processor for the SST-5 data set.""" def __init__(self, cv=0): train_file = "./data/TREC/train.tsv" test_file = "./data/TREC/test.tsv" print("processing train_file{},test_file,{}".format(train_file, test_file)) self._train_set, self._test_set = csv_reader(train_file), csv_reader(test_file) self.train_examples, self.test_examples = self.get_train_examples(), self.get_test_examples() def get_train_examples(self): """See base class.""" examples = self._create_examples(self._train_set, "train") print('getting train examples,len = ', len(examples)) return examples def get_test_examples(self): """See base class.""" examples = self._create_examples(self._test_set, "test") print('getting test examples,len = ', len(examples)) return examples def get_labels(self): """See base class.""" label_set = set() for example in self.train_examples: label_set.add(example.label) return sorted(list(label_set)) def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, data) in enumerate(dataset): guid = "%s-%s" % (set_type, i) examples.append(InputExample( guid=guid, text_a=data[0], label=data[1] )) # return examples return examples class SUBJ_Processor(DatasetProcessor): """Processor for the SST-5 data set.""" def __init__(self, cv): all_file = "./data/SUBJ/data_all.tsv" print("processing all_file{}".format(all_file)) self._all_set = csv_reader(all_file) self.train_examples, self.test_examples = self.get_train_examples(cv=cv) def _read_examples(self): examples = self._create_examples(self._all_set, "all") return examples def get_train_examples(self, cv=0): """See base class.""" examples = self._read_examples() idx = list(range(len(examples))) np.random.shuffle(idx) test_index = cv test_example = [] train_example = [] for i, id_ in enumerate(idx): index = i % 10 if index == test_index: test_example.append(examples[id_]) else: train_example.append(examples[id_]) return train_example, test_example def get_labels(self): """See base class.""" label_set = set() for example in self.train_examples: label_set.add(example.label) return sorted(list(label_set)) def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, data) in enumerate(dataset): guid = "%s-%s" % (set_type, i) examples.append(InputExample( guid=guid, text_a=data[0], label=data[1] )) return examples # return shuffle_data(examples) class MR_Processor(DatasetProcessor): """Processor for the SST-5 data set.""" def __init__(self, cv=0): pos_file = "./data/MR/rt-polarity.pos" neg_file = "./data/MR/rt-polarity.neg" print("processing pos_file:{},neg_file:{}".format(pos_file, neg_file)) self._pos_set, self._neg_set = csv_reader(pos_file), csv_reader(neg_file) self.train_examples, self.test_examples = self.get_train_examples(cv=cv) def _read_examples(self): pos_examples = self._create_examples(self._pos_set, "pos") neg_examples = self._create_examples(self._neg_set, "neg") examples = [] for ex in pos_examples: examples.append(InputExample( guid=ex.guid, text_a=ex.text_a, label=1 )) for ex in neg_examples: examples.append(InputExample( guid=ex.guid, text_a=ex.text_a, label=0 )) return examples def get_train_examples(self, cv=0): """See base class.""" examples = self._read_examples() idx = list(range(len(examples))) np.random.shuffle(idx) test_index = cv test_example = [] train_example = [] for i, id_ in enumerate(idx): index = i % 10 if index == test_index: test_example.append(examples[id_]) else: train_example.append(examples[id_]) return train_example, test_example def get_labels(self): """See base class.""" label_set = set() for example in self.train_examples: label_set.add(example.label) return sorted(list(label_set)) def _create_examples(self, dataset, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, data) in enumerate(dataset): guid = "%s-%s" % (set_type, i) examples.append(InputExample( guid=guid, text_a=data[0], )) return examples if __name__ == "__main__": processor = TREC_Processor(cv=2) print(processor.get_labels()) train = processor.train_examples for x in train: print(x.text_a, x.label) break # class OPT: # def __init__(self): # self.dataset="SUBJ" # self.cv = "0" # self.scale_rate=1 # self.MAX_SENT_LEN=-1 # opt = OPT() # dset = getattr(sys.modules[__name__],'load_dataset')(opt) # for x in dset[0]: # print(x) # break # from torch.utils.data import DataLoader # train_loader = DataLoader(dset[0], batch_size=50, shuffle=True)
[ "tqdm.tqdm", "transformers.tokenization_bert.BertTokenizer", "numpy.random.shuffle", "csv.reader", "torch.LongTensor", "torch.utils.data.TensorDataset", "re.sub", "torch.tensor" ]
[((663, 690), 're.sub', 're.sub', (['"""\'s"""', '""" \'s"""', 'string'], {}), '("\'s", " \'s", string)\n', (669, 690), False, 'import re\n'), ((706, 735), 're.sub', 're.sub', (['"""\'ve"""', '""" \'ve"""', 'string'], {}), '("\'ve", " \'ve", string)\n', (712, 735), False, 'import re\n'), ((751, 780), 're.sub', 're.sub', (['"""n\'t"""', '""" n\'t"""', 'string'], {}), '("n\'t", " n\'t", string)\n', (757, 780), False, 'import re\n'), ((796, 825), 're.sub', 're.sub', (['"""\'re"""', '""" \'re"""', 'string'], {}), '("\'re", " \'re", string)\n', (802, 825), False, 'import re\n'), ((841, 868), 're.sub', 're.sub', (['"""\'d"""', '""" \'d"""', 'string'], {}), '("\'d", " \'d", string)\n', (847, 868), False, 'import re\n'), ((884, 913), 're.sub', 're.sub', (['"""\'ll"""', '""" \'ll"""', 'string'], {}), '("\'ll", " \'ll", string)\n', (890, 913), False, 'import re\n'), ((929, 953), 're.sub', 're.sub', (['"""\\""""', '""" """', 'string'], {}), '(\'"\', \' \', string)\n', (935, 953), False, 'import re\n'), ((967, 991), 're.sub', 're.sub', (['"""\'"""', '""" """', 'string'], {}), '("\'", \' \', string)\n', (973, 991), False, 'import re\n'), ((1005, 1029), 're.sub', 're.sub', (['"""`"""', '""" """', 'string'], {}), "('`', ' ', string)\n", (1011, 1029), False, 'import re\n'), ((1043, 1070), 're.sub', 're.sub', (['"""\\\\\\\\"""', '""" """', 'string'], {}), "('\\\\\\\\', ' ', string)\n", (1049, 1070), False, 'import re\n'), ((1083, 1132), 're.sub', 're.sub', (['"""[\\\\[\\\\]<>/&#\\\\^$%{}‘\\\\.…*]"""', '""" """', 'string'], {}), "('[\\\\[\\\\]<>/&#\\\\^$%{}‘\\\\.…*]', ' ', string)\n", (1089, 1132), False, 'import re\n'), ((1568, 1590), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (1585, 1590), True, 'import numpy as np\n'), ((6033, 6055), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (6050, 6055), True, 'import numpy as np\n'), ((7559, 7581), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (7576, 7581), True, 'import numpy as np\n'), ((9609, 9628), 'torch.LongTensor', 'torch.LongTensor', (['x'], {}), '(x)\n', (9625, 9628), False, 'import torch\n'), ((9637, 9656), 'torch.LongTensor', 'torch.LongTensor', (['y'], {}), '(y)\n', (9653, 9656), False, 'import torch\n'), ((12490, 12557), 'torch.tensor', 'torch.tensor', (['[f.input_ids for f in all_features]'], {'dtype': 'torch.long'}), '([f.input_ids for f in all_features], dtype=torch.long)\n', (12502, 12557), False, 'import torch\n'), ((12588, 12656), 'torch.tensor', 'torch.tensor', (['[f.input_mask for f in all_features]'], {'dtype': 'torch.long'}), '([f.input_mask for f in all_features], dtype=torch.long)\n', (12600, 12656), False, 'import torch\n'), ((12688, 12757), 'torch.tensor', 'torch.tensor', (['[f.segment_ids for f in all_features]'], {'dtype': 'torch.long'}), '([f.segment_ids for f in all_features], dtype=torch.long)\n', (12700, 12757), False, 'import torch\n'), ((12787, 12853), 'torch.tensor', 'torch.tensor', (['[f.label_id for f in all_features]'], {'dtype': 'torch.long'}), '([f.label_id for f in all_features], dtype=torch.long)\n', (12799, 12853), False, 'import torch\n'), ((12920, 13009), 'torch.utils.data.TensorDataset', 'TensorDataset', (['all_input_ids', 'all_input_mask', 'all_segment_ids', 'all_label_ids', 'all_ids'], {}), '(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,\n all_ids)\n', (12933, 13009), False, 'from torch.utils.data import TensorDataset\n'), ((16092, 16137), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'None'}), "(f, delimiter='\\t', quotechar=None)\n", (16102, 16137), False, 'import csv\n'), ((411, 444), 'tqdm.tqdm', 'tqdm.tqdm', (['infile'], {'total': 'num_file'}), '(infile, total=num_file)\n', (420, 444), False, 'import tqdm\n'), ((10854, 10885), 'torch.utils.data.TensorDataset', 'TensorDataset', (['train_x', 'train_y'], {}), '(train_x, train_y)\n', (10867, 10885), False, 'from torch.utils.data import TensorDataset\n'), ((11002, 11031), 'torch.utils.data.TensorDataset', 'TensorDataset', (['test_x', 'test_y'], {}), '(test_x, test_y)\n', (11015, 11031), False, 'from torch.utils.data import TensorDataset\n'), ((11292, 11378), 'transformers.tokenization_bert.BertTokenizer', 'BertTokenizer', ([], {'vocab_file': '"""./bert-base-uncased/vocab.txt"""', 'do_basic_tokenize': '(True)'}), "(vocab_file='./bert-base-uncased/vocab.txt', do_basic_tokenize\n =True)\n", (11305, 11378), False, 'from transformers.tokenization_bert import BertTokenizer\n'), ((23130, 23152), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (23147, 23152), True, 'import numpy as np\n'), ((25313, 25335), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (25330, 25335), True, 'import numpy as np\n'), ((1918, 1963), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'None'}), "(f, delimiter='\\t', quotechar=None)\n", (1928, 1963), False, 'import csv\n'), ((3057, 3102), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'None'}), "(f, delimiter='\\t', quotechar=None)\n", (3067, 3102), False, 'import csv\n'), ((4453, 4498), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'None'}), "(f, delimiter='\\t', quotechar=None)\n", (4463, 4498), False, 'import csv\n')]
import numpy as np import torch import pytorch_lightning as pl from torch.utils.data import DataLoader from implem.utils import device class SimpleDataset(torch.utils.data.Dataset): def __init__(self, data, offset=1, start=None, end=None): super(SimpleDataset, self).__init__() assert len(data.shape) >= 2 #[T,*D], where D can be [C,W,H] etc. self.T = len(data) self.data = data self.offset = offset self.start = 0 if start is None else start self.end = self.T-np.asarray(self.offset).max() if end is None else end assert self.end > self.start self.idx = torch.arange(self.start, self.end, requires_grad=False, device='cpu') def __getitem__(self, index): """ Generate one batch of data """ x = self.data[self.idx[index]].reshape(*self.data.shape[1:]) y = self.data[self.idx[index]+self.offset].reshape(len(self.offset), *self.data.shape[1:]) return x,y def __len__(self): return len(self.idx) class MultiTrialDataset(torch.utils.data.Dataset): def __init__(self, data, offset=1, start=None, end=None): super(MultiTrialDataset, self).__init__() assert len(data.shape) >= 3 #[N,T,*D], where D can be [C,W,H] etc. self.N, self.T = data.shape[:2] self.data = data.reshape(-1, *data.shape[2:]) #[NT,*D] self.offset = offset self.start = 0 if start is None else start self.end = self.T-np.asarray(self.offset).max() if end is None else end assert self.end > self.start idx = torch.arange(self.start, self.end, requires_grad=False, device='cpu') idx = [idx for j in range(self.N)] self.idx = torch.cat([j*self.T + idx[j] for j in range(len(idx))]) def __getitem__(self, index): """ Generate one batch of data """ x = self.data[self.idx[index]].reshape(*self.data.shape[1:]) y = self.data[self.idx[index]+self.offset].reshape(*self.data.shape[1:]) return x,y def __len__(self): return len(self.idx) class MultiStepMultiTrialDataset(MultiTrialDataset): def __init__(self, data, offset=1, start=None, end=None): super(MultiStepMultiTrialDataset, self).__init__(data=data, offset=offset, start=start, end=end) self.offset = torch.as_tensor(np.asarray(offset, dtype=np.int).reshape(1,-1), device='cpu') def __getitem__(self, index): """ Generate one batch of data """ io = (self.idx[index].reshape(-1,1) + self.offset.reshape(1,-1)).flatten() x = self.data[self.idx[index]].reshape(*self.data.shape[1:]) y = self.data[io].reshape(np.prod(self.offset.shape), *self.data.shape[1:]) return x,y class DataModule(pl.LightningDataModule): def __init__(self, data, train_valid_split: int = 0.9, batch_size: int = 2, offset: int = 1, Dataset=SimpleDataset, **kwargs): super().__init__() self.data = data self.Dataset = Dataset self.batch_size = batch_size self.offset = offset if isinstance(offset, np.ndarray) else np.arange(offset) self.num_workers = 0 assert 0. < train_valid_split and train_valid_split <= 1. self.train_valid_split = train_valid_split def setup(self, stage=None): if stage == 'fit' or stage is None: split_index = int(len(self.data) * self.train_valid_split) self.train_data = self.Dataset(data = self.data[:split_index], offset = self.offset) self.valid_data = self.Dataset(data = self.data[split_index:], offset = self.offset) def train_dataloader(self): return DataLoader(self.train_data, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, generator=torch.Generator(device=device)) def val_dataloader(self): return DataLoader(self.valid_data, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, generator=torch.Generator(device=device))
[ "numpy.asarray", "numpy.prod", "numpy.arange", "torch.arange", "torch.Generator" ]
[((653, 722), 'torch.arange', 'torch.arange', (['self.start', 'self.end'], {'requires_grad': '(False)', 'device': '"""cpu"""'}), "(self.start, self.end, requires_grad=False, device='cpu')\n", (665, 722), False, 'import torch\n'), ((1611, 1680), 'torch.arange', 'torch.arange', (['self.start', 'self.end'], {'requires_grad': '(False)', 'device': '"""cpu"""'}), "(self.start, self.end, requires_grad=False, device='cpu')\n", (1623, 1680), False, 'import torch\n'), ((2689, 2715), 'numpy.prod', 'np.prod', (['self.offset.shape'], {}), '(self.offset.shape)\n', (2696, 2715), True, 'import numpy as np\n'), ((3164, 3181), 'numpy.arange', 'np.arange', (['offset'], {}), '(offset)\n', (3173, 3181), True, 'import numpy as np\n'), ((3857, 3887), 'torch.Generator', 'torch.Generator', ([], {'device': 'device'}), '(device=device)\n', (3872, 3887), False, 'import torch\n'), ((4072, 4102), 'torch.Generator', 'torch.Generator', ([], {'device': 'device'}), '(device=device)\n', (4087, 4102), False, 'import torch\n'), ((2363, 2395), 'numpy.asarray', 'np.asarray', (['offset'], {'dtype': 'np.int'}), '(offset, dtype=np.int)\n', (2373, 2395), True, 'import numpy as np\n'), ((542, 565), 'numpy.asarray', 'np.asarray', (['self.offset'], {}), '(self.offset)\n', (552, 565), True, 'import numpy as np\n'), ((1505, 1528), 'numpy.asarray', 'np.asarray', (['self.offset'], {}), '(self.offset)\n', (1515, 1528), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Oct 6 23:59:38 2021 @author: <NAME> """ # Adding Salt and Pepper Noise to image import cv2 as cv import numpy as np import random # Adding salt and pepper noise def gaussian_noise(image): row = 512 col = 512 mean = 0 var = 0.1 sigma = var**0.5 gauss = np.random.normal(mean,sigma,(row,col)) gauss = gauss.reshape(row,col) gauss_noisy = image + gauss return gauss_noisy def salt_and_pepper_noise(image): # Getting the dimensions of the image row , col = img.shape # Randomly pick some pixels in the # image for coloring them white # Pick a random number between 300 and 10000 number_of_pixels = random.randint(300, 10000) for i in range(number_of_pixels): # Pick a random y coordinate y_coord=random.randint(0, row - 1) # Pick a random x coordinate x_coord=random.randint(0, col - 1) # Color that pixel to white img[y_coord][x_coord] = 255 # Randomly pick some pixels in # the image for coloring them black # Pick a random number between 300 and 10000 number_of_pixels = random.randint(300 , 10000) for i in range(number_of_pixels): # Pick a random y coordinate y_coord=random.randint(0, row - 1) # Pick a random x coordinate x_coord=random.randint(0, col - 1) # Color that pixel to black img[y_coord][x_coord] = 0 return img img = cv.imread('Lenna.jpg', 0) gn = gaussian_noise(img) snp = salt_and_pepper_noise(img)
[ "cv2.imread", "random.randint", "numpy.random.normal" ]
[((1586, 1611), 'cv2.imread', 'cv.imread', (['"""Lenna.jpg"""', '(0)'], {}), "('Lenna.jpg', 0)\n", (1595, 1611), True, 'import cv2 as cv\n'), ((338, 379), 'numpy.random.normal', 'np.random.normal', (['mean', 'sigma', '(row, col)'], {}), '(mean, sigma, (row, col))\n', (354, 379), True, 'import numpy as np\n'), ((733, 759), 'random.randint', 'random.randint', (['(300)', '(10000)'], {}), '(300, 10000)\n', (747, 759), False, 'import random\n'), ((1219, 1245), 'random.randint', 'random.randint', (['(300)', '(10000)'], {}), '(300, 10000)\n', (1233, 1245), False, 'import random\n'), ((860, 886), 'random.randint', 'random.randint', (['(0)', '(row - 1)'], {}), '(0, row - 1)\n', (874, 886), False, 'import random\n'), ((951, 977), 'random.randint', 'random.randint', (['(0)', '(col - 1)'], {}), '(0, col - 1)\n', (965, 977), False, 'import random\n'), ((1347, 1373), 'random.randint', 'random.randint', (['(0)', '(row - 1)'], {}), '(0, row - 1)\n', (1361, 1373), False, 'import random\n'), ((1438, 1464), 'random.randint', 'random.randint', (['(0)', '(col - 1)'], {}), '(0, col - 1)\n', (1452, 1464), False, 'import random\n')]
import os.path from unittest import TestCase import numpy as np from aspire.utils import ( Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles, ) DATA_DIR = os.path.join(os.path.dirname(__file__), "saved_test_data") class UtilsTestCase(TestCase): def setUp(self): pass def tearDown(self): pass def testGrid2d(self): # Note these reference files were created using Matlab compat grid indexing. grid2d = grid_2d(8, indexing="xy") self.assertTrue( np.allclose(grid2d["x"], np.load(os.path.join(DATA_DIR, "grid2d_8_x.npy"))) ) self.assertTrue( np.allclose(grid2d["y"], np.load(os.path.join(DATA_DIR, "grid2d_8_y.npy"))) ) self.assertTrue( np.allclose(grid2d["r"], np.load(os.path.join(DATA_DIR, "grid2d_8_r.npy"))) ) self.assertTrue( np.allclose( grid2d["phi"], np.load(os.path.join(DATA_DIR, "grid2d_8_phi.npy")) ) ) def testGrid3d(self): # Note these reference files were created using Matlab compat grid indexing. grid3d = grid_3d(8, indexing="xyz") self.assertTrue( np.allclose(grid3d["x"], np.load(os.path.join(DATA_DIR, "grid3d_8_x.npy"))) ) self.assertTrue( np.allclose(grid3d["y"], np.load(os.path.join(DATA_DIR, "grid3d_8_y.npy"))) ) self.assertTrue( np.allclose(grid3d["z"], np.load(os.path.join(DATA_DIR, "grid3d_8_z.npy"))) ) self.assertTrue( np.allclose(grid3d["r"], np.load(os.path.join(DATA_DIR, "grid3d_8_r.npy"))) ) self.assertTrue( np.allclose( grid3d["phi"], np.load(os.path.join(DATA_DIR, "grid3d_8_phi.npy")) ) ) self.assertTrue( np.allclose( grid3d["theta"], np.load(os.path.join(DATA_DIR, "grid3d_8_theta.npy")) ) ) def testRegisterRots(self): angles = uniform_random_angles(32, seed=0) rots_ref = Rotation.from_euler(angles).matrices q_ang = [[np.pi / 4, np.pi / 4, np.pi / 4]] q_mat = Rotation.from_euler(q_ang).matrices[0] flag = 0 regrots_ref = get_aligned_rotations(rots_ref, q_mat, flag) q_mat_est, flag_est = register_rotations(rots_ref, regrots_ref) self.assertTrue(np.allclose(flag_est, flag) and np.allclose(q_mat_est, q_mat)) def testSquareCrop2D(self): # Test even/odd cases based on the convention that the center of a sequence of length n # is (n+1)/2 if n is odd and n/2 + 1 if even. # Cropping is done to keep the center of the sequence the same value before and after. # Therefore the following apply: # Cropping even to odd will result in the 0-index (beginning) # of the sequence being chopped off (x marks the center, ~ marks deleted data): # ---x-- => ~--x-- # Cropping odd to even will result in the -1-index (end) # of the sequence being chopped off: # ---x--- => ---x--~ # even to even a = np.diag(np.arange(8)) test_a = np.diag(np.arange(1, 7)) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 6))) # even to odd # the extra row/column cut off are the top and left # due to the centering convention a = np.diag(np.arange(8)) test_a = np.diag(np.arange(1, 8)) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 7))) # odd to odd a = np.diag(np.arange(9)) test_a = np.diag(np.arange(1, 8)) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 7))) # odd to even # the extra row/column cut off are the bottom and right # due to the centering convention a = np.diag(np.arange(9)) test_a = np.diag(np.arange(8)) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 8))) def testSquarePad2D(self): # Test even/odd cases based on the convention that the center of a sequence of length n # is (n+1)/2 if n is odd and n/2 + 1 if even. # Padding is done to keep the center of the sequence the same value before and after. # Therefore the following apply: # Padding from even to odd results in the spare padding being added to the -1-index (end) # of the sequence (x represents the center, + represents padding): # ---x-- => ---x--+ # Padding from odd to even results in the spare padding being added to the 0-index (beginning) # of the sequence: # --x-- => +--x-- # even to even a = np.diag(np.arange(1, 9)) test_a = np.diag([0, 1, 2, 3, 4, 5, 6, 7, 8, 0]) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 10))) # even to odd # the extra padding is to the bottom and right # due to the centering convention a = np.diag(np.arange(1, 9)) test_a = np.diag([0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0]) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 11))) # odd to odd a = np.diag(np.arange(1, 10)) test_a = np.diag([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 11))) # odd to even # the extra padding is to the top and left # due to the centering convention a = np.diag(np.arange(1, 10)) test_a = np.diag([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) self.assertTrue(np.array_equal(test_a, crop_pad_2d(a, 10))) def testRectCrop2D(self): # Additional sanity checks for rectangular cropping case # 12x10 -> 10x10 a = np.diag(np.arange(1, 11)) # augment to 12 rows aug = np.vstack([a, np.zeros(10)]) aug = np.vstack([np.zeros(10), aug]) # make sure the top and bottom rows are stripped self.assertTrue(np.array_equal(a, crop_pad_2d(aug, 10))) # 10x12 -> 10x10 a = np.diag(np.arange(1, 11)) # augment to 12 columns aug = np.column_stack([a, np.zeros(10)]) aug = np.column_stack([np.zeros(10), aug]) # make sure the left and right columns are stripped self.assertTrue(np.array_equal(a, crop_pad_2d(aug, 10))) # 9x7 -> 7x7 a = np.diag(np.arange(1, 8)) # augment to 9 rows aug = np.vstack([a, np.zeros(7)]) aug = np.vstack([np.zeros(7), aug]) # make sure the top and bottom rows are stripped self.assertTrue(np.array_equal(a, crop_pad_2d(aug, 7))) # 7x9 -> 7x7 a = np.diag(np.arange(1, 8)) # augment to 9 columns aug = np.column_stack([a, np.zeros(7)]) aug = np.column_stack([np.zeros(7), aug]) # make sure the left and right columns are stripped self.assertTrue(np.array_equal(a, crop_pad_2d(aug, 7))) def testRectPad2D(self): # Additional sanity checks for rectangular padding case # 12x10 -> 12x12 a = np.diag(np.arange(1, 11)) # augment to 12 rows aug = np.vstack([a, np.zeros(10)]) aug = np.vstack([np.zeros(10), aug]) # expected result padded = np.column_stack([aug, np.zeros(12)]) padded = np.column_stack([np.zeros(12), padded]) # make sure columns of fill value (0) are added to the # left and right self.assertTrue(np.array_equal(padded, crop_pad_2d(aug, 12))) # 10x12 -> 12x12 a = np.diag(np.arange(1, 11)) # augment to 12 columns aug = np.column_stack([a, np.zeros(10)]) aug = np.column_stack([np.zeros(10), aug]) # expected result padded = np.vstack([aug, np.zeros(12)]) padded = np.vstack([np.zeros(12), padded]) # make sure rows of fill value (0) are added to the # top and bottom self.assertTrue(np.array_equal(padded, crop_pad_2d(aug, 12))) # 9x7 -> 9x9 a = np.diag(np.arange(1, 8)) # augment to 9 rows aug = np.vstack([a, np.zeros(7)]) aug = np.vstack([np.zeros(7), aug]) # expected result padded = np.column_stack([aug, np.zeros(9)]) padded = np.column_stack([np.zeros(9), padded]) # make sure columns of fill value (0) are added to the # left and right self.assertTrue(np.array_equal(padded, crop_pad_2d(aug, 9))) # 7x9 -> 9x9 a = np.diag(np.arange(1, 8)) # augment to 9 columns aug = np.column_stack([a, np.zeros(7)]) aug = np.column_stack([np.zeros(7), aug]) # expected result padded = np.vstack([aug, np.zeros(9)]) padded = np.vstack([np.zeros(9), padded]) # make sure rows of fill value (0) are added to the # top and bottom self.assertTrue(np.array_equal(padded, crop_pad_2d(aug, 9))) def testCropPad2DError(self): with self.assertRaises(ValueError) as e: _ = crop_pad_2d(np.zeros((6, 10)), 8) self.assertTrue( "Cannot crop and pad an image at the same time.", str(e.exception) ) def testCrop2DDtype(self): # crop_pad_2d must return an array of the same dtype it was given # in particular, because the method is used for Fourier downsampling # methods involving cropping complex arrays self.assertEqual( crop_pad_2d(np.eye(10).astype("complex"), 5).dtype, np.dtype("complex128") ) def testCrop2DFillValue(self): # make sure the fill value is as expected # we are padding from an odd to an even dimension # so the padded column is added to the left a = np.ones((4, 3)) b = crop_pad_2d(a, 4, fill_value=-1) self.assertTrue(np.array_equal(b[:, 0], np.array([-1, -1, -1, -1])))
[ "aspire.utils.Rotation.from_euler", "aspire.utils.grid_2d", "numpy.eye", "aspire.utils.get_aligned_rotations", "numpy.allclose", "aspire.utils.crop_pad_2d", "numpy.dtype", "numpy.ones", "numpy.zeros", "aspire.utils.uniform_random_angles", "numpy.arange", "numpy.array", "aspire.utils.register_rotations", "numpy.diag", "aspire.utils.grid_3d" ]
[((535, 560), 'aspire.utils.grid_2d', 'grid_2d', (['(8)'], {'indexing': '"""xy"""'}), "(8, indexing='xy')\n", (542, 560), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((1216, 1242), 'aspire.utils.grid_3d', 'grid_3d', (['(8)'], {'indexing': '"""xyz"""'}), "(8, indexing='xyz')\n", (1223, 1242), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((2103, 2136), 'aspire.utils.uniform_random_angles', 'uniform_random_angles', (['(32)'], {'seed': '(0)'}), '(32, seed=0)\n', (2124, 2136), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((2340, 2384), 'aspire.utils.get_aligned_rotations', 'get_aligned_rotations', (['rots_ref', 'q_mat', 'flag'], {}), '(rots_ref, q_mat, flag)\n', (2361, 2384), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((2415, 2456), 'aspire.utils.register_rotations', 'register_rotations', (['rots_ref', 'regrots_ref'], {}), '(rots_ref, regrots_ref)\n', (2433, 2456), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((4809, 4848), 'numpy.diag', 'np.diag', (['[0, 1, 2, 3, 4, 5, 6, 7, 8, 0]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 8, 0])\n', (4816, 4848), True, 'import numpy as np\n'), ((5091, 5133), 'numpy.diag', 'np.diag', (['[0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0])\n', (5098, 5133), True, 'import numpy as np\n'), ((5279, 5321), 'numpy.diag', 'np.diag', (['[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0])\n', (5286, 5321), True, 'import numpy as np\n'), ((5561, 5600), 'numpy.diag', 'np.diag', (['[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n', (5568, 5600), True, 'import numpy as np\n'), ((9797, 9812), 'numpy.ones', 'np.ones', (['(4, 3)'], {}), '((4, 3))\n', (9804, 9812), True, 'import numpy as np\n'), ((9825, 9857), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(4)'], {'fill_value': '(-1)'}), '(a, 4, fill_value=-1)\n', (9836, 9857), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((2156, 2183), 'aspire.utils.Rotation.from_euler', 'Rotation.from_euler', (['angles'], {}), '(angles)\n', (2175, 2183), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((3232, 3244), 'numpy.arange', 'np.arange', (['(8)'], {}), '(8)\n', (3241, 3244), True, 'import numpy as np\n'), ((3271, 3286), 'numpy.arange', 'np.arange', (['(1)', '(7)'], {}), '(1, 7)\n', (3280, 3286), True, 'import numpy as np\n'), ((3500, 3512), 'numpy.arange', 'np.arange', (['(8)'], {}), '(8)\n', (3509, 3512), True, 'import numpy as np\n'), ((3539, 3554), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (3548, 3554), True, 'import numpy as np\n'), ((3665, 3677), 'numpy.arange', 'np.arange', (['(9)'], {}), '(9)\n', (3674, 3677), True, 'import numpy as np\n'), ((3704, 3719), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (3713, 3719), True, 'import numpy as np\n'), ((3937, 3949), 'numpy.arange', 'np.arange', (['(9)'], {}), '(9)\n', (3946, 3949), True, 'import numpy as np\n'), ((3976, 3988), 'numpy.arange', 'np.arange', (['(8)'], {}), '(8)\n', (3985, 3988), True, 'import numpy as np\n'), ((4775, 4790), 'numpy.arange', 'np.arange', (['(1)', '(9)'], {}), '(1, 9)\n', (4784, 4790), True, 'import numpy as np\n'), ((5057, 5072), 'numpy.arange', 'np.arange', (['(1)', '(9)'], {}), '(1, 9)\n', (5066, 5072), True, 'import numpy as np\n'), ((5244, 5260), 'numpy.arange', 'np.arange', (['(1)', '(10)'], {}), '(1, 10)\n', (5253, 5260), True, 'import numpy as np\n'), ((5526, 5542), 'numpy.arange', 'np.arange', (['(1)', '(10)'], {}), '(1, 10)\n', (5535, 5542), True, 'import numpy as np\n'), ((5811, 5827), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (5820, 5827), True, 'import numpy as np\n'), ((6114, 6130), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (6123, 6130), True, 'import numpy as np\n'), ((6431, 6446), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (6440, 6446), True, 'import numpy as np\n'), ((6725, 6740), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (6734, 6740), True, 'import numpy as np\n'), ((7135, 7151), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (7144, 7151), True, 'import numpy as np\n'), ((7611, 7627), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (7620, 7627), True, 'import numpy as np\n'), ((8083, 8098), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (8092, 8098), True, 'import numpy as np\n'), ((8548, 8563), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (8557, 8563), True, 'import numpy as np\n'), ((9556, 9578), 'numpy.dtype', 'np.dtype', (['"""complex128"""'], {}), "('complex128')\n", (9564, 9578), True, 'import numpy as np\n'), ((2262, 2288), 'aspire.utils.Rotation.from_euler', 'Rotation.from_euler', (['q_ang'], {}), '(q_ang)\n', (2281, 2288), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((2482, 2509), 'numpy.allclose', 'np.allclose', (['flag_est', 'flag'], {}), '(flag_est, flag)\n', (2493, 2509), True, 'import numpy as np\n'), ((2514, 2543), 'numpy.allclose', 'np.allclose', (['q_mat_est', 'q_mat'], {}), '(q_mat_est, q_mat)\n', (2525, 2543), True, 'import numpy as np\n'), ((3335, 3352), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(6)'], {}), '(a, 6)\n', (3346, 3352), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((3603, 3620), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(7)'], {}), '(a, 7)\n', (3614, 3620), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((3768, 3785), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(7)'], {}), '(a, 7)\n', (3779, 3785), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((4037, 4054), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(8)'], {}), '(a, 8)\n', (4048, 4054), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((4896, 4914), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(10)'], {}), '(a, 10)\n', (4907, 4914), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((5181, 5199), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(11)'], {}), '(a, 11)\n', (5192, 5199), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((5369, 5387), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(11)'], {}), '(a, 11)\n', (5380, 5387), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((5648, 5666), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['a', '(10)'], {}), '(a, 10)\n', (5659, 5666), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((5886, 5898), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (5894, 5898), True, 'import numpy as np\n'), ((5926, 5938), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (5934, 5938), True, 'import numpy as np\n'), ((6045, 6065), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(10)'], {}), '(aug, 10)\n', (6056, 6065), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((6198, 6210), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (6206, 6210), True, 'import numpy as np\n'), ((6244, 6256), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (6252, 6256), True, 'import numpy as np\n'), ((6366, 6386), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(10)'], {}), '(aug, 10)\n', (6377, 6386), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((6504, 6515), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (6512, 6515), True, 'import numpy as np\n'), ((6543, 6554), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (6551, 6554), True, 'import numpy as np\n'), ((6661, 6680), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(7)'], {}), '(aug, 7)\n', (6672, 6680), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((6807, 6818), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (6815, 6818), True, 'import numpy as np\n'), ((6852, 6863), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (6860, 6863), True, 'import numpy as np\n'), ((6973, 6992), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(7)'], {}), '(aug, 7)\n', (6984, 6992), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((7210, 7222), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (7218, 7222), True, 'import numpy as np\n'), ((7250, 7262), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (7258, 7262), True, 'import numpy as np\n'), ((7335, 7347), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (7343, 7347), True, 'import numpy as np\n'), ((7384, 7396), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (7392, 7396), True, 'import numpy as np\n'), ((7542, 7562), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(12)'], {}), '(aug, 12)\n', (7553, 7562), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((7695, 7707), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (7703, 7707), True, 'import numpy as np\n'), ((7741, 7753), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (7749, 7753), True, 'import numpy as np\n'), ((7820, 7832), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (7828, 7832), True, 'import numpy as np\n'), ((7863, 7875), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (7871, 7875), True, 'import numpy as np\n'), ((8018, 8038), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(12)'], {}), '(aug, 12)\n', (8029, 8038), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((8156, 8167), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (8164, 8167), True, 'import numpy as np\n'), ((8195, 8206), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (8203, 8206), True, 'import numpy as np\n'), ((8279, 8290), 'numpy.zeros', 'np.zeros', (['(9)'], {}), '(9)\n', (8287, 8290), True, 'import numpy as np\n'), ((8327, 8338), 'numpy.zeros', 'np.zeros', (['(9)'], {}), '(9)\n', (8335, 8338), True, 'import numpy as np\n'), ((8484, 8503), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(9)'], {}), '(aug, 9)\n', (8495, 8503), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((8630, 8641), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (8638, 8641), True, 'import numpy as np\n'), ((8675, 8686), 'numpy.zeros', 'np.zeros', (['(7)'], {}), '(7)\n', (8683, 8686), True, 'import numpy as np\n'), ((8753, 8764), 'numpy.zeros', 'np.zeros', (['(9)'], {}), '(9)\n', (8761, 8764), True, 'import numpy as np\n'), ((8795, 8806), 'numpy.zeros', 'np.zeros', (['(9)'], {}), '(9)\n', (8803, 8806), True, 'import numpy as np\n'), ((8949, 8968), 'aspire.utils.crop_pad_2d', 'crop_pad_2d', (['aug', '(9)'], {}), '(aug, 9)\n', (8960, 8968), False, 'from aspire.utils import Rotation, crop_pad_2d, get_aligned_rotations, grid_2d, grid_3d, register_rotations, uniform_random_angles\n'), ((9083, 9100), 'numpy.zeros', 'np.zeros', (['(6, 10)'], {}), '((6, 10))\n', (9091, 9100), True, 'import numpy as np\n'), ((9906, 9932), 'numpy.array', 'np.array', (['[-1, -1, -1, -1]'], {}), '([-1, -1, -1, -1])\n', (9914, 9932), True, 'import numpy as np\n'), ((9516, 9526), 'numpy.eye', 'np.eye', (['(10)'], {}), '(10)\n', (9522, 9526), True, 'import numpy as np\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- # created by <NAME> # contact with <EMAIL> import numpy as np import datetime import os import pandas as pd import random import time import threading import multiprocessing def check_file(tt,datelist,hour): ''' chech file at the time of 'tt' and its continuous 24 hours and histort hours pretime 25 times include time.now() history time include 'hour' times return if file is ready at the time of 'tt' ''' ruitufile = '/data/output/ruitu_data/{}/{}.npy'.format(tt.strftime('%Y%m'),tt.strftime('%Y%m%d%H')) sign = os.path.exists(ruitufile) if sign: pass # shape0 = np.load(ruitufile).shape[0] # sign = sign and shape0==25 # if not shape0==25: # print(ruitufile) # os.remove(ruitufile) else: return False pretimelist = [ tt+datetime.timedelta(seconds=3600*i) for i in range(25)] pretimelist = pretimelist+ [ tt-datetime.timedelta(seconds=3600*i) for i in range(hour)] for pretime in pretimelist: # gaughDir = '/data/output/guance_data/{}/{}.npy'.format(pretime) timestring = pretime.strftime("%Y%m%d%H%M") sign = (timestring in datelist ) and sign if sign==False : # print(timestring,os.path.exists(ruitufile),timestring in datelist) break return sign def file_dataset(hour ): '''write a data-ready file list''' print('creating the dataset with history ', hour, ' hours') file_dict = pd.read_csv('/data/output/all_guance_data_name_list/all_gc_filename_list.csv',index_col=0) datelist = [str(line).split('_')[1] for line in file_dict.values] file_dict.index = datelist start_time, end_time = datetime.datetime(2016,10,1,0),datetime.datetime(2019,4,1,0) pretimelist=[] pretime= start_time while pretime<=end_time: if check_file(pretime,datelist,hour): pretimelist.append(pretime) pretime += datetime.timedelta(seconds=3600*3) pretimelist = np.array(pretimelist) np.save('/data/code/ml/pretimelist_{}.npy'.format(hour),pretimelist) print('finishing creating dataset with history ', hour, ' hours') return None def my_test_dataset( batch, history_hour, season=None ): '''return list shape [number , batch]''' file_dict = pd.read_csv('/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv', index_col=0) datelist = [str(line).split('_')[1] for line in file_dict.values] file_dict.index = datelist target = '/data/code/ml/pretimelist_test_{}.npy'.format(history_hour) if not os.path.exists(target): file_test_dataset( history_hour ) pretimelist = np.load(target, allow_pickle=True) if season=='summer': tmp = [] for pretime in pretimelist: if pretime.month in [4,5,6,7,8,9]: tmp.append(pretime) pretimelist = np.array(tmp) print('dataset lenght',len(pretimelist)) pretimelist = pretimelist[:len(pretimelist)//batch*batch] pretimelist = np.array(pretimelist).reshape(-1, batch) return pretimelist, file_dict def file_test_dataset(hour ): '''write a data-ready file list''' print('creating the dataset with history ', hour, ' hours') file_dict = pd.read_csv('/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv',index_col=0) datelist = [str(line).split('_')[1] for line in file_dict.values] file_dict.index = datelist start_time, end_time = datetime.datetime(2019,4,1,0),datetime.datetime(2019,7,31,21) pretimelist=[] pretime= start_time while pretime<=end_time: if check_file(pretime,datelist,hour): pretimelist.append(pretime) pretime += datetime.timedelta(seconds=3600*3) pretimelist = np.array(pretimelist) np.save('/data/code/ml/pretimelist_test_{}.npy'.format(hour),pretimelist) print('finishing creating dataset with history ', hour, ' hours') return None def my_dataset( batch, history_hour, season=None ): '''return list shape [number , batch]''' file_dict = pd.read_csv('/data/output/all_guance_data_name_list/all_gc_filename_list.csv', index_col=0) datelist = [str(line).split('_')[1] for line in file_dict.values] file_dict.index = datelist target = '/data/code/ml/pretimelist_{}.npy'.format(history_hour) if not os.path.exists(target): file_dataset( history_hour ) pretimelist = np.load(target, allow_pickle=True) if season=='summer': tmp = [] for pretime in pretimelist: if pretime.month in [6,7,8,9]: tmp.append(pretime) pretimelist = np.array(tmp) print('dataset lenght',len(pretimelist)) pretimelist = pretimelist[:len(pretimelist)//batch*batch] random.shuffle(pretimelist) pretimelist = np.array(pretimelist).reshape(-1, batch) return pretimelist, file_dict def conbime_thread(batch_list, batch_time): ''' parallization the thread to read the data ''' print("Sub-process(es) begin.") ruitulist, gaugelist, histgaugelist, jobresults = [], [], [], [] pool = multiprocessing.Pool(processes=8) for filelist, pretime in zip(batch_list, batch_time): jobresults.append(pool.apply_async(read_one, (filelist, pretime))) for res in jobresults: ruituFile, gaugeFile, histgaugeFile = res.get() ruitulist.append(ruituFile) gaugelist.append(gaugeFile) histgaugelist.append(histgaugeFile) pool.close() # 关闭进程池,表示不能在往进程池中添加进程 pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用 print("Sub-process(es) done.") gaugelist, ruitulist, histgaugelist = np.array(gaugelist), np.array(ruitulist), np.array(histgaugelist) # print(gaugelist.shape, ruitulist.shape, histgaugelist.shape) return ruitulist, gaugelist, histgaugelist def read_one(filelist, pretime): '''read single data in training data with preprocessing ''' # tt = time.time() ruituFile = np.load(filelist[0])[:,:,:80,:84] # print('processing',pretime) gaugeFile = np.array([np.load(file) for file in filelist[1:25]])[:,4:5,:80,:84] histgaugeFile = np.array([np.load(file) for file in filelist[25:]])[:,:,:80,:84] ruituFile, gaugeFile, histgaugeFile = norm_preprocess(ruituFile, gaugeFile, histgaugeFile, pretime) # print(time.time()-tt) return ruituFile, gaugeFile, histgaugeFile def norm_preprocess(ruituFile, gaugeFile, histgaugeFile, pretime): ''' processing with abnormal values, time , geography values, normalized values. ''' # print(ruituFile.shape, gaugeFile.shape, histgaugeFile.shape) #remoev the abnormal value assert ruituFile.shape[0]==25,print(pretime,'without full prediction') if (np.abs(ruituFile) > 10000).any(): meantmp = ruituFile.mean(axis=(0,2,3)) for i in range(ruituFile.shape[1]): ruituFile[:,i,:,:][np.abs(ruituFile[:,i,:,:])>10000] = meantmp[i] histgaugeFile[np.isnan(histgaugeFile)]=200000 if (np.abs(histgaugeFile) > 10000).any(): meantmp = histgaugeFile.mean(axis=(0,2,3)) for i in range(histgaugeFile.shape[1]): histgaugeFile[:,i,:,:][np.abs(histgaugeFile[:,i,:,:])>10000] = meantmp[i] #normal the value ruituInfo = pd.read_csv('/data/output/ruitu_info.csv') ruitu_mean, ruitu_std = np.ones_like(ruituFile),np.ones_like(ruituFile) for i in range(len(ruituInfo)): ruitu_mean[:,i,:,:] *= ruituInfo['mean'].iloc[i] ruitu_std[:,i,:,:] *= ruituInfo['std'].iloc[i] ruituFile = (ruituFile-ruitu_mean)/ruitu_std gaugeInfo = pd.read_csv('/data/output/gauge_info.csv') gauge_mean, gauge_std = np.ones_like(histgaugeFile),np.ones_like(histgaugeFile) for i in range(len(gaugeInfo)): gauge_mean[:,i,:,:] *= gaugeInfo['mean'].iloc[i] gauge_std[:,i,:,:] *= gaugeInfo['std'].iloc[i] histgaugeFile = (histgaugeFile-gauge_mean)/gauge_std #add time and geo info geoinfo = np.load('/data/output/height_norm.npy') hist_hour = histgaugeFile.shape[0] pretimelist = [pretime+datetime.timedelta(seconds=i*3600) for i in range(-hist_hour+1, 25)] yearvariancelist = [ np.sin(2*np.pi*(tt.toordinal()-730180)/365.25) for tt in pretimelist] dayvariancelist = [ np.sin(2*np.pi*(tt.hour-3)/24) for tt in pretimelist] ruituFile[1:25, 32:35, :, :] = ruituFile[1:25, 32:35, :, :] - ruituFile[0:24,32:35,:,:] ruituFile_new = ruituFile[1:].copy() histgaugeFile[:,7,:,:] = np.array([geoinfo]*histgaugeFile.shape[0]) histgaugeFile[:,10,:,:] = np.array([sli*yvar for sli, yvar in zip(np.ones([hist_hour,80,84]),yearvariancelist[:hist_hour])]) histgaugeFile[:,11,:,:] = np.array([sli*dvar for sli, dvar in zip(np.ones([hist_hour,80,84]),dayvariancelist[:hist_hour])]) tmpyear = np.expand_dims([sli*yvar for sli, yvar in zip(np.ones([24,80,84]),yearvariancelist[hist_hour:])], axis=1) tmpday = np.expand_dims([sli*dvar for sli, dvar in zip(np.ones([24,80,84]),dayvariancelist[hist_hour:])], axis=1) tmpgeo = np.expand_dims(np.array([geoinfo]*ruituFile_new.shape[0]),axis=1) ruituFile_new = np.concatenate((ruituFile_new, tmpyear, tmpday, tmpgeo),axis=1) # print(ruituFile_new.shape, gaugeFile.shape, histgaugeFile.shape) return ruituFile_new, gaugeFile, histgaugeFile def load_data2(pretimelist, file_dict, history_hour, binary=False): ''' load batch data in parallized way, more faster. input args: load_data2(pretimelist, file_dict, history_hour, binary=False) return args: ruitudata, gaugedata, histgaugedata shape: [batch ,24, channels_1, height, width],[batch ,24 , 1, height, width],[batch , historyhour, channels_2, height, width] if binary is True, the gaugedata will return in shape [batch ,time, 2, height, width] ''' pretimelist = list(pretimelist) batchfile = [] for batch_time in pretimelist: ruituFile = ['/data/output/ruitu_data/{}/{}.npy'.format(batch_time.strftime('%Y%m'),batch_time.strftime('%Y%m%d%H'))] time24h = [ batch_time+datetime.timedelta(seconds=3600*i) for i in range(1,25)] gaugeFile = ['/data/output/guance_data/{}/{}'.format(tt.strftime('%Y%m'),file_dict.loc[tt.strftime('%Y%m%d%H%M')].values[0]) for tt in time24h] timehist = [ batch_time-datetime.timedelta(seconds=3600*i) for i in range(history_hour)] histgaugeFile = ['/data/output/guance_data/{}/{}'.format(tt.strftime('%Y%m'),file_dict.loc[tt.strftime('%Y%m%d%H%M')].values[0]) for tt in timehist] singlefile = ruituFile+gaugeFile+histgaugeFile batchfile.append(singlefile) ruitudata, gaugedata, histgaugedata = conbime_thread(batchfile, pretimelist) if binary: # gaugedata = (gaugedata>=0.1).astype('int') gaugebinary = np.concatenate((gaugedata>=0.1, gaugedata<0.1),axis=2).astype('int') gaugedata[ gaugedata<0.1]=0 return np.array(ruitudata)[:,:,:,:80,:80], np.array(gaugebinary)[:,:,:,:80,:80], np.array(gaugedata[:,:,:,:80,:80]) # def load_data(pretimelist,file_dict): # '''pretimelist is a batch timelist at once # output shape = [batch, 24, channel, 80, 84],[batch, 24, channel, 80, 84] # ''' # print('old') # t1 = time.time() # pretimelist = list(pretimelist) # gaugedata = [] # ruitudata = [] # for batch_time in pretimelist: # ruitutmp = np.load('/data/output/ruitu_data/{}/{}.npy'.format(batch_time.strftime('%Y%m'),batch_time.strftime('%Y%m%d%H')))[:24,:,:80,:84] # time24h = [ batch_time+datetime.timedelta(seconds=3600) for i in range(24)] # guagetmp = np.array([np.load('/data/output/guance_data/{}/{}'.format(tt.strftime('%Y%m'),file_dict.loc[tt.strftime('%Y%m%d%H%M')].values[0])) for tt in time24h])[:,4:5,:80,:84] # gaugedata.append(guagetmp) # ruitudata.append(ruitutmp) # print('total:',time.time()-t1) # return np.array(gaugedata), np.array(ruitudata) if __name__=='__main__': batch = 8 historyhour = 24 batch_filelist, file_dict = my_dataset( batch, historyhour,season='summer') split_num=0.7 train_num = int(len(batch_filelist)*split_num) mydataset = {'train':batch_filelist[:train_num], 'test': batch_filelist[train_num:]} for filelist in mydataset['train']: tt = time.time() ruitudata, gaugedata, histgaugedata = load_data2(filelist,file_dict,historyhour, binary=True) print(gaugedata.shape, ruitudata.shape, histgaugedata.shape, 'finished time cost:',time.time()-tt) # print(gaugedata.mean(axis=(0,1,3,4)),gaugedata.std(axis=(0,1,3,4))) # print(ruitudata.mean(axis=(0,1,3,4)),ruitudata.std(axis=(0,1,3,4))) # print(histgaugedata.mean(axis=(0,1,3,4)),histgaugedata.std(axis=(0,1,3,4)))
[ "numpy.load", "numpy.ones_like", "numpy.abs", "pandas.read_csv", "random.shuffle", "os.path.exists", "numpy.ones", "numpy.isnan", "datetime.datetime", "time.time", "numpy.sin", "numpy.array", "datetime.timedelta", "multiprocessing.Pool", "numpy.concatenate" ]
[((593, 618), 'os.path.exists', 'os.path.exists', (['ruitufile'], {}), '(ruitufile)\n', (607, 618), False, 'import os\n'), ((1522, 1617), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/all_guance_data_name_list/all_gc_filename_list.csv"""'], {'index_col': '(0)'}), "('/data/output/all_guance_data_name_list/all_gc_filename_list.csv',\n index_col=0)\n", (1533, 1617), True, 'import pandas as pd\n'), ((2033, 2054), 'numpy.array', 'np.array', (['pretimelist'], {}), '(pretimelist)\n', (2041, 2054), True, 'import numpy as np\n'), ((2333, 2440), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv"""'], {'index_col': '(0)'}), "(\n '/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv',\n index_col=0)\n", (2344, 2440), True, 'import pandas as pd\n'), ((2702, 2736), 'numpy.load', 'np.load', (['target'], {'allow_pickle': '(True)'}), '(target, allow_pickle=True)\n', (2709, 2736), True, 'import numpy as np\n'), ((3289, 3396), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv"""'], {'index_col': '(0)'}), "(\n '/data/output/all_guance_data_name_list/2019_04_07_gc_filename_list.csv',\n index_col=0)\n", (3300, 3396), True, 'import pandas as pd\n'), ((3808, 3829), 'numpy.array', 'np.array', (['pretimelist'], {}), '(pretimelist)\n', (3816, 3829), True, 'import numpy as np\n'), ((4109, 4204), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/all_guance_data_name_list/all_gc_filename_list.csv"""'], {'index_col': '(0)'}), "('/data/output/all_guance_data_name_list/all_gc_filename_list.csv',\n index_col=0)\n", (4120, 4204), True, 'import pandas as pd\n'), ((4461, 4495), 'numpy.load', 'np.load', (['target'], {'allow_pickle': '(True)'}), '(target, allow_pickle=True)\n', (4468, 4495), True, 'import numpy as np\n'), ((4805, 4832), 'random.shuffle', 'random.shuffle', (['pretimelist'], {}), '(pretimelist)\n', (4819, 4832), False, 'import random\n'), ((5151, 5184), 'multiprocessing.Pool', 'multiprocessing.Pool', ([], {'processes': '(8)'}), '(processes=8)\n', (5171, 5184), False, 'import multiprocessing\n'), ((7309, 7351), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/ruitu_info.csv"""'], {}), "('/data/output/ruitu_info.csv')\n", (7320, 7351), True, 'import pandas as pd\n'), ((7642, 7684), 'pandas.read_csv', 'pd.read_csv', (['"""/data/output/gauge_info.csv"""'], {}), "('/data/output/gauge_info.csv')\n", (7653, 7684), True, 'import pandas as pd\n'), ((8020, 8059), 'numpy.load', 'np.load', (['"""/data/output/height_norm.npy"""'], {}), "('/data/output/height_norm.npy')\n", (8027, 8059), True, 'import numpy as np\n'), ((8530, 8574), 'numpy.array', 'np.array', (['([geoinfo] * histgaugeFile.shape[0])'], {}), '([geoinfo] * histgaugeFile.shape[0])\n', (8538, 8574), True, 'import numpy as np\n'), ((9167, 9231), 'numpy.concatenate', 'np.concatenate', (['(ruituFile_new, tmpyear, tmpday, tmpgeo)'], {'axis': '(1)'}), '((ruituFile_new, tmpyear, tmpday, tmpgeo), axis=1)\n', (9181, 9231), True, 'import numpy as np\n'), ((1742, 1775), 'datetime.datetime', 'datetime.datetime', (['(2016)', '(10)', '(1)', '(0)'], {}), '(2016, 10, 1, 0)\n', (1759, 1775), False, 'import datetime\n'), ((1773, 1805), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(1)', '(0)'], {}), '(2019, 4, 1, 0)\n', (1790, 1805), False, 'import datetime\n'), ((1980, 2016), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * 3)'}), '(seconds=3600 * 3)\n', (1998, 2016), False, 'import datetime\n'), ((2618, 2640), 'os.path.exists', 'os.path.exists', (['target'], {}), '(target)\n', (2632, 2640), False, 'import os\n'), ((2925, 2938), 'numpy.array', 'np.array', (['tmp'], {}), '(tmp)\n', (2933, 2938), True, 'import numpy as np\n'), ((3516, 3548), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(1)', '(0)'], {}), '(2019, 4, 1, 0)\n', (3533, 3548), False, 'import datetime\n'), ((3546, 3580), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(7)', '(31)', '(21)'], {}), '(2019, 7, 31, 21)\n', (3563, 3580), False, 'import datetime\n'), ((3755, 3791), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * 3)'}), '(seconds=3600 * 3)\n', (3773, 3791), False, 'import datetime\n'), ((4382, 4404), 'os.path.exists', 'os.path.exists', (['target'], {}), '(target)\n', (4396, 4404), False, 'import os\n'), ((4680, 4693), 'numpy.array', 'np.array', (['tmp'], {}), '(tmp)\n', (4688, 4693), True, 'import numpy as np\n'), ((5684, 5703), 'numpy.array', 'np.array', (['gaugelist'], {}), '(gaugelist)\n', (5692, 5703), True, 'import numpy as np\n'), ((5705, 5724), 'numpy.array', 'np.array', (['ruitulist'], {}), '(ruitulist)\n', (5713, 5724), True, 'import numpy as np\n'), ((5726, 5749), 'numpy.array', 'np.array', (['histgaugelist'], {}), '(histgaugelist)\n', (5734, 5749), True, 'import numpy as np\n'), ((6003, 6023), 'numpy.load', 'np.load', (['filelist[0]'], {}), '(filelist[0])\n', (6010, 6023), True, 'import numpy as np\n'), ((7000, 7023), 'numpy.isnan', 'np.isnan', (['histgaugeFile'], {}), '(histgaugeFile)\n', (7008, 7023), True, 'import numpy as np\n'), ((7380, 7403), 'numpy.ones_like', 'np.ones_like', (['ruituFile'], {}), '(ruituFile)\n', (7392, 7403), True, 'import numpy as np\n'), ((7404, 7427), 'numpy.ones_like', 'np.ones_like', (['ruituFile'], {}), '(ruituFile)\n', (7416, 7427), True, 'import numpy as np\n'), ((7713, 7740), 'numpy.ones_like', 'np.ones_like', (['histgaugeFile'], {}), '(histgaugeFile)\n', (7725, 7740), True, 'import numpy as np\n'), ((7741, 7768), 'numpy.ones_like', 'np.ones_like', (['histgaugeFile'], {}), '(histgaugeFile)\n', (7753, 7768), True, 'import numpy as np\n'), ((8314, 8352), 'numpy.sin', 'np.sin', (['(2 * np.pi * (tt.hour - 3) / 24)'], {}), '(2 * np.pi * (tt.hour - 3) / 24)\n', (8320, 8352), True, 'import numpy as np\n'), ((9096, 9140), 'numpy.array', 'np.array', (['([geoinfo] * ruituFile_new.shape[0])'], {}), '([geoinfo] * ruituFile_new.shape[0])\n', (9104, 9140), True, 'import numpy as np\n'), ((11018, 11056), 'numpy.array', 'np.array', (['gaugedata[:, :, :, :80, :80]'], {}), '(gaugedata[:, :, :, :80, :80])\n', (11026, 11056), True, 'import numpy as np\n'), ((12345, 12356), 'time.time', 'time.time', ([], {}), '()\n', (12354, 12356), False, 'import time\n'), ((878, 914), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * i)'}), '(seconds=3600 * i)\n', (896, 914), False, 'import datetime\n'), ((3064, 3085), 'numpy.array', 'np.array', (['pretimelist'], {}), '(pretimelist)\n', (3072, 3085), True, 'import numpy as np\n'), ((4851, 4872), 'numpy.array', 'np.array', (['pretimelist'], {}), '(pretimelist)\n', (4859, 4872), True, 'import numpy as np\n'), ((8126, 8162), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(i * 3600)'}), '(seconds=i * 3600)\n', (8144, 8162), False, 'import datetime\n'), ((10944, 10963), 'numpy.array', 'np.array', (['ruitudata'], {}), '(ruitudata)\n', (10952, 10963), True, 'import numpy as np\n'), ((10980, 11001), 'numpy.array', 'np.array', (['gaugebinary'], {}), '(gaugebinary)\n', (10988, 11001), True, 'import numpy as np\n'), ((969, 1005), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * i)'}), '(seconds=3600 * i)\n', (987, 1005), False, 'import datetime\n'), ((6097, 6110), 'numpy.load', 'np.load', (['file'], {}), '(file)\n', (6104, 6110), True, 'import numpy as np\n'), ((6185, 6198), 'numpy.load', 'np.load', (['file'], {}), '(file)\n', (6192, 6198), True, 'import numpy as np\n'), ((6766, 6783), 'numpy.abs', 'np.abs', (['ruituFile'], {}), '(ruituFile)\n', (6772, 6783), True, 'import numpy as np\n'), ((7040, 7061), 'numpy.abs', 'np.abs', (['histgaugeFile'], {}), '(histgaugeFile)\n', (7046, 7061), True, 'import numpy as np\n'), ((10095, 10131), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * i)'}), '(seconds=3600 * i)\n', (10113, 10131), False, 'import datetime\n'), ((10336, 10372), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': '(3600 * i)'}), '(seconds=3600 * i)\n', (10354, 10372), False, 'import datetime\n'), ((10827, 10886), 'numpy.concatenate', 'np.concatenate', (['(gaugedata >= 0.1, gaugedata < 0.1)'], {'axis': '(2)'}), '((gaugedata >= 0.1, gaugedata < 0.1), axis=2)\n', (10841, 10886), True, 'import numpy as np\n'), ((12550, 12561), 'time.time', 'time.time', ([], {}), '()\n', (12559, 12561), False, 'import time\n'), ((6922, 6951), 'numpy.abs', 'np.abs', (['ruituFile[:, i, :, :]'], {}), '(ruituFile[:, i, :, :])\n', (6928, 6951), True, 'import numpy as np\n'), ((7212, 7245), 'numpy.abs', 'np.abs', (['histgaugeFile[:, i, :, :]'], {}), '(histgaugeFile[:, i, :, :])\n', (7218, 7245), True, 'import numpy as np\n'), ((8643, 8671), 'numpy.ones', 'np.ones', (['[hist_hour, 80, 84]'], {}), '([hist_hour, 80, 84])\n', (8650, 8671), True, 'import numpy as np\n'), ((8772, 8800), 'numpy.ones', 'np.ones', (['[hist_hour, 80, 84]'], {}), '([hist_hour, 80, 84])\n', (8779, 8800), True, 'import numpy as np\n'), ((8890, 8911), 'numpy.ones', 'np.ones', (['[24, 80, 84]'], {}), '([24, 80, 84])\n', (8897, 8911), True, 'import numpy as np\n'), ((9009, 9030), 'numpy.ones', 'np.ones', (['[24, 80, 84]'], {}), '([24, 80, 84])\n', (9016, 9030), True, 'import numpy as np\n')]
from src.ddpg.train import Trainer from src.ddpg.buffer import MemoryBuffer from statistics import mean import gym import numpy as np import random import scipy.stats class EvolutionaryDDPG: def __init__(self, n_networks, max_buffer, max_episodes, max_steps, episodes_ready, explore_prob, explore_factors): self.n = n_networks # liczba sieci self.max_buffer = max_buffer self.max_episodes = max_episodes self.max_steps = max_steps self.episodes_ready = episodes_ready if len(self.episodes_ready) < n_networks: print("episodes_ready.len() != n_networks") raise Exception self.explore_prob = explore_prob - int(explore_prob) self.explore_factors = explore_factors self.rams = [] # początkowe ostatnie 10 cząstkowych wyników dla wszystkich sieci ustawiamy na -100 self.last_ten_scores = [[-100 for _ in range(10)] for _ in range(self.n)] self.envs = self.create_envs() self.ddpgs = self.create_ddpg() def create_envs(self): envs = [] for i in range(self.n): env = gym.make('BipedalWalker-v2') envs.append(env) return envs def create_ddpg(self): ddpgs = [] for i in range(self.n): env = self.envs[i] s_dim = env.observation_space.shape[0] a_dim = env.action_space.shape[0] a_max = env.action_space.high[0] print(' State Dimensions :- ', s_dim) print(' Action Dimensions :- ', a_dim) print(' Action Max :- ', a_max) ram = MemoryBuffer(self.max_buffer) self.rams.append(ram) trainer = Trainer(s_dim, a_dim, a_max, ram) ddpgs.append(trainer) return ddpgs def exploit(self, idx): """ Eksploatacja polega na jednolitym próbkowaniu innego (losowo wybranego) agenta w populacji, a następnie porównaniu ostatnich 10 cząstkowych nagród przy użyciu Welch’s t-test. Jeśli próbkowany agent ma wyższą średnią cząstkową nagrodę i spełnia warunki t-test, wagi z hiperparametrami są kopiowane do obecnego agenta. :param idx: indeks sieci, dla której wywołujemy exploit() """ # losujemy indeks sieci różnej od obecnej random_idx = random.randrange(self.n) while random_idx == idx: random_idx = random.randrange(self.n) # wybieramy lepszą sieć best_net_idx = self.pick_net(idx, random_idx) # jeśli wylosowana sieć okazała się być lepsza if idx != best_net_idx: # podmieniamy wagi new_param = self.ddpgs[best_net_idx].actor.parameters() for param in self.ddpgs[idx].actor.parameters(): param.data.copy_(next(new_param)) new_param = self.ddpgs[best_net_idx].critic.parameters() for param in self.ddpgs[idx].critic.parameters(): param.data.copy_(next(new_param)) print("<exploit", idx, "> Wczytano nowe wagi z sieci nr ", best_net_idx) else: print("<exploit", idx, "> Wagi zostają, są lepsze od sieci nr ", random_idx) def explore(self, idx): if random.random() < 0.5: for param in self.ddpgs[idx].actor.parameters(): param.data.mul_(self.explore_factors[0]) for param in self.ddpgs[idx].critic.parameters(): param.data.mul_(self.explore_factors[0]) print("<explore", idx, "> Przemnożono wagi przez ", self.explore_factors[0]) else: for param in self.ddpgs[idx].actor.parameters(): param.data.mul_(self.explore_factors[1]) for param in self.ddpgs[idx].critic.parameters(): param.data.mul_(self.explore_factors[1]) print("<explore", idx, "> Przemnożono wagi przez ", self.explore_factors[1]) def pick_net(self, idx1, idx2): """ Porównanie nagród cząstkowych dwóch sieci przy użyciu Welch's t-test :param idx1: obecna sieć :param idx2: losowo wybrana sieć :return: indeks najlepszej sieci """ statistic, pvalue = scipy.stats.ttest_ind(self.last_ten_scores[idx1], self.last_ten_scores[idx2], equal_var=False) if pvalue <= 0.05: # przeszło welch's t-test, teraz porównanie średnich z ostatnich 10 wyników if mean(self.last_ten_scores[idx1]) > mean(self.last_ten_scores[idx2]): return idx1 # obecna sieć lepsza else: return idx2 # losowo wybrana sieć lepsza else: return idx1 # nie przeszło welch's t-test def train(self): # Liczba iteracji algorytmu for episode in range(self.max_episodes): # Dla każdej sieci for ddpg_idx in range(self.n): trainer = self.ddpgs[ddpg_idx] ram = self.rams[ddpg_idx] env = self.envs[ddpg_idx] # Zresetuj środowisko observation = env.reset() # Zliczamy całkowity uzyskany wynik total_reward = 0 # Wykonaj max_steps kroków for r in range(self.max_steps): # env.render() state = np.float32(observation) action = trainer.get_exploration_action(state) new_observation, reward, done, info = env.step(action) total_reward = total_reward + reward if not done: new_state = np.float32(new_observation) ram.add(state, action, reward, new_state) observation = new_observation trainer.optimize() if done: break self.append_score(ddpg_idx, total_reward) print('NETWORK ', ddpg_idx, ' EPISODE : ', episode, ' SCORE : ', total_reward) # każda sieć ma swój max epizodów, po których zostaną wywołane metody exploit i explore if episode % self.episodes_ready[ddpg_idx] == 0 and episode != 0: self.exploit(ddpg_idx) if random.random() < self.explore_prob: self.explore(ddpg_idx) if episode % 100 == 0: self.save_ckpt(episode) def append_score(self, idx, new_score): """ Usuwa ostatni wynik z 10 ostatnich cząstkowych wyników i dodaje nowy :param idx: indeks sieci :param new_score: nowy wynik """ self.last_ten_scores[idx] = self.last_ten_scores[idx][1:] self.last_ten_scores[idx].append(new_score) def save_ckpt(self, episode): idx_ddpg = 0 for ddpg in self.ddpgs: ddpg.save_models_path(idx_ddpg, episode) idx_ddpg = idx_ddpg + 1 print('Models saved successfully') def load_ckpt(self, episode): idx_ddpg = 0 for ddpg in self.ddpgs: ddpg.load_models_path('Models/' + str(idx_ddpg) + '_' + str(episode) + '_actor.pt', 'Models/' + str(idx_ddpg) + '_' + str(episode) + '_critic.pt') idx_ddpg = idx_ddpg + 1 print('Models loaded successfully')
[ "gym.make", "src.ddpg.buffer.MemoryBuffer", "numpy.float32", "random.random", "random.randrange", "statistics.mean", "src.ddpg.train.Trainer" ]
[((2347, 2371), 'random.randrange', 'random.randrange', (['self.n'], {}), '(self.n)\n', (2363, 2371), False, 'import random\n'), ((1135, 1163), 'gym.make', 'gym.make', (['"""BipedalWalker-v2"""'], {}), "('BipedalWalker-v2')\n", (1143, 1163), False, 'import gym\n'), ((1630, 1659), 'src.ddpg.buffer.MemoryBuffer', 'MemoryBuffer', (['self.max_buffer'], {}), '(self.max_buffer)\n', (1642, 1659), False, 'from src.ddpg.buffer import MemoryBuffer\n'), ((1716, 1749), 'src.ddpg.train.Trainer', 'Trainer', (['s_dim', 'a_dim', 'a_max', 'ram'], {}), '(s_dim, a_dim, a_max, ram)\n', (1723, 1749), False, 'from src.ddpg.train import Trainer\n'), ((2430, 2454), 'random.randrange', 'random.randrange', (['self.n'], {}), '(self.n)\n', (2446, 2454), False, 'import random\n'), ((3252, 3267), 'random.random', 'random.random', ([], {}), '()\n', (3265, 3267), False, 'import random\n'), ((4499, 4531), 'statistics.mean', 'mean', (['self.last_ten_scores[idx1]'], {}), '(self.last_ten_scores[idx1])\n', (4503, 4531), False, 'from statistics import mean\n'), ((4534, 4566), 'statistics.mean', 'mean', (['self.last_ten_scores[idx2]'], {}), '(self.last_ten_scores[idx2])\n', (4538, 4566), False, 'from statistics import mean\n'), ((5398, 5421), 'numpy.float32', 'np.float32', (['observation'], {}), '(observation)\n', (5408, 5421), True, 'import numpy as np\n'), ((5692, 5719), 'numpy.float32', 'np.float32', (['new_observation'], {}), '(new_observation)\n', (5702, 5719), True, 'import numpy as np\n'), ((6343, 6358), 'random.random', 'random.random', ([], {}), '()\n', (6356, 6358), False, 'import random\n')]
from collections import defaultdict import numpy as np import networkx as nx import networkx.algorithms.approximation as approx import networkx.algorithms.coloring as coloring import pulp def clique_random_sequential(graph : nx.Graph) -> list: """Perform minimum clique cover with random sequential greedy method This method will create clique greedily. At least finish with O(|V|^2). Args: graph (nx.Graph): graph to solve Returns: list: list of node names for each clique """ graph = graph.copy() clique_list = [] while len(graph.nodes())>0: clique = [] node_list = list(graph.nodes()) np.random.permutation(node_list) for node in node_list: flag = True for exist_node in clique: if node not in graph[exist_node]: flag =False break if flag: clique.append(node) graph.remove_nodes_from(clique) clique_list.append(clique) return clique_list def clique_approx_find_greedy_eliminate(graph: nx.Graph) -> list: """Perform minimum clique cover by approximatly find maximum clique and iteratively eliminate it. Find the maximum clique with approximatino methods and iteratively eliminate it. Args: graph (nx.Graph): graph to solve Returns: list: list of node names for each clique """ _, clique_list = approx.clique_removal(graph) clique_list = [list(item) for item in clique_list] return clique_list def clique_exact_find_greedy_eliminate(graph: nx.Graph) -> list: """Perform minimum clique cover by exactly find maximum clique and iteratively eliminate it. Find the maximum clique by enumerating all the cliques and iteratively eliminate it. Args: graph (nx.Graph): graph to solve Returns: list: list of node names for each clique """ graph = graph.copy() clique_list = [] while len(graph.nodes())>0: max_size = 0 max_clique = [] for clique in nx.find_cliques(graph): size = len(clique) if size > max_size: max_size = size max_clique = clique graph.remove_nodes_from(max_clique) clique_list.append(max_clique) return clique_list def clique_exact_find_once_greedy_eliminate(graph: nx.Graph) -> list: """Perform minimum clique cover by exactly find maximum clique and iteratively eliminate it. Find the maximum clique by enumerating all the cliques once and iteratively eliminate it. Args: graph (nx.Graph): graph to solve Returns: list: list of node names for each clique """ max_cliques = sorted(nx.find_cliques(graph), key=lambda x: len(x), reverse=True) max_cliques = [set(i) for i in max_cliques] clique_list = [] while np.sum([len(i) for i in max_cliques]) > 0: max_clique = max_cliques[0] max_cliques = [i - max_clique for i in max_cliques] max_cliques = sorted(max_cliques, key=lambda x: len(x), reverse=True) clique_list.append(max_clique) return clique_list def coloring_greedy(graph: nx.Graph, strategy: str) -> list: """Perform minimum clique cover by reducing problem into coloring problem and using approximation methods. See https://networkx.github.io/documentation/stable/reference/algorithms/coloring.html for detailed algorithms Args: graph (nx.Graph): graph to solve strategy (str): name of strategy Returns: list: list of node names for each clique """ graph = nx.complement(graph) result = coloring.greedy_color(graph, strategy=strategy) clique_dict = defaultdict(list) for node,color in result.items(): clique_dict[color].append(node) return list(clique_dict.values()) class AbortedError(Exception): pass def integer_programming(graph: nx.Graph) -> list: """Perform minimum clique cover by reducing problem into integer programming. If solver says optimal, optimal solution for minimum clique cover is obtained, but it may take very long time for large problems. TODO: Check installation of commercial IP solvers such as CPLEX, Gurobi, and use them if they are installed. Args: graph (nx.Graph): graph to solve Returns: list: list of node names for each clique Raises: Exception: Solver cannot solve IP problem. """ problem = pulp.LpProblem("clique_cover", pulp.LpMinimize) clique_max_count = len(graph.nodes()) clique_vars = [] for ind in range(clique_max_count): var = pulp.LpVariable("clique{}".format(ind), cat="Binary") clique_vars.append(var) node_belong_vars = [] for ind in range(clique_max_count): node_belong_vars.append({}) for node in graph.nodes(): nodename = str(node) nodename = nodename.replace(" ","0").replace(" i","1").replace(" -","2").replace("-i","3") var = pulp.LpVariable("{}_{}".format(nodename,ind), cat = "Binary") node_belong_vars[ind][node] = var # minimize used cliques problem += sum(clique_vars) # if node belongs, clique must be used for ind in range(clique_max_count): for node in graph.nodes(): problem += (node_belong_vars[ind][node] <= clique_vars[ind]) # clique must be exclusive for node in graph.nodes(): items = [] for ind in range(clique_max_count): items.append(node_belong_vars[ind][node]) problem += (sum(items)==1) # not-neighboring nodes cannot belong the same clique for ind in range(clique_max_count): for i1, n1 in enumerate(graph.nodes()): for i2, n2 in enumerate(graph.nodes()): if i2<=i1: continue if n2 not in graph[n1]: problem += (node_belong_vars[ind][n1]+node_belong_vars[ind][n2]<=1) #status = problem.solve() import multiprocessing cpu_count = multiprocessing.cpu_count() status = problem.solve(pulp.PULP_CBC_CMD(threads=cpu_count, keepFiles=0, mip=1, maxSeconds=5)) #status = problem.solve(pulp.PULP_CBC_CMD(maxSeconds=5, msg=0, fracGap=0)) #print(problem) #print(pulp.LpStatus[status]) #print(problem.objective.value()) # cannot solve if status <= 0: raise AbortedError("Solver cannot solve problem.") clique_dict = defaultdict(list) node_count = 0 for node in graph.nodes(): for index in range(clique_max_count): var = node_belong_vars[index][node] if(var.value()>=0.5): clique_dict[index].append(node) node_count += 1 break return list(clique_dict.values()) strategy_func = { "clique_random_sequential" : clique_random_sequential, "clique_approx_find_greedy_eliminate" : clique_approx_find_greedy_eliminate, "clique_exact_find_greedy_eliminate" : clique_exact_find_greedy_eliminate, "clique_exact_find_once_greedy_eliminate" : clique_exact_find_once_greedy_eliminate, "coloring_largest_first" : None, "coloring_smallest_last" : None, "coloring_random_sequential" : None, "coloring_independent_set" : None, "coloring_connected_sequential_bfs" : None, "coloring_connected_sequential_dfs" : None, "coloring_saturation_largest_first" : None, "integer_programming" : integer_programming, } clique_cover_strategies = strategy_func.keys() def clique_cover(graph: nx.graph, strategy:str ="clique_random_sequential") -> list: """Perform minimum clique cover using several strategies Args: graph (nx.Graph): graph to solve strategy (str): name of strategy Returns: list: list of node names for each clique """ if strategy not in strategy_func: raise ValueError("Unknown strategy, choose from {}".format(strategy_func.keys())) coloring_prefix = "coloring_" if coloring_prefix in strategy: return coloring_greedy(graph, strategy = strategy[len(coloring_prefix):]) return strategy_func[strategy](graph)
[ "networkx.algorithms.coloring.greedy_color", "networkx.complement", "collections.defaultdict", "networkx.find_cliques", "numpy.random.permutation", "pulp.LpProblem", "pulp.PULP_CBC_CMD", "networkx.algorithms.approximation.clique_removal", "multiprocessing.cpu_count" ]
[((1497, 1525), 'networkx.algorithms.approximation.clique_removal', 'approx.clique_removal', (['graph'], {}), '(graph)\n', (1518, 1525), True, 'import networkx.algorithms.approximation as approx\n'), ((3741, 3761), 'networkx.complement', 'nx.complement', (['graph'], {}), '(graph)\n', (3754, 3761), True, 'import networkx as nx\n'), ((3776, 3823), 'networkx.algorithms.coloring.greedy_color', 'coloring.greedy_color', (['graph'], {'strategy': 'strategy'}), '(graph, strategy=strategy)\n', (3797, 3823), True, 'import networkx.algorithms.coloring as coloring\n'), ((3843, 3860), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3854, 3860), False, 'from collections import defaultdict\n'), ((4632, 4679), 'pulp.LpProblem', 'pulp.LpProblem', (['"""clique_cover"""', 'pulp.LpMinimize'], {}), "('clique_cover', pulp.LpMinimize)\n", (4646, 4679), False, 'import pulp\n'), ((6243, 6270), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (6268, 6270), False, 'import multiprocessing\n'), ((6670, 6687), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6681, 6687), False, 'from collections import defaultdict\n'), ((687, 719), 'numpy.random.permutation', 'np.random.permutation', (['node_list'], {}), '(node_list)\n', (708, 719), True, 'import numpy as np\n'), ((2143, 2165), 'networkx.find_cliques', 'nx.find_cliques', (['graph'], {}), '(graph)\n', (2158, 2165), True, 'import networkx as nx\n'), ((2833, 2855), 'networkx.find_cliques', 'nx.find_cliques', (['graph'], {}), '(graph)\n', (2848, 2855), True, 'import networkx as nx\n'), ((6299, 6369), 'pulp.PULP_CBC_CMD', 'pulp.PULP_CBC_CMD', ([], {'threads': 'cpu_count', 'keepFiles': '(0)', 'mip': '(1)', 'maxSeconds': '(5)'}), '(threads=cpu_count, keepFiles=0, mip=1, maxSeconds=5)\n', (6316, 6369), False, 'import pulp\n')]
import webbrowser import numpy as np import pandas as pd from pandas_datareader import data as web from sklearn import linear_model webbrowser.open("https://github.com/philliphsu/BottomSheetPickers") class ScikitBacktest(object): def __init__(self, sys): self.data = d self.matrix = m self.lags = 5 self.symbol = sys self.get_data() self.lm = linear_model.LogisticRegression(C=1e3) def get_data(self): d = web.DataReader(self.sys, data_source='yahoo')['Adj Close'] d = pd.DataFrame(d) d.columns = [self.symbol] d['returns'] = np.log(d / d.shift()) def select_data(self, start, end): d = self.data[(self.data.index >= start) & (self.data.index <= end)].copy() return d def get_matrix(self, start, end): d = self.select_data(start, end) m = np.zeros((self.lags + 1, len(d) - self.lags)) for i in range(self.lags + 1): if i == self.lags: m[i] = d[i:] else: m[i] = d[i:i - self.lags] def fit_model(self, start, end): self.get_matrix(start, end) self.lm.fit(self.matrix[:self.lags], np.sign(self.matrix[self.lags])) def predict_moves(self, start, end): self.get_matrix(start, end) pred = self.lm.predict(self.matrix[:self.lags]) return pred def run_strategy(self, start_tr, end_tr, start_te, end_te, lags): self.lags = lags self.fit_model(start_tr, end_tr) pred = self.predict_moves(start_te, end_te) d = self.select_data(start_te, end_te) d['pred'] = 0.0 d['pred'].ix[self.lags:] = pred d['strategy'] = d.pred * d.returns title = '%s to %s for %d lags' % (start_te, end_te, self.lags) d[['returns', 'strategy']].ix[self.lags:].cumsum().apply(np.exp).plot(title=title)
[ "pandas.DataFrame", "webbrowser.open", "pandas_datareader.data.DataReader", "sklearn.linear_model.LogisticRegression", "numpy.sign" ]
[((134, 201), 'webbrowser.open', 'webbrowser.open', (['"""https://github.com/philliphsu/BottomSheetPickers"""'], {}), "('https://github.com/philliphsu/BottomSheetPickers')\n", (149, 201), False, 'import webbrowser\n'), ((399, 440), 'sklearn.linear_model.LogisticRegression', 'linear_model.LogisticRegression', ([], {'C': '(1000.0)'}), '(C=1000.0)\n', (430, 440), False, 'from sklearn import linear_model\n'), ((546, 561), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (558, 561), True, 'import pandas as pd\n'), ((475, 520), 'pandas_datareader.data.DataReader', 'web.DataReader', (['self.sys'], {'data_source': '"""yahoo"""'}), "(self.sys, data_source='yahoo')\n", (489, 520), True, 'from pandas_datareader import data as web\n'), ((1198, 1229), 'numpy.sign', 'np.sign', (['self.matrix[self.lags]'], {}), '(self.matrix[self.lags])\n', (1205, 1229), True, 'import numpy as np\n')]
import sys import cv2 from matplotlib import pyplot as plt from skimage.filters import sobel import numpy as np import math from Etch import Etch PRINT_ETCH = True class Image: def __init__(self): self.points = [] self.image = cv2.imread("C:/Users/wnetz/Documents/etch-a-sketch/python/tests/protocol1_0/tri.png", 0) self.imageShape = 0 self.etch = Etch() self.sourceFile = open('C:/Users/wnetz/Documents/etch-a-sketch/python/tests/protocol1_0/test.txt', 'w') self.sourceFile2 = open('C:/Users/wnetz/Documents/etch-a-sketch/python/tests/protocol1_0/test2.txt', 'w') np.set_printoptions(threshold=sys.maxsize) def processImage(self): self.imageShape = self.image.shape sig = .3 median = np.median(self.image) lower = int(max(0,(1.0-sig)*median)) upper = int(min(255,(1.0+sig)*median)) self.image = cv2.Canny(self.image,lower,upper) plt.imshow(self.image, cmap='gray') plt.show() def sort(self): #loop x for x in range(self.imageShape[0]): #loop y for y in range(self.imageShape[1]): #if there is an edge pixle if self.image[x][y] == 255: point = (((x -self.imageShape[1] + 1) * -1) * 18000/self.imageShape[1], y * 12000/self.imageShape[0]) self.points.append(point) #print ("("+str(point[0]) + "," + str(point[1])+")") print("X",end='',file = self.sourceFile) else: print(" ",end='',file = self.sourceFile) print("",file = self.sourceFile) print(len(self.points)) def drawImage(self): avg = 0 numpoints = 0 minpoint = [0,0] length = len(self.points) while len(self.points) > 1: oldmin = minpoint min = math.pow(math.pow(18000,2) + math.pow(12000,2),.5) minpoint = [] lessmin = [] for point in self.points: dist = math.pow(math.pow(point[0]-oldmin[0],2) + math.pow(point[1]-oldmin[1],2),.5) if min < dist and dist < 100: lessmin.append(point) if dist < min: min = dist minpoint = point #if min < 3: #break if len(minpoint) > 0: print(str(min) + " (" + str(minpoint[0]) + "," + str(minpoint[1]) + ")", file = self.sourceFile2) if min > 1: avg = avg + min numpoints = numpoints + 1 for point in lessmin: self.points.remove(point) if len(minpoint) > 0: self.points.remove(minpoint) self.etch.goto(minpoint[0],minpoint[1],PRINT_ETCH) if len(self.points) % 1000 == 0: print(len(self.points)) print(str(min) + " (" + str(minpoint) + ") ",len(self.points)) print("total " + str(avg) + " " + str(numpoints)) print("total " + str(avg/numpoints)) def end(self): self.sourceFile.close() self.sourceFile2.close() self.etch.goto(0,0,PRINT_ETCH) image = Image() #print("enter image path") #print(input()) image.processImage() image.sort() image.drawImage() image.end()
[ "Etch.Etch", "cv2.Canny", "numpy.set_printoptions", "matplotlib.pyplot.show", "math.pow", "numpy.median", "matplotlib.pyplot.imshow", "cv2.imread" ]
[((249, 346), 'cv2.imread', 'cv2.imread', (['"""C:/Users/wnetz/Documents/etch-a-sketch/python/tests/protocol1_0/tri.png"""', '(0)'], {}), "(\n 'C:/Users/wnetz/Documents/etch-a-sketch/python/tests/protocol1_0/tri.png',\n 0)\n", (259, 346), False, 'import cv2\n'), ((386, 392), 'Etch.Etch', 'Etch', ([], {}), '()\n', (390, 392), False, 'from Etch import Etch\n'), ((627, 669), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'sys.maxsize'}), '(threshold=sys.maxsize)\n', (646, 669), True, 'import numpy as np\n'), ((775, 796), 'numpy.median', 'np.median', (['self.image'], {}), '(self.image)\n', (784, 796), True, 'import numpy as np\n'), ((910, 945), 'cv2.Canny', 'cv2.Canny', (['self.image', 'lower', 'upper'], {}), '(self.image, lower, upper)\n', (919, 945), False, 'import cv2\n'), ((952, 987), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.image'], {'cmap': '"""gray"""'}), "(self.image, cmap='gray')\n", (962, 987), True, 'from matplotlib import pyplot as plt\n'), ((996, 1006), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1004, 1006), True, 'from matplotlib import pyplot as plt\n'), ((1929, 1947), 'math.pow', 'math.pow', (['(18000)', '(2)'], {}), '(18000, 2)\n', (1937, 1947), False, 'import math\n'), ((1949, 1967), 'math.pow', 'math.pow', (['(12000)', '(2)'], {}), '(12000, 2)\n', (1957, 1967), False, 'import math\n'), ((2092, 2125), 'math.pow', 'math.pow', (['(point[0] - oldmin[0])', '(2)'], {}), '(point[0] - oldmin[0], 2)\n', (2100, 2125), False, 'import math\n'), ((2125, 2158), 'math.pow', 'math.pow', (['(point[1] - oldmin[1])', '(2)'], {}), '(point[1] - oldmin[1], 2)\n', (2133, 2158), False, 'import math\n')]
import os import sys path = os.environ.get('TRAVIS_BUILD_DIR') sys.path.insert(0, path+'/protlearn') import numpy as np from preprocessing import txt_to_df from feature_engineering import aaindex1 def test_aaindex1(): "Test AAIndex1" # load data df = txt_to_df(path+'/tests/docs/test_seq.txt', 0) # get aaindex1 aaind1 = aaindex1(df) # test shape assert aaind1.shape == (4, 553) # test some indices ANDN920101 = np.array([4.3, 4.40555, 4.48714, 4.46]) QIAN880126 = np.array([.01166, -.17111, .05857, -.04333]) KARS160122 = np.array([2.014, 5.48522, 2.789, 1.751]) np.testing.assert_equal(np.round(aaind1['ANDN920101'], 3),\ np.round(ANDN920101, 3)) np.testing.assert_equal(np.round(aaind1['QIAN880126'], 3),\ np.round(QIAN880126, 3)) np.testing.assert_equal(np.round(aaind1['KARS160122'], 3),\ np.round(KARS160122, 3)) # test standardization (zscore) aaind1_z = aaindex1(df, 'zscore') # test mean = 0 for i in range(aaind1_z.shape[0]): assert abs(round(aaind1_z.iloc[:,1].mean())) == 0 # test std --> 1 for i in range(aaind1_z.shape[0]): assert round(aaind1_z.iloc[:,i].std(), 1) ==\ round(aaind1_z.iloc[:,0].std(), 1) # test standardization (minmax) aaind1_mm = aaindex1(df, 'minmax') # test minimum and maximum for i in range(aaind1_mm.shape[0]): assert round(aaind1_mm.iloc[:,i].min()) == 0 assert round(aaind1_mm.iloc[:,i].max()) == 1
[ "preprocessing.txt_to_df", "sys.path.insert", "os.environ.get", "numpy.array", "numpy.round", "feature_engineering.aaindex1" ]
[((28, 62), 'os.environ.get', 'os.environ.get', (['"""TRAVIS_BUILD_DIR"""'], {}), "('TRAVIS_BUILD_DIR')\n", (42, 62), False, 'import os\n'), ((63, 102), 'sys.path.insert', 'sys.path.insert', (['(0)', "(path + '/protlearn')"], {}), "(0, path + '/protlearn')\n", (78, 102), False, 'import sys\n'), ((271, 318), 'preprocessing.txt_to_df', 'txt_to_df', (["(path + '/tests/docs/test_seq.txt')", '(0)'], {}), "(path + '/tests/docs/test_seq.txt', 0)\n", (280, 318), False, 'from preprocessing import txt_to_df\n'), ((354, 366), 'feature_engineering.aaindex1', 'aaindex1', (['df'], {}), '(df)\n', (362, 366), False, 'from feature_engineering import aaindex1\n'), ((471, 510), 'numpy.array', 'np.array', (['[4.3, 4.40555, 4.48714, 4.46]'], {}), '([4.3, 4.40555, 4.48714, 4.46])\n', (479, 510), True, 'import numpy as np\n'), ((528, 576), 'numpy.array', 'np.array', (['[0.01166, -0.17111, 0.05857, -0.04333]'], {}), '([0.01166, -0.17111, 0.05857, -0.04333])\n', (536, 576), True, 'import numpy as np\n'), ((590, 630), 'numpy.array', 'np.array', (['[2.014, 5.48522, 2.789, 1.751]'], {}), '([2.014, 5.48522, 2.789, 1.751])\n', (598, 630), True, 'import numpy as np\n'), ((1038, 1060), 'feature_engineering.aaindex1', 'aaindex1', (['df', '"""zscore"""'], {}), "(df, 'zscore')\n", (1046, 1060), False, 'from feature_engineering import aaindex1\n'), ((1403, 1425), 'feature_engineering.aaindex1', 'aaindex1', (['df', '"""minmax"""'], {}), "(df, 'minmax')\n", (1411, 1425), False, 'from feature_engineering import aaindex1\n'), ((659, 692), 'numpy.round', 'np.round', (["aaind1['ANDN920101']", '(3)'], {}), "(aaind1['ANDN920101'], 3)\n", (667, 692), True, 'import numpy as np\n'), ((723, 746), 'numpy.round', 'np.round', (['ANDN920101', '(3)'], {}), '(ANDN920101, 3)\n', (731, 746), True, 'import numpy as np\n'), ((776, 809), 'numpy.round', 'np.round', (["aaind1['QIAN880126']", '(3)'], {}), "(aaind1['QIAN880126'], 3)\n", (784, 809), True, 'import numpy as np\n'), ((840, 863), 'numpy.round', 'np.round', (['QIAN880126', '(3)'], {}), '(QIAN880126, 3)\n', (848, 863), True, 'import numpy as np\n'), ((893, 926), 'numpy.round', 'np.round', (["aaind1['KARS160122']", '(3)'], {}), "(aaind1['KARS160122'], 3)\n", (901, 926), True, 'import numpy as np\n'), ((957, 980), 'numpy.round', 'np.round', (['KARS160122', '(3)'], {}), '(KARS160122, 3)\n', (965, 980), True, 'import numpy as np\n')]
from __future__ import print_function, absolute_import # Script to predict (or test) the model using protein (kinase) sequence and SMILE pattern of a compound. # Usage: python2 get_kinase_pki.py protein_sequence "SMILE_Pattern" import numpy as np from pydpi.pypro import PyPro import pandas as pd import json import multiprocessing as mp import os import sys import numpy as np from sklearn.externals import joblib from utility import FeatureGenerator #from keras.models import load_model import pickle class pKiPred(object): def __init__(self): self.model = joblib.load(os.path.join(os.path.dirname(__file__), 'Random_forest_gridsearch_py27.mdl')) def get_smi_features(self, smiles): try: feat_gen = FeatureGenerator(smiles) features = feat_gen.toTPATF() return features except: return None def get_features(self, seq, smi): p = PyPro() try: p.ReadProteinSequence(seq) features = list(p.GetALL().values()) smi_features = self.get_smi_features(smi) smi_features2 = list(np.array([f for f in smi_features], dtype=np.float32)) total_features = np.array(features+smi_features2)[np.newaxis, :] # total_features = np.array(smi_features2+features)[np.newaxis, :] # does not work...! return total_features except Exception as e: print(str(e)) return None def predict(self, seq, smi): protein_feature = self.get_features(seq, smi) return self.model.predict(protein_feature) def main(): seq = "MGCGCSSHPEDDWMENIDVCENCHYPIVPLDGKGTLLIRNGSEVRDPLVTYEGSNPPASPLQDNLVIALHSYEPSHDGDLGFEKGEQLRILEQSGEWWKAQSLTTGQEGFIPFNFVAKANSLEPEPWFFK<KEY>" smile = "CC(C)Oc1ccc(cc1Cl)c2noc(n2)c3ccc(N[C@H]4CC[C@H](C4)C(=O)O)cc3" pkipred = pKiPred() if len(sys.argv) == 1: print(pkipred.predict(seq, smile)) else: print(pkipred.predict(sys.argv[1], sys.argv[2])) if __name__=="__main__": main()
[ "pydpi.pypro.PyPro", "os.path.dirname", "utility.FeatureGenerator", "numpy.array" ]
[((933, 940), 'pydpi.pypro.PyPro', 'PyPro', ([], {}), '()\n', (938, 940), False, 'from pydpi.pypro import PyPro\n'), ((747, 771), 'utility.FeatureGenerator', 'FeatureGenerator', (['smiles'], {}), '(smiles)\n', (763, 771), False, 'from utility import FeatureGenerator\n'), ((605, 630), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (620, 630), False, 'import os\n'), ((1128, 1181), 'numpy.array', 'np.array', (['[f for f in smi_features]'], {'dtype': 'np.float32'}), '([f for f in smi_features], dtype=np.float32)\n', (1136, 1181), True, 'import numpy as np\n'), ((1217, 1251), 'numpy.array', 'np.array', (['(features + smi_features2)'], {}), '(features + smi_features2)\n', (1225, 1251), True, 'import numpy as np\n')]
from keras.models import load_model from keras.preprocessing import image import numpy as np import cv2 from keras.backend import tensorflow_backend as K import os import glob import time import keras from matplotlib import pyplot as plt from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K2 #IOU calc iou_smooth=1. #Unet ile plaka bulmak icin gerekli input size'ları img_width, img_height = 256, 256 char_list = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","R","S","T","U","V","Y","Z","X","W"] #Unet icin gereken loss fonksyonu, kesisen alana gore loss hesaplar def IOU_calc(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return 2*(intersection + iou_smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + iou_smooth) def IOU_calc_loss(y_true, y_pred): return 1-IOU_calc(y_true, y_pred) #Plakadaki karakterlerin sıralanması icin, karakterleri en'lerine bakarak sıralar def compareRectWidth(a,b): return a < b # Unet modeli yukluyor, model_unet = load_model('../src/gumruk_unetGU002.h5',custom_objects={'IOU_calc_loss': IOU_calc_loss, 'IOU_calc': IOU_calc}) #CNN modelini yukluyor, karakter tanıma icin # CNN modelinin input sizeları img_rows, img_cols = 28, 28 batch_size = 128 num_classes = 35 epochs = 12 if K2.image_data_format() == 'channels_first': input_shape = (1, img_rows, img_cols) else: input_shape = (img_rows, img_cols, 1) model_cnn = Sequential() model_cnn.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model_cnn.add(Conv2D(64, (3, 3), activation='relu')) model_cnn.add(MaxPooling2D(pool_size=(2, 2))) model_cnn.add(Dropout(0.25)) model_cnn.add(Flatten()) model_cnn.add(Dense(128, activation='relu')) model_cnn.add(Dropout(0.5)) model_cnn.add(Dense(num_classes, activation='softmax')) model_cnn.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model_cnn.load_weights('../src/mert_cnn.h5') #unet ile plakayi bulup, return ediyor. input olarak image path alıyor def getPlateImage(filepath): image = cv2.imread(filepath) plate = image originalImage = image ##model icin gerekli input boyutunu hazirliyor. image = cv2.resize(image, (256, 256)).astype("float32") image = np.expand_dims(image, axis=0) #prediction binary image dönüyor pred = model_unet.predict(image) pred = pred.reshape((256,256,1)) pred = pred.astype(np.float32) pred = pred*255 pred = cv2.resize(pred, (originalImage.shape[1], originalImage.shape[0])) pred=np.uint8(pred) #resimdeki en buyuk beyaz alanı alıp(plaka lokasyonu) kesiyor contours, hierarchy = cv2.findContours(pred,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) largestArea = 0 for contour in contours: tArea = cv2.contourArea(contour) if tArea > largestArea: largestArea = tArea x,y,w,h = cv2.boundingRect(contour) if largestArea > 0: plate = originalImage[y:y+h,x:x+w] else: print("PLATE COULD NOT FOUND") return plate #plaka resmini alıp def getPlateString(plate): grayPlate = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY) roiList = [] wList = [] charList = [] retval, binary = cv2.threshold(grayPlate, 30.0, 255.0, cv2.THRESH_BINARY+cv2.THRESH_OTSU) contours,hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) idx =0 plateStr = [] for cnt in contours: idx += 1 x,y,w,h = cv2.boundingRect(cnt) roi=plate[y:y+h,x:x+w] if w > 15 and h > 30 and w <100 and h< 100: roiList.append(roi) wList.append(x) #cv2.imwrite("/home/utku/Desktop/rois/" + str(idx) +".jpg", roi) #cv2.waitKey(100) #predict roi, resize may needed #roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) roi = np.asarray(roi) roi = np.resize(roi, (28,28)) if K2.image_data_format() == 'channels_first': roi = roi.reshape(roi.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: roi = roi.reshape(1, img_rows, img_cols, 1) #roi = np.resize(roi, (28,28,1)) #roi = np.expand_dims(roi, axis=0) roi = roi/255 pred = model_cnn.predict(roi) #get index print("pred: ", pred) predd = pred[0] char_idx = np.argmax(predd) #char_idx = np.where(predd == 1) ##1 olanın indexi plate_char = char_list[char_idx]; #append result to plateStr, may map the predict to a char(BUT HOW) plateStr.append(plate_char) print("plate_char is: ", plate_char) #break #sorting from left to right charList = [x for _,x in sorted(zip(wList,plateStr))] return charList #plate = getPlateImage("sampleplate.jpg") #plateString = getPlateString(plate) #if 'X' in plateString: plateString.remove('X') #print("plateString: ", plateString)
[ "keras.models.load_model", "keras.optimizers.Adadelta", "numpy.resize", "numpy.argmax", "keras.backend.tensorflow_backend.flatten", "cv2.contourArea", "cv2.cvtColor", "keras.layers.Flatten", "cv2.boundingRect", "keras.layers.MaxPooling2D", "cv2.resize", "numpy.uint8", "keras.layers.Dropout", "numpy.asarray", "keras.layers.Conv2D", "keras.backend.tensorflow_backend.sum", "keras.backend.image_data_format", "cv2.threshold", "numpy.expand_dims", "cv2.imread", "keras.layers.Dense", "keras.models.Sequential", "cv2.findContours" ]
[((1228, 1343), 'keras.models.load_model', 'load_model', (['"""../src/gumruk_unetGU002.h5"""'], {'custom_objects': "{'IOU_calc_loss': IOU_calc_loss, 'IOU_calc': IOU_calc}"}), "('../src/gumruk_unetGU002.h5', custom_objects={'IOU_calc_loss':\n IOU_calc_loss, 'IOU_calc': IOU_calc})\n", (1238, 1343), False, 'from keras.models import load_model\n'), ((1643, 1655), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1653, 1655), False, 'from keras.models import Sequential\n'), ((812, 829), 'keras.backend.tensorflow_backend.flatten', 'K.flatten', (['y_true'], {}), '(y_true)\n', (821, 829), True, 'from keras.backend import tensorflow_backend as K\n'), ((842, 859), 'keras.backend.tensorflow_backend.flatten', 'K.flatten', (['y_pred'], {}), '(y_pred)\n', (851, 859), True, 'from keras.backend import tensorflow_backend as K\n'), ((876, 902), 'keras.backend.tensorflow_backend.sum', 'K.sum', (['(y_true_f * y_pred_f)'], {}), '(y_true_f * y_pred_f)\n', (881, 902), True, 'from keras.backend import tensorflow_backend as K\n'), ((1496, 1518), 'keras.backend.image_data_format', 'K2.image_data_format', ([], {}), '()\n', (1516, 1518), True, 'from keras import backend as K2\n'), ((1670, 1744), 'keras.layers.Conv2D', 'Conv2D', (['(32)'], {'kernel_size': '(3, 3)', 'activation': '"""relu"""', 'input_shape': 'input_shape'}), "(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)\n", (1676, 1744), False, 'from keras.layers import Conv2D, MaxPooling2D\n'), ((1794, 1831), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""'}), "(64, (3, 3), activation='relu')\n", (1800, 1831), False, 'from keras.layers import Conv2D, MaxPooling2D\n'), ((1847, 1877), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (1859, 1877), False, 'from keras.layers import Conv2D, MaxPooling2D\n'), ((1893, 1906), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (1900, 1906), False, 'from keras.layers import Dense, Dropout, Flatten\n'), ((1922, 1931), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1929, 1931), False, 'from keras.layers import Dense, Dropout, Flatten\n'), ((1947, 1976), 'keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""'}), "(128, activation='relu')\n", (1952, 1976), False, 'from keras.layers import Dense, Dropout, Flatten\n'), ((1992, 2004), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1999, 2004), False, 'from keras.layers import Dense, Dropout, Flatten\n'), ((2020, 2060), 'keras.layers.Dense', 'Dense', (['num_classes'], {'activation': '"""softmax"""'}), "(num_classes, activation='softmax')\n", (2025, 2060), False, 'from keras.layers import Dense, Dropout, Flatten\n'), ((2371, 2391), 'cv2.imread', 'cv2.imread', (['filepath'], {}), '(filepath)\n', (2381, 2391), False, 'import cv2\n'), ((2547, 2576), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (2561, 2576), True, 'import numpy as np\n'), ((2740, 2806), 'cv2.resize', 'cv2.resize', (['pred', '(originalImage.shape[1], originalImage.shape[0])'], {}), '(pred, (originalImage.shape[1], originalImage.shape[0]))\n', (2750, 2806), False, 'import cv2\n'), ((2813, 2827), 'numpy.uint8', 'np.uint8', (['pred'], {}), '(pred)\n', (2821, 2827), True, 'import numpy as np\n'), ((2915, 2977), 'cv2.findContours', 'cv2.findContours', (['pred', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(pred, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (2931, 2977), False, 'import cv2\n'), ((3320, 3359), 'cv2.cvtColor', 'cv2.cvtColor', (['plate', 'cv2.COLOR_BGR2GRAY'], {}), '(plate, cv2.COLOR_BGR2GRAY)\n', (3332, 3359), False, 'import cv2\n'), ((3419, 3493), 'cv2.threshold', 'cv2.threshold', (['grayPlate', '(30.0)', '(255.0)', '(cv2.THRESH_BINARY + cv2.THRESH_OTSU)'], {}), '(grayPlate, 30.0, 255.0, cv2.THRESH_BINARY + cv2.THRESH_OTSU)\n', (3432, 3493), False, 'import cv2\n'), ((3515, 3579), 'cv2.findContours', 'cv2.findContours', (['binary', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)\n', (3531, 3579), False, 'import cv2\n'), ((2149, 2176), 'keras.optimizers.Adadelta', 'keras.optimizers.Adadelta', ([], {}), '()\n', (2174, 2176), False, 'import keras\n'), ((3030, 3054), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (3045, 3054), False, 'import cv2\n'), ((3648, 3669), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (3664, 3669), False, 'import cv2\n'), ((2489, 2518), 'cv2.resize', 'cv2.resize', (['image', '(256, 256)'], {}), '(image, (256, 256))\n', (2499, 2518), False, 'import cv2\n'), ((3117, 3142), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (3133, 3142), False, 'import cv2\n'), ((3966, 3981), 'numpy.asarray', 'np.asarray', (['roi'], {}), '(roi)\n', (3976, 3981), True, 'import numpy as np\n'), ((3991, 4015), 'numpy.resize', 'np.resize', (['roi', '(28, 28)'], {}), '(roi, (28, 28))\n', (4000, 4015), True, 'import numpy as np\n'), ((4428, 4444), 'numpy.argmax', 'np.argmax', (['predd'], {}), '(predd)\n', (4437, 4444), True, 'import numpy as np\n'), ((946, 961), 'keras.backend.tensorflow_backend.sum', 'K.sum', (['y_true_f'], {}), '(y_true_f)\n', (951, 961), True, 'from keras.backend import tensorflow_backend as K\n'), ((964, 979), 'keras.backend.tensorflow_backend.sum', 'K.sum', (['y_pred_f'], {}), '(y_pred_f)\n', (969, 979), True, 'from keras.backend import tensorflow_backend as K\n'), ((4022, 4044), 'keras.backend.image_data_format', 'K2.image_data_format', ([], {}), '()\n', (4042, 4044), True, 'from keras import backend as K2\n')]
import json import os import SimpleITK as sitk import numpy import pydicom import numpy as np from ltr.admin.environment import env_settings from ltr.data.processing_utils import str_analyse from ltr.dataset.base_dataset import BaseDataset from pydoctor.evaluation import Study from pydoctor.evaluation.data import StudyList def _read_file(path): with open(path, 'r') as f: json_file = json.loads(f.read()) return json_file class Lumbar3d(BaseDataset): """ The Lumbar dataset from official TianChi competition. organized as follows. -lumbar -lumbar_testA50 -study... -lumbar_train150 -study... -lumbar_train51 -study... lumbar_train150_annotation.json lumbar_train51_annotation.json """ def __init__(self, root=None, split='train'): """ args: :param root:path to the lumbar dataset. :param split: string name 'train','val','test' """ root = env_settings().lumbar_dir if root is None else root super().__init__('lumbar', root) # dataset split for competition. if split == 'train': self.studies_path = os.path.join(root, 'DatasetA','lumbar_train150') self.anno_path = os.path.join(root, 'DatasetA','lumbar_train150_annotation.json') self.anno_meta = self._load_anno(self.anno_path) elif split == 'val': self.studies_path = os.path.join(root, 'DatasetA','lumbar_train51') self.anno_path = os.path.join(root, 'DatasetA','lumbar_train51_annotation.json') self.anno_meta = self._load_anno(self.anno_path) elif split == 'testA': self.studies_path = os.path.join(root,'datasetA','lumbar_testA50') elif split == 'testB': self.studies_path = os.path.join(root, 'datasetB', 'lumbar_testB50') else: raise ValueError('Unknow split name.') # All folders inside the root. self.study_list = self._get_study_list() self.body_id = {'L1':0,'L2':1,'L3':2,'L4':3,'L5':4} self.body_class = {'V1':0,'V2':1} self.disc_id = {'T12-L1':0,'L1-L2':1,'L2-L3':2,'L3-L4':3,'L4-L5':4,'L5-S1':5} self.disc_class = {'V1':0,'V2':1,'V3':2,'V4':3,'V5':4} def _get_study_list(self): return os.listdir(self.studies_path) def get_name(self): return 'lumbar' def _get_study_path(self, std_id): return os.path.join(self.studies_path, self.study_list[std_id]) def _get_key_image_info(self, folder,frame_num=3): global key_image_path reader = sitk.ImageSeriesReader() file_path = os.path.join(folder, os.listdir(folder)[0]) study_uid = pydicom.read_file(file_path).get(0x0020000d).value study_meta = self.anno_meta[str(study_uid)] dicom_path_list = reader.GetGDCMSeriesFileNames(folder, study_meta['seriesUid']) dicom_slice = [[pydicom.read_file(file), file] for file in dicom_path_list] dicom_slice.sort(key=lambda x: float(x[0].ImagePositionPatient[0])) data_path = dicom_slice[len(dicom_path_list) // 2][1] middile_index = study_meta['point'][0]['zIndex'] frame_list = [] for dcm_path in range(middile_index - frame_num // 2,middile_index + frame_num // 2 + 1,1): frame_list.append(np.squeeze(sitk.GetArrayFromImage(sitk.ReadImage(dicom_slice[dcm_path][1])))) key_image = numpy.stack(frame_list,axis=0) key_image = np.uint8((key_image - key_image.min()) / (key_image.max() - key_image.min()) * 255.0) return key_image, study_meta['point'] def _load_anno(self, anno_path): anno_list = _read_file(anno_path) anno_dict = {} for anno in anno_list: tmp_dict = {anno['studyUid']: {'seriesUid': anno['data'][0]['seriesUid'], 'instanceUid': anno['data'][0]['instanceUid'], 'point': anno['data'][0]['annotation'][0]['data']['point']}} anno_dict.update(tmp_dict) return anno_dict def _deal_point_dict(self,point_list): body_dict,disc_dict = {},{} for ann in point_list: coord = ann.get('coord',None) identification = ann['tag'].get('identification',None) if identification in self.body_id: class_num = self.body_class[str_analyse(ann['tag'].get('vertebra','v1').upper())] body_dict.update({identification:{'coord':coord,'class_num':class_num}}) elif identification in self.disc_id: class_num = self.disc_class[str_analyse(ann['tag'].get('disc','v1').upper())] disc_dict.update({identification:{'coord':coord,'class_num':class_num}}) return body_dict, disc_dict def get_frames(self, std_id, frame_num=5,anno=None): dicom_folder = self._get_study_path(std_id) key_frame,point_list = self._get_key_image_info(dicom_folder) body_dict, disc_dict = self._deal_point_dict(point_list) return key_frame, body_dict, disc_dict def get_study_list(self): return StudyList([self._construct_study(s) for s in self.study_list]) def _construct_study(self,study_name): study_folder_path = os.path.join(self.studies_path,study_name) # series_ids = sitk.ImageSeriesReader.GetGDCMSeriesIDs(study_folder_path) # for id in series_ids: file_list = [os.path.join(study_folder_path,i) for i in os.listdir(study_folder_path)] dicom_slice = [[pydicom.read_file(file),file]for file in file_list] dicom_slice.sort(key=lambda x:float(x[0].ImagePositionPatient[0])) data_path = dicom_slice[len(file_list)//2][1] return Study(name=study_name,dataset='lumbar_test',frame_path=data_path,index=len(file_list)//2)
[ "numpy.stack", "pydicom.read_file", "SimpleITK.ReadImage", "ltr.admin.environment.env_settings", "os.path.join", "os.listdir", "SimpleITK.ImageSeriesReader" ]
[((2384, 2413), 'os.listdir', 'os.listdir', (['self.studies_path'], {}), '(self.studies_path)\n', (2394, 2413), False, 'import os\n'), ((2518, 2574), 'os.path.join', 'os.path.join', (['self.studies_path', 'self.study_list[std_id]'], {}), '(self.studies_path, self.study_list[std_id])\n', (2530, 2574), False, 'import os\n'), ((2678, 2702), 'SimpleITK.ImageSeriesReader', 'sitk.ImageSeriesReader', ([], {}), '()\n', (2700, 2702), True, 'import SimpleITK as sitk\n'), ((3510, 3541), 'numpy.stack', 'numpy.stack', (['frame_list'], {'axis': '(0)'}), '(frame_list, axis=0)\n', (3521, 3541), False, 'import numpy\n'), ((5368, 5411), 'os.path.join', 'os.path.join', (['self.studies_path', 'study_name'], {}), '(self.studies_path, study_name)\n', (5380, 5411), False, 'import os\n'), ((1243, 1292), 'os.path.join', 'os.path.join', (['root', '"""DatasetA"""', '"""lumbar_train150"""'], {}), "(root, 'DatasetA', 'lumbar_train150')\n", (1255, 1292), False, 'import os\n'), ((1321, 1386), 'os.path.join', 'os.path.join', (['root', '"""DatasetA"""', '"""lumbar_train150_annotation.json"""'], {}), "(root, 'DatasetA', 'lumbar_train150_annotation.json')\n", (1333, 1386), False, 'import os\n'), ((5546, 5580), 'os.path.join', 'os.path.join', (['study_folder_path', 'i'], {}), '(study_folder_path, i)\n', (5558, 5580), False, 'import os\n'), ((1047, 1061), 'ltr.admin.environment.env_settings', 'env_settings', ([], {}), '()\n', (1059, 1061), False, 'from ltr.admin.environment import env_settings\n'), ((1508, 1556), 'os.path.join', 'os.path.join', (['root', '"""DatasetA"""', '"""lumbar_train51"""'], {}), "(root, 'DatasetA', 'lumbar_train51')\n", (1520, 1556), False, 'import os\n'), ((1585, 1649), 'os.path.join', 'os.path.join', (['root', '"""DatasetA"""', '"""lumbar_train51_annotation.json"""'], {}), "(root, 'DatasetA', 'lumbar_train51_annotation.json')\n", (1597, 1649), False, 'import os\n'), ((2744, 2762), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (2754, 2762), False, 'import os\n'), ((3003, 3026), 'pydicom.read_file', 'pydicom.read_file', (['file'], {}), '(file)\n', (3020, 3026), False, 'import pydicom\n'), ((5589, 5618), 'os.listdir', 'os.listdir', (['study_folder_path'], {}), '(study_folder_path)\n', (5599, 5618), False, 'import os\n'), ((5644, 5667), 'pydicom.read_file', 'pydicom.read_file', (['file'], {}), '(file)\n', (5661, 5667), False, 'import pydicom\n'), ((1773, 1821), 'os.path.join', 'os.path.join', (['root', '"""datasetA"""', '"""lumbar_testA50"""'], {}), "(root, 'datasetA', 'lumbar_testA50')\n", (1785, 1821), False, 'import os\n'), ((2787, 2815), 'pydicom.read_file', 'pydicom.read_file', (['file_path'], {}), '(file_path)\n', (2804, 2815), False, 'import pydicom\n'), ((1883, 1931), 'os.path.join', 'os.path.join', (['root', '"""datasetB"""', '"""lumbar_testB50"""'], {}), "(root, 'datasetB', 'lumbar_testB50')\n", (1895, 1931), False, 'import os\n'), ((3446, 3486), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['dicom_slice[dcm_path][1]'], {}), '(dicom_slice[dcm_path][1])\n', (3460, 3486), True, 'import SimpleITK as sitk\n')]
__doc__ = """ Various data utilities. """ #################################################################### # Packages #################################################################### import os import h5py import numpy as np import pandas as pd #################################################################### # Globals/Constants #################################################################### PROJECT_DIR = os.path.dirname( os.path.dirname( os.path.realpath(__file__))) DATA_DIR = os.path.join(PROJECT_DIR, 'data') TRAIN_DATA_FILE = os.path.join(DATA_DIR, 'train.h5') #################################################################### # Functions #################################################################### def get_data(path=None): if path: data_set = DataSet(path) else: data_set = DataSet(TRAIN_DATA_FILE) return data_set #################################################################### # Classes #################################################################### class DataSet(object): """class for dataset processing""" def __init__(self, path=TRAIN_DATA_FILE): self.path = path self.data_dict = self._get_data_dict() self.df = self._get_df() def _get_data_dict(self): with h5py.File(self.path,'r') as hf: train_hf = hf.get('train') data_dict = { hf_key: np.array(train_hf.get(hf_key)) for hf_key in train_hf.keys()} return data_dict def _get_df(self): with pd.HDFStore(self.path, "r") as train: df = train.get("train") return df def __repr__(self): sets = [ "{}: {}".format(key,data_set.shape) for key, data_set in self.data_dict.iteritems()] return "; ".join(sets) def keys(self): return self.data_dict.keys() def get(self, key): return self.data_dict.get(key, None) def to_df(self): return self.df def get_batch(self, slice_index, batch_size, columns=None, random=False): if random: samples = self.df.sample(n=batch_size) else: num_samples = self.df.shape[0] if (slice_index+1)*batch_size >= num_samples: print("Slice is out of range. Taking last batch_size slice") sample_range = (num_samples - batch_size, num_samples) else: sample_range = (slice_index*batch_size, (slice_index+1)*batch_size) samples = self.df[sample_range[0] : sample_range[1]] samples_matrix = np.array(samples.as_matrix(columns=columns)) if columns else np.array(samples.as_matrix()) return samples_matrix def get_numpy_data(self): df = self.df means = [] stds = [] # Assuming column order remains consistent throughout the class for col in df.columns: if col not in ['y', 'timestamp', 'index', 'id']: data = df[col].dropna().as_matrix() means.append(np.mean(data)) stds.append(np.std(data)) col_means = np.array(means) col_stds = np.array(stds) # Ensure values are sorted by time df = df.sort_values(by=['id', 'timestamp'], ascending=True) max_seq_len_raw = 1820 # Simply mean-fill missing values for now df = df.fillna(df.mean()) ids = np.unique(df['id'].as_matrix()) examples = [] targets = [] weights = [] for id in ids: slice = df[df.id == id] num_timesteps = slice.shape[0] #y = slice['y'].as_matrix() # Pad df to max seq len padded = slice.reset_index().reindex(range(max_seq_len_raw), fill_value=0) target = padded['y'].as_matrix() padded.drop('y', axis=1, inplace=True) padded.drop('timestamp', axis=1, inplace=True) padded.drop('index', axis=1, inplace=True) padded.drop('id', axis=1, inplace=True) example = padded.as_matrix() examples.append(example) targets.append(target) weight = [1]*num_timesteps + [0]*(max_seq_len_raw - num_timesteps) weights.append(weight) examples = np.array(examples) targets = np.array(targets) weights = np.array(weights) # Normalize the data examples = (examples - col_means)/col_stds # TODO: Supply these outside the function later: col_means, col_stds return examples, targets, weights def split_valid(self, examples, targets, weights, valid_split_ratio=0.5): """ Args: valid_split_ratio: float range 0-1.; percentage of data reserved for validation. Note that two validation sets are reserved: unique ids are reserved entirely for validation, and, latter timesteps for sequences used in training are also used in validation. """ num_ids = examples.shape[0] valid_num = int(round(num_ids*valid_split_ratio)) examples_train_pre = examples[:-valid_num] targets_train_pre = targets[:-valid_num] weights_train_pre = weights[:-valid_num] examples_valid = examples[-valid_num:] targets_valid = targets[-valid_num:] weights_valid = weights[-valid_num:] examples_train = [] targets_train = [] weights_train = [] examples_train_valid = [] targets_train_valid = [] weights_train_valid = [] valid_len = 300 # Hardcoded for now for arr1, arr2, arr3 in zip(examples_train_pre, targets_train_pre, weights_train_pre): examples_train.append(arr1[:-valid_len]) targets_train.append(arr2[:-valid_len]) weights_train.append(arr3[:-valid_len]) examples_train_valid.append(arr1[-valid_len:]) targets_train_valid.append(arr2[-valid_len:]) weights_train_valid.append(arr3[-valid_len:]) trainset = (np.array(examples_train), np.array(targets_train), np.array(weights_train)) train_validset = (np.array(examples_train_valid), np.array(targets_train_valid), np.array(weights_train_valid)) validset = (examples_valid, targets_valid, weights_valid) return trainset, train_validset, validset def get_numpy_batch(self, dataset, batch_size, seq_len): examples = [] targets = [] weights = [] #for _ in range(batch_size): while len(targets) < batch_size: # Sample a random id idx = np.random.choice(range(dataset[0].shape[0])) # Take random slice max_seq_len = dataset[0][idx].shape[0] assert max_seq_len >= seq_len slice = np.random.choice(range(max_seq_len - seq_len)) # Let's just go with full length for now w = dataset[2][idx][slice:slice+seq_len] if np.sum(w) != len(w): continue examples.append(dataset[0][idx][slice:slice+seq_len]) targets.append(dataset[1][idx][slice:slice+seq_len]) weights.append(w) return np.array(examples), np.array(targets), np.array(weights)
[ "h5py.File", "pandas.HDFStore", "numpy.sum", "numpy.std", "os.path.realpath", "numpy.mean", "numpy.array", "os.path.join" ]
[((545, 578), 'os.path.join', 'os.path.join', (['PROJECT_DIR', '"""data"""'], {}), "(PROJECT_DIR, 'data')\n", (557, 578), False, 'import os\n'), ((597, 631), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""train.h5"""'], {}), "(DATA_DIR, 'train.h5')\n", (609, 631), False, 'import os\n'), ((505, 531), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (521, 531), False, 'import os\n'), ((3229, 3244), 'numpy.array', 'np.array', (['means'], {}), '(means)\n', (3237, 3244), True, 'import numpy as np\n'), ((3264, 3278), 'numpy.array', 'np.array', (['stds'], {}), '(stds)\n', (3272, 3278), True, 'import numpy as np\n'), ((4506, 4524), 'numpy.array', 'np.array', (['examples'], {}), '(examples)\n', (4514, 4524), True, 'import numpy as np\n'), ((4543, 4560), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (4551, 4560), True, 'import numpy as np\n'), ((4579, 4596), 'numpy.array', 'np.array', (['weights'], {}), '(weights)\n', (4587, 4596), True, 'import numpy as np\n'), ((1335, 1360), 'h5py.File', 'h5py.File', (['self.path', '"""r"""'], {}), "(self.path, 'r')\n", (1344, 1360), False, 'import h5py\n'), ((1596, 1623), 'pandas.HDFStore', 'pd.HDFStore', (['self.path', '"""r"""'], {}), "(self.path, 'r')\n", (1607, 1623), True, 'import pandas as pd\n'), ((6397, 6421), 'numpy.array', 'np.array', (['examples_train'], {}), '(examples_train)\n', (6405, 6421), True, 'import numpy as np\n'), ((6423, 6446), 'numpy.array', 'np.array', (['targets_train'], {}), '(targets_train)\n', (6431, 6446), True, 'import numpy as np\n'), ((6500, 6523), 'numpy.array', 'np.array', (['weights_train'], {}), '(weights_train)\n', (6508, 6523), True, 'import numpy as np\n'), ((6551, 6581), 'numpy.array', 'np.array', (['examples_train_valid'], {}), '(examples_train_valid)\n', (6559, 6581), True, 'import numpy as np\n'), ((6631, 6660), 'numpy.array', 'np.array', (['targets_train_valid'], {}), '(targets_train_valid)\n', (6639, 6660), True, 'import numpy as np\n'), ((6710, 6739), 'numpy.array', 'np.array', (['weights_train_valid'], {}), '(weights_train_valid)\n', (6718, 6739), True, 'import numpy as np\n'), ((7756, 7774), 'numpy.array', 'np.array', (['examples'], {}), '(examples)\n', (7764, 7774), True, 'import numpy as np\n'), ((7776, 7793), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (7784, 7793), True, 'import numpy as np\n'), ((7795, 7812), 'numpy.array', 'np.array', (['weights'], {}), '(weights)\n', (7803, 7812), True, 'import numpy as np\n'), ((7520, 7529), 'numpy.sum', 'np.sum', (['w'], {}), '(w)\n', (7526, 7529), True, 'import numpy as np\n'), ((3147, 3160), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (3154, 3160), True, 'import numpy as np\n'), ((3190, 3202), 'numpy.std', 'np.std', (['data'], {}), '(data)\n', (3196, 3202), True, 'import numpy as np\n')]
from click.testing import CliRunner from unittest import mock import numpy as np import os import pandas as pd import shutil import tempfile import textwrap from mlflow import experiments from mlflow.runs import list_run import mlflow def test_list_run(): with mlflow.start_run(run_name="apple"): pass result = CliRunner().invoke(list_run, ["--experiment-id", "0"]) assert "apple" in result.output def test_list_run_experiment_id_required(): result = CliRunner().invoke(list_run, []) assert "Missing option '--experiment-id'" in result.output def test_csv_generation(): with mock.patch("mlflow.experiments.fluent.search_runs") as mock_search_runs: mock_search_runs.return_value = pd.DataFrame( { "run_id": np.array(["all_set", "with_none", "with_nan"]), "experiment_id": np.array([1, 1, 1]), "param_optimizer": np.array(["Adam", None, "Adam"]), "avg_loss": np.array([42.0, None, np.nan], dtype=np.float32), }, columns=["run_id", "experiment_id", "param_optimizer", "avg_loss"], ) expected_csv = textwrap.dedent( """\ run_id,experiment_id,param_optimizer,avg_loss all_set,1,Adam,42.0 with_none,1,, with_nan,1,Adam, """ ) tempdir = tempfile.mkdtemp() try: result_filename = os.path.join(tempdir, "result.csv") CliRunner().invoke( experiments.generate_csv_with_runs, ["--experiment-id", "1", "--filename", result_filename], ) with open(result_filename, "r") as fd: assert expected_csv == fd.read() finally: shutil.rmtree(tempdir)
[ "textwrap.dedent", "mlflow.start_run", "unittest.mock.patch", "tempfile.mkdtemp", "numpy.array", "shutil.rmtree", "click.testing.CliRunner", "os.path.join" ]
[((270, 304), 'mlflow.start_run', 'mlflow.start_run', ([], {'run_name': '"""apple"""'}), "(run_name='apple')\n", (286, 304), False, 'import mlflow\n'), ((616, 667), 'unittest.mock.patch', 'mock.patch', (['"""mlflow.experiments.fluent.search_runs"""'], {}), "('mlflow.experiments.fluent.search_runs')\n", (626, 667), False, 'from unittest import mock\n'), ((1160, 1330), 'textwrap.dedent', 'textwrap.dedent', (['""" run_id,experiment_id,param_optimizer,avg_loss\n all_set,1,Adam,42.0\n with_none,1,,\n with_nan,1,Adam,\n """'], {}), '(\n """ run_id,experiment_id,param_optimizer,avg_loss\n all_set,1,Adam,42.0\n with_none,1,,\n with_nan,1,Adam,\n """\n )\n', (1175, 1330), False, 'import textwrap\n'), ((1363, 1381), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (1379, 1381), False, 'import tempfile\n'), ((332, 343), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (341, 343), False, 'from click.testing import CliRunner\n'), ((482, 493), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (491, 493), False, 'from click.testing import CliRunner\n'), ((1425, 1460), 'os.path.join', 'os.path.join', (['tempdir', '"""result.csv"""'], {}), "(tempdir, 'result.csv')\n", (1437, 1460), False, 'import os\n'), ((1761, 1783), 'shutil.rmtree', 'shutil.rmtree', (['tempdir'], {}), '(tempdir)\n', (1774, 1783), False, 'import shutil\n'), ((783, 829), 'numpy.array', 'np.array', (["['all_set', 'with_none', 'with_nan']"], {}), "(['all_set', 'with_none', 'with_nan'])\n", (791, 829), True, 'import numpy as np\n'), ((864, 883), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (872, 883), True, 'import numpy as np\n'), ((920, 952), 'numpy.array', 'np.array', (["['Adam', None, 'Adam']"], {}), "(['Adam', None, 'Adam'])\n", (928, 952), True, 'import numpy as np\n'), ((982, 1030), 'numpy.array', 'np.array', (['[42.0, None, np.nan]'], {'dtype': 'np.float32'}), '([42.0, None, np.nan], dtype=np.float32)\n', (990, 1030), True, 'import numpy as np\n'), ((1473, 1484), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1482, 1484), False, 'from click.testing import CliRunner\n')]
""" This example implements the model from the paper > [Design Space for Graph Neural Networks](https://arxiv.org/abs/2011.08843)<br> > <NAME>, <NAME>, <NAME> using the PROTEINS dataset. The configuration at the top of the file is the best one identified in the paper, and should work well for many different datasets without changes. Note: the results reported in the paper are averaged over 3 random repetitions with an 80/20 split. """ import numpy as np import tensorflow as tf from tensorflow.keras.losses import CategoricalCrossentropy from tensorflow.keras.metrics import categorical_accuracy from tensorflow.keras.optimizers import Adam from spektral.data import DisjointLoader from spektral.datasets import TUDataset from spektral.models import GeneralGNN physical_devices = tf.config.list_physical_devices("GPU") if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) ################################################################################ # Config ################################################################################ batch_size = 32 learning_rate = 0.01 epochs = 400 ################################################################################ # Load data ################################################################################ data = TUDataset("PROTEINS") # Train/test split np.random.shuffle(data) split = int(0.8 * len(data)) data_tr, data_te = data[:split], data[split:] # Data loaders loader_tr = DisjointLoader(data_tr, batch_size=batch_size, epochs=epochs) loader_te = DisjointLoader(data_te, batch_size=batch_size) ################################################################################ # Build model ################################################################################ model = GeneralGNN(data.n_labels, activation="softmax") optimizer = Adam(learning_rate) loss_fn = CategoricalCrossentropy() ################################################################################ # Fit model ################################################################################ @tf.function(input_signature=loader_tr.tf_signature(), experimental_relax_shapes=True) def train_step(inputs, target): with tf.GradientTape() as tape: predictions = model(inputs, training=True) loss = loss_fn(target, predictions) + sum(model.losses) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) acc = tf.reduce_mean(categorical_accuracy(target, predictions)) return loss, acc def evaluate(loader): output = [] step = 0 while step < loader.steps_per_epoch: step += 1 inputs, target = loader.__next__() pred = model(inputs, training=False) outs = ( loss_fn(target, pred), tf.reduce_mean(categorical_accuracy(target, pred)), len(target), # Keep track of batch size ) output.append(outs) if step == loader.steps_per_epoch: output = np.array(output) return np.average(output[:, :-1], 0, weights=output[:, -1]) epoch = step = 0 results = [] for batch in loader_tr: step += 1 loss, acc = train_step(*batch) results.append((loss, acc)) if step == loader_tr.steps_per_epoch: step = 0 epoch += 1 results_te = evaluate(loader_te) print( "Ep. {} - Loss: {:.3f} - Acc: {:.3f} - Test loss: {:.3f} - Test acc: {:.3f}".format( epoch, *np.mean(results, 0), *results_te ) ) results = [] ################################################################################ # Evaluate model ################################################################################ results_te = evaluate(loader_te) print("Final results - Loss: {:.3f} - Acc: {:.3f}".format(*results_te))
[ "numpy.average", "tensorflow.config.list_physical_devices", "spektral.data.DisjointLoader", "spektral.datasets.TUDataset", "tensorflow.config.experimental.set_memory_growth", "tensorflow.keras.losses.CategoricalCrossentropy", "numpy.mean", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.metrics.categorical_accuracy", "numpy.array", "spektral.models.GeneralGNN", "tensorflow.GradientTape", "numpy.random.shuffle" ]
[((798, 836), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (829, 836), True, 'import tensorflow as tf\n'), ((1343, 1364), 'spektral.datasets.TUDataset', 'TUDataset', (['"""PROTEINS"""'], {}), "('PROTEINS')\n", (1352, 1364), False, 'from spektral.datasets import TUDataset\n'), ((1385, 1408), 'numpy.random.shuffle', 'np.random.shuffle', (['data'], {}), '(data)\n', (1402, 1408), True, 'import numpy as np\n'), ((1512, 1573), 'spektral.data.DisjointLoader', 'DisjointLoader', (['data_tr'], {'batch_size': 'batch_size', 'epochs': 'epochs'}), '(data_tr, batch_size=batch_size, epochs=epochs)\n', (1526, 1573), False, 'from spektral.data import DisjointLoader\n'), ((1586, 1632), 'spektral.data.DisjointLoader', 'DisjointLoader', (['data_te'], {'batch_size': 'batch_size'}), '(data_te, batch_size=batch_size)\n', (1600, 1632), False, 'from spektral.data import DisjointLoader\n'), ((1818, 1865), 'spektral.models.GeneralGNN', 'GeneralGNN', (['data.n_labels'], {'activation': '"""softmax"""'}), "(data.n_labels, activation='softmax')\n", (1828, 1865), False, 'from spektral.models import GeneralGNN\n'), ((1878, 1897), 'tensorflow.keras.optimizers.Adam', 'Adam', (['learning_rate'], {}), '(learning_rate)\n', (1882, 1897), False, 'from tensorflow.keras.optimizers import Adam\n'), ((1908, 1933), 'tensorflow.keras.losses.CategoricalCrossentropy', 'CategoricalCrossentropy', ([], {}), '()\n', (1931, 1933), False, 'from tensorflow.keras.losses import CategoricalCrossentropy\n'), ((871, 938), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (911, 938), True, 'import tensorflow as tf\n'), ((2238, 2255), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (2253, 2255), True, 'import tensorflow as tf\n'), ((2541, 2582), 'tensorflow.keras.metrics.categorical_accuracy', 'categorical_accuracy', (['target', 'predictions'], {}), '(target, predictions)\n', (2561, 2582), False, 'from tensorflow.keras.metrics import categorical_accuracy\n'), ((3076, 3092), 'numpy.array', 'np.array', (['output'], {}), '(output)\n', (3084, 3092), True, 'import numpy as np\n'), ((3112, 3164), 'numpy.average', 'np.average', (['output[:, :-1]', '(0)'], {'weights': 'output[:, -1]'}), '(output[:, :-1], 0, weights=output[:, -1])\n', (3122, 3164), True, 'import numpy as np\n'), ((2884, 2918), 'tensorflow.keras.metrics.categorical_accuracy', 'categorical_accuracy', (['target', 'pred'], {}), '(target, pred)\n', (2904, 2918), False, 'from tensorflow.keras.metrics import categorical_accuracy\n'), ((3557, 3576), 'numpy.mean', 'np.mean', (['results', '(0)'], {}), '(results, 0)\n', (3564, 3576), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 23 15:57:12 2018 @author: coelhorp """ import numpy as np from sklearn.metrics import roc_auc_score from rpa.helpers.transfer_learning.utils import transform_org2rct, transform_rct2str, transform_rct2rot from rpa.helpers.transfer_learning.utils import transform_org2rct_p300, transform_rct2rot_p300 from rpa.helpers.transfer_learning.utils import get_sourcetarget_split_motorimagery, get_sourcetarget_split_p300 def RPA_recenter(source, target_train, target_test, paradigm='MI', weight_samples=False): if paradigm == 'P300': return transform_org2rct_p300(source, target_train, target_test, weight_samples) else: return transform_org2rct(source, target_train, target_test) def RPA_stretch(source, target_train, target_test, paradigm='MI'): return transform_rct2str(source, target_train, target_test) def RPA_rotate(source, target_train, target_test, paradigm='MI', class_weights=None, distance='euc'): if paradigm == 'P300': return transform_rct2rot_p300(source, target_train, target_test, class_weights, distance) else: return transform_rct2rot(source, target_train, target_test, class_weights, distance) def get_sourcetarget_split(source, target, ncovs_train, paradigm='MI'): if (paradigm == 'P300'): return get_sourcetarget_split_p300(source, target, ncovs_train) else: return get_sourcetarget_split_motorimagery(source, target, ncovs_train) def get_score_notransfer(clf, target_train, target_test, paradigm='MI'): covs_train = target_train['covs'] y_train = target_train['labels'] covs_test = target_test['covs'] y_test = target_test['labels'] clf.fit(covs_train, y_train) y_pred = clf.predict(covs_test) y_test = np.array([y_test == i for i in np.unique(y_test)]).T y_pred = np.array([y_pred == i for i in np.unique(y_pred)]).T return roc_auc_score(y_test, y_pred) def get_score_transferlearning(clf, source, target_train, target_test, paradigm='MI'): covs_source, y_source = source['covs'], source['labels'] covs_target_train, y_target_train = target_train['covs'], target_train['labels'] covs_target_test, y_target_test = target_test['covs'], target_test['labels'] covs_train = np.concatenate([covs_source, covs_target_train]) y_train = np.concatenate([y_source, y_target_train]) clf.fit(covs_train, y_train) covs_test = covs_target_test y_test = y_target_test y_pred = clf.predict(covs_test) y_test = np.array([y_test == i for i in np.unique(y_test)]).T y_pred = np.array([y_pred == i for i in np.unique(y_pred)]).T return roc_auc_score(y_test, y_pred)
[ "rpa.helpers.transfer_learning.utils.get_sourcetarget_split_motorimagery", "numpy.unique", "rpa.helpers.transfer_learning.utils.transform_rct2rot", "sklearn.metrics.roc_auc_score", "rpa.helpers.transfer_learning.utils.get_sourcetarget_split_p300", "rpa.helpers.transfer_learning.utils.transform_org2rct_p300", "rpa.helpers.transfer_learning.utils.transform_rct2str", "rpa.helpers.transfer_learning.utils.transform_rct2rot_p300", "rpa.helpers.transfer_learning.utils.transform_org2rct", "numpy.concatenate" ]
[((849, 901), 'rpa.helpers.transfer_learning.utils.transform_rct2str', 'transform_rct2str', (['source', 'target_train', 'target_test'], {}), '(source, target_train, target_test)\n', (866, 901), False, 'from rpa.helpers.transfer_learning.utils import transform_org2rct, transform_rct2str, transform_rct2rot\n'), ((1934, 1963), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (1947, 1963), False, 'from sklearn.metrics import roc_auc_score\n'), ((2298, 2346), 'numpy.concatenate', 'np.concatenate', (['[covs_source, covs_target_train]'], {}), '([covs_source, covs_target_train])\n', (2312, 2346), True, 'import numpy as np\n'), ((2361, 2403), 'numpy.concatenate', 'np.concatenate', (['[y_source, y_target_train]'], {}), '([y_source, y_target_train])\n', (2375, 2403), True, 'import numpy as np\n'), ((2680, 2709), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (2693, 2709), False, 'from sklearn.metrics import roc_auc_score\n'), ((618, 691), 'rpa.helpers.transfer_learning.utils.transform_org2rct_p300', 'transform_org2rct_p300', (['source', 'target_train', 'target_test', 'weight_samples'], {}), '(source, target_train, target_test, weight_samples)\n', (640, 691), False, 'from rpa.helpers.transfer_learning.utils import transform_org2rct_p300, transform_rct2rot_p300\n'), ((717, 769), 'rpa.helpers.transfer_learning.utils.transform_org2rct', 'transform_org2rct', (['source', 'target_train', 'target_test'], {}), '(source, target_train, target_test)\n', (734, 769), False, 'from rpa.helpers.transfer_learning.utils import transform_org2rct, transform_rct2str, transform_rct2rot\n'), ((1047, 1133), 'rpa.helpers.transfer_learning.utils.transform_rct2rot_p300', 'transform_rct2rot_p300', (['source', 'target_train', 'target_test', 'class_weights', 'distance'], {}), '(source, target_train, target_test, class_weights,\n distance)\n', (1069, 1133), False, 'from rpa.helpers.transfer_learning.utils import transform_org2rct_p300, transform_rct2rot_p300\n'), ((1155, 1232), 'rpa.helpers.transfer_learning.utils.transform_rct2rot', 'transform_rct2rot', (['source', 'target_train', 'target_test', 'class_weights', 'distance'], {}), '(source, target_train, target_test, class_weights, distance)\n', (1172, 1232), False, 'from rpa.helpers.transfer_learning.utils import transform_org2rct, transform_rct2str, transform_rct2rot\n'), ((1350, 1406), 'rpa.helpers.transfer_learning.utils.get_sourcetarget_split_p300', 'get_sourcetarget_split_p300', (['source', 'target', 'ncovs_train'], {}), '(source, target, ncovs_train)\n', (1377, 1406), False, 'from rpa.helpers.transfer_learning.utils import get_sourcetarget_split_motorimagery, get_sourcetarget_split_p300\n'), ((1432, 1496), 'rpa.helpers.transfer_learning.utils.get_sourcetarget_split_motorimagery', 'get_sourcetarget_split_motorimagery', (['source', 'target', 'ncovs_train'], {}), '(source, target, ncovs_train)\n', (1467, 1496), False, 'from rpa.helpers.transfer_learning.utils import get_sourcetarget_split_motorimagery, get_sourcetarget_split_p300\n'), ((1834, 1851), 'numpy.unique', 'np.unique', (['y_test'], {}), '(y_test)\n', (1843, 1851), True, 'import numpy as np\n'), ((1900, 1917), 'numpy.unique', 'np.unique', (['y_pred'], {}), '(y_pred)\n', (1909, 1917), True, 'import numpy as np\n'), ((2580, 2597), 'numpy.unique', 'np.unique', (['y_test'], {}), '(y_test)\n', (2589, 2597), True, 'import numpy as np\n'), ((2646, 2663), 'numpy.unique', 'np.unique', (['y_pred'], {}), '(y_pred)\n', (2655, 2663), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import math from scipy.stats import norm from matplotlib import rc __author__ = 'ernesto' # if use latex or mathtext rc('text', usetex=False) rc('mathtext', fontset='cm') # auxiliar function for plot ticks of equal length in x and y axis despite its scales. def convert_display_to_data_coordinates(transData, length=10): # create a transform which will take from display to data coordinates inv = transData.inverted() # transform from display coordinates to data coordinates in x axis data_coords = inv.transform([(0, 0), (length, 0)]) # get the length of the segment in data units yticks_len = data_coords[1, 0] - data_coords[0, 0] # transform from display coordinates to data coordinates in y axis data_coords = inv.transform([(0, 0), (0, length)]) # get the length of the segment in data units xticks_len = data_coords[1, 1] - data_coords[0, 1] return xticks_len, yticks_len ##################################### # PARAMETROS - Puede ser modificado # ##################################### # distribución uniforme en (0, T) T = 0.5 # range of x of interest xmin = -0.1 xmax = 3.5 * T ymin = 0 ymax = 1 / T ##################### # FIN DE PARAMETROS # ##################### # parametros de las densidades de x_i: media y varianza eta = T / 2 var = (T ** 2) / 12 # cantidad de variables aleatorias x_i a sumar na = 2 nb = 3 # media y varianza de la suma eta2 = na * eta var2 = na * var eta3 = nb * eta var3 = nb * var # pdf teorica x = np.linspace(xmin, xmax, 300) f2 = norm.pdf(x, eta2, math.sqrt(var2)) f3 = norm.pdf(x, eta3, math.sqrt(var3)) # axis parameters dx = 0.1 xmin_ax = xmin - dx xmax_ax = xmax + 2 * dx dy = 0.2 ymin_ax = ymin - dy ymax_ax = ymax + 0.4 # parámetros de la figura # length of the ticks for all subplot (6 pixels) display_length = 6 # in pixels # x ticks labels margin xtm = -0.23 ytm = -0.07 # font size fontsize = 14 fig = plt.figure(0, figsize=(10, 3), frameon=False) ax = plt.subplot2grid((1, 6), (0, 0), rowspan=1, colspan=2) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # axis arrows plt.annotate("", xytext=(xmin_ax, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) # f(x) plt.plot([0, T], [1/T, 1/T], 'k', linewidth=2) plt.plot([T, T], [0, 1/T], 'k', linewidth=2) plt.plot([0, 0], [0, 1/T], 'k', linewidth=2) plt.plot([xmin, 0], [0, 0], 'k', linewidth=2) plt.plot([T, xmax], [0, 0], 'k', linewidth=2) # labels # xlables plt.text(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline') plt.text(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline') plt.text(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline') # ylabels plt.text(ytm, 1/T, '$\dfrac{1}{T}$', fontsize=fontsize, ha='right', va='center') plt.text(-ytm, ymax_ax, '$f(x)$', fontsize=fontsize, ha='left', va='center') plt.axis('off') fig = plt.figure(0, figsize=(10, 3), frameon=False) ax = plt.subplot2grid((1, 6), (0, 2), rowspan=1, colspan=2) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin_ax, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) # f2(x) plt.plot([0, T], [0, 1/T], 'k', linewidth=2, label='$f(x)*f(x)$') plt.plot([T, 2 * T], [1/T, 0], 'k', linewidth=2) plt.plot([xmin, 0], [0, 0], 'k', linewidth=2) plt.plot([2*T, xmax], [0, 0], 'k', linewidth=2) # aproximación gaussiana plt.plot(x, f2, 'r', linewidth=2, zorder=0, label='$N\left(T,\,\dfrac{T^2}{6}\\right)$') # ticks plt.plot([T, T], [0, xtl], 'k') plt.plot([2*T, 2*T], [0, xtl], 'k') plt.plot([0, ytl], [1/T, 1/T], 'k') # labels # xlables plt.text(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline') plt.text(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline') plt.text(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline') plt.text(2*T, xtm, '$2T$', fontsize=fontsize, ha='center', va='baseline') # ylabels plt.text(ytm, 1/T, '$\dfrac{1}{T}$', fontsize=fontsize, ha='right', va='center') #plt.text(-ytm, ymax_ax, '$f_2(x)$', fontsize=fontsize, ha='left', va='center') leg = leg = plt.legend(loc=(0.45, 0.7), frameon=False, fontsize=12) plt.axis('off') fig = plt.figure(0, figsize=(10, 3), frameon=False) ax = plt.subplot2grid((1, 6), (0, 4), rowspan=1, colspan=2) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin_ax, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) # f3(x) c = 2 * (T ** 3) xa = np.linspace(0, T, 100) plt.plot(xa, np.polyval([1, 0, 0], xa) / c, 'k', linewidth=2, label='$f(x)*f(x)*f(x)$') xa = np.linspace(T, 2 * T, 100) plt.plot(xa, np.polyval([-2, 6 * T, -3 * (T ** 2)], xa) / c, 'k', linewidth=2) xa = np.linspace(2 * T, 3 * T, 100) plt.plot(xa, np.polyval([1, -6 * T, 9 * (T ** 2)], xa) / c, 'k', linewidth=2) plt.plot([xmin, 0], [0, 0], 'k', linewidth=2) plt.plot([3*T, xmax], [0, 0], 'k', linewidth=2) # aproximación gaussiana plt.plot(x, f3, 'r', linewidth=2, zorder=0, label='$N\left(\dfrac{3T}{2},\,\dfrac{T^2}{4}\\right)$') # ticks plt.plot([T, T], [0, xtl], 'k') plt.plot([2*T, 2*T], [0, xtl], 'k') plt.plot([3*T, 3*T], [0, xtl], 'k') plt.plot([0, ytl], [1/T, 1/T], 'k') plt.plot([0, ytl], [1/(2*T), 1/(2*T)], 'k') # labels # xlables plt.text(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline') plt.text(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline') plt.text(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline') plt.text(2*T, xtm, '$2T$', fontsize=fontsize, ha='center', va='baseline') plt.text(3*T, xtm, '$3T$', fontsize=fontsize, ha='center', va='baseline') # ylabels plt.text(ytm, 1/T, '$\dfrac{1}{T}$', fontsize=fontsize, ha='right', va='center') plt.text(ytm, 1/(2*T), '$\dfrac{1}{2T}$', fontsize=fontsize, ha='right', va='center') #plt.text(-ytm, ymax_ax, '$f_3(x)$', fontsize=fontsize, ha='left', va='center') leg = leg = plt.legend(loc=(0.28, 0.7), frameon=False, fontsize=12) plt.axis('off') # save as eps image plt.savefig('example_7_15.pdf', bbox_inches='tight') plt.show()
[ "matplotlib.pyplot.xlim", "matplotlib.rc", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "math.sqrt", "numpy.polyval", "matplotlib.pyplot.subplot2grid", "matplotlib.pyplot.legend", "matplotlib.pyplot.axis", "matplotlib.pyplot.text", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.savefig" ]
[((171, 195), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(False)'}), "('text', usetex=False)\n", (173, 195), False, 'from matplotlib import rc\n'), ((196, 224), 'matplotlib.rc', 'rc', (['"""mathtext"""'], {'fontset': '"""cm"""'}), "('mathtext', fontset='cm')\n", (198, 224), False, 'from matplotlib import rc\n'), ((1544, 1572), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(300)'], {}), '(xmin, xmax, 300)\n', (1555, 1572), True, 'import numpy as np\n'), ((1965, 2010), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {'figsize': '(10, 3)', 'frameon': '(False)'}), '(0, figsize=(10, 3), frameon=False)\n', (1975, 2010), True, 'import matplotlib.pyplot as plt\n'), ((2016, 2070), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(1, 6)', '(0, 0)'], {'rowspan': '(1)', 'colspan': '(2)'}), '((1, 6), (0, 0), rowspan=1, colspan=2)\n', (2032, 2070), True, 'import matplotlib.pyplot as plt\n'), ((2072, 2098), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xmin_ax', 'xmax_ax'], {}), '(xmin_ax, xmax_ax)\n', (2080, 2098), True, 'import matplotlib.pyplot as plt\n'), ((2099, 2125), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ymin_ax', 'ymax_ax'], {}), '(ymin_ax, ymax_ax)\n', (2107, 2125), True, 'import matplotlib.pyplot as plt\n'), ((2533, 2583), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, T]', '[1 / T, 1 / T]', '"""k"""'], {'linewidth': '(2)'}), "([0, T], [1 / T, 1 / T], 'k', linewidth=2)\n", (2541, 2583), True, 'import matplotlib.pyplot as plt\n'), ((2580, 2626), 'matplotlib.pyplot.plot', 'plt.plot', (['[T, T]', '[0, 1 / T]', '"""k"""'], {'linewidth': '(2)'}), "([T, T], [0, 1 / T], 'k', linewidth=2)\n", (2588, 2626), True, 'import matplotlib.pyplot as plt\n'), ((2625, 2671), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 0]', '[0, 1 / T]', '"""k"""'], {'linewidth': '(2)'}), "([0, 0], [0, 1 / T], 'k', linewidth=2)\n", (2633, 2671), True, 'import matplotlib.pyplot as plt\n'), ((2670, 2715), 'matplotlib.pyplot.plot', 'plt.plot', (['[xmin, 0]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([xmin, 0], [0, 0], 'k', linewidth=2)\n", (2678, 2715), True, 'import matplotlib.pyplot as plt\n'), ((2716, 2761), 'matplotlib.pyplot.plot', 'plt.plot', (['[T, xmax]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([T, xmax], [0, 0], 'k', linewidth=2)\n", (2724, 2761), True, 'import matplotlib.pyplot as plt\n'), ((2782, 2857), 'matplotlib.pyplot.text', 'plt.text', (['xmax_ax', 'xtm', '"""$x$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline')\n", (2790, 2857), True, 'import matplotlib.pyplot as plt\n'), ((2858, 2928), 'matplotlib.pyplot.text', 'plt.text', (['T', 'xtm', '"""$T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline')\n", (2866, 2928), True, 'import matplotlib.pyplot as plt\n'), ((2929, 3000), 'matplotlib.pyplot.text', 'plt.text', (['ytm', 'xtm', '"""$0$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline')\n", (2937, 3000), True, 'import matplotlib.pyplot as plt\n'), ((3011, 3099), 'matplotlib.pyplot.text', 'plt.text', (['ytm', '(1 / T)', '"""$\\\\dfrac{1}{T}$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""center"""'}), "(ytm, 1 / T, '$\\\\dfrac{1}{T}$', fontsize=fontsize, ha='right', va=\n 'center')\n", (3019, 3099), True, 'import matplotlib.pyplot as plt\n'), ((3092, 3168), 'matplotlib.pyplot.text', 'plt.text', (['(-ytm)', 'ymax_ax', '"""$f(x)$"""'], {'fontsize': 'fontsize', 'ha': '"""left"""', 'va': '"""center"""'}), "(-ytm, ymax_ax, '$f(x)$', fontsize=fontsize, ha='left', va='center')\n", (3100, 3168), True, 'import matplotlib.pyplot as plt\n'), ((3170, 3185), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3178, 3185), True, 'import matplotlib.pyplot as plt\n'), ((3194, 3239), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {'figsize': '(10, 3)', 'frameon': '(False)'}), '(0, figsize=(10, 3), frameon=False)\n', (3204, 3239), True, 'import matplotlib.pyplot as plt\n'), ((3245, 3299), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(1, 6)', '(0, 2)'], {'rowspan': '(1)', 'colspan': '(2)'}), '((1, 6), (0, 2), rowspan=1, colspan=2)\n', (3261, 3299), True, 'import matplotlib.pyplot as plt\n'), ((3301, 3327), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xmin_ax', 'xmax_ax'], {}), '(xmin_ax, xmax_ax)\n', (3309, 3327), True, 'import matplotlib.pyplot as plt\n'), ((3328, 3354), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ymin_ax', 'ymax_ax'], {}), '(ymin_ax, ymax_ax)\n', (3336, 3354), True, 'import matplotlib.pyplot as plt\n'), ((3887, 3954), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, T]', '[0, 1 / T]', '"""k"""'], {'linewidth': '(2)', 'label': '"""$f(x)*f(x)$"""'}), "([0, T], [0, 1 / T], 'k', linewidth=2, label='$f(x)*f(x)$')\n", (3895, 3954), True, 'import matplotlib.pyplot as plt\n'), ((3953, 4003), 'matplotlib.pyplot.plot', 'plt.plot', (['[T, 2 * T]', '[1 / T, 0]', '"""k"""'], {'linewidth': '(2)'}), "([T, 2 * T], [1 / T, 0], 'k', linewidth=2)\n", (3961, 4003), True, 'import matplotlib.pyplot as plt\n'), ((4002, 4047), 'matplotlib.pyplot.plot', 'plt.plot', (['[xmin, 0]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([xmin, 0], [0, 0], 'k', linewidth=2)\n", (4010, 4047), True, 'import matplotlib.pyplot as plt\n'), ((4048, 4097), 'matplotlib.pyplot.plot', 'plt.plot', (['[2 * T, xmax]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([2 * T, xmax], [0, 0], 'k', linewidth=2)\n", (4056, 4097), True, 'import matplotlib.pyplot as plt\n'), ((4121, 4217), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'f2', '"""r"""'], {'linewidth': '(2)', 'zorder': '(0)', 'label': '"""$N\\\\left(T,\\\\,\\\\dfrac{T^2}{6}\\\\right)$"""'}), "(x, f2, 'r', linewidth=2, zorder=0, label=\n '$N\\\\left(T,\\\\,\\\\dfrac{T^2}{6}\\\\right)$')\n", (4129, 4217), True, 'import matplotlib.pyplot as plt\n'), ((4219, 4250), 'matplotlib.pyplot.plot', 'plt.plot', (['[T, T]', '[0, xtl]', '"""k"""'], {}), "([T, T], [0, xtl], 'k')\n", (4227, 4250), True, 'import matplotlib.pyplot as plt\n'), ((4251, 4290), 'matplotlib.pyplot.plot', 'plt.plot', (['[2 * T, 2 * T]', '[0, xtl]', '"""k"""'], {}), "([2 * T, 2 * T], [0, xtl], 'k')\n", (4259, 4290), True, 'import matplotlib.pyplot as plt\n'), ((4287, 4326), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, ytl]', '[1 / T, 1 / T]', '"""k"""'], {}), "([0, ytl], [1 / T, 1 / T], 'k')\n", (4295, 4326), True, 'import matplotlib.pyplot as plt\n'), ((4343, 4418), 'matplotlib.pyplot.text', 'plt.text', (['xmax_ax', 'xtm', '"""$x$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline')\n", (4351, 4418), True, 'import matplotlib.pyplot as plt\n'), ((4419, 4490), 'matplotlib.pyplot.text', 'plt.text', (['ytm', 'xtm', '"""$0$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline')\n", (4427, 4490), True, 'import matplotlib.pyplot as plt\n'), ((4491, 4561), 'matplotlib.pyplot.text', 'plt.text', (['T', 'xtm', '"""$T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline')\n", (4499, 4561), True, 'import matplotlib.pyplot as plt\n'), ((4562, 4637), 'matplotlib.pyplot.text', 'plt.text', (['(2 * T)', 'xtm', '"""$2T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(2 * T, xtm, '$2T$', fontsize=fontsize, ha='center', va='baseline')\n", (4570, 4637), True, 'import matplotlib.pyplot as plt\n'), ((4646, 4734), 'matplotlib.pyplot.text', 'plt.text', (['ytm', '(1 / T)', '"""$\\\\dfrac{1}{T}$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""center"""'}), "(ytm, 1 / T, '$\\\\dfrac{1}{T}$', fontsize=fontsize, ha='right', va=\n 'center')\n", (4654, 4734), True, 'import matplotlib.pyplot as plt\n'), ((4820, 4875), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0.45, 0.7)', 'frameon': '(False)', 'fontsize': '(12)'}), '(loc=(0.45, 0.7), frameon=False, fontsize=12)\n', (4830, 4875), True, 'import matplotlib.pyplot as plt\n'), ((4877, 4892), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4885, 4892), True, 'import matplotlib.pyplot as plt\n'), ((4901, 4946), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {'figsize': '(10, 3)', 'frameon': '(False)'}), '(0, figsize=(10, 3), frameon=False)\n', (4911, 4946), True, 'import matplotlib.pyplot as plt\n'), ((4952, 5006), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(1, 6)', '(0, 4)'], {'rowspan': '(1)', 'colspan': '(2)'}), '((1, 6), (0, 4), rowspan=1, colspan=2)\n', (4968, 5006), True, 'import matplotlib.pyplot as plt\n'), ((5008, 5034), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xmin_ax', 'xmax_ax'], {}), '(xmin_ax, xmax_ax)\n', (5016, 5034), True, 'import matplotlib.pyplot as plt\n'), ((5035, 5061), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ymin_ax', 'ymax_ax'], {}), '(ymin_ax, ymax_ax)\n', (5043, 5061), True, 'import matplotlib.pyplot as plt\n'), ((5616, 5638), 'numpy.linspace', 'np.linspace', (['(0)', 'T', '(100)'], {}), '(0, T, 100)\n', (5627, 5638), True, 'import numpy as np\n'), ((5732, 5758), 'numpy.linspace', 'np.linspace', (['T', '(2 * T)', '(100)'], {}), '(T, 2 * T, 100)\n', (5743, 5758), True, 'import numpy as np\n'), ((5843, 5873), 'numpy.linspace', 'np.linspace', (['(2 * T)', '(3 * T)', '(100)'], {}), '(2 * T, 3 * T, 100)\n', (5854, 5873), True, 'import numpy as np\n'), ((5953, 5998), 'matplotlib.pyplot.plot', 'plt.plot', (['[xmin, 0]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([xmin, 0], [0, 0], 'k', linewidth=2)\n", (5961, 5998), True, 'import matplotlib.pyplot as plt\n'), ((5999, 6048), 'matplotlib.pyplot.plot', 'plt.plot', (['[3 * T, xmax]', '[0, 0]', '"""k"""'], {'linewidth': '(2)'}), "([3 * T, xmax], [0, 0], 'k', linewidth=2)\n", (6007, 6048), True, 'import matplotlib.pyplot as plt\n'), ((6072, 6181), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'f3', '"""r"""'], {'linewidth': '(2)', 'zorder': '(0)', 'label': '"""$N\\\\left(\\\\dfrac{3T}{2},\\\\,\\\\dfrac{T^2}{4}\\\\right)$"""'}), "(x, f3, 'r', linewidth=2, zorder=0, label=\n '$N\\\\left(\\\\dfrac{3T}{2},\\\\,\\\\dfrac{T^2}{4}\\\\right)$')\n", (6080, 6181), True, 'import matplotlib.pyplot as plt\n'), ((6182, 6213), 'matplotlib.pyplot.plot', 'plt.plot', (['[T, T]', '[0, xtl]', '"""k"""'], {}), "([T, T], [0, xtl], 'k')\n", (6190, 6213), True, 'import matplotlib.pyplot as plt\n'), ((6214, 6253), 'matplotlib.pyplot.plot', 'plt.plot', (['[2 * T, 2 * T]', '[0, xtl]', '"""k"""'], {}), "([2 * T, 2 * T], [0, xtl], 'k')\n", (6222, 6253), True, 'import matplotlib.pyplot as plt\n'), ((6250, 6289), 'matplotlib.pyplot.plot', 'plt.plot', (['[3 * T, 3 * T]', '[0, xtl]', '"""k"""'], {}), "([3 * T, 3 * T], [0, xtl], 'k')\n", (6258, 6289), True, 'import matplotlib.pyplot as plt\n'), ((6286, 6325), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, ytl]', '[1 / T, 1 / T]', '"""k"""'], {}), "([0, ytl], [1 / T, 1 / T], 'k')\n", (6294, 6325), True, 'import matplotlib.pyplot as plt\n'), ((6322, 6373), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, ytl]', '[1 / (2 * T), 1 / (2 * T)]', '"""k"""'], {}), "([0, ytl], [1 / (2 * T), 1 / (2 * T)], 'k')\n", (6330, 6373), True, 'import matplotlib.pyplot as plt\n'), ((6386, 6461), 'matplotlib.pyplot.text', 'plt.text', (['xmax_ax', 'xtm', '"""$x$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(xmax_ax, xtm, '$x$', fontsize=fontsize, ha='right', va='baseline')\n", (6394, 6461), True, 'import matplotlib.pyplot as plt\n'), ((6462, 6533), 'matplotlib.pyplot.text', 'plt.text', (['ytm', 'xtm', '"""$0$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""baseline"""'}), "(ytm, xtm, '$0$', fontsize=fontsize, ha='right', va='baseline')\n", (6470, 6533), True, 'import matplotlib.pyplot as plt\n'), ((6534, 6604), 'matplotlib.pyplot.text', 'plt.text', (['T', 'xtm', '"""$T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(T, xtm, '$T$', fontsize=fontsize, ha='center', va='baseline')\n", (6542, 6604), True, 'import matplotlib.pyplot as plt\n'), ((6605, 6680), 'matplotlib.pyplot.text', 'plt.text', (['(2 * T)', 'xtm', '"""$2T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(2 * T, xtm, '$2T$', fontsize=fontsize, ha='center', va='baseline')\n", (6613, 6680), True, 'import matplotlib.pyplot as plt\n'), ((6679, 6754), 'matplotlib.pyplot.text', 'plt.text', (['(3 * T)', 'xtm', '"""$3T$"""'], {'fontsize': 'fontsize', 'ha': '"""center"""', 'va': '"""baseline"""'}), "(3 * T, xtm, '$3T$', fontsize=fontsize, ha='center', va='baseline')\n", (6687, 6754), True, 'import matplotlib.pyplot as plt\n'), ((6763, 6851), 'matplotlib.pyplot.text', 'plt.text', (['ytm', '(1 / T)', '"""$\\\\dfrac{1}{T}$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""center"""'}), "(ytm, 1 / T, '$\\\\dfrac{1}{T}$', fontsize=fontsize, ha='right', va=\n 'center')\n", (6771, 6851), True, 'import matplotlib.pyplot as plt\n'), ((6844, 6939), 'matplotlib.pyplot.text', 'plt.text', (['ytm', '(1 / (2 * T))', '"""$\\\\dfrac{1}{2T}$"""'], {'fontsize': 'fontsize', 'ha': '"""right"""', 'va': '"""center"""'}), "(ytm, 1 / (2 * T), '$\\\\dfrac{1}{2T}$', fontsize=fontsize, ha=\n 'right', va='center')\n", (6852, 6939), True, 'import matplotlib.pyplot as plt\n'), ((7023, 7078), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0.28, 0.7)', 'frameon': '(False)', 'fontsize': '(12)'}), '(loc=(0.28, 0.7), frameon=False, fontsize=12)\n', (7033, 7078), True, 'import matplotlib.pyplot as plt\n'), ((7080, 7095), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (7088, 7095), True, 'import matplotlib.pyplot as plt\n'), ((7117, 7169), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""example_7_15.pdf"""'], {'bbox_inches': '"""tight"""'}), "('example_7_15.pdf', bbox_inches='tight')\n", (7128, 7169), True, 'import matplotlib.pyplot as plt\n'), ((7170, 7180), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7178, 7180), True, 'import matplotlib.pyplot as plt\n'), ((1596, 1611), 'math.sqrt', 'math.sqrt', (['var2'], {}), '(var2)\n', (1605, 1611), False, 'import math\n'), ((1636, 1651), 'math.sqrt', 'math.sqrt', (['var3'], {}), '(var3)\n', (1645, 1651), False, 'import math\n'), ((5652, 5677), 'numpy.polyval', 'np.polyval', (['[1, 0, 0]', 'xa'], {}), '([1, 0, 0], xa)\n', (5662, 5677), True, 'import numpy as np\n'), ((5772, 5812), 'numpy.polyval', 'np.polyval', (['[-2, 6 * T, -3 * T ** 2]', 'xa'], {}), '([-2, 6 * T, -3 * T ** 2], xa)\n', (5782, 5812), True, 'import numpy as np\n'), ((5887, 5926), 'numpy.polyval', 'np.polyval', (['[1, -6 * T, 9 * T ** 2]', 'xa'], {}), '([1, -6 * T, 9 * T ** 2], xa)\n', (5897, 5926), True, 'import numpy as np\n')]
# Modified work: # ----------------------------------------------------------------------------- # Copyright (c) 2019 Preferred Infrastructure, Inc. # Copyright (c) 2019 Preferred Networks, Inc. # ----------------------------------------------------------------------------- # Original work: # ----------------------------------------------------------------------------- # Copyright (c) 2015 by Contributors # \file roi_pooling.cu # \brief roi pooling operator # \author <NAME>, <NAME>, <NAME> # \changed to roi_align by <NAME> # \file roi_align.cu # \roi align operator described in Mask RCNN # ----------------------------------------------------------------------------- from __future__ import division import numbers import numpy as np import six from chainer.backends import cuda from chainer import function from chainer.utils import type_check from chainercv.functions.ps_roi_average_align_2d \ import _GET_BILINEAR_INTERP_KERNEL from chainercv.functions.ps_roi_average_align_2d \ import _get_bilinear_interp_params from chainercv.functions.ps_roi_average_align_2d import _get_bounds from chainercv.functions.ps_roi_average_align_2d import _pair from chainercv.functions.ps_roi_average_pooling_2d import _outsize class PSROIMaxAlign2D(function.Function): def __init__( self, outsize, spatial_scale, group_size, sampling_ratio=None ): out_c, out_h, out_w = _outsize(outsize) if out_c is not None and \ not (isinstance(out_c, numbers.Integral) and out_c > 0): raise TypeError( 'outsize[0] must be positive integer: {}, {}' .format(type(out_c), out_c)) if not (isinstance(out_h, numbers.Integral) and out_h > 0): raise TypeError( 'outsize[1] must be positive integer: {}, {}' .format(type(out_h), out_h)) if not (isinstance(out_w, numbers.Integral) and out_w > 0): raise TypeError( 'outsize[2] must be positive integer: {}, {}' .format(type(out_w), out_w)) if isinstance(spatial_scale, numbers.Integral): spatial_scale = float(spatial_scale) if not (isinstance(spatial_scale, numbers.Real) and spatial_scale > 0): raise TypeError( 'spatial_scale must be a positive float number: {}, {}' .format(type(spatial_scale), spatial_scale)) if not (isinstance(group_size, numbers.Integral) and group_size > 0): raise TypeError( 'group_size must be positive integer: {}, {}' .format(type(group_size), group_size)) sampling_ratio = _pair(sampling_ratio) if not all((isinstance(s, numbers.Integral) and s >= 1) or s is None for s in sampling_ratio): raise TypeError( 'sampling_ratio must be integer >= 1 or a pair of it: {}' .format(sampling_ratio)) self.out_c, self.out_h, self.out_w = out_c, out_h, out_w self.spatial_scale = spatial_scale self.group_size = group_size self.sampling_ratio = sampling_ratio def check_type_forward(self, in_types): type_check.expect(in_types.size() == 3) x_type, roi_type, roi_index_type = in_types type_check.expect( x_type.dtype == np.float32, x_type.ndim == 4, roi_type.dtype == np.float32, roi_type.ndim == 2, roi_type.shape[1] == 4, roi_index_type.dtype == np.int32, roi_index_type.ndim == 1, roi_type.shape[0] == roi_index_type.shape[0] ) def forward_cpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channel, height, width = bottom_data.shape[1:] if self.out_c is None: if channel % (self.group_size * self.group_size) != 0: raise ValueError( 'input channel must be divided by group_size * group_size:' '{} % {} != 0' .format(channel, self.group_size * self.group_size)) out_c = channel // (self.group_size * self.group_size) else: if channel != self.out_c * self.group_size * self.group_size: raise ValueError( 'input channel must be equal to ' 'outsize[0] * group_size * group_size: {} != {}' .format(channel, self.out_c * self.group_size * self.group_size)) out_c = self.out_c n_roi = bottom_rois.shape[0] top_data = np.empty( (n_roi, out_c, self.out_h, self.out_w), dtype=np.float32) self.argmax_data = np.empty(top_data.shape, dtype=np.int32) group_size = self.group_size pooled_width, pooled_height \ = self.out_w, self.out_h spatial_scale = self.spatial_scale for i in six.moves.range(top_data.size): n, ctop, ph, pw = np.unravel_index(i, top_data.shape) roi_batch_ind = bottom_roi_indices[n] roi_start_h = bottom_rois[n, 0] * spatial_scale roi_start_w = bottom_rois[n, 1] * spatial_scale roi_end_h = bottom_rois[n, 2] * spatial_scale roi_end_w = bottom_rois[n, 3] * spatial_scale roi_height = max(roi_end_h - roi_start_h, 0.1) roi_width = max(roi_end_w - roi_start_w, 0.1) bin_size_h = roi_height / pooled_height bin_size_w = roi_width / pooled_width gh = int(np.floor(ph * group_size / pooled_height)) gw = int(np.floor(pw * group_size / pooled_width)) gh = min(max(gh, 0), group_size - 1) gw = min(max(gw, 0), group_size - 1) c = (ctop * group_size + gh) * group_size + gw if self.sampling_ratio[0] is None: roi_bin_grid_h = int(np.ceil(roi_height / pooled_height)) else: roi_bin_grid_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: roi_bin_grid_w = int(np.ceil(roi_width / pooled_width)) else: roi_bin_grid_w = self.sampling_ratio[1] maxval = - np.inf maxidx = -1 for iy in six.moves.range(roi_bin_grid_h): y = roi_start_h + ph * bin_size_h + \ (iy + .5) * bin_size_h / roi_bin_grid_h y, y_low, y_high = _get_bounds(y, height) if y is None or y_low is None or y_high is None: continue for ix in six.moves.range(roi_bin_grid_w): x = roi_start_w + pw * bin_size_w + \ (ix + .5) * bin_size_w / roi_bin_grid_w x, x_low, x_high = _get_bounds(x, width) if x is None or x_low is None or x_high is None: continue # bilinear interpolation {{ w1, w2, w3, w4 = _get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high) tmpval = 0.0 isvalid = False bottom_index = iy * roi_bin_grid_w + ix if w1 > 0 and y_low >= 0 and x_low >= 0: v1 = bottom_data[roi_batch_ind, c, y_low, x_low] tmpval += w1 * v1 isvalid = True if w2 > 0 and y_low >= 0 and x_high <= width - 1: v2 = bottom_data[roi_batch_ind, c, y_low, x_high] tmpval += w2 * v2 isvalid = True if w3 > 0 and y_high <= height - 1 and x_low >= 0: v3 = bottom_data[roi_batch_ind, c, y_high, x_low] tmpval += w3 * v3 isvalid = True if w4 > 0 and y_high <= height - 1 and x_high <= width - 1: v4 = bottom_data[roi_batch_ind, c, y_high, x_high] tmpval += w4 * v4 isvalid = True if isvalid and tmpval > maxval: maxval = tmpval maxidx = bottom_index # }} top_data[n, ctop, ph, pw] = maxval self.argmax_data[n, ctop, ph, pw] = maxidx return top_data, def forward_gpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channel, height, width = bottom_data.shape[1:] if self.out_c is None: if channel % (self.group_size * self.group_size) != 0: raise ValueError( 'input channel must be divided by group_size * group_size:' '{} % {} != 0' .format(channel, self.group_size * self.group_size)) out_c = channel // (self.group_size * self.group_size) else: if channel != self.out_c * self.group_size * self.group_size: raise ValueError( 'input channel must be equal to ' 'outsize[0] * group_size * group_size: {} != {}' .format(channel, self.out_c * self.group_size * self.group_size)) out_c = self.out_c n_roi = bottom_rois.shape[0] top_data = cuda.cupy.empty( (n_roi, out_c, self.out_h, self.out_w), dtype=np.float32) self.argmax_data = cuda.cupy.empty(top_data.shape, np.int32) if self.sampling_ratio[0] is None: sampling_ratio_h = 0 else: sampling_ratio_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: sampling_ratio_w = 0 else: sampling_ratio_w = self.sampling_ratio[1] cuda.elementwise( ''' raw T bottom_data, raw T bottom_rois, raw int32 bottom_roi_indices, T spatial_scale, int32 channel, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w ''', 'T top_data, int32 argmax_data', ''' // pos in output filter int ph = (i / pooled_width) % pooled_height; int pw = i % pooled_width; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; int roi_batch_ind = bottom_roi_indices[n]; T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale; T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale; T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale; T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale; // Force too small ROIs to be 1x1 T roi_height = max(roi_end_h - roi_start_h, 0.1); T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom T bin_size_h = roi_height / static_cast<T>(pooled_height); T bin_size_w = roi_width / static_cast<T>(pooled_width); // Compute c at bottom int gh = floor( static_cast<T>(ph) * group_size / pooled_height); int gw = floor( static_cast<T>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int bottom_data_offset = (roi_batch_ind * channel + c) * height * width; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio_h > 0) ? sampling_ratio_h : ceil(roi_height / pooled_height); // e.g. = 2 int roi_bin_grid_w = (sampling_ratio_w > 0) ? sampling_ratio_w : ceil(roi_width / pooled_width); T maxval = - (T) (1.0 / 0.0); int maxidx = -1; for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g. iy = 0, 1 { T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5 int y_low, y_high; bool y_ret = get_bounds(y, height, y_low, y_high); if (!y_ret) continue; for (int ix = 0; ix < roi_bin_grid_w; ix++) { T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); int x_low, x_high; bool x_ret = get_bounds(x, width, x_low, x_high); if (!x_ret) continue; // bilinear_interpolation {{ T w1, w2, w3, w4; get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4); T tmpval = 0.; bool isvalid = false; int bottom_index = iy * roi_bin_grid_w + ix; if (w1 > 0 && y_low >= 0 && x_low >= 0) { T v1 = bottom_data[ bottom_data_offset + y_low * width + x_low]; tmpval += w1 * v1; isvalid = true; } if (w2 > 0 && y_low >= 0 && x_high <= width - 1) { T v2 = bottom_data[ bottom_data_offset + y_low * width + x_high]; tmpval += w2 * v2; isvalid = true; } if (w3 > 0 && y_high <= height - 1 && x_low >= 0) { T v3 = bottom_data[ bottom_data_offset + y_high * width + x_low]; tmpval += w3 * v3; isvalid = true; } if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) { T v4 = bottom_data[ bottom_data_offset + y_high * width + x_high]; tmpval += w4 * v4; isvalid = true; } // }} if (isvalid && tmpval > maxval) { maxval = tmpval; maxidx = bottom_index; } } } top_data = maxval; argmax_data = maxidx; ''', 'ps_roi_max_align_2d_fwd', preamble=_GET_BILINEAR_INTERP_KERNEL, )(bottom_data, bottom_rois, bottom_roi_indices, self.spatial_scale, channel, height, width, out_c, self.out_h, self.out_w, self.group_size, sampling_ratio_h, sampling_ratio_w, top_data, self.argmax_data) return top_data, def backward_cpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs height, width = self._bottom_data_shape[2:] bottom_diff = np.zeros(self._bottom_data_shape, np.float32) spatial_scale = self.spatial_scale pooled_height = self.out_h pooled_width = self.out_w group_size = self.group_size top_diff = gy[0] for i in six.moves.range(top_diff.size): n, ctop, ph, pw = np.unravel_index(i, top_diff.shape) roi_batch_ind = bottom_roi_indices[n] roi_start_h = bottom_rois[n, 0] * spatial_scale roi_start_w = bottom_rois[n, 1] * spatial_scale roi_end_h = bottom_rois[n, 2] * spatial_scale roi_end_w = bottom_rois[n, 3] * spatial_scale roi_height = max(roi_end_h - roi_start_h, 0.1) roi_width = max(roi_end_w - roi_start_w, 0.1) bin_size_h = roi_height / pooled_height bin_size_w = roi_width / pooled_width gh = int(np.floor(float(ph) * group_size / pooled_height)) gw = int(np.floor(float(pw) * group_size / pooled_width)) gh = min(max(gh, 0), group_size - 1) gw = min(max(gw, 0), group_size - 1) c = (ctop * group_size + gh) * group_size + gw top_diff_this_bin = top_diff[n, ctop, ph, pw] maxidx = self.argmax_data[n, ctop, ph, pw] if maxidx != -1: if self.sampling_ratio[0] is None: roi_bin_grid_h = int(np.ceil(roi_height / pooled_height)) else: roi_bin_grid_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: roi_bin_grid_w = int(np.ceil(roi_width / pooled_width)) else: roi_bin_grid_w = self.sampling_ratio[1] iy = int(maxidx / roi_bin_grid_w) ix = maxidx % roi_bin_grid_w y = roi_start_h + ph * bin_size_h + \ (iy + .5) * bin_size_h / roi_bin_grid_h x = roi_start_w + pw * bin_size_w + \ (ix + .5) * bin_size_w / roi_bin_grid_w y, y_low, y_high = _get_bounds(y, height) if y is None or y_low is None or y_high is None: continue x, x_low, x_high = _get_bounds(x, width) if x is None or x_low is None or x_high is None: continue # bilinear_interpolation_gradient {{ w1, w2, w3, w4 = _get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high) if w1 > 0 and y_low >= 0 and x_low >= 0: g1 = top_diff_this_bin * w1 bottom_diff[roi_batch_ind, c, y_low, x_low] += g1 if w2 > 0 and y_low >= 0 and x_high <= width - 1: g2 = top_diff_this_bin * w2 bottom_diff[roi_batch_ind, c, y_low, x_high] += g2 if w3 > 0 and y_high <= height - 1 and x_low >= 0: g3 = top_diff_this_bin * w3 bottom_diff[roi_batch_ind, c, y_high, x_low] += g3 if w4 > 0 and y_high <= height - 1 and x_high <= width - 1: g4 = top_diff_this_bin * w4 bottom_diff[roi_batch_ind, c, y_high, x_high] += g4 # }} return bottom_diff, None, None def backward_gpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs channel, height, width = self._bottom_data_shape[1:] out_c, out_h, out_w = gy[0].shape[1:] bottom_diff = cuda.cupy.zeros(self._bottom_data_shape, np.float32) if self.sampling_ratio[0] is None: sampling_ratio_h = 0 else: sampling_ratio_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: sampling_ratio_w = 0 else: sampling_ratio_w = self.sampling_ratio[1] cuda.elementwise( ''' raw T top_diff, raw int32 argmax_data, raw T bottom_rois, raw int32 bottom_roi_indices, T spatial_scale, int32 channel, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w ''', 'raw T bottom_diff', ''' // (n, c, h, w) coords in bottom data int pw = i % pooled_width; int ph = (i / pooled_width) % pooled_height; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; // Do not using rounding; this implementation detail is critical int roi_batch_ind = bottom_roi_indices[n]; T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale; T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale; T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale; T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale; // Force too small ROIs to be 1x1 T roi_height = max(roi_end_h - roi_start_h, 0.1); T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom T bin_size_h = roi_height / static_cast<T>(pooled_height); T bin_size_w = roi_width / static_cast<T>(pooled_width); // Compute c at bottom int gh = floor( static_cast<T>(ph) * group_size / pooled_height); int gw = floor( static_cast<T>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int bottom_diff_offset = (roi_batch_ind * channel + c) * height * width; int top_offset = (n * pooled_dim + ctop) * pooled_height * pooled_width; T top_diff_this_bin = top_diff[top_offset + ph * pooled_width + pw]; int maxidx = argmax_data[top_offset + ph * pooled_width + pw]; if (maxidx != -1) { // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio_h > 0) ? sampling_ratio_h : ceil(roi_height / pooled_height); // e.g. = 2 int roi_bin_grid_w = (sampling_ratio_w > 0) ? sampling_ratio_w : ceil(roi_width / pooled_width); int iy = maxidx / roi_bin_grid_w; int ix = maxidx % roi_bin_grid_w; T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5 T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); int y_low, y_high; bool y_ret = get_bounds(y, height, y_low, y_high); if (!y_ret) continue; int x_low, x_high; bool x_ret = get_bounds(x, width, x_low, x_high); if (!x_ret) continue; // bilinear_interpolation_gradient {{ T w1, w2, w3, w4; get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4); if (w1 > 0 && y_low >= 0 && x_low >= 0) { T g1 = top_diff_this_bin * w1; atomicAdd(&bottom_diff[ bottom_diff_offset + y_low * width + x_low], g1); } if (w2 > 0 && y_low >= 0 && x_high <= width - 1) { T g2 = top_diff_this_bin * w2; atomicAdd(&bottom_diff[ bottom_diff_offset + y_low * width + x_high], g2); } if (w3 > 0 && y_high <= height - 1 && x_low >= 0) { T g3 = top_diff_this_bin * w3; atomicAdd(&bottom_diff[ bottom_diff_offset + y_high * width + x_low], g3); } if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) { T g4 = top_diff_this_bin * w4; atomicAdd(&bottom_diff[ bottom_diff_offset + y_high * width + x_high], g4); } // }} } ''', 'ps_roi_max_align_2d_bwd', preamble=_GET_BILINEAR_INTERP_KERNEL, )(gy[0], self.argmax_data, bottom_rois, bottom_roi_indices, self.spatial_scale, channel, height, width, out_c, out_h, out_w, self.group_size, sampling_ratio_h, sampling_ratio_w, bottom_diff, size=gy[0].size) return bottom_diff, None, None def ps_roi_max_align_2d( x, rois, roi_indices, outsize, spatial_scale, group_size, sampling_ratio=None ): """Position Sensitive Region of Interest (ROI) Max align function. This function computes position sensitive max value of input spatial patch with the given region of interests. Each ROI is splitted into :math:`(group\_size, group\_size)` regions, and position sensitive values in each region is computed. Args: x (~chainer.Variable): Input variable. The shape is expected to be 4 dimentional: (n: batch, c: channel, h, height, w: width). rois (array): Input roi. The shape is expected to be :math:`(R, 4)`, and each datum is set as below: (y_min, x_min, y_max, x_max). The dtype is :obj:`numpy.float32`. roi_indices (array): Input roi indices. The shape is expected to be :math:`(R, )`. The dtype is :obj:`numpy.int32`. outsize ((int, int, int) or (int, int) or int): Expected output size after pooled: (channel, height, width) or (height, width) or outsize. ``outsize=o`` and ``outsize=(o, o)`` are equivalent. Channel parameter is used to assert the input shape. spatial_scale (float): Scale of the roi is resized. group_size (int): Position sensitive group size. sampling_ratio ((int, int) or int): Sampling step for the alignment. It must be an integer over :math:`1` or :obj:`None`, and the value is automatically decided when :obj:`None` is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as ``(sampling_ratio_h, sampling_ratio_w)``. ``sampling_ratio=s`` and ``sampling_ratio=(s, s)`` are equivalent. Returns: ~chainer.Variable: Output variable. See the original paper proposing PSROIPooling: `R-FCN <https://arxiv.org/abs/1605.06409>`_. See the original paper proposing ROIAlign: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_. """ return PSROIMaxAlign2D( outsize, spatial_scale, group_size, sampling_ratio)(x, rois, roi_indices)
[ "chainer.utils.type_check.expect", "numpy.ceil", "six.moves.range", "chainercv.functions.ps_roi_average_align_2d._get_bounds", "numpy.empty", "chainercv.functions.ps_roi_average_align_2d._pair", "numpy.floor", "numpy.zeros", "numpy.unravel_index", "chainer.backends.cuda.cupy.zeros", "chainer.backends.cuda.cupy.empty", "chainercv.functions.ps_roi_average_align_2d._get_bilinear_interp_params", "chainer.backends.cuda.elementwise", "chainercv.functions.ps_roi_average_pooling_2d._outsize" ]
[((1420, 1437), 'chainercv.functions.ps_roi_average_pooling_2d._outsize', '_outsize', (['outsize'], {}), '(outsize)\n', (1428, 1437), False, 'from chainercv.functions.ps_roi_average_pooling_2d import _outsize\n'), ((2718, 2739), 'chainercv.functions.ps_roi_average_align_2d._pair', '_pair', (['sampling_ratio'], {}), '(sampling_ratio)\n', (2723, 2739), False, 'from chainercv.functions.ps_roi_average_align_2d import _pair\n'), ((3351, 3609), 'chainer.utils.type_check.expect', 'type_check.expect', (['(x_type.dtype == np.float32)', '(x_type.ndim == 4)', '(roi_type.dtype == np.float32)', '(roi_type.ndim == 2)', '(roi_type.shape[1] == 4)', '(roi_index_type.dtype == np.int32)', '(roi_index_type.ndim == 1)', '(roi_type.shape[0] == roi_index_type.shape[0])'], {}), '(x_type.dtype == np.float32, x_type.ndim == 4, roi_type.\n dtype == np.float32, roi_type.ndim == 2, roi_type.shape[1] == 4, \n roi_index_type.dtype == np.int32, roi_index_type.ndim == 1, roi_type.\n shape[0] == roi_index_type.shape[0])\n', (3368, 3609), False, 'from chainer.utils import type_check\n'), ((4773, 4839), 'numpy.empty', 'np.empty', (['(n_roi, out_c, self.out_h, self.out_w)'], {'dtype': 'np.float32'}), '((n_roi, out_c, self.out_h, self.out_w), dtype=np.float32)\n', (4781, 4839), True, 'import numpy as np\n'), ((4880, 4920), 'numpy.empty', 'np.empty', (['top_data.shape'], {'dtype': 'np.int32'}), '(top_data.shape, dtype=np.int32)\n', (4888, 4920), True, 'import numpy as np\n'), ((5095, 5125), 'six.moves.range', 'six.moves.range', (['top_data.size'], {}), '(top_data.size)\n', (5110, 5125), False, 'import six\n'), ((9671, 9744), 'chainer.backends.cuda.cupy.empty', 'cuda.cupy.empty', (['(n_roi, out_c, self.out_h, self.out_w)'], {'dtype': 'np.float32'}), '((n_roi, out_c, self.out_h, self.out_w), dtype=np.float32)\n', (9686, 9744), False, 'from chainer.backends import cuda\n'), ((9785, 9826), 'chainer.backends.cuda.cupy.empty', 'cuda.cupy.empty', (['top_data.shape', 'np.int32'], {}), '(top_data.shape, np.int32)\n', (9800, 9826), False, 'from chainer.backends import cuda\n'), ((15665, 15710), 'numpy.zeros', 'np.zeros', (['self._bottom_data_shape', 'np.float32'], {}), '(self._bottom_data_shape, np.float32)\n', (15673, 15710), True, 'import numpy as np\n'), ((15904, 15934), 'six.moves.range', 'six.moves.range', (['top_diff.size'], {}), '(top_diff.size)\n', (15919, 15934), False, 'import six\n'), ((19203, 19255), 'chainer.backends.cuda.cupy.zeros', 'cuda.cupy.zeros', (['self._bottom_data_shape', 'np.float32'], {}), '(self._bottom_data_shape, np.float32)\n', (19218, 19255), False, 'from chainer.backends import cuda\n'), ((5157, 5192), 'numpy.unravel_index', 'np.unravel_index', (['i', 'top_data.shape'], {}), '(i, top_data.shape)\n', (5173, 5192), True, 'import numpy as np\n'), ((6451, 6482), 'six.moves.range', 'six.moves.range', (['roi_bin_grid_h'], {}), '(roi_bin_grid_h)\n', (6466, 6482), False, 'import six\n'), ((10124, 15177), 'chainer.backends.cuda.elementwise', 'cuda.elementwise', (['"""\n raw T bottom_data, raw T bottom_rois,\n raw int32 bottom_roi_indices,\n T spatial_scale, int32 channel,\n int32 height, int32 width,\n int32 pooled_dim, int32 pooled_height, int32 pooled_width,\n int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w\n """', '"""T top_data, int32 argmax_data"""', '"""\n // pos in output filter\n int ph = (i / pooled_width) % pooled_height;\n int pw = i % pooled_width;\n int ctop = (i / pooled_width / pooled_height) % pooled_dim;\n int n = i / pooled_width / pooled_height / pooled_dim;\n\n int roi_batch_ind = bottom_roi_indices[n];\n T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale;\n T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale;\n T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale;\n T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale;\n\n // Force too small ROIs to be 1x1\n T roi_height = max(roi_end_h - roi_start_h, 0.1);\n T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0\n\n // Compute w and h at bottom\n T bin_size_h = roi_height / static_cast<T>(pooled_height);\n T bin_size_w = roi_width / static_cast<T>(pooled_width);\n\n // Compute c at bottom\n int gh = floor(\n static_cast<T>(ph) * group_size / pooled_height);\n int gw = floor(\n static_cast<T>(pw) * group_size / pooled_width);\n gh = min(max(gh, 0), group_size - 1);\n gw = min(max(gw, 0), group_size - 1);\n int c = (ctop * group_size + gh) * group_size + gw;\n\n int bottom_data_offset =\n (roi_batch_ind * channel + c) * height * width;\n\n // We use roi_bin_grid to sample the grid and mimic integral\n int roi_bin_grid_h = (sampling_ratio_h > 0)\n ? sampling_ratio_h\n : ceil(roi_height / pooled_height); // e.g. = 2\n int roi_bin_grid_w = (sampling_ratio_w > 0)\n ? sampling_ratio_w\n : ceil(roi_width / pooled_width);\n\n T maxval = - (T) (1.0 / 0.0);\n int maxidx = -1;\n for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g. iy = 0, 1\n {\n T y = roi_start_h + ph * bin_size_h +\n static_cast<T>(iy + .5f) * bin_size_h /\n static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5\n int y_low, y_high;\n bool y_ret = get_bounds(y, height, y_low, y_high);\n if (!y_ret) continue;\n for (int ix = 0; ix < roi_bin_grid_w; ix++) {\n T x = roi_start_w + pw * bin_size_w +\n static_cast<T>(ix + .5f) * bin_size_w /\n static_cast<T>(roi_bin_grid_w);\n\n int x_low, x_high;\n bool x_ret = get_bounds(x, width, x_low, x_high);\n if (!x_ret) continue;\n // bilinear_interpolation {{\n T w1, w2, w3, w4;\n get_bilinear_interp_params(\n y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4);\n\n T tmpval = 0.;\n bool isvalid = false;\n int bottom_index = iy * roi_bin_grid_w + ix;\n if (w1 > 0 && y_low >= 0 && x_low >= 0) {\n T v1 = bottom_data[\n bottom_data_offset + y_low * width + x_low];\n tmpval += w1 * v1;\n isvalid = true;\n }\n if (w2 > 0 && y_low >= 0 && x_high <= width - 1) {\n T v2 = bottom_data[\n bottom_data_offset + y_low * width + x_high];\n tmpval += w2 * v2;\n isvalid = true;\n }\n if (w3 > 0 && y_high <= height - 1 && x_low >= 0) {\n T v3 = bottom_data[\n bottom_data_offset + y_high * width + x_low];\n tmpval += w3 * v3;\n isvalid = true;\n }\n if (w4 > 0 && y_high <= height - 1 &&\n x_high <= width - 1) {\n T v4 = bottom_data[\n bottom_data_offset + y_high * width + x_high];\n tmpval += w4 * v4;\n isvalid = true;\n }\n\n // }}\n\n if (isvalid && tmpval > maxval) {\n maxval = tmpval;\n maxidx = bottom_index;\n }\n }\n }\n top_data = maxval;\n argmax_data = maxidx;\n """', '"""ps_roi_max_align_2d_fwd"""'], {'preamble': '_GET_BILINEAR_INTERP_KERNEL'}), '(\n """\n raw T bottom_data, raw T bottom_rois,\n raw int32 bottom_roi_indices,\n T spatial_scale, int32 channel,\n int32 height, int32 width,\n int32 pooled_dim, int32 pooled_height, int32 pooled_width,\n int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w\n """\n , \'T top_data, int32 argmax_data\',\n """\n // pos in output filter\n int ph = (i / pooled_width) % pooled_height;\n int pw = i % pooled_width;\n int ctop = (i / pooled_width / pooled_height) % pooled_dim;\n int n = i / pooled_width / pooled_height / pooled_dim;\n\n int roi_batch_ind = bottom_roi_indices[n];\n T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale;\n T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale;\n T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale;\n T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale;\n\n // Force too small ROIs to be 1x1\n T roi_height = max(roi_end_h - roi_start_h, 0.1);\n T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0\n\n // Compute w and h at bottom\n T bin_size_h = roi_height / static_cast<T>(pooled_height);\n T bin_size_w = roi_width / static_cast<T>(pooled_width);\n\n // Compute c at bottom\n int gh = floor(\n static_cast<T>(ph) * group_size / pooled_height);\n int gw = floor(\n static_cast<T>(pw) * group_size / pooled_width);\n gh = min(max(gh, 0), group_size - 1);\n gw = min(max(gw, 0), group_size - 1);\n int c = (ctop * group_size + gh) * group_size + gw;\n\n int bottom_data_offset =\n (roi_batch_ind * channel + c) * height * width;\n\n // We use roi_bin_grid to sample the grid and mimic integral\n int roi_bin_grid_h = (sampling_ratio_h > 0)\n ? sampling_ratio_h\n : ceil(roi_height / pooled_height); // e.g. = 2\n int roi_bin_grid_w = (sampling_ratio_w > 0)\n ? sampling_ratio_w\n : ceil(roi_width / pooled_width);\n\n T maxval = - (T) (1.0 / 0.0);\n int maxidx = -1;\n for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g. iy = 0, 1\n {\n T y = roi_start_h + ph * bin_size_h +\n static_cast<T>(iy + .5f) * bin_size_h /\n static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5\n int y_low, y_high;\n bool y_ret = get_bounds(y, height, y_low, y_high);\n if (!y_ret) continue;\n for (int ix = 0; ix < roi_bin_grid_w; ix++) {\n T x = roi_start_w + pw * bin_size_w +\n static_cast<T>(ix + .5f) * bin_size_w /\n static_cast<T>(roi_bin_grid_w);\n\n int x_low, x_high;\n bool x_ret = get_bounds(x, width, x_low, x_high);\n if (!x_ret) continue;\n // bilinear_interpolation {{\n T w1, w2, w3, w4;\n get_bilinear_interp_params(\n y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4);\n\n T tmpval = 0.;\n bool isvalid = false;\n int bottom_index = iy * roi_bin_grid_w + ix;\n if (w1 > 0 && y_low >= 0 && x_low >= 0) {\n T v1 = bottom_data[\n bottom_data_offset + y_low * width + x_low];\n tmpval += w1 * v1;\n isvalid = true;\n }\n if (w2 > 0 && y_low >= 0 && x_high <= width - 1) {\n T v2 = bottom_data[\n bottom_data_offset + y_low * width + x_high];\n tmpval += w2 * v2;\n isvalid = true;\n }\n if (w3 > 0 && y_high <= height - 1 && x_low >= 0) {\n T v3 = bottom_data[\n bottom_data_offset + y_high * width + x_low];\n tmpval += w3 * v3;\n isvalid = true;\n }\n if (w4 > 0 && y_high <= height - 1 &&\n x_high <= width - 1) {\n T v4 = bottom_data[\n bottom_data_offset + y_high * width + x_high];\n tmpval += w4 * v4;\n isvalid = true;\n }\n\n // }}\n\n if (isvalid && tmpval > maxval) {\n maxval = tmpval;\n maxidx = bottom_index;\n }\n }\n }\n top_data = maxval;\n argmax_data = maxidx;\n """\n , \'ps_roi_max_align_2d_fwd\', preamble=_GET_BILINEAR_INTERP_KERNEL)\n', (10140, 15177), False, 'from chainer.backends import cuda\n'), ((15966, 16001), 'numpy.unravel_index', 'np.unravel_index', (['i', 'top_diff.shape'], {}), '(i, top_diff.shape)\n', (15982, 16001), True, 'import numpy as np\n'), ((19553, 24296), 'chainer.backends.cuda.elementwise', 'cuda.elementwise', (['"""\n raw T top_diff, raw int32 argmax_data,\n raw T bottom_rois, raw int32 bottom_roi_indices,\n T spatial_scale, int32 channel, int32 height, int32 width,\n int32 pooled_dim, int32 pooled_height, int32 pooled_width,\n int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w\n """', '"""raw T bottom_diff"""', '"""\n // (n, c, h, w) coords in bottom data\n int pw = i % pooled_width;\n int ph = (i / pooled_width) % pooled_height;\n int ctop = (i / pooled_width / pooled_height) % pooled_dim;\n int n = i / pooled_width / pooled_height / pooled_dim;\n\n // Do not using rounding; this implementation detail is critical\n int roi_batch_ind = bottom_roi_indices[n];\n T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale;\n T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale;\n T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale;\n T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale;\n\n // Force too small ROIs to be 1x1\n T roi_height = max(roi_end_h - roi_start_h, 0.1);\n T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0\n\n // Compute w and h at bottom\n T bin_size_h = roi_height / static_cast<T>(pooled_height);\n T bin_size_w = roi_width / static_cast<T>(pooled_width);\n\n // Compute c at bottom\n int gh = floor(\n static_cast<T>(ph) * group_size / pooled_height);\n int gw = floor(\n static_cast<T>(pw) * group_size / pooled_width);\n gh = min(max(gh, 0), group_size - 1);\n gw = min(max(gw, 0), group_size - 1);\n int c = (ctop * group_size + gh) * group_size + gw;\n\n int bottom_diff_offset =\n (roi_batch_ind * channel + c) * height * width;\n\n int top_offset =\n (n * pooled_dim + ctop) * pooled_height * pooled_width;\n T top_diff_this_bin =\n top_diff[top_offset + ph * pooled_width + pw];\n int maxidx = argmax_data[top_offset + ph * pooled_width + pw];\n\n if (maxidx != -1) {\n // We use roi_bin_grid to sample the grid and mimic integral\n int roi_bin_grid_h = (sampling_ratio_h > 0)\n ? sampling_ratio_h\n : ceil(roi_height / pooled_height); // e.g. = 2\n int roi_bin_grid_w = (sampling_ratio_w > 0)\n ? sampling_ratio_w\n : ceil(roi_width / pooled_width);\n\n int iy = maxidx / roi_bin_grid_w;\n int ix = maxidx % roi_bin_grid_w;\n\n T y = roi_start_h + ph * bin_size_h +\n static_cast<T>(iy + .5f) * bin_size_h /\n static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5\n T x = roi_start_w + pw * bin_size_w +\n static_cast<T>(ix + .5f) * bin_size_w /\n static_cast<T>(roi_bin_grid_w);\n\n int y_low, y_high;\n bool y_ret = get_bounds(y, height, y_low, y_high);\n if (!y_ret) continue;\n int x_low, x_high;\n bool x_ret = get_bounds(x, width, x_low, x_high);\n if (!x_ret) continue;\n\n // bilinear_interpolation_gradient {{\n T w1, w2, w3, w4;\n get_bilinear_interp_params(\n y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4);\n\n if (w1 > 0 && y_low >= 0 && x_low >= 0) {\n T g1 = top_diff_this_bin * w1;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_low * width + x_low], g1);\n }\n if (w2 > 0 && y_low >= 0 && x_high <= width - 1) {\n T g2 = top_diff_this_bin * w2;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_low * width + x_high], g2);\n }\n if (w3 > 0 && y_high <= height - 1 && x_low >= 0) {\n T g3 = top_diff_this_bin * w3;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_high * width + x_low], g3);\n }\n if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) {\n T g4 = top_diff_this_bin * w4;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_high * width + x_high], g4);\n }\n\n // }}\n }\n """', '"""ps_roi_max_align_2d_bwd"""'], {'preamble': '_GET_BILINEAR_INTERP_KERNEL'}), '(\n """\n raw T top_diff, raw int32 argmax_data,\n raw T bottom_rois, raw int32 bottom_roi_indices,\n T spatial_scale, int32 channel, int32 height, int32 width,\n int32 pooled_dim, int32 pooled_height, int32 pooled_width,\n int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w\n """\n , \'raw T bottom_diff\',\n """\n // (n, c, h, w) coords in bottom data\n int pw = i % pooled_width;\n int ph = (i / pooled_width) % pooled_height;\n int ctop = (i / pooled_width / pooled_height) % pooled_dim;\n int n = i / pooled_width / pooled_height / pooled_dim;\n\n // Do not using rounding; this implementation detail is critical\n int roi_batch_ind = bottom_roi_indices[n];\n T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale;\n T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale;\n T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale;\n T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale;\n\n // Force too small ROIs to be 1x1\n T roi_height = max(roi_end_h - roi_start_h, 0.1);\n T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0\n\n // Compute w and h at bottom\n T bin_size_h = roi_height / static_cast<T>(pooled_height);\n T bin_size_w = roi_width / static_cast<T>(pooled_width);\n\n // Compute c at bottom\n int gh = floor(\n static_cast<T>(ph) * group_size / pooled_height);\n int gw = floor(\n static_cast<T>(pw) * group_size / pooled_width);\n gh = min(max(gh, 0), group_size - 1);\n gw = min(max(gw, 0), group_size - 1);\n int c = (ctop * group_size + gh) * group_size + gw;\n\n int bottom_diff_offset =\n (roi_batch_ind * channel + c) * height * width;\n\n int top_offset =\n (n * pooled_dim + ctop) * pooled_height * pooled_width;\n T top_diff_this_bin =\n top_diff[top_offset + ph * pooled_width + pw];\n int maxidx = argmax_data[top_offset + ph * pooled_width + pw];\n\n if (maxidx != -1) {\n // We use roi_bin_grid to sample the grid and mimic integral\n int roi_bin_grid_h = (sampling_ratio_h > 0)\n ? sampling_ratio_h\n : ceil(roi_height / pooled_height); // e.g. = 2\n int roi_bin_grid_w = (sampling_ratio_w > 0)\n ? sampling_ratio_w\n : ceil(roi_width / pooled_width);\n\n int iy = maxidx / roi_bin_grid_w;\n int ix = maxidx % roi_bin_grid_w;\n\n T y = roi_start_h + ph * bin_size_h +\n static_cast<T>(iy + .5f) * bin_size_h /\n static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5\n T x = roi_start_w + pw * bin_size_w +\n static_cast<T>(ix + .5f) * bin_size_w /\n static_cast<T>(roi_bin_grid_w);\n\n int y_low, y_high;\n bool y_ret = get_bounds(y, height, y_low, y_high);\n if (!y_ret) continue;\n int x_low, x_high;\n bool x_ret = get_bounds(x, width, x_low, x_high);\n if (!x_ret) continue;\n\n // bilinear_interpolation_gradient {{\n T w1, w2, w3, w4;\n get_bilinear_interp_params(\n y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4);\n\n if (w1 > 0 && y_low >= 0 && x_low >= 0) {\n T g1 = top_diff_this_bin * w1;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_low * width + x_low], g1);\n }\n if (w2 > 0 && y_low >= 0 && x_high <= width - 1) {\n T g2 = top_diff_this_bin * w2;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_low * width + x_high], g2);\n }\n if (w3 > 0 && y_high <= height - 1 && x_low >= 0) {\n T g3 = top_diff_this_bin * w3;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_high * width + x_low], g3);\n }\n if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) {\n T g4 = top_diff_this_bin * w4;\n atomicAdd(&bottom_diff[\n bottom_diff_offset + y_high * width + x_high], g4);\n }\n\n // }}\n }\n """\n , \'ps_roi_max_align_2d_bwd\', preamble=_GET_BILINEAR_INTERP_KERNEL)\n', (19569, 24296), False, 'from chainer.backends import cuda\n'), ((5722, 5763), 'numpy.floor', 'np.floor', (['(ph * group_size / pooled_height)'], {}), '(ph * group_size / pooled_height)\n', (5730, 5763), True, 'import numpy as np\n'), ((5786, 5826), 'numpy.floor', 'np.floor', (['(pw * group_size / pooled_width)'], {}), '(pw * group_size / pooled_width)\n', (5794, 5826), True, 'import numpy as np\n'), ((6633, 6655), 'chainercv.functions.ps_roi_average_align_2d._get_bounds', '_get_bounds', (['y', 'height'], {}), '(y, height)\n', (6644, 6655), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bounds\n'), ((6776, 6807), 'six.moves.range', 'six.moves.range', (['roi_bin_grid_w'], {}), '(roi_bin_grid_w)\n', (6791, 6807), False, 'import six\n'), ((17733, 17755), 'chainercv.functions.ps_roi_average_align_2d._get_bounds', '_get_bounds', (['y', 'height'], {}), '(y, height)\n', (17744, 17755), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bounds\n'), ((17885, 17906), 'chainercv.functions.ps_roi_average_align_2d._get_bounds', '_get_bounds', (['x', 'width'], {}), '(x, width)\n', (17896, 17906), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bounds\n'), ((18088, 18151), 'chainercv.functions.ps_roi_average_align_2d._get_bilinear_interp_params', '_get_bilinear_interp_params', (['y', 'x', 'y_low', 'x_low', 'y_high', 'x_high'], {}), '(y, x, y_low, x_low, y_high, x_high)\n', (18115, 18151), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bilinear_interp_params\n'), ((6070, 6105), 'numpy.ceil', 'np.ceil', (['(roi_height / pooled_height)'], {}), '(roi_height / pooled_height)\n', (6077, 6105), True, 'import numpy as np\n'), ((6265, 6298), 'numpy.ceil', 'np.ceil', (['(roi_width / pooled_width)'], {}), '(roi_width / pooled_width)\n', (6272, 6298), True, 'import numpy as np\n'), ((6971, 6992), 'chainercv.functions.ps_roi_average_align_2d._get_bounds', '_get_bounds', (['x', 'width'], {}), '(x, width)\n', (6982, 6992), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bounds\n'), ((7181, 7244), 'chainercv.functions.ps_roi_average_align_2d._get_bilinear_interp_params', '_get_bilinear_interp_params', (['y', 'x', 'y_low', 'x_low', 'y_high', 'x_high'], {}), '(y, x, y_low, x_low, y_high, x_high)\n', (7208, 7244), False, 'from chainercv.functions.ps_roi_average_align_2d import _get_bilinear_interp_params\n'), ((17044, 17079), 'numpy.ceil', 'np.ceil', (['(roi_height / pooled_height)'], {}), '(roi_height / pooled_height)\n', (17051, 17079), True, 'import numpy as np\n'), ((17255, 17288), 'numpy.ceil', 'np.ceil', (['(roi_width / pooled_width)'], {}), '(roi_width / pooled_width)\n', (17262, 17288), True, 'import numpy as np\n')]
import pyqtgraph as pg from pyqtgraph.dockarea import * import numpy as np import os import numbers try: from PyQt4.QtGui import QFileDialog from PyQt4 import QtCore, QtGui from PyQt4.QtGui import QMainWindow except ImportError: from PyQt5.QtWidgets import QFileDialog from PyQt5 import QtCore, QtGui from PyQt5.QtWidgets import QApplication, QMainWindow from neutronbraggedge.experiment_handler import * from ImagingReso import _utilities from __code.ui_resonance_imaging_experiment_vs_theory import Ui_MainWindow as UiMainWindow class ImageWindow(QMainWindow): pen_color = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] pen_symbol = ['o', 's', 't', 'd', '+'] stack = [] integrated_stack = [] working_folder = '' x_axis = {'file_index': [], 'tof': [], 'ev': [], 'lambda': []} x_axis_label = {'file_index': 'file index', 'tof': u'TOF (\u00B5s)', 'ev': 'eV', 'lambda': u'\u03BB (\u212B)', } y_axis = {'label': 'Mean Counts', 'data': []} elements_to_plot = {} # ex U, U235...etc to plot spectra_file = '' b_enable_only_file_index_button = True def __init__(self, parent=None, stack=[], working_folder='', o_reso=None): QMainWindow.__init__(self, parent=parent) self.ui = UiMainWindow() self.ui.setupUi(self) self.setWindowTitle("Select Rotation Angle for All Images") self.stack = np.array(stack) self.integrated_stack = self.stack.sum(axis=0) self.working_folder = working_folder self.o_reso = o_reso self.initialize_pyqtgraph() self.init_label() self.init_list_of_things_to_plot() self.update_radio_button_status() self.display_image() self.update_x_axis() self.roi_changed() def update_plot(self): # self.update_x_axis() self.plot() def init_label(self): _tof_label = u"TOF (\u00B5s)" self.ui.tof_radio_button.setText(_tof_label) _lambda_label = u"lambda (\u212B)" self.ui.lambda_radio_button.setText(_lambda_label) _offset_label = u"\u00B5s" self.ui.detector_offset_units.setText(_offset_label) def display_image(self): self.ui.image_view.setImage(self.integrated_stack) def plot(self): x_axis_selected = self.get_x_axis_selected() x_axis_data = self.x_axis[x_axis_selected] y_axis_data = self.y_axis['data'] # print("for {}".format(x_axis_selected)) # pprint.pprint(y_axis_data[0:10]) # pprint.pprint(x_axis_data[0:10]) # print() y_axis_label = self.y_axis['label'] if x_axis_selected == 'ev': y_axis_data = y_axis_data[::-1] x_axis_data = x_axis_data[::-1] x_axis_data = x_axis_data[0: len(y_axis_data)] self.counts_vs_index.clear() try: self.legend.scene().removeItem(self.legend) except: pass self.legend = self.counts_vs_index.addLegend() self.counts_vs_index.plot( x_axis_data, y_axis_data, name='Experimental') self.counts_vs_index.setLabel('bottom', x_axis_selected) self.counts_vs_index.setLabel('left', y_axis_label) # plot all elements elements_to_plot = self.elements_to_plot _index_pen_color = 0 _index_pen_symbol = 0 for _label in elements_to_plot.keys(): _x_axis_data = elements_to_plot[_label]['x_axis'] _y_axis_data = elements_to_plot[_label]['y_axis'] self.counts_vs_index.plot( _x_axis_data, _y_axis_data, name=_label, pen=self.pen_color[_index_pen_color], penSymbol=self.pen_symbol[_index_pen_symbol]) _index_pen_color += 1 if _index_pen_color >= len(self.pen_color): _index_pen_color = 0 _index_pen_symbol += 1 if _index_pen_symbol == len(self.pen_symbol): _index_pen_color = 0 _index_pen_symbol = 0 def initialize_pyqtgraph(self): area = DockArea() area.setVisible(True) d1 = Dock("Image Integrated Preview", size=(300, 800)) d2 = Dock("Counts vs Image Index of Selection", size=(300, 800)) area.addDock(d1, 'right') area.addDock(d2, 'left') preview_widget = pg.GraphicsLayoutWidget() pg.setConfigOptions(antialias=True) # image view self.ui.image_view = pg.ImageView() self.ui.image_view.ui.menuBtn.hide() self.ui.image_view.ui.roiBtn.hide() # default ROI self.ui.roi = pg.ROI([0, 0], [20, 20], pen=(62, 13, 244), scaleSnap=True) #blue self.ui.roi.addScaleHandle([1, 1], [0, 0]) self.ui.image_view.addItem(self.ui.roi) self.ui.roi.sigRegionChanged.connect(self.roi_changed) d1.addWidget(self.ui.image_view) self.counts_vs_index = pg.PlotWidget(title='') self.counts_vs_index.plot() d2.addWidget(self.counts_vs_index) vertical_layout = QtGui.QVBoxLayout() vertical_layout.addWidget(area) self.ui.widget.setLayout(vertical_layout) def roi_changed(self): region = self.ui.roi.getArraySlice(self.integrated_stack, self.ui.image_view.imageItem) x0 = region[0][0].start x1 = region[0][0].stop - 1 y0 = region[0][1].start y1 = region[0][1].stop - 1 mean_selection = [_data[x0:x1, y0:y1].mean() for _data in self.stack] self.y_axis['data'] = mean_selection self.plot() # x_axis def get_x_axis_selected(self): if self.ui.file_index_ratio_button.isChecked(): return 'file_index' elif self.ui.tof_radio_button.isChecked(): return 'tof' elif self.ui.lambda_radio_button.isChecked(): return 'lambda' else: return 'ev' def update_radio_button_status(self): x_axis_selected = self.get_x_axis_selected() # enable or not list of element to display if x_axis_selected == 'file_index': list_status = False else: list_status = True self.ui.list_to_plot_widget.setEnabled(list_status) b_enable_only_file_index_button = False spectra_file = self.spectra_file if not os.path.exists(spectra_file): x_axis_selected = 'file_index' b_enable_only_file_index_button = True distance_source_detector = self.ui.distance_source_detector_value.text() if not distance_source_detector: x_axis_selected = 'file_index' b_enable_only_file_index_button = True elif not isinstance(float(distance_source_detector), numbers.Number): x_axis_selected = 'file_index' b_enable_only_file_index_button = True detector_offset = str(self.ui.detector_offset_value.text()) if not detector_offset: x_axis_selected = 'file_index' b_enable_only_file_index_button = True elif not isinstance(float(detector_offset), numbers.Number): x_axis_selected = 'file_index' b_enable_only_file_index_button = True self.set_radio_buttons_status( b_enable_only_file_index_button=b_enable_only_file_index_button) self.b_enable_only_file_index_button = b_enable_only_file_index_button self.update_x_axis() def update_x_axis(self): self.x_axis['file_index'] = np.arange(len(self.stack)) if not self.b_enable_only_file_index_button: # tof spectra_file = self.spectra_file _tof_handler = TOF(filename=spectra_file) self.x_axis['tof'] = _tof_handler.tof_array # lambda distance_source_detector = self.ui.distance_source_detector_value.text() detector_offset = str(self.ui.detector_offset_value.text()) _exp = Experiment( tof=_tof_handler.tof_array, distance_source_detector_m=float(distance_source_detector), detector_offset_micros=float(detector_offset)) self.x_axis['lambda'] = _exp.lambda_array * 1e10 # ev _exp = Experiment(tof = _tof_handler.tof_array, distance_source_detector_m = float(distance_source_detector), detector_offset_micros= float(detector_offset)) _exp_ev = _utilities.convert_x_axis(array=_exp.lambda_array*1e10, from_units='angstroms', to_units='ev', offset_us=float(detector_offset), source_to_detector_m=float(distance_source_detector)) # _exp_ev = np.linspace(1, 3000, len(_tof_handler.tof_array)) # import scipy # _exp_ev = scipy.random.ranf(len(_tof_handler.tof_array)) * 3000000 # _exp_ev.sort() # _exp_ev = _exp_ev[::-1] self.x_axis['ev'] = _exp_ev # with open('/users/j35/Desktop/test_output.txt', 'w') as f: # for _data in _exp_ev: # f.write(str(_data) + '\n') else: self.x_axis['ev'] = [] self.x_axis['tof'] = [] self.x_axis['lambda'] = [] def set_radio_buttons_status(self, b_enable_only_file_index_button=False): self.ui.tof_radio_button.setEnabled( not b_enable_only_file_index_button) self.ui.lambda_radio_button.setEnabled( not b_enable_only_file_index_button) self.ui.energy_radio_button.setEnabled( not b_enable_only_file_index_button) if b_enable_only_file_index_button: self.ui.file_index_ratio_button.setChecked(True) def radio_button_clicked(self): self.update_radio_button_status() self.plot() def distance_source_detector_validated(self): self.update_radio_button_status() self.update_x_axis() self.plot() def detector_offset_validated(self): self.update_radio_button_status() self.update_x_axis() self.plot() def time_spectra_file_browse_button_clicked(self): spectra_file = QFileDialog.getOpenFileName( caption='Select Time Spectra', directory=self.working_folder, filter='txt (*_Spectra.txt);;All (*.*)') if spectra_file: self.ui.time_spectra_file.setText(os.path.basename(spectra_file)) self.spectra_file = spectra_file self.update_radio_button_status() self.update_x_axis() self.plot() def init_list_of_things_to_plot(self): list_things_to_plot = [] stack = self.o_reso.stack list_layers = stack.keys() for _layer in list_layers: list_things_to_plot.append(_layer) list_elements = stack[_layer]['elements'] for _element in list_elements: list_things_to_plot.append(_layer + ' -> ' + _element) list_isotopes = stack[_layer][_element]['isotopes']['list'] for _isotope in list_isotopes: list_things_to_plot.append(_layer + ' -> ' + _element + ' -> ' + _isotope) self.ui.list_to_plot_widget.addItems(list_things_to_plot) def done_button_clicked(self): self.close() def plot_selection_changed(self, item): _elements_to_plot = {} # init x_axis_ev = [] x_axis_selected = self.get_x_axis_selected() if x_axis_selected == 'file_index': self.elements_to_plot = _elements_to_plot return # retrieve data to display for _item in self.ui.list_to_plot_widget.selectedIndexes(): _row_selected = _item.row() _text = self.ui.list_to_plot_widget.item(_row_selected).text() _layer_element_isotope = self.__parse_layer_element_isotope(_text) _layer = _layer_element_isotope['layer'] _element = _layer_element_isotope['element'] _isotope = _layer_element_isotope['isotope'] if _element == '': transmission = self.o_reso.stack_signal[_layer]['transmission'] x_axis_ev = self.o_reso.stack_signal[_layer]['energy_eV'] elif _isotope == '': transmission = self.o_reso.stack_signal[_layer][_element][ 'transmission'] x_axis_ev = self.o_reso.stack_signal[_layer][_element][ 'energy_eV'] else: transmission = self.o_reso.stack_signal[_layer][_element][ _isotope]['transmission'] x_axis_ev = self.o_reso.stack_signal[_layer][_element][ _isotope]['energy_eV'] _elements_to_plot[_text] = {} _elements_to_plot[_text]['y_axis'] = transmission x_axis = [] if x_axis_selected == 'lambda': x_axis = _utilities.convert_x_axis( array=x_axis_ev, from_units='ev', to_units='angstroms') elif x_axis_selected == 'tof': detector_offset = float(self.ui.detector_offset_value.text()) distance_source_detector = float( self.ui.distance_source_detector_value.text()) x_axis = _utilities.convert_x_axis( array=x_axis_ev, from_units='ev', to_units='s', offset_us=detector_offset, source_to_detector_m=distance_source_detector) else: # ev x_axis = x_axis_ev _elements_to_plot[_text]['x_axis'] = x_axis self.elements_to_plot = _elements_to_plot self.plot() def __parse_layer_element_isotope(self, text): ''' this will create a dictionary of each data to plot ''' _dict = {'layer': '', 'element': '', 'isotope': ''} parse_text = text.split(' -> ') _dict['layer'] = parse_text[0] if len(parse_text) >= 2: _dict['element'] = parse_text[1] if len(parse_text) >= 3: _dict['isotope'] = parse_text[2] return _dict def closeEvent(self, event=None): pass
[ "PyQt5.QtWidgets.QMainWindow.__init__", "os.path.basename", "pyqtgraph.PlotWidget", "os.path.exists", "pyqtgraph.ImageView", "PyQt5.QtGui.QVBoxLayout", "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "numpy.array", "pyqtgraph.ROI", "pyqtgraph.setConfigOptions", "ImagingReso._utilities.convert_x_axis", "__code.ui_resonance_imaging_experiment_vs_theory.Ui_MainWindow", "pyqtgraph.GraphicsLayoutWidget" ]
[((1319, 1360), 'PyQt5.QtWidgets.QMainWindow.__init__', 'QMainWindow.__init__', (['self'], {'parent': 'parent'}), '(self, parent=parent)\n', (1339, 1360), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow\n'), ((1379, 1393), '__code.ui_resonance_imaging_experiment_vs_theory.Ui_MainWindow', 'UiMainWindow', ([], {}), '()\n', (1391, 1393), True, 'from __code.ui_resonance_imaging_experiment_vs_theory import Ui_MainWindow as UiMainWindow\n'), ((1514, 1529), 'numpy.array', 'np.array', (['stack'], {}), '(stack)\n', (1522, 1529), True, 'import numpy as np\n'), ((4558, 4583), 'pyqtgraph.GraphicsLayoutWidget', 'pg.GraphicsLayoutWidget', ([], {}), '()\n', (4581, 4583), True, 'import pyqtgraph as pg\n'), ((4592, 4627), 'pyqtgraph.setConfigOptions', 'pg.setConfigOptions', ([], {'antialias': '(True)'}), '(antialias=True)\n', (4611, 4627), True, 'import pyqtgraph as pg\n'), ((4679, 4693), 'pyqtgraph.ImageView', 'pg.ImageView', ([], {}), '()\n', (4691, 4693), True, 'import pyqtgraph as pg\n'), ((4828, 4887), 'pyqtgraph.ROI', 'pg.ROI', (['[0, 0]', '[20, 20]'], {'pen': '(62, 13, 244)', 'scaleSnap': '(True)'}), '([0, 0], [20, 20], pen=(62, 13, 244), scaleSnap=True)\n', (4834, 4887), True, 'import pyqtgraph as pg\n'), ((5188, 5211), 'pyqtgraph.PlotWidget', 'pg.PlotWidget', ([], {'title': '""""""'}), "(title='')\n", (5201, 5211), True, 'import pyqtgraph as pg\n'), ((5318, 5337), 'PyQt5.QtGui.QVBoxLayout', 'QtGui.QVBoxLayout', ([], {}), '()\n', (5335, 5337), False, 'from PyQt5 import QtCore, QtGui\n'), ((10755, 10890), 'PyQt5.QtWidgets.QFileDialog.getOpenFileName', 'QFileDialog.getOpenFileName', ([], {'caption': '"""Select Time Spectra"""', 'directory': 'self.working_folder', 'filter': '"""txt (*_Spectra.txt);;All (*.*)"""'}), "(caption='Select Time Spectra', directory=self.\n working_folder, filter='txt (*_Spectra.txt);;All (*.*)')\n", (10782, 10890), False, 'from PyQt5.QtWidgets import QFileDialog\n'), ((6642, 6670), 'os.path.exists', 'os.path.exists', (['spectra_file'], {}), '(spectra_file)\n', (6656, 6670), False, 'import os\n'), ((10994, 11024), 'os.path.basename', 'os.path.basename', (['spectra_file'], {}), '(spectra_file)\n', (11010, 11024), False, 'import os\n'), ((13599, 13685), 'ImagingReso._utilities.convert_x_axis', '_utilities.convert_x_axis', ([], {'array': 'x_axis_ev', 'from_units': '"""ev"""', 'to_units': '"""angstroms"""'}), "(array=x_axis_ev, from_units='ev', to_units=\n 'angstroms')\n", (13624, 13685), False, 'from ImagingReso import _utilities\n'), ((13965, 14116), 'ImagingReso._utilities.convert_x_axis', '_utilities.convert_x_axis', ([], {'array': 'x_axis_ev', 'from_units': '"""ev"""', 'to_units': '"""s"""', 'offset_us': 'detector_offset', 'source_to_detector_m': 'distance_source_detector'}), "(array=x_axis_ev, from_units='ev', to_units='s',\n offset_us=detector_offset, source_to_detector_m=distance_source_detector)\n", (13990, 14116), False, 'from ImagingReso import _utilities\n')]
import numpy as np import matplotlib.pyplot as plt import math import itertools_recipes as it data=np.array([[1,1],[5,2],[3,3],[0,2],[9,4],[4,8]]) x=data[:,0] y=data[:,1] def choose(): q=[] u=list(it.permutations([0,1,2,3,4,5],6)) m=np.zeros((6,2)) n=np.zeros((6,2)) for i in range(len(u)): m[0]=data[u[i][0]] m[1]=data[u[i][1]] m[2]=data[u[i][2]] m[3]=data[u[i][3]] m[4]=data[u[i][4]] m[5]=data[u[i][5]] distance(m) q.append(distance(m)) k=min(q) print('最短路程为',k) g=q.index(k) n[0] = data[u[g][0]] n[1] = data[u[g][1]] n[2] = data[u[g][2]] n[3] = data[u[g][3]] n[4] = data[u[g][4]] n[5] = data[u[g][5]] print(n) draw_a_line(n) def draw_a_line(w): i=0 for i in range(5): a=np.linspace(w[i,0],w[i+1,0],100) b=np.linspace(w[i,1],w[i+1,1],100) plt.plot(a,b,'.') c=np.linspace(w[0,0],w[5,0],100) d=np.linspace(w[0,1],w[5,1],100) plt.plot(c,d,'.') def distance(w): i=0 sum=0 e=[] for i in range(5): e.append(math.sqrt((w[i+1,0]-w[i,0])**2+(w[i+1,1]-w[i,1])**2)) sum=sum+e[i] sum=sum+math.sqrt((w[5,0]-w[1,0])**2+(w[5,1]-w[1,1])**2) return(sum) choose() plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "math.sqrt", "numpy.zeros", "numpy.array", "numpy.linspace", "itertools_recipes.permutations" ]
[((105, 163), 'numpy.array', 'np.array', (['[[1, 1], [5, 2], [3, 3], [0, 2], [9, 4], [4, 8]]'], {}), '([[1, 1], [5, 2], [3, 3], [0, 2], [9, 4], [4, 8]])\n', (113, 163), True, 'import numpy as np\n'), ((1310, 1320), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1318, 1320), True, 'import matplotlib.pyplot as plt\n'), ((259, 275), 'numpy.zeros', 'np.zeros', (['(6, 2)'], {}), '((6, 2))\n', (267, 275), True, 'import numpy as np\n'), ((282, 298), 'numpy.zeros', 'np.zeros', (['(6, 2)'], {}), '((6, 2))\n', (290, 298), True, 'import numpy as np\n'), ((958, 992), 'numpy.linspace', 'np.linspace', (['w[0, 0]', 'w[5, 0]', '(100)'], {}), '(w[0, 0], w[5, 0], 100)\n', (969, 992), True, 'import numpy as np\n'), ((996, 1030), 'numpy.linspace', 'np.linspace', (['w[0, 1]', 'w[5, 1]', '(100)'], {}), '(w[0, 1], w[5, 1], 100)\n', (1007, 1030), True, 'import numpy as np\n'), ((1032, 1051), 'matplotlib.pyplot.plot', 'plt.plot', (['c', 'd', '"""."""'], {}), "(c, d, '.')\n", (1040, 1051), True, 'import matplotlib.pyplot as plt\n'), ((218, 256), 'itertools_recipes.permutations', 'it.permutations', (['[0, 1, 2, 3, 4, 5]', '(6)'], {}), '([0, 1, 2, 3, 4, 5], 6)\n', (233, 256), True, 'import itertools_recipes as it\n'), ((849, 887), 'numpy.linspace', 'np.linspace', (['w[i, 0]', 'w[i + 1, 0]', '(100)'], {}), '(w[i, 0], w[i + 1, 0], 100)\n', (860, 887), True, 'import numpy as np\n'), ((892, 930), 'numpy.linspace', 'np.linspace', (['w[i, 1]', 'w[i + 1, 1]', '(100)'], {}), '(w[i, 1], w[i + 1, 1], 100)\n', (903, 930), True, 'import numpy as np\n'), ((933, 952), 'matplotlib.pyplot.plot', 'plt.plot', (['a', 'b', '"""."""'], {}), "(a, b, '.')\n", (941, 952), True, 'import matplotlib.pyplot as plt\n'), ((1231, 1293), 'math.sqrt', 'math.sqrt', (['((w[5, 0] - w[1, 0]) ** 2 + (w[5, 1] - w[1, 1]) ** 2)'], {}), '((w[5, 0] - w[1, 0]) ** 2 + (w[5, 1] - w[1, 1]) ** 2)\n', (1240, 1293), False, 'import math\n'), ((1142, 1212), 'math.sqrt', 'math.sqrt', (['((w[i + 1, 0] - w[i, 0]) ** 2 + (w[i + 1, 1] - w[i, 1]) ** 2)'], {}), '((w[i + 1, 0] - w[i, 0]) ** 2 + (w[i + 1, 1] - w[i, 1]) ** 2)\n', (1151, 1212), False, 'import math\n')]
import os import numpy as np from matplotlib import pyplot as plt from torch.utils.data import DataLoader def minibatch_loader(minibatch, minibatch_size, drop_last=True): return DataLoader(minibatch, batch_size=minibatch_size, drop_last=drop_last) def get_next_available_dir(root, dir_name, absolute_path=True, create=True): checkpoint_dir_base = os.path.join(root, dir_name) dir_id = 1 checkpoint_dir = f"{checkpoint_dir_base}_{dir_id}" while os.path.exists(checkpoint_dir): dir_id += 1 checkpoint_dir = f"{checkpoint_dir_base}_{dir_id}" if create: os.mkdir(checkpoint_dir) if absolute_path: return checkpoint_dir else: return f"{dir_name}_{dir_id}" def _plot(data_dict, x_label, y_label, title): fig, ax = plt.subplots() # (figsize=(10,10)) if 'x_ticks' in data_dict: x_values = data_dict.pop('x_ticks') if len(x_values) > 20: x_values = None # too crowded to read on the figure else: x_values = None max_x_range_len = 0 for name, data in data_dict.items(): if x_values is not None: ax.plot(list(range(len(x_values))), data, label=name) else: ax.plot(data, label=name) if x_values is not None: plt.xticks(list(range(len(x_values))), x_values) ax.legend() plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.show() return fig def load_and_plot_privacy_param_variation(): eps1 = {'name': 'eps_1', 'fp': './eps1.npy', } noise_multiplier = {'name': 'noise_multiplier', 'fp': './noise_multiplier.npy'} eps3 = {'name': 'eps_3', 'fp': './eps3.npy'} files = [eps1, noise_multiplier, eps3] curve_names = ['Test accuracy', 'MEA fidelity', 'MIA accuracy'] for data_file in files: data = dict() with open(data_file['fp'], 'rb') as f: data['x_ticks'] = np.load(f) for curve in curve_names: data[curve] = np.load(f) # data['x_ticks'] = np.array(data_file['rng']) _plot(data, data_file['name'], 'Privacy and Utility', 'Small CNN on Cifar10') def load_and_plot_learning_curves(): def fetch(fs, metric_name): metric_data = dict() for f in fs: metric_data[f['name']] = f[metric_name] return metric_data metrics = ['val_acc'] msdp = {'name': 'MSDPFL', 'fp': "outFL/MNIST/low_eps/msdpfl/stats.npy"} opacus = {'name': 'Opacus FL', 'fp': "outFL/MNIST/low_eps/opacusfl/stats.npy"} non_p = {'name': 'Non-Private FL', 'fp': "outFL/MNIST/npfl/stats.npy"} title = 'Highly private FL training on MNIST' files = [msdp, opacus, non_p] for data_file in files: data = dict() with open(data_file['fp'], 'rb') as f: for metric in metrics: data[metric] = np.load(f) data_file.update(**data) for metric in metrics: metric_data = fetch(files, metric) f = _plot(metric_data, 'Epochs', metric, title) if metric == 'val_acc': f.savefig(f"./val_acc.png", bbox_inches='tight') def load_and_plot_dr(): def fetch(fs, metric_name): metric_data = dict() for f in fs: metric_data[f['name']] = f[metric_name] return metric_data def dr_plot(data_dict, x_label, y_label, title): fig, ax = plt.subplots() # (figsize=(10,10)) for name, data in data_dict.items(): ax.plot(data, label=name) ax.legend() plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.show() metrics = {'centralised': ['train_loss', 'train_acc', 'val_acc'], 'fl': ['val_acc'] } msdp = {'name': 'MSDP', 'fp': "out_centralMSDP/DR/msdp/MSDPTrainer_0_plot_stats.npy"} msdpfl = {'name': 'MSDPFL', 'fp': "outFL/DR/msdpfl/stats.npy"} opacus = {'name': 'Opacus', 'fp': "out_centralMSDP/DR/opacus/MSDPTrainer_0_plot_stats.npy"} opacusfl = {'name': 'OpacusFL', 'fp': "outFL/DR/opacus_fl/stats.npy"} non_p = {'name': 'Non-Private', 'fp': "out_centralMSDP/DR/np/MSDPTrainer_0_plot_stats.npy"} non_pfl = {'name': 'Non-Private FL', 'fp': "outFL/DR/np_fl/stats.npy"} title = 'FL training on DR' central = [msdp, opacus, non_p] fl = [msdpfl, opacusfl, non_pfl] files = central + fl for data_file in files: data = dict() if data_file in central: metric_type = 'centralised' else: metric_type = 'fl' with open(data_file['fp'], 'rb') as f: for metric in metrics[metric_type]: data[metric] = np.load(f) data_file.update(**data) for metric in ['val_acc']: metric_data = fetch(files, metric) dr_plot(metric_data, 'Epochs/ Rounds', metric, title)
[ "matplotlib.pyplot.title", "os.mkdir", "numpy.load", "matplotlib.pyplot.show", "torch.utils.data.DataLoader", "os.path.exists", "matplotlib.pyplot.subplots", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "os.path.join" ]
[((183, 252), 'torch.utils.data.DataLoader', 'DataLoader', (['minibatch'], {'batch_size': 'minibatch_size', 'drop_last': 'drop_last'}), '(minibatch, batch_size=minibatch_size, drop_last=drop_last)\n', (193, 252), False, 'from torch.utils.data import DataLoader\n'), ((356, 384), 'os.path.join', 'os.path.join', (['root', 'dir_name'], {}), '(root, dir_name)\n', (368, 384), False, 'import os\n'), ((459, 489), 'os.path.exists', 'os.path.exists', (['checkpoint_dir'], {}), '(checkpoint_dir)\n', (473, 489), False, 'import os\n'), ((753, 767), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (765, 767), True, 'from matplotlib import pyplot as plt\n'), ((1264, 1283), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_label'], {}), '(x_label)\n', (1274, 1283), True, 'from matplotlib import pyplot as plt\n'), ((1286, 1305), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y_label'], {}), '(y_label)\n', (1296, 1305), True, 'from matplotlib import pyplot as plt\n'), ((1308, 1324), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1317, 1324), True, 'from matplotlib import pyplot as plt\n'), ((1327, 1337), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1335, 1337), True, 'from matplotlib import pyplot as plt\n'), ((579, 603), 'os.mkdir', 'os.mkdir', (['checkpoint_dir'], {}), '(checkpoint_dir)\n', (587, 603), False, 'import os\n'), ((3138, 3152), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3150, 3152), True, 'from matplotlib import pyplot as plt\n'), ((3267, 3286), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_label'], {}), '(x_label)\n', (3277, 3286), True, 'from matplotlib import pyplot as plt\n'), ((3291, 3310), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y_label'], {}), '(y_label)\n', (3301, 3310), True, 'from matplotlib import pyplot as plt\n'), ((3315, 3331), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (3324, 3331), True, 'from matplotlib import pyplot as plt\n'), ((3336, 3346), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3344, 3346), True, 'from matplotlib import pyplot as plt\n'), ((1797, 1807), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (1804, 1807), True, 'import numpy as np\n'), ((1862, 1872), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (1869, 1872), True, 'import numpy as np\n'), ((2664, 2674), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (2671, 2674), True, 'import numpy as np\n'), ((4323, 4333), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (4330, 4333), True, 'import numpy as np\n')]
''' PISA module to prep incoming data into formats that are compatible with the mc_uncertainty likelihood formulation This module takes in events containers from the pipeline, and introduces an additional array giving the indices where each event falls into. module structure imported from bootcamp example ''' from __future__ import absolute_import, print_function, division __author__ = "<NAME> (<EMAIL>)" import numpy as np from pisa import FTYPE from pisa.core.pi_stage import PiStage #from pisa.utils.log import logging # Load the modified index lookup function from pisa.core.bin_indexing import lookup_indices class add_indices(PiStage): """ PISA Pi stage to map out the index of the analysis binning where each event falls into. Parameters ---------- data params foo : Quantity bar : Quanitiy with time dimension input_names output_names debug_mode input_specs: calc_specs : must be events output_specs: must be a MultiDimBinnig Notes: ------ - input and calc specs are predetermined in the module (inputs from the config files will be disregarded) - stage appends an array quantity called bin_indices - stage also appends an array mask to access events by bin index later in the pipeline """ # this is the constructor with default arguments def __init__(self, data=None, params=None, input_names=None, output_names=None, debug_mode=None, input_specs=None, calc_specs=None, output_specs=None, ): # # No parameters are expected in this stage # same goes for a bunch of other stage options # expected_params = () input_names = () output_names = () input_apply_keys = () # We add the bin_indices key # (but not in the apply function so maybe useless...) # output_calc_keys = ('bin_indices',) output_apply_keys = () # init base class super(add_indices, self).__init__(data=data, params=params, expected_params=expected_params, input_names=input_names, output_names=output_names, debug_mode=debug_mode, input_specs=input_specs, calc_specs=calc_specs, output_specs=output_specs, input_apply_keys=input_apply_keys, output_apply_keys=output_apply_keys, output_calc_keys=output_calc_keys, ) # make sure the user specified some modes assert self.input_mode is not None assert self.calc_mode is not None assert self.output_mode is not None def setup_function(self): ''' Calculate the bin index where each event falls into Create one mask for each analysis bin. ''' assert self.calc_specs == 'events', 'ERROR: calc specs must be set to "events for this module' self.data.data_specs = 'events' for container in self.data: # Generate a new container called bin_indices container['bin_indices'] = np.empty((container.size), dtype=np.int64) variables_to_bin = [] for bin_name in self.output_specs.names: variables_to_bin.append(container[bin_name]) new_array = lookup_indices(sample=variables_to_bin, binning=self.output_specs) new_array = new_array.get('host') np.copyto(src=new_array, dst=container["bin_indices"].get('host')) for bin_i in range(self.output_specs.tot_num_bins): container.add_array_data(key='bin_{}_mask'.format(bin_i), data=(new_array == bin_i))
[ "numpy.empty", "pisa.core.bin_indexing.lookup_indices" ]
[((3599, 3639), 'numpy.empty', 'np.empty', (['container.size'], {'dtype': 'np.int64'}), '(container.size, dtype=np.int64)\n', (3607, 3639), True, 'import numpy as np\n'), ((3818, 3884), 'pisa.core.bin_indexing.lookup_indices', 'lookup_indices', ([], {'sample': 'variables_to_bin', 'binning': 'self.output_specs'}), '(sample=variables_to_bin, binning=self.output_specs)\n', (3832, 3884), False, 'from pisa.core.bin_indexing import lookup_indices\n')]
import torch import numpy as np def accuracy(output, target): """Computes the precision@k for the specified values of k""" batch_size = target.size(0) pred = torch.argmax(output, dim=1) pred = pred.squeeze() correct = pred.eq(target.expand_as(pred)) acc = correct.view(-1).float().sum(0) * 100 / (batch_size) return acc def sliding_accuracy(logits, target, slider_length): ''' compute the accuracy while averaging over slider_length frames implemented to accumulate at the begining of the sequence and give the average for the last frame in the slider ''' n_examples = target.size(0) pred = torch.zeros_like(logits) for i in range(logits.size(2)): pred[:, :, i] = torch.mean(logits[:, :, np.max([0, i - slider_length]):i + 1], dim=2) pred = torch.argmax(pred, dim=1) pred = pred.squeeze().view(-1) correct = pred.eq(target) acc = correct.view(-1).float().sum(0) * 100 / n_examples return acc, pred def accuracy_v2(output, target): """Computes the precision@k for the specified values of k""" batch_size = target.size(0) n_frames = target.size(1) correct = output.eq(target.expand_as(output)) acc = correct.view(-1).float().sum(0) * 100 / (batch_size*n_frames) return acc def accuracy_topk(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def post_process_logits(per_frame_logits, average=False, num_frames_to_avg=12, threshold = 0.7): if average: last_frame_logits = torch.mean(per_frame_logits[:, :, -num_frames_to_avg - 1:-1], dim=2) label_ind = torch.argmax(last_frame_logits, dim=1).item() last_frame_logits = torch.nn.functional.softmax(last_frame_logits, dim=1).squeeze() else: per_frame_logits = torch.nn.functional.softmax(per_frame_logits, dim=1) _, pred = per_frame_logits.topk(1, 1, True, True) label_ind = pred.squeeze()[-1].item() last_frame_logits = per_frame_logits[0, :, -1].squeeze() if last_frame_logits[label_ind] < threshold: label_ind = 0 return label_ind, last_frame_logits def make_weights_for_balanced_classes(clip_set, label_count): """ compute the weight per clip for the weighted random sampler""" n_clips = len(clip_set) nclasses = len(label_count) N = label_count.sum() weight_per_class = [0.] * nclasses for i in range(nclasses): weight_per_class[i] = N/float(label_count[i]) weight = [0] * n_clips for idx, clip in enumerate(clip_set): clip_label_sum = clip[1].sum(axis=1) if clip_label_sum.sum() == 0: print("zero!!!") ratios = clip_label_sum / clip_label_sum.sum() weight[idx] = np.dot(weight_per_class, ratios) return weight
[ "torch.mean", "torch.zeros_like", "torch.argmax", "torch.nn.functional.softmax", "numpy.max", "numpy.dot" ]
[((171, 198), 'torch.argmax', 'torch.argmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (183, 198), False, 'import torch\n'), ((655, 679), 'torch.zeros_like', 'torch.zeros_like', (['logits'], {}), '(logits)\n', (671, 679), False, 'import torch\n'), ((822, 847), 'torch.argmax', 'torch.argmax', (['pred'], {'dim': '(1)'}), '(pred, dim=1)\n', (834, 847), False, 'import torch\n'), ((1888, 1956), 'torch.mean', 'torch.mean', (['per_frame_logits[:, :, -num_frames_to_avg - 1:-1]'], {'dim': '(2)'}), '(per_frame_logits[:, :, -num_frames_to_avg - 1:-1], dim=2)\n', (1898, 1956), False, 'import torch\n'), ((2152, 2204), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['per_frame_logits'], {'dim': '(1)'}), '(per_frame_logits, dim=1)\n', (2179, 2204), False, 'import torch\n'), ((3090, 3122), 'numpy.dot', 'np.dot', (['weight_per_class', 'ratios'], {}), '(weight_per_class, ratios)\n', (3096, 3122), True, 'import numpy as np\n'), ((1977, 2015), 'torch.argmax', 'torch.argmax', (['last_frame_logits'], {'dim': '(1)'}), '(last_frame_logits, dim=1)\n', (1989, 2015), False, 'import torch\n'), ((2051, 2104), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['last_frame_logits'], {'dim': '(1)'}), '(last_frame_logits, dim=1)\n', (2078, 2104), False, 'import torch\n'), ((764, 794), 'numpy.max', 'np.max', (['[0, i - slider_length]'], {}), '([0, i - slider_length])\n', (770, 794), True, 'import numpy as np\n')]
import tensorflow as tf import tflearn import numpy as np import re from model import SelfAttentive from sklearn.utils import shuffle from reader import load_csv, VocabDict ''' parse ''' tf.app.flags.DEFINE_integer('num_epochs', 5, 'number of epochs to train') tf.app.flags.DEFINE_integer('batch_size', 20, 'batch size to train in one step') tf.app.flags.DEFINE_integer('labels', 5, 'number of label classes') tf.app.flags.DEFINE_integer('word_pad_length', 60, 'word pad length for training') tf.app.flags.DEFINE_integer('decay_step', 500, 'decay steps') tf.app.flags.DEFINE_float('learn_rate', 1e-2, 'learn rate for training optimization') tf.app.flags.DEFINE_boolean('shuffle', True, 'shuffle data FLAG') tf.app.flags.DEFINE_boolean('train', True, 'train mode FLAG') tf.app.flags.DEFINE_boolean('visualize', False, 'visualize FLAG') tf.app.flags.DEFINE_boolean('penalization', True, 'penalization FLAG') FLAGS = tf.app.flags.FLAGS num_epochs = FLAGS.num_epochs batch_size = FLAGS.batch_size tag_size = FLAGS.labels word_pad_length = FLAGS.word_pad_length lr = FLAGS.learn_rate TOKENIZER_RE = re.compile(r"[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\'\w\-]+", re.UNICODE) def token_parse(iterator): for value in iterator: return TOKENIZER_RE.findall(value) tokenizer = tflearn.data_utils.VocabularyProcessor(word_pad_length, tokenizer_fn=lambda tokens: [token_parse(x) for x in tokens]) label_dict = VocabDict() def string_parser(arr, fit): if fit == False: return list(tokenizer.transform(arr)) else: return list(tokenizer.fit_transform(arr)) model = SelfAttentive() with tf.Session() as sess: # build graph model.build_graph(n=word_pad_length) # Downstream Application with tf.variable_scope('DownstreamApplication'): global_step = tf.Variable(0, trainable=False, name='global_step') learn_rate = tf.train.exponential_decay(lr, global_step, FLAGS.decay_step, 0.95, staircase=True) labels = tf.placeholder('float32', shape=[None, tag_size]) net = tflearn.fully_connected(model.M, 2000, activation='relu') logits = tflearn.fully_connected(net, tag_size, activation=None) loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=1) if FLAGS.penalization == True: p_coef = 0.004 p_loss = p_coef * model.P loss = loss + p_loss p_loss = tf.reduce_mean(p_loss) loss = tf.reduce_mean(loss) params = tf.trainable_variables() #clipped_gradients = [tf.clip_by_value(x, -0.5, 0.5) for x in gradients] optimizer = tf.train.AdamOptimizer(learn_rate) grad_and_vars = tf.gradients(loss, params) clipped_gradients, _ = tf.clip_by_global_norm(grad_and_vars, 0.5) opt = optimizer.apply_gradients(zip(clipped_gradients, params), global_step=global_step) # Start Training sess.run(tf.global_variables_initializer()) words, tags = load_csv('./data/ag_news_csv/train.csv', target_columns=[0], columns_to_ignore=[1], target_dict=label_dict) words = string_parser(words, fit=True) if FLAGS.shuffle == True: words, tags = shuffle(words, tags) word_input = tflearn.data_utils.pad_sequences(words, maxlen=word_pad_length) total = len(word_input) step_print = int((total/batch_size) / 13) if FLAGS.train == True: print('start training') for epoch_num in range(num_epochs): epoch_loss = 0 step_loss = 0 for i in range(int(total/batch_size)): batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size]) train_ops = [opt, loss, learn_rate, global_step] if FLAGS.penalization == True: train_ops += [p_loss] result = sess.run(train_ops, feed_dict={model.input_pl: batch_input, labels: batch_tags}) step_loss += result[1] epoch_loss += result[1] if i % step_print == (step_print-step_print): if FLAGS.penalization == True: print(f'step_log: (epoch: {epoch_num}, step: {i}, global_step: {result[3]}, learn_rate: {result[2]}), Loss: {step_loss/step_print}, Penalization: {result[4]})') else: print(f'step_log: (epoch: {epoch_num}, step: {i}, global_step: {result[3]}, learn_rate: {result[2]}), Loss: {step_loss/step_print})') #print(f'{result[4]}') step_loss = 0 print('***') print(f'epoch {epoch_num}: (global_step: {result[3]}), Average Loss: {epoch_loss/(total/batch_size)})') print('***\n') saver = tf.train.Saver() saver.save(sess, './model.ckpt') else: saver = tf.train.Saver() saver.restore(sess, './model.ckpt') words, tags = load_csv('./data/ag_news_csv/test.csv', target_columns=[0], columns_to_ignore=[1], target_dict=label_dict) words_with_index = string_parser(words, fit=True) word_input = tflearn.data_utils.pad_sequences(words_with_index, maxlen=word_pad_length) total = len(word_input) rs = 0. if FLAGS.visualize == True: f = open('visualize.html', 'w') f.write('<html style="margin:0;padding:0;"><body style="margin:0;padding:0;">\n') for i in range(int(total/batch_size)): batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size]) result = sess.run([logits, model.A], feed_dict={model.input_pl: batch_input, labels: batch_tags}) arr = result[0] for j in range(len(batch_tags)): rs+=np.sum(np.argmax(arr[j]) == np.argmax(batch_tags[j])) if FLAGS.visualize == True: f.write('<div style="margin:25px;">\n') for k in range(len(result[1][0])): f.write('<p style="margin:10px;">\n') ww = TOKENIZER_RE.findall(words[i*batch_size][0]) for j in range(word_pad_length): alpha = "{:.2f}".format(result[1][0][k][j]) if len(ww) <= j: w = "___" else: w = ww[j] f.write(f'\t<span style="margin-left:3px;background-color:rgba(255,0,0,{alpha})">{w}</span>\n') f.write('</p>\n') f.write('</div>\n') if FLAGS.visualize == True: f.write('</body></html>') f.close() print(f'Test accuracy: {rs/total}') sess.close()
[ "tensorflow.app.flags.DEFINE_float", "tensorflow.trainable_variables", "numpy.argmax", "tensorflow.nn.sigmoid_cross_entropy_with_logits", "tensorflow.app.flags.DEFINE_boolean", "tensorflow.Variable", "tensorflow.app.flags.DEFINE_integer", "tensorflow.clip_by_global_norm", "tensorflow.variable_scope", "tensorflow.placeholder", "reader.VocabDict", "tensorflow.gradients", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "reader.load_csv", "tensorflow.Session", "tensorflow.reduce_mean", "tensorflow.train.exponential_decay", "re.compile", "tflearn.fully_connected", "tflearn.data_utils.pad_sequences", "model.SelfAttentive", "sklearn.utils.shuffle", "tensorflow.train.AdamOptimizer" ]
[((189, 262), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_epochs"""', '(5)', '"""number of epochs to train"""'], {}), "('num_epochs', 5, 'number of epochs to train')\n", (216, 262), True, 'import tensorflow as tf\n'), ((263, 348), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(20)', '"""batch size to train in one step"""'], {}), "('batch_size', 20, 'batch size to train in one step'\n )\n", (290, 348), True, 'import tensorflow as tf\n'), ((344, 411), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""labels"""', '(5)', '"""number of label classes"""'], {}), "('labels', 5, 'number of label classes')\n", (371, 411), True, 'import tensorflow as tf\n'), ((412, 498), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""word_pad_length"""', '(60)', '"""word pad length for training"""'], {}), "('word_pad_length', 60,\n 'word pad length for training')\n", (439, 498), True, 'import tensorflow as tf\n'), ((495, 556), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""decay_step"""', '(500)', '"""decay steps"""'], {}), "('decay_step', 500, 'decay steps')\n", (522, 556), True, 'import tensorflow as tf\n'), ((557, 646), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learn_rate"""', '(0.01)', '"""learn rate for training optimization"""'], {}), "('learn_rate', 0.01,\n 'learn rate for training optimization')\n", (582, 646), True, 'import tensorflow as tf\n'), ((643, 708), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""shuffle"""', '(True)', '"""shuffle data FLAG"""'], {}), "('shuffle', True, 'shuffle data FLAG')\n", (670, 708), True, 'import tensorflow as tf\n'), ((709, 770), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""train"""', '(True)', '"""train mode FLAG"""'], {}), "('train', True, 'train mode FLAG')\n", (736, 770), True, 'import tensorflow as tf\n'), ((771, 836), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""visualize"""', '(False)', '"""visualize FLAG"""'], {}), "('visualize', False, 'visualize FLAG')\n", (798, 836), True, 'import tensorflow as tf\n'), ((837, 907), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""penalization"""', '(True)', '"""penalization FLAG"""'], {}), "('penalization', True, 'penalization FLAG')\n", (864, 907), True, 'import tensorflow as tf\n'), ((1099, 1177), 're.compile', 're.compile', (['"""[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\\\\\'\\\\w\\\\-]+"""', 're.UNICODE'], {}), '("[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\\\\\'\\\\w\\\\-]+", re.UNICODE)\n', (1109, 1177), False, 'import re\n'), ((1411, 1422), 'reader.VocabDict', 'VocabDict', ([], {}), '()\n', (1420, 1422), False, 'from reader import load_csv, VocabDict\n'), ((1577, 1592), 'model.SelfAttentive', 'SelfAttentive', ([], {}), '()\n', (1590, 1592), False, 'from model import SelfAttentive\n'), ((1598, 1610), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1608, 1610), True, 'import tensorflow as tf\n'), ((2872, 2983), 'reader.load_csv', 'load_csv', (['"""./data/ag_news_csv/train.csv"""'], {'target_columns': '[0]', 'columns_to_ignore': '[1]', 'target_dict': 'label_dict'}), "('./data/ag_news_csv/train.csv', target_columns=[0],\n columns_to_ignore=[1], target_dict=label_dict)\n", (2880, 2983), False, 'from reader import load_csv, VocabDict\n'), ((3103, 3166), 'tflearn.data_utils.pad_sequences', 'tflearn.data_utils.pad_sequences', (['words'], {'maxlen': 'word_pad_length'}), '(words, maxlen=word_pad_length)\n', (3135, 3166), False, 'import tflearn\n'), ((4621, 4731), 'reader.load_csv', 'load_csv', (['"""./data/ag_news_csv/test.csv"""'], {'target_columns': '[0]', 'columns_to_ignore': '[1]', 'target_dict': 'label_dict'}), "('./data/ag_news_csv/test.csv', target_columns=[0],\n columns_to_ignore=[1], target_dict=label_dict)\n", (4629, 4731), False, 'from reader import load_csv, VocabDict\n'), ((4795, 4869), 'tflearn.data_utils.pad_sequences', 'tflearn.data_utils.pad_sequences', (['words_with_index'], {'maxlen': 'word_pad_length'}), '(words_with_index, maxlen=word_pad_length)\n', (4827, 4869), False, 'import tflearn\n'), ((1709, 1751), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""DownstreamApplication"""'], {}), "('DownstreamApplication')\n", (1726, 1751), True, 'import tensorflow as tf\n'), ((1771, 1822), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)', 'name': '"""global_step"""'}), "(0, trainable=False, name='global_step')\n", (1782, 1822), True, 'import tensorflow as tf\n'), ((1840, 1927), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['lr', 'global_step', 'FLAGS.decay_step', '(0.95)'], {'staircase': '(True)'}), '(lr, global_step, FLAGS.decay_step, 0.95,\n staircase=True)\n', (1866, 1927), True, 'import tensorflow as tf\n'), ((1937, 1986), 'tensorflow.placeholder', 'tf.placeholder', (['"""float32"""'], {'shape': '[None, tag_size]'}), "('float32', shape=[None, tag_size])\n", (1951, 1986), True, 'import tensorflow as tf\n'), ((1997, 2054), 'tflearn.fully_connected', 'tflearn.fully_connected', (['model.M', '(2000)'], {'activation': '"""relu"""'}), "(model.M, 2000, activation='relu')\n", (2020, 2054), False, 'import tflearn\n'), ((2068, 2123), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', 'tag_size'], {'activation': 'None'}), '(net, tag_size, activation=None)\n', (2091, 2123), False, 'import tflearn\n'), ((2392, 2412), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['loss'], {}), '(loss)\n', (2406, 2412), True, 'import tensorflow as tf\n'), ((2426, 2450), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (2448, 2450), True, 'import tensorflow as tf\n'), ((2544, 2578), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learn_rate'], {}), '(learn_rate)\n', (2566, 2578), True, 'import tensorflow as tf\n'), ((2599, 2625), 'tensorflow.gradients', 'tf.gradients', (['loss', 'params'], {}), '(loss, params)\n', (2611, 2625), True, 'import tensorflow as tf\n'), ((2653, 2695), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['grad_and_vars', '(0.5)'], {}), '(grad_and_vars, 0.5)\n', (2675, 2695), True, 'import tensorflow as tf\n'), ((2820, 2853), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2851, 2853), True, 'import tensorflow as tf\n'), ((3067, 3087), 'sklearn.utils.shuffle', 'shuffle', (['words', 'tags'], {}), '(words, tags)\n', (3074, 3087), False, 'from sklearn.utils import shuffle\n'), ((4471, 4487), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (4485, 4487), True, 'import tensorflow as tf\n'), ((4545, 4561), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (4559, 4561), True, 'import tensorflow as tf\n'), ((2149, 2218), 'tensorflow.nn.sigmoid_cross_entropy_with_logits', 'tf.nn.sigmoid_cross_entropy_with_logits', ([], {'labels': 'labels', 'logits': 'logits'}), '(labels=labels, logits=logits)\n', (2188, 2218), True, 'import tensorflow as tf\n'), ((2358, 2380), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['p_loss'], {}), '(p_loss)\n', (2372, 2380), True, 'import tensorflow as tf\n'), ((5388, 5405), 'numpy.argmax', 'np.argmax', (['arr[j]'], {}), '(arr[j])\n', (5397, 5405), True, 'import numpy as np\n'), ((5409, 5433), 'numpy.argmax', 'np.argmax', (['batch_tags[j]'], {}), '(batch_tags[j])\n', (5418, 5433), True, 'import numpy as np\n')]
from itertools import product import numpy as np import argparse from joblib import Parallel, delayed from pathlib import Path import openslide from openslide.deepzoom import DeepZoomGenerator class Patcher: def __init__(self): self._get_args() self._make_output_dir() self._read_img() def _get_args(self): parser = argparse.ArgumentParser(description="Make patches from WSI.") parser.add_argument("img_path", help="Path to the whole slide image.") parser.add_argument("-s", "--output_size", help="Output patch size of both x, y without the overlap area.", default=254, type=int) parser.add_argument("-ov", "--overlap", help="Overlap size.", default=1, type=int) parser.add_argument("-ou", "--output_dir", help="Where to save the patches.") parser.add_argument("-t", "--thresh", default=0, type=int, help="If set a int 1-255, saves only onshore patch.") self.args = parser.parse_args() def _make_output_dir(self): if self.args.output_dir is None: wsipath = Path(self.args.img_path) self.args.output_dir = wsipath.parent/wsipath.stem if not Path(self.args.output_dir).exists(): Path(self.args.output_dir).mkdir(parents=True) self.output_dir = Path(self.args.output_dir) def _read_img(self): img = openslide.OpenSlide(self.args.img_path) self.dzimg = DeepZoomGenerator(img, int(self.args.output_size), int(self.args.overlap)) self.tiles = self.dzimg.level_tiles[-1] self.deepest_level = self.dzimg.level_count - 1 self.iterator = product(range(self.tiles[0]), range(self.tiles[1])) def make_patch(self, x, y): patch = self.dzimg.get_tile(self.deepest_level, (x, y)) if self.args.thresh: checker = np.array(patch) if np.mean(checker) < int(self.args.thresh): patch.save(f"{self.output_dir}/{x:04}_{y:04}.png") else: patch.save(f"{self.output_dir}/{x:04}_{y:04}.png") def make_patch_parallel(self): parallel = Parallel(n_jobs=-1, verbose=1, backend="threading") parallel([delayed(self.make_patch)(x, y) for x, y in self.iterator]) def make_patch_for(self): for x, y in self.iterator: self.make_patch(x, y) if __name__ == '__main__': patcher = Patcher() patcher.make_patch_parallel() # p.make_patch_for() # use if make_patch_parallel doesn't work.
[ "openslide.OpenSlide", "argparse.ArgumentParser", "pathlib.Path", "numpy.mean", "numpy.array", "joblib.Parallel", "joblib.delayed" ]
[((360, 421), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Make patches from WSI."""'}), "(description='Make patches from WSI.')\n", (383, 421), False, 'import argparse\n'), ((1607, 1633), 'pathlib.Path', 'Path', (['self.args.output_dir'], {}), '(self.args.output_dir)\n', (1611, 1633), False, 'from pathlib import Path\n'), ((1674, 1713), 'openslide.OpenSlide', 'openslide.OpenSlide', (['self.args.img_path'], {}), '(self.args.img_path)\n', (1693, 1713), False, 'import openslide\n'), ((2488, 2539), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '(-1)', 'verbose': '(1)', 'backend': '"""threading"""'}), "(n_jobs=-1, verbose=1, backend='threading')\n", (2496, 2539), False, 'from joblib import Parallel, delayed\n'), ((1382, 1406), 'pathlib.Path', 'Path', (['self.args.img_path'], {}), '(self.args.img_path)\n', (1386, 1406), False, 'from pathlib import Path\n'), ((2216, 2231), 'numpy.array', 'np.array', (['patch'], {}), '(patch)\n', (2224, 2231), True, 'import numpy as np\n'), ((2247, 2263), 'numpy.mean', 'np.mean', (['checker'], {}), '(checker)\n', (2254, 2263), True, 'import numpy as np\n'), ((1485, 1511), 'pathlib.Path', 'Path', (['self.args.output_dir'], {}), '(self.args.output_dir)\n', (1489, 1511), False, 'from pathlib import Path\n'), ((1534, 1560), 'pathlib.Path', 'Path', (['self.args.output_dir'], {}), '(self.args.output_dir)\n', (1538, 1560), False, 'from pathlib import Path\n'), ((2558, 2582), 'joblib.delayed', 'delayed', (['self.make_patch'], {}), '(self.make_patch)\n', (2565, 2582), False, 'from joblib import Parallel, delayed\n')]