code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import cv2, sys, os import numpy as np haar_file = 'haarcascade_frontalface_default.xml' datasets = 'datasets' print('Recognizing Face Please Be in sufficient Lights...') (images, lables, names, id) = ([], [], {}, 0) for (subdirs, dirs, files) in os.walk(datasets): for subdir in dirs: names[id] = subdir subjectpath = os.path.join(datasets, subdir) for filename in os.listdir(subjectpath): path = subjectpath + '/' + filename lable = id images.append(cv2.imread(path, 0)) lables.append(int(lable)) id += 1 (width, height) = (130, 100) (images, lables) = [np.array(lis) for lis in [images, lables]] model = cv2.face.LBPHFaceRecognizer_create() model.train(images, lables) face_cascade = cv2.CascadeClassifier(haar_file) webcam = cv2.VideoCapture(0) while True: (_, im) = webcam.read() (_, im2) = webcam.read() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) lower_blue = np.array([110,50,50]) upper_blue = np.array([130,255,255]) for (x, y, w, h) in faces: cv2.rectangle(gray, (x, y), (x + w, y + h), (255, 0, 0), 2) cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2) face = gray[y:y + h, x:x + w] face_resize = cv2.resize(face, (width, height)) prediction = model.predict(face_resize) cv2.rectangle(gray, (x, y), (x + w, y + h), (0, 255, 0), 3) cv2.rectangle(im, (x, y), (x + w, y + h), (0, 255, 0), 3) if prediction[1]<100: cv2.putText(gray, 'The person of % s - %.0f' %(names[prediction[0]], prediction[1]), (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) cv2.putText(im, 'The person of % s - %.0f' %(names[prediction[0]], prediction[1]), (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) else: cv2.putText(gray, 'Not Recognized', (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) cv2.putText(im, 'Not Recognized', (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) mask = cv2.inRange(hsv, lower_blue, upper_blue) cv2.imshow('Window 1', im) cv2.imshow('Window 2', im2) cv2.imshow('Window 3', gray) cv2.imshow('Window 4', mask) key = cv2.waitKey(10) if key == 27: cv2.destroyAllWindows() break
[ "cv2.face.LBPHFaceRecognizer_create", "os.path.join", "cv2.putText", "cv2.cvtColor", "cv2.waitKey", "cv2.destroyAllWindows", "os.walk", "cv2.VideoCapture", "cv2.rectangle", "cv2.imread", "numpy.array", "cv2.CascadeClassifier", "cv2.imshow", "cv2.inRange", "os.listdir", "cv2.resize" ]
[((252, 269), 'os.walk', 'os.walk', (['datasets'], {}), '(datasets)\n', (259, 269), False, 'import cv2, sys, os\n'), ((645, 681), 'cv2.face.LBPHFaceRecognizer_create', 'cv2.face.LBPHFaceRecognizer_create', ([], {}), '()\n', (679, 681), False, 'import cv2, sys, os\n'), ((727, 759), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['haar_file'], {}), '(haar_file)\n', (748, 759), False, 'import cv2, sys, os\n'), ((770, 789), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (786, 789), False, 'import cv2, sys, os\n'), ((592, 605), 'numpy.array', 'np.array', (['lis'], {}), '(lis)\n', (600, 605), True, 'import numpy as np\n'), ((868, 904), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2GRAY'], {}), '(im, cv2.COLOR_BGR2GRAY)\n', (880, 904), False, 'import cv2, sys, os\n'), ((967, 1002), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2HSV'], {}), '(im, cv2.COLOR_BGR2HSV)\n', (979, 1002), False, 'import cv2, sys, os\n'), ((1017, 1040), 'numpy.array', 'np.array', (['[110, 50, 50]'], {}), '([110, 50, 50])\n', (1025, 1040), True, 'import numpy as np\n'), ((1053, 1078), 'numpy.array', 'np.array', (['[130, 255, 255]'], {}), '([130, 255, 255])\n', (1061, 1078), True, 'import numpy as np\n'), ((2020, 2060), 'cv2.inRange', 'cv2.inRange', (['hsv', 'lower_blue', 'upper_blue'], {}), '(hsv, lower_blue, upper_blue)\n', (2031, 2060), False, 'import cv2, sys, os\n'), ((2063, 2089), 'cv2.imshow', 'cv2.imshow', (['"""Window 1"""', 'im'], {}), "('Window 1', im)\n", (2073, 2089), False, 'import cv2, sys, os\n'), ((2091, 2118), 'cv2.imshow', 'cv2.imshow', (['"""Window 2"""', 'im2'], {}), "('Window 2', im2)\n", (2101, 2118), False, 'import cv2, sys, os\n'), ((2120, 2148), 'cv2.imshow', 'cv2.imshow', (['"""Window 3"""', 'gray'], {}), "('Window 3', gray)\n", (2130, 2148), False, 'import cv2, sys, os\n'), ((2150, 2178), 'cv2.imshow', 'cv2.imshow', (['"""Window 4"""', 'mask'], {}), "('Window 4', mask)\n", (2160, 2178), False, 'import cv2, sys, os\n'), ((2188, 2203), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (2199, 2203), False, 'import cv2, sys, os\n'), ((332, 362), 'os.path.join', 'os.path.join', (['datasets', 'subdir'], {}), '(datasets, subdir)\n', (344, 362), False, 'import cv2, sys, os\n'), ((382, 405), 'os.listdir', 'os.listdir', (['subjectpath'], {}), '(subjectpath)\n', (392, 405), False, 'import cv2, sys, os\n'), ((1109, 1168), 'cv2.rectangle', 'cv2.rectangle', (['gray', '(x, y)', '(x + w, y + h)', '(255, 0, 0)', '(2)'], {}), '(gray, (x, y), (x + w, y + h), (255, 0, 0), 2)\n', (1122, 1168), False, 'import cv2, sys, os\n'), ((1172, 1229), 'cv2.rectangle', 'cv2.rectangle', (['im', '(x, y)', '(x + w, y + h)', '(255, 0, 0)', '(2)'], {}), '(im, (x, y), (x + w, y + h), (255, 0, 0), 2)\n', (1185, 1229), False, 'import cv2, sys, os\n'), ((1280, 1313), 'cv2.resize', 'cv2.resize', (['face', '(width, height)'], {}), '(face, (width, height))\n', (1290, 1313), False, 'import cv2, sys, os\n'), ((1363, 1422), 'cv2.rectangle', 'cv2.rectangle', (['gray', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(3)'], {}), '(gray, (x, y), (x + w, y + h), (0, 255, 0), 3)\n', (1376, 1422), False, 'import cv2, sys, os\n'), ((1426, 1483), 'cv2.rectangle', 'cv2.rectangle', (['im', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(3)'], {}), '(im, (x, y), (x + w, y + h), (0, 255, 0), 3)\n', (1439, 1483), False, 'import cv2, sys, os\n'), ((2223, 2246), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2244, 2246), False, 'import cv2, sys, os\n'), ((1516, 1671), 'cv2.putText', 'cv2.putText', (['gray', "('The person of % s - %.0f' % (names[prediction[0]], prediction[1]))", '(x - 10, y - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 255)', '(2)'], {}), "(gray, 'The person of % s - %.0f' % (names[prediction[0]],\n prediction[1]), (x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2\n )\n", (1527, 1671), False, 'import cv2, sys, os\n'), ((1665, 1818), 'cv2.putText', 'cv2.putText', (['im', "('The person of % s - %.0f' % (names[prediction[0]], prediction[1]))", '(x - 10, y - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 255)', '(2)'], {}), "(im, 'The person of % s - %.0f' % (names[prediction[0]],\n prediction[1]), (x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2\n )\n", (1676, 1818), False, 'import cv2, sys, os\n'), ((1821, 1922), 'cv2.putText', 'cv2.putText', (['gray', '"""Not Recognized"""', '(x - 10, y - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 255)', '(2)'], {}), "(gray, 'Not Recognized', (x - 10, y - 10), cv2.\n FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2)\n", (1832, 1922), False, 'import cv2, sys, os\n'), ((1920, 2018), 'cv2.putText', 'cv2.putText', (['im', '"""Not Recognized"""', '(x - 10, y - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 255)', '(2)'], {}), "(im, 'Not Recognized', (x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN,\n 1, (0, 0, 255), 2)\n", (1931, 2018), False, 'import cv2, sys, os\n'), ((479, 498), 'cv2.imread', 'cv2.imread', (['path', '(0)'], {}), '(path, 0)\n', (489, 498), False, 'import cv2, sys, os\n')]
# -*- coding: utf-8 -*- from functools import partial import numpy as np import pandas as pd def summarize_results(results): values = [] for df in results: values.append(df.pd_dataframe().values) df = df.pd_dataframe() columns = df.columns return ( pd.DataFrame(np.mean(values, axis=0), columns=columns, index=df.index), pd.DataFrame(np.std(values, axis=0), columns=columns, index=df.index), ) def _run_backtest( rep, model, x_test, y_test, start=0.3, stride=1, horizon=4, enable_mc_dropout=True ): backtest = model.historical_forecasts( y_test, past_covariates=x_test, start=start, forecast_horizon=horizon, stride=stride, retrain=False, verbose=False, enable_mc_dropout=enable_mc_dropout, ) return backtest def parallelized_inference( model, x, y, repeats=100, start=0.3, stride=1, horizon=6, enable_mc_dropout=True ): results = [] backtest_partial = partial( _run_backtest, model=model, x_test=x, y_test=y, start=start, stride=stride, horizon=horizon, enable_mc_dropout=enable_mc_dropout, ) for res in map(backtest_partial, range(repeats)): results.append(res) return results def _run_forcast(_, model, x_full, y_past, future_len, enable_mc_dropout=True): return model.predict( future_len, series=y_past, past_covariates=x_full, enable_mc_dropout=enable_mc_dropout ) def forecast(model, x_full, y_past, future_len, repeats=100, enable_mc_dropout=True): results = [] backtest_partial = partial( _run_forcast, model=model, x_full=x_full, y_past=y_past, future_len=future_len, enable_mc_dropout=enable_mc_dropout, ) for res in map(backtest_partial, range(repeats)): results.append(res) return results
[ "numpy.std", "functools.partial", "numpy.mean" ]
[((1004, 1146), 'functools.partial', 'partial', (['_run_backtest'], {'model': 'model', 'x_test': 'x', 'y_test': 'y', 'start': 'start', 'stride': 'stride', 'horizon': 'horizon', 'enable_mc_dropout': 'enable_mc_dropout'}), '(_run_backtest, model=model, x_test=x, y_test=y, start=start, stride\n =stride, horizon=horizon, enable_mc_dropout=enable_mc_dropout)\n', (1011, 1146), False, 'from functools import partial\n'), ((1655, 1784), 'functools.partial', 'partial', (['_run_forcast'], {'model': 'model', 'x_full': 'x_full', 'y_past': 'y_past', 'future_len': 'future_len', 'enable_mc_dropout': 'enable_mc_dropout'}), '(_run_forcast, model=model, x_full=x_full, y_past=y_past, future_len\n =future_len, enable_mc_dropout=enable_mc_dropout)\n', (1662, 1784), False, 'from functools import partial\n'), ((304, 327), 'numpy.mean', 'np.mean', (['values'], {'axis': '(0)'}), '(values, axis=0)\n', (311, 327), True, 'import numpy as np\n'), ((384, 406), 'numpy.std', 'np.std', (['values'], {'axis': '(0)'}), '(values, axis=0)\n', (390, 406), True, 'import numpy as np\n')]
from dataclasses import dataclass import h5pickle as h5py import json import numpy as np from numpy import ndarray from pathlib import Path from typing import List import random from robolfd.types import Transition import robosuite from robosuite.utils.mjcf_utils import postprocess_model_xml import itertools from tqdm import tqdm from multiprocessing import Pool @dataclass class DemoConfig: obs_keys: dict max_episodes: int num_workers: int def __str__(self) -> str: return f"demo config - observation keys: {self.obs_keys} max_episodes: {self.max_episodes}, num_workers: {self.num_workers}" def generate_episode_transitions(demo_info): f, episode_num, config = demo_info episodes = list(f["data"].keys()) episode = episodes[episode_num] env_info = json.loads(f["data"].attrs["env_info"]) env = robosuite.make( **env_info, has_renderer=False, has_offscreen_renderer=False, ignore_done=True, use_camera_obs=False, reward_shaping=True, control_freq=20, ) model_xml = f[f"data/{episode}"].attrs["model_file"] env.reset() xml = postprocess_model_xml(model_xml) env.reset_from_xml_string(xml) env.sim.reset() all_observations = [] all_actions = [] # TODO: start from state states = f[f"data/{episode}/states"][()] actions = np.array(f[f"data/{episode}/actions"][()]) # load the initial state env.sim.set_state_from_flattened(states[0]) env.sim.forward() observations = [] action = [0, 0, 0, -1] observation, _, _, _ = env.step(action) # observe the current state observations.append(observation) used_actions = [] # Fix the order of action, observation sampling problem here for j, action in enumerate(actions): action = np.clip(action, -1, 1) observation, reward, done, misc = env.step(action) # use when you want to evaluate the environment # env.render() used_actions.append(action) observations.append(observation) # repeat last action for last observation used_actions.append(actions[-1]) flat_observations = [] for observation in observations: flat_observations.append(np.concatenate([observation[key] for key in config.obs_keys])) # z all_observations.extend(flat_observations) all_actions.extend(used_actions) return list(zip(all_observations, all_actions)) def make_demonstrations(demo_path: Path, config: DemoConfig) -> ndarray: f = h5py.File(demo_path, "r", skip_cache=False) episodes = list(f["data"].keys())[-config.max_episodes:] # TODO: Decide how to batch transitions across episodes # Dataset is collected in the form of transitions. pbar = tqdm(total=len(episodes)) with Pool(config.num_workers) as pool: # simple pool usage # transitions = pool.map(generate_episode_transitions, [(demo_path, i, config) for i in range(len(episodes))]) # for measuring progress: res = [pool.apply_async(generate_episode_transitions, args=((f, i, config),), callback=lambda _: pbar.update(1)) for i in range(len(episodes))] transitions = [p.get() for p in res] pool.close() pool.join() return transitions def make_eval_env(demo_path: Path, robot_name="Panda", has_offscreen_renderer = True): f = h5py.File(demo_path, "r") env_name = f["data"].attrs["env"] env_info = json.loads(f["data"].attrs["env_info"]) env_info['robots'] = robot_name env = robosuite.make( **env_info, has_renderer=not has_offscreen_renderer, has_offscreen_renderer=has_offscreen_renderer, ignore_done=True, use_camera_obs=has_offscreen_renderer, reward_shaping=True, control_freq=20, camera_names="frontview", camera_heights=512, camera_widths=512, ) return env
[ "robosuite.make", "json.loads", "numpy.clip", "h5pickle.File", "robosuite.utils.mjcf_utils.postprocess_model_xml", "numpy.array", "multiprocessing.Pool", "numpy.concatenate" ]
[((802, 841), 'json.loads', 'json.loads', (["f['data'].attrs['env_info']"], {}), "(f['data'].attrs['env_info'])\n", (812, 841), False, 'import json\n'), ((853, 1015), 'robosuite.make', 'robosuite.make', ([], {'has_renderer': '(False)', 'has_offscreen_renderer': '(False)', 'ignore_done': '(True)', 'use_camera_obs': '(False)', 'reward_shaping': '(True)', 'control_freq': '(20)'}), '(**env_info, has_renderer=False, has_offscreen_renderer=False,\n ignore_done=True, use_camera_obs=False, reward_shaping=True,\n control_freq=20)\n', (867, 1015), False, 'import robosuite\n'), ((1155, 1187), 'robosuite.utils.mjcf_utils.postprocess_model_xml', 'postprocess_model_xml', (['model_xml'], {}), '(model_xml)\n', (1176, 1187), False, 'from robosuite.utils.mjcf_utils import postprocess_model_xml\n'), ((1385, 1427), 'numpy.array', 'np.array', (["f[f'data/{episode}/actions'][()]"], {}), "(f[f'data/{episode}/actions'][()])\n", (1393, 1427), True, 'import numpy as np\n'), ((2547, 2590), 'h5pickle.File', 'h5py.File', (['demo_path', '"""r"""'], {'skip_cache': '(False)'}), "(demo_path, 'r', skip_cache=False)\n", (2556, 2590), True, 'import h5pickle as h5py\n'), ((3419, 3444), 'h5pickle.File', 'h5py.File', (['demo_path', '"""r"""'], {}), "(demo_path, 'r')\n", (3428, 3444), True, 'import h5pickle as h5py\n'), ((3498, 3537), 'json.loads', 'json.loads', (["f['data'].attrs['env_info']"], {}), "(f['data'].attrs['env_info'])\n", (3508, 3537), False, 'import json\n'), ((3589, 3879), 'robosuite.make', 'robosuite.make', ([], {'has_renderer': '(not has_offscreen_renderer)', 'has_offscreen_renderer': 'has_offscreen_renderer', 'ignore_done': '(True)', 'use_camera_obs': 'has_offscreen_renderer', 'reward_shaping': '(True)', 'control_freq': '(20)', 'camera_names': '"""frontview"""', 'camera_heights': '(512)', 'camera_widths': '(512)'}), "(**env_info, has_renderer=not has_offscreen_renderer,\n has_offscreen_renderer=has_offscreen_renderer, ignore_done=True,\n use_camera_obs=has_offscreen_renderer, reward_shaping=True,\n control_freq=20, camera_names='frontview', camera_heights=512,\n camera_widths=512)\n", (3603, 3879), False, 'import robosuite\n'), ((1837, 1859), 'numpy.clip', 'np.clip', (['action', '(-1)', '(1)'], {}), '(action, -1, 1)\n', (1844, 1859), True, 'import numpy as np\n'), ((2820, 2844), 'multiprocessing.Pool', 'Pool', (['config.num_workers'], {}), '(config.num_workers)\n', (2824, 2844), False, 'from multiprocessing import Pool\n'), ((2256, 2317), 'numpy.concatenate', 'np.concatenate', (['[observation[key] for key in config.obs_keys]'], {}), '([observation[key] for key in config.obs_keys])\n', (2270, 2317), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 11 18:55:01 2019 @author: kenneth """ from __future__ import absolute_import import numpy as np from Utils.utils import EvalR from Utils.Loss import loss from Utils.kernels import Kernels class kernelridge(EvalR, loss, Kernels): def __init__(self, kernel = None, lamda = None): super().__init__() if not kernel: kernel = 'linear' self.kernel = kernel else: self.kernel = kernel if not lamda: lamda = 100000 self.lamda = lamda else: self.lamda = lamda return def kernelize(self, x1, x2): ''' :params: x1: NxD :params: x2: NxD ''' if self.kernel == 'linear': return Kernels.linear(x1, x2) elif self.kernel == 'rbf': return Kernels.rbf(x1, x2) elif self.kernel == 'sigmoid': return Kernels.sigmoid(x1, x2) elif self.kernel == 'polynomial': return Kernels.polynomial(x1, x2) elif self.kernel == 'cosine': return Kernels.cosine(x1, x2) elif self.kernel == 'correlation': return Kernels.correlation(x1, x2) def fit(self, X, y): ''' :param: X: NxD :param: Dx1 ''' self.X = X self.y = y self.alpha = np.linalg.solve(self.kernelize(self.X, self.X) + self.lamda*np.eye(self.X.shape[0]), self.y) return self def predict(self, X): ''' :param: X: NxD :return type: Dx1 vector ''' return np.dot((self.kernelize(self.X, X).T * self.y), self.alpha.T) #%% Testing from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.preprocessing import Normalizer, StandardScaler X, y = load_boston().data, load_boston().target X = StandardScaler().fit_transform(X) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = .3) kridge = kernelridge().fit(X_train, Y_train) kridge.predict(X_test) kridge.summary(X, Y_test, kridge.predict(X_test)) #%% from sklearn.kernel_ridge import KernelRidge clf = KernelRidge(alpha=1.0, kernel='linear') clf.fit(X, y) kridge.summary(X, Y_test, clf.predict(X_test))
[ "sklearn.preprocessing.StandardScaler", "sklearn.kernel_ridge.KernelRidge", "sklearn.model_selection.train_test_split", "Utils.kernels.Kernels.cosine", "Utils.kernels.Kernels.polynomial", "sklearn.datasets.load_boston", "Utils.kernels.Kernels.sigmoid", "Utils.kernels.Kernels.rbf", "Utils.kernels.Kernels.correlation", "numpy.eye", "Utils.kernels.Kernels.linear" ]
[((2019, 2056), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)'}), '(X, y, test_size=0.3)\n', (2035, 2056), False, 'from sklearn.model_selection import train_test_split\n'), ((2237, 2276), 'sklearn.kernel_ridge.KernelRidge', 'KernelRidge', ([], {'alpha': '(1.0)', 'kernel': '"""linear"""'}), "(alpha=1.0, kernel='linear')\n", (2248, 2276), False, 'from sklearn.kernel_ridge import KernelRidge\n'), ((1905, 1918), 'sklearn.datasets.load_boston', 'load_boston', ([], {}), '()\n', (1916, 1918), False, 'from sklearn.datasets import load_boston\n'), ((1925, 1938), 'sklearn.datasets.load_boston', 'load_boston', ([], {}), '()\n', (1936, 1938), False, 'from sklearn.datasets import load_boston\n'), ((1950, 1966), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1964, 1966), False, 'from sklearn.preprocessing import Normalizer, StandardScaler\n'), ((822, 844), 'Utils.kernels.Kernels.linear', 'Kernels.linear', (['x1', 'x2'], {}), '(x1, x2)\n', (836, 844), False, 'from Utils.kernels import Kernels\n'), ((899, 918), 'Utils.kernels.Kernels.rbf', 'Kernels.rbf', (['x1', 'x2'], {}), '(x1, x2)\n', (910, 918), False, 'from Utils.kernels import Kernels\n'), ((977, 1000), 'Utils.kernels.Kernels.sigmoid', 'Kernels.sigmoid', (['x1', 'x2'], {}), '(x1, x2)\n', (992, 1000), False, 'from Utils.kernels import Kernels\n'), ((1479, 1502), 'numpy.eye', 'np.eye', (['self.X.shape[0]'], {}), '(self.X.shape[0])\n', (1485, 1502), True, 'import numpy as np\n'), ((1062, 1088), 'Utils.kernels.Kernels.polynomial', 'Kernels.polynomial', (['x1', 'x2'], {}), '(x1, x2)\n', (1080, 1088), False, 'from Utils.kernels import Kernels\n'), ((1146, 1168), 'Utils.kernels.Kernels.cosine', 'Kernels.cosine', (['x1', 'x2'], {}), '(x1, x2)\n', (1160, 1168), False, 'from Utils.kernels import Kernels\n'), ((1231, 1258), 'Utils.kernels.Kernels.correlation', 'Kernels.correlation', (['x1', 'x2'], {}), '(x1, x2)\n', (1250, 1258), False, 'from Utils.kernels import Kernels\n')]
""" Main file """ import argparse import logging import random import gym from tqdm import trange import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from common_definitions import CHECKPOINTS_PATH, TOTAL_EPISODES, TF_LOG_DIR, UNBALANCE_P from model import Brain from utils import Tensorboard if __name__ == "__main__": logging.basicConfig() logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser( prog="Deep Deterministic Policy Gradient (DDPG)", description="Deep Deterministic Policy Gradient (DDPG) in Tensorflow 2" ) parser.add_argument('--env', type=str, nargs='?', default="BipedalWalker-v3", help='The OpenAI Gym environment to train on, ' 'e.g. BipedalWalker-v3, LunarLanderContinuous-v2,' ' Pendulum-v0') parser.add_argument('--render_env', type=bool, nargs='?', default=True, help='Render the environment to be visually visible') parser.add_argument('--train', type=bool, nargs='?', default=True, help='Train the network on the modified DDPG algorithm') parser.add_argument('--use_noise', type=bool, nargs='?', default=True, help='OU Noise will be applied to the policy action') parser.add_argument('--eps_greedy', type=float, nargs='?', default=0.95, help="The epsilon for Epsilon-greedy in the policy's action") parser.add_argument('--warm_up', type=bool, nargs='?', default=1, help='Following recommendation from OpenAI Spinning Up, the actions in the ' 'early epochs can be set random to increase exploration. This warm up ' 'defines how many epochs are initially set to do this.') parser.add_argument('--save_weights', type=bool, nargs='?', default=True, help='Save the weight of the network in the defined checkpoint file ' 'directory.') args = parser.parse_args() RL_TASK = args.env RENDER_ENV = args.render_env LEARN = args.train USE_NOISE = args.use_noise WARM_UP = args.warm_up SAVE_WEIGHTS = args.save_weights EPS_GREEDY = args.eps_greedy # Step 1. create the gym environment env = gym.make(RL_TASK) action_space_high = env.action_space.high[0] action_space_low = env.action_space.low[0] brain = Brain(env.observation_space.shape[0], env.action_space.shape[0], action_space_high, action_space_low) tensorboard = Tensorboard(log_dir=TF_LOG_DIR) # load weights if available logging.info("Loading weights from %s*, make sure the folder exists", CHECKPOINTS_PATH) brain.load_weights(CHECKPOINTS_PATH) # all the metrics acc_reward = tf.keras.metrics.Sum('reward', dtype=tf.float32) actions_squared = tf.keras.metrics.Mean('actions', dtype=tf.float32) Q_loss = tf.keras.metrics.Mean('Q_loss', dtype=tf.float32) A_loss = tf.keras.metrics.Mean('A_loss', dtype=tf.float32) # To store reward history of each episode ep_reward_list = [] # To store average reward history of last few episodes avg_reward_list = [] # run iteration with trange(TOTAL_EPISODES) as t: for ep in t: prev_state = env.reset() acc_reward.reset_states() actions_squared.reset_states() Q_loss.reset_states() A_loss.reset_states() brain.noise.reset() for _ in range(2000): if RENDER_ENV: # render the environment into GUI env.render() # Recieve state and reward from environment. cur_act = brain.act(tf.expand_dims(prev_state, 0), _notrandom=(ep >= WARM_UP) and (random.random() < EPS_GREEDY+(1-EPS_GREEDY)*ep/TOTAL_EPISODES), noise=USE_NOISE) state, reward, done, _ = env.step(cur_act) brain.remember(prev_state, reward, state, int(done)) # update weights if LEARN: c, a = brain.learn(brain.buffer.get_batch(unbalance_p=UNBALANCE_P)) Q_loss(c) A_loss(a) # post update for next step acc_reward(reward) actions_squared(np.square(cur_act/action_space_high)) prev_state = state if done: break ep_reward_list.append(acc_reward.result().numpy()) # Mean of last 40 episodes avg_reward = np.mean(ep_reward_list[-40:]) avg_reward_list.append(avg_reward) # print the average reward t.set_postfix(r=avg_reward) tensorboard(ep, acc_reward, actions_squared, Q_loss, A_loss) # save weights if ep % 5 == 0 and SAVE_WEIGHTS: brain.save_weights(CHECKPOINTS_PATH) env.close() brain.save_weights(CHECKPOINTS_PATH) logging.info("Training done...") # Plotting graph # Episodes versus Avg. Rewards plt.plot(avg_reward_list) plt.xlabel("Episode") plt.ylabel("Avg. Epsiodic Reward") plt.show()
[ "tensorflow.expand_dims", "matplotlib.pyplot.show", "gym.make", "argparse.ArgumentParser", "logging.basicConfig", "tensorflow.keras.metrics.Mean", "matplotlib.pyplot.plot", "tqdm.trange", "numpy.square", "logging.getLogger", "logging.info", "random.random", "numpy.mean", "tensorflow.keras.metrics.Sum", "matplotlib.pyplot.ylabel", "model.Brain", "matplotlib.pyplot.xlabel", "utils.Tensorboard" ]
[((351, 372), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (370, 372), False, 'import logging\n'), ((434, 584), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""Deep Deterministic Policy Gradient (DDPG)"""', 'description': '"""Deep Deterministic Policy Gradient (DDPG) in Tensorflow 2"""'}), "(prog='Deep Deterministic Policy Gradient (DDPG)',\n description='Deep Deterministic Policy Gradient (DDPG) in Tensorflow 2')\n", (457, 584), False, 'import argparse\n'), ((2392, 2409), 'gym.make', 'gym.make', (['RL_TASK'], {}), '(RL_TASK)\n', (2400, 2409), False, 'import gym\n'), ((2519, 2624), 'model.Brain', 'Brain', (['env.observation_space.shape[0]', 'env.action_space.shape[0]', 'action_space_high', 'action_space_low'], {}), '(env.observation_space.shape[0], env.action_space.shape[0],\n action_space_high, action_space_low)\n', (2524, 2624), False, 'from model import Brain\n'), ((2657, 2688), 'utils.Tensorboard', 'Tensorboard', ([], {'log_dir': 'TF_LOG_DIR'}), '(log_dir=TF_LOG_DIR)\n', (2668, 2688), False, 'from utils import Tensorboard\n'), ((2726, 2817), 'logging.info', 'logging.info', (['"""Loading weights from %s*, make sure the folder exists"""', 'CHECKPOINTS_PATH'], {}), "('Loading weights from %s*, make sure the folder exists',\n CHECKPOINTS_PATH)\n", (2738, 2817), False, 'import logging\n'), ((2895, 2943), 'tensorflow.keras.metrics.Sum', 'tf.keras.metrics.Sum', (['"""reward"""'], {'dtype': 'tf.float32'}), "('reward', dtype=tf.float32)\n", (2915, 2943), True, 'import tensorflow as tf\n'), ((2966, 3016), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', (['"""actions"""'], {'dtype': 'tf.float32'}), "('actions', dtype=tf.float32)\n", (2987, 3016), True, 'import tensorflow as tf\n'), ((3030, 3079), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', (['"""Q_loss"""'], {'dtype': 'tf.float32'}), "('Q_loss', dtype=tf.float32)\n", (3051, 3079), True, 'import tensorflow as tf\n'), ((3093, 3142), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', (['"""A_loss"""'], {'dtype': 'tf.float32'}), "('A_loss', dtype=tf.float32)\n", (3114, 3142), True, 'import tensorflow as tf\n'), ((5164, 5196), 'logging.info', 'logging.info', (['"""Training done..."""'], {}), "('Training done...')\n", (5176, 5196), False, 'import logging\n'), ((5258, 5283), 'matplotlib.pyplot.plot', 'plt.plot', (['avg_reward_list'], {}), '(avg_reward_list)\n', (5266, 5283), True, 'import matplotlib.pyplot as plt\n'), ((5288, 5309), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Episode"""'], {}), "('Episode')\n", (5298, 5309), True, 'import matplotlib.pyplot as plt\n'), ((5314, 5348), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Avg. Epsiodic Reward"""'], {}), "('Avg. Epsiodic Reward')\n", (5324, 5348), True, 'import matplotlib.pyplot as plt\n'), ((5353, 5363), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5361, 5363), True, 'import matplotlib.pyplot as plt\n'), ((3328, 3350), 'tqdm.trange', 'trange', (['TOTAL_EPISODES'], {}), '(TOTAL_EPISODES)\n', (3334, 3350), False, 'from tqdm import trange\n'), ((377, 396), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (394, 396), False, 'import logging\n'), ((4745, 4774), 'numpy.mean', 'np.mean', (['ep_reward_list[-40:]'], {}), '(ep_reward_list[-40:])\n', (4752, 4774), True, 'import numpy as np\n'), ((3828, 3857), 'tensorflow.expand_dims', 'tf.expand_dims', (['prev_state', '(0)'], {}), '(prev_state, 0)\n', (3842, 3857), True, 'import tensorflow as tf\n'), ((4492, 4530), 'numpy.square', 'np.square', (['(cur_act / action_space_high)'], {}), '(cur_act / action_space_high)\n', (4501, 4530), True, 'import numpy as np\n'), ((3927, 3942), 'random.random', 'random.random', ([], {}), '()\n', (3940, 3942), False, 'import random\n')]
import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Activation import numpy as np import argparse import random import gym import sys from collections import deque from keras import backend as K from keras.layers import Input, Dense from keras.models import Model from keras.utils import plot_model env = gym.make('MountainCar-v0') state_space=env.observation_space.shape[0] action_s=env.action_space.n #Hyperparameters learning_rate=0.001 episodes=1000000 epsilon_start=0.5 epsilon_end=0.05 #decay=(epsilon_start-epsilon_end)/100000 decay = 0.9 batch_size=32 max_steps=200 gamma=1.0 hidden_layer=50 class QNetwork(): def __init__(self,learning_rate,action_space,input_dim): # self.model= Sequential() # self.model.add(Dense(units=30,activation='relu',input_dim=state_space,kernel_initializer='he_uniform')) # self.model.add(Dense(units=30,activation='relu',kernel_initializer='he_uniform')) # self.model.add(Dense(units=30,activation='relu',kernel_initializer='he_uniform')) # self.model.add(Dense(units=action_s,activation='linear',kernel_initializer='he_uniform')) self.input = Input(shape=(input_dim,)) self.x=Dense(hidden_layer,activation='relu')(self.input) # self.x=keras.layers.BatchNormalization(axis=-1)(self.x) self.x=Dense(hidden_layer,activation='relu')(self.x) # self.x=keras.layers.BatchNormalization(axis=-1)(self.x) self.x=Dense(hidden_layer,activation='relu')(self.x) self.value= Dense(1,activation='linear',name='value')(self.x) self.value1=self.value self.advantage = Dense(action_s,activation='linear',name='advantage')(self.x) self.advantage_mean = keras.layers.Lambda(lambda x:K.mean(x,axis=-1,keepdims=True))(self.advantage) self.advantage_mean1 = self.advantage_mean # self.value=keras.layers.RepeatVector(2) # print('Value',self.value.shape) # self.value = keras.layers.Lambda(lambda x:K.equal(x,axis=-1,keepdims=True))(self.value) i=1 while(i<action_s): self.value=keras.layers.Lambda(lambda x:K.concatenate(x, axis=-1))([self.value,self.value1]) self.advantage_mean=keras.layers.Lambda(lambda x:K.concatenate(x,axis=-1))([self.advantage_mean1,self.advantage_mean]) i+=1 # print('Adv',self.keras.backend.identity.shape) # self.advantage_mean=keras.layers.Lambda(lambda x:K.identity(x))(self.advantage_mean) # print('Val1',self.value1.shape) self.advantage_subtract_mean = keras.layers.Subtract()([self.advantage,self.advantage_mean]) # print('Adv su',self.advantage_mean.shape) self.added = keras.layers.Add()([self.advantage_subtract_mean,self.value]) # print("Added",self.added.shape) # equivalent to added = keras.layers.add([x1, x2]) # self.out = Dense(action_s,activation='linear')(self.added) # print("out",self.out.shape) self.optimizer=keras.optimizers.Adam(lr=learning_rate) self.model = Model(inputs=self.input, outputs=self.added) self.model.compile(loss='mse',optimizer=self.optimizer) plot_model(self.model, to_file='Duelling2.png') def save_model_weights(self, fname): self.model.save_weights(fname) def load_model(self, model_file): self.model.load(model_file) def load_model_weights(self,fname): self.model.load_weights(fname) class DQN_Agent(): # In this class, we will implement functions to do the following. # (1) Create an instance of the Q Network class. # (2) Create a function that constructs a policy from the Q values predicted by the Q Network. # (a) Epsilon Greedy Policy. # (b) Greedy Policy. # (3) Create a function to train the Q Network, by interacting with the environment. # (4) Create a function to test the Q Network's performance on the environment. # (5) Create a function for Experience Replay. def __init__(self, environment_name, render=False): self.env = environment_name self.net=QNetwork(learning_rate,action_s,state_space) self.prev_net=QNetwork(learning_rate,action_s,state_space) self.prev_net.model.set_weights(self.net.model.get_weights()) self.q_values=np.zeros([batch_size,action_s]) self.memory=Replay_Memory() self.burn_in_memory() def epsilon_greedy_policy(self, q_values,epsilon): if (epsilon>np.random.random()): action=random.randrange(action_s) else: action=np.argmax(q_values[0]) return action def greedy_policy(self, q_values): action=np.argmax(q_values) return action def train(self): # In this function, we will train our network. # If training without experience replay_memory, then you will interact with the environment # in this function, while also updating your network parameters. # If you are using a replay memory, you should interact with environment here, and store these # transitions to memory, while also updating your model. epsilon = epsilon_start for i in range(1000000): state = env.reset() state=np.reshape(state,[1,state_space]) total_reward=0 step=0 while step<max_steps: env.render() step+=1 q_values = self.net.model.predict(state) action=self.epsilon_greedy_policy(q_values,epsilon) new_state,reward,done, _ = env.step(action) new_state=np.reshape(new_state,[1,state_space]) self.memory.append([state,action,reward,done,new_state]) minibatch=self.memory.sample_batch() batch_states=np.zeros((batch_size,state_space)) batch_next_states=np.zeros((batch_size,state_space)) t_int=0 for batch_state, batch_action, batch_reward, batch_done, batch_new_state in minibatch: batch_states[t_int]=batch_state batch_next_states[t_int]=batch_new_state t_int+=1 batch_q_values=self.net.model.predict(batch_states) batch_prev_q_values=self.prev_net.model.predict(batch_next_states) t_int=0 for batch_state, batch_action, batch_reward, batch_done, batch_new_state in minibatch: if batch_done: temp=0 else: temp=gamma*(np.amax(batch_prev_q_values[t_int])) batch_q_values[t_int][batch_action] = batch_reward+temp t_int+=1 self.net.model.fit(batch_states,batch_q_values,batch_size=batch_size,epochs=1,verbose=0) epsilon*=decay if epsilon<epsilon_end: epsilon = epsilon_end total_reward+=reward state=new_state if done: break self.prev_net.model.set_weights(self.net.model.get_weights()) print(i,total_reward) def test(self, model_file=None): # Evaluate the performance of your agent over 100 episodes, by calculating cummulative rewards for the 100 episodes. # Here you need to interact with the environment, irrespective of whether you are using a memory. pass def burn_in_memory(self): state = env.reset() state=np.reshape(state,[1,state_space]) for i in range(self.memory.burn_in): action=random.randrange(action_s) new_state, reward, done, _ = env.step(action) new_state=np.reshape(new_state,[1,state_space]) self.memory.append([state,action,reward,done,new_state]) state=new_state if done: state=env.reset() state=np.reshape(state,[1,state_space]) class Replay_Memory(): def __init__(self, memory_size=10000, burn_in=5000): self.transitions =[] self.memory_size=memory_size self.burn_in = burn_in def sample_batch(self, batch_size=32): return random.sample(self.transitions,batch_size) def append(self, transition): if(len(self.transitions)<self.memory_size): self.transitions.append(transition) else: idx=random.randint(1,self.memory_size-1) # print(idx) del self.transitions[idx] self.transitions.append(transition) def parse_arguments(): parser = argparse.ArgumentParser(description='Linear Q network parser') parser.add_argument('--env',dest='env',type=str) parser.add_argument('--render',dest='render',type=int,default=0) parser.add_argument('--train',dest='train',type=int,default=1) parser.add_argument('--model',dest='model_file',type=str) return parser.parse_args() def main(args): args = parse_arguments() environment_name = args.env # Setting the session to allow growth, so it doesn't allocate all GPU memory. gpu_ops = tf.GPUOptions(allow_growth=True) config = tf.ConfigProto(gpu_options=gpu_ops) sess = tf.Session(config=config) # Setting this as the default tensorflow session. keras.backend.tensorflow_backend.set_session(sess) agent=DQN_Agent(environment_name) # print(agent) DQN_Agent.train(agent) # You want to create an instance of the DQN_Agent class here, and then train / test it. if __name__ == '__main__': main(sys.argv)
[ "argparse.ArgumentParser", "numpy.argmax", "random.sample", "keras.models.Model", "tensorflow.ConfigProto", "keras.layers.Input", "keras.backend.tensorflow_backend.set_session", "tensorflow.GPUOptions", "keras.backend.concatenate", "random.randint", "keras.utils.plot_model", "numpy.reshape", "tensorflow.Session", "keras.optimizers.Adam", "gym.make", "numpy.zeros", "keras.layers.Add", "numpy.amax", "keras.layers.Dense", "numpy.random.random", "random.randrange", "keras.layers.Subtract", "keras.backend.mean" ]
[((360, 386), 'gym.make', 'gym.make', (['"""MountainCar-v0"""'], {}), "('MountainCar-v0')\n", (368, 386), False, 'import gym\n'), ((7552, 7614), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Linear Q network parser"""'}), "(description='Linear Q network parser')\n", (7575, 7614), False, 'import argparse\n'), ((8047, 8079), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'allow_growth': '(True)'}), '(allow_growth=True)\n', (8060, 8079), True, 'import tensorflow as tf\n'), ((8090, 8125), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'gpu_options': 'gpu_ops'}), '(gpu_options=gpu_ops)\n', (8104, 8125), True, 'import tensorflow as tf\n'), ((8134, 8159), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (8144, 8159), True, 'import tensorflow as tf\n'), ((8214, 8264), 'keras.backend.tensorflow_backend.set_session', 'keras.backend.tensorflow_backend.set_session', (['sess'], {}), '(sess)\n', (8258, 8264), False, 'import keras\n'), ((1155, 1180), 'keras.layers.Input', 'Input', ([], {'shape': '(input_dim,)'}), '(shape=(input_dim,))\n', (1160, 1180), False, 'from keras.layers import Input, Dense\n'), ((2818, 2857), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (2839, 2857), False, 'import keras\n'), ((2873, 2917), 'keras.models.Model', 'Model', ([], {'inputs': 'self.input', 'outputs': 'self.added'}), '(inputs=self.input, outputs=self.added)\n', (2878, 2917), False, 'from keras.models import Model\n'), ((2978, 3025), 'keras.utils.plot_model', 'plot_model', (['self.model'], {'to_file': '"""Duelling2.png"""'}), "(self.model, to_file='Duelling2.png')\n", (2988, 3025), False, 'from keras.utils import plot_model\n'), ((4024, 4056), 'numpy.zeros', 'np.zeros', (['[batch_size, action_s]'], {}), '([batch_size, action_s])\n', (4032, 4056), True, 'import numpy as np\n'), ((4341, 4360), 'numpy.argmax', 'np.argmax', (['q_values'], {}), '(q_values)\n', (4350, 4360), True, 'import numpy as np\n'), ((6646, 6681), 'numpy.reshape', 'np.reshape', (['state', '[1, state_space]'], {}), '(state, [1, state_space])\n', (6656, 6681), True, 'import numpy as np\n'), ((7221, 7264), 'random.sample', 'random.sample', (['self.transitions', 'batch_size'], {}), '(self.transitions, batch_size)\n', (7234, 7264), False, 'import random\n'), ((1190, 1228), 'keras.layers.Dense', 'Dense', (['hidden_layer'], {'activation': '"""relu"""'}), "(hidden_layer, activation='relu')\n", (1195, 1228), False, 'from keras.layers import Input, Dense\n'), ((1309, 1347), 'keras.layers.Dense', 'Dense', (['hidden_layer'], {'activation': '"""relu"""'}), "(hidden_layer, activation='relu')\n", (1314, 1347), False, 'from keras.layers import Input, Dense\n'), ((1424, 1462), 'keras.layers.Dense', 'Dense', (['hidden_layer'], {'activation': '"""relu"""'}), "(hidden_layer, activation='relu')\n", (1429, 1462), False, 'from keras.layers import Input, Dense\n'), ((1485, 1528), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""', 'name': '"""value"""'}), "(1, activation='linear', name='value')\n", (1490, 1528), False, 'from keras.layers import Input, Dense\n'), ((1580, 1634), 'keras.layers.Dense', 'Dense', (['action_s'], {'activation': '"""linear"""', 'name': '"""advantage"""'}), "(action_s, activation='linear', name='advantage')\n", (1585, 1634), False, 'from keras.layers import Input, Dense\n'), ((2429, 2452), 'keras.layers.Subtract', 'keras.layers.Subtract', ([], {}), '()\n', (2450, 2452), False, 'import keras\n'), ((2553, 2571), 'keras.layers.Add', 'keras.layers.Add', ([], {}), '()\n', (2569, 2571), False, 'import keras\n'), ((4178, 4196), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (4194, 4196), True, 'import numpy as np\n'), ((4209, 4235), 'random.randrange', 'random.randrange', (['action_s'], {}), '(action_s)\n', (4225, 4235), False, 'import random\n'), ((4254, 4276), 'numpy.argmax', 'np.argmax', (['q_values[0]'], {}), '(q_values[0])\n', (4263, 4276), True, 'import numpy as np\n'), ((4853, 4888), 'numpy.reshape', 'np.reshape', (['state', '[1, state_space]'], {}), '(state, [1, state_space])\n', (4863, 4888), True, 'import numpy as np\n'), ((6729, 6755), 'random.randrange', 'random.randrange', (['action_s'], {}), '(action_s)\n', (6745, 6755), False, 'import random\n'), ((6818, 6857), 'numpy.reshape', 'np.reshape', (['new_state', '[1, state_space]'], {}), '(new_state, [1, state_space])\n', (6828, 6857), True, 'import numpy as np\n'), ((7396, 7435), 'random.randint', 'random.randint', (['(1)', '(self.memory_size - 1)'], {}), '(1, self.memory_size - 1)\n', (7410, 7435), False, 'import random\n'), ((5139, 5178), 'numpy.reshape', 'np.reshape', (['new_state', '[1, state_space]'], {}), '(new_state, [1, state_space])\n', (5149, 5178), True, 'import numpy as np\n'), ((5297, 5332), 'numpy.zeros', 'np.zeros', (['(batch_size, state_space)'], {}), '((batch_size, state_space))\n', (5305, 5332), True, 'import numpy as np\n'), ((5354, 5389), 'numpy.zeros', 'np.zeros', (['(batch_size, state_space)'], {}), '((batch_size, state_space))\n', (5362, 5389), True, 'import numpy as np\n'), ((6979, 7014), 'numpy.reshape', 'np.reshape', (['state', '[1, state_space]'], {}), '(state, [1, state_space])\n', (6989, 7014), True, 'import numpy as np\n'), ((1697, 1730), 'keras.backend.mean', 'K.mean', (['x'], {'axis': '(-1)', 'keepdims': '(True)'}), '(x, axis=-1, keepdims=True)\n', (1703, 1730), True, 'from keras import backend as K\n'), ((2037, 2062), 'keras.backend.concatenate', 'K.concatenate', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (2050, 2062), True, 'from keras import backend as K\n'), ((2142, 2167), 'keras.backend.concatenate', 'K.concatenate', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (2155, 2167), True, 'from keras import backend as K\n'), ((5885, 5920), 'numpy.amax', 'np.amax', (['batch_prev_q_values[t_int]'], {}), '(batch_prev_q_values[t_int])\n', (5892, 5920), True, 'import numpy as np\n')]
from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime import ctypes import _ctypes import pygame import sys import numpy as np import cv2 #if sys.hexversion >= 0x03000000: # import _thread as thread #else: # import thread class DepthRuntime(object): def __init__(self): pygame.init() # Used to manage how fast the screen updates self._clock = pygame.time.Clock() # Loop until the user clicks the close button. self._done = False # Used to manage how fast the screen updates self._clock = pygame.time.Clock() # Kinect runtime object, we want only color and body frames self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Depth) # back buffer surface for getting Kinect depth frames, 8bit grey, width and height equal to the Kinect depth frame size self._frame_surface = pygame.Surface((self._kinect.depth_frame_desc.Width, self._kinect.depth_frame_desc.Height), 0, 24) # here we will store skeleton data self._bodies = None # Set the width and height of the screen [width, height] self._infoObject = pygame.display.Info() self._screen = pygame.display.set_mode((self._kinect.depth_frame_desc.Width, self._kinect.depth_frame_desc.Height), pygame.HWSURFACE|pygame.DOUBLEBUF|pygame.RESIZABLE, 32) pygame.display.set_caption("Kinect for Windows v2 Depth") #def background_subtraction(self, current_frame, previous_frame): # previousFrame = [0] * 217088 # return frame def draw_depth_frame(self, frame, target_surface): if frame is None: # some usb hub do not provide the infrared image. it works with Kinect studio though return target_surface.lock() f8=np.uint8(frame.clip(1,4000)/16.) frame8bit=np.dstack((f8,f8,f8)) address = self._kinect.surface_as_array(target_surface.get_buffer()) ctypes.memmove(address, frame8bit.ctypes.data, frame8bit.size) del address target_surface.unlock() def run(self): # -------- Main Program Loop ----------- frame = [0] * 217088 frames = [frame] * 5 fgbg = cv2.createBackgroundSubtractorKNN() # fgbg = cv2.createBackgroundSubtractorMOG2() # print (len(previousFrames)) # print(previousFrames) while not self._done: # --- Main event loop for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close self._done = True # Flag that we are done so we exit this loop elif event.type == pygame.VIDEORESIZE: # window resized self._screen = pygame.display.set_mode(event.dict['size'], pygame.HWSURFACE|pygame.DOUBLEBUF|pygame.RESIZABLE, 32) # --- Getting frames and drawing if self._kinect.has_new_depth_frame(): frame = self._kinect.get_last_depth_frame() fgmask = fgbg.apply(frame) # flattenMask = [] # for item in fgmask: # flattenMask.append(item) flattenMask = [value for element in fgmask for value in element] # print (type(flattenMask[0])) flattenMask = np.array(flattenMask) # flattenMask = np.array(fgmask) # flattenMask = flattenMask / 255 # print ("flattenMask\n",flattenMask) frameMask = [] # frameMask = np.array(frameMask) for val in np.nditer(flattenMask): # i = 0 if val == 255: frameMask.append(1) # val = 1 else: frameMask.append(0) # val = 0 # i += 1 frameMask = np.array(frameMask) # np.set_printoptions(threshold=sys.maxsize) # print("frame\n",frame) # print ("flattenMask\n",flattenMask) # print ("frameMask\n",frameMask) outputFrame = np.multiply(frame, frameMask) # frames.append(outputFrame) # frames.pop(0) # outputFrame2 = [] # cv2.fastNlMeansDenoisingMulti(frames, 4, 4, outputFrame2) # outputFrame2 = cv2.fastNlMeansDenoising(outputFrame) # outputFrame = np.multiply(frame, fgmask) # cv2.imshow('frame',fgmask) self.draw_depth_frame(outputFrame, self._frame_surface) # k = cv2.waitKey(30) & 0xff # if k == 27: # break # frames.append(frame) # frames.pop(0) # outputFrame = np.subtract(frames[0], frames[1]) # self.draw_depth_frame(outputFrame, self._frame_surface) #self.draw_depth_frame(frame, self._frame_surface) #frame = np.average(np.array([frame, previousFrame]), axis=0) #np.set_printoptions(threshold=sys.maxsize) #print(outputFrame) #print(frame.size) # outputFrame = (np.array(previousFrames[0]) + np.array(previousFrames[1]) + np.array(previousFrames[2]) + np.array(previousFrames[3]) + np.array(previousFrames[4])) / 5 # self.draw_depth_frame(outputFrame.astype(int), self._frame_surface) # frame2 = cv.fastNlMeansDenoisingMulti(previousFrames, 2 , 3) frame = None outputFrame = None self._screen.blit(self._frame_surface, (0,0)) pygame.display.update() # --- Go ahead and update the screen with what we've drawn. pygame.display.flip() # --- Limit to 60 frames per second self._clock.tick(60) # Close our Kinect sensor, close the window and quit. self._kinect.close() pygame.quit() __main__ = "Kinect v2 Depth" game =DepthRuntime(); game.run();
[ "numpy.dstack", "pygame.quit", "numpy.multiply", "pygame.Surface", "pygame.event.get", "pygame.display.set_mode", "cv2.createBackgroundSubtractorKNN", "numpy.nditer", "ctypes.memmove", "pygame.init", "pygame.display.flip", "pykinect2.PyKinectRuntime.PyKinectRuntime", "pygame.display.update", "pygame.display.Info", "numpy.array", "pygame.display.set_caption", "pygame.time.Clock" ]
[((341, 354), 'pygame.init', 'pygame.init', ([], {}), '()\n', (352, 354), False, 'import pygame\n'), ((430, 449), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (447, 449), False, 'import pygame\n'), ((607, 626), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (624, 626), False, 'import pygame\n'), ((719, 785), 'pykinect2.PyKinectRuntime.PyKinectRuntime', 'PyKinectRuntime.PyKinectRuntime', (['PyKinectV2.FrameSourceTypes_Depth'], {}), '(PyKinectV2.FrameSourceTypes_Depth)\n', (750, 785), False, 'from pykinect2 import PyKinectRuntime\n'), ((944, 1047), 'pygame.Surface', 'pygame.Surface', (['(self._kinect.depth_frame_desc.Width, self._kinect.depth_frame_desc.Height)', '(0)', '(24)'], {}), '((self._kinect.depth_frame_desc.Width, self._kinect.\n depth_frame_desc.Height), 0, 24)\n', (958, 1047), False, 'import pygame\n'), ((1207, 1228), 'pygame.display.Info', 'pygame.display.Info', ([], {}), '()\n', (1226, 1228), False, 'import pygame\n'), ((1252, 1422), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(self._kinect.depth_frame_desc.Width, self._kinect.depth_frame_desc.Height)', '(pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE)', '(32)'], {}), '((self._kinect.depth_frame_desc.Width, self._kinect.\n depth_frame_desc.Height), pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.\n RESIZABLE, 32)\n', (1275, 1422), False, 'import pygame\n'), ((1417, 1474), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Kinect for Windows v2 Depth"""'], {}), "('Kinect for Windows v2 Depth')\n", (1443, 1474), False, 'import pygame\n'), ((1883, 1906), 'numpy.dstack', 'np.dstack', (['(f8, f8, f8)'], {}), '((f8, f8, f8))\n', (1892, 1906), True, 'import numpy as np\n'), ((1990, 2052), 'ctypes.memmove', 'ctypes.memmove', (['address', 'frame8bit.ctypes.data', 'frame8bit.size'], {}), '(address, frame8bit.ctypes.data, frame8bit.size)\n', (2004, 2052), False, 'import ctypes\n'), ((2255, 2290), 'cv2.createBackgroundSubtractorKNN', 'cv2.createBackgroundSubtractorKNN', ([], {}), '()\n', (2288, 2290), False, 'import cv2\n'), ((6101, 6114), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (6112, 6114), False, 'import pygame\n'), ((2504, 2522), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2520, 2522), False, 'import pygame\n'), ((5791, 5814), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (5812, 5814), False, 'import pygame\n'), ((5899, 5920), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (5918, 5920), False, 'import pygame\n'), ((3383, 3404), 'numpy.array', 'np.array', (['flattenMask'], {}), '(flattenMask)\n', (3391, 3404), True, 'import numpy as np\n'), ((3666, 3688), 'numpy.nditer', 'np.nditer', (['flattenMask'], {}), '(flattenMask)\n', (3675, 3688), True, 'import numpy as np\n'), ((3992, 4011), 'numpy.array', 'np.array', (['frameMask'], {}), '(frameMask)\n', (4000, 4011), True, 'import numpy as np\n'), ((4248, 4277), 'numpy.multiply', 'np.multiply', (['frame', 'frameMask'], {}), '(frame, frameMask)\n', (4259, 4277), True, 'import numpy as np\n'), ((2805, 2913), 'pygame.display.set_mode', 'pygame.display.set_mode', (["event.dict['size']", '(pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE)', '(32)'], {}), "(event.dict['size'], pygame.HWSURFACE | pygame.\n DOUBLEBUF | pygame.RESIZABLE, 32)\n", (2828, 2913), False, 'import pygame\n')]
import numpy as np from .strategy import Strategy from sklearn.neighbors import NearestNeighbors import pickle from datetime import datetime class CoreSet(Strategy): def __init__(self, X, Y, idxs_lb, net, handler, args, tor=1e-4): super(CoreSet, self).__init__(X, Y, idxs_lb, net, handler, args) self.tor = tor def query(self, n): lb_flag = self.idxs_lb.copy() embedding = self.get_embedding(self.X, self.Y) embedding = embedding.numpy() print('calculate distance matrix') t_start = datetime.now() dist_mat = np.matmul(embedding, embedding.transpose()) sq = np.array(dist_mat.diagonal()).reshape(len(self.X), 1) dist_mat *= -2 dist_mat += sq dist_mat += sq.transpose() dist_mat = np.sqrt(dist_mat) print(datetime.now() - t_start) print('calculate greedy solution') t_start = datetime.now() mat = dist_mat[~lb_flag, :][:, lb_flag] for i in range(n): if i%10 == 0: print('greedy solution {}/{}'.format(i, n)) mat_min = mat.min(axis=1) q_idx_ = mat_min.argmax() q_idx = np.arange(self.n_pool)[~lb_flag][q_idx_] lb_flag[q_idx] = True mat = np.delete(mat, q_idx_, 0) mat = np.append(mat, dist_mat[~lb_flag, q_idx][:, None], axis=1) print(datetime.now() - t_start) opt = mat.min(axis=1).max() bound_u = opt bound_l = opt/2.0 delta = opt xx, yy = np.where(dist_mat <= opt) dd = dist_mat[xx, yy] lb_flag_ = self.idxs_lb.copy() subset = np.where(lb_flag_==True)[0].tolist() SEED = 5 pickle.dump((xx.tolist(), yy.tolist(), dd.tolist(), subset, float(opt), n, self.n_pool), open('mip{}.pkl'.format(SEED), 'wb'), 2) import ipdb ipdb.set_trace() # solving MIP # download Gurobi software from http://www.gurobi.com/ # sh {GUROBI_HOME}/linux64/bin/gurobi.sh < core_set_sovle_solve.py sols = pickle.load(open('sols{}.pkl'.format(SEED), 'rb')) if sols is None: q_idxs = lb_flag else: lb_flag_[sols] = True q_idxs = lb_flag_ print('sum q_idxs = {}'.format(q_idxs.sum())) return np.arange(self.n_pool)[(self.idxs_lb ^ q_idxs)]
[ "ipdb.set_trace", "numpy.append", "numpy.where", "numpy.arange", "datetime.datetime.now", "numpy.delete", "numpy.sqrt" ]
[((502, 516), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (514, 516), False, 'from datetime import datetime\n'), ((711, 728), 'numpy.sqrt', 'np.sqrt', (['dist_mat'], {}), '(dist_mat)\n', (718, 728), True, 'import numpy as np\n'), ((813, 827), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (825, 827), False, 'from datetime import datetime\n'), ((1323, 1348), 'numpy.where', 'np.where', (['(dist_mat <= opt)'], {}), '(dist_mat <= opt)\n', (1331, 1348), True, 'import numpy as np\n'), ((1617, 1633), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (1631, 1633), False, 'import ipdb\n'), ((1101, 1126), 'numpy.delete', 'np.delete', (['mat', 'q_idx_', '(0)'], {}), '(mat, q_idx_, 0)\n', (1110, 1126), True, 'import numpy as np\n'), ((1136, 1194), 'numpy.append', 'np.append', (['mat', 'dist_mat[~lb_flag, q_idx][:, None]'], {'axis': '(1)'}), '(mat, dist_mat[~lb_flag, q_idx][:, None], axis=1)\n', (1145, 1194), True, 'import numpy as np\n'), ((1989, 2011), 'numpy.arange', 'np.arange', (['self.n_pool'], {}), '(self.n_pool)\n', (1998, 2011), True, 'import numpy as np\n'), ((737, 751), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (749, 751), False, 'from datetime import datetime\n'), ((1204, 1218), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1216, 1218), False, 'from datetime import datetime\n'), ((1026, 1048), 'numpy.arange', 'np.arange', (['self.n_pool'], {}), '(self.n_pool)\n', (1035, 1048), True, 'import numpy as np\n'), ((1418, 1444), 'numpy.where', 'np.where', (['(lb_flag_ == True)'], {}), '(lb_flag_ == True)\n', (1426, 1444), True, 'import numpy as np\n')]
#!/usr/bin/python import os, math import pandas as pd import numpy as np np.random.seed(42) import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim torch.manual_seed(42) from sklearn.metrics import roc_auc_score from sklearn.model_selection import ParameterSampler def doc_mean_thres(df): doc_mean = df.mean() df_bin = 1.0 * (df.values > doc_mean.values) df_bin = pd.DataFrame(df_bin, columns=df.columns, index=df.index) return df_bin def load_doc_term_matrix(version=190325, binarize=True): dtm = pd.read_csv("../../../data/text/dtm_{}.csv.gz".format(version), compression="gzip", index_col=0) if binarize: dtm = doc_mean_thres(dtm) return dtm def load_coordinates(): atlas_labels = pd.read_csv("../../../data/brain/labels.csv") activations = pd.read_csv("../../../data/brain/coordinates.csv", index_col=0) activations = activations[atlas_labels["PREPROCESSED"]] return activations def load_raw_domains(k): list_file = "../../lists/lists_k{:02d}.csv".format(k) lists = pd.read_csv(list_file, index_col=None) circuit_file = "../../circuits/circuits_k{:02d}.csv".format(k) circuits = pd.read_csv(circuit_file, index_col=None) return lists, circuits def numpy2torch(data): inputs, labels = data inputs = Variable(torch.from_numpy(inputs.T).float()) labels = Variable(torch.from_numpy(labels.T).float()) return inputs, labels def reset_weights(m): if isinstance(m, nn.Linear): m.reset_parameters() class Net(nn.Module): def __init__(self, n_input=0, n_output=0, n_hid=100, p_dropout=0.5): super(Net, self).__init__() self.fc1 = nn.Linear(n_input, n_hid) self.bn1 = nn.BatchNorm1d(n_hid) self.dropout1 = nn.Dropout(p=p_dropout) self.fc2 = nn.Linear(n_hid, n_hid) self.bn2 = nn.BatchNorm1d(n_hid) self.dropout2 = nn.Dropout(p=p_dropout) self.fc3 = nn.Linear(n_hid, n_hid) self.bn3 = nn.BatchNorm1d(n_hid) self.dropout3 = nn.Dropout(p=p_dropout) self.fc4 = nn.Linear(n_hid, n_hid) self.bn4 = nn.BatchNorm1d(n_hid) self.dropout4 = nn.Dropout(p=p_dropout) self.fc5 = nn.Linear(n_hid, n_hid) self.bn5 = nn.BatchNorm1d(n_hid) self.dropout5 = nn.Dropout(p=p_dropout) self.fc6 = nn.Linear(n_hid, n_hid) self.bn6 = nn.BatchNorm1d(n_hid) self.dropout6 = nn.Dropout(p=p_dropout) self.fc7 = nn.Linear(n_hid, n_hid) self.bn7 = nn.BatchNorm1d(n_hid) self.dropout7 = nn.Dropout(p=p_dropout) self.fc8 = nn.Linear(n_hid, n_output) # Xavier initialization for weights for fc in [self.fc1, self.fc2, self.fc3, self.fc4, self.fc5, self.fc6, self.fc7, self.fc8]: nn.init.xavier_uniform_(fc.weight) def forward(self, x): x = self.dropout1(F.relu(self.bn1(self.fc1(x)))) x = self.dropout2(F.relu(self.bn2(self.fc2(x)))) x = self.dropout3(F.relu(self.bn3(self.fc3(x)))) x = self.dropout4(F.relu(self.bn4(self.fc4(x)))) x = self.dropout5(F.relu(self.bn5(self.fc5(x)))) x = self.dropout6(F.relu(self.bn6(self.fc6(x)))) x = self.dropout7(F.relu(self.bn7(self.fc7(x)))) x = torch.sigmoid(self.fc8(x)) return x def optimize_hyperparameters(param_list, train_set, val_set, n_epochs=100): criterion = F.binary_cross_entropy inputs_val, labels_val = numpy2torch(val_set[0]) op_idx, op_params, op_score_val, op_state_dict, op_loss = 0, 0, 0, 0, 0 for params in param_list: print("-" * 75) print(" ".join(["{} {:6.5f}".format(k.upper(), v) for k, v in params.items()])) print("-" * 75 + "\n") # Initialize variables for this set of parameters n_input = train_set[0][0].shape[0] n_output = train_set[0][1].shape[0] net = Net(n_input=n_input, n_output=n_output, n_hid=params["n_hid"], p_dropout=params["p_dropout"]) optimizer = optim.Adam(net.parameters(), lr=params["lr"], weight_decay=params["weight_decay"]) net.apply(reset_weights) running_loss = [] # Loop over the dataset multiple times for epoch in range(n_epochs): for data in train_set: # Get the inputs inputs, labels = numpy2torch(data) # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # Update the running loss running_loss += [loss.item()] if epoch % (n_epochs/5) == (n_epochs/5) - 1: print(" Epoch {:3d}\tLoss {:6.6f}".format(epoch + 1, running_loss[-1] / 100)) # Evaluate on the validation set with torch.no_grad(): preds_val = net.eval()(inputs_val).float() score_val = roc_auc_score(labels_val, preds_val, average="macro") print("\n Validation Set ROC-AUC {:6.4f}\n".format(score_val)) # Update outputs if this model is the best so far if score_val > op_score_val: print(" Best so far!\n") op_score_val = score_val op_state_dict = net.state_dict() op_params = params op_loss = running_loss return op_score_val def load_mini_batches(X, Y, split, mini_batch_size=64, seed=0, reshape_labels=False): np.random.seed(seed) m = len(split) # Number of training examples mini_batches = [] # Split the data X = X.loc[split].T.values Y = Y.loc[split].T.values # Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation] if reshape_labels: shuffled_Y = shuffled_Y.reshape((1,m)) # Partition (shuffled_X, shuffled_Y), except the end case num_complete_minibatches = math.floor(m / mini_batch_size) # Mumber of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[:, k * mini_batch_size : (k+1) * mini_batch_size] mini_batch_Y = shuffled_Y[:, k * mini_batch_size : (k+1) * mini_batch_size] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handle the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[:, -(m % mini_batch_size):] mini_batch_Y = shuffled_Y[:, -(m % mini_batch_size):] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def optimize_list_len(k): # Load the data splits splits = {} for split in ["train", "validation"]: splits[split] = [int(pmid.strip()) for pmid in open("../../../data/splits/{}.txt".format(split), "r").readlines()] act_bin = load_coordinates() dtm_bin = load_doc_term_matrix(version=190325, binarize=True) lists, circuits = load_raw_domains(k) # Specify the hyperparameters for the randomized grid search param_grid = {"lr": [0.001], "weight_decay": [0.001], "n_hid": [100], "p_dropout": [0.1]} param_list = list(ParameterSampler(param_grid, n_iter=1, random_state=42)) batch_size = 1024 n_epochs = 100 list_lens = range(5, 26) op_lists = pd.DataFrame() for circuit in range(1, k+1): print("-" * 100) print("Fitting models for domain {:02d}".format(circuit)) forward_scores, reverse_scores = [], [] structures = circuits.loc[circuits["CLUSTER"] == circuit, "STRUCTURE"] for list_len in list_lens: print("-" * 85) print("Fitting models for lists of length {:02d}".format(list_len)) words = lists.loc[lists["CLUSTER"] == circuit, "TOKEN"][:list_len] # Optimize forward inference classifier train_set_f = load_mini_batches(dtm_bin[words], act_bin[structures], splits["train"], mini_batch_size=batch_size, seed=42) val_set_f = load_mini_batches(dtm_bin[words], act_bin[structures], splits["validation"], mini_batch_size=len(splits["validation"]), seed=42) try: op_val_f = optimize_hyperparameters(param_list, train_set_f, val_set_f, n_epochs=n_epochs) except: op_val_f = 0.0 forward_scores.append(op_val_f) # Optimize reverse inference classifier train_set_r = load_mini_batches(act_bin[structures], dtm_bin[words], splits["train"], mini_batch_size=batch_size, seed=42) val_set_r = load_mini_batches(act_bin[structures], dtm_bin[words], splits["validation"], mini_batch_size=len(splits["validation"]), seed=42) try: op_val_r = optimize_hyperparameters(param_list, train_set_r, val_set_r, n_epochs=n_epochs) except: op_val_r = 0.0 reverse_scores.append(op_val_r) scores = [(forward_scores[i] + reverse_scores[i])/2.0 for i in range(len(forward_scores))] print("-" * 85) print("Mean ROC-AUC scores: {}".format(scores)) op_len = list_lens[scores.index(max(scores))] print("-" * 100) print("\tCircuit {:02d} has {:02d} words".format(circuit, op_len)) op_df = lists.loc[lists["CLUSTER"] == circuit][:op_len] op_df["ROC_AUC"] = max(scores) op_lists = op_lists.append(op_df) op_lists.to_csv("../../lists/lists_k{:02d}_oplen_nn.csv".format(k), index=None)
[ "pandas.DataFrame", "torch.nn.Dropout", "numpy.random.seed", "pandas.read_csv", "torch.manual_seed", "torch.nn.init.xavier_uniform_", "torch.nn.BatchNorm1d", "math.floor", "sklearn.metrics.roc_auc_score", "sklearn.model_selection.ParameterSampler", "torch.nn.Linear", "numpy.random.permutation", "torch.no_grad", "torch.from_numpy" ]
[((74, 92), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (88, 92), True, 'import numpy as np\n'), ((225, 246), 'torch.manual_seed', 'torch.manual_seed', (['(42)'], {}), '(42)\n', (242, 246), False, 'import torch\n'), ((450, 506), 'pandas.DataFrame', 'pd.DataFrame', (['df_bin'], {'columns': 'df.columns', 'index': 'df.index'}), '(df_bin, columns=df.columns, index=df.index)\n', (462, 506), True, 'import pandas as pd\n'), ((788, 833), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/brain/labels.csv"""'], {}), "('../../../data/brain/labels.csv')\n", (799, 833), True, 'import pandas as pd\n'), ((850, 913), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/brain/coordinates.csv"""'], {'index_col': '(0)'}), "('../../../data/brain/coordinates.csv', index_col=0)\n", (861, 913), True, 'import pandas as pd\n'), ((1086, 1124), 'pandas.read_csv', 'pd.read_csv', (['list_file'], {'index_col': 'None'}), '(list_file, index_col=None)\n', (1097, 1124), True, 'import pandas as pd\n'), ((1203, 1244), 'pandas.read_csv', 'pd.read_csv', (['circuit_file'], {'index_col': 'None'}), '(circuit_file, index_col=None)\n', (1214, 1244), True, 'import pandas as pd\n'), ((5266, 5286), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (5280, 5286), True, 'import numpy as np\n'), ((5727, 5758), 'math.floor', 'math.floor', (['(m / mini_batch_size)'], {}), '(m / mini_batch_size)\n', (5737, 5758), False, 'import os, math\n'), ((7197, 7211), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7209, 7211), True, 'import pandas as pd\n'), ((1683, 1708), 'torch.nn.Linear', 'nn.Linear', (['n_input', 'n_hid'], {}), '(n_input, n_hid)\n', (1692, 1708), True, 'import torch.nn as nn\n'), ((1724, 1745), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (1738, 1745), True, 'import torch.nn as nn\n'), ((1766, 1789), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (1776, 1789), True, 'import torch.nn as nn\n'), ((1805, 1828), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (1814, 1828), True, 'import torch.nn as nn\n'), ((1844, 1865), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (1858, 1865), True, 'import torch.nn as nn\n'), ((1886, 1909), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (1896, 1909), True, 'import torch.nn as nn\n'), ((1925, 1948), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (1934, 1948), True, 'import torch.nn as nn\n'), ((1964, 1985), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (1978, 1985), True, 'import torch.nn as nn\n'), ((2006, 2029), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (2016, 2029), True, 'import torch.nn as nn\n'), ((2045, 2068), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (2054, 2068), True, 'import torch.nn as nn\n'), ((2084, 2105), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (2098, 2105), True, 'import torch.nn as nn\n'), ((2126, 2149), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (2136, 2149), True, 'import torch.nn as nn\n'), ((2165, 2188), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (2174, 2188), True, 'import torch.nn as nn\n'), ((2204, 2225), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (2218, 2225), True, 'import torch.nn as nn\n'), ((2246, 2269), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (2256, 2269), True, 'import torch.nn as nn\n'), ((2285, 2308), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (2294, 2308), True, 'import torch.nn as nn\n'), ((2324, 2345), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (2338, 2345), True, 'import torch.nn as nn\n'), ((2366, 2389), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (2376, 2389), True, 'import torch.nn as nn\n'), ((2405, 2428), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (2414, 2428), True, 'import torch.nn as nn\n'), ((2444, 2465), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_hid'], {}), '(n_hid)\n', (2458, 2465), True, 'import torch.nn as nn\n'), ((2486, 2509), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'p_dropout'}), '(p=p_dropout)\n', (2496, 2509), True, 'import torch.nn as nn\n'), ((2525, 2551), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_output'], {}), '(n_hid, n_output)\n', (2534, 2551), True, 'import torch.nn as nn\n'), ((4778, 4831), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['labels_val', 'preds_val'], {'average': '"""macro"""'}), "(labels_val, preds_val, average='macro')\n", (4791, 4831), False, 'from sklearn.metrics import roc_auc_score\n'), ((5481, 5505), 'numpy.random.permutation', 'np.random.permutation', (['m'], {}), '(m)\n', (5502, 5505), True, 'import numpy as np\n'), ((7054, 7109), 'sklearn.model_selection.ParameterSampler', 'ParameterSampler', (['param_grid'], {'n_iter': '(1)', 'random_state': '(42)'}), '(param_grid, n_iter=1, random_state=42)\n', (7070, 7109), False, 'from sklearn.model_selection import ParameterSampler\n'), ((2710, 2744), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['fc.weight'], {}), '(fc.weight)\n', (2733, 2744), True, 'import torch.nn as nn\n'), ((4696, 4711), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4709, 4711), False, 'import torch\n'), ((1339, 1365), 'torch.from_numpy', 'torch.from_numpy', (['inputs.T'], {}), '(inputs.T)\n', (1355, 1365), False, 'import torch\n'), ((1395, 1421), 'torch.from_numpy', 'torch.from_numpy', (['labels.T'], {}), '(labels.T)\n', (1411, 1421), False, 'import torch\n')]
import explanes as el import numpy as np import pandas as pd np.random.seed(0) experiment = el.experiment.Experiment() experiment.project.name = 'example' experiment.path.output = '/tmp/'+experiment.project.name+'/' experiment.factor.f1 = [1, 2] experiment.factor.f2 = [1, 2, 3] experiment.metric.m1 = ['mean', 'std'] experiment.metric.m2 = ['min', 'argmin'] def process(setting, experiment): metric1 = setting.f1+setting.f2+np.random.randn(100) metric2 = setting.f1*setting.f2*np.random.randn(100) np.save(experiment.path.output+setting.id()+'_m1.npy', metric1) np.save(experiment.path.output+setting.id()+'_m2.npy', metric2) experiment.setPath() experiment.do([], process, progress=False) (settingDescription, columnHeader, constantSettingDescription, nbColumnFactor) = experiment.metric.reduce(experiment.factor.mask([1]), experiment.path.output, verbose=True) df = pd.DataFrame(settingDescription, columns=columnHeader) df[columnHeader[nbColumnFactor:]] = df[columnHeader[nbColumnFactor:]].round(decimals=2) print(constantSettingDescription) print(df)
[ "explanes.experiment.Experiment", "numpy.random.seed", "pandas.DataFrame", "numpy.random.randn" ]
[((62, 79), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (76, 79), True, 'import numpy as np\n'), ((94, 120), 'explanes.experiment.Experiment', 'el.experiment.Experiment', ([], {}), '()\n', (118, 120), True, 'import explanes as el\n'), ((883, 937), 'pandas.DataFrame', 'pd.DataFrame', (['settingDescription'], {'columns': 'columnHeader'}), '(settingDescription, columns=columnHeader)\n', (895, 937), True, 'import pandas as pd\n'), ((430, 450), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (445, 450), True, 'import numpy as np\n'), ((485, 505), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (500, 505), True, 'import numpy as np\n')]
""" Generate a golden NPZ file from a dicom ZIP archive. """ import argparse import numpy as np from dicom_numpy.zip_archive import combined_series_from_zip def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-o', '--output', help='Output golden NPZ file', required=False) parser.add_argument('input', help="Input DICOM zip archive") return parser.parse_args() def generate_golden_values(input_zip, output_path='golden_values'): """ Generate a golden NPZ file for a given DICOM zip archive. """ voxels, ijk_to_xyz = combined_series_from_zip(input_zip) np.savez_compressed(output_path, voxels=voxels, ijk_to_xyz=ijk_to_xyz) if __name__ == '__main__': args = parse_args() if args.output: generate_golden_values(args.input, args.output) else: generate_golden_values(args.input)
[ "dicom_numpy.zip_archive.combined_series_from_zip", "numpy.savez_compressed", "argparse.ArgumentParser" ]
[((192, 217), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (215, 217), False, 'import argparse\n'), ((576, 611), 'dicom_numpy.zip_archive.combined_series_from_zip', 'combined_series_from_zip', (['input_zip'], {}), '(input_zip)\n', (600, 611), False, 'from dicom_numpy.zip_archive import combined_series_from_zip\n'), ((616, 686), 'numpy.savez_compressed', 'np.savez_compressed', (['output_path'], {'voxels': 'voxels', 'ijk_to_xyz': 'ijk_to_xyz'}), '(output_path, voxels=voxels, ijk_to_xyz=ijk_to_xyz)\n', (635, 686), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Mar 28 00:02:08 2017 @author: kht """ import tensorflow as tf import translate as tl import numpy as np def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape = shape) return tf.Variable(initial) einputs,dinputs,res_logits,all_attens=tl.self_decode() einputs_t=[] dinputs_t=[] res_logits_t=[] num_exp=len(res_logits) for i in range(100): einputs_t.append(einputs[num_exp-i-1]) dinputs_t.append(dinputs[num_exp-i-1]) res_logits_t.append(res_logits[num_exp-i-1]) batch_size=32 maxlen=13 sess = tf.InteractiveSession() w_fc2 = weight_variable([128, 20]) b_fc2 = bias_variable([20]) x=tf.placeholder(tf.float32,[None,128]) y_=tf.placeholder(tf.float32,[None,20]) y_conv = tf.nn.softmax(tf.matmul(x, w_fc2) + b_fc2) # train and evaluate the model cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) res=tf.argmax(y_conv, 1) resreal=tf.argmax(y_, 1) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init=tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) saver = tf.train.Saver() saver.restore(sess, "train/NumAdd.ckpt") for i in range(len(res_logits_t)): din=dinputs_t[i] dlogit=res_logits_t[i] ''' for j in range(batch_size): batch_x=[] batch_y=np.zeros([13,20],dtype=np.float32) for k in range(maxlen): batch_y[k][din[k][j]]=1 dx=dlogit[k][j] batch_x.append(dx) print(sess.run(correct_prediction,feed_dict={x: batch_x, y_: batch_y})) print('-----------------------------------------------------------------------') print("**************************************************************************************") ''' for j in range(batch_size): batch_x=[] batch_y=np.zeros([13,20],dtype=np.float32) for k in range(maxlen): batch_y[k][din[k][j]]=1 dx=dlogit[k][j] batch_x.append(dx) print(sess.run(res,feed_dict={x: batch_x, y_: batch_y})) print(sess.run(resreal,feed_dict={x: batch_x, y_: batch_y})) print('-----------------------------------------------------------------------')
[ "tensorflow.train.Saver", "tensorflow.argmax", "tensorflow.Session", "numpy.zeros", "tensorflow.constant", "tensorflow.placeholder", "tensorflow.cast", "tensorflow.Variable", "tensorflow.matmul", "translate.self_decode", "tensorflow.initialize_all_variables", "tensorflow.log", "tensorflow.InteractiveSession", "tensorflow.train.GradientDescentOptimizer", "tensorflow.truncated_normal" ]
[((410, 426), 'translate.self_decode', 'tl.self_decode', ([], {}), '()\n', (424, 426), True, 'import translate as tl\n'), ((685, 708), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (706, 708), True, 'import tensorflow as tf\n'), ((775, 814), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 128]'], {}), '(tf.float32, [None, 128])\n', (789, 814), True, 'import tensorflow as tf\n'), ((816, 854), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 20]'], {}), '(tf.float32, [None, 20])\n', (830, 854), True, 'import tensorflow as tf\n'), ((1140, 1160), 'tensorflow.argmax', 'tf.argmax', (['y_conv', '(1)'], {}), '(y_conv, 1)\n', (1149, 1160), True, 'import tensorflow as tf\n'), ((1169, 1185), 'tensorflow.argmax', 'tf.argmax', (['y_', '(1)'], {}), '(y_, 1)\n', (1178, 1185), True, 'import tensorflow as tf\n'), ((1256, 1285), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (1283, 1285), True, 'import tensorflow as tf\n'), ((191, 229), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.1)'}), '(shape, stddev=0.1)\n', (210, 229), True, 'import tensorflow as tf\n'), ((241, 261), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (252, 261), True, 'import tensorflow as tf\n'), ((303, 332), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': 'shape'}), '(0.1, shape=shape)\n', (314, 332), True, 'import tensorflow as tf\n'), ((346, 366), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (357, 366), True, 'import tensorflow as tf\n'), ((1096, 1116), 'tensorflow.argmax', 'tf.argmax', (['y_conv', '(1)'], {}), '(y_conv, 1)\n', (1105, 1116), True, 'import tensorflow as tf\n'), ((1118, 1134), 'tensorflow.argmax', 'tf.argmax', (['y_', '(1)'], {}), '(y_, 1)\n', (1127, 1134), True, 'import tensorflow as tf\n'), ((1212, 1248), 'tensorflow.cast', 'tf.cast', (['correct_prediction', '"""float"""'], {}), "(correct_prediction, 'float')\n", (1219, 1248), True, 'import tensorflow as tf\n'), ((1292, 1304), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1302, 1304), True, 'import tensorflow as tf\n'), ((1345, 1361), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1359, 1361), True, 'import tensorflow as tf\n'), ((877, 896), 'tensorflow.matmul', 'tf.matmul', (['x', 'w_fc2'], {}), '(x, w_fc2)\n', (886, 896), True, 'import tensorflow as tf\n'), ((1001, 1040), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['(0.01)'], {}), '(0.01)\n', (1034, 1040), True, 'import tensorflow as tf\n'), ((972, 986), 'tensorflow.log', 'tf.log', (['y_conv'], {}), '(y_conv)\n', (978, 986), True, 'import tensorflow as tf\n'), ((2152, 2188), 'numpy.zeros', 'np.zeros', (['[13, 20]'], {'dtype': 'np.float32'}), '([13, 20], dtype=np.float32)\n', (2160, 2188), True, 'import numpy as np\n')]
import torch from torch import nn import os.path import torchvision.transforms as transforms from EnlightenGAN.data.base_dataset import BaseDataset, get_transform from EnlightenGAN.data.image_folder import make_dataset import random from PIL import Image import PIL from pdb import set_trace as st import numpy as np from skimage import color, feature from skimage.filters import gaussian def pad_tensor(input): height_org, width_org = input.shape[2], input.shape[3] divide = 16 if width_org % divide != 0 or height_org % divide != 0: width_res = width_org % divide height_res = height_org % divide if width_res != 0: width_div = divide - width_res pad_left = int(width_div / 2) pad_right = int(width_div - pad_left) else: pad_left = 0 pad_right = 0 if height_res != 0: height_div = divide - height_res pad_top = int(height_div / 2) pad_bottom = int(height_div - pad_top) else: pad_top = 0 pad_bottom = 0 padding = nn.ReflectionPad2d((pad_left, pad_right, pad_top, pad_bottom)) input = padding(input).data else: pad_left = 0 pad_right = 0 pad_top = 0 pad_bottom = 0 height, width = input.shape[2], input.shape[3] assert width % divide == 0, 'width cant divided by stride' assert height % divide == 0, 'height cant divided by stride' return input, pad_left, pad_right, pad_top, pad_bottom def pad_tensor_back(input, pad_left, pad_right, pad_top, pad_bottom): height, width = input.shape[2], input.shape[3] return input[:,:, pad_top: height - pad_bottom, pad_left: width - pad_right] class UnalignedDataset(BaseDataset): def _reinit_A_paths(self): self.A_paths = self.pos_names# + np.random.choice(self.neg_names_all, int(948/(10/1)), replace=False).tolist() random.shuffle(self.A_paths) self.B_paths = list(self.A_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) def initialize(self, opt): self.opt = opt self.root = opt.dataroot ############################## # self.dir_A = os.path.join(opt.dataroot)#, opt.phase + 'A') # self.dir_B = os.path.join(opt.dataroot)#, opt.phase + 'B') if not 'images' in self.opt.name: self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/0_100/", opt.phase) self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/100_255/", opt.phase) # self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/0_75/", opt.phase) # self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/100_105/", opt.phase) else: self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/0_100/", opt.phase) self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/100_255/", opt.phase) # self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/0_75/", opt.phase) # self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/100_105/", opt.phase) ############################## self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt) ##### load image2reward to resample dataset ############################ # image2reward = np.load("/home/chenwy/DynamicLightEnlighten/image2reward.npy").item() # self.pos = []; self.pos_names = []; self.neg_names_all = [] # for k, v in image2reward.items(): # if v > 0: # self.pos.append(v) # self.pos_names.append(k) # elif v < 0: # self.neg_names_all.append(k) # self.pos_names = [k for v,k in sorted(zip(self.pos, self.pos_names), reverse=True)] # self._reinit_A_paths() ################################# self.low_range = range(55, 70) self.high_range = range(110, 125) self.N_TRY = 20 def __getitem__(self, index_A): A_path = self.A_paths[index_A % self.A_size] index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B % self.B_size] A_image = Image.open(A_path).convert('RGB') B_image = Image.open(B_path).convert('RGB') # A_size = A_img.size # B_size = B_img.size # A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) # B_size = B_size = (B_size[0]//16*16, B_size[1]//16*16) # A_img = A_img.resize(A_size, Image.BICUBIC) # B_img = B_img.resize(B_size, Image.BICUBIC) # A_gray = A_img.convert('LA') # A_gray = 255.0-A_gray w, h = A_image.size # without luminance selection ##################### # x1 = random.randint(0, w - self.opt.fineSize) # y1 = random.randint(0, h - self.opt.fineSize) # A_img = A_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) # B_img = B_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) # A_npy = np.array(A_img) # B_npy = np.array(B_img) # r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] # value_A = (0.299*r+0.587*g+0.114*b) / 255. # value_A = np.sort(value_A.flatten()) # length = value_A.shape[0] # value_A = value_A[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() # if not 'images' in self.opt.name: # # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", "train", os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", self.opt.phase, os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) # mask = np.array(mask.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize))).astype('int32') # cropped mask for light_enhance_AB/seg # mask = self._mask_transform(mask) # else: # mask = torch.zeros(1) ################################################### # patch luminance & mask class diversity selection ########################### n_try = 0 while n_try < self.N_TRY: x1 = random.randint(0, w - self.opt.fineSize) y1 = random.randint(0, h - self.opt.fineSize) A_img = A_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) B_img = B_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) A_npy = np.array(A_img) B_npy = np.array(B_img) r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] value_A = (0.299*r+0.587*g+0.114*b) / 255. value_A = np.sort(value_A.flatten()) length = value_A.shape[0] value_A = value_A[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() if int(np.round(value_A*255)) not in self.low_range: n_try += 1; continue r,g,b = B_npy[:, :, 0], B_npy[:, :, 1], B_npy[:, :, 2] value_B = (0.299*r+0.587*g+0.114*b) / 255. value_B = np.sort(value_B.flatten()) length = value_B.shape[0] value_B = value_B[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() if int(np.round(value_B*255)) not in self.high_range: n_try += 1; continue if not 'images' in self.opt.name: # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", "train", os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", self.opt.phase, os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) mask = np.array(mask.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize))).astype('int32') # cropped mask for light_enhance_AB/seg unique, counts = np.unique(mask, return_counts=True) if len(unique) < 2 or (counts / counts.sum()).max() > 0.7: n_try += 1; continue mask = self._mask_transform(mask) else: mask = torch.zeros(1) break if n_try == self.N_TRY: # if int(np.round(value_A)) not in self.low_range: # self.A_paths.pop(index_A % self.A_size) # self.A_size -= 1 # if int(np.round(value_B)) not in self.high_range: # self.B_paths.pop(index_B % self.B_size) # self.B_size -= 1 index_A = random.randint(0, self.__len__()) return self.__getitem__(index_A) ########################################################################## gray_mask = torch.ones(1, self.opt.fineSize, self.opt.fineSize) * value_A A_img_border = A_image.crop((x1-self.opt.fineSize//2, y1-self.opt.fineSize//2, x1+2*self.opt.fineSize, y1+2*self.opt.fineSize)) A_Lab = torch.Tensor(color.rgb2lab(A_npy) / 100).permute([2, 0, 1]) A_npy = gaussian(A_npy, sigma=2, multichannel=True) r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] A_npy = 0.299*r+0.587*g+0.114*b edges_A = torch.unsqueeze(torch.from_numpy(feature.canny(A_npy, sigma=2).astype("float32")), 0) A_img = self.transform(A_img) A_img_border = self.transform(A_img_border) B_img = self.transform(B_img) if self.opt.resize_or_crop == 'no': r,g,b = A_img[0]+1, A_img[1]+1, A_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) input_img = A_img # A_gray = (1./A_gray)/255. r,g,b = A_img_border[0]+1, A_img_border[1]+1, A_img_border[2]+1 A_gray_border = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray_border = torch.unsqueeze(A_gray_border, 0) else: w = A_img.size(2) h = A_img.size(1) # A_gray = (1./A_gray)/255. if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(2) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(2, idx) B_img = B_img.index_select(2, idx) if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(1) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(1, idx) B_img = B_img.index_select(1, idx) if self.opt.vary == 1 and (not self.opt.no_flip) and random.random() < 0.5: times = random.randint(self.opt.low_times,self.opt.high_times)/100. input_img = (A_img+1)/2./times input_img = input_img*2-1 else: input_img = A_img if self.opt.lighten: B_img = (B_img + 1)/2. B_img = (B_img - torch.min(B_img))/(torch.max(B_img) - torch.min(B_img)) B_img = B_img*2. -1 r,g,b = input_img[0]+1, input_img[1]+1, input_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) return {'A': A_img, 'B': B_img, 'A_gray': A_gray, 'input_img': input_img, 'A_paths': A_path, 'B_paths': B_path, 'mask': mask, 'A_border': A_img_border, 'A_gray_border': A_gray_border, 'A_Lab': A_Lab, 'gray_mask': gray_mask, 'edges_A': edges_A } def __len__(self): return max(self.A_size, self.B_size) def name(self): return 'UnalignedDataset' def _mask_transform(self, mask): target = np.array(mask).astype('int32') target[target == 255] = -1 return torch.from_numpy(target).long()
[ "random.shuffle", "EnlightenGAN.data.image_folder.make_dataset", "numpy.round", "numpy.unique", "skimage.color.rgb2lab", "torch.ones", "random.randint", "torch.nn.ReflectionPad2d", "torch.zeros", "random.random", "torch.max", "torch.unsqueeze", "skimage.feature.canny", "torch.min", "EnlightenGAN.data.base_dataset.get_transform", "torch.from_numpy", "torch.LongTensor", "PIL.Image.open", "numpy.array", "skimage.filters.gaussian" ]
[((1959, 1987), 'random.shuffle', 'random.shuffle', (['self.A_paths'], {}), '(self.A_paths)\n', (1973, 1987), False, 'import random\n'), ((3292, 3316), 'EnlightenGAN.data.image_folder.make_dataset', 'make_dataset', (['self.dir_A'], {}), '(self.dir_A)\n', (3304, 3316), False, 'from EnlightenGAN.data.image_folder import make_dataset\n'), ((3340, 3364), 'EnlightenGAN.data.image_folder.make_dataset', 'make_dataset', (['self.dir_B'], {}), '(self.dir_B)\n', (3352, 3364), False, 'from EnlightenGAN.data.image_folder import make_dataset\n'), ((3568, 3586), 'EnlightenGAN.data.base_dataset.get_transform', 'get_transform', (['opt'], {}), '(opt)\n', (3581, 3586), False, 'from EnlightenGAN.data.base_dataset import BaseDataset, get_transform\n'), ((4438, 4472), 'random.randint', 'random.randint', (['(0)', '(self.B_size - 1)'], {}), '(0, self.B_size - 1)\n', (4452, 4472), False, 'import random\n'), ((9362, 9405), 'skimage.filters.gaussian', 'gaussian', (['A_npy'], {'sigma': '(2)', 'multichannel': '(True)'}), '(A_npy, sigma=2, multichannel=True)\n', (9370, 9405), False, 'from skimage.filters import gaussian\n'), ((1120, 1182), 'torch.nn.ReflectionPad2d', 'nn.ReflectionPad2d', (['(pad_left, pad_right, pad_top, pad_bottom)'], {}), '((pad_left, pad_right, pad_top, pad_bottom))\n', (1138, 1182), False, 'from torch import nn\n'), ((6562, 6602), 'random.randint', 'random.randint', (['(0)', '(w - self.opt.fineSize)'], {}), '(0, w - self.opt.fineSize)\n', (6576, 6602), False, 'import random\n'), ((6620, 6660), 'random.randint', 'random.randint', (['(0)', '(h - self.opt.fineSize)'], {}), '(0, h - self.opt.fineSize)\n', (6634, 6660), False, 'import random\n'), ((6855, 6870), 'numpy.array', 'np.array', (['A_img'], {}), '(A_img)\n', (6863, 6870), True, 'import numpy as np\n'), ((6891, 6906), 'numpy.array', 'np.array', (['B_img'], {}), '(B_img)\n', (6899, 6906), True, 'import numpy as np\n'), ((9072, 9123), 'torch.ones', 'torch.ones', (['(1)', 'self.opt.fineSize', 'self.opt.fineSize'], {}), '(1, self.opt.fineSize, self.opt.fineSize)\n', (9082, 9123), False, 'import torch\n'), ((9918, 9944), 'torch.unsqueeze', 'torch.unsqueeze', (['A_gray', '(0)'], {}), '(A_gray, 0)\n', (9933, 9944), False, 'import torch\n'), ((10182, 10215), 'torch.unsqueeze', 'torch.unsqueeze', (['A_gray_border', '(0)'], {}), '(A_gray_border, 0)\n', (10197, 10215), False, 'import torch\n'), ((11554, 11580), 'torch.unsqueeze', 'torch.unsqueeze', (['A_gray', '(0)'], {}), '(A_gray, 0)\n', (11569, 11580), False, 'import torch\n'), ((4545, 4563), 'PIL.Image.open', 'Image.open', (['A_path'], {}), '(A_path)\n', (4555, 4563), False, 'from PIL import Image\n'), ((4597, 4615), 'PIL.Image.open', 'Image.open', (['B_path'], {}), '(B_path)\n', (4607, 4615), False, 'from PIL import Image\n'), ((8244, 8279), 'numpy.unique', 'np.unique', (['mask'], {'return_counts': '(True)'}), '(mask, return_counts=True)\n', (8253, 8279), True, 'import numpy as np\n'), ((8467, 8481), 'torch.zeros', 'torch.zeros', (['(1)'], {}), '(1)\n', (8478, 8481), False, 'import torch\n'), ((10498, 10519), 'torch.LongTensor', 'torch.LongTensor', (['idx'], {}), '(idx)\n', (10514, 10519), False, 'import torch\n'), ((10777, 10798), 'torch.LongTensor', 'torch.LongTensor', (['idx'], {}), '(idx)\n', (10793, 10798), False, 'import torch\n'), ((12077, 12091), 'numpy.array', 'np.array', (['mask'], {}), '(mask)\n', (12085, 12091), True, 'import numpy as np\n'), ((12158, 12182), 'torch.from_numpy', 'torch.from_numpy', (['target'], {}), '(target)\n', (12174, 12182), False, 'import torch\n'), ((7232, 7255), 'numpy.round', 'np.round', (['(value_A * 255)'], {}), '(value_A * 255)\n', (7240, 7255), True, 'import numpy as np\n'), ((7624, 7647), 'numpy.round', 'np.round', (['(value_B * 255)'], {}), '(value_B * 255)\n', (7632, 7647), True, 'import numpy as np\n'), ((10385, 10400), 'random.random', 'random.random', ([], {}), '()\n', (10398, 10400), False, 'import random\n'), ((10664, 10679), 'random.random', 'random.random', ([], {}), '()\n', (10677, 10679), False, 'import random\n'), ((10966, 10981), 'random.random', 'random.random', ([], {}), '()\n', (10979, 10981), False, 'import random\n'), ((11013, 11068), 'random.randint', 'random.randint', (['self.opt.low_times', 'self.opt.high_times'], {}), '(self.opt.low_times, self.opt.high_times)\n', (11027, 11068), False, 'import random\n'), ((9299, 9319), 'skimage.color.rgb2lab', 'color.rgb2lab', (['A_npy'], {}), '(A_npy)\n', (9312, 9319), False, 'from skimage import color, feature\n'), ((9560, 9589), 'skimage.feature.canny', 'feature.canny', (['A_npy'], {'sigma': '(2)'}), '(A_npy, sigma=2)\n', (9573, 9589), False, 'from skimage import color, feature\n'), ((11319, 11335), 'torch.min', 'torch.min', (['B_img'], {}), '(B_img)\n', (11328, 11335), False, 'import torch\n'), ((11338, 11354), 'torch.max', 'torch.max', (['B_img'], {}), '(B_img)\n', (11347, 11354), False, 'import torch\n'), ((11357, 11373), 'torch.min', 'torch.min', (['B_img'], {}), '(B_img)\n', (11366, 11373), False, 'import torch\n'), ((7151, 7173), 'numpy.round', 'np.round', (['(length * 0.1)'], {}), '(length * 0.1)\n', (7159, 7173), True, 'import numpy as np\n'), ((7181, 7203), 'numpy.round', 'np.round', (['(length * 0.9)'], {}), '(length * 0.9)\n', (7189, 7203), True, 'import numpy as np\n'), ((7543, 7565), 'numpy.round', 'np.round', (['(length * 0.1)'], {}), '(length * 0.1)\n', (7551, 7565), True, 'import numpy as np\n'), ((7573, 7595), 'numpy.round', 'np.round', (['(length * 0.9)'], {}), '(length * 0.9)\n', (7581, 7595), True, 'import numpy as np\n')]
from datetime import datetime, date import math import numpy as np import time import sys import requests import re from ortools.linear_solver import pywraplp # if len(sys.argv) == 1: # symbols = ['UPRO', 'TMF'] # else: # symbols = sys.argv[1].split(',') # for i in range(len(symbols)): # symbols[i] = symbols[i].strip().upper() symbols = ['TMF', 'UPRO'] num_trading_days_per_year = 252 window_size = 20 date_format = "%Y-%m-%d" end_timestamp = int(time.time()) start_timestamp = int(end_timestamp - (1.4 * (window_size + 1) + 4) * 86400) def get_volatility_and_performance(symbol,cookie,crumb): download_url = "https://query1.finance.yahoo.com/v7/finance/download/{}?period1={}&period2={}&interval=1d&events=history".format(symbol, start_timestamp, end_timestamp) lines = requests.get( download_url, headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2866.71 Safari/537.36' }).text.strip().split('\n') assert lines[0].split(',')[0] == 'Date' assert lines[0].split(',')[4] == 'Close' prices = [] for line in lines[1:]: prices.append(float(line.split(',')[4])) prices.reverse() volatilities_in_window = [] for i in range(window_size): volatilities_in_window.append(math.log(prices[i] / prices[i+1])) most_recent_date = datetime.strptime(lines[-1].split(',')[0], date_format).date() assert (date.today() - most_recent_date).days <= 4, "today is {}, most recent trading day is {}".format(date.today(), most_recent_date) return np.std(volatilities_in_window, ddof = 1) * np.sqrt(num_trading_days_per_year), prices[0] / prices[window_size] - 1.0, prices[0] def get_cookie(): url = 'https://finance.yahoo.com/quote/VOO/history?p=VOO' r = requests.get(url) txt = r.text cookie = r.cookies['B'] pattern = re.compile('.*"CrumbStore":\{"crumb":"(?P<crumb>[^"]+)"\}') for line in txt.splitlines(): m = pattern.match(line) if m is not None: crumb = m.groupdict()['crumb'] return cookie,crumb def get_data(): #cookie,crumb=get_cookie() cookie='9mev4idf68vgk&b=3&s=g9' crumb='Xpr8Z7BQn4W' volatilities = [] performances = [] current_prices = [] sum_inverse_volatility = 0.0 for symbol in symbols: volatility, performance, current_price = get_volatility_and_performance(symbol,cookie,crumb) sum_inverse_volatility += 1 / volatility volatilities.append(volatility) performances.append(performance) current_prices.append(current_price) alpha=1/(np.array(volatilities) * sum_inverse_volatility) print ("Portfolio: {}, as of {} (window size is {} days)".format(str(symbols), date.today().strftime('%Y-%m-%d'), window_size)) for i in range(len(symbols)): print ('{} allocation ratio: {:.2f}% (anualized volatility: {:.2f}%, performance: {:.2f}%)'.format(symbols[i], 100*(alpha[i]), float(volatilities[i] * 100), float(performances[i] * 100))) return alpha,current_prices def create_model(epsilon=0.01): alpha[0]/alpha[1] data={} data['constraint_coeffs']=[ [current_prices[0],-(epsilon+alpha[0]/alpha[1])*current_prices[1],current_prices[0],-(epsilon+alpha[0]/alpha[1])*current_prices[1]], [current_prices[0],-(alpha[0]/alpha[1]-epsilon)*current_prices[1],current_prices[0],-(alpha[0]/alpha[1]-epsilon)*current_prices[1]], [current_prices[0],current_prices[1],current_prices[0],current_prices[1]], [current_prices[0],current_prices[1],0,0], [0,0,current_prices[0],current_prices[1]], [1,0,0,0], [0,1,0,0], [1,1,1,1] ] data['lb']=[-np.inf, 0,0,0,0,N_Tax_T,N_Tax_U,1] data['ub']=[0, np.inf,S,S_Tax,S_IRA,np.inf,np.inf,np.inf] data['obj_coeffs']=[current_prices[0],current_prices[1],current_prices[0],current_prices[1]] data['xub']=[np.floor(S_Tax/current_prices[0]),np.floor(S_Tax/current_prices[1]),np.floor(S_IRA/current_prices[0]),np.floor(S_IRA/current_prices[1])] data['num_vars']=len(data['obj_coeffs']) data['num_constraints']=len(data['constraint_coeffs']) return data def findsol(epsilon=0.01): data = create_model(epsilon) solver = pywraplp.Solver.CreateSolver('CBC') x={} for j in range(data['num_vars']): x[j] = solver.IntVar(0, data['xub'][j], 'x[%i]' % j) for i in range(data['num_constraints']): constraint = solver.RowConstraint(data['lb'][i], data['ub'][i], '') for j in range(data['num_vars']): constraint.SetCoefficient(x[j], data['constraint_coeffs'][i][j]) objective = solver.Objective() for j in range(data['num_vars']): objective.SetCoefficient(x[j], data['obj_coeffs'][j]) objective.SetMaximization() status = solver.Solve() if status==pywraplp.Solver.OPTIMAL: sol=[x[i].solution_value() for i in range(4)] else: sol=[0,0,0,0] return sol,status alpha,current_prices=get_data() N_Tax_T=float(input("Current shares of "+symbols[0]+" in taxable: ")) N_Tax_U=float(input("Current shares of "+symbols[1]+" in taxable: ")) Tax_C=float(input("Current cash in taxable: ")) N_IRA_T=float(input("Current shares of "+symbols[0]+" in IRA: ")) N_IRA_U=float(input("Current shares of "+symbols[1]+" in IRA: ")) IRA_C=float(input("Current cash in IRA: ")) Tax_T=N_Tax_T*current_prices[0] Tax_U=N_Tax_U*current_prices[1] IRA_T=N_IRA_T*current_prices[0] IRA_U=N_IRA_U*current_prices[1] S_Tax=Tax_T+Tax_U+Tax_C S_IRA=IRA_T+IRA_U+IRA_C S=S_Tax+S_IRA epsilon=0.01 sol,status=findsol(epsilon) while status != pywraplp.Solver.OPTIMAL: epsilon=epsilon+0.01 sol,status=findsol(epsilon) N_Tax_T2,N_Tax_U2,N_IRA_T2,N_IRA_U2=sol print('-'*10+'result'+'-'*10) Tax_C2=S_Tax-N_Tax_T2*current_prices[0]-N_Tax_U2*current_prices[1] IRA_C2=S_IRA-N_IRA_T2*current_prices[0]-N_IRA_U2*current_prices[1] S_T2=(N_Tax_T2+N_IRA_T2)*current_prices[0] S_U2=(N_Tax_U2+N_IRA_U2)*current_prices[1] print('Cash in Taxable %f' % Tax_C2) print('Cash in IRA %f' % IRA_C2) print('Achievable balance of TMF/UPRO: ({:.2f}%/{:.2f}%), target ({:.2f}%/{:.2f}%)'.format(100*S_T2/(S_T2+S_U2),100*S_U2/(S_T2+S_U2),100*alpha[0],100*alpha[1])) print('-'*10+'action'+'-'*10) print(('buy'*(N_Tax_T2-N_Tax_T>=0)+'sell'*(N_Tax_T2-N_Tax_T<0))+' TMF in Taxable: '+str(int(abs(N_Tax_T2-N_Tax_T)))+' at price '+str(current_prices[0])) print(('buy'*(N_Tax_U2-N_Tax_U>=0)+'sell'*(N_Tax_U2-N_Tax_U<0))+' UPRO in Taxable: '+str(int(abs(N_Tax_U2-N_Tax_U)))+' at price '+str(current_prices[1])) print(('buy'*(N_IRA_T2-N_IRA_T>=0)+'sell'*(N_IRA_T2-N_IRA_T<0))+' TMF in IRA: '+str(int(abs(N_IRA_T2-N_IRA_T)))+' at price '+str(current_prices[0])) print(('buy'*(N_IRA_U2-N_IRA_U>=0)+'sell'*(N_IRA_U2-N_IRA_U<0))+' UPRO in IRA: '+str(int(abs(N_IRA_U2-N_IRA_U)))+' at price '+str(current_prices[1]))
[ "ortools.linear_solver.pywraplp.Solver.CreateSolver", "numpy.std", "numpy.floor", "datetime.date.today", "time.time", "numpy.array", "requests.get", "math.log", "numpy.sqrt", "re.compile" ]
[((491, 502), 'time.time', 'time.time', ([], {}), '()\n', (500, 502), False, 'import time\n'), ((1902, 1919), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1914, 1919), False, 'import requests\n'), ((1982, 2043), 're.compile', 're.compile', (['""".*"CrumbStore":\\\\{"crumb":"(?P<crumb>[^"]+)"\\\\}"""'], {}), '(\'.*"CrumbStore":\\\\{"crumb":"(?P<crumb>[^"]+)"\\\\}\')\n', (1992, 2043), False, 'import re\n'), ((4408, 4443), 'ortools.linear_solver.pywraplp.Solver.CreateSolver', 'pywraplp.Solver.CreateSolver', (['"""CBC"""'], {}), "('CBC')\n", (4436, 4443), False, 'from ortools.linear_solver import pywraplp\n'), ((1633, 1645), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1643, 1645), False, 'from datetime import datetime, date\n'), ((4070, 4105), 'numpy.floor', 'np.floor', (['(S_Tax / current_prices[0])'], {}), '(S_Tax / current_prices[0])\n', (4078, 4105), True, 'import numpy as np\n'), ((4104, 4139), 'numpy.floor', 'np.floor', (['(S_Tax / current_prices[1])'], {}), '(S_Tax / current_prices[1])\n', (4112, 4139), True, 'import numpy as np\n'), ((4138, 4173), 'numpy.floor', 'np.floor', (['(S_IRA / current_prices[0])'], {}), '(S_IRA / current_prices[0])\n', (4146, 4173), True, 'import numpy as np\n'), ((4172, 4207), 'numpy.floor', 'np.floor', (['(S_IRA / current_prices[1])'], {}), '(S_IRA / current_prices[1])\n', (4180, 4207), True, 'import numpy as np\n'), ((1400, 1435), 'math.log', 'math.log', (['(prices[i] / prices[i + 1])'], {}), '(prices[i] / prices[i + 1])\n', (1408, 1435), False, 'import math\n'), ((1679, 1717), 'numpy.std', 'np.std', (['volatilities_in_window'], {'ddof': '(1)'}), '(volatilities_in_window, ddof=1)\n', (1685, 1717), True, 'import numpy as np\n'), ((1722, 1756), 'numpy.sqrt', 'np.sqrt', (['num_trading_days_per_year'], {}), '(num_trading_days_per_year)\n', (1729, 1756), True, 'import numpy as np\n'), ((2749, 2771), 'numpy.array', 'np.array', (['volatilities'], {}), '(volatilities)\n', (2757, 2771), True, 'import numpy as np\n'), ((1537, 1549), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1547, 1549), False, 'from datetime import datetime, date\n'), ((2882, 2894), 'datetime.date.today', 'date.today', ([], {}), '()\n', (2892, 2894), False, 'from datetime import datetime, date\n'), ((829, 1011), 'requests.get', 'requests.get', (['download_url'], {'headers': "{'User-Agent':\n 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2866.71 Safari/537.36'\n }"}), "(download_url, headers={'User-Agent':\n 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2866.71 Safari/537.36'\n })\n", (841, 1011), False, 'import requests\n')]
#!/usr/bin/env python # ============================================================================= # MODULE DOCSTRING # ============================================================================= """ Test objects and function in the module reweighting. """ # ============================================================================= # GLOBAL IMPORTS # ============================================================================= import os import tempfile import numpy as np from numpy.random import RandomState import pint from ..reweighting import DatasetReweighting # ============================================================================= # GLOBAL VARIABLES # ============================================================================= # Makes random test cases deterministic. _random_state = RandomState(0) _ureg = pint.UnitRegistry() # ============================================================================= # TEST UTILITIES # ============================================================================= class DummyStdReweighting(DatasetReweighting): """Dummy implementation of standard reweighting for testing.""" U0 = 0.0 def compute_potentials(self, batch_positions): kJ_mol = _ureg.kJ / _ureg.mol return (self.U0 + _random_state.rand(len(batch_positions))) * kJ_mol def get_traj_info(self): kJ_mol = _ureg.kJ / _ureg.mol cvs = np.array(range(len(self.dataset))) reference_potentials = _random_state.rand(len(cvs)) * kJ_mol metad_rbias = np.zeros(len(cvs)) * kJ_mol return cvs, reference_potentials, metad_rbias # ============================================================================= # TESTS # ============================================================================= def test_standard_reweighting_potentials_cache(): """Test that DatasetReweighting caches and reuses the potentials correctly.""" import MDAnalysis.coordinates from ..data import TrajectoryDataset, TrajectorySubset def _get_potentials(dataset, file_path, u0, indices, batch_size, write_interval): subset = TrajectorySubset(dataset, indices=indices) DummyStdReweighting.U0 = u0 reweighting = DummyStdReweighting( subset, n_bins=len(subset), temperature=300*_ureg.kelvin, potentials_file_path=file_path) return reweighting.compute_dataset_potentials( batch_size=batch_size, write_interval=write_interval) # Load the test PDB file. pdb_file_path = os.path.join(os.path.dirname(__file__), 'data', 'chloro-fluoromethane.pdb') with MDAnalysis.coordinates.PDB.PDBReader(pdb_file_path) as trajectory: dataset = TrajectoryDataset(trajectory, return_batch_index=True) # Cache the potentials in a temporary file. with tempfile.TemporaryDirectory() as tmp_dir: file_path = os.path.join(tmp_dir, 'potentials.npz') # Cache a first value for the potentials of some of the frames. u1 = 10 potentials1 = _get_potentials(dataset, file_path, u1, indices=[0, 2, 4], batch_size=1, write_interval=2) assert np.all((0 <= potentials1.magnitude - u1) & (potentials1.magnitude - u1 < 1)) # Check that what we have just computed does not get re-computed. u2 = 20 potentials2 = _get_potentials(dataset, file_path, u2, indices=[1, 3, 4], batch_size=5, write_interval=2) assert potentials1[-1] == potentials2[-1] assert np.all((0 <= potentials2.magnitude[:-1] - u2) & (potentials2.magnitude[:-1] - u2 < 1)) # The cache should be up-to-date. times, potentials = DummyStdReweighting.load_cached_potentials_from_file(file_path) assert not np.isnan(potentials).any()
[ "tempfile.TemporaryDirectory", "pint.UnitRegistry", "os.path.dirname", "numpy.random.RandomState", "numpy.isnan", "os.path.join", "numpy.all" ]
[((825, 839), 'numpy.random.RandomState', 'RandomState', (['(0)'], {}), '(0)\n', (836, 839), False, 'from numpy.random import RandomState\n'), ((849, 868), 'pint.UnitRegistry', 'pint.UnitRegistry', ([], {}), '()\n', (866, 868), False, 'import pint\n'), ((2557, 2582), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2572, 2582), False, 'import os\n'), ((2835, 2864), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2862, 2864), False, 'import tempfile\n'), ((2901, 2940), 'os.path.join', 'os.path.join', (['tmp_dir', '"""potentials.npz"""'], {}), "(tmp_dir, 'potentials.npz')\n", (2913, 2940), False, 'import os\n'), ((3216, 3292), 'numpy.all', 'np.all', (['((0 <= potentials1.magnitude - u1) & (potentials1.magnitude - u1 < 1))'], {}), '((0 <= potentials1.magnitude - u1) & (potentials1.magnitude - u1 < 1))\n', (3222, 3292), True, 'import numpy as np\n'), ((3625, 3715), 'numpy.all', 'np.all', (['((0 <= potentials2.magnitude[:-1] - u2) & (potentials2.magnitude[:-1] - u2 < 1)\n )'], {}), '((0 <= potentials2.magnitude[:-1] - u2) & (potentials2.magnitude[:-1] -\n u2 < 1))\n', (3631, 3715), True, 'import numpy as np\n'), ((3879, 3899), 'numpy.isnan', 'np.isnan', (['potentials'], {}), '(potentials)\n', (3887, 3899), True, 'import numpy as np\n')]
import re import gzip import numpy as np from zipfile import ZipFile def load_corpus(corpus_file, load_tags=False): if corpus_file.endswith('.gz'): corpus = [] with gzip.open(corpus_file, 'r') as f: for line in f: corpus.append(line.decode("utf-8").split()) elif corpus_file.endswith('.conllu'): corpus = read_conllUD_file(corpus_file, load_tags) return corpus def read_conllUD_file(location, load_tags): sentences = [] tokens = [] with open(location) as f: for l in f: if not(l.strip().startswith('#')): s = l.split('\t') if len(s) == 10 and not('-' in s[0]): if load_tags: tokens.append((s[1], s[3])) else: tokens.append(s[1]) elif len(l.strip())==0 and len(tokens) > 0: sentences.append(tokens) tokens = [] return enforce_unicode(sentences) def enforce_unicode(sentences): """ In Python3 we should check for str class instead of unicode according to https://stackoverflow.com/questions/19877306/nameerror-global-name-unicode-is-not-defined-in-python-3 """ if len(sentences) == 0 or type(sentences[0][0][0]) == str: # if the first token is already unicode, there seems nothing to be done return sentences return [[(unicode(t[0], "utf8"), unicode(t[1], "utf8")) for t in s] for s in sentences] def load_embeddings(filename, max_words=-1): if filename.endswith('.gz'): lines = gzip.open(filename) elif filename.endswith('.zip'): myzip = ZipFile(filename) # we assume only one embedding file to be included in a zip file lines = myzip.open(myzip.namelist()[0]) else: lines = open(filename) data, words = [], [] for counter, line in enumerate(lines): if len(words) == max_words: break if type(line) == bytes: try: line = line.decode("utf-8") except UnicodeDecodeError: print('Error at line {}: {}'.format(counter, line)) continue tokens = line.rstrip().split(' ') if len(words) == 0 and len(tokens) == 2 and re.match('[1-9][0-9]*', tokens[0]): # the first line might contain the number of embeddings and dimensionality of the vectors continue try: values = [float(i) for i in tokens[1:]] if sum([v**2 for v in values]) > 0: # only embeddings with non-zero norm are kept data.append(values) words.append(tokens[0]) except: print('Error while parsing input line #{}: {}'.format(counter, line)) i2w = dict(enumerate(words)) return np.array(data), {v:k for k,v in i2w.items()}, i2w
[ "numpy.array", "zipfile.ZipFile", "gzip.open", "re.match" ]
[((1602, 1621), 'gzip.open', 'gzip.open', (['filename'], {}), '(filename)\n', (1611, 1621), False, 'import gzip\n'), ((2824, 2838), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2832, 2838), True, 'import numpy as np\n'), ((187, 214), 'gzip.open', 'gzip.open', (['corpus_file', '"""r"""'], {}), "(corpus_file, 'r')\n", (196, 214), False, 'import gzip\n'), ((1674, 1691), 'zipfile.ZipFile', 'ZipFile', (['filename'], {}), '(filename)\n', (1681, 1691), False, 'from zipfile import ZipFile\n'), ((2287, 2321), 're.match', 're.match', (['"""[1-9][0-9]*"""', 'tokens[0]'], {}), "('[1-9][0-9]*', tokens[0])\n", (2295, 2321), False, 'import re\n')]
""" Test that data encoded with earlier versions can still be decoded correctly. """ from __future__ import absolute_import, division, print_function import pathlib import unittest import numpy as np import h5py TEST_DATA_DIR = pathlib.Path(__file__).parent / "data" OUT_FILE_TEMPLATE = "regression_%s.h5" VERSIONS = [ "0.1.3", ] class TestAll(unittest.TestCase): def test_regression(self): for version in VERSIONS: file_name = TEST_DATA_DIR / (OUT_FILE_TEMPLATE % version) f = h5py.File(file_name, "r") g_orig = f["origional"] g_comp = f["compressed"] for dset_name in g_comp.keys(): self.assertTrue(np.all(g_comp[dset_name][:] == g_orig[dset_name][:])) if __name__ == "__main__": unittest.main()
[ "unittest.main", "pathlib.Path", "h5py.File", "numpy.all" ]
[((791, 806), 'unittest.main', 'unittest.main', ([], {}), '()\n', (804, 806), False, 'import unittest\n'), ((234, 256), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (246, 256), False, 'import pathlib\n'), ((528, 553), 'h5py.File', 'h5py.File', (['file_name', '"""r"""'], {}), "(file_name, 'r')\n", (537, 553), False, 'import h5py\n'), ((704, 756), 'numpy.all', 'np.all', (['(g_comp[dset_name][:] == g_orig[dset_name][:])'], {}), '(g_comp[dset_name][:] == g_orig[dset_name][:])\n', (710, 756), True, 'import numpy as np\n')]
import pytest from io import StringIO import numpy as np import pandas as pd import sandy __author__ = "<NAME>" ##################### # Test initialization ##################### def test_from_file_1_column(): vals = '1\n5\n9' file = StringIO(vals) with pytest.raises(Exception): sandy.Pert.from_file(file) def test_from_file_non_monotonic(): vals = '1 1\n6 5\n5 2\n9 3' file = StringIO(vals) with pytest.raises(Exception): sandy.Pert.from_file(file) @pytest.fixture(scope="module") def pert3(): vals = '1 1 5\n5 2 1\n9 3 1' file = StringIO(vals) return sandy.Pert.from_file(file) def test_from_file_3_columns(pert3): # should try and catch the warning pass def test_init_with_series(pert3): pert = sandy.Pert(pert3.right) assert pert.data.equals(pert3.data) def test_init_with_dataframe(pert3): with pytest.raises(Exception): sandy.Pert(pert3.right.to_frame()) def test_init_with_intervalindex(pert3): pert = sandy.Pert(pert3.data) assert pert.data.equals(pert3.data) ################################ # Test initialization attributes ################################ def test_Pert_type(pert3): assert isinstance(pert3, sandy.Pert) def test_Pert_data_index_type(pert3): assert isinstance(pert3.data.index, pd.IntervalIndex) def test_Pert_data_index_right_values(pert3): assert pert3.data.index.right.tolist() == [1, 5, 9] def test_Pert_data_index_left_values(pert3): assert pert3.data.index.left.tolist() == [0, 1, 5] def test_Pert_data_index_float(pert3): assert pert3.data.index.right.values.dtype == float def test_Pert_data_values(pert3): np.testing.assert_array_equal(pert3.data.values, [1,2,3]) def test_Pert_data_values_float(pert3): assert pert3.data.values.dtype == float ######################## # Test attributes ######################## ######################## # Test methods ######################## # def test_Spectrum_selfreshape(spec_const): # S = spec_const.reshape(spec_const.right.index) # assert np.allclose(S.data.values,spec_const.data.values) # @pytest.mark.parametrize("eg, flux", # [ # ([30], 500), # ([6e-12], 0.6), # ([5e-12], 0.5), # ([4e-12], 0.4), # ([1e-11], 1), # ([18.896380829766173], 499), # ([1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 20], 500), # ] # ) # def test_Spectrum_reshape(spec_const, eg, flux): # S = spec_const.reshape(eg) # assert S.right.index.tolist() == eg # assert S.flux == pytest.approx(flux) # @pytest.mark.parametrize("eg, err, errtype", # [ # ([2, 1], True, ValueError), # ([2, 2], False, None), # ([-1, 2], True, ValueError), # ] # ) # def test_Spectrum_reshape_error(spec_const, eg, err, errtype): # if err: # with pytest.raises(errtype): # spec_const.reshape(eg) # else: # spec_const.reshape(eg)
[ "sandy.Pert", "io.StringIO", "sandy.Pert.from_file", "numpy.testing.assert_array_equal", "pytest.fixture", "pytest.raises" ]
[((526, 556), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (540, 556), False, 'import pytest\n'), ((260, 274), 'io.StringIO', 'StringIO', (['vals'], {}), '(vals)\n', (268, 274), False, 'from io import StringIO\n'), ((435, 449), 'io.StringIO', 'StringIO', (['vals'], {}), '(vals)\n', (443, 449), False, 'from io import StringIO\n'), ((623, 637), 'io.StringIO', 'StringIO', (['vals'], {}), '(vals)\n', (631, 637), False, 'from io import StringIO\n'), ((650, 676), 'sandy.Pert.from_file', 'sandy.Pert.from_file', (['file'], {}), '(file)\n', (670, 676), False, 'import sandy\n'), ((816, 839), 'sandy.Pert', 'sandy.Pert', (['pert3.right'], {}), '(pert3.right)\n', (826, 839), False, 'import sandy\n'), ((1057, 1079), 'sandy.Pert', 'sandy.Pert', (['pert3.data'], {}), '(pert3.data)\n', (1067, 1079), False, 'import sandy\n'), ((1748, 1807), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['pert3.data.values', '[1, 2, 3]'], {}), '(pert3.data.values, [1, 2, 3])\n', (1777, 1807), True, 'import numpy as np\n'), ((285, 309), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (298, 309), False, 'import pytest\n'), ((320, 346), 'sandy.Pert.from_file', 'sandy.Pert.from_file', (['file'], {}), '(file)\n', (340, 346), False, 'import sandy\n'), ((460, 484), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (473, 484), False, 'import pytest\n'), ((495, 521), 'sandy.Pert.from_file', 'sandy.Pert.from_file', (['file'], {}), '(file)\n', (515, 521), False, 'import sandy\n'), ((931, 955), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (944, 955), False, 'import pytest\n')]
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import unittest import numpy import scipy.linalg from pyscf import lib from pyscf import gto from pyscf.x2c import sfx2c1e from pyscf.x2c import sfx2c1e_grad def _sqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v*numpy.sqrt(w), v.conj().T) def _invsqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v/numpy.sqrt(w), v.conj().T) def _sqrt1(a0, a1): '''Solving first order of x^2 = a''' w, v = scipy.linalg.eigh(a0) w = numpy.sqrt(w) a1 = reduce(numpy.dot, (v.conj().T, a1, v)) x1 = a1 / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def _invsqrt1(a0, a1): '''Solving first order of x^2 = a^{-1}''' w, v = scipy.linalg.eigh(a0) w = 1./numpy.sqrt(w) a1 = -reduce(numpy.dot, (v.conj().T, a1, v)) x1 = numpy.einsum('i,ij,j->ij', w**2, a1, w**2) / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def get_R(mol): s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s0sqrt = _sqrt0(s0) s0invsqrt = _invsqrt0(s0) x0 = get_x0(mol) c = lib.param.LIGHT_SPEED stild = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) R = _invsqrt0(reduce(numpy.dot, (s0invsqrt, stild, s0invsqrt))) R = reduce(numpy.dot, (s0invsqrt, R, s0sqrt)) return R def get_r1(mol, atm_id, pos): # See JCP 135 084114, Eq (34) c = lib.param.LIGHT_SPEED aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[atm_id] s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s1all = mol.intor('int1e_ipovlp', comp=3) t1all = mol.intor('int1e_ipkin', comp=3) s1 = numpy.zeros_like(s0) t1 = numpy.zeros_like(t0) s1[p0:p1,:] =-s1all[pos][p0:p1] s1[:,p0:p1] -= s1all[pos][p0:p1].T t1[p0:p1,:] =-t1all[pos][p0:p1] t1[:,p0:p1] -= t1all[pos][p0:p1].T x0 = get_x0(mol) x1 = get_x1(mol, atm_id)[pos] sa0 = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) sa1 = s1 + reduce(numpy.dot, (x0.T, t1*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x1.T, t0*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x0.T, t0*(.5/c**2), x1)) s0_sqrt = _sqrt0(s0) s0_invsqrt = _invsqrt0(s0) s1_sqrt = _sqrt1(s0, s1) s1_invsqrt = _invsqrt1(s0, s1) R0_part = reduce(numpy.dot, (s0_invsqrt, sa0, s0_invsqrt)) R1_part = (reduce(numpy.dot, (s0_invsqrt, sa1, s0_invsqrt)) + reduce(numpy.dot, (s1_invsqrt, sa0, s0_invsqrt)) + reduce(numpy.dot, (s0_invsqrt, sa0, s1_invsqrt))) R1 = reduce(numpy.dot, (s0_invsqrt, _invsqrt1(R0_part, R1_part), s0_sqrt)) R1 += reduce(numpy.dot, (s1_invsqrt, _invsqrt0(R0_part), s0_sqrt)) R1 += reduce(numpy.dot, (s0_invsqrt, _invsqrt0(R0_part), s1_sqrt)) return R1 def get_h0_s0(mol): s = mol.intor_symmetric('int1e_ovlp') t = mol.intor_symmetric('int1e_kin') v = mol.intor_symmetric('int1e_nuc') w = mol.intor_symmetric('int1e_pnucp') nao = s.shape[0] n2 = nao * 2 h = numpy.zeros((n2,n2), dtype=v.dtype) m = numpy.zeros((n2,n2), dtype=v.dtype) c = lib.param.LIGHT_SPEED h[:nao,:nao] = v h[:nao,nao:] = t h[nao:,:nao] = t h[nao:,nao:] = w * (.25/c**2) - t m[:nao,:nao] = s m[nao:,nao:] = t * (.5/c**2) return h, m def get_h1_s1(mol, ia): aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[0] nao = mol.nao_nr() s1 = mol.intor('int1e_ipovlp', comp=3) t1 = mol.intor('int1e_ipkin', comp=3) v1 = mol.intor('int1e_ipnuc', comp=3) w1 = mol.intor('int1e_ipspnucsp', comp=12).reshape(3,4,nao,nao)[:,3] with mol.with_rinv_origin(mol.atom_coord(ia)): rinv1 = -8*mol.intor('int1e_iprinv', comp=3) prinvp1 = -8*mol.intor('int1e_ipsprinvsp', comp=12).reshape(3,4,nao,nao)[:,3] n2 = nao * 2 h = numpy.zeros((3,n2,n2), dtype=v1.dtype) m = numpy.zeros((3,n2,n2), dtype=v1.dtype) rinv1[:,p0:p1,:] -= v1[:,p0:p1] rinv1 = rinv1 + rinv1.transpose(0,2,1).conj() prinvp1[:,p0:p1,:] -= w1[:,p0:p1] prinvp1 = prinvp1 + prinvp1.transpose(0,2,1).conj() s1ao = numpy.zeros_like(s1) t1ao = numpy.zeros_like(t1) s1ao[:,p0:p1,:] = -s1[:,p0:p1] s1ao[:,:,p0:p1]+= -s1[:,p0:p1].transpose(0,2,1) t1ao[:,p0:p1,:] = -t1[:,p0:p1] t1ao[:,:,p0:p1]+= -t1[:,p0:p1].transpose(0,2,1) c = lib.param.LIGHT_SPEED h[:,:nao,:nao] = rinv1 h[:,:nao,nao:] = t1ao h[:,nao:,:nao] = t1ao h[:,nao:,nao:] = prinvp1 * (.25/c**2) - t1ao m[:,:nao,:nao] = s1ao m[:,nao:,nao:] = t1ao * (.5/c**2) return h, m def get_x0(mol): c = lib.param.LIGHT_SPEED h0, s0 = get_h0_s0(mol) e, c = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl = c[:nao,nao:] cs = c[nao:,nao:] x0 = scipy.linalg.solve(cl.T, cs.T).T return x0 def get_x1(mol, ia): h0, s0 = get_h0_s0(mol) h1, s1 = get_h1_s1(mol, ia) e0, c0 = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl0 = c0[:nao,nao:] cs0 = c0[nao:,nao:] x0 = scipy.linalg.solve(cl0.T, cs0.T).T h1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), h1, c0[:,nao:]) s1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), s1, c0[:,nao:]) epi = e0[:,None] - e0[nao:] degen_mask = abs(epi) < 1e-7 epi[degen_mask] = 1e200 c1 = (h1 - s1 * e0[nao:]) / -epi c1[:,degen_mask] = -.5 * s1[:,degen_mask] c1 = numpy.einsum('pq,xqi->xpi', c0, c1) cl1 = c1[:,:nao] cs1 = c1[:,nao:] x1 = [scipy.linalg.solve(cl0.T, (cs1[i] - x0.dot(cl1[i])).T).T for i in range(3)] return numpy.asarray(x1) mol1 = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol2 = gto.M( verbose = 0, atom = [["O" , (0. , 0. ,-0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0. )], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) class KnownValues(unittest.TestCase): def test_x1(self): with lib.light_speed(10) as c: x_1 = get_x0(mol1) x_2 = get_x0(mol2) x1_ref = (x_1 - x_2) / 0.0002 * lib.param.BOHR x1t = get_x1(mol, 0) self.assertAlmostEqual(abs(x1t[2]-x1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) x1 = get_h1_etc(0)[4] self.assertAlmostEqual(abs(x1-x1t).max(), 0, 9) def test_R1(self): with lib.light_speed(10) as c: R_1 = get_R(mol1) R_2 = get_R(mol2) R1_ref = (R_1 - R_2) / 0.0002 * lib.param.BOHR R1t = get_r1(mol, 0, 2) self.assertAlmostEqual(abs(R1t-R1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) R1 = get_h1_etc(0)[6][2] self.assertAlmostEqual(abs(R1-R1t).max(), 0, 9) def test_hfw(self): with lib.light_speed(10) as c: x2c_1 = sfx2c1e.SpinFreeX2C(mol1) x2c_2 = sfx2c1e.SpinFreeX2C(mol2) x2cobj = sfx2c1e.SpinFreeX2C(mol) fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 0 x2c_2.xuncontract = 0 x2cobj.xuncontract =0 fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 1 x2c_2.xuncontract = 1 x2cobj.xuncontract =1 x2c_1.approx = 'ATOM1E' x2c_2.approx = 'ATOM1E' x2cobj.approx = 'ATOM1E' fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) if __name__ == "__main__": print("Full Tests for sfx2c1e gradients") unittest.main()
[ "unittest.main", "numpy.zeros_like", "pyscf.x2c.sfx2c1e.SpinFreeX2C", "numpy.asarray", "numpy.zeros", "numpy.einsum", "pyscf.lib.light_speed", "pyscf.gto.M", "pyscf.x2c.sfx2c1e_grad._gen_first_order_quantities", "functools.reduce", "numpy.sqrt" ]
[((6199, 6321), 'pyscf.gto.M', 'gto.M', ([], {'verbose': '(0)', 'atom': "[['O', (0.0, 0.0, 0.0001)], [1, (0.0, -0.757, 0.587)], [1, (0.0, 0.757, 0.587)]\n ]", 'basis': '"""3-21g"""'}), "(verbose=0, atom=[['O', (0.0, 0.0, 0.0001)], [1, (0.0, -0.757, 0.587)],\n [1, (0.0, 0.757, 0.587)]], basis='3-21g')\n", (6204, 6321), False, 'from pyscf import gto\n'), ((6385, 6509), 'pyscf.gto.M', 'gto.M', ([], {'verbose': '(0)', 'atom': "[['O', (0.0, 0.0, -0.0001)], [1, (0.0, -0.757, 0.587)], [1, (0.0, 0.757, \n 0.587)]]", 'basis': '"""3-21g"""'}), "(verbose=0, atom=[['O', (0.0, 0.0, -0.0001)], [1, (0.0, -0.757, 0.587)\n ], [1, (0.0, 0.757, 0.587)]], basis='3-21g')\n", (6390, 6509), False, 'from pyscf import gto\n'), ((6570, 6690), 'pyscf.gto.M', 'gto.M', ([], {'verbose': '(0)', 'atom': "[['O', (0.0, 0.0, 0.0)], [1, (0.0, -0.757, 0.587)], [1, (0.0, 0.757, 0.587)]]", 'basis': '"""3-21g"""'}), "(verbose=0, atom=[['O', (0.0, 0.0, 0.0)], [1, (0.0, -0.757, 0.587)], [\n 1, (0.0, 0.757, 0.587)]], basis='3-21g')\n", (6575, 6690), False, 'from pyscf import gto\n'), ((1123, 1136), 'numpy.sqrt', 'numpy.sqrt', (['w'], {}), '(w)\n', (1133, 1136), False, 'import numpy\n'), ((1910, 1951), 'functools.reduce', 'reduce', (['numpy.dot', '(s0invsqrt, R, s0sqrt)'], {}), '(numpy.dot, (s0invsqrt, R, s0sqrt))\n', (1916, 1951), False, 'from functools import reduce\n'), ((2300, 2320), 'numpy.zeros_like', 'numpy.zeros_like', (['s0'], {}), '(s0)\n', (2316, 2320), False, 'import numpy\n'), ((2330, 2350), 'numpy.zeros_like', 'numpy.zeros_like', (['t0'], {}), '(t0)\n', (2346, 2350), False, 'import numpy\n'), ((2686, 2736), 'functools.reduce', 'reduce', (['numpy.dot', '(x1.T, t0 * (0.5 / c ** 2), x0)'], {}), '(numpy.dot, (x1.T, t0 * (0.5 / c ** 2), x0))\n', (2692, 2736), False, 'from functools import reduce\n'), ((2740, 2790), 'functools.reduce', 'reduce', (['numpy.dot', '(x0.T, t0 * (0.5 / c ** 2), x1)'], {}), '(numpy.dot, (x0.T, t0 * (0.5 / c ** 2), x1))\n', (2746, 2790), False, 'from functools import reduce\n'), ((2919, 2967), 'functools.reduce', 'reduce', (['numpy.dot', '(s0_invsqrt, sa0, s0_invsqrt)'], {}), '(numpy.dot, (s0_invsqrt, sa0, s0_invsqrt))\n', (2925, 2967), False, 'from functools import reduce\n'), ((3635, 3671), 'numpy.zeros', 'numpy.zeros', (['(n2, n2)'], {'dtype': 'v.dtype'}), '((n2, n2), dtype=v.dtype)\n', (3646, 3671), False, 'import numpy\n'), ((3679, 3715), 'numpy.zeros', 'numpy.zeros', (['(n2, n2)'], {'dtype': 'v.dtype'}), '((n2, n2), dtype=v.dtype)\n', (3690, 3715), False, 'import numpy\n'), ((4453, 4493), 'numpy.zeros', 'numpy.zeros', (['(3, n2, n2)'], {'dtype': 'v1.dtype'}), '((3, n2, n2), dtype=v1.dtype)\n', (4464, 4493), False, 'import numpy\n'), ((4500, 4540), 'numpy.zeros', 'numpy.zeros', (['(3, n2, n2)'], {'dtype': 'v1.dtype'}), '((3, n2, n2), dtype=v1.dtype)\n', (4511, 4540), False, 'import numpy\n'), ((4731, 4751), 'numpy.zeros_like', 'numpy.zeros_like', (['s1'], {}), '(s1)\n', (4747, 4751), False, 'import numpy\n'), ((4763, 4783), 'numpy.zeros_like', 'numpy.zeros_like', (['t1'], {}), '(t1)\n', (4779, 4783), False, 'import numpy\n'), ((5988, 6023), 'numpy.einsum', 'numpy.einsum', (['"""pq,xqi->xpi"""', 'c0', 'c1'], {}), "('pq,xqi->xpi', c0, c1)\n", (6000, 6023), False, 'import numpy\n'), ((6173, 6190), 'numpy.asarray', 'numpy.asarray', (['x1'], {}), '(x1)\n', (6186, 6190), False, 'import numpy\n'), ((9169, 9184), 'unittest.main', 'unittest.main', ([], {}), '()\n', (9182, 9184), False, 'import unittest\n'), ((1391, 1404), 'numpy.sqrt', 'numpy.sqrt', (['w'], {}), '(w)\n', (1401, 1404), False, 'import numpy\n'), ((1463, 1509), 'numpy.einsum', 'numpy.einsum', (['"""i,ij,j->ij"""', '(w ** 2)', 'a1', '(w ** 2)'], {}), "('i,ij,j->ij', w ** 2, a1, w ** 2)\n", (1475, 1509), False, 'import numpy\n'), ((1790, 1840), 'functools.reduce', 'reduce', (['numpy.dot', '(x0.T, t0 * (0.5 / c ** 2), x0)'], {}), '(numpy.dot, (x0.T, t0 * (0.5 / c ** 2), x0))\n', (1796, 1840), False, 'from functools import reduce\n'), ((1852, 1900), 'functools.reduce', 'reduce', (['numpy.dot', '(s0invsqrt, stild, s0invsqrt)'], {}), '(numpy.dot, (s0invsqrt, stild, s0invsqrt))\n', (1858, 1900), False, 'from functools import reduce\n'), ((2573, 2623), 'functools.reduce', 'reduce', (['numpy.dot', '(x0.T, t0 * (0.5 / c ** 2), x0)'], {}), '(numpy.dot, (x0.T, t0 * (0.5 / c ** 2), x0))\n', (2579, 2623), False, 'from functools import reduce\n'), ((2632, 2682), 'functools.reduce', 'reduce', (['numpy.dot', '(x0.T, t1 * (0.5 / c ** 2), x0)'], {}), '(numpy.dot, (x0.T, t1 * (0.5 / c ** 2), x0))\n', (2638, 2682), False, 'from functools import reduce\n'), ((3115, 3163), 'functools.reduce', 'reduce', (['numpy.dot', '(s0_invsqrt, sa0, s1_invsqrt)'], {}), '(numpy.dot, (s0_invsqrt, sa0, s1_invsqrt))\n', (3121, 3163), False, 'from functools import reduce\n'), ((892, 905), 'numpy.sqrt', 'numpy.sqrt', (['w'], {}), '(w)\n', (902, 905), False, 'import numpy\n'), ((993, 1006), 'numpy.sqrt', 'numpy.sqrt', (['w'], {}), '(w)\n', (1003, 1006), False, 'import numpy\n'), ((2983, 3031), 'functools.reduce', 'reduce', (['numpy.dot', '(s0_invsqrt, sa1, s0_invsqrt)'], {}), '(numpy.dot, (s0_invsqrt, sa1, s0_invsqrt))\n', (2989, 3031), False, 'from functools import reduce\n'), ((3049, 3097), 'functools.reduce', 'reduce', (['numpy.dot', '(s1_invsqrt, sa0, s0_invsqrt)'], {}), '(numpy.dot, (s1_invsqrt, sa0, s0_invsqrt))\n', (3055, 3097), False, 'from functools import reduce\n'), ((6823, 6842), 'pyscf.lib.light_speed', 'lib.light_speed', (['(10)'], {}), '(10)\n', (6838, 6842), False, 'from pyscf import lib\n'), ((7208, 7265), 'pyscf.x2c.sfx2c1e_grad._gen_first_order_quantities', 'sfx2c1e_grad._gen_first_order_quantities', (['mol', 'e0', 'c0', 'x0'], {}), '(mol, e0, c0, x0)\n', (7248, 7265), False, 'from pyscf.x2c import sfx2c1e_grad\n'), ((7397, 7416), 'pyscf.lib.light_speed', 'lib.light_speed', (['(10)'], {}), '(10)\n', (7412, 7416), False, 'from pyscf import lib\n'), ((7780, 7837), 'pyscf.x2c.sfx2c1e_grad._gen_first_order_quantities', 'sfx2c1e_grad._gen_first_order_quantities', (['mol', 'e0', 'c0', 'x0'], {}), '(mol, e0, c0, x0)\n', (7820, 7837), False, 'from pyscf.x2c import sfx2c1e_grad\n'), ((7973, 7992), 'pyscf.lib.light_speed', 'lib.light_speed', (['(10)'], {}), '(10)\n', (7988, 7992), False, 'from pyscf import lib\n'), ((8019, 8044), 'pyscf.x2c.sfx2c1e.SpinFreeX2C', 'sfx2c1e.SpinFreeX2C', (['mol1'], {}), '(mol1)\n', (8038, 8044), False, 'from pyscf.x2c import sfx2c1e\n'), ((8065, 8090), 'pyscf.x2c.sfx2c1e.SpinFreeX2C', 'sfx2c1e.SpinFreeX2C', (['mol2'], {}), '(mol2)\n', (8084, 8090), False, 'from pyscf.x2c import sfx2c1e\n'), ((8112, 8136), 'pyscf.x2c.sfx2c1e.SpinFreeX2C', 'sfx2c1e.SpinFreeX2C', (['mol'], {}), '(mol)\n', (8131, 8136), False, 'from pyscf.x2c import sfx2c1e\n')]
from datastack import DataTable, DataColumn, label, col, desc import pytest import numpy as np def test_one(): tbl = (DataTable(a=(1,2,1,2,3,1), b=(4,5,6,3,2,1),c=(6,7,8,1,2,3)) .order_by(desc(label("b"))) ) exp = DataTable(a=(1,2,1,2,3,1), b=(6,5,4,3,2,1), c=(8,7,6,1,2,3)) assert tbl == exp def test_one_str(): tbl = (DataTable(a=(1,2,1,2,3,1), b=(4,5,6,3,2,1),c=list("abcdef")) .order_by(label("b")) ) exp = DataTable(a=(1,3,2,1,2,1), b=(1,2,3,4,5,6), c=list("fedabc")) assert tbl == exp def test_two(): tbl = (DataTable(b=(4,5,2,3,2,1),c=(6,7,8,1,2,3),a=(1,2,1,2,3,1)) .order_by(label("b"), desc(label("a")), label("c"), ) ) exp = DataTable( b=(1,2,2,3,4,5), c=(3,2,8,1,6,7),a=(1,3,1,2,1,2)) assert tbl == exp def test_two_asc(): data = {"col1": np.array((1, 2, 3, 4, 5, 4, 3, 2, 1)), "col2": np.array(list("abcdeabcd")), "col3": np.array((10, 11, 9, 8, 7, 2, 12, 100, 1))} tbl = (DataTable.from_dict(data) .order_by(label("col1"), label("col2")) ) exp = DataTable.from_dict({'col1': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5]), 'col2': np.array(['a', 'd', 'b', 'c', 'b', 'c', 'a', 'd', 'e']), 'col3': np.array([10, 1, 11, 100, 12, 9, 2, 8, 7])}) assert tbl == exp def test_two_asc_desc(): data = {"col1": np.array((1, 2, 3, 4, 5, 4, 3, 2, 1)), "col2": np.array(list("abcdeabcd")), "col3": np.array((10, 11, 9, 8, 7, 2, 12, 100, 1))} tbl = (DataTable.from_dict(data) .order_by(label("col1"), desc(label("col2"))) ) exp = DataTable.from_dict({'col1': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5]), 'col2': np.array(['d', 'a', 'c', 'b', 'c', 'b', 'd', 'a', 'e']), 'col3': np.array([1, 10, 100, 11, 9, 12, 8, 2, 7])}) assert tbl == exp
[ "datastack.DataTable", "datastack.DataTable.from_dict", "numpy.array", "datastack.label" ]
[((245, 320), 'datastack.DataTable', 'DataTable', ([], {'a': '(1, 2, 1, 2, 3, 1)', 'b': '(6, 5, 4, 3, 2, 1)', 'c': '(8, 7, 6, 1, 2, 3)'}), '(a=(1, 2, 1, 2, 3, 1), b=(6, 5, 4, 3, 2, 1), c=(8, 7, 6, 1, 2, 3))\n', (254, 320), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((732, 807), 'datastack.DataTable', 'DataTable', ([], {'b': '(1, 2, 2, 3, 4, 5)', 'c': '(3, 2, 8, 1, 6, 7)', 'a': '(1, 3, 1, 2, 1, 2)'}), '(b=(1, 2, 2, 3, 4, 5), c=(3, 2, 8, 1, 6, 7), a=(1, 3, 1, 2, 1, 2))\n', (741, 807), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((441, 451), 'datastack.label', 'label', (['"""b"""'], {}), "('b')\n", (446, 451), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((666, 676), 'datastack.label', 'label', (['"""b"""'], {}), "('b')\n", (671, 676), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((696, 706), 'datastack.label', 'label', (['"""c"""'], {}), "('c')\n", (701, 706), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((858, 895), 'numpy.array', 'np.array', (['(1, 2, 3, 4, 5, 4, 3, 2, 1)'], {}), '((1, 2, 3, 4, 5, 4, 3, 2, 1))\n', (866, 895), True, 'import numpy as np\n'), ((958, 1000), 'numpy.array', 'np.array', (['(10, 11, 9, 8, 7, 2, 12, 100, 1)'], {}), '((10, 11, 9, 8, 7, 2, 12, 100, 1))\n', (966, 1000), True, 'import numpy as np\n'), ((1064, 1077), 'datastack.label', 'label', (['"""col1"""'], {}), "('col1')\n", (1069, 1077), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1079, 1092), 'datastack.label', 'label', (['"""col2"""'], {}), "('col2')\n", (1084, 1092), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1444, 1481), 'numpy.array', 'np.array', (['(1, 2, 3, 4, 5, 4, 3, 2, 1)'], {}), '((1, 2, 3, 4, 5, 4, 3, 2, 1))\n', (1452, 1481), True, 'import numpy as np\n'), ((1544, 1586), 'numpy.array', 'np.array', (['(10, 11, 9, 8, 7, 2, 12, 100, 1)'], {}), '((10, 11, 9, 8, 7, 2, 12, 100, 1))\n', (1552, 1586), True, 'import numpy as np\n'), ((1650, 1663), 'datastack.label', 'label', (['"""col1"""'], {}), "('col1')\n", (1655, 1663), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((125, 200), 'datastack.DataTable', 'DataTable', ([], {'a': '(1, 2, 1, 2, 3, 1)', 'b': '(4, 5, 6, 3, 2, 1)', 'c': '(6, 7, 8, 1, 2, 3)'}), '(a=(1, 2, 1, 2, 3, 1), b=(4, 5, 6, 3, 2, 1), c=(6, 7, 8, 1, 2, 3))\n', (134, 200), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((210, 220), 'datastack.label', 'label', (['"""b"""'], {}), "('b')\n", (215, 220), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((587, 662), 'datastack.DataTable', 'DataTable', ([], {'b': '(4, 5, 2, 3, 2, 1)', 'c': '(6, 7, 8, 1, 2, 3)', 'a': '(1, 2, 1, 2, 3, 1)'}), '(b=(4, 5, 2, 3, 2, 1), c=(6, 7, 8, 1, 2, 3), a=(1, 2, 1, 2, 3, 1))\n', (596, 662), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((683, 693), 'datastack.label', 'label', (['"""a"""'], {}), "('a')\n", (688, 693), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1016, 1041), 'datastack.DataTable.from_dict', 'DataTable.from_dict', (['data'], {}), '(data)\n', (1035, 1041), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1143, 1180), 'numpy.array', 'np.array', (['[1, 1, 2, 2, 3, 3, 4, 4, 5]'], {}), '([1, 1, 2, 2, 3, 3, 4, 4, 5])\n', (1151, 1180), True, 'import numpy as np\n'), ((1226, 1281), 'numpy.array', 'np.array', (["['a', 'd', 'b', 'c', 'b', 'c', 'a', 'd', 'e']"], {}), "(['a', 'd', 'b', 'c', 'b', 'c', 'a', 'd', 'e'])\n", (1234, 1281), True, 'import numpy as np\n'), ((1327, 1369), 'numpy.array', 'np.array', (['[10, 1, 11, 100, 12, 9, 2, 8, 7]'], {}), '([10, 1, 11, 100, 12, 9, 2, 8, 7])\n', (1335, 1369), True, 'import numpy as np\n'), ((1602, 1627), 'datastack.DataTable.from_dict', 'DataTable.from_dict', (['data'], {}), '(data)\n', (1621, 1627), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1670, 1683), 'datastack.label', 'label', (['"""col2"""'], {}), "('col2')\n", (1675, 1683), False, 'from datastack import DataTable, DataColumn, label, col, desc\n'), ((1735, 1772), 'numpy.array', 'np.array', (['[1, 1, 2, 2, 3, 3, 4, 4, 5]'], {}), '([1, 1, 2, 2, 3, 3, 4, 4, 5])\n', (1743, 1772), True, 'import numpy as np\n'), ((1783, 1838), 'numpy.array', 'np.array', (["['d', 'a', 'c', 'b', 'c', 'b', 'd', 'a', 'e']"], {}), "(['d', 'a', 'c', 'b', 'c', 'b', 'd', 'a', 'e'])\n", (1791, 1838), True, 'import numpy as np\n'), ((1849, 1891), 'numpy.array', 'np.array', (['[1, 10, 100, 11, 9, 12, 8, 2, 7]'], {}), '([1, 10, 100, 11, 9, 12, 8, 2, 7])\n', (1857, 1891), True, 'import numpy as np\n')]
import unittest, random from models.point import Point from models.segment import Segment import numpy as np class TestSegmentMethods(unittest.TestCase): def test_new(self): with self.assertRaises(ValueError) as context: Segment([]) def test_extremums(self): a = Point(random.randint(0, 100), random.randint(0, 100)) b = Point(random.randint(0, 100), random.randint(0, 100)) c = Point(random.randint(0, 100), random.randint(0, 100)) segment = Segment([a, b, c]) self.assertEqual(segment.start, a) self.assertEqual(segment.end, c) def test_getitem(self): a = Point(10, 20) b = Point(20, 30) c = Point(30, 40) segment = Segment([a, b, c]) self.assertEqual(segment[Point(10, 20)], a) # Access by point self.assertEqual(segment[20, 30], b) # Access by coordinates self.assertEqual(segment[2], c) # Access by index self.assertEqual(segment[100, 100], None) # Accessing a missing point def test_append(self): a = Point(10, 20) b = Point(20, 30) c = Point(30, 40) segment = Segment([a, b, c]) segment.append(Point(31, 40)) # Working case self.assertEqual(segment.end, Point(31, 40)) # Point is too far with self.assertRaises(ValueError) as context: segment.append(Point(100, 100)) # Point already exists with self.assertRaises(ValueError) as context: segment.append(Point(31, 40)) def test_angle(self): angle_1 = Segment([Point(0, 0), Point(10, 10)]) # Angle is 45° angle_2 = Segment([Point(0, 0), Point(10, 20)]) # Angle is arctan(20/10) angle_half = Segment([Point(0, 0), Point(20, 10)]) # Angle is arctan(10/20) angle_vertical = Segment([Point(0, 0), Point(10, 0)]) # Angle is 0° angle_horizontal = Segment([Point(0, 0), Point(0, 10)]) # Angle is 90° self.assertAlmostEqual(angle_1.angle(radians = True), np.pi / 4) self.assertAlmostEqual(angle_half.angle(radians = True), np.arctan(2)) self.assertAlmostEqual(angle_horizontal.angle(radians = True), 0) self.assertAlmostEqual(angle_vertical.angle(radians = True), np.pi / 2) self.assertAlmostEqual(angle_1.angle(radians = False), 45) self.assertAlmostEqual(angle_half.angle(radians = False), 63, places = 0) self.assertAlmostEqual(angle_horizontal.angle(radians = False), 0) self.assertAlmostEqual(angle_vertical.angle(radians = False), 90)
[ "numpy.arctan", "random.randint", "models.segment.Segment", "models.point.Point" ]
[((509, 527), 'models.segment.Segment', 'Segment', (['[a, b, c]'], {}), '([a, b, c])\n', (516, 527), False, 'from models.segment import Segment\n'), ((654, 667), 'models.point.Point', 'Point', (['(10)', '(20)'], {}), '(10, 20)\n', (659, 667), False, 'from models.point import Point\n'), ((680, 693), 'models.point.Point', 'Point', (['(20)', '(30)'], {}), '(20, 30)\n', (685, 693), False, 'from models.point import Point\n'), ((706, 719), 'models.point.Point', 'Point', (['(30)', '(40)'], {}), '(30, 40)\n', (711, 719), False, 'from models.point import Point\n'), ((739, 757), 'models.segment.Segment', 'Segment', (['[a, b, c]'], {}), '([a, b, c])\n', (746, 757), False, 'from models.segment import Segment\n'), ((1074, 1087), 'models.point.Point', 'Point', (['(10)', '(20)'], {}), '(10, 20)\n', (1079, 1087), False, 'from models.point import Point\n'), ((1100, 1113), 'models.point.Point', 'Point', (['(20)', '(30)'], {}), '(20, 30)\n', (1105, 1113), False, 'from models.point import Point\n'), ((1126, 1139), 'models.point.Point', 'Point', (['(30)', '(40)'], {}), '(30, 40)\n', (1131, 1139), False, 'from models.point import Point\n'), ((1159, 1177), 'models.segment.Segment', 'Segment', (['[a, b, c]'], {}), '([a, b, c])\n', (1166, 1177), False, 'from models.segment import Segment\n'), ((249, 260), 'models.segment.Segment', 'Segment', (['[]'], {}), '([])\n', (256, 260), False, 'from models.segment import Segment\n'), ((310, 332), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (324, 332), False, 'import unittest, random\n'), ((334, 356), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (348, 356), False, 'import unittest, random\n'), ((376, 398), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (390, 398), False, 'import unittest, random\n'), ((400, 422), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (414, 422), False, 'import unittest, random\n'), ((442, 464), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (456, 464), False, 'import unittest, random\n'), ((466, 488), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (480, 488), False, 'import unittest, random\n'), ((1202, 1215), 'models.point.Point', 'Point', (['(31)', '(40)'], {}), '(31, 40)\n', (1207, 1215), False, 'from models.point import Point\n'), ((1279, 1292), 'models.point.Point', 'Point', (['(31)', '(40)'], {}), '(31, 40)\n', (1284, 1292), False, 'from models.point import Point\n'), ((2123, 2135), 'numpy.arctan', 'np.arctan', (['(2)'], {}), '(2)\n', (2132, 2135), True, 'import numpy as np\n'), ((792, 805), 'models.point.Point', 'Point', (['(10)', '(20)'], {}), '(10, 20)\n', (797, 805), False, 'from models.point import Point\n'), ((1412, 1427), 'models.point.Point', 'Point', (['(100)', '(100)'], {}), '(100, 100)\n', (1417, 1427), False, 'from models.point import Point\n'), ((1551, 1564), 'models.point.Point', 'Point', (['(31)', '(40)'], {}), '(31, 40)\n', (1556, 1564), False, 'from models.point import Point\n'), ((1620, 1631), 'models.point.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (1625, 1631), False, 'from models.point import Point\n'), ((1633, 1646), 'models.point.Point', 'Point', (['(10)', '(10)'], {}), '(10, 10)\n', (1638, 1646), False, 'from models.point import Point\n'), ((1691, 1702), 'models.point.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (1696, 1702), False, 'from models.point import Point\n'), ((1704, 1717), 'models.point.Point', 'Point', (['(10)', '(20)'], {}), '(10, 20)\n', (1709, 1717), False, 'from models.point import Point\n'), ((1775, 1786), 'models.point.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (1780, 1786), False, 'from models.point import Point\n'), ((1788, 1801), 'models.point.Point', 'Point', (['(20)', '(10)'], {}), '(20, 10)\n', (1793, 1801), False, 'from models.point import Point\n'), ((1863, 1874), 'models.point.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (1868, 1874), False, 'from models.point import Point\n'), ((1876, 1888), 'models.point.Point', 'Point', (['(10)', '(0)'], {}), '(10, 0)\n', (1881, 1888), False, 'from models.point import Point\n'), ((1941, 1952), 'models.point.Point', 'Point', (['(0)', '(0)'], {}), '(0, 0)\n', (1946, 1952), False, 'from models.point import Point\n'), ((1954, 1966), 'models.point.Point', 'Point', (['(0)', '(10)'], {}), '(0, 10)\n', (1959, 1966), False, 'from models.point import Point\n')]
# -*- coding: utf-8 -*- # Copyright 2018 <NAME> # Distributed under the terms of the Apache License 2.0 """ Test Aerial Objects ##################### """ import six import json import uuid import numpy as np from itertools import cycle from dronedirector.aerial import AerialObject, Drone, SinusoidalDrone class CaliRedwood(AerialObject): """Example of subclassing.""" def __init__(self): super(CaliRedwood, self).__init__(altitude=cycle([100.0]), latitude=cycle([37.8716]), longitude=cycle([-122.2727])) def test_simple_aerial(): """Test making a simple object on-the-fly.""" tree = AerialObject(altitude=cycle([100.0]), latitude=cycle([37.8716]), longitude=cycle([-122.2727])) msg = tree.message() assert isinstance(msg, six.string_types) assert isinstance(json.loads(msg), dict) def test_subclassing_ao(): """Test subclassing :class:`~dronedirector.aerial.AerialObject`.""" tree = CaliRedwood() msg = json.loads(tree.message()) # Tests for valid json assert isinstance(msg, dict) assert np.isclose(msg['altitude'], 100.0) def test_drone(): """Test basic drone creation.""" uid = uuid.uuid4() drone = Drone(cycle([1000.0]), cycle([41.0]), region="New York", uid=uid, longitude=cycle(np.sin(np.arange(0, 2*np.pi, np.pi/360)))) assert drone.region == "New York" assert drone.uid == uid msg = json.loads(drone.message()) assert len(msg) == 6
[ "uuid.uuid4", "json.loads", "numpy.isclose", "numpy.arange", "itertools.cycle" ]
[((1186, 1220), 'numpy.isclose', 'np.isclose', (["msg['altitude']", '(100.0)'], {}), "(msg['altitude'], 100.0)\n", (1196, 1220), True, 'import numpy as np\n'), ((1288, 1300), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1298, 1300), False, 'import uuid\n'), ((930, 945), 'json.loads', 'json.loads', (['msg'], {}), '(msg)\n', (940, 945), False, 'import json\n'), ((1319, 1334), 'itertools.cycle', 'cycle', (['[1000.0]'], {}), '([1000.0])\n', (1324, 1334), False, 'from itertools import cycle\n'), ((1336, 1349), 'itertools.cycle', 'cycle', (['[41.0]'], {}), '([41.0])\n', (1341, 1349), False, 'from itertools import cycle\n'), ((717, 731), 'itertools.cycle', 'cycle', (['[100.0]'], {}), '([100.0])\n', (722, 731), False, 'from itertools import cycle\n'), ((766, 782), 'itertools.cycle', 'cycle', (['[37.8716]'], {}), '([37.8716])\n', (771, 782), False, 'from itertools import cycle\n'), ((818, 836), 'itertools.cycle', 'cycle', (['[-122.2727]'], {}), '([-122.2727])\n', (823, 836), False, 'from itertools import cycle\n'), ((450, 464), 'itertools.cycle', 'cycle', (['[100.0]'], {}), '([100.0])\n', (455, 464), False, 'from itertools import cycle\n'), ((517, 533), 'itertools.cycle', 'cycle', (['[37.8716]'], {}), '([37.8716])\n', (522, 533), False, 'from itertools import cycle\n'), ((587, 605), 'itertools.cycle', 'cycle', (['[-122.2727]'], {}), '([-122.2727])\n', (592, 605), False, 'from itertools import cycle\n'), ((1420, 1456), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(np.pi / 360)'], {}), '(0, 2 * np.pi, np.pi / 360)\n', (1429, 1456), True, 'import numpy as np\n')]
import os import cv2 import time import imutils import pyrebase import numpy as np from utils import * import sys import dlib from skimage import io #################### Initialize #################### print("Start initializing") os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"} firebase = init_firebase() storage = firebase.storage() db = firebase.database() model, facecasc = init_model() history_list = [] loop = 0 predictor_path = "./shape_predictor_68_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) reset_counter = 0 #################### Initialize #################### print("Start looping") data = {'cur_emotion': "None"} db.child("CUR_EMOTION").set(data) while(1): print("Loop ======================================================================", loop) files = storage.list_files() reset_counter += 1 for file in files: if (file.name)[0] == "s" and file.name != "screenShot/": if file.name not in history_list: reset_counter = 0 history_list.append(file.name) img_local_name = "imgs/" + os.path.basename(file.name) + ".png" print(img_local_name) storage.child(file.name).download(img_local_name) gray_img = cv2.imread( img_local_name, cv2.IMREAD_GRAYSCALE) img = cv2.imread(img_local_name) dets = detector(img, 1) vec = np.empty([68, 2], dtype=int) status = "Not Sleeping" for k, d in enumerate(dets): shape = predictor(img, d) for b in range(68): vec[b][0] = shape.part(b).x vec[b][1] = shape.part(b).y right_ear = compute_EAR(vec[42:48]) left_ear = compute_EAR(vec[36:42]) if (right_ear+left_ear)/2 < 0.2: status = "sleeping" print(status) faces = facecasc.detectMultiScale( gray_img, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: print("Detect Face") roi_gray = gray_img[y:y + h, x:x + w] cropped_img = np.expand_dims(np.expand_dims( cv2.resize(roi_gray, (48, 48)), -1), 0) prediction = model.predict(cropped_img) maxindex = int(np.argmax(prediction)) if maxindex == 0 or maxindex == 1 or maxindex == 2 or maxindex == 4: maxindex = 5 print(emotion_dict[maxindex]) if status == "sleeping": data = {'cur_emotion': "sleeping"} else: data = {'cur_emotion': emotion_dict[maxindex]} db.child("CUR_EMOTION").set(data) if reset_counter >= 100: reset_counter = 0 data = {'cur_emotion': "None"} db.child("CUR_EMOTION").set(data) loop += 1 # time.sleep(1))
[ "os.path.basename", "numpy.argmax", "numpy.empty", "cv2.imread", "dlib.get_frontal_face_detector", "dlib.shape_predictor", "cv2.resize" ]
[((616, 648), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (646, 648), False, 'import dlib\n'), ((661, 697), 'dlib.shape_predictor', 'dlib.shape_predictor', (['predictor_path'], {}), '(predictor_path)\n', (681, 697), False, 'import dlib\n'), ((1460, 1508), 'cv2.imread', 'cv2.imread', (['img_local_name', 'cv2.IMREAD_GRAYSCALE'], {}), '(img_local_name, cv2.IMREAD_GRAYSCALE)\n', (1470, 1508), False, 'import cv2\n'), ((1552, 1578), 'cv2.imread', 'cv2.imread', (['img_local_name'], {}), '(img_local_name)\n', (1562, 1578), False, 'import cv2\n'), ((1642, 1670), 'numpy.empty', 'np.empty', (['[68, 2]'], {'dtype': 'int'}), '([68, 2], dtype=int)\n', (1650, 1670), True, 'import numpy as np\n'), ((1289, 1316), 'os.path.basename', 'os.path.basename', (['file.name'], {}), '(file.name)\n', (1305, 1316), False, 'import os\n'), ((2678, 2699), 'numpy.argmax', 'np.argmax', (['prediction'], {}), '(prediction)\n', (2687, 2699), True, 'import numpy as np\n'), ((2542, 2572), 'cv2.resize', 'cv2.resize', (['roi_gray', '(48, 48)'], {}), '(roi_gray, (48, 48))\n', (2552, 2572), False, 'import cv2\n')]
# laser_path_utils.py """Utility functions for working with paths for laser cutting""" import numpy as np import svgpathtools.svgpathtools as SVGPT # it's imporatant to clone and install the repo manually. The pip/pypi version is outdated from laser_svg_utils import tree_to_tempfile from laser_clipper import point_on_loops, point_inside_loop def tempfile_to_paths(temp_svg): """open temp SVG file and return a path""" # temp_svg.seek(0) paths, attributes = SVGPT.svg2paths(temp_svg.name) temp_svg.close() return (paths, attributes) def tree_to_paths(tree): """turns an svg tree into paths list""" temp_svg = tree_to_tempfile(tree) paths, _ = tempfile_to_paths(temp_svg) svg_paths = [] for path in paths: if not path: svg_paths.append(path.d()) return svg_paths def paths_to_loops(paths): """"Convert a list of paths to a list of points""" point_loop_list = [] for path_string in paths: points = path_string_to_points(path_string) if points is not None: point_loop_list.append(points) return point_loop_list def combine_paths(paths, as_list=True): """combines path strings into a single string""" combined = "" first = True for path in paths: if not first: combined += " " combined += path first = False if as_list: return [combined] else: return combined def path_string_to_points(path_string): """Convert path string into a list of points""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return None points = [] for segment in path: segment_points = subpath_to_points(segment) for point in segment_points: if points == [] or point != points[-1]: points.append(point) return points def subpath_to_points(segment): """Converts a path segment into a list of points""" points = [] if isinstance(segment, SVGPT.path.Line): # pylint: disable=maybe-no-member points = points_from_line(segment) else: points = points_from_curve(segment) return points def get_start(path_string): """returns start point (x, y) of a path string""" path = SVGPT.parse_path(path_string) start_xy = complex_to_xy(path.start) return start_xy def points_from_line(line): """returns endpoints of line""" points_list = [] start = line.point(0) end = line.point(1) points_list.append(complex_to_xy(start)) points_list.append(complex_to_xy(end)) return points_list def points_from_curve(curve, samples=20): """returns poins along a curve""" points_list = [] for location in range(samples): fraction = location / (samples-1) point_on_curve = curve.point(fraction) points_list.append(complex_to_xy(point_on_curve)) return points_list def complex_to_xy(complex_point): """turns complex point (x+yj) into cartesian point [x,y]""" xy_point = [complex_point.real, complex_point.imag] return xy_point def xy_to_complex(xy_point): """turns cartesian point [x,y] into complex point (x+yj)""" complex_point = xy_point[0] + xy_point[1] * 1j return complex_point def loops_to_paths(loops): """turns a list of point loops into a list of path strings""" paths = [] for loop in loops: path = points_to_path(loop) paths.append(path) return paths def points_to_path(points, closed=True): """turn a series of points into a path""" first = True data = "M " for point in points: if not first: data += " L " data += f"{point[0]},{point[1]}" first = False if closed: data += " Z" return data def scale_path(path_string, scale): """scales a path string by a scale factor (float)""" path = SVGPT.parse_path(path_string) scaled_path = path.scaled(scale) new_path_string = scaled_path.d() return new_path_string def move_path(path_string, xy_translation): """Takes a path string and xy_translation (x, y), and moves it x units over, and y units down""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return "" complex_translation = xy_to_complex(xy_translation) translated_path = path.translated(complex_translation) translated_string = translated_path.d() return translated_string def get_angle(path_string): """measures the angle in degrees (CCW) from the path positive X axis (0,0), (0,1)""" path = SVGPT.parse_path(path_string) vector = path.point(1) - path.point(0) angle = np.angle(vector, deg=True) return angle def rotate_path(path_string, angle_degrees, xy_point): """rotates a path string a given number of degrees (CCW) around point (x, y)""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return "" complex_point = xy_to_complex(xy_point) rotated_path = path.rotated(angle_degrees, origin=complex_point) rotated_string = rotated_path.d() return rotated_string def get_length(path_string): """returns the length of a path string""" path = SVGPT.parse_path(path_string) return path.length() def get_all_segments(loops): """returns all of the segments from all of the loops""" all_segments = [] for loop in loops: loop_segments = get_loop_segments(loop) all_segments = all_segments + loop_segments return all_segments def segments_overlap(first, second): """returns true if segments share more than a single point""" first_path_string = points_to_path(first, closed=False) second_path_string = points_to_path(second, closed=False) first_path = SVGPT.parse_path(first_path_string)[0] second_path = SVGPT.parse_path(second_path_string)[0] overlaps = [] for point in first: complex_point = xy_to_complex(point) place_on_path = second_path.point_to_t(complex_point) if place_on_path is not None: if point not in overlaps: overlaps.append(point) for point in second: complex_point = xy_to_complex(point) place_on_path = first_path.point_to_t(complex_point) if place_on_path is not None: if point not in overlaps: overlaps.append(point) overlap = len(overlaps) >= 2 return overlap def get_loop_segments(loop): """returns a list of segments in a loop""" segments = [] last_point = None for this_point in loop: if last_point is not None: new_segment = [last_point, this_point] segments.append(new_segment) last_point = this_point return segments def segments_to_paths(segments): """converts list of segments into list of paths""" paths = [] for segment in segments: new_path = points_to_path(segment, closed=False) paths.append(new_path) return paths def get_not_overlapping(first, second): """returns the segments of the first path that do not overlap with the second.""" output_paths = [] first_loops = paths_to_loops(first) second_loops = paths_to_loops(second) for loop in first_loops: not_overlapping = "" segment_started = False last_point = loop[-1] for point in loop: if not point_on_loops(point, second_loops): if not segment_started: not_overlapping += f" M {last_point[0]},{last_point[1]}" segment_started = True if last_point != point: not_overlapping += f" L {point[0]},{point[1]}" else: # close the path if segment_started: not_overlapping += f" L {point[0]},{point[1]}" output_paths.append(not_overlapping) segment_started = False not_overlapping = "" last_point = point if segment_started: output_paths.append(not_overlapping) return output_paths def get_overlapping(first, second): """returns the overlapping segments of the first and second path.""" output_paths = [] first_loops = paths_to_loops(first) second_loops = paths_to_loops(second) for loop in first_loops: overlapping = "" segment_started = False for point in loop: if point_on_loops(point, second_loops): if not segment_started: overlapping += f" M {point[0]},{point[1]}" segment_started = True else: overlapping += f" L {point[0]},{point[1]}" else: # skip other points if segment_started: output_paths.append(overlapping) overlapping = "" segment_started = False if segment_started: output_paths.append(overlapping) return output_paths def divide_pathstring_parts(pathstring): """breaks single path string into substrings at each 'M' returning a list of path strings""" substring = pathstring.strip() paths = [] while 'M' in substring[1:]: m_index = substring.find('M', 1) if m_index > -1: subpath = substring[0:m_index].strip() paths.append(subpath) substring = substring[m_index:].strip() paths.append(substring) return paths # TODO: split open/closed separation into smaller chunks def separate_closed_paths(paths): """takes a list of path strings breaks non continuous paths and joins connecting paths together to return a list of closed paths """ discrete_paths = [] closed_paths = [] open_paths = [] dead_ends = [] for path in paths: discrete_paths += divide_pathstring_parts(path) for path in discrete_paths: parsed_path = SVGPT.parse_path(path) if parsed_path.isclosed(): closed_paths.append(path) else: open_paths.append(parsed_path) while open_paths: path = open_paths.pop() new_path = None for other_path in open_paths: if path.end == other_path.start: new_path = path.d() + " " + other_path.d().replace('M', 'L') open_paths.remove(other_path) break elif path.start == other_path.end: new_path = other_path.d() + " " + path.d().replace('M', 'L') open_paths.remove(other_path) break elif path.end == other_path.end: new_path = path.d() + " " + other_path.reversed().d().replace('M', 'L') open_paths.remove(other_path) break elif path.start == other_path.start: new_path = path.reversed().d() + " " + other_path.d().replace('M', 'L') open_paths.remove(other_path) break if new_path is not None: parsed_new_path = SVGPT.parse_path(new_path) if parsed_new_path.isclosed(): closed_paths.append(new_path) else: open_paths.append(parsed_new_path) else: dead_ends.append(path.d()) open_paths = dead_ends return closed_paths, open_paths def is_inside(path, other_path): """checks if path is inside other_path and returns true or false""" loop = paths_to_loops([path])[0] other_loop = paths_to_loops([other_path])[0] for point in loop: if point_inside_loop(point, other_loop) == 1: return True return False def path_to_segments(path_string): """breaks down a path into a list of segments""" segments = [] path = SVGPT.parse_path(path_string) for segment in path: if isinstance(segment, SVGPT.path.Line): # pylint: disable=maybe-no-member points = points_from_line(segment) new_path_string = f"M {points[0][0]} {points[0][1]} L {points[1][0]} {points[1][1]}" segments.append(new_path_string) return segments
[ "svgpathtools.svgpathtools.svg2paths", "numpy.angle", "svgpathtools.svgpathtools.parse_path", "laser_svg_utils.tree_to_tempfile", "laser_clipper.point_on_loops", "laser_clipper.point_inside_loop", "svgpathtools.svgpathtools.Path" ]
[((476, 506), 'svgpathtools.svgpathtools.svg2paths', 'SVGPT.svg2paths', (['temp_svg.name'], {}), '(temp_svg.name)\n', (491, 506), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((645, 667), 'laser_svg_utils.tree_to_tempfile', 'tree_to_tempfile', (['tree'], {}), '(tree)\n', (661, 667), False, 'from laser_svg_utils import tree_to_tempfile\n'), ((1558, 1587), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (1574, 1587), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((1601, 1613), 'svgpathtools.svgpathtools.Path', 'SVGPT.Path', ([], {}), '()\n', (1611, 1613), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((2289, 2318), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (2305, 2318), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((3913, 3942), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (3929, 3942), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((4204, 4233), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (4220, 4233), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((4247, 4259), 'svgpathtools.svgpathtools.Path', 'SVGPT.Path', ([], {}), '()\n', (4257, 4259), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((4619, 4648), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (4635, 4648), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((4704, 4730), 'numpy.angle', 'np.angle', (['vector'], {'deg': '(True)'}), '(vector, deg=True)\n', (4712, 4730), True, 'import numpy as np\n'), ((4900, 4929), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (4916, 4929), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((4943, 4955), 'svgpathtools.svgpathtools.Path', 'SVGPT.Path', ([], {}), '()\n', (4953, 4955), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((5262, 5291), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (5278, 5291), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((11861, 11890), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path_string'], {}), '(path_string)\n', (11877, 11890), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((5821, 5856), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['first_path_string'], {}), '(first_path_string)\n', (5837, 5856), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((5878, 5914), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['second_path_string'], {}), '(second_path_string)\n', (5894, 5914), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((10009, 10031), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['path'], {}), '(path)\n', (10025, 10031), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((8505, 8540), 'laser_clipper.point_on_loops', 'point_on_loops', (['point', 'second_loops'], {}), '(point, second_loops)\n', (8519, 8540), False, 'from laser_clipper import point_on_loops, point_inside_loop\n'), ((11129, 11155), 'svgpathtools.svgpathtools.parse_path', 'SVGPT.parse_path', (['new_path'], {}), '(new_path)\n', (11145, 11155), True, 'import svgpathtools.svgpathtools as SVGPT\n'), ((11658, 11694), 'laser_clipper.point_inside_loop', 'point_inside_loop', (['point', 'other_loop'], {}), '(point, other_loop)\n', (11675, 11694), False, 'from laser_clipper import point_on_loops, point_inside_loop\n'), ((7444, 7479), 'laser_clipper.point_on_loops', 'point_on_loops', (['point', 'second_loops'], {}), '(point, second_loops)\n', (7458, 7479), False, 'from laser_clipper import point_on_loops, point_inside_loop\n')]
from _pytest.mark import param import pytest import numpy as np from bayesian_mmm.sampling.stan_model_generator import StanModelGenerator from bayesian_mmm.sampling.sampler import Sampler from bayesian_mmm.sampling.stan_model_wrapper import StanModelWrapper MAX_LAG = 4 SPENDS = np.array([[10, 20], [0, 8], [1, 30], [5, 40]]) LAGGED_SPENDS = np.array([ [[10, 0, 0, 0], [20, 0, 0, 0]], [[ 0, 10, 0, 0], [ 8, 20, 0, 0]], [[ 1, 0, 10, 0], [30, 8, 20, 0]], [[ 5, 1, 0, 10], [40, 30, 8, 20]] ]) CTRL_VARS = np.array([ [2, 4], [5, 2], [6, 4], [7, 2] ]) REVENUE = np.array([1, 2, 3, 4]) N = 4 NUM_MEDIA = 2 NUM_CTRL = 2 STAN_MODEL = StanModelWrapper @pytest.mark.parametrize( "ctrl_vars", [CTRL_VARS, None] ) def test_create_sampler_input(ctrl_vars): if type(ctrl_vars) == np.ndarray: expected_args = { "N":N, "Y":REVENUE, "max_lag":MAX_LAG, "num_media":NUM_MEDIA, "X_media":LAGGED_SPENDS, "num_ctrl":NUM_CTRL, "X_ctrl":CTRL_VARS } else: expected_args = { "N":N, "Y":REVENUE, "max_lag":MAX_LAG, "num_media":NUM_MEDIA, "X_media":LAGGED_SPENDS } sampler = Sampler(STAN_MODEL, MAX_LAG) sampler.create_stan_input( SPENDS, ctrl_vars, REVENUE ) obtained_args = sampler._Sampler__args expected_args_keys = list(expected_args.keys()) expected_args_keys.sort() obtained_args_keys = list(obtained_args.keys()) obtained_args_keys.sort() assert obtained_args_keys == expected_args_keys for key, val in expected_args.items(): if type(val) == np.ndarray: assert (val == obtained_args[key]).all() else: assert val == obtained_args[key] # slow to run (stan compilation + sampling) @pytest.mark.parametrize( "carryover_transfo_nm,diminushing_returns_transfo_nm,with_ctrl_vars", [ ("adstock","hill",True), ("adstock","hill",False), ("adstock","reach",True), ("adstock","reach",False), ("geo_decay","hill",True), ("geo_decay","hill",False), ("geo_decay","reach",True), ("geo_decay","reach",False) ] ) def test_run_sampling( carryover_transfo_nm, diminushing_returns_transfo_nm, with_ctrl_vars ): CARRYOVER_TRANSFO_NM_TO_PARAM_NM = { "geo_decay":["retain_rate"], "adstock":["retain_rate", "delay"] } DIMINUSHING_RETURNS_TRANSFO_NM_TO_PARAM_NM = { "hill":["ec", "slope"], "reach":["half_saturation"] } WITH_CTRL_VARS_TO_PARAM_NM = { True:["gamma_ctrl"], False:[] } stan_model_generator = StanModelGenerator( carryover_transfo_nm, diminushing_returns_transfo_nm, with_ctrl_vars ) stan_model_generator.create_model() stan_model = stan_model_generator.get_model() sampler = Sampler(stan_model, MAX_LAG) if with_ctrl_vars: ctrl_vars = CTRL_VARS else: ctrl_vars = None sampler.create_stan_input( SPENDS, ctrl_vars, REVENUE ) obtained_results = sampler.run_sampling(100, 3) expected_param_nms = ( CARRYOVER_TRANSFO_NM_TO_PARAM_NM[carryover_transfo_nm] + DIMINUSHING_RETURNS_TRANSFO_NM_TO_PARAM_NM[diminushing_returns_transfo_nm] + WITH_CTRL_VARS_TO_PARAM_NM[with_ctrl_vars] + ["beta_medias", "tau"] ) expected_param_nms.sort() obtained_params_nms = list(obtained_results.keys()) obtained_params_nms.sort() assert expected_param_nms == obtained_params_nms for param_nm, values in obtained_results.items(): if param_nm != "tau": assert values.shape == (100,2) else: assert values.shape == (100,)
[ "bayesian_mmm.sampling.stan_model_generator.StanModelGenerator", "pytest.mark.parametrize", "numpy.array", "bayesian_mmm.sampling.sampler.Sampler" ]
[((281, 327), 'numpy.array', 'np.array', (['[[10, 20], [0, 8], [1, 30], [5, 40]]'], {}), '([[10, 20], [0, 8], [1, 30], [5, 40]])\n', (289, 327), True, 'import numpy as np\n'), ((344, 490), 'numpy.array', 'np.array', (['[[[10, 0, 0, 0], [20, 0, 0, 0]], [[0, 10, 0, 0], [8, 20, 0, 0]], [[1, 0, 10,\n 0], [30, 8, 20, 0]], [[5, 1, 0, 10], [40, 30, 8, 20]]]'], {}), '([[[10, 0, 0, 0], [20, 0, 0, 0]], [[0, 10, 0, 0], [8, 20, 0, 0]], [\n [1, 0, 10, 0], [30, 8, 20, 0]], [[5, 1, 0, 10], [40, 30, 8, 20]]])\n', (352, 490), True, 'import numpy as np\n'), ((525, 567), 'numpy.array', 'np.array', (['[[2, 4], [5, 2], [6, 4], [7, 2]]'], {}), '([[2, 4], [5, 2], [6, 4], [7, 2]])\n', (533, 567), True, 'import numpy as np\n'), ((596, 618), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (604, 618), True, 'import numpy as np\n'), ((687, 742), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ctrl_vars"""', '[CTRL_VARS, None]'], {}), "('ctrl_vars', [CTRL_VARS, None])\n", (710, 742), False, 'import pytest\n'), ((1886, 2237), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""carryover_transfo_nm,diminushing_returns_transfo_nm,with_ctrl_vars"""', "[('adstock', 'hill', True), ('adstock', 'hill', False), ('adstock', 'reach',\n True), ('adstock', 'reach', False), ('geo_decay', 'hill', True), (\n 'geo_decay', 'hill', False), ('geo_decay', 'reach', True), ('geo_decay',\n 'reach', False)]"], {}), "(\n 'carryover_transfo_nm,diminushing_returns_transfo_nm,with_ctrl_vars', [\n ('adstock', 'hill', True), ('adstock', 'hill', False), ('adstock',\n 'reach', True), ('adstock', 'reach', False), ('geo_decay', 'hill', True\n ), ('geo_decay', 'hill', False), ('geo_decay', 'reach', True), (\n 'geo_decay', 'reach', False)])\n", (1909, 2237), False, 'import pytest\n'), ((1285, 1313), 'bayesian_mmm.sampling.sampler.Sampler', 'Sampler', (['STAN_MODEL', 'MAX_LAG'], {}), '(STAN_MODEL, MAX_LAG)\n', (1292, 1313), False, 'from bayesian_mmm.sampling.sampler import Sampler\n'), ((2756, 2848), 'bayesian_mmm.sampling.stan_model_generator.StanModelGenerator', 'StanModelGenerator', (['carryover_transfo_nm', 'diminushing_returns_transfo_nm', 'with_ctrl_vars'], {}), '(carryover_transfo_nm, diminushing_returns_transfo_nm,\n with_ctrl_vars)\n', (2774, 2848), False, 'from bayesian_mmm.sampling.stan_model_generator import StanModelGenerator\n'), ((2980, 3008), 'bayesian_mmm.sampling.sampler.Sampler', 'Sampler', (['stan_model', 'MAX_LAG'], {}), '(stan_model, MAX_LAG)\n', (2987, 3008), False, 'from bayesian_mmm.sampling.sampler import Sampler\n')]
# Licensed under an MIT open source license - see LICENSE ''' Test functions for Kurtosis ''' from unittest import TestCase import numpy as np import numpy.testing as npt from ..statistics import StatMoments, StatMomentsDistance from ._testing_data import \ dataset1, dataset2, computed_data, computed_distances class TestMoments(TestCase): def setUp(self): self.dataset1 = dataset1 self.dataset2 = dataset2 def test_moments(self): self.tester = StatMoments(dataset1["integrated_intensity"][0], 5) self.tester.run() assert np.allclose(self.tester.kurtosis_hist[1], computed_data['kurtosis_val']) assert np.allclose(self.tester.skewness_hist[1], computed_data['skewness_val']) def test_moment_distance(self): self.tester_dist = \ StatMomentsDistance(dataset1["integrated_intensity"][0], dataset2["integrated_intensity"][0], 5) self.tester_dist.distance_metric() npt.assert_almost_equal(self.tester_dist.kurtosis_distance, computed_distances['kurtosis_distance']) npt.assert_almost_equal(self.tester_dist.skewness_distance, computed_distances['skewness_distance'])
[ "numpy.testing.assert_almost_equal", "numpy.allclose" ]
[((584, 656), 'numpy.allclose', 'np.allclose', (['self.tester.kurtosis_hist[1]', "computed_data['kurtosis_val']"], {}), "(self.tester.kurtosis_hist[1], computed_data['kurtosis_val'])\n", (595, 656), True, 'import numpy as np\n'), ((699, 771), 'numpy.allclose', 'np.allclose', (['self.tester.skewness_hist[1]', "computed_data['skewness_val']"], {}), "(self.tester.skewness_hist[1], computed_data['skewness_val'])\n", (710, 771), True, 'import numpy as np\n'), ((1057, 1161), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['self.tester_dist.kurtosis_distance', "computed_distances['kurtosis_distance']"], {}), "(self.tester_dist.kurtosis_distance,\n computed_distances['kurtosis_distance'])\n", (1080, 1161), True, 'import numpy.testing as npt\n'), ((1198, 1302), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['self.tester_dist.skewness_distance', "computed_distances['skewness_distance']"], {}), "(self.tester_dist.skewness_distance,\n computed_distances['skewness_distance'])\n", (1221, 1302), True, 'import numpy.testing as npt\n')]
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Block Scheduling Policy Simulation # # context: [build model of computron\-to\-wallclock relationship · Issue \#3459 · Agoric/agoric\-sdk](https://github.com/Agoric/agoric-sdk/issues/3459) # ## Preface: PyData import pandas as pd import numpy as np dict(pandas=pd.__version__, numpy=np.__version__) # ## MySql Access TOP = __name__ == '__main__' # + import logging from sys import stderr logging.basicConfig(level=logging.INFO, stream=stderr, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log = logging.getLogger(__name__) if TOP: log.info('notebook start') # + from slogdata import mysql_socket, show_times def _slog4db(database='slog4'): from sqlalchemy import create_engine return create_engine(mysql_socket(database, create_engine)) _db4 = _slog4db() _db4.execute('show tables').fetchall() # - # ## Global compute results for agorictest-16 # # Based on one validator, **Provalidator**. show_times(pd.read_sql(''' select * from slog_run where parent = 'Provalidator' limit 10 ''', _db4), ['time_lo', 'time_hi', 'blockTime_lo', 'blockTime_hi']).iloc[0] # + # _db4.execute('''drop table if exists delivery_compute_16'''); # + def build_consensus_compute(theValidator, db, table='delivery_compute_16'): """We include duration from 1 validator as well. """ log.info('creating %s', table) db.execute(f''' create table if not exists {table} as with slog1 as ( select file_id from file_info where parent = %(theValidator)s ) select blockHeight, blockTime, crankNum, vatID, deliveryNum, compute, dur from j_delivery r cross join slog1 where r.file_id = slog1.file_id order by crankNum ''', dict(theValidator=theValidator)) agg = pd.read_sql(f'select count(*) from {table}', db) log.info('done:\n%s', agg) return pd.read_sql(f'select * from {table} limit 5', db) build_consensus_compute('Provalidator', _db4) # - _dc16 = pd.read_sql('select * from delivery_compute_16 order by crankNum', _db4, index_col='crankNum') _dc16.tail() # `crankNum` goes from 31 to 34; 32 and 33 are missing. Perhaps `create-vat` cranks? # + def simulate_run_policy(df, threshold=8e6): # does 10e6 help with bank update latency? # only a little: max ~50 rather than ~70 meter = 0 # t_in = t_out = df.blockTime[0] block_in = block_out = df.blockHeight.values[0] for crankNum, d in df.iterrows(): if d.blockHeight > block_in: block_in = d.blockHeight if block_in > block_out: block_out = block_in meter = 0 yield block_out # do the work meter += d.compute if meter > threshold: meter = 0 block_out += 1 df = _dc16[_dc16.blockHeight > _dc16.blockHeight.min()] _sim16 = df.assign(bkSim=list(simulate_run_policy(df))) _sim16 # - _sim16[_sim16.bkSim < _sim16.blockHeight] # + def sim_aux_stats(df): df = _sim16 original = df.groupby('blockHeight') df = original.apply(lambda g: g.assign( computeInBlock=g.compute.cumsum(), durationInBlock=g.dur.cumsum())) df = df.reset_index(level=0, drop=True) simulated = df.groupby('bkSim') df = simulated.apply(lambda g: g.assign( computeInSimBlk=g.compute.cumsum(), durationInSimBlk=g.dur.cumsum())) df = df.reset_index(level=0, drop=True) return df df = sim_aux_stats(_sim16) # - df[['vatID', 'deliveryNum', 'blockHeight', 'compute', 'computeInBlock', 'computeInSimBlk']].describe() df[['computeInBlock', 'computeInSimBlk']].plot(figsize=(12, 4)); df[['vatID', 'deliveryNum', 'blockHeight', 'dur', 'durationInBlock', 'durationInSimBlk']].describe() df[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 6)); # ## Computrons go 3.7x faster early in agorictest-16 sim_lo = df[(df.index >= 20000) & (df.index <= 70000)] sim_lo = sim_lo.reset_index().set_index(['blockHeight', 'crankNum']) sim_lo = sim_lo.assign(rate=sim_lo.compute / sim_lo.dur) sim_lo[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4)); sim_lo[['compute', 'computeInBlock', 'computeInSimBlk', 'dur','durationInBlock', 'durationInSimBlk', 'rate']].describe() sim_hi = df[df.index >= 250000] sim_hi = sim_hi.reset_index().set_index(['blockHeight', 'crankNum']) sim_hi = sim_hi.assign(rate=sim_hi.compute / sim_hi.dur) sim_hi[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4)); sim_hi[['compute', 'computeInBlock', 'computeInSimBlk', 'dur','durationInBlock', 'durationInSimBlk', 'rate']].describe() # + rate_lo_median = 1.738564e+06 rate_hi_median = 4.711452e+05 round(rate_lo_median / rate_hi_median, 1) # - # ## Latency df['delay'] = df.bkSim - df.blockHeight df[['delay']].describe() df[['durationInBlock', 'durationInSimBlk', 'delay']].plot(figsize=(12, 4)) df.sort_values('delay', ascending=False).head(50) # ## Zoom in on the X axis 103200 and 105500 # + _zoom = df.loc[103200:105500] _zoom = _zoom.reset_index().set_index(['blockHeight', 'crankNum']) _zoom[['computeInBlock', 'computeInSimBlk']].plot(figsize=(12, 4), rot=-75); # - x = _zoom.reset_index() g = x.groupby('bkSim') x = pd.concat([ g[['blockHeight']].min(), g[['compute']].sum(), g[['dur']].sum() ]) x = x.assign(delay=x.index - x.blockHeight) x x[['compute', 'dur', 'delay']].plot(subplots=True, figsize=(15, 9)) _zoom[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4), rot=-75); (df.bkSim - df.blockHeight).describe() (df.bkSim - df.blockHeight).hist(figsize=(10, 5), bins=72, log=True) # ## Elapsed time* on the X axis # # *estimated as cumulative crank duration _zoom = df.loc[103273:104400].copy() # _zoom = df _zoom['t'] = _zoom.dur.cumsum() _zoom.set_index('t')[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4), rot=-75); # ### Detailed Data _zoom.groupby('bkSim').apply(lambda g: g.head(10))[50:100][[ 'dur', 't', 'durationInSimBlk', 'durationInBlock', 'compute', 'computeInSimBlk', 'computeInBlock', 'blockHeight', 'delay' ]] df.loc[103200:105500][['delay']].plot() x = pd.read_sql(''' select * from j_delivery where crankNum between 103200 and 105500 and file_id = 3288529541296525 ''', _db4) x show_times(x[x.index.isin([x.index.min(), x.index.max()])])[['crankNum', 'blockHeight', 'blockTime']] x.blockHeight.max() - x.blockHeight.min() x.blockHeight.describe() x[x.compute > 1000000].groupby('method')[['compute', 'dur']].aggregate(['count', 'median', 'mean']) x = pd.read_sql(''' select * from t_delivery where method = 'fromBridge' and blockHeight between 68817 and 69707 and file_id = 3288529541296525 ''', _db4) x _db4.execute(''' create index if not exists slog_entry_bk_ix on slog_entry(blockHeight) '''); _db4.execute('drop index if exists slog_entry_ty_ix on slog_entry'); # + def bank_trace(db, limit=250, file_id=3288529541296525, bk_lo=68817, bk_hi=69707): df = pd.read_sql( ''' with d as ( select file_id, run_line_lo , line , blockHeight , blockTime , time , crankNum , cast(substr(json_unquote(json_extract(record, '$.vatID')), 2) as int) vatID , coalesce(cast(json_extract(record, '$.deliveryNum') as int), -1) deliveryNum , json_extract(record, '$.kd') kd from slog_entry e where blockHeight between %(bk_lo)s and %(bk_hi)s and file_id = %(file_id)s and type = 'deliver' limit %(limit)s ), detail as ( select d.* , json_unquote(json_extract(d.kd, '$[0]')) tag , json_unquote(json_extract(d.kd, '$[1]')) target , json_unquote(json_extract(d.kd, '$[2].method')) method , json_length(json_unquote(json_extract(d.kd, '$[2].args.body')), '$[1].updated') updated from d ) select blockHeight, blockTime, crankNum, vatID, deliveryNum , tag , case when tag = 'message' then target else null end target , method, updated , time -- validator-specific: file_id, run_line_lo, line, time from detail -- where method = 'fromBridge' order by blockHeight, crankNum ''', db, params=dict(limit=limit, file_id=file_id, bk_lo=bk_lo, bk_hi=bk_hi)) return df # x1 = bank_trace(_db4, bk_hi=68817 + 100) # x2 = bank_trace(_db4, bk_lo=69707 - 100) # x = pd.concat([x1, x2]) x = bank_trace(_db4, limit=1000) show_times(x) # - x.updated.describe() x1 = x[~x.updated.isnull()] color = np.where(x1.vatID == 1, 'blue', 'red') show_times(x1).plot.scatter(x='time', y='updated', color=color, figsize=(10, 4), alpha=0.45, title='Accounts Updated per delivery'); # + import json def notifer_traffic(df): kd = df.record.apply(lambda txt: json.loads(txt)['kd']) dt = kd.apply(lambda k: k[0]) method = kd.apply(lambda k: k[2].get('method') if k[0] == 'message' else None) body = kd.apply(lambda k: k[2].get('args', {}).get('body') if k[0] == 'message' else None) body = body.apply(lambda v: json.loads(v) if v else None) updated = body.apply(lambda b: len(b[1].get('updated')) if b else None) # time = pd.as_datetime(df.time.dt.time) df = df.assign(dt=dt, method=method, body=body, updated=updated) dur = df.time.diff() return df.assign(dur=dur) notifer_traffic(show_times(x2)).drop(columns=['file_id', 'run_line_lo', 'line', 'record', 'body']) # - show_times(x2) x2.record[0] len(x2.record[0]) # + import json r = json.loads(x2.record[0]) body = r['kd'][2]['args']['body'] x = json.loads(body) # print(json.dumps(r, indent=2)) len(x[1]['updated']) # - x2.record[1] x2.record[2]
[ "json.loads", "logging.basicConfig", "slogdata.show_times", "numpy.where", "pandas.read_sql", "logging.getLogger", "slogdata.mysql_socket" ]
[((723, 860), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'stream': 'stderr', 'format': '"""%(asctime)s %(levelname)s: %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(level=logging.INFO, stream=stderr, format=\n '%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')\n", (742, 860), False, 'import logging\n'), ((883, 910), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (900, 910), False, 'import logging\n'), ((2341, 2439), 'pandas.read_sql', 'pd.read_sql', (['"""select * from delivery_compute_16 order by crankNum"""', '_db4'], {'index_col': '"""crankNum"""'}), "('select * from delivery_compute_16 order by crankNum', _db4,\n index_col='crankNum')\n", (2352, 2439), True, 'import pandas as pd\n'), ((6499, 6632), 'pandas.read_sql', 'pd.read_sql', (['"""\nselect *\nfrom j_delivery\nwhere crankNum between 103200 and 105500\nand file_id = 3288529541296525\n"""', '_db4'], {}), '(\n """\nselect *\nfrom j_delivery\nwhere crankNum between 103200 and 105500\nand file_id = 3288529541296525\n"""\n , _db4)\n', (6510, 6632), True, 'import pandas as pd\n'), ((6903, 7063), 'pandas.read_sql', 'pd.read_sql', (['"""\nselect *\nfrom t_delivery\nwhere method = \'fromBridge\'\nand blockHeight between 68817 and 69707\nand file_id = 3288529541296525\n"""', '_db4'], {}), '(\n """\nselect *\nfrom t_delivery\nwhere method = \'fromBridge\'\nand blockHeight between 68817 and 69707\nand file_id = 3288529541296525\n"""\n , _db4)\n', (6914, 7063), True, 'import pandas as pd\n'), ((8925, 8938), 'slogdata.show_times', 'show_times', (['x'], {}), '(x)\n', (8935, 8938), False, 'from slogdata import mysql_socket, show_times\n'), ((9002, 9040), 'numpy.where', 'np.where', (['(x1.vatID == 1)', '"""blue"""', '"""red"""'], {}), "(x1.vatID == 1, 'blue', 'red')\n", (9010, 9040), True, 'import numpy as np\n'), ((9997, 10011), 'slogdata.show_times', 'show_times', (['x2'], {}), '(x2)\n', (10007, 10011), False, 'from slogdata import mysql_socket, show_times\n'), ((10067, 10091), 'json.loads', 'json.loads', (['x2.record[0]'], {}), '(x2.record[0])\n', (10077, 10091), False, 'import json\n'), ((10130, 10146), 'json.loads', 'json.loads', (['body'], {}), '(body)\n', (10140, 10146), False, 'import json\n'), ((2140, 2188), 'pandas.read_sql', 'pd.read_sql', (['f"""select count(*) from {table}"""', 'db'], {}), "(f'select count(*) from {table}', db)\n", (2151, 2188), True, 'import pandas as pd\n'), ((2231, 2280), 'pandas.read_sql', 'pd.read_sql', (['f"""select * from {table} limit 5"""', 'db'], {}), "(f'select * from {table} limit 5', db)\n", (2242, 2280), True, 'import pandas as pd\n'), ((1100, 1137), 'slogdata.mysql_socket', 'mysql_socket', (['database', 'create_engine'], {}), '(database, create_engine)\n', (1112, 1137), False, 'from slogdata import mysql_socket, show_times\n'), ((1306, 1404), 'pandas.read_sql', 'pd.read_sql', (['"""\nselect *\nfrom slog_run\nwhere parent = \'Provalidator\'\nlimit 10\n"""', '_db4'], {}), '(\n """\nselect *\nfrom slog_run\nwhere parent = \'Provalidator\'\nlimit 10\n""", _db4\n )\n', (1317, 1404), True, 'import pandas as pd\n'), ((9041, 9055), 'slogdata.show_times', 'show_times', (['x1'], {}), '(x1)\n', (9051, 9055), False, 'from slogdata import mysql_socket, show_times\n'), ((9909, 9923), 'slogdata.show_times', 'show_times', (['x2'], {}), '(x2)\n', (9919, 9923), False, 'from slogdata import mysql_socket, show_times\n'), ((9350, 9365), 'json.loads', 'json.loads', (['txt'], {}), '(txt)\n', (9360, 9365), False, 'import json\n'), ((9617, 9630), 'json.loads', 'json.loads', (['v'], {}), '(v)\n', (9627, 9630), False, 'import json\n')]
#! /usr/bin/env python3 # # Copyright 2019 Garmin Ltd. or its subsidiaries # # SPDX-License-Identifier: Apache-2.0 import os import sys import glob import re from scipy import stats import numpy THIS_DIR = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(THIS_DIR, 'poky', 'scripts', 'lib')) from buildstats import BuildStats, diff_buildstats, taskdiff_fields, BSVerDiff ICECREAM_TASKS = ('do_compile', 'do_compile_kernelmodules', 'do_configure', 'do_install') VALUES = ('cputime', 'walltime') def sum_task_totals(bs): d = {} for recipe_data in bs.values(): for name, bs_task in recipe_data.tasks.items(): for val_type in VALUES: val = getattr(bs_task, val_type) key = (name, val_type) if name not in ICECREAM_TASKS: key = ('other', val_type) d.setdefault(key, 0) d[key] += val key = ('overall', val_type) d.setdefault(key, 0) d[key] += val return d def get_elapsed(p): elapsed = None cpu = None with open(os.path.join(p, 'build_stats'), 'r') as f: for l in f: m = re.match(r'Elapsed time: (?P<elapsed>[\d.]+) ', l) if m is not None: elapsed = float(m.group('elapsed')) continue m = re.match(r'CPU usage: (?P<cpu>[\d.]+)%', l) if m is not None: cpu = float(m.group('cpu')) / 100 if elapsed is None: raise Exception('Elapsed time not found for %s' % p) if cpu is None: raise Exception('CPU usage not found for %s' % p) return (elapsed, cpu) def pooled_stdev(a_std_dev, b_std_dev): return numpy.sqrt((a_std_dev**2 + b_std_dev**2)/2) def write_elapsed(): with open(os.path.join(THIS_DIR, 'stats', 'elapsed.csv'), 'w') as f: f.write('Build,Elapsed without Icecream,Elapsed with Icecream,CPU usage without Icecream,CPU usage with Icecream\n') elapsed_combined_without = [] elapsed_combined_with = [] cpu_combined_without = [] cpu_combined_with = [] for p in glob.glob(os.path.join(THIS_DIR, 'stats', 'build*')): without_elapsed, without_cpu = get_elapsed(os.path.join(p, 'without-icecream')) with_elapsed, with_cpu = get_elapsed(os.path.join(p, 'with-icecream')) elapsed_combined_without.append(without_elapsed) elapsed_combined_with.append(with_elapsed) cpu_combined_without.append(without_cpu) cpu_combined_with.append(with_cpu) f.write('%s,%f,%f,%f,%f\n' % (os.path.basename(p), without_elapsed, with_elapsed, without_cpu, with_cpu)) f.write('\n') f.write(',Average without Icecream (s),Without Icecream std dev,Average with Icecream (s),With Icecream std dev,p-value,Percent Change,Percent Change std dev\n') average_without = numpy.average(elapsed_combined_without) average_with = numpy.average(elapsed_combined_with) without_std_dev = numpy.std(elapsed_combined_without) with_std_dev = numpy.std(elapsed_combined_with) change = (average_with - average_without) / average_without pooled_std_dev = pooled_stdev(without_std_dev, with_std_dev) / average_without _, p = stats.ttest_rel(elapsed_combined_without, elapsed_combined_with) f.write('Elapsed Time,%f,%f,%f,%f,%e,%.2f,%f\n' % ( average_without, without_std_dev, average_with, with_std_dev, p, change, pooled_std_dev)) f.write('\n') f.write(',Average without Icecream,Without Icecream std dev,Average with Icecream,With Icecream std dev,p-value,Delta\n') average_without = numpy.average(cpu_combined_without) average_with = numpy.average(cpu_combined_with) without_std_dev = numpy.std(cpu_combined_without) with_std_dev = numpy.std(cpu_combined_with) delta = average_with - average_without _, p = stats.ttest_rel(cpu_combined_without, cpu_combined_with) f.write('CPU Usage,%f,%f,%f,%f,%e,%.2f\n' % ( average_without, without_std_dev, average_with, with_std_dev, p, delta)) def write_tasks(): with open(os.path.join(THIS_DIR, 'stats', 'raw.csv'), 'w') as f: combined_with = {} combined_without = {} f.write('Task,Attribute,Build,Without Icecream,With Icecream\n') for p in glob.glob(os.path.join(THIS_DIR, 'stats', 'build*')): without_stats = BuildStats.from_dir(os.path.join(p, 'without-icecream')) with_stats = BuildStats.from_dir(os.path.join(p, 'with-icecream')) without_d = sum_task_totals(without_stats) with_d = sum_task_totals(with_stats) for k in without_d.keys(): without_val = without_d[k] with_val = with_d[k] f.write("%s,%s,%s,%f,%f\n" % (k[0], k[1], os.path.basename(p), without_val, with_val)) combined_with.setdefault(k, []).append(with_val) combined_without.setdefault(k, []).append(without_val) with open(os.path.join(THIS_DIR, 'stats', 'totals.csv'), 'w') as f: f.write('Task,Attribute,Without Icecream,Without Std dev,With Icecream,With Std dev,p-value,Percent Change,Percent Change Std Dev\n') for k in combined_without.keys(): without_avg = numpy.average(combined_without[k]) with_avg = numpy.average(combined_with[k]) without_std_dev = numpy.std(combined_without[k]) with_std_dev = numpy.std(combined_with[k]) change = (with_avg - without_avg) / without_avg pooled_std_dev = pooled_stdev(without_std_dev, with_std_dev) / without_avg _, p = stats.ttest_rel(combined_without[k], combined_with[k]) f.write("%s,%s,%f,%f,%f,%f,%e,%.2f,%f\n" % (k[0], k[1], without_avg, without_std_dev, with_avg, with_std_dev, p, change, pooled_std_dev)) def main(): write_tasks() write_elapsed() if __name__ == "__main__": main() # exit on any error and unset variables #set -u -e -o pipefail #THIS_DIR="$(readlink -f $(dirname $0))" # #TASKS="do_configure do_compile do_install do_package_write_rpm" #ATTRS="cputime walltime" # #echo "Task,Attribute,Build,Without Icecream,With Icecream" > $THIS_DIR/stats/stat.csv # #for d in $THIS_DIR/stats/build*; do # for task in $TASKS; do # for attr in $ATTRS; do # VAL="$($THIS_DIR/poky/scripts/buildstats-diff --only-task $task --diff-attr $attr $d/without-icecream $d/with-icecream | tail -1)" # echo "$task,$attr,$d,$(echo $VAL | sed 's/.*(\([0-9.]\+\)s).*(\([0-9.]\+\)s).*/\1,\2/g')" >> $THIS_DIR/stats/stat.csv # done # done #done
[ "numpy.average", "os.path.basename", "numpy.std", "scipy.stats.ttest_rel", "os.path.realpath", "re.match", "os.path.join", "numpy.sqrt" ]
[((224, 250), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (240, 250), False, 'import os\n'), ((268, 316), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""poky"""', '"""scripts"""', '"""lib"""'], {}), "(THIS_DIR, 'poky', 'scripts', 'lib')\n", (280, 316), False, 'import os\n'), ((1754, 1803), 'numpy.sqrt', 'numpy.sqrt', (['((a_std_dev ** 2 + b_std_dev ** 2) / 2)'], {}), '((a_std_dev ** 2 + b_std_dev ** 2) / 2)\n', (1764, 1803), False, 'import numpy\n'), ((3007, 3046), 'numpy.average', 'numpy.average', (['elapsed_combined_without'], {}), '(elapsed_combined_without)\n', (3020, 3046), False, 'import numpy\n'), ((3070, 3106), 'numpy.average', 'numpy.average', (['elapsed_combined_with'], {}), '(elapsed_combined_with)\n', (3083, 3106), False, 'import numpy\n'), ((3133, 3168), 'numpy.std', 'numpy.std', (['elapsed_combined_without'], {}), '(elapsed_combined_without)\n', (3142, 3168), False, 'import numpy\n'), ((3192, 3224), 'numpy.std', 'numpy.std', (['elapsed_combined_with'], {}), '(elapsed_combined_with)\n', (3201, 3224), False, 'import numpy\n'), ((3395, 3459), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['elapsed_combined_without', 'elapsed_combined_with'], {}), '(elapsed_combined_without, elapsed_combined_with)\n', (3410, 3459), False, 'from scipy import stats\n'), ((3825, 3860), 'numpy.average', 'numpy.average', (['cpu_combined_without'], {}), '(cpu_combined_without)\n', (3838, 3860), False, 'import numpy\n'), ((3884, 3916), 'numpy.average', 'numpy.average', (['cpu_combined_with'], {}), '(cpu_combined_with)\n', (3897, 3916), False, 'import numpy\n'), ((3943, 3974), 'numpy.std', 'numpy.std', (['cpu_combined_without'], {}), '(cpu_combined_without)\n', (3952, 3974), False, 'import numpy\n'), ((3998, 4026), 'numpy.std', 'numpy.std', (['cpu_combined_with'], {}), '(cpu_combined_with)\n', (4007, 4026), False, 'import numpy\n'), ((4089, 4145), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['cpu_combined_without', 'cpu_combined_with'], {}), '(cpu_combined_without, cpu_combined_with)\n', (4104, 4145), False, 'from scipy import stats\n'), ((1132, 1162), 'os.path.join', 'os.path.join', (['p', '"""build_stats"""'], {}), "(p, 'build_stats')\n", (1144, 1162), False, 'import os\n'), ((1211, 1261), 're.match', 're.match', (['"""Elapsed time: (?P<elapsed>[\\\\d.]+) """', 'l'], {}), "('Elapsed time: (?P<elapsed>[\\\\d.]+) ', l)\n", (1219, 1261), False, 'import re\n'), ((1386, 1429), 're.match', 're.match', (['"""CPU usage: (?P<cpu>[\\\\d.]+)%"""', 'l'], {}), "('CPU usage: (?P<cpu>[\\\\d.]+)%', l)\n", (1394, 1429), False, 'import re\n'), ((1834, 1880), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""stats"""', '"""elapsed.csv"""'], {}), "(THIS_DIR, 'stats', 'elapsed.csv')\n", (1846, 1880), False, 'import os\n'), ((2184, 2225), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""stats"""', '"""build*"""'], {}), "(THIS_DIR, 'stats', 'build*')\n", (2196, 2225), False, 'import os\n'), ((4343, 4385), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""stats"""', '"""raw.csv"""'], {}), "(THIS_DIR, 'stats', 'raw.csv')\n", (4355, 4385), False, 'import os\n'), ((4555, 4596), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""stats"""', '"""build*"""'], {}), "(THIS_DIR, 'stats', 'build*')\n", (4567, 4596), False, 'import os\n'), ((5243, 5288), 'os.path.join', 'os.path.join', (['THIS_DIR', '"""stats"""', '"""totals.csv"""'], {}), "(THIS_DIR, 'stats', 'totals.csv')\n", (5255, 5288), False, 'import os\n'), ((5511, 5545), 'numpy.average', 'numpy.average', (['combined_without[k]'], {}), '(combined_without[k])\n', (5524, 5545), False, 'import numpy\n'), ((5569, 5600), 'numpy.average', 'numpy.average', (['combined_with[k]'], {}), '(combined_with[k])\n', (5582, 5600), False, 'import numpy\n'), ((5631, 5661), 'numpy.std', 'numpy.std', (['combined_without[k]'], {}), '(combined_without[k])\n', (5640, 5661), False, 'import numpy\n'), ((5689, 5716), 'numpy.std', 'numpy.std', (['combined_with[k]'], {}), '(combined_with[k])\n', (5698, 5716), False, 'import numpy\n'), ((5883, 5937), 'scipy.stats.ttest_rel', 'stats.ttest_rel', (['combined_without[k]', 'combined_with[k]'], {}), '(combined_without[k], combined_with[k])\n', (5898, 5937), False, 'from scipy import stats\n'), ((2283, 2318), 'os.path.join', 'os.path.join', (['p', '"""without-icecream"""'], {}), "(p, 'without-icecream')\n", (2295, 2318), False, 'import os\n'), ((2369, 2401), 'os.path.join', 'os.path.join', (['p', '"""with-icecream"""'], {}), "(p, 'with-icecream')\n", (2381, 2401), False, 'import os\n'), ((4647, 4682), 'os.path.join', 'os.path.join', (['p', '"""without-icecream"""'], {}), "(p, 'without-icecream')\n", (4659, 4682), False, 'import os\n'), ((4729, 4761), 'os.path.join', 'os.path.join', (['p', '"""with-icecream"""'], {}), "(p, 'with-icecream')\n", (4741, 4761), False, 'import os\n'), ((2664, 2683), 'os.path.basename', 'os.path.basename', (['p'], {}), '(p)\n', (2680, 2683), False, 'import os\n'), ((5046, 5065), 'os.path.basename', 'os.path.basename', (['p'], {}), '(p)\n', (5062, 5065), False, 'import os\n')]
import time import threading import numpy as np from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors from yolo_utils import yolo_eval from priority_queue import PriorityQueue class YOLOv3Thread(threading.Thread): def __init__(self, runner: "Runner", deque_input, lock_input, deque_output, lock_output, thread_name): super(YOLOv3Thread, self).__init__(name=thread_name) self.runner = runner self.deque_input = deque_input self.lock_input = lock_input self.deque_output = deque_output self.lock_output = lock_output self.class_names = load_classes('./model_data/adas_classes.txt') self.colors = generate_colors(self.class_names) def set_input_image(self, input_run, frame, size): w, h = size img = preprocess_one_image_fn(frame, w, h) input_run[0, ...] = img.reshape((h, w, 3)) def run(self): # Get input/output tensors and dims inputTensors = self.runner.get_input_tensors() outputTensors = self.runner.get_output_tensors() input_ndim = tuple(inputTensors[0].dims) # (1, 256, 512, 3) result0_ndim = tuple(outputTensors[0].dims) # (1, 8, 16, 40) result1_ndim = tuple(outputTensors[1].dims) # (1, 16, 32, 40) result2_ndim = tuple(outputTensors[2].dims) # (1, 32, 64, 40) result3_ndim = tuple(outputTensors[3].dims) # (1, 64, 126, 40) # input/output data define input_data = [np.empty(input_ndim, dtype=np.float32, order="C")] result0 = np.empty(result0_ndim, dtype=np.float32, order="C") result1 = np.empty(result1_ndim, dtype=np.float32, order="C") result2 = np.empty(result2_ndim, dtype=np.float32, order="C") result3 = np.empty(result3_ndim, dtype=np.float32, order="C") results = [result0, result1, result2, result3] # get input width, height for preprocess input_shape = (input_ndim[2], input_ndim[1]) while True: self.lock_input.acquire() # empy if not self.deque_input: self.lock_input.release() continue else: # get input frame from input frames queue data_from_deque = self.deque_input[0] self.deque_input.popleft() self.lock_input.release() # Init input image to input buffers img = data_from_deque['img'] idx = data_from_deque['idx'] start_time = data_from_deque['time'] self.set_input_image(input_data[0], img, input_shape) # invoke the running of DPU for yolov3 """Benchmark DPU FPS performance over Vitis AI APIs `execute_async()` and `wait()`""" # (self: vart.Runner, arg0: List[buffer], arg1: List[buffer]) -> Tuple[int, int] job_id = self.runner.execute_async(input_data, results) self.runner.wait(job_id) self.post_process(img, results, input_shape) self.lock_output.acquire() img_info = PriorityQueue(idx, img, start_time) self.deque_output.append(img_info) self.deque_output.sort() self.lock_output.release() def post_process(self, image, results, input_ndim): """Xilinx ADAS detction model: YOLOv3 Name: yolov3_adas_pruned_0_9 Input shape: (256, 512, 3) Classe: 3 Anchor: 5, for detail please see `yolo_utils.py` Outputs: 4 outputs_node: { "layer81_conv", "layer93_conv", "layer105_conv", "layer117_conv", } """ image_shape = (image.shape[1], image.shape[0]) # (w, h) scores, boxes, classes = yolo_eval( results, image_shape=image_shape, input_ndim=input_ndim, classes=3, score_threshold=0.5, iou_threshold=0.7) # print("detection:") # for i in range(scores.shape[0]): # print("\t{}, {}, {}".format( # self.class_names[int(classes[i])], scores[i], boxes[i] # )) image = draw_outputs(image, (scores, boxes, classes), self.class_names, self.colors)
[ "common.preprocess_one_image_fn", "common.draw_outputs", "yolo_utils.yolo_eval", "priority_queue.PriorityQueue", "numpy.empty", "common.generate_colors", "common.load_classes" ]
[((651, 696), 'common.load_classes', 'load_classes', (['"""./model_data/adas_classes.txt"""'], {}), "('./model_data/adas_classes.txt')\n", (663, 696), False, 'from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors\n'), ((719, 752), 'common.generate_colors', 'generate_colors', (['self.class_names'], {}), '(self.class_names)\n', (734, 752), False, 'from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors\n'), ((843, 879), 'common.preprocess_one_image_fn', 'preprocess_one_image_fn', (['frame', 'w', 'h'], {}), '(frame, w, h)\n', (866, 879), False, 'from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors\n'), ((1587, 1638), 'numpy.empty', 'np.empty', (['result0_ndim'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(result0_ndim, dtype=np.float32, order='C')\n", (1595, 1638), True, 'import numpy as np\n'), ((1657, 1708), 'numpy.empty', 'np.empty', (['result1_ndim'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(result1_ndim, dtype=np.float32, order='C')\n", (1665, 1708), True, 'import numpy as np\n'), ((1727, 1778), 'numpy.empty', 'np.empty', (['result2_ndim'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(result2_ndim, dtype=np.float32, order='C')\n", (1735, 1778), True, 'import numpy as np\n'), ((1797, 1848), 'numpy.empty', 'np.empty', (['result3_ndim'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(result3_ndim, dtype=np.float32, order='C')\n", (1805, 1848), True, 'import numpy as np\n'), ((3831, 3953), 'yolo_utils.yolo_eval', 'yolo_eval', (['results'], {'image_shape': 'image_shape', 'input_ndim': 'input_ndim', 'classes': '(3)', 'score_threshold': '(0.5)', 'iou_threshold': '(0.7)'}), '(results, image_shape=image_shape, input_ndim=input_ndim, classes=\n 3, score_threshold=0.5, iou_threshold=0.7)\n', (3840, 3953), False, 'from yolo_utils import yolo_eval\n'), ((4246, 4322), 'common.draw_outputs', 'draw_outputs', (['image', '(scores, boxes, classes)', 'self.class_names', 'self.colors'], {}), '(image, (scores, boxes, classes), self.class_names, self.colors)\n', (4258, 4322), False, 'from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors\n'), ((1518, 1567), 'numpy.empty', 'np.empty', (['input_ndim'], {'dtype': 'np.float32', 'order': '"""C"""'}), "(input_ndim, dtype=np.float32, order='C')\n", (1526, 1567), True, 'import numpy as np\n'), ((3120, 3155), 'priority_queue.PriorityQueue', 'PriorityQueue', (['idx', 'img', 'start_time'], {}), '(idx, img, start_time)\n', (3133, 3155), False, 'from priority_queue import PriorityQueue\n')]
import warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.examples.tutorials import mnist import numpy as np import os import random from scipy import misc import time import sys #from draw import viz_data, x, A, B, read_n, T #from drawCopy1 import viz_data, x, A, B, read_n, T #from draw_eric import viz_data, x, A, B, read_n, T from draw_eric_rewrite_filterbank import viz_data, x, A, B, read_n, T #import load_input #import load_trace sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess = tf.InteractiveSession(config=sess_config) saver = tf.train.Saver() #data = load_trace.TraceData() #data.get_test(1) #data = load_input.InputData() #data.get_test(1) data = mnist.input_data.read_data_sets("mnist", one_hot=True).test def random_image(): """Get a random image from test set.""" num_images = len(data.images) i = random.randrange(num_images) image_ar = np.array(data.images[i]).reshape(A, B) return image_ar#, data.labels[i] def load_checkpoint(it): #path = "model_runs/blob_classification" #saver.restore(sess, "%s/drawmodel_%d.ckpt" % (path, it)) #saver.restore(sess, "trace_draw/drawmodel.ckpt") saver.restore(sess, "model_runs/rewrite_filterbank/drawmodel.ckpt") # saver.restore(sess, "model_runs/rewrite_filterbank/drawmodel.ckpt") last_image = None def read_img(it, new_image): batch_size = 1 out = dict() global last_image if new_image or last_image is None: last_image = random_image() #img, label = last_image img = last_image flipped = np.flip(img.reshape(A, B), 0) out = { "img": flipped, #"label": label, "rects": list(), "rs": list(), } load_checkpoint(it) cs = sess.run(viz_data, feed_dict={x: img.reshape(batch_size, A*B)}) for i in range(len(cs)): print('cs[i]["stats"]: ', cs[i]["stats"]) #print(len(cs[i]["r"])) out["rs"].append(np.flip(cs[i]["r"].reshape(read_n, read_n), 0)) out["rects"].append(stats_to_rect(cs[i]["stats"])) return out def read_img2(it, new_image): """Read image with rewritten filterbanks.""" batch_size = 1 out = dict() global last_image if new_image or last_image is None: last_image = random_image() img = last_image flipped = np.flip(img.reshape(A, B), 0) out = { "img": flipped, "dots": list(), } load_checkpoint(it) cs = sess.run(viz_data, feed_dict={x: img.reshape(batch_size, A*B)}) for i in range(len(cs)): mu_x = list(cs[i]["r_mu_x"]) mu_y = list(cs[i]["r_mu_y"]) delta = list(cs[i]["r_delta"]) gx_ = cs[i]["r_gx_"] gy_ = cs[i]["r_gy_"] # sigma2 = list(cs[i]["r_sigma2"]) # print("glimpse: ", i) # print("gx_: ") print(gx_) print("gy_: ") print(gy_) # print("sigma2: ") # print(sigma2) # print("delta: ") print(delta) print("") out["dots"].append(list_to_dots(mu_x, mu_y)) return out def write_img(it, new_image): batch_size = 1 out = dict() global last_image if new_image or last_image is None: last_image = random_image() #img, label = last_image img = last_image flipped = np.flip(img.reshape(A, B), 0) out = { #"label": label, "rects": list(), "c": list(), } load_checkpoint(it) cs = sess.run(viz_data, feed_dict={x: img.reshape(batch_size, A*B)}) for i in range(len(cs)): out["c"].append(np.flip(cs[i]["c"].reshape(A, B), 0)) out["rects"].append(stats_to_rect(cs[i]["w_stats"])) #print('cs[i]["stats"]: ') #print(cs[i]["stats"]) #print('stats_to_rect[i]["stats"]: ') #print(stats_to_rect(cs[i]["stats"])) return out def write_img2(it, new_image): """Write image with rewritten filterbanks.""" batch_size = 1 out = dict() global last_image if new_image or last_image is None: last_image = random_image() img = last_image flipped = np.flip(img.reshape(A, B), 0) out = { "img": flipped, "dots": list(), "c": list(), } load_checkpoint(it) cs = sess.run(viz_data, feed_dict={x: img.reshape(batch_size, A*B)}) for i in range(len(cs)): out["c"].append(np.flip(cs[i]["c"].reshape(A, B), 0)) mu_x = list(cs[i]["w_mu_x"]) mu_y = list(cs[i]["w_mu_y"]) # delta = list(cs[i]["w_delta"]) out["dots"].append(list_to_dots(mu_x, mu_y)) # gx_ = cs[i]["w_gx_"] # gy_ = cs[i]["w_gy_"] # sigma2 = list(cs[i]["w_sigma2"]) # # print("glimpse: ", i) # # print("gx_: ") # print(gx_) # # print("gy_: ") # print(gy_) # # print("sigma2: ") # print(sigma2) # # print("delta: ") # print(delta) # print("") return out def stats_to_rect(stats): """Draw attention window based on gx, gy, and delta.""" gx, gy, delta = stats minY = A - gy + read_n/2.0 * delta maxY = B - gy - read_n/2.0 * delta minX = gx - read_n/2.0 * delta maxX = gx + read_n/2.0 * delta if minX < 1: minX = 1 if maxY < 1: maxY = 1 if maxX > A - 1: maxX = A - 1 if minY > B - 1: minY = B - 1 return dict(top=[int(minY)], bottom=[int(maxY)], left=[int(minX)], right=[int(maxX)]) def list_to_dots(mu_x, mu_y): """Draw filterbank based on mu_x and mu_y.""" mu_x_list = mu_x * read_n mu_y_list = [val for val in mu_y for _ in range(0, read_n)] return dict(mu_x_list=mu_x_list, mu_y_list=mu_y_list)
[ "tensorflow.train.Saver", "warnings.filterwarnings", "tensorflow.examples.tutorials.mnist.input_data.read_data_sets", "tensorflow.ConfigProto", "random.randrange", "numpy.array", "tensorflow.InteractiveSession" ]
[((16, 49), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (39, 49), False, 'import warnings\n'), ((486, 502), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (500, 502), True, 'import tensorflow as tf\n'), ((554, 595), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'config': 'sess_config'}), '(config=sess_config)\n', (575, 595), True, 'import tensorflow as tf\n'), ((605, 621), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (619, 621), True, 'import tensorflow as tf\n'), ((730, 784), 'tensorflow.examples.tutorials.mnist.input_data.read_data_sets', 'mnist.input_data.read_data_sets', (['"""mnist"""'], {'one_hot': '(True)'}), "('mnist', one_hot=True)\n", (761, 784), False, 'from tensorflow.examples.tutorials import mnist\n'), ((898, 926), 'random.randrange', 'random.randrange', (['num_images'], {}), '(num_images)\n', (914, 926), False, 'import random\n'), ((942, 966), 'numpy.array', 'np.array', (['data.images[i]'], {}), '(data.images[i])\n', (950, 966), True, 'import numpy as np\n')]
import numpy as np import mpnum as mp import tmps from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state import time from scipy.special import factorial import math def get_spin_initial_state(theta, mpa_type='mps'): """ Returns the initial state for the spin impurity: psi_0 = cos(theta) |1> + sin(theta) |0> in the desired tensor network form (mps, mpo, pmps) """ ground = np.array([0.0, np.sin(theta)]) excited = np.array([np.cos(theta), 0.0]) return convert.to_mparray(ground + excited, mpa_type) def get_spin_boson_0T_chain_initial_state(theta, bath_local_dim, nof_coefficients): """ Returns the full initial state (vacuum state) for 0T chain with nof_coefficients sites and a local dimension of bath_local_dim. """ sys_psi_0 = get_spin_initial_state(theta) bath_psi_0 = broadcast_number_ground_state(bath_local_dim, nof_coefficients) return mp.chain([sys_psi_0, bath_psi_0]) def get_spin_boson_0T_star_initial_state(theta, system_index, bath_local_dim, nof_coefficients): """ Returns the full initial state (vacuum state) for 0T star with nof_coefficients sites and a local dimension of bath_local_dim. The impurity is located at system_index. """ sys_psi_0 = get_spin_initial_state(theta) # Initial states of the bath sites left and right of the system: left_bath_psi_0, right_bath_psi_0 = tmps.utils.broadcast_number_ground_state(bath_local_dim, system_index), \ tmps.utils.broadcast_number_ground_state(bath_local_dim, nof_coefficients - system_index) return mp.chain([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0 is not None else [sys_psi_0, right_bath_psi_0]) def _compute_finiteT_chain_residual(psi_0, mpa_type, dims): """ Returns residual of the finite-temperature initial state of the bath. List of populations in the highest energy state of each mode """ res = [] for index, dim in enumerate(dims): res.append(np.real(state_reduction_as_ndarray(psi_0, mpa_type, startsite=index)[dim - 1, dim - 1])) return res def get_spin_boson_finiteT_chain_initial_state(theta, beta, h_site, h_bond, bath_local_dim, nof_coefficients, mpa_type='pmps', nof_steps=None, state_compression_kwargs=None, op_compression_kwargs=None, second_order_trotter=False, psi_0_compression_kwargs=None, residual=True, force_pmps_evolution=True, verbose=True): """ Computes the initial state for the finite temperature spin_boson model in chain geometry. The bath state is computed via imaginary time evolution. :param theta: Spin parameter for psi_0 = cos(theta) |1> + sin(theta) |0> :param beta: Inverse temperature of the bath :param h_site: Bath local Hamiltonian list :param h_bond: Bath nearest neighbor coupling Hamiltonian list :param bath_local_dim: Local dimension of the bath :param nof_coefficients: Number of bath sites :param mpa_type: MPS type of the chain (mps, mpo, pmps) :param nof_steps: Number of steps for the imaginary time evolution :param state_compression_kwargs: Keyword args for the imaginary time evolution compression :param op_compression_kwargs: Keyword args for the imaginary time evolution operator pre-compression :param second_order_trotter: Set True for second order trotter based imaginary time evolution :param psi_0_compression_kwargs: Keyword args for the imaginary time evolution initial state compression :param residual: Set True to compute List of populations in the highest energy state of each bath mode. :param force_pmps_evolution: Set True to always use pmps for the imaginary time evolution :param verbose: Set true to make imaginary time evolution verbose :return: Initial state of system and bath as mps, mpo or pmps, info dict """ assert mpa_type == 'mpo' or mpa_type == 'pmps' if nof_steps is None: nof_steps = int(beta*100) t0_wall = time.clock() t0_proc = time.perf_counter() if isinstance(bath_local_dim, int): dims = [bath_local_dim] * nof_coefficients else: raise AssertionError('Unsupported data type for fixed_dim') psi_0, info = tmps.chain.thermal.from_hamiltonian(beta, mpa_type, h_site, h_bond, nof_steps=nof_steps, state_compression_kwargs=state_compression_kwargs, op_compression_kwargs=op_compression_kwargs, second_order_trotter=second_order_trotter, psi_0_compression_kwargs=psi_0_compression_kwargs, force_pmps_evolution=force_pmps_evolution, verbose=verbose) tf_proc = time.perf_counter() - t0_proc tf_wall = time.clock() - t0_wall info['walltime'] = tf_wall info['cpu_time'] = tf_proc info['bath_dims'] = dims if residual: res = _compute_finiteT_chain_residual(psi_0, mpa_type, dims) max_res = np.max(res) info['res'] = res info['max_res'] = max_res else: info['res'] = None info['max_res'] = None print('Finite T ground state residual ', info['res']) print('Finite T ground state max. residual: ', info['max_res']) sys_psi_0 = get_spin_initial_state(theta, mpa_type=mpa_type) return mp.chain([sys_psi_0, psi_0]), info def get_star_local_dims(beta, xi, fixed_dim=None, high_energy_pop=1e-20, sitewise=False): """ Computes the local dimension for the finite temperature star bath for the spin_boson model. :param beta: Inverse temperature of the bath :param xi: Star geometry bath energies :param fixed_dim: Uses this fixed dimension for the star evolution :param high_energy_pop: Chooses local dimension, such that the population in the highest energy of each bath mode stays below this threshold :param sitewise: If set False the local dimension is chosen uniformly for all sites to be the highest local dimension from the high_energy_pop calculation. :returns: List of bath dimensions """ if fixed_dim is None: dims = [] for xi_i in xi: a = 1 / (np.exp(beta * xi_i) - 1) dims.append(math.ceil(1 / (beta * xi_i) * np.log(1 + 1 / (high_energy_pop * a)))) if sitewise: return dims else: return [np.max(dims)]*len(xi) else: if isinstance(fixed_dim, (list, tuple)): assert len(fixed_dim) == len(xi) return fixed_dim elif isinstance(fixed_dim, int): return [fixed_dim]*len(xi) else: raise AssertionError('Unsupported data type for fixed_dim') def _compute_finite_T_star_residual(beta, xi, dims): """ Returns residual of the finite-temperature initial state of the bath. List of populations in the highest energy state of each mode """ res = [] for xi_i, dim in zip(xi, dims): res.append((np.exp(beta*xi_i) - 1)/(np.exp(beta*xi_i * dim))) return res def get_spin_boson_finiteT_star_initial_state(theta, beta, system_index, xi, mpa_type='pmps', fixed_dim=None, high_energy_pop=1e-20, sitewise=False, residual=True): """ Computes the initial state for the finite temperature spin_boson model in star geometry. The bath state is computed via imaginary time evolution. :param theta: Spin parameter for psi_0 = cos(theta) |1> + sin(theta) |0> :param beta: Inverse temperature of the bath :param system_index: Impurity position in the auxiliary chain :param xi: Star geometry bath energies :param mpa_type: Type: mps, mpo or pmps of the initial state :param fixed_dim: Uses this fixed dimension for the star evolution :param high_energy_pop: Chooses local dimension, such that the population in the highest energy of each bath mode stays below this threshold :param sitewise: If set False the local dimension is chosen uniformly for all sites to be the highest local dimension from the high_energy_pop calculation. :param residual: Computes list of populations in the highest energy state of each mode :return: Initial state of system and bath as mps, mpo or pmps, info dict """ assert mpa_type == 'mpo' or mpa_type == 'pmps' t0_wall = time.clock() t0_proc = time.perf_counter() dims = get_star_local_dims(beta, xi, fixed_dim=fixed_dim, high_energy_pop=high_energy_pop, sitewise=sitewise) ops = [xi[i] * np.arange(dim) for i, dim in enumerate(dims)] if system_index > 0: left_state = get_thermal_state(beta, mpa_type, ops[:system_index], to_cform=None) right_state = get_thermal_state(beta, mpa_type, ops[system_index:], to_cform=None) else: left_state = None right_state = get_thermal_state(beta, mpa_type, ops, to_cform=None) tf_proc = time.perf_counter() - t0_proc tf_wall = time.clock() - t0_wall info = dict() info['walltime'] = tf_wall info['cpu_time'] = tf_proc info['bath_dims'] = dims if residual: info['res'] = _compute_finite_T_star_residual(beta, xi, dims) info['max_res'] = np.max(info['res']) else: info['res'] = None info['max_res'] = None sys_psi_0 = get_spin_initial_state(theta, mpa_type=mpa_type) return mp.chain([left_state, sys_psi_0, right_state]) if left_state is not None else \ mp.chain([sys_psi_0, right_state]), info def get_boson_boson_0T_chain_initial_state(alpha, nof_coefficients, cutoff_dim): """ Initial state for the Boson-Boson model in chain geometry (see Sec. 4.4.3 of the thesis) :param alpha: accuracy alpha for the impurity coherent state :param nof_coefficients: Number of bath sites :param cutoff_dim: Local dimension of the system and impurity :return: Initial state in MPS form """ pop = lambda x: np.exp(-np.abs(alpha) ** 2 / 2) * alpha ** x / np.sqrt(factorial(x)) sys_psi_0 = convert.to_mparray(pop(np.arange(cutoff_dim)), 'mps') bath_psi_0 = broadcast_number_ground_state(cutoff_dim, nof_coefficients) return mp.chain([sys_psi_0, bath_psi_0]) def get_boson_boson_0T_star_initial_state(alpha, system_index, nof_coefficients, cutoff_dim): """ Initial state for the Boson-Boson model in star geometry (see Sec. 4.4.3 of the thesis) :param alpha: accuracy alpha for the impurity coherent state :param system_index: Index of the impurity in the auxiliary chain :param nof_coefficients: Number of bath sites :param cutoff_dim: Local dimension of the system and impurity :return: Initial state in MPS form """ pop = lambda x: np.exp(-np.abs(alpha) ** 2 / 2) * alpha ** x / np.sqrt(factorial(x, exact=True)) sys_psi_0 = convert.to_mparray(pop(np.arange(cutoff_dim)), 'mps') # Initial states of the bath sites left and right of the system: left_bath_psi_0, right_bath_psi_0 = tmps.utils.broadcast_number_ground_state(cutoff_dim, system_index), \ tmps.utils.broadcast_number_ground_state(cutoff_dim, nof_coefficients - system_index) return mp.chain([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0 is not None else [sys_psi_0, right_bath_psi_0])
[ "scipy.special.factorial", "numpy.abs", "numpy.log", "tmps.utils.state_reduction_as_ndarray", "mpnum.chain", "tmps.utils.convert.to_mparray", "time.perf_counter", "time.clock", "numpy.max", "tmps.chain.thermal.from_hamiltonian", "numpy.sin", "numpy.arange", "numpy.cos", "numpy.exp", "tmps.utils.get_thermal_state", "tmps.utils.broadcast_number_ground_state" ]
[((551, 597), 'tmps.utils.convert.to_mparray', 'convert.to_mparray', (['(ground + excited)', 'mpa_type'], {}), '(ground + excited, mpa_type)\n', (569, 597), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((905, 968), 'tmps.utils.broadcast_number_ground_state', 'broadcast_number_ground_state', (['bath_local_dim', 'nof_coefficients'], {}), '(bath_local_dim, nof_coefficients)\n', (934, 968), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((980, 1013), 'mpnum.chain', 'mp.chain', (['[sys_psi_0, bath_psi_0]'], {}), '([sys_psi_0, bath_psi_0])\n', (988, 1013), True, 'import mpnum as mp\n'), ((1762, 1889), 'mpnum.chain', 'mp.chain', (['([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0 is not\n None else [sys_psi_0, right_bath_psi_0])'], {}), '([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0\n is not None else [sys_psi_0, right_bath_psi_0])\n', (1770, 1889), True, 'import mpnum as mp\n'), ((4398, 4410), 'time.clock', 'time.clock', ([], {}), '()\n', (4408, 4410), False, 'import time\n'), ((4425, 4444), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4442, 4444), False, 'import time\n'), ((4632, 4987), 'tmps.chain.thermal.from_hamiltonian', 'tmps.chain.thermal.from_hamiltonian', (['beta', 'mpa_type', 'h_site', 'h_bond'], {'nof_steps': 'nof_steps', 'state_compression_kwargs': 'state_compression_kwargs', 'op_compression_kwargs': 'op_compression_kwargs', 'second_order_trotter': 'second_order_trotter', 'psi_0_compression_kwargs': 'psi_0_compression_kwargs', 'force_pmps_evolution': 'force_pmps_evolution', 'verbose': 'verbose'}), '(beta, mpa_type, h_site, h_bond,\n nof_steps=nof_steps, state_compression_kwargs=state_compression_kwargs,\n op_compression_kwargs=op_compression_kwargs, second_order_trotter=\n second_order_trotter, psi_0_compression_kwargs=psi_0_compression_kwargs,\n force_pmps_evolution=force_pmps_evolution, verbose=verbose)\n', (4667, 4987), False, 'import tmps\n'), ((9080, 9092), 'time.clock', 'time.clock', ([], {}), '()\n', (9090, 9092), False, 'import time\n'), ((9107, 9126), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9124, 9126), False, 'import time\n'), ((10812, 10871), 'tmps.utils.broadcast_number_ground_state', 'broadcast_number_ground_state', (['cutoff_dim', 'nof_coefficients'], {}), '(cutoff_dim, nof_coefficients)\n', (10841, 10871), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((10883, 10916), 'mpnum.chain', 'mp.chain', (['[sys_psi_0, bath_psi_0]'], {}), '([sys_psi_0, bath_psi_0])\n', (10891, 10916), True, 'import mpnum as mp\n'), ((11983, 12110), 'mpnum.chain', 'mp.chain', (['([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0 is not\n None else [sys_psi_0, right_bath_psi_0])'], {}), '([left_bath_psi_0, sys_psi_0, right_bath_psi_0] if left_bath_psi_0\n is not None else [sys_psi_0, right_bath_psi_0])\n', (11991, 12110), True, 'import mpnum as mp\n'), ((1466, 1536), 'tmps.utils.broadcast_number_ground_state', 'tmps.utils.broadcast_number_ground_state', (['bath_local_dim', 'system_index'], {}), '(bath_local_dim, system_index)\n', (1506, 1536), False, 'import tmps\n'), ((1580, 1673), 'tmps.utils.broadcast_number_ground_state', 'tmps.utils.broadcast_number_ground_state', (['bath_local_dim', '(nof_coefficients - system_index)'], {}), '(bath_local_dim, nof_coefficients -\n system_index)\n', (1620, 1673), False, 'import tmps\n'), ((5363, 5382), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (5380, 5382), False, 'import time\n'), ((5407, 5419), 'time.clock', 'time.clock', ([], {}), '()\n', (5417, 5419), False, 'import time\n'), ((5625, 5636), 'numpy.max', 'np.max', (['res'], {}), '(res)\n', (5631, 5636), True, 'import numpy as np\n'), ((5967, 5995), 'mpnum.chain', 'mp.chain', (['[sys_psi_0, psi_0]'], {}), '([sys_psi_0, psi_0])\n', (5975, 5995), True, 'import mpnum as mp\n'), ((9352, 9420), 'tmps.utils.get_thermal_state', 'get_thermal_state', (['beta', 'mpa_type', 'ops[:system_index]'], {'to_cform': 'None'}), '(beta, mpa_type, ops[:system_index], to_cform=None)\n', (9369, 9420), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((9443, 9511), 'tmps.utils.get_thermal_state', 'get_thermal_state', (['beta', 'mpa_type', 'ops[system_index:]'], {'to_cform': 'None'}), '(beta, mpa_type, ops[system_index:], to_cform=None)\n', (9460, 9511), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((9570, 9623), 'tmps.utils.get_thermal_state', 'get_thermal_state', (['beta', 'mpa_type', 'ops'], {'to_cform': 'None'}), '(beta, mpa_type, ops, to_cform=None)\n', (9587, 9623), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((9638, 9657), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9655, 9657), False, 'import time\n'), ((9682, 9694), 'time.clock', 'time.clock', ([], {}), '()\n', (9692, 9694), False, 'import time\n'), ((9927, 9946), 'numpy.max', 'np.max', (["info['res']"], {}), "(info['res'])\n", (9933, 9946), True, 'import numpy as np\n'), ((11695, 11761), 'tmps.utils.broadcast_number_ground_state', 'tmps.utils.broadcast_number_ground_state', (['cutoff_dim', 'system_index'], {}), '(cutoff_dim, system_index)\n', (11735, 11761), False, 'import tmps\n'), ((11805, 11894), 'tmps.utils.broadcast_number_ground_state', 'tmps.utils.broadcast_number_ground_state', (['cutoff_dim', '(nof_coefficients - system_index)'], {}), '(cutoff_dim, nof_coefficients -\n system_index)\n', (11845, 11894), False, 'import tmps\n'), ((479, 492), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (485, 492), True, 'import numpy as np\n'), ((519, 532), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (525, 532), True, 'import numpy as np\n'), ((9260, 9274), 'numpy.arange', 'np.arange', (['dim'], {}), '(dim)\n', (9269, 9274), True, 'import numpy as np\n'), ((10091, 10137), 'mpnum.chain', 'mp.chain', (['[left_state, sys_psi_0, right_state]'], {}), '([left_state, sys_psi_0, right_state])\n', (10099, 10137), True, 'import mpnum as mp\n'), ((10179, 10213), 'mpnum.chain', 'mp.chain', (['[sys_psi_0, right_state]'], {}), '([sys_psi_0, right_state])\n', (10187, 10213), True, 'import mpnum as mp\n'), ((10764, 10785), 'numpy.arange', 'np.arange', (['cutoff_dim'], {}), '(cutoff_dim)\n', (10773, 10785), True, 'import numpy as np\n'), ((11555, 11576), 'numpy.arange', 'np.arange', (['cutoff_dim'], {}), '(cutoff_dim)\n', (11564, 11576), True, 'import numpy as np\n'), ((7684, 7709), 'numpy.exp', 'np.exp', (['(beta * xi_i * dim)'], {}), '(beta * xi_i * dim)\n', (7690, 7709), True, 'import numpy as np\n'), ((10711, 10723), 'scipy.special.factorial', 'factorial', (['x'], {}), '(x)\n', (10720, 10723), False, 'from scipy.special import factorial\n'), ((11490, 11514), 'scipy.special.factorial', 'factorial', (['x'], {'exact': '(True)'}), '(x, exact=True)\n', (11499, 11514), False, 'from scipy.special import factorial\n'), ((2209, 2269), 'tmps.utils.state_reduction_as_ndarray', 'state_reduction_as_ndarray', (['psi_0', 'mpa_type'], {'startsite': 'index'}), '(psi_0, mpa_type, startsite=index)\n', (2235, 2269), False, 'from tmps.utils import state_reduction_as_ndarray, convert, broadcast_number_ground_state, get_thermal_state\n'), ((6854, 6873), 'numpy.exp', 'np.exp', (['(beta * xi_i)'], {}), '(beta * xi_i)\n', (6860, 6873), True, 'import numpy as np\n'), ((7052, 7064), 'numpy.max', 'np.max', (['dims'], {}), '(dims)\n', (7058, 7064), True, 'import numpy as np\n'), ((7660, 7679), 'numpy.exp', 'np.exp', (['(beta * xi_i)'], {}), '(beta * xi_i)\n', (7666, 7679), True, 'import numpy as np\n'), ((6933, 6970), 'numpy.log', 'np.log', (['(1 + 1 / (high_energy_pop * a))'], {}), '(1 + 1 / (high_energy_pop * a))\n', (6939, 6970), True, 'import numpy as np\n'), ((10664, 10677), 'numpy.abs', 'np.abs', (['alpha'], {}), '(alpha)\n', (10670, 10677), True, 'import numpy as np\n'), ((11443, 11456), 'numpy.abs', 'np.abs', (['alpha'], {}), '(alpha)\n', (11449, 11456), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import os from dataclasses import dataclass, field from typing import List, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import buffered_arange, index_put, is_xla_tensor from torchvision.models.resnet import resnet50 EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) @dataclass class MM2VecConfig(FairseqDataclass): model_stage: int = field( default=1, metadata={"help": "model_stage=1 for training visual feature extractor only," "model_stage=2 for pretrain on all subnet" "model_stage=? for fine-tune"}, ) extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group norm with d " "groups in the first conv block, whereas layer_norm has layer norms in " "every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"} ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"} ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features (after feat extr)"}, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many dimensions." "set to encoder_embed_dim is <= 0" }, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"} ) audio_conv_feature_layers: str = field( default="[(512, 10, 5, 0)] + [(512, 3, 2, 0)] * 4 + [(512, 2, 2, 0)] + [(512, 2, 2, 0)]", metadata={ "help": "string describing convolutional feature extraction layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) quantize_targets: bool = field( default=False, metadata={"help": "use quantized targets"} ) quantize_input: bool = field( default=False, metadata={"help": "use quantized inputs"} ) same_quantizer: bool = field( default=False, metadata={"help": "use same quantizer for inputs and targets"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"} ) quantizer_depth: int = field( default=1, metadata={"help": "number of quantizer layers"}, ) quantizer_factor: int = field( default=3, metadata={ "help": "dimensionality increase for inner quantizer layers (if depth > 1)" }, ) latent_vars: int = field( default=320, metadata={"help": "number of latent variables V in each group of the codebook"}, ) latent_groups: int = field( default=2, metadata={"help": "number of groups G of latent variables in the codebook"}, ) latent_dim: int = field( default=0, metadata={ "help": "if > 0, uses this dimensionality for latent variables. " "otherwise uses final_dim / latent_groups" }, ) # masking mask_length: int = field(default=10, metadata={"help": "mask length"}) mask_prob: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"} ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_before: bool = False mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) mask_channel_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # negative selection num_negatives: int = field( default=100, metadata={"help": "number of negative examples from the same sample"}, ) negatives_from_everywhere: bool = field( default=False, metadata={"help": "sample negatives from everywhere, not just masked states"}, ) cross_sample_negatives: int = field( default=0, metadata={"help": "number of negative examples from the any sample"} ) codebook_negatives: int = field( default=0, metadata={"help": "number of negative examples codebook"} ) # positional embeddings conv_pos: int = field( default=128, metadata={"help": "number of filters for convolutional positional embeddings"}, ) conv_pos_groups: int = field( default=16, metadata={"help": "number of groups for convolutional positional embedding"}, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling. " "can be tuple of 3 values (start, end, decay)" }, ) # Visual Part visual_conv_feature_layers: str = field( default="[(512, 11, 1, 5)] * 3 + [(1024, 11, 1, 5)]", metadata={ "help": "string describing visual-subnet convolutional feature extraction layers in form of a python list that contains " "[(dim, kernel_size, stride, padding), ...]" }, ) visual_input_dim: int = field( default=112, metadata={"help": "number of dims of visual pictures"}, ) visual_encoder_dim: int = field( default=2048, metadata={"help": "number of dims after MoCo"}, ) projection_dim: int = field( default=512, metadata={"help": "output dimension of projection head"}, ) # checkpoint part m2v_path : str = field( default="./checkpoints-mm-2/", metadata={ "help": "path to mm2vec stage 1 last model or stage 2 process model" }, ) # aggregation part audio_weight: float = field( default=0.5, metadata={ "help":"weight for audio_features" } ) visual_weight: float = field( default=0.5, metadata={ "help":"weight for audio_features" } ) remove_quantizer_weight: bool = field( default=False, metadata={ "help": "remove quantizer pretrain params" } ) unfreeze_quantizer_weight:bool = field( default=False, metadata={ "help": "freeze quantizer pretrain params" } ) # MoCo MoCo_replace:bool = field( default=False, metadata={"help":"replace first conv2d in MoCo with conv3d"} ) @register_model("mm2vec", dataclass=MM2VecConfig) class MM2VecModel(BaseFairseqModel): def __init__(self, cfg: MM2VecConfig): super().__init__() self.cfg = cfg audio_feature_enc_layers = eval(cfg.audio_conv_feature_layers) visual_feature_enc_layers = eval(cfg.visual_conv_feature_layers) self.audio_embed_dim = audio_feature_enc_layers[-1][0] # 512 self.visual_embed_dim = visual_feature_enc_layers[-1][0] # 1024 self.projection_dim = cfg.projection_dim # 512 self.audio_feature_extractor = ConvFeatureExtractionModel( conv_layers=audio_feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, input_dim=1, ) self.visual_input_dim = cfg.visual_input_dim # 112 self.MoCo_replace = cfg.MoCo_replace self.MoCo_extractor = MoCo(replace=self.MoCo_replace) self.visual_encoder_dim = cfg.visual_encoder_dim # 2048 self.visual_feature_extractor = ConvFeatureExtractionModel( conv_layers=visual_feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, input_dim=2048, ) self.post_extract_proj = ( # 512 -> 768 nn.Linear(self.audio_embed_dim, cfg.encoder_embed_dim) if self.audio_embed_dim != cfg.encoder_embed_dim and not cfg.quantize_input else None ) self.projection_head = nn.Sequential( # 512 -> 512 nn.Linear(int(self.visual_embed_dim / 2), int(self.visual_embed_dim / 2), bias=False), nn.ReLU(), # 512 -> 768 nn.Linear(int(self.visual_embed_dim / 2), cfg.encoder_embed_dim, bias=False), ) """ mask part """ self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_before = cfg.mask_channel_before self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space """ mask part """ self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.quantizer = None self.input_quantizer = None self.n_negatives = cfg.num_negatives self.cross_sample_negatives = cfg.cross_sample_negatives self.codebook_negatives = cfg.codebook_negatives self.negatives_from_everywhere = cfg.negatives_from_everywhere self.logit_temp = cfg.logit_temp final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim if cfg.quantize_targets: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim self.quantizer = GumbelVectorQuantizer( dim=self.audio_embed_dim, # 512 num_vars=cfg.latent_vars, # 320 temp=cfg.latent_temp, groups=cfg.latent_groups, # 2 combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth, weight_proj_factor=cfg.quantizer_factor, ) self.project_q = nn.Linear(vq_dim, final_dim) else: self.project_q = nn.Linear(self.embed, final_dim) # if cfg.quantize_input: # if cfg.same_quantizer and self.quantizer is not None: # vq_dim = final_dim # self.input_quantizer = self.quantizer # else: # vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim # self.input_quantizer = GumbelVectorQuantizer( # dim=self.embed, # num_vars=cfg.latent_vars, # temp=cfg.latent_temp, # groups=cfg.latent_groups, # combine_groups=False, # vq_dim=vq_dim, # time_first=True, # weight_proj_depth=cfg.quantizer_depth, # weight_proj_factor=cfg.quantizer_factor, # ) # self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.audio_embed_dim) self.visual_layer_norm = LayerNorm(int(self.visual_embed_dim / 2)) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) self.model_stage = cfg.model_stage self.audio_weight = cfg.audio_weight self.visual_weight = cfg.visual_weight def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict @classmethod def build_model(cls, cfg: MM2VecConfig, task=None): """Build a new model instance.""" model = cls(cfg) if cfg.model_stage == 1: model_dict = model.state_dict() wav2vec_dict = {k.replace('feature', 'audio_feature'): v for k, v in torch.load('../pretrain/wav2vec_small.pt')["model"].items()} moco_dict = {k.replace('module.encoder_q', 'MoCo_extractor.encoder'): v for k, v in torch.load('../pretrain/moco_v2_800ep_pretrain.pth.tar')["state_dict"].items()} if cfg.remove_quantizer_weight: popKeys = ['quantizer.vars', 'quantizer.weight_proj.weight', 'quantizer.weight_proj.bias'] for k in popKeys: wav2vec_dict.pop(k) popKeys = ['MoCo_extractor.encoder.fc.0.bias', 'MoCo_extractor.encoder.fc.2.bias', 'MoCo_extractor.encoder.fc.0.weight', 'MoCo_extractor.encoder.fc.2.weight'] if cfg.MoCo_replace: popKeys.append('MoCo_extractor.encoder.conv1.weight') for k in popKeys: moco_dict.pop(k) model_dict.update(wav2vec_dict) model_dict.update(moco_dict) model.load_state_dict(model_dict) popKeys = ['quantizer.vars', 'quantizer.weight_proj.weight', 'quantizer.weight_proj.bias'] for name, param in model.named_parameters(): # print(name) if name in wav2vec_dict.keys() or name in moco_dict.keys(): param.requires_grad = False if name in popKeys and cfg.unfreeze_quantizer_weight: param.requires_grad = True elif cfg.model_stage == 2: model_dict = model.state_dict() checkpoint_path = os.path.join(cfg.m2v_path, 'checkpoint_last.pt') checkpoints_dict = torch.load(checkpoint_path)['model'] model_dict.update(checkpoints_dict) model.load_state_dict(model_dict) else: return model print('num_total_param: {},num_trainable_param: {},num_freezed_param: {}'.format( sum([params.numel() for params in model.parameters()]), sum([params.numel() for params in model.parameters() if params.requires_grad]), sum([params.numel() for params in model.parameters() if not params.requires_grad]))) return model def apply_mask( self, x_audio, x_visual, padding_mask, mask_indices=None, mask_channel_indices=None, ): B, T, C = x_audio.shape # FIXME INFERENCE if self.mask_channel_prob > 0 and self.mask_channel_before: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 if self.mask_prob > 0: if mask_indices is None: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x_audio.device) x_audio = index_put(x_audio, mask_indices, self.mask_emb) x_visual = index_put(x_visual, mask_indices, self.mask_emb) else: mask_indices = None # FIXME INFERENCE if self.mask_channel_prob > 0 and not self.mask_channel_before: if mask_channel_indices is None: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x_audio.device) .unsqueeze(1) .expand(-1, T, -1) ) x_audio = index_put(x_audio, mask_channel_indices, 0) x_visual = index_put(x_visual, mask_channel_indices, 0) return x_audio, x_visual, mask_indices def sample_negatives(self, y_audio, y_visual, num, padding_count=None): #ignore if self.n_negatives == 0 and self.cross_sample_negatives == 0: return y.new(0) bsz, tsz, fsz = y_audio.shape y_audio = y_audio.view(-1, fsz) # BTC => (BxT)C y_visual = y_visual.view(-1, fsz) # FIXME: what happens if padding_count is specified? cross_high = tsz * bsz high = tsz - (padding_count or 0) with torch.no_grad(): assert high > 1, f"{bsz,tsz,fsz}" if self.n_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * num) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * num), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs_audio = y_audio[neg_idxs.view(-1)] negs_audio = negs_audio.view( bsz, num, self.n_negatives + self.cross_sample_negatives, fsz ).permute( 2, 0, 1, 3 ) # to NxBxTxC negs_visual = y_visual[neg_idxs.view(-1)] negs_visual = negs_visual.view( bsz, num, self.n_negatives + self.cross_sample_negatives, fsz ).permute( 2, 0, 1, 3 ) # to NxBxTxC return negs_audio, negs_visual, neg_idxs def compute_preds(self, x, y, negatives): neg_is_pos = (y == negatives).all(-1) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) logits = logits / self.logit_temp if is_xla_tensor(logits) or neg_is_pos.any(): fillval = -float(2 ** 30) if not hasattr(self, "_inftensor"): self._inftensor = ( torch.tensor(fillval).to(x.device) if is_xla_tensor(logits) else float("-inf") ) logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor) return logits def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): return torch.floor((input_length - kernel_size) / stride + 1) conv_cfg_list = eval(self.cfg.audio_conv_feature_layers) for i in range(len(conv_cfg_list)): input_lengths = _conv_out_length( input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2] ) return input_lengths.to(torch.long) def compute_visual_length(self,visual_source): visual_length = list() max_visual_length = -1 for i in range(len(visual_source)): length = int(visual_source[i].size(1) / self.visual_input_dim) if length > max_visual_length: max_visual_length = length visual_length.append(length) return max_visual_length,visual_length def visual_padding(self,visual_features,visual_length,max_visual_length): visual_source_new = torch.tensor([], dtype=visual_features.dtype, device=visual_features.device) start = 0 # 根据visual length数组切分MoCo的输出结果,并padding到最长 visual_source_len = max_visual_length for l in visual_length: visual_source_new = torch.cat((visual_source_new, torch.cat( (visual_features[start:start + l], torch.zeros((visual_source_len - l, 3,112,112), dtype=visual_features.dtype, device=visual_features.device))))) return visual_source_new def forward( self, audio_source, visual_source, padding_mask=None, mask=True, features_only=False, layer=None, mask_indices=None, mask_channel_indices=None, padding_count=None, ): """ 先只管cropping的训练模式,stage1 stage2都是对应好了的 visual 和 audio 长度 batch内不同sample的visual length或者 audio length都是一样的 不需要算长度序列 inference:dataset的pad参数被设置 需要传入padding mask的时候,audio的source才是padding了的 这个时候才需要记录visual length,并在过完moco之后padding """ result = {} # FIXME INFERENCE if padding_mask is not None: # compute visual length max_visual_length, visual_length = self.compute_visual_length(visual_source) visual_source = torch.cat(visual_source,1) visual_source = torch.split(visual_source, self.visual_input_dim, 1) visual_source = torch.cat(visual_source) visual_source = visual_source.view(-1, self.visual_input_dim, self.visual_input_dim) visual_source = visual_source.unsqueeze(1).repeat(1, 3, 1, 1) if self.MoCo_replace: visual_source = self.visual_padding(visual_source,visual_length,max_visual_length) visual_source = visual_source.view(len(visual_length),max_visual_length,3,112,112) visual_source = visual_source.transpose(1,2) else: """ cropping训练,batch内的visual input长度一样 """ visual_batch_size = len(visual_source) max_visual_length = int(visual_source[0].size(1)/112) visual_source = torch.stack(visual_source) visual_source = torch.split(visual_source, self.visual_input_dim, 1) visual_source = torch.cat(visual_source) visual_source = visual_source.view(-1, self.visual_input_dim, self.visual_input_dim) visual_source = visual_source.unsqueeze(1).repeat(1, 3, 1, 1) if self.MoCo_replace: visual_source = visual_source.view(visual_batch_size, max_visual_length, 3, self.visual_input_dim, self.visual_input_dim) visual_source = visual_source.transpose(1, 2) """MoCo input dim:[n_frames,3,112,112]""" visual_features = self.MoCo_extractor(visual_source) visual_features = visual_features.view(-1,max_visual_length,self.visual_encoder_dim) visual_features = visual_features.transpose(1,2) """ 长度问题到这里应该就结束了,后面不管是padding还是cropping都是align好了的 """ if self.feature_grad_mult > 0: # audio: (bsz*sample_length) --> (bsz * feature_dim * frames) # visual: (bsz*feature_dim * frames) --> (bsz * feature_dim_new * frames) af_beforeGELU, audio_features = self.audio_feature_extractor(audio_source) vf_beforeGELU, visual_features = self.visual_feature_extractor(visual_features) if self.feature_grad_mult != 1.0: audio_features = GradMultiply.apply(audio_features, self.feature_grad_mult) visual_features = GradMultiply.apply(visual_features, self.feature_grad_mult) else: with torch.no_grad(): af_beforeGELU, audio_features = self.audio_feature_extractor(audio_source) vf_beforeGELU, visual_features = self.visual_feature_extractor(visual_features) features_pen = 0 # penalty loss af_beforeGELU = af_beforeGELU.transpose(1,2) vf_beforeGELU = vf_beforeGELU.transpose(1,2) vf_beforeGELU = vf_beforeGELU.reshape(vf_beforeGELU.size(0), -1,int(vf_beforeGELU.size(2) / 2)) vf_beforeGELU = vf_beforeGELU[:, :af_beforeGELU.size(1), :] af_beforeGELU = self.layer_norm(af_beforeGELU) vf_beforeGELU = self.visual_layer_norm(vf_beforeGELU) result["pre_gelu_audio"] = af_beforeGELU result["pre_gelu_visual"] = vf_beforeGELU # FIXME:做不做transpose和layer_norm对MSE的影响是啥?过不过GELU的MSE区别是啥? audio_features = audio_features.transpose(1, 2) visual_features = visual_features.transpose(1, 2) visual_features = visual_features.reshape(visual_features.size(0), -1, int(visual_features.size(2) / 2)) visual_features = visual_features[:, :audio_features.size(1), :] audio_features = self.layer_norm(audio_features) # 512维度上做的layernorm visual_features = self.visual_layer_norm(visual_features) result["post_gelu_audio"] = audio_features result["post_gelu_visual"] = visual_features unmasked_audio_features = audio_features.clone() unmasked_visual_features = visual_features.clone() # FIXME INFERENCE """sample维度的padding mask到frame维度的padding mask""" if padding_mask is not None and padding_mask.any(): input_lengths = (1 - padding_mask.long()).sum(-1) # apply conv formula to get real output_lengths output_lengths = self._get_feat_extract_output_lengths(input_lengths) padding_mask = torch.zeros( audio_features.shape[:2], dtype=audio_features.dtype, device=audio_features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() else: padding_mask = None # 512 -> 768 if self.post_extract_proj is not None: audio_features = self.post_extract_proj(audio_features) visual_features = self.post_extract_proj(visual_features) # if self.projection_head is not None: # visual_features = self.projection_head(visual_features) result["features_pen"] = features_pen audio_features = self.dropout_input(audio_features) visual_features = self.dropout_input(visual_features) unmasked_audio_features = self.dropout_features(unmasked_audio_features) unmasked_visual_features = self.dropout_features(unmasked_visual_features) num_vars = None code_ppl = None prob_ppl = None curr_temp = None # if self.input_quantizer: # q = self.input_quantizer(features, produce_targets=False) # features = q["x"] # num_vars = q["num_vars"] # code_ppl = q["code_perplexity"] # prob_ppl = q["prob_perplexity"] # curr_temp = q["temp"] # features = self.project_inp(features) if mask: # inference的时候不计算mask / compute mask indices and set (indices==True) position as self.mask_emb x_audio, x_visual, mask_indices = self.apply_mask( audio_features, visual_features, padding_mask, mask_indices=mask_indices, mask_channel_indices=mask_channel_indices, ) if not is_xla_tensor(x_audio) and not is_xla_tensor(x_audio) and mask_indices is not None: # tpu-comment: reducing the size in a dynamic way causes # too many recompilations on xla. y_audio = unmasked_audio_features[mask_indices].view( unmasked_audio_features.size(0), -1, unmasked_audio_features.size(-1) ) y_visual = unmasked_visual_features[mask_indices].view( unmasked_visual_features.size(0), -1, unmasked_visual_features.size(-1) ) else: # ignore y_audio = unmasked_audio_features y_visual = unmasked_visual_features else: x_audio = audio_features x_visual = visual_features y_audio = unmasked_audio_features y_visual = unmasked_visual_features mask_indices = None """ mask之后的过transformer stage 1: 两个模态分别过 stage 2: 两个模态取平均后过 """ if self.model_stage == 1: """ x_audio:Batch * n_frames(with mask_emb) * feature_dim(512) x_visual:Batch * n_frames(with mask_emb) * feature_dim(512) x_audio.shape == x_visual.shape """ x_audio, layer_results_audio = self.encoder(x_audio, padding_mask=padding_mask, layer=layer) x_visual, layer_results_visual = self.encoder(x_visual, padding_mask=padding_mask, layer=layer) elif self.model_stage == 2: x_cat = (self.audio_weight * x_audio + self.visual_weight * x_visual) x_cat,layer_results_cat = self.encoder(x_cat, padding_mask=padding_mask, layer=layer) else: x_cat = (0.0 * x_audio + 1.0 * x_visual) x_cat, _ = self.encoder(x_cat, padding_mask=padding_mask, layer=layer) # FIXME INFERENCE if features_only: return { "x": x_cat, "padding_mask": padding_mask, "audio_features": unmasked_audio_features, "visual_features": unmasked_visual_features, } """ inference时到这儿就结束了 """ if self.quantizer: q_visual = self.quantizer(y_visual, produce_targets=False) y_visual = q_visual["x"] q_audio = self.quantizer(y_audio, produce_targets=False) y_audio = q_audio["x"] if self.model_stage == 1: """ 只管visual这边的diversity loss """ num_vars = q_visual["num_vars"] code_ppl = [q_visual["code_perplexity"], q_audio["code_perplexity"]] # 进入码本的比例 = code_ppl/(num_vars*num_latent_groups) # print("visual_num_vars:",num_vars) # print("audio_num_vars:", q_audio["num_vars"]) # print("visual_code_ppl:", code_ppl) # print("audio_code_ppl:", q_audio["code_perplexity"]) prob_ppl = q_visual["prob_perplexity"] curr_temp = q_visual["temp"] elif self.model_stage == 2: num_vars = q_visual["num_vars"] code_ppl = [q_visual["code_perplexity"], q_audio["code_perplexity"]] # print("num_vars_va:", num_vars) # print("code_ppl_va:", code_ppl) prob_ppl = [q_visual["prob_perplexity"], q_audio["prob_perplexity"]] curr_temp = [q_visual["temp"], q_audio["temp"]] y_audio = self.project_q(y_audio) y_visual = self.project_q(y_visual) # ignore if self.negatives_from_everywhere: # ignore neg_cands = self.quantizer(unmasked_features, produce_targets=False)[ "x" ] negs, _ = self.sample_negatives( neg_cands, y.size(1), padding_count=padding_count, ) negs = self.project_q(negs) else: negs_audio,negs_visual, negs_indices = self.sample_negatives( y_audio, y_visual, y_audio.size(1), padding_count=padding_count, ) # ignore if self.codebook_negatives > 0: cb_negs = self.quantizer.sample_from_codebook( y.size(0) * y.size(1), self.codebook_negatives ) cb_negs = cb_negs.view( self.codebook_negatives, y.size(0), y.size(1), -1 ) # order doesnt matter cb_negs = self.project_q(cb_negs) negs = torch.cat([negs, cb_negs], dim=0) else: y_audio = self.project_q(y_audio) y_visual = self.project_q(y_visual) #ignore if self.negatives_from_everywhere: negs, _ = self.sample_negatives( unmasked_features, y.size(1), padding_count=padding_count, ) negs = self.project_q(negs) else: negs, _ = self.sample_negatives( y, y.size(1), padding_count=padding_count, ) if not is_xla_tensor(x_audio) and not is_xla_tensor(x_visual) and self.model_stage == 1: # tpu-comment: reducing the size in a dynamic way causes # too many recompilations on xla. x_audio = x_audio[mask_indices].view(x_audio.size(0), -1, x_audio.size(-1)) x_visual = x_visual[mask_indices].view(x_visual.size(0), -1, x_visual.size(-1)) elif not is_xla_tensor(x_cat) and self.model_stage == 2: x_cat = x_cat[mask_indices].view(x_cat.size(0), -1, x_cat.size(-1)) # ignore if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) if self.model_stage == 1: x_audio = self.final_proj(x_audio) x_audio = self.compute_preds(x_audio, y_audio, negs_audio) x_visual = self.final_proj(x_visual) x_visual = self.compute_preds(x_visual, y_visual, negs_visual) result["x_audio"] = x_audio result["x_visual"] = x_visual result["padding_mask"] = padding_mask elif self.model_stage == 2: x_cat = self.final_proj(x_cat) x_audio = self.compute_preds(x_cat, y_audio, negs_audio) x_visual = self.compute_preds(x_cat, y_visual, negs_visual) result["x_audio"] =x_audio result["x_visual"] = x_visual result["padding_mask"] = padding_mask if prob_ppl is not None: result["prob_perplexity"] = prob_ppl result["code_perplexity"] = code_ppl result["num_vars"] = num_vars result["temp"] = curr_temp result["stage"] = self.model_stage return result def quantize(self, x): assert self.quantizer is not None x = self.feature_extractor(x) x = x.transpose(1, 2) x = self.layer_norm(x) return self.quantizer.forward_idx(x) def extract_features(self, audio_source, visual_source, padding_mask, mask=False, layer=None): res = self.forward( audio_source,visual_source, padding_mask, mask=mask, features_only=True, layer=layer ) return res def get_logits(self, net_output): logits_audio = net_output["x_audio"] logits_visual = net_output["x_visual"] logits_audio = logits_audio.transpose(0, 2) logits_visual = logits_visual.transpose(0, 2) logits_audio = logits_audio.reshape(-1, logits_audio.size(-1)) logits_visual = logits_visual.reshape(-1, logits_audio.size(-1)) return logits_audio,logits_visual def get_targets(self, sample, net_output, expand_steps=True): x_audio = net_output["x_audio"] x_visual = net_output["x_visual"] return x_audio.new_zeros(x_audio.size(1) * x_audio.size(2), dtype=torch.long), x_visual.new_zeros(x_visual.size(1) * x_visual.size(2), dtype=torch.long) def get_extra_losses(self, net_output): pen = [] if "prob_perplexity" in net_output: if self.model_stage == 1: pen.append( (net_output["num_vars"] - net_output["prob_perplexity"]) / net_output["num_vars"] ) else: for i in range(2): # visual audio pen.append( (net_output["num_vars"] - net_output["prob_perplexity"][i]) / net_output["num_vars"] ) if "features_pen" in net_output: pen.append(net_output["features_pen"]) return pen def remove_pretraining_modules(self): self.quantizer = None self.project_q = None self.target_glu = None self.final_proj = None class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, input_dim=1, ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, kernel_size, stride, padding, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1d(n_in, n_out, kernel_size=kernel_size, stride=stride, padding=padding, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) in_d = input_dim self.conv_layers = nn.ModuleList() for i, cl in enumerate(conv_layers): assert len(cl) == 4, "invalid conv definition: " + str(cl) (dim, kernel_size, stride, padding) = cl self.conv_layers.append( block( in_d, dim, kernel_size, stride, padding, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT if len(x.shape) == 2: x = x.unsqueeze(1) for conv in self.conv_layers: if conv == self.conv_layers[-1]: for name, module in conv.named_children(): if name =="2": """ 0 Conv1d 1 Dropout 2 GELU 2 means GELU() """ before_GELU = x x = module(x) else: x = conv(x) return before_GELU, x class TransformerEncoder(nn.Module): def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.pos_conv = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) self.layers = nn.ModuleList( [ TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, ) for _ in range(args.encoder_layers) ] ) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) def forward(self, x, padding_mask=None, layer=None): x, layer_results = self.extract_features(x, padding_mask, layer) if self.layer_norm_first and layer is None: x = self.layer_norm(x) return x, layer_results def extract_features(self, x, padding_mask=None, tgt_layer=None): if padding_mask is not None: x = index_put(x, padding_mask, 0) x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) if tgt_layer is not None: layer_results.append((x, z)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) return x, layer_results def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn class MoCo(nn.Module): def __init__(self, replace=False): super(MoCo, self).__init__() self.encoder = nn.Sequential() self.replace = replace for name, module in resnet50().named_children(): """ name:conv1 name:bn1 name:relu name:maxpool name:layer1 name:layer2 name:layer3 name:layer4 name:avgpool name:fc """ if name == 'conv1': if self.replace: module = nn.Conv3d(3,64,kernel_size=(7, 7, 7), stride=(1, 2, 2), padding=(3, 3, 3), bias=False) self.encoder.add_module(name, module) elif name != 'fc': self.encoder.add_module(name, module) # else: # self.ResNet.append(nn.Linear(in_features=2048, out_features=128, bias=True)) def forward(self, x): x = self.encoder.conv1(x) if self.replace: x = x.transpose(1,2) x = x.reshape(-1,x.size(2),x.size(3),x.size(4)) x = self.encoder.bn1(x) x = self.encoder.relu(x) x = self.encoder.maxpool(x) x = self.encoder.layer1(x) x = self.encoder.layer2(x) x = self.encoder.layer3(x) x = self.encoder.layer4(x) x = self.encoder.avgpool(x) feature = torch.flatten(x, start_dim=1) return F.normalize(feature, dim=-1)
[ "torch.nn.Dropout", "fairseq.modules.SamePad", "torch.nn.GLU", "torch.nn.functional.dropout", "torch.cat", "fairseq.modules.Fp32GroupNorm", "torch.nn.init.constant_", "torch.arange", "torch.nn.utils.weight_norm", "torch.nn.functional.normalize", "torch.no_grad", "os.path.join", "torch.flatten", "torch.nn.init.kaiming_normal_", "fairseq.utils.index_put", "torch.nn.Conv3d", "torch.load", "torch.nn.Conv1d", "fairseq.utils.get_activation_fn", "torch.FloatTensor", "fairseq.modules.TransposeLast", "fairseq.modules.Fp32LayerNorm", "fairseq.modules.LayerNorm", "torch.nn.Linear", "torch.zeros", "fairseq.data.data_utils.compute_mask_indices", "torch.randint", "math.sqrt", "torch.nn.ModuleList", "torch.split", "fairseq.utils.get_available_activation_fns", "dataclasses.field", "fairseq.models.register_model", "torch.nn.GELU", "torch.floor", "torchvision.models.resnet.resnet50", "fairseq.dataclass.ChoiceEnum", "torch.from_numpy", "torch.nn.ReLU", "torch.stack", "torch.nn.Sequential", "fairseq.modules.GumbelVectorQuantizer", "fairseq.modules.MultiheadAttention", "fairseq.modules.GradMultiply.apply", "torch.nn.init.normal_", "numpy.random.random", "fairseq.utils.is_xla_tensor", "fairseq.utils.buffered_arange", "torch.tensor" ]
[((963, 1000), 'fairseq.dataclass.ChoiceEnum', 'ChoiceEnum', (["['default', 'layer_norm']"], {}), "(['default', 'layer_norm'])\n", (973, 1000), False, 'from fairseq.dataclass import ChoiceEnum, FairseqDataclass\n'), ((1032, 1086), 'fairseq.dataclass.ChoiceEnum', 'ChoiceEnum', (["['static', 'uniform', 'normal', 'poisson']"], {}), "(['static', 'uniform', 'normal', 'poisson'])\n", (1042, 1086), False, 'from fairseq.dataclass import ChoiceEnum, FairseqDataclass\n'), ((10150, 10198), 'fairseq.models.register_model', 'register_model', (['"""mm2vec"""'], {'dataclass': 'MM2VecConfig'}), "('mm2vec', dataclass=MM2VecConfig)\n", (10164, 10198), False, 'from fairseq.models import BaseFairseqModel, register_model\n'), ((1161, 1333), 'dataclasses.field', 'field', ([], {'default': '(1)', 'metadata': "{'help':\n 'model_stage=1 for training visual feature extractor only,model_stage=2 for pretrain on all subnetmodel_stage=? for fine-tune'\n }"}), "(default=1, metadata={'help':\n 'model_stage=1 for training visual feature extractor only,model_stage=2 for pretrain on all subnetmodel_stage=? for fine-tune'\n })\n", (1166, 1333), False, 'from dataclasses import dataclass, field\n'), ((1452, 1691), 'dataclasses.field', 'field', ([], {'default': '"""default"""', 'metadata': "{'help':\n 'mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)'\n }"}), "(default='default', metadata={'help':\n 'mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)'\n })\n", (1457, 1691), False, 'from dataclasses import dataclass, field\n'), ((1784, 1861), 'dataclasses.field', 'field', ([], {'default': '(12)', 'metadata': "{'help': 'num encoder layers in the transformer'}"}), "(default=12, metadata={'help': 'num encoder layers in the transformer'})\n", (1789, 1861), False, 'from dataclasses import dataclass, field\n'), ((1905, 1973), 'dataclasses.field', 'field', ([], {'default': '(768)', 'metadata': "{'help': 'encoder embedding dimension'}"}), "(default=768, metadata={'help': 'encoder embedding dimension'})\n", (1910, 1973), False, 'from dataclasses import dataclass, field\n'), ((2021, 2098), 'dataclasses.field', 'field', ([], {'default': '(3072)', 'metadata': "{'help': 'encoder embedding dimension for FFN'}"}), "(default=3072, metadata={'help': 'encoder embedding dimension for FFN'})\n", (2026, 2098), False, 'from dataclasses import dataclass, field\n'), ((2148, 2215), 'dataclasses.field', 'field', ([], {'default': '(12)', 'metadata': "{'help': 'num encoder attention heads'}"}), "(default=12, metadata={'help': 'num encoder attention heads'})\n", (2153, 2215), False, 'from dataclasses import dataclass, field\n'), ((2300, 2370), 'dataclasses.field', 'field', ([], {'default': '"""gelu"""', 'metadata': "{'help': 'activation function to use'}"}), "(default='gelu', metadata={'help': 'activation function to use'})\n", (2305, 2370), False, 'from dataclasses import dataclass, field\n'), ((2422, 2507), 'dataclasses.field', 'field', ([], {'default': '(0.1)', 'metadata': "{'help': 'dropout probability for the transformer'}"}), "(default=0.1, metadata={'help': 'dropout probability for the transformer'}\n )\n", (2427, 2507), False, 'from dataclasses import dataclass, field\n'), ((2548, 2634), 'dataclasses.field', 'field', ([], {'default': '(0.1)', 'metadata': "{'help': 'dropout probability for attention weights'}"}), "(default=0.1, metadata={'help':\n 'dropout probability for attention weights'})\n", (2553, 2634), False, 'from dataclasses import dataclass, field\n'), ((2677, 2765), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'help': 'dropout probability after activation in FFN'}"}), "(default=0.0, metadata={'help':\n 'dropout probability after activation in FFN'})\n", (2682, 2765), False, 'from dataclasses import dataclass, field\n'), ((2807, 2895), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'help': 'probability of dropping a tarnsformer layer'}"}), "(default=0.0, metadata={'help':\n 'probability of dropping a tarnsformer layer'})\n", (2812, 2895), False, 'from dataclasses import dataclass, field\n'), ((2933, 3025), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'help': 'dropout to apply to the input (after feat extr)'}"}), "(default=0.0, metadata={'help':\n 'dropout to apply to the input (after feat extr)'})\n", (2938, 3025), False, 'from dataclasses import dataclass, field\n'), ((3075, 3170), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'help': 'dropout to apply to the features (after feat extr)'}"}), "(default=0.0, metadata={'help':\n 'dropout to apply to the features (after feat extr)'})\n", (3080, 3170), False, 'from dataclasses import dataclass, field\n'), ((3212, 3358), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help':\n 'project final representations and targets to this many dimensions.set to encoder_embed_dim is <= 0'\n }"}), "(default=0, metadata={'help':\n 'project final representations and targets to this many dimensions.set to encoder_embed_dim is <= 0'\n })\n", (3217, 3358), False, 'from dataclasses import dataclass, field\n'), ((3439, 3526), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'apply layernorm first in the transformer'}"}), "(default=False, metadata={'help':\n 'apply layernorm first in the transformer'})\n", (3444, 3526), False, 'from dataclasses import dataclass, field\n'), ((3574, 3841), 'dataclasses.field', 'field', ([], {'default': '"""[(512, 10, 5, 0)] + [(512, 3, 2, 0)] * 4 + [(512, 2, 2, 0)] + [(512, 2, 2, 0)]"""', 'metadata': "{'help':\n 'string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]'\n }"}), "(default=\n '[(512, 10, 5, 0)] + [(512, 3, 2, 0)] * 4 + [(512, 2, 2, 0)] + [(512, 2, 2, 0)]'\n , metadata={'help':\n 'string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]'\n })\n", (3579, 3841), False, 'from dataclasses import dataclass, field\n'), ((3905, 3976), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'include bias in conv encoder'}"}), "(default=False, metadata={'help': 'include bias in conv encoder'})\n", (3910, 3976), False, 'from dataclasses import dataclass, field\n'), ((4015, 4087), 'dataclasses.field', 'field', ([], {'default': '(0.1)', 'metadata': "{'help': 'temperature to divide logits by'}"}), "(default=0.1, metadata={'help': 'temperature to divide logits by'})\n", (4020, 4087), False, 'from dataclasses import dataclass, field\n'), ((4131, 4195), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'use quantized targets'}"}), "(default=False, metadata={'help': 'use quantized targets'})\n", (4136, 4195), False, 'from dataclasses import dataclass, field\n'), ((4237, 4300), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'use quantized inputs'}"}), "(default=False, metadata={'help': 'use quantized inputs'})\n", (4242, 4300), False, 'from dataclasses import dataclass, field\n'), ((4342, 4430), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'use same quantizer for inputs and targets'}"}), "(default=False, metadata={'help':\n 'use same quantizer for inputs and targets'})\n", (4347, 4430), False, 'from dataclasses import dataclass, field\n'), ((4464, 4539), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'adds projection + glu to targets'}"}), "(default=False, metadata={'help': 'adds projection + glu to targets'})\n", (4469, 4539), False, 'from dataclasses import dataclass, field\n'), ((4585, 4674), 'dataclasses.field', 'field', ([], {'default': '(1.0)', 'metadata': "{'help': 'multiply feature extractor var grads by this'}"}), "(default=1.0, metadata={'help':\n 'multiply feature extractor var grads by this'})\n", (4590, 4674), False, 'from dataclasses import dataclass, field\n'), ((4712, 4777), 'dataclasses.field', 'field', ([], {'default': '(1)', 'metadata': "{'help': 'number of quantizer layers'}"}), "(default=1, metadata={'help': 'number of quantizer layers'})\n", (4717, 4777), False, 'from dataclasses import dataclass, field\n'), ((4829, 4937), 'dataclasses.field', 'field', ([], {'default': '(3)', 'metadata': "{'help': 'dimensionality increase for inner quantizer layers (if depth > 1)'}"}), "(default=3, metadata={'help':\n 'dimensionality increase for inner quantizer layers (if depth > 1)'})\n", (4834, 4937), False, 'from dataclasses import dataclass, field\n'), ((5002, 5105), 'dataclasses.field', 'field', ([], {'default': '(320)', 'metadata': "{'help': 'number of latent variables V in each group of the codebook'}"}), "(default=320, metadata={'help':\n 'number of latent variables V in each group of the codebook'})\n", (5007, 5105), False, 'from dataclasses import dataclass, field\n'), ((5150, 5247), 'dataclasses.field', 'field', ([], {'default': '(2)', 'metadata': "{'help': 'number of groups G of latent variables in the codebook'}"}), "(default=2, metadata={'help':\n 'number of groups G of latent variables in the codebook'})\n", (5155, 5247), False, 'from dataclasses import dataclass, field\n'), ((5289, 5432), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help':\n 'if > 0, uses this dimensionality for latent variables. otherwise uses final_dim / latent_groups'\n }"}), "(default=0, metadata={'help':\n 'if > 0, uses this dimensionality for latent variables. otherwise uses final_dim / latent_groups'\n })\n", (5294, 5432), False, 'from dataclasses import dataclass, field\n'), ((5522, 5573), 'dataclasses.field', 'field', ([], {'default': '(10)', 'metadata': "{'help': 'mask length'}"}), "(default=10, metadata={'help': 'mask length'})\n", (5527, 5573), False, 'from dataclasses import dataclass, field\n'), ((5597, 5685), 'dataclasses.field', 'field', ([], {'default': '(0.65)', 'metadata': "{'help': 'probability of replacing a token with mask'}"}), "(default=0.65, metadata={'help':\n 'probability of replacing a token with mask'})\n", (5602, 5685), False, 'from dataclasses import dataclass, field\n'), ((5747, 5818), 'dataclasses.field', 'field', ([], {'default': '"""static"""', 'metadata': "{'help': 'how to choose mask length'}"}), "(default='static', metadata={'help': 'how to choose mask length'})\n", (5752, 5818), False, 'from dataclasses import dataclass, field\n'), ((5857, 6000), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help':\n 'secondary mask argument (used for more complex distributions), see help in compute_mask_indices'\n }"}), "(default=0, metadata={'help':\n 'secondary mask argument (used for more complex distributions), see help in compute_mask_indices'\n })\n", (5862, 6000), False, 'from dataclasses import dataclass, field\n'), ((6080, 6156), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'whether to allow masks to overlap'}"}), "(default=False, metadata={'help': 'whether to allow masks to overlap'})\n", (6085, 6156), False, 'from dataclasses import dataclass, field\n'), ((6197, 6290), 'dataclasses.field', 'field', ([], {'default': '(1)', 'metadata': "{'help': 'min space between spans (if no overlap is enabled)'}"}), "(default=1, metadata={'help':\n 'min space between spans (if no overlap is enabled)'})\n", (6202, 6290), False, 'from dataclasses import dataclass, field\n'), ((6364, 6450), 'dataclasses.field', 'field', ([], {'default': '(10)', 'metadata': "{'help': 'length of the mask for features (channels)'}"}), "(default=10, metadata={'help':\n 'length of the mask for features (channels)'})\n", (6369, 6450), False, 'from dataclasses import dataclass, field\n'), ((6492, 6578), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'help': 'probability of replacing a feature with 0'}"}), "(default=0.0, metadata={'help':\n 'probability of replacing a feature with 0'})\n", (6497, 6578), False, 'from dataclasses import dataclass, field\n'), ((6686, 6781), 'dataclasses.field', 'field', ([], {'default': '"""static"""', 'metadata': "{'help': 'how to choose mask length for channel masking'}"}), "(default='static', metadata={'help':\n 'how to choose mask length for channel masking'})\n", (6691, 6781), False, 'from dataclasses import dataclass, field\n'), ((6833, 6977), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help':\n 'secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh'\n }"}), "(default=0, metadata={'help':\n 'secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh'\n })\n", (6838, 6977), False, 'from dataclasses import dataclass, field\n'), ((7065, 7153), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'whether to allow channel masks to overlap'}"}), "(default=False, metadata={'help':\n 'whether to allow channel masks to overlap'})\n", (7070, 7153), False, 'from dataclasses import dataclass, field\n'), ((7198, 7291), 'dataclasses.field', 'field', ([], {'default': '(1)', 'metadata': "{'help': 'min space between spans (if no overlap is enabled)'}"}), "(default=1, metadata={'help':\n 'min space between spans (if no overlap is enabled)'})\n", (7203, 7291), False, 'from dataclasses import dataclass, field\n'), ((7362, 7455), 'dataclasses.field', 'field', ([], {'default': '(100)', 'metadata': "{'help': 'number of negative examples from the same sample'}"}), "(default=100, metadata={'help':\n 'number of negative examples from the same sample'})\n", (7367, 7455), False, 'from dataclasses import dataclass, field\n'), ((7513, 7616), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'sample negatives from everywhere, not just masked states'}"}), "(default=False, metadata={'help':\n 'sample negatives from everywhere, not just masked states'})\n", (7518, 7616), False, 'from dataclasses import dataclass, field\n'), ((7670, 7760), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help': 'number of negative examples from the any sample'}"}), "(default=0, metadata={'help':\n 'number of negative examples from the any sample'})\n", (7675, 7760), False, 'from dataclasses import dataclass, field\n'), ((7801, 7876), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'help': 'number of negative examples codebook'}"}), "(default=0, metadata={'help': 'number of negative examples codebook'})\n", (7806, 7876), False, 'from dataclasses import dataclass, field\n'), ((7940, 8042), 'dataclasses.field', 'field', ([], {'default': '(128)', 'metadata': "{'help': 'number of filters for convolutional positional embeddings'}"}), "(default=128, metadata={'help':\n 'number of filters for convolutional positional embeddings'})\n", (7945, 8042), False, 'from dataclasses import dataclass, field\n'), ((8089, 8188), 'dataclasses.field', 'field', ([], {'default': '(16)', 'metadata': "{'help': 'number of groups for convolutional positional embedding'}"}), "(default=16, metadata={'help':\n 'number of groups for convolutional positional embedding'})\n", (8094, 8188), False, 'from dataclasses import dataclass, field\n'), ((8255, 8406), 'dataclasses.field', 'field', ([], {'default': '(2, 0.5, 0.999995)', 'metadata': "{'help':\n 'temperature for latent variable sampling. can be tuple of 3 values (start, end, decay)'\n }"}), "(default=(2, 0.5, 0.999995), metadata={'help':\n 'temperature for latent variable sampling. can be tuple of 3 values (start, end, decay)'\n })\n", (8260, 8406), False, 'from dataclasses import dataclass, field\n'), ((8515, 8764), 'dataclasses.field', 'field', ([], {'default': '"""[(512, 11, 1, 5)] * 3 + [(1024, 11, 1, 5)]"""', 'metadata': "{'help':\n 'string describing visual-subnet convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride, padding), ...]'\n }"}), "(default='[(512, 11, 1, 5)] * 3 + [(1024, 11, 1, 5)]', metadata={\n 'help':\n 'string describing visual-subnet convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride, padding), ...]'\n })\n", (8520, 8764), False, 'from dataclasses import dataclass, field\n'), ((8847, 8921), 'dataclasses.field', 'field', ([], {'default': '(112)', 'metadata': "{'help': 'number of dims of visual pictures'}"}), "(default=112, metadata={'help': 'number of dims of visual pictures'})\n", (8852, 8921), False, 'from dataclasses import dataclass, field\n'), ((8975, 9042), 'dataclasses.field', 'field', ([], {'default': '(2048)', 'metadata': "{'help': 'number of dims after MoCo'}"}), "(default=2048, metadata={'help': 'number of dims after MoCo'})\n", (8980, 9042), False, 'from dataclasses import dataclass, field\n'), ((9092, 9168), 'dataclasses.field', 'field', ([], {'default': '(512)', 'metadata': "{'help': 'output dimension of projection head'}"}), "(default=512, metadata={'help': 'output dimension of projection head'})\n", (9097, 9168), False, 'from dataclasses import dataclass, field\n'), ((9236, 9357), 'dataclasses.field', 'field', ([], {'default': '"""./checkpoints-mm-2/"""', 'metadata': "{'help': 'path to mm2vec stage 1 last model or stage 2 process model'}"}), "(default='./checkpoints-mm-2/', metadata={'help':\n 'path to mm2vec stage 1 last model or stage 2 process model'})\n", (9241, 9357), False, 'from dataclasses import dataclass, field\n'), ((9448, 9514), 'dataclasses.field', 'field', ([], {'default': '(0.5)', 'metadata': "{'help': 'weight for audio_features'}"}), "(default=0.5, metadata={'help': 'weight for audio_features'})\n", (9453, 9514), False, 'from dataclasses import dataclass, field\n'), ((9585, 9651), 'dataclasses.field', 'field', ([], {'default': '(0.5)', 'metadata': "{'help': 'weight for audio_features'}"}), "(default=0.5, metadata={'help': 'weight for audio_features'})\n", (9590, 9651), False, 'from dataclasses import dataclass, field\n'), ((9731, 9806), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'remove quantizer pretrain params'}"}), "(default=False, metadata={'help': 'remove quantizer pretrain params'})\n", (9736, 9806), False, 'from dataclasses import dataclass, field\n'), ((9888, 9963), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'freeze quantizer pretrain params'}"}), "(default=False, metadata={'help': 'freeze quantizer pretrain params'})\n", (9893, 9963), False, 'from dataclasses import dataclass, field\n'), ((10043, 10130), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'help': 'replace first conv2d in MoCo with conv3d'}"}), "(default=False, metadata={'help':\n 'replace first conv2d in MoCo with conv3d'})\n", (10048, 10130), False, 'from dataclasses import dataclass, field\n'), ((2260, 2296), 'fairseq.utils.get_available_activation_fns', 'utils.get_available_activation_fns', ([], {}), '()\n', (2294, 2296), False, 'from fairseq import utils\n'), ((12796, 12825), 'torch.nn.Dropout', 'nn.Dropout', (['cfg.dropout_input'], {}), '(cfg.dropout_input)\n', (12806, 12825), True, 'import torch.nn as nn\n'), ((12858, 12890), 'torch.nn.Dropout', 'nn.Dropout', (['cfg.dropout_features'], {}), '(cfg.dropout_features)\n', (12868, 12890), True, 'import torch.nn as nn\n'), ((15158, 15189), 'fairseq.modules.LayerNorm', 'LayerNorm', (['self.audio_embed_dim'], {}), '(self.audio_embed_dim)\n', (15167, 15189), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((15472, 15515), 'torch.nn.Linear', 'nn.Linear', (['cfg.encoder_embed_dim', 'final_dim'], {}), '(cfg.encoder_embed_dim, final_dim)\n', (15481, 15515), True, 'import torch.nn as nn\n'), ((23459, 23491), 'torch.cat', 'torch.cat', (['[y, negatives]'], {'dim': '(0)'}), '([y, negatives], dim=0)\n', (23468, 23491), False, 'import torch\n'), ((25168, 25244), 'torch.tensor', 'torch.tensor', (['[]'], {'dtype': 'visual_features.dtype', 'device': 'visual_features.device'}), '([], dtype=visual_features.dtype, device=visual_features.device)\n', (25180, 25244), False, 'import torch\n'), ((43875, 43890), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (43888, 43890), True, 'import torch.nn as nn\n'), ((45337, 45474), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.embedding_dim', 'self.embedding_dim'], {'kernel_size': 'args.conv_pos', 'padding': '(args.conv_pos // 2)', 'groups': 'args.conv_pos_groups'}), '(self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos,\n padding=args.conv_pos // 2, groups=args.conv_pos_groups)\n', (45346, 45474), True, 'import torch.nn as nn\n'), ((45576, 45645), 'math.sqrt', 'math.sqrt', (['(4 * (1.0 - dropout) / (args.conv_pos * self.embedding_dim))'], {}), '(4 * (1.0 - dropout) / (args.conv_pos * self.embedding_dim))\n', (45585, 45645), False, 'import math\n'), ((45656, 45710), 'torch.nn.init.normal_', 'nn.init.normal_', (['self.pos_conv.weight'], {'mean': '(0)', 'std': 'std'}), '(self.pos_conv.weight, mean=0, std=std)\n', (45671, 45710), True, 'import torch.nn as nn\n'), ((45719, 45759), 'torch.nn.init.constant_', 'nn.init.constant_', (['self.pos_conv.bias', '(0)'], {}), '(self.pos_conv.bias, 0)\n', (45736, 45759), True, 'import torch.nn as nn\n'), ((45785, 45842), 'torch.nn.utils.weight_norm', 'nn.utils.weight_norm', (['self.pos_conv'], {'name': '"""weight"""', 'dim': '(2)'}), "(self.pos_conv, name='weight', dim=2)\n", (45805, 45842), True, 'import torch.nn as nn\n'), ((46679, 46708), 'fairseq.modules.LayerNorm', 'LayerNorm', (['self.embedding_dim'], {}), '(self.embedding_dim)\n', (46688, 46708), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((47403, 47455), 'torch.nn.functional.dropout', 'F.dropout', (['x'], {'p': 'self.dropout', 'training': 'self.training'}), '(x, p=self.dropout, training=self.training)\n', (47412, 47455), True, 'import torch.nn.functional as F\n'), ((49190, 49228), 'fairseq.utils.get_activation_fn', 'utils.get_activation_fn', (['activation_fn'], {}), '(activation_fn)\n', (49213, 49228), False, 'from fairseq import utils\n'), ((49254, 49366), 'fairseq.modules.MultiheadAttention', 'MultiheadAttention', (['self.embedding_dim', 'num_attention_heads'], {'dropout': 'attention_dropout', 'self_attention': '(True)'}), '(self.embedding_dim, num_attention_heads, dropout=\n attention_dropout, self_attention=True)\n', (49272, 49366), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((49446, 49465), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (49456, 49465), True, 'import torch.nn as nn\n'), ((49490, 49525), 'torch.nn.Dropout', 'nn.Dropout', (['self.activation_dropout'], {}), '(self.activation_dropout)\n', (49500, 49525), True, 'import torch.nn as nn\n'), ((49550, 49569), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (49560, 49569), True, 'import torch.nn as nn\n'), ((49719, 49748), 'fairseq.modules.LayerNorm', 'LayerNorm', (['self.embedding_dim'], {}), '(self.embedding_dim)\n', (49728, 49748), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((49768, 49816), 'torch.nn.Linear', 'nn.Linear', (['self.embedding_dim', 'ffn_embedding_dim'], {}), '(self.embedding_dim, ffn_embedding_dim)\n', (49777, 49816), True, 'import torch.nn as nn\n'), ((49836, 49884), 'torch.nn.Linear', 'nn.Linear', (['ffn_embedding_dim', 'self.embedding_dim'], {}), '(ffn_embedding_dim, self.embedding_dim)\n', (49845, 49884), True, 'import torch.nn as nn\n'), ((49989, 50018), 'fairseq.modules.LayerNorm', 'LayerNorm', (['self.embedding_dim'], {}), '(self.embedding_dim)\n', (49998, 50018), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((51722, 51737), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (51735, 51737), True, 'import torch.nn as nn\n'), ((53000, 53029), 'torch.flatten', 'torch.flatten', (['x'], {'start_dim': '(1)'}), '(x, start_dim=1)\n', (53013, 53029), False, 'import torch\n'), ((53045, 53073), 'torch.nn.functional.normalize', 'F.normalize', (['feature'], {'dim': '(-1)'}), '(feature, dim=-1)\n', (53056, 53073), True, 'import torch.nn.functional as F\n'), ((11519, 11573), 'torch.nn.Linear', 'nn.Linear', (['self.audio_embed_dim', 'cfg.encoder_embed_dim'], {}), '(self.audio_embed_dim, cfg.encoder_embed_dim)\n', (11528, 11573), True, 'import torch.nn as nn\n'), ((11877, 11886), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (11884, 11886), True, 'import torch.nn as nn\n'), ((13514, 13781), 'fairseq.modules.GumbelVectorQuantizer', 'GumbelVectorQuantizer', ([], {'dim': 'self.audio_embed_dim', 'num_vars': 'cfg.latent_vars', 'temp': 'cfg.latent_temp', 'groups': 'cfg.latent_groups', 'combine_groups': '(False)', 'vq_dim': 'vq_dim', 'time_first': '(True)', 'weight_proj_depth': 'cfg.quantizer_depth', 'weight_proj_factor': 'cfg.quantizer_factor'}), '(dim=self.audio_embed_dim, num_vars=cfg.latent_vars,\n temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False,\n vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth,\n weight_proj_factor=cfg.quantizer_factor)\n', (13535, 13781), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((13980, 14008), 'torch.nn.Linear', 'nn.Linear', (['vq_dim', 'final_dim'], {}), '(vq_dim, final_dim)\n', (13989, 14008), True, 'import torch.nn as nn\n'), ((14052, 14084), 'torch.nn.Linear', 'nn.Linear', (['self.embed', 'final_dim'], {}), '(self.embed, final_dim)\n', (14061, 14084), True, 'import torch.nn as nn\n'), ((18668, 18901), 'fairseq.data.data_utils.compute_mask_indices', 'compute_mask_indices', (['(B, C)', 'None', 'self.mask_channel_prob', 'self.mask_channel_length', 'self.mask_channel_selection', 'self.mask_channel_other'], {'no_overlap': 'self.no_mask_channel_overlap', 'min_space': 'self.mask_channel_min_space'}), '((B, C), None, self.mask_channel_prob, self.\n mask_channel_length, self.mask_channel_selection, self.\n mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=\n self.mask_channel_min_space)\n', (18688, 18901), False, 'from fairseq.data.data_utils import compute_mask_indices\n'), ((19865, 19912), 'fairseq.utils.index_put', 'index_put', (['x_audio', 'mask_indices', 'self.mask_emb'], {}), '(x_audio, mask_indices, self.mask_emb)\n', (19874, 19912), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((19936, 19984), 'fairseq.utils.index_put', 'index_put', (['x_visual', 'mask_indices', 'self.mask_emb'], {}), '(x_visual, mask_indices, self.mask_emb)\n', (19945, 19984), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((20865, 20908), 'fairseq.utils.index_put', 'index_put', (['x_audio', 'mask_channel_indices', '(0)'], {}), '(x_audio, mask_channel_indices, 0)\n', (20874, 20908), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((20932, 20976), 'fairseq.utils.index_put', 'index_put', (['x_visual', 'mask_channel_indices', '(0)'], {}), '(x_visual, mask_channel_indices, 0)\n', (20941, 20976), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((21504, 21519), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (21517, 21519), False, 'import torch\n'), ((22768, 22812), 'torch.cat', 'torch.cat', (['[neg_idxs, cross_neg_idxs]'], {'dim': '(1)'}), '([neg_idxs, cross_neg_idxs], dim=1)\n', (22777, 22812), False, 'import torch\n'), ((23636, 23657), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['logits'], {}), '(logits)\n', (23649, 23657), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((23983, 24033), 'fairseq.utils.index_put', 'index_put', (['logits[1:]', 'neg_is_pos', 'self._inftensor'], {}), '(logits[1:], neg_is_pos, self._inftensor)\n', (23992, 24033), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((24311, 24365), 'torch.floor', 'torch.floor', (['((input_length - kernel_size) / stride + 1)'], {}), '((input_length - kernel_size) / stride + 1)\n', (24322, 24365), False, 'import torch\n'), ((26504, 26531), 'torch.cat', 'torch.cat', (['visual_source', '(1)'], {}), '(visual_source, 1)\n', (26513, 26531), False, 'import torch\n'), ((26559, 26611), 'torch.split', 'torch.split', (['visual_source', 'self.visual_input_dim', '(1)'], {}), '(visual_source, self.visual_input_dim, 1)\n', (26570, 26611), False, 'import torch\n'), ((26640, 26664), 'torch.cat', 'torch.cat', (['visual_source'], {}), '(visual_source)\n', (26649, 26664), False, 'import torch\n'), ((27368, 27394), 'torch.stack', 'torch.stack', (['visual_source'], {}), '(visual_source)\n', (27379, 27394), False, 'import torch\n'), ((27423, 27475), 'torch.split', 'torch.split', (['visual_source', 'self.visual_input_dim', '(1)'], {}), '(visual_source, self.visual_input_dim, 1)\n', (27434, 27475), False, 'import torch\n'), ((27504, 27528), 'torch.cat', 'torch.cat', (['visual_source'], {}), '(visual_source)\n', (27513, 27528), False, 'import torch\n'), ((30776, 30876), 'torch.zeros', 'torch.zeros', (['audio_features.shape[:2]'], {'dtype': 'audio_features.dtype', 'device': 'audio_features.device'}), '(audio_features.shape[:2], dtype=audio_features.dtype, device=\n audio_features.device)\n', (30787, 30876), False, 'import torch\n'), ((45896, 45918), 'fairseq.modules.SamePad', 'SamePad', (['args.conv_pos'], {}), '(args.conv_pos)\n', (45903, 45918), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((45920, 45929), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (45927, 45929), True, 'import torch.nn as nn\n'), ((47172, 47201), 'fairseq.utils.index_put', 'index_put', (['x', 'padding_mask', '(0)'], {}), '(x, padding_mask, 0)\n', (47181, 47201), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((47647, 47665), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (47663, 47665), True, 'import numpy as np\n'), ((15385, 15420), 'torch.nn.Linear', 'nn.Linear', (['final_dim', '(final_dim * 2)'], {}), '(final_dim, final_dim * 2)\n', (15394, 15420), True, 'import torch.nn as nn\n'), ((15422, 15430), 'torch.nn.GLU', 'nn.GLU', ([], {}), '()\n', (15428, 15430), True, 'import torch.nn as nn\n'), ((17727, 17775), 'os.path.join', 'os.path.join', (['cfg.m2v_path', '"""checkpoint_last.pt"""'], {}), "(cfg.m2v_path, 'checkpoint_last.pt')\n", (17739, 17775), False, 'import os\n'), ((19371, 19571), 'fairseq.data.data_utils.compute_mask_indices', 'compute_mask_indices', (['(B, T)', 'padding_mask', 'self.mask_prob', 'self.mask_length', 'self.mask_selection', 'self.mask_other'], {'min_masks': '(2)', 'no_overlap': 'self.no_mask_overlap', 'min_space': 'self.mask_min_space'}), '((B, T), padding_mask, self.mask_prob, self.mask_length,\n self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.\n no_mask_overlap, min_space=self.mask_min_space)\n', (19391, 19571), False, 'from fairseq.data.data_utils import compute_mask_indices\n'), ((20214, 20447), 'fairseq.data.data_utils.compute_mask_indices', 'compute_mask_indices', (['(B, C)', 'None', 'self.mask_channel_prob', 'self.mask_channel_length', 'self.mask_channel_selection', 'self.mask_channel_other'], {'no_overlap': 'self.no_mask_channel_overlap', 'min_space': 'self.mask_channel_min_space'}), '((B, C), None, self.mask_channel_prob, self.\n mask_channel_length, self.mask_channel_selection, self.\n mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=\n self.mask_channel_min_space)\n', (20234, 20447), False, 'from fairseq.data.data_utils import compute_mask_indices\n'), ((21833, 21904), 'torch.randint', 'torch.randint', ([], {'low': '(0)', 'high': '(high - 1)', 'size': '(bsz, self.n_negatives * num)'}), '(low=0, high=high - 1, size=(bsz, self.n_negatives * num))\n', (21846, 21904), False, 'import torch\n'), ((22285, 22378), 'torch.randint', 'torch.randint', ([], {'low': '(0)', 'high': '(cross_high - 1)', 'size': '(bsz, self.cross_sample_negatives * num)'}), '(low=0, high=cross_high - 1, size=(bsz, self.\n cross_sample_negatives * num))\n', (22298, 22378), False, 'import torch\n'), ((28734, 28792), 'fairseq.modules.GradMultiply.apply', 'GradMultiply.apply', (['audio_features', 'self.feature_grad_mult'], {}), '(audio_features, self.feature_grad_mult)\n', (28752, 28792), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((28827, 28886), 'fairseq.modules.GradMultiply.apply', 'GradMultiply.apply', (['visual_features', 'self.feature_grad_mult'], {}), '(visual_features, self.feature_grad_mult)\n', (28845, 28886), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((28918, 28933), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (28931, 28933), False, 'import torch\n'), ((37669, 37702), 'torch.cat', 'torch.cat', (['[negs, cb_negs]'], {'dim': '(0)'}), '([negs, cb_negs], dim=0)\n', (37678, 37702), False, 'import torch\n'), ((38313, 38335), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['x_audio'], {}), '(x_audio)\n', (38326, 38335), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((38344, 38367), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['x_visual'], {}), '(x_visual)\n', (38357, 38367), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((42733, 42833), 'torch.nn.Conv1d', 'nn.Conv1d', (['n_in', 'n_out'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'bias': 'conv_bias'}), '(n_in, n_out, kernel_size=kernel_size, stride=stride, padding=\n padding, bias=conv_bias)\n', (42742, 42833), True, 'import torch.nn as nn\n'), ((42845, 42881), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['conv.weight'], {}), '(conv.weight)\n', (42868, 42881), True, 'import torch.nn as nn\n'), ((51797, 51807), 'torchvision.models.resnet.resnet50', 'resnet50', ([], {}), '()\n', (51805, 51807), False, 'from torchvision.models.resnet import resnet50\n'), ((15022, 15062), 'torch.FloatTensor', 'torch.FloatTensor', (['cfg.encoder_embed_dim'], {}), '(cfg.encoder_embed_dim)\n', (15039, 15062), False, 'import torch\n'), ((17807, 17834), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (17817, 17834), False, 'import torch\n'), ((23879, 23900), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['logits'], {}), '(logits)\n', (23892, 23900), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((31093, 31156), 'torch.arange', 'torch.arange', (['padding_mask.shape[0]'], {'device': 'padding_mask.device'}), '(padding_mask.shape[0], device=padding_mask.device)\n', (31105, 31156), False, 'import torch\n'), ((32901, 32923), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['x_audio'], {}), '(x_audio)\n', (32914, 32923), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((32932, 32954), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['x_audio'], {}), '(x_audio)\n', (32945, 32954), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((38707, 38727), 'fairseq.utils.is_xla_tensor', 'is_xla_tensor', (['x_cat'], {}), '(x_cat)\n', (38720, 38727), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((43186, 43207), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (43196, 43207), True, 'import torch.nn as nn\n'), ((43438, 43447), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (43445, 43447), True, 'import torch.nn as nn\n'), ((52184, 52276), 'torch.nn.Conv3d', 'nn.Conv3d', (['(3)', '(64)'], {'kernel_size': '(7, 7, 7)', 'stride': '(1, 2, 2)', 'padding': '(3, 3, 3)', 'bias': '(False)'}), '(3, 64, kernel_size=(7, 7, 7), stride=(1, 2, 2), padding=(3, 3, 3),\n bias=False)\n', (52193, 52276), True, 'import torch.nn as nn\n'), ((19793, 19823), 'torch.from_numpy', 'torch.from_numpy', (['mask_indices'], {}), '(mask_indices)\n', (19809, 19823), False, 'import torch\n'), ((43268, 43283), 'fairseq.modules.TransposeLast', 'TransposeLast', ([], {}), '()\n', (43281, 43283), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((43309, 43352), 'fairseq.modules.Fp32LayerNorm', 'Fp32LayerNorm', (['dim'], {'elementwise_affine': '(True)'}), '(dim, elementwise_affine=True)\n', (43322, 43352), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((43378, 43393), 'fairseq.modules.TransposeLast', 'TransposeLast', ([], {}), '()\n', (43391, 43393), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((43590, 43611), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (43600, 43611), True, 'import torch.nn as nn\n'), ((43633, 43669), 'fairseq.modules.Fp32GroupNorm', 'Fp32GroupNorm', (['dim', 'dim'], {'affine': '(True)'}), '(dim, dim, affine=True)\n', (43646, 43669), False, 'from fairseq.modules import Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast\n'), ((43691, 43700), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (43698, 43700), True, 'import torch.nn as nn\n'), ((43788, 43809), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (43798, 43809), True, 'import torch.nn as nn\n'), ((43811, 43820), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (43818, 43820), True, 'import torch.nn as nn\n'), ((23821, 23842), 'torch.tensor', 'torch.tensor', (['fillval'], {}), '(fillval)\n', (23833, 23842), False, 'import torch\n'), ((25533, 25647), 'torch.zeros', 'torch.zeros', (['(visual_source_len - l, 3, 112, 112)'], {'dtype': 'visual_features.dtype', 'device': 'visual_features.device'}), '((visual_source_len - l, 3, 112, 112), dtype=visual_features.\n dtype, device=visual_features.device)\n', (25544, 25647), False, 'import torch\n'), ((16201, 16243), 'torch.load', 'torch.load', (['"""../pretrain/wav2vec_small.pt"""'], {}), "('../pretrain/wav2vec_small.pt')\n", (16211, 16243), False, 'import torch\n'), ((16383, 16439), 'torch.load', 'torch.load', (['"""../pretrain/moco_v2_800ep_pretrain.pth.tar"""'], {}), "('../pretrain/moco_v2_800ep_pretrain.pth.tar')\n", (16393, 16439), False, 'import torch\n'), ((19083, 19121), 'torch.from_numpy', 'torch.from_numpy', (['mask_channel_indices'], {}), '(mask_channel_indices)\n', (19099, 19121), False, 'import torch\n'), ((20673, 20711), 'torch.from_numpy', 'torch.from_numpy', (['mask_channel_indices'], {}), '(mask_channel_indices)\n', (20689, 20711), False, 'import torch\n'), ((21650, 21670), 'fairseq.utils.buffered_arange', 'buffered_arange', (['num'], {}), '(num)\n', (21665, 21670), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n'), ((22085, 22105), 'fairseq.utils.buffered_arange', 'buffered_arange', (['num'], {}), '(num)\n', (22100, 22105), False, 'from fairseq.utils import buffered_arange, index_put, is_xla_tensor\n')]
from keras.models import Sequential from keras.models import Model from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda from keras.layers import concatenate import numpy as np import tensorflow as tf def to_yuv(img, in_cspace='RGB'): img_float = tf.cast(img, dtype=tf.float32) / 255. if (in_cspace == 'RGB'): img_rgb = tf.image.rgb_to_yuv(img_float) elif (in_cspace == 'BGR'): img_rgb = tf.image.bgr_to_yuv(img_float) else: raise ValueError(f"Unknown value of {in_cspace} for parameter 'in_space.'") return img_rgb def nvidia_model(img, crops=((0, 0), (0, 0)) ): """ A CNN model based on the NVIDIA paper implemented with Keras Functional API. :rtype: keras.models.Model """ x = Lambda(to_yuv, name='to_yuv')(img) x = Lambda(lambda x : x * 2 - 1, name='normalization')(x) # Add crop layer if crops are specified if (np.asarray(crops).flatten() > 0).any(): # Crop the input image to the ROI x = Cropping2D(cropping=crops)(x) # Convoutional Layers # Conv 1: 24@30x62 [kernel = 5x5; strides = 2x2] x = Conv2D(filters=24, kernel_size=5, name='L1_conv')(x) x = ELU()(x) x = MaxPool2D(strides=(2,2), name='L1_pool')(x) x = BatchNormalization()(x) # Conv 2: 36@13x29 [kernel = 5x5; strides = 2x2] x = Conv2D(filters=36, kernel_size=5, name='L2_conv')(x) x = ELU()(x) x = MaxPool2D(strides=(2,2), name='L2_pool')(x) x = BatchNormalization()(x) # Conv 3: 48@5x13 [kernel = 5x5; strides = 2x2] x = Conv2D(filters=48, kernel_size=5, name='L3_conv')(x) x = ELU()(x) x = MaxPool2D(strides=(2,2), name='L3_pool')(x) x = BatchNormalization()(x) # Conv 4: 64@3x11 [kernel = 3x3; strides = 1x1] x = Conv2D(filters=64, kernel_size=3, name='L4_conv')(x) x = ELU()(x) x = BatchNormalization()(x) # Conv 5: 64@1x9 [kernel = 3x3; strides = 1x1] x = Conv2D(filters=64, kernel_size=3, name='L5_conv')(x) x = ELU()(x) x = BatchNormalization()(x) # 2D -> 1D Flatten to feed into FC layers flattened = Flatten()(x) xst = Dense(128, name='FC1_steer')(flattened) xst = ELU()(xst) xst = Dropout(rate=0.5)(xst) xst = Dense(64, name='FC2_steer')(xst) xst = ELU()(xst) xst = Dropout(rate=0.5)(xst) xst = Dense(16, name='FC3_steer')(xst) xst = ELU()(xst) xst = Dropout(rate=0.5)(xst) # Ouyput layer out_steer = Dense(1, name='OUT_steer')(xst) model = Model(inputs=img, outputs=out_steer) return model
[ "tensorflow.image.rgb_to_yuv", "tensorflow.image.bgr_to_yuv", "keras.layers.Cropping2D", "keras.layers.Dropout", "numpy.asarray", "keras.layers.MaxPool2D", "keras.layers.Flatten", "keras.models.Model", "keras.layers.ELU", "tensorflow.cast", "keras.layers.Dense", "keras.layers.Lambda", "keras.layers.Conv2D", "keras.layers.BatchNormalization" ]
[((2546, 2582), 'keras.models.Model', 'Model', ([], {'inputs': 'img', 'outputs': 'out_steer'}), '(inputs=img, outputs=out_steer)\n', (2551, 2582), False, 'from keras.models import Model\n'), ((312, 342), 'tensorflow.cast', 'tf.cast', (['img'], {'dtype': 'tf.float32'}), '(img, dtype=tf.float32)\n', (319, 342), True, 'import tensorflow as tf\n'), ((398, 428), 'tensorflow.image.rgb_to_yuv', 'tf.image.rgb_to_yuv', (['img_float'], {}), '(img_float)\n', (417, 428), True, 'import tensorflow as tf\n'), ((812, 841), 'keras.layers.Lambda', 'Lambda', (['to_yuv'], {'name': '"""to_yuv"""'}), "(to_yuv, name='to_yuv')\n", (818, 841), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((855, 904), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x * 2 - 1)'], {'name': '"""normalization"""'}), "(lambda x: x * 2 - 1, name='normalization')\n", (861, 904), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1174, 1223), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(24)', 'kernel_size': '(5)', 'name': '"""L1_conv"""'}), "(filters=24, kernel_size=5, name='L1_conv')\n", (1180, 1223), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1235, 1240), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (1238, 1240), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1252, 1293), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'strides': '(2, 2)', 'name': '"""L1_pool"""'}), "(strides=(2, 2), name='L1_pool')\n", (1261, 1293), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1304, 1324), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (1322, 1324), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1390, 1439), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(36)', 'kernel_size': '(5)', 'name': '"""L2_conv"""'}), "(filters=36, kernel_size=5, name='L2_conv')\n", (1396, 1439), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1451, 1456), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (1454, 1456), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1468, 1509), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'strides': '(2, 2)', 'name': '"""L2_pool"""'}), "(strides=(2, 2), name='L2_pool')\n", (1477, 1509), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1520, 1540), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (1538, 1540), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1606, 1655), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(48)', 'kernel_size': '(5)', 'name': '"""L3_conv"""'}), "(filters=48, kernel_size=5, name='L3_conv')\n", (1612, 1655), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1667, 1672), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (1670, 1672), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1684, 1725), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'strides': '(2, 2)', 'name': '"""L3_pool"""'}), "(strides=(2, 2), name='L3_pool')\n", (1693, 1725), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1736, 1756), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (1754, 1756), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1822, 1871), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3)', 'name': '"""L4_conv"""'}), "(filters=64, kernel_size=3, name='L4_conv')\n", (1828, 1871), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1883, 1888), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (1886, 1888), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1900, 1920), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (1918, 1920), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((1984, 2033), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3)', 'name': '"""L5_conv"""'}), "(filters=64, kernel_size=3, name='L5_conv')\n", (1990, 2033), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2045, 2050), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (2048, 2050), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2062, 2082), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (2080, 2082), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2149, 2158), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2156, 2158), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2172, 2200), 'keras.layers.Dense', 'Dense', (['(128)'], {'name': '"""FC1_steer"""'}), "(128, name='FC1_steer')\n", (2177, 2200), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2222, 2227), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (2225, 2227), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2243, 2260), 'keras.layers.Dropout', 'Dropout', ([], {'rate': '(0.5)'}), '(rate=0.5)\n', (2250, 2260), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2278, 2305), 'keras.layers.Dense', 'Dense', (['(64)'], {'name': '"""FC2_steer"""'}), "(64, name='FC2_steer')\n", (2283, 2305), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2321, 2326), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (2324, 2326), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2342, 2359), 'keras.layers.Dropout', 'Dropout', ([], {'rate': '(0.5)'}), '(rate=0.5)\n', (2349, 2359), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2376, 2403), 'keras.layers.Dense', 'Dense', (['(16)'], {'name': '"""FC3_steer"""'}), "(16, name='FC3_steer')\n", (2381, 2403), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2419, 2424), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (2422, 2424), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2440, 2457), 'keras.layers.Dropout', 'Dropout', ([], {'rate': '(0.5)'}), '(rate=0.5)\n', (2447, 2457), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((2500, 2526), 'keras.layers.Dense', 'Dense', (['(1)'], {'name': '"""OUT_steer"""'}), "(1, name='OUT_steer')\n", (2505, 2526), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((478, 508), 'tensorflow.image.bgr_to_yuv', 'tf.image.bgr_to_yuv', (['img_float'], {}), '(img_float)\n', (497, 508), True, 'import tensorflow as tf\n'), ((1056, 1082), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': 'crops'}), '(cropping=crops)\n', (1066, 1082), False, 'from keras.layers import Cropping2D, Conv2D, MaxPool2D, Flatten, Dense, Dropout, ELU, BatchNormalization, Lambda\n'), ((962, 979), 'numpy.asarray', 'np.asarray', (['crops'], {}), '(crops)\n', (972, 979), True, 'import numpy as np\n')]
import os import pickle import cv2 import numpy as np import streamlit as st import tensorflow as tf import grpc from tensorflow_serving.apis import ( prediction_service_pb2_grpc, predict_pb2 ) from consts import ( TRAIN_FD, TRAIN_PKL_FP, TRAIN_LABEL_FP ) @st.cache def load_prec_embs(): with open(TRAIN_PKL_FP, "rb") as f: train_embs = pickle.load(f) with open(TRAIN_LABEL_FP, "rb") as f: train_labels = pickle.load(f) train_img_fps = wfile(TRAIN_FD) assert len(train_img_fps) == train_embs.shape[0] return train_img_fps, train_embs, train_labels def wfile(root): img_fps = [] for path, subdirs, files in os.walk(root): for name in files: img_fps.append(os.path.join(path, name)) return sorted(img_fps) class FlowerArc: def __init__(self, host="localhost", port=8500, model_name="flower", model_signature="flower_signature", input_name="input_image", output_name="emb_pred"): self.host = host self.port = port self.channel = grpc.insecure_channel("{}:{}".format( self.host, self.port )) self.stub = prediction_service_pb2_grpc.PredictionServiceStub( self.channel ) self.input_name = input_name self.output_name = output_name self.request = predict_pb2.PredictRequest() self.request.model_spec.name = model_name self.request.model_spec.signature_name = model_signature def norm_mean_std(self, img): img = img / 255 img = img.astype('float32') mean = np.mean(img, axis=(0, 1, 2)) std = np.std(img, axis=(0, 1, 2)) img = (img - mean) / std return img def test_preprocess(self, img, img_size=(384, 384), expand=True): img = cv2.resize(img, img_size) # normalize image img = self.norm_mean_std(img) if expand: img = np.expand_dims(img, axis=0) return img def predict(self, img): assert img.ndim == 3 img = self.test_preprocess(img) self.request.inputs[self.input_name].CopyFrom( tf.contrib.util.make_tensor_proto( img, dtype=tf.float32, shape=img.shape ) ) result = self.stub.Predict(self.request, 10.0) emb_pred = tf.contrib.util.make_ndarray( result.outputs[self.output_name] ) return emb_pred class Saliency: def __init__(self, host="localhost", port=8500, model_name="saliency", model_signature="serving_default", input_name="input_image", output_name="pred_mask"): self.host = host self.port = port self.channel = grpc.insecure_channel("{}:{}".format( self.host, self.port )) self.stub = prediction_service_pb2_grpc.PredictionServiceStub( self.channel ) self.input_name = input_name self.output_name = output_name self.request = predict_pb2.PredictRequest() self.request.model_spec.name = model_name self.request.model_spec.signature_name = model_signature def test_preprocess(self, img, img_size=(320, 240), expand=True): img = cv2.resize(img, img_size) if expand: img = np.expand_dims(img, axis=0) return img def predict(self, img): assert img.ndim == 3 img = self.test_preprocess(img) self.request.inputs[self.input_name].CopyFrom( tf.contrib.util.make_tensor_proto( img, dtype=tf.float32, shape=img.shape ) ) result = self.stub.Predict(self.request, 10.0) pred_mask = tf.contrib.util.make_ndarray( result.outputs[self.output_name] ) return pred_mask
[ "os.path.join", "tensorflow_serving.apis.predict_pb2.PredictRequest", "numpy.std", "os.walk", "numpy.expand_dims", "tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub", "pickle.load", "numpy.mean", "tensorflow.contrib.util.make_ndarray", "tensorflow.contrib.util.make_tensor_proto", "cv2.resize" ]
[((679, 692), 'os.walk', 'os.walk', (['root'], {}), '(root)\n', (686, 692), False, 'import os\n'), ((373, 387), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (384, 387), False, 'import pickle\n'), ((454, 468), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (465, 468), False, 'import pickle\n'), ((1261, 1324), 'tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub', 'prediction_service_pb2_grpc.PredictionServiceStub', (['self.channel'], {}), '(self.channel)\n', (1310, 1324), False, 'from tensorflow_serving.apis import prediction_service_pb2_grpc, predict_pb2\n'), ((1447, 1475), 'tensorflow_serving.apis.predict_pb2.PredictRequest', 'predict_pb2.PredictRequest', ([], {}), '()\n', (1473, 1475), False, 'from tensorflow_serving.apis import prediction_service_pb2_grpc, predict_pb2\n'), ((1725, 1753), 'numpy.mean', 'np.mean', (['img'], {'axis': '(0, 1, 2)'}), '(img, axis=(0, 1, 2))\n', (1732, 1753), True, 'import numpy as np\n'), ((1768, 1795), 'numpy.std', 'np.std', (['img'], {'axis': '(0, 1, 2)'}), '(img, axis=(0, 1, 2))\n', (1774, 1795), True, 'import numpy as np\n'), ((2007, 2032), 'cv2.resize', 'cv2.resize', (['img', 'img_size'], {}), '(img, img_size)\n', (2017, 2032), False, 'import cv2\n'), ((2574, 2636), 'tensorflow.contrib.util.make_ndarray', 'tf.contrib.util.make_ndarray', (['result.outputs[self.output_name]'], {}), '(result.outputs[self.output_name])\n', (2602, 2636), True, 'import tensorflow as tf\n'), ((3143, 3206), 'tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub', 'prediction_service_pb2_grpc.PredictionServiceStub', (['self.channel'], {}), '(self.channel)\n', (3192, 3206), False, 'from tensorflow_serving.apis import prediction_service_pb2_grpc, predict_pb2\n'), ((3329, 3357), 'tensorflow_serving.apis.predict_pb2.PredictRequest', 'predict_pb2.PredictRequest', ([], {}), '()\n', (3355, 3357), False, 'from tensorflow_serving.apis import prediction_service_pb2_grpc, predict_pb2\n'), ((3631, 3656), 'cv2.resize', 'cv2.resize', (['img', 'img_size'], {}), '(img, img_size)\n', (3641, 3656), False, 'import cv2\n'), ((4134, 4196), 'tensorflow.contrib.util.make_ndarray', 'tf.contrib.util.make_ndarray', (['result.outputs[self.output_name]'], {}), '(result.outputs[self.output_name])\n', (4162, 4196), True, 'import tensorflow as tf\n'), ((2136, 2163), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (2150, 2163), True, 'import numpy as np\n'), ((2352, 2425), 'tensorflow.contrib.util.make_tensor_proto', 'tf.contrib.util.make_tensor_proto', (['img'], {'dtype': 'tf.float32', 'shape': 'img.shape'}), '(img, dtype=tf.float32, shape=img.shape)\n', (2385, 2425), True, 'import tensorflow as tf\n'), ((3695, 3722), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (3709, 3722), True, 'import numpy as np\n'), ((3911, 3984), 'tensorflow.contrib.util.make_tensor_proto', 'tf.contrib.util.make_tensor_proto', (['img'], {'dtype': 'tf.float32', 'shape': 'img.shape'}), '(img, dtype=tf.float32, shape=img.shape)\n', (3944, 3984), True, 'import tensorflow as tf\n'), ((748, 772), 'os.path.join', 'os.path.join', (['path', 'name'], {}), '(path, name)\n', (760, 772), False, 'import os\n')]
import numpy as np from PIL import Image import matplotlib.pyplot as plt # Open the image img = np.array(Image.open('house.jpg')).astype(np.uint8) # Apply gray scale gray_img = np.round(0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2]).astype(np.uint8) # Prewitt Operator h, w = gray_img.shape # define filters horizontal = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) # s2 vertical = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) # s1 # define images with 0s newgradientImage = np.zeros((h, w)) # offset by 1 for i in range(1, h - 1): for j in range(1, w - 1): horizontalGrad = (horizontal[0, 0] * gray_img[i - 1, j - 1]) + \ (horizontal[0, 1] * gray_img[i - 1, j]) + \ (horizontal[0, 2] * gray_img[i - 1, j + 1]) + \ (horizontal[1, 0] * gray_img[i, j - 1]) + \ (horizontal[1, 1] * gray_img[i, j]) + \ (horizontal[1, 2] * gray_img[i, j + 1]) + \ (horizontal[2, 0] * gray_img[i + 1, j - 1]) + \ (horizontal[2, 1] * gray_img[i + 1, j]) + \ (horizontal[2, 2] * gray_img[i + 1, j + 1]) verticalGrad = (vertical[0, 0] * gray_img[i - 1, j - 1]) + \ (vertical[0, 1] * gray_img[i - 1, j]) + \ (vertical[0, 2] * gray_img[i - 1, j + 1]) + \ (vertical[1, 0] * gray_img[i, j - 1]) + \ (vertical[1, 1] * gray_img[i, j]) + \ (vertical[1, 2] * gray_img[i, j + 1]) + \ (vertical[2, 0] * gray_img[i + 1, j - 1]) + \ (vertical[2, 1] * gray_img[i + 1, j]) + \ (vertical[2, 2] * gray_img[i + 1, j + 1]) # Edge Magnitude mag = np.sqrt(pow(horizontalGrad, 2.0) + pow(verticalGrad, 2.0)) newgradientImage[i - 1, j - 1] = mag plt.figure() plt.title('Prewitt_House') plt.imsave('prewitt_house.jpg', newgradientImage, cmap='gray') plt.imshow(newgradientImage, cmap='gray') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.imshow", "numpy.zeros", "PIL.Image.open", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.imsave", "numpy.round" ]
[((400, 446), 'numpy.array', 'np.array', (['[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]'], {}), '([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])\n', (408, 446), True, 'import numpy as np\n'), ((465, 511), 'numpy.array', 'np.array', (['[[-1, -1, -1], [0, 0, 0], [1, 1, 1]]'], {}), '([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])\n', (473, 511), True, 'import numpy as np\n'), ((565, 581), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (573, 581), True, 'import numpy as np\n'), ((2052, 2064), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2062, 2064), True, 'import matplotlib.pyplot as plt\n'), ((2066, 2092), 'matplotlib.pyplot.title', 'plt.title', (['"""Prewitt_House"""'], {}), "('Prewitt_House')\n", (2075, 2092), True, 'import matplotlib.pyplot as plt\n'), ((2094, 2156), 'matplotlib.pyplot.imsave', 'plt.imsave', (['"""prewitt_house.jpg"""', 'newgradientImage'], {'cmap': '"""gray"""'}), "('prewitt_house.jpg', newgradientImage, cmap='gray')\n", (2104, 2156), True, 'import matplotlib.pyplot as plt\n'), ((2158, 2199), 'matplotlib.pyplot.imshow', 'plt.imshow', (['newgradientImage'], {'cmap': '"""gray"""'}), "(newgradientImage, cmap='gray')\n", (2168, 2199), True, 'import matplotlib.pyplot as plt\n'), ((2201, 2211), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2209, 2211), True, 'import matplotlib.pyplot as plt\n'), ((187, 263), 'numpy.round', 'np.round', (['(0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2])'], {}), '(0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2])\n', (195, 263), True, 'import numpy as np\n'), ((111, 134), 'PIL.Image.open', 'Image.open', (['"""house.jpg"""'], {}), "('house.jpg')\n", (121, 134), False, 'from PIL import Image\n')]
""" SAVGOL INTERP. -------------- """ import argparse from pathlib import Path import matplotlib import numpy as np from embers.rf_tools.align_data import savgol_interp from embers.rf_tools.colormaps import spectral from matplotlib import pyplot as plt matplotlib.use("Agg") _spec, _ = spectral() parser = argparse.ArgumentParser( description=""" Savgol Interpolation paper plot """ ) parser.add_argument( "--rf_dir", metavar="\b", default="../../tiles_data", help="Directory with raw rf data. Default=.../../tiles_data", ) parser.add_argument( "--out_dir", metavar="\b", default="../embers_out/paper_plots", help="Output Directory. Default=./embers_out/paper_plots", ) args = parser.parse_args() rf_dir = Path(args.rf_dir) out_dir = Path(args.out_dir) out_dir.mkdir(parents=True, exist_ok=True) try: ch = 8 ( ref_ali, tile_ali, time_array, ref_power, tile_power, ref_time, tile_time, ) = savgol_interp( f"{rf_dir}/rf0XX/2019-09-15/rf0XX_2019-09-15-11:00.txt", f"{rf_dir}/S06XX/2019-09-15/S06XX_2019-09-15-11:00.txt", savgol_window_1=11, savgol_window_2=15, polyorder=2, interp_type="cubic", interp_freq=1, ) plt.style.use("seaborn") nice_fonts = { # Use LaTeX to write all text # "text.usetex": True, "font.family": "sans-serif", # Use 10pt font in plots, to match 10pt font in document "axes.labelsize": 10, "font.size": 10, # Make the legend/label fonts a little smaller "legend.fontsize": 6, "xtick.labelsize": 8, "ytick.labelsize": 8, } plt.rcParams.update(nice_fonts) fig = plt.figure(figsize=(3.6, 2.4)) colors = _spec([0.14, 0.28]) tile_t = tile_time - tile_time[0] time_array = time_array - time_array[0] med = np.median(tile_power) tile_p = tile_power - med tile_p_aligned = tile_ali - med plt.plot( time_array, tile_p_aligned[::, ch], linewidth=1, color=colors[0], # color="#2c5d63", alpha=0.9, label="SavGol", ) plt.scatter( tile_t, tile_p[::, ch], color=colors[1], # color="#7fa998", marker=".", s=3, alpha=0.2, label="AUT raw", ) leg = plt.legend(loc="upper right", frameon=True, markerscale=4, handlelength=1) leg.get_frame().set_facecolor("white") for le in leg.legendHandles: le.set_alpha(1) plt.ylabel("Power [dB]") plt.xlabel("Time [s]") plt.tight_layout() plt.savefig(f"{out_dir}/savgol.pdf", bbox_inches="tight") print(f"SAVGOL INTERP saved to {out_dir}") except Exception as e: print(e) print("Missing input rf files. Check path to rf_dir")
[ "argparse.ArgumentParser", "matplotlib.pyplot.plot", "numpy.median", "matplotlib.pyplot.scatter", "embers.rf_tools.colormaps.spectral", "matplotlib.pyplot.legend", "embers.rf_tools.align_data.savgol_interp", "pathlib.Path", "matplotlib.use", "matplotlib.pyplot.style.use", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.figure", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig" ]
[((256, 277), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (270, 277), False, 'import matplotlib\n'), ((289, 299), 'embers.rf_tools.colormaps.spectral', 'spectral', ([], {}), '()\n', (297, 299), False, 'from embers.rf_tools.colormaps import spectral\n'), ((310, 407), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""\n Savgol Interpolation paper plot\n """'}), '(description=\n """\n Savgol Interpolation paper plot\n """)\n', (333, 407), False, 'import argparse\n'), ((765, 782), 'pathlib.Path', 'Path', (['args.rf_dir'], {}), '(args.rf_dir)\n', (769, 782), False, 'from pathlib import Path\n'), ((793, 811), 'pathlib.Path', 'Path', (['args.out_dir'], {}), '(args.out_dir)\n', (797, 811), False, 'from pathlib import Path\n'), ((1018, 1247), 'embers.rf_tools.align_data.savgol_interp', 'savgol_interp', (['f"""{rf_dir}/rf0XX/2019-09-15/rf0XX_2019-09-15-11:00.txt"""', 'f"""{rf_dir}/S06XX/2019-09-15/S06XX_2019-09-15-11:00.txt"""'], {'savgol_window_1': '(11)', 'savgol_window_2': '(15)', 'polyorder': '(2)', 'interp_type': '"""cubic"""', 'interp_freq': '(1)'}), "(f'{rf_dir}/rf0XX/2019-09-15/rf0XX_2019-09-15-11:00.txt',\n f'{rf_dir}/S06XX/2019-09-15/S06XX_2019-09-15-11:00.txt',\n savgol_window_1=11, savgol_window_2=15, polyorder=2, interp_type=\n 'cubic', interp_freq=1)\n", (1031, 1247), False, 'from embers.rf_tools.align_data import savgol_interp\n'), ((1303, 1327), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (1316, 1327), True, 'from matplotlib import pyplot as plt\n'), ((1730, 1761), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['nice_fonts'], {}), '(nice_fonts)\n', (1749, 1761), True, 'from matplotlib import pyplot as plt\n'), ((1773, 1803), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(3.6, 2.4)'}), '(figsize=(3.6, 2.4))\n', (1783, 1803), True, 'from matplotlib import pyplot as plt\n'), ((1932, 1953), 'numpy.median', 'np.median', (['tile_power'], {}), '(tile_power)\n', (1941, 1953), True, 'import numpy as np\n'), ((2025, 2129), 'matplotlib.pyplot.plot', 'plt.plot', (['time_array', 'tile_p_aligned[:, ch]'], {'linewidth': '(1)', 'color': 'colors[0]', 'alpha': '(0.9)', 'label': '"""SavGol"""'}), "(time_array, tile_p_aligned[:, ch], linewidth=1, color=colors[0],\n alpha=0.9, label='SavGol')\n", (2033, 2129), True, 'from matplotlib import pyplot as plt\n'), ((2214, 2315), 'matplotlib.pyplot.scatter', 'plt.scatter', (['tile_t', 'tile_p[:, ch]'], {'color': 'colors[1]', 'marker': '"""."""', 's': '(3)', 'alpha': '(0.2)', 'label': '"""AUT raw"""'}), "(tile_t, tile_p[:, ch], color=colors[1], marker='.', s=3, alpha=\n 0.2, label='AUT raw')\n", (2225, 2315), True, 'from matplotlib import pyplot as plt\n'), ((2414, 2488), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'frameon': '(True)', 'markerscale': '(4)', 'handlelength': '(1)'}), "(loc='upper right', frameon=True, markerscale=4, handlelength=1)\n", (2424, 2488), True, 'from matplotlib import pyplot as plt\n'), ((2594, 2618), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Power [dB]"""'], {}), "('Power [dB]')\n", (2604, 2618), True, 'from matplotlib import pyplot as plt\n'), ((2623, 2645), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {}), "('Time [s]')\n", (2633, 2645), True, 'from matplotlib import pyplot as plt\n'), ((2650, 2668), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2666, 2668), True, 'from matplotlib import pyplot as plt\n'), ((2673, 2730), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{out_dir}/savgol.pdf"""'], {'bbox_inches': '"""tight"""'}), "(f'{out_dir}/savgol.pdf', bbox_inches='tight')\n", (2684, 2730), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np from config import GOPARAMETERS def stone_features(board_state): # 16 planes, where every other plane represents the stones of a particular color # which means we track the stones of the last 8 moves. features = np.zeros([16, GOPARAMETERS.N, GOPARAMETERS.N], dtype=np.uint8) num_deltas_avail = board_state.board_deltas.shape[0] cumulative_deltas = np.cumsum(board_state.board_deltas, axis=0) last_eight = np.tile(board_state.board, [8, 1, 1]) last_eight[1:num_deltas_avail + 1] -= cumulative_deltas last_eight[num_deltas_avail +1:] = last_eight[num_deltas_avail].reshape(1, GOPARAMETERS.N, GOPARAMETERS.N) features[::2] = last_eight == board_state.to_play features[1::2] = last_eight == -board_state.to_play return np.rollaxis(features, 0, 3) def color_to_play_feature(board_state): # 1 plane representing which color is to play # The plane is filled with 1's if the color to play is black; 0's otherwise if board_state.to_play == GOPARAMETERS.BLACK: return np.ones([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8) else: return np.zeros([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8) def extract_features(board_state): stone_feat = stone_features(board_state=board_state) turn_feat = color_to_play_feature(board_state=board_state) all_features = np.concatenate([stone_feat, turn_feat], axis=2) return all_features
[ "numpy.zeros", "numpy.ones", "numpy.cumsum", "numpy.tile", "numpy.rollaxis", "numpy.concatenate" ]
[((245, 307), 'numpy.zeros', 'np.zeros', (['[16, GOPARAMETERS.N, GOPARAMETERS.N]'], {'dtype': 'np.uint8'}), '([16, GOPARAMETERS.N, GOPARAMETERS.N], dtype=np.uint8)\n', (253, 307), True, 'import numpy as np\n'), ((390, 433), 'numpy.cumsum', 'np.cumsum', (['board_state.board_deltas'], {'axis': '(0)'}), '(board_state.board_deltas, axis=0)\n', (399, 433), True, 'import numpy as np\n'), ((451, 488), 'numpy.tile', 'np.tile', (['board_state.board', '[8, 1, 1]'], {}), '(board_state.board, [8, 1, 1])\n', (458, 488), True, 'import numpy as np\n'), ((782, 809), 'numpy.rollaxis', 'np.rollaxis', (['features', '(0)', '(3)'], {}), '(features, 0, 3)\n', (793, 809), True, 'import numpy as np\n'), ((1369, 1416), 'numpy.concatenate', 'np.concatenate', (['[stone_feat, turn_feat]'], {'axis': '(2)'}), '([stone_feat, turn_feat], axis=2)\n', (1383, 1416), True, 'import numpy as np\n'), ((1046, 1106), 'numpy.ones', 'np.ones', (['[GOPARAMETERS.N, GOPARAMETERS.N, 1]'], {'dtype': 'np.uint8'}), '([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8)\n', (1053, 1106), True, 'import numpy as np\n'), ((1132, 1193), 'numpy.zeros', 'np.zeros', (['[GOPARAMETERS.N, GOPARAMETERS.N, 1]'], {'dtype': 'np.uint8'}), '([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8)\n', (1140, 1193), True, 'import numpy as np\n')]
from numpy import array, copy, concatenate from torch import Tensor from botorch.acquisition.multi_objective.monte_carlo import ( qExpectedHypervolumeImprovement, qNoisyExpectedHypervolumeImprovement ) from botorch.posteriors import GPyTorchPosterior, Posterior, DeterministicPosterior from gpytorch.distributions import MultitaskMultivariateNormal from gpytorch.lazy import BlockDiagLazyTensor import torch # TODO: replace these with the non-mocked versions once botorch #991 comes in # will need to update to botorch master class qDiscreteEHVI(qExpectedHypervolumeImprovement): def forward(self, X: array) -> Tensor: # mocks the qEHVI call # assumes that X is an array of shape batch x q rather than a tensor of shape batch x q x d posterior = self.model.posterior(X) samples = self.sampler(posterior) return self._compute_qehvi(samples=samples) class qDiscreteNEHVI(qNoisyExpectedHypervolumeImprovement): # TODO: figure out how to remove def __init__( self, model, ref_point, X_baseline, sampler = None, objective = None, constraints = None, X_pending = None, eta: float = 1e-3, prune_baseline: bool = False, alpha: float = 0.0, cache_pending: bool = True, max_iep: int = 0, incremental_nehvi: bool = True, **kwargs, ): model.eval() mocked_features = model.get_features(X_baseline, model.bs) # for string kernels if mocked_features.ndim > 2: mocked_features = mocked_features[..., 0].to(ref_point) # doint let this fail super().__init__( model=model, ref_point=ref_point, X_baseline=mocked_features, sampler=sampler, objective=objective, constraints=constraints, X_pending=X_pending, eta=eta, prune_baseline=prune_baseline, alpha=alpha, cache_pending=cache_pending, max_iep=max_iep, incremental_nehvi=incremental_nehvi, **kwargs ) self.X_baseline_string = X_baseline def forward(self, X: array) -> Tensor: if isinstance(X, Tensor): baseline_X = self._X_baseline baseline_X = baseline_X.expand(*X.shape[:-2], -1, -1) X_full = torch.cat([baseline_X, X], dim=-2) else: baseline_X = copy(self.X_baseline_string) # ensure contiguity baseline_X.resize( baseline_X.shape[:-(X.ndim)] + X.shape[:-1] + baseline_X.shape[-1:] ) X_full = concatenate([baseline_X, X], axis=-1) # Note: it is important to compute the full posterior over `(X_baseline, X)`` # to ensure that we properly sample `f(X)` from the joint distribution ` # `f(X_baseline, X) ~ P(f | D)` given that we can already fixed the sampled # function values for `f(X_baseline)` posterior = self.model.posterior(X_full) q = X.shape[-2] self._set_sampler(q=q, posterior=posterior) samples = self.sampler(posterior)[..., -q:, :] # add previous nehvi from pending points return self._compute_qehvi(samples=samples) + self._prev_nehvi def _cache_root_decomposition(self, posterior: GPyTorchPosterior) -> None: if posterior.mvn._interleaved: if hasattr(posterior.mvn.lazy_covariance_matrix, 'base_lazy_tensor'): posterior_lc_base = posterior.mvn.lazy_covariance_matrix.base_lazy_tensor else: posterior_lc_base = posterior.mvn.lazy_covariance_matrix new_lazy_covariance = BlockDiagLazyTensor(posterior_lc_base) posterior.mvn = MultitaskMultivariateNormal(posterior.mvn.mean, new_lazy_covariance, interleaved=False) return super()._cache_root_decomposition(posterior=posterior) class qMTGPDiscreteNEHVI(qDiscreteNEHVI): # TODO: remove when botorch #1037 goes in # this is copied over from that diff _uses_matheron = True def __init__(self, *args, **kwargs): super().__init__(cache_root = False, *args, **kwargs) def _set_sampler( self, q: int, posterior: Posterior, ) -> None: r"""Update the sampler to use the original base samples for X_baseline. Args: q: the batch size posterior: the posterior TODO: refactor some/all of this into the MCSampler. """ if self.q != q: # create new base_samples base_sample_shape = self.sampler._get_base_sample_shape(posterior=posterior) self.sampler._construct_base_samples( posterior=posterior, shape=base_sample_shape ) if ( self.X_baseline.shape[0] > 0 and self.base_sampler.base_samples is not None and not isinstance(posterior, DeterministicPosterior) ): current_base_samples = self.base_sampler.base_samples.detach().clone() # This is the # of non-`sample_shape` dimensions. base_ndims = current_base_samples.dim() - 1 # Unsqueeze as many dimensions as needed to match base_sample_shape. view_shape = ( self.sampler.sample_shape + torch.Size( [1] * (len(base_sample_shape) - current_base_samples.dim()) ) + current_base_samples.shape[-base_ndims:] ) expanded_shape = ( base_sample_shape[:-base_ndims] + current_base_samples.shape[-base_ndims:] ) # Use stored base samples: # Use all base_samples from the current sampler # this includes the base_samples from the base_sampler # and any base_samples for the new points in the sampler. # For example, when using sequential greedy candidate generation # then generate the new candidate point using last (-1) base_sample # in sampler. This copies that base sample. end_idx = current_base_samples.shape[-1 if self._uses_matheron else -2] expanded_samples = current_base_samples.view(view_shape).expand( expanded_shape ) if self._uses_matheron: self.sampler.base_samples[..., :end_idx] = expanded_samples else: self.sampler.base_samples[..., :end_idx, :] = expanded_samples # update cached subset indices # Note: this also stores self.q = q self._cache_q_subset_indices(q=q)
[ "numpy.copy", "gpytorch.lazy.BlockDiagLazyTensor", "gpytorch.distributions.MultitaskMultivariateNormal", "torch.cat", "numpy.concatenate" ]
[((2408, 2442), 'torch.cat', 'torch.cat', (['[baseline_X, X]'], {'dim': '(-2)'}), '([baseline_X, X], dim=-2)\n', (2417, 2442), False, 'import torch\n'), ((2482, 2510), 'numpy.copy', 'copy', (['self.X_baseline_string'], {}), '(self.X_baseline_string)\n', (2486, 2510), False, 'from numpy import array, copy, concatenate\n'), ((2681, 2718), 'numpy.concatenate', 'concatenate', (['[baseline_X, X]'], {'axis': '(-1)'}), '([baseline_X, X], axis=-1)\n', (2692, 2718), False, 'from numpy import array, copy, concatenate\n'), ((3737, 3775), 'gpytorch.lazy.BlockDiagLazyTensor', 'BlockDiagLazyTensor', (['posterior_lc_base'], {}), '(posterior_lc_base)\n', (3756, 3775), False, 'from gpytorch.lazy import BlockDiagLazyTensor\n'), ((3804, 3895), 'gpytorch.distributions.MultitaskMultivariateNormal', 'MultitaskMultivariateNormal', (['posterior.mvn.mean', 'new_lazy_covariance'], {'interleaved': '(False)'}), '(posterior.mvn.mean, new_lazy_covariance,\n interleaved=False)\n', (3831, 3895), False, 'from gpytorch.distributions import MultitaskMultivariateNormal\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from scipy import linalg from numpy.testing import assert_almost_equal from megamix.online import GaussianMixture from megamix.online.base import _log_normal_matrix from megamix.online import dist_matrix from megamix.utils_testing import checking from scipy.special import logsumexp import pytest import h5py class TestGaussianMixture_full: def setup(self): self.n_components = 5 self.dim = 2 self.n_points = 10 self.file_name = 'test' def teardown(self): checking.remove(self.file_name + '.h5') def test_initialize(self,window): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window) GM.initialize(points) checking.verify_covariance(GM.get('cov'),self.n_components,self.dim) checking.verify_means(GM.get('means'),self.n_components,self.dim) checking.verify_log_pi(GM.get('log_weights'),self.n_components) cov_chol = np.empty_like(GM.get('cov')) for i in range(self.n_components): cov_chol[i] = linalg.cholesky(GM.get('cov')[i],lower=True) assert_almost_equal(cov_chol,GM.get('cov_chol')) assert GM.get('_is_initialized') == True def test_initialize_cov(self,window,update): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window) means = np.random.randn(self.n_components,self.dim) GM.set('means',means) GM._initialize_cov(points) predected_cov = GM.get('cov') assignements = np.zeros((self.n_points,self.n_components)) M = dist_matrix(points,means) for i in range(self.n_points): index_min = np.argmin(M[i]) #the cluster number of the ith point is index_min if (isinstance(index_min,np.int64)): assignements[i][index_min] = 1 else: #Happens when two points are equally distant from a cluster mean assignements[i][index_min[0]] = 1 N = np.sum(assignements,axis=0) + 1e-15 N /= self.n_points S = np.zeros((self.n_components,self.dim,self.dim)) for i in range(self.n_components): diff = points - means[i] diff_weighted = diff * assignements[:,i:i+1] S[i] = np.dot(diff_weighted.T,diff) S[i].flat[::self.dim+1] += float(GM.get('reg_covar')) S /= self.n_points expected_cov = S / N[:,np.newaxis,np.newaxis] assert_almost_equal(expected_cov,predected_cov) def test_step_E(self,window): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window) GM.initialize(points) log_normal_matrix = _log_normal_matrix(points,GM.get('means'), GM.get('cov_chol'),'full') log_product = log_normal_matrix + GM.get('log_weights')[:,np.newaxis].T expected_log_prob_norm = logsumexp(log_product,axis=1) expected_log_resp = log_product - expected_log_prob_norm[:,np.newaxis] predected_log_prob_norm, predected_log_resp = GM._step_E(points) assert_almost_equal(expected_log_prob_norm,predected_log_prob_norm) assert_almost_equal(expected_log_resp,predected_log_resp) def test_step_M(self,window,update): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window,update=update) GM.initialize(points) _,log_resp = GM._step_E(points[:GM.get('window'):]) GM._sufficient_statistics(points[:GM.get('window'):],log_resp) log_weights = np.log(GM.get('N')) means = GM.get('X') / GM.get('N')[:,np.newaxis] cov = GM.get('S') / GM.get('N')[:,np.newaxis,np.newaxis] cov_chol = np.empty_like(cov) for i in range(self.n_components): cov_chol[i] = linalg.cholesky(cov[i],lower=True) GM._step_M() assert_almost_equal(log_weights,GM.get('log_weights')) assert_almost_equal(means,GM.get('means')) assert_almost_equal(cov,GM.get('cov')) assert_almost_equal(cov_chol,GM.get('cov_chol')) def test_sufficient_statistics(self,window,update): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window,update=update) GM.initialize(points) _,log_resp = GM._step_E(points[:GM.get('window'):]) points_exp = points[:window:] resp = np.exp(log_resp) gamma = 1/((GM.get('iter') + window//2)**GM.get('kappa')) # New sufficient statistics N = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps N /= window X = np.dot(resp.T,points_exp) X /= window S = np.zeros((self.n_components,self.dim,self.dim)) for i in range(self.n_components): diff = points_exp - GM.get('means')[i] diff_weighted = diff * np.sqrt(resp[:,i:i+1]) S[i] = np.dot(diff_weighted.T,diff_weighted) S /= window # Sufficient statistics update expected_N = (1-gamma)*GM.get('N') + gamma*N expected_X = (1-gamma)*GM.get('X') + gamma*X expected_S = (1-gamma)*GM.get('S') + gamma*S expected_S_chol = np.zeros((self.n_components,self.dim,self.dim)) for i in range(self.n_components): expected_S_chol[i] = linalg.cholesky(expected_S[i],lower=True) GM._sufficient_statistics(points_exp,log_resp) assert_almost_equal(expected_N,GM.get('N')) assert_almost_equal(expected_X,GM.get('X')) assert_almost_equal(expected_S,GM.get('S')) def test_score(self,window,update): points = np.random.randn(self.n_points,self.dim) points2 = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window,update=update) with pytest.raises(Exception): GM.score(points) GM.initialize(points) GM.fit(points) score1 = GM.score(points) score2 = GM.score(points2) assert score1 > score2 def test_write_and_read(self,update): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,update=update) GM.initialize(points) f = h5py.File(self.file_name + '.h5','w') grp = f.create_group('init') GM.write(grp) f.close() GM2 = GaussianMixture(self.n_components,update=update) f = h5py.File(self.file_name + '.h5','r') grp = f['init'] GM2.read_and_init(grp,points) f.close() checking.verify_online_models(GM,GM2) GM.fit(points) GM2.fit(points) checking.verify_online_models(GM,GM2) def test_predict_log_resp(self,window,update): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window,update=update) with pytest.raises(Exception): GM.predict_log_resp(points) GM.initialize(points) predected_log_resp = GM.predict_log_resp(points) _,expected_log_resp = GM._step_E(points) assert_almost_equal(predected_log_resp,expected_log_resp) def test_update(self,window): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window,update=True) GM.initialize(points) GM.fit(points) expected_cov_chol = np.zeros((self.n_components,self.dim,self.dim)) for i in range(self.n_components): expected_cov_chol[i] = linalg.cholesky(GM.get('cov')[i],lower=True) predected_cov_chol = GM.get('cov_chol') assert_almost_equal(expected_cov_chol,predected_cov_chol) def test_fit_save(self,window): points = np.random.randn(self.n_points,self.dim) GM = GaussianMixture(self.n_components,window=window) checking.remove(self.file_name + '.h5') GM.initialize(points) GM.fit(points,saving='linear',saving_iter=2, file_name=self.file_name) f = h5py.File(self.file_name + '.h5','r') cpt = 0 for name in f: cpt += 1 assert cpt == self.n_points//(2*window) checking.remove(self.file_name + '.h5') GM.fit(points,saving='log',saving_iter=2, file_name=self.file_name) f = h5py.File(self.file_name + '.h5','r') cpt = 0 for name in f: cpt += 1 assert cpt == 1 + int(np.log(self.n_points/window)/np.log(2))
[ "numpy.sum", "megamix.online.dist_matrix", "scipy.linalg.cholesky", "numpy.argmin", "numpy.exp", "scipy.special.logsumexp", "megamix.online.GaussianMixture", "numpy.random.randn", "numpy.testing.assert_almost_equal", "numpy.empty_like", "numpy.finfo", "pytest.raises", "megamix.utils_testing.checking.verify_online_models", "h5py.File", "numpy.dot", "numpy.log", "numpy.zeros", "megamix.utils_testing.checking.remove", "numpy.sqrt" ]
[((595, 634), 'megamix.utils_testing.checking.remove', 'checking.remove', (["(self.file_name + '.h5')"], {}), "(self.file_name + '.h5')\n", (610, 634), False, 'from megamix.utils_testing import checking\n'), ((699, 739), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (714, 739), True, 'import numpy as np\n'), ((752, 801), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window'}), '(self.n_components, window=window)\n', (767, 801), False, 'from megamix.online import GaussianMixture\n'), ((1428, 1468), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (1443, 1468), True, 'import numpy as np\n'), ((1481, 1530), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window'}), '(self.n_components, window=window)\n', (1496, 1530), False, 'from megamix.online import GaussianMixture\n'), ((1546, 1590), 'numpy.random.randn', 'np.random.randn', (['self.n_components', 'self.dim'], {}), '(self.n_components, self.dim)\n', (1561, 1590), True, 'import numpy as np\n'), ((1718, 1762), 'numpy.zeros', 'np.zeros', (['(self.n_points, self.n_components)'], {}), '((self.n_points, self.n_components))\n', (1726, 1762), True, 'import numpy as np\n'), ((1783, 1809), 'megamix.online.dist_matrix', 'dist_matrix', (['points', 'means'], {}), '(points, means)\n', (1794, 1809), False, 'from megamix.online import dist_matrix\n'), ((2272, 2321), 'numpy.zeros', 'np.zeros', (['(self.n_components, self.dim, self.dim)'], {}), '((self.n_components, self.dim, self.dim))\n', (2280, 2321), True, 'import numpy as np\n'), ((2678, 2726), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_cov', 'predected_cov'], {}), '(expected_cov, predected_cov)\n', (2697, 2726), False, 'from numpy.testing import assert_almost_equal\n'), ((2786, 2826), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (2801, 2826), True, 'import numpy as np\n'), ((2839, 2888), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window'}), '(self.n_components, window=window)\n', (2854, 2888), False, 'from megamix.online import GaussianMixture\n'), ((3185, 3215), 'scipy.special.logsumexp', 'logsumexp', (['log_product'], {'axis': '(1)'}), '(log_product, axis=1)\n', (3194, 3215), False, 'from scipy.special import logsumexp\n'), ((3393, 3461), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_log_prob_norm', 'predected_log_prob_norm'], {}), '(expected_log_prob_norm, predected_log_prob_norm)\n', (3412, 3461), False, 'from numpy.testing import assert_almost_equal\n'), ((3469, 3527), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_log_resp', 'predected_log_resp'], {}), '(expected_log_resp, predected_log_resp)\n', (3488, 3527), False, 'from numpy.testing import assert_almost_equal\n'), ((3594, 3634), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (3609, 3634), True, 'import numpy as np\n'), ((3647, 3711), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window', 'update': 'update'}), '(self.n_components, window=window, update=update)\n', (3662, 3711), False, 'from megamix.online import GaussianMixture\n'), ((4063, 4081), 'numpy.empty_like', 'np.empty_like', (['cov'], {}), '(cov)\n', (4076, 4081), True, 'import numpy as np\n'), ((4525, 4565), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (4540, 4565), True, 'import numpy as np\n'), ((4578, 4642), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window', 'update': 'update'}), '(self.n_components, window=window, update=update)\n', (4593, 4642), False, 'from megamix.online import GaussianMixture\n'), ((4811, 4827), 'numpy.exp', 'np.exp', (['log_resp'], {}), '(log_resp)\n', (4817, 4827), True, 'import numpy as np\n'), ((5050, 5076), 'numpy.dot', 'np.dot', (['resp.T', 'points_exp'], {}), '(resp.T, points_exp)\n', (5056, 5076), True, 'import numpy as np\n'), ((5118, 5167), 'numpy.zeros', 'np.zeros', (['(self.n_components, self.dim, self.dim)'], {}), '((self.n_components, self.dim, self.dim))\n', (5126, 5167), True, 'import numpy as np\n'), ((5659, 5708), 'numpy.zeros', 'np.zeros', (['(self.n_components, self.dim, self.dim)'], {}), '((self.n_components, self.dim, self.dim))\n', (5667, 5708), True, 'import numpy as np\n'), ((6114, 6154), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (6129, 6154), True, 'import numpy as np\n'), ((6172, 6212), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (6187, 6212), True, 'import numpy as np\n'), ((6225, 6289), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window', 'update': 'update'}), '(self.n_components, window=window, update=update)\n', (6240, 6289), False, 'from megamix.online import GaussianMixture\n'), ((6578, 6618), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (6593, 6618), True, 'import numpy as np\n'), ((6631, 6680), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'update': 'update'}), '(self.n_components, update=update)\n', (6646, 6680), False, 'from megamix.online import GaussianMixture\n'), ((6731, 6769), 'h5py.File', 'h5py.File', (["(self.file_name + '.h5')", '"""w"""'], {}), "(self.file_name + '.h5', 'w')\n", (6740, 6769), False, 'import h5py\n'), ((6869, 6918), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'update': 'update'}), '(self.n_components, update=update)\n', (6884, 6918), False, 'from megamix.online import GaussianMixture\n'), ((6939, 6977), 'h5py.File', 'h5py.File', (["(self.file_name + '.h5')", '"""r"""'], {}), "(self.file_name + '.h5', 'r')\n", (6948, 6977), False, 'import h5py\n'), ((7074, 7112), 'megamix.utils_testing.checking.verify_online_models', 'checking.verify_online_models', (['GM', 'GM2'], {}), '(GM, GM2)\n', (7103, 7112), False, 'from megamix.utils_testing import checking\n'), ((7185, 7223), 'megamix.utils_testing.checking.verify_online_models', 'checking.verify_online_models', (['GM', 'GM2'], {}), '(GM, GM2)\n', (7214, 7223), False, 'from megamix.utils_testing import checking\n'), ((7300, 7340), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (7315, 7340), True, 'import numpy as np\n'), ((7353, 7417), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window', 'update': 'update'}), '(self.n_components, window=window, update=update)\n', (7368, 7417), False, 'from megamix.online import GaussianMixture\n'), ((7670, 7728), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['predected_log_resp', 'expected_log_resp'], {}), '(predected_log_resp, expected_log_resp)\n', (7689, 7728), False, 'from numpy.testing import assert_almost_equal\n'), ((7788, 7828), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (7803, 7828), True, 'import numpy as np\n'), ((7841, 7903), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window', 'update': '(True)'}), '(self.n_components, window=window, update=True)\n', (7856, 7903), False, 'from megamix.online import GaussianMixture\n'), ((8001, 8050), 'numpy.zeros', 'np.zeros', (['(self.n_components, self.dim, self.dim)'], {}), '((self.n_components, self.dim, self.dim))\n', (8009, 8050), True, 'import numpy as np\n'), ((8246, 8304), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['expected_cov_chol', 'predected_cov_chol'], {}), '(expected_cov_chol, predected_cov_chol)\n', (8265, 8304), False, 'from numpy.testing import assert_almost_equal\n'), ((8366, 8406), 'numpy.random.randn', 'np.random.randn', (['self.n_points', 'self.dim'], {}), '(self.n_points, self.dim)\n', (8381, 8406), True, 'import numpy as np\n'), ((8419, 8468), 'megamix.online.GaussianMixture', 'GaussianMixture', (['self.n_components'], {'window': 'window'}), '(self.n_components, window=window)\n', (8434, 8468), False, 'from megamix.online import GaussianMixture\n'), ((8485, 8524), 'megamix.utils_testing.checking.remove', 'checking.remove', (["(self.file_name + '.h5')"], {}), "(self.file_name + '.h5')\n", (8500, 8524), False, 'from megamix.utils_testing import checking\n'), ((8661, 8699), 'h5py.File', 'h5py.File', (["(self.file_name + '.h5')", '"""r"""'], {}), "(self.file_name + '.h5', 'r')\n", (8670, 8699), False, 'import h5py\n'), ((8837, 8876), 'megamix.utils_testing.checking.remove', 'checking.remove', (["(self.file_name + '.h5')"], {}), "(self.file_name + '.h5')\n", (8852, 8876), False, 'from megamix.utils_testing import checking\n'), ((8988, 9026), 'h5py.File', 'h5py.File', (["(self.file_name + '.h5')", '"""r"""'], {}), "(self.file_name + '.h5', 'r')\n", (8997, 9026), False, 'import h5py\n'), ((1872, 1887), 'numpy.argmin', 'np.argmin', (['M[i]'], {}), '(M[i])\n', (1881, 1887), True, 'import numpy as np\n'), ((2188, 2216), 'numpy.sum', 'np.sum', (['assignements'], {'axis': '(0)'}), '(assignements, axis=0)\n', (2194, 2216), True, 'import numpy as np\n'), ((2476, 2505), 'numpy.dot', 'np.dot', (['diff_weighted.T', 'diff'], {}), '(diff_weighted.T, diff)\n', (2482, 2505), True, 'import numpy as np\n'), ((4151, 4186), 'scipy.linalg.cholesky', 'linalg.cholesky', (['cov[i]'], {'lower': '(True)'}), '(cov[i], lower=True)\n', (4166, 4186), False, 'from scipy import linalg\n'), ((5337, 5375), 'numpy.dot', 'np.dot', (['diff_weighted.T', 'diff_weighted'], {}), '(diff_weighted.T, diff_weighted)\n', (5343, 5375), True, 'import numpy as np\n'), ((5783, 5825), 'scipy.linalg.cholesky', 'linalg.cholesky', (['expected_S[i]'], {'lower': '(True)'}), '(expected_S[i], lower=True)\n', (5798, 5825), False, 'from scipy import linalg\n'), ((6310, 6334), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (6323, 6334), False, 'import pytest\n'), ((7438, 7462), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (7451, 7462), False, 'import pytest\n'), ((5295, 5320), 'numpy.sqrt', 'np.sqrt', (['resp[:, i:i + 1]'], {}), '(resp[:, i:i + 1])\n', (5302, 5320), True, 'import numpy as np\n'), ((4984, 5004), 'numpy.finfo', 'np.finfo', (['resp.dtype'], {}), '(resp.dtype)\n', (4992, 5004), True, 'import numpy as np\n'), ((9129, 9159), 'numpy.log', 'np.log', (['(self.n_points / window)'], {}), '(self.n_points / window)\n', (9135, 9159), True, 'import numpy as np\n'), ((9158, 9167), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (9164, 9167), True, 'import numpy as np\n')]
import numpy as np import random from time import time random.seed(42) def semi_greedy_construction(window, number_items, weight_max, values_items, weight_items): efficiency = np.divide(values_items, weight_items) items = {} for i in range(number_items): items[i] = efficiency[i], values_items[i], weight_items[i] items = sorted(items.values(), reverse=True) result_final = [] value = 0 weight = 0 aux = items[:] while len(items) > 0 and weight < weight_max: if len(items) >= window: tmp_window = window else: tmp_window = len(items) index = random.randint(0,tmp_window-1) value_item = items[index][1] weight_item = items[index][2] if weight_item+weight <= weight_max: result_final.append(items[index][1]) value += value_item weight += weight_item del items[index] solution = np.zeros(number_items,dtype=np.int16) for item in values_items: if item in result_final: solution[values_items.index(item)] = 1 return solution, value, weight def local_search(solution, values_items, weight_items, value, weight, weight_max): length = len(solution) neighbor = (solution.copy(), value, weight) for i in range(length): new_weight = 0 new_value = 0 if solution[i] == 0: if weight+weight_items[i] <= weight_max: if value+values_items[i] > neighbor[1]: temp = solution.copy() temp[i] = 1 neighbor = temp, weight+weight_items[i], value+values_items[i] if value == neighbor[1] :return value return local_search(neighbor[0], values_items, weight_items, neighbor[1], neighbor[2], weight_max) def grasp(max_it, window, number_items, weight_max, values_items, weight_items): best_solution = 0 for i in range(max_it): solution, value, weight = semi_greedy_construction(window, number_items, weight_max, values_items, weight_items) solution = local_search(solution, values_items, weight_items, value, weight, weight_max) if solution > best_solution: best_solution = solution return best_solution
[ "numpy.zeros", "numpy.divide", "random.seed", "random.randint" ]
[((56, 71), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (67, 71), False, 'import random\n'), ((179, 216), 'numpy.divide', 'np.divide', (['values_items', 'weight_items'], {}), '(values_items, weight_items)\n', (188, 216), True, 'import numpy as np\n'), ((816, 854), 'numpy.zeros', 'np.zeros', (['number_items'], {'dtype': 'np.int16'}), '(number_items, dtype=np.int16)\n', (824, 854), True, 'import numpy as np\n'), ((563, 596), 'random.randint', 'random.randint', (['(0)', '(tmp_window - 1)'], {}), '(0, tmp_window - 1)\n', (577, 596), False, 'import random\n')]
import numpy as np m,n = [int(i) for i in '2 7'.strip().split(' ')] data1=[ '0.18 0.89 109.85', '1.0 0.26 155.72', '0.92 0.11 137.66', '0.07 0.37 76.17', '0.85 0.16 139.75', '0.99 0.41 162.6', '0.87 0.47 151.77' ] X = [] Y = [] for item in data1: data = item.strip().split(' ') X.append(data[:m]) Y.append(data[m:]) data2 = [ '0.49 0.18', '0.57 0.83', '0.56 0.64', '0.76 0.18' ] X_new = [] for item in data2: X_new.append(item.strip().split(' ')) X = np.array(X,float) Y = np.array(Y,float) X_new = np.array(X_new,float) #center X_R = X-np.mean(X,axis=0) Y_R = Y-np.mean(Y) #calculate beta beta = np.dot(np.linalg.inv(np.dot(X_R.T,X_R)),np.dot(X_R.T,Y_R)) #predict X_new_R = X_new-np.mean(X,axis=0) Y_new_R = np.dot(X_new_R,beta) Y_new = Y_new_R + np.mean(Y) #print for i in Y_new: print(round(float(i),2))
[ "numpy.dot", "numpy.mean", "numpy.array" ]
[((467, 485), 'numpy.array', 'np.array', (['X', 'float'], {}), '(X, float)\n', (475, 485), True, 'import numpy as np\n'), ((489, 507), 'numpy.array', 'np.array', (['Y', 'float'], {}), '(Y, float)\n', (497, 507), True, 'import numpy as np\n'), ((515, 537), 'numpy.array', 'np.array', (['X_new', 'float'], {}), '(X_new, float)\n', (523, 537), True, 'import numpy as np\n'), ((728, 749), 'numpy.dot', 'np.dot', (['X_new_R', 'beta'], {}), '(X_new_R, beta)\n', (734, 749), True, 'import numpy as np\n'), ((554, 572), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (561, 572), True, 'import numpy as np\n'), ((580, 590), 'numpy.mean', 'np.mean', (['Y'], {}), '(Y)\n', (587, 590), True, 'import numpy as np\n'), ((655, 673), 'numpy.dot', 'np.dot', (['X_R.T', 'Y_R'], {}), '(X_R.T, Y_R)\n', (661, 673), True, 'import numpy as np\n'), ((700, 718), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (707, 718), True, 'import numpy as np\n'), ((767, 777), 'numpy.mean', 'np.mean', (['Y'], {}), '(Y)\n', (774, 777), True, 'import numpy as np\n'), ((636, 654), 'numpy.dot', 'np.dot', (['X_R.T', 'X_R'], {}), '(X_R.T, X_R)\n', (642, 654), True, 'import numpy as np\n')]
import argparse import yaml import os from glob import glob import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) import time import numpy as np import torch from torch.utils.data import DataLoader import skimage.io as io from segmentation_dataset import RawChromosomeDataset as Dataset from loss import DiceLoss, evals from models.UNet import UNet from models.ResUNet import ResUNet from models.PreactivationResUNet import PreactResUNet from models.CENet import CE_Net from models.Segnet import SegNet from models.AttentionUnet import AttU_Net from models.FCN import FCN_ResNet101 from models.Unet_nested import UNet_Nested from models.DeepLabV3 import Deeplabv3_ResNet101 from models.PSPNet import PSPNet def main(args): # args.model = "preactivation_resunet" # args.model_path = "preactivation_resunet-20210416T1703" # args.weight_num = 1 # args.images = "./datasets/raw_chromosome_data".format(Dataset.name) # args.batch_size = 2 # args.test_results = False if args.model == "unet": model = UNet( in_channels=Dataset.in_channels, num_classes=Dataset.num_classes, init_features=32, ) net_name = UNet.net_name elif args.model == "resunet": model = ResUNet( in_channels=Dataset.in_channels, num_classes=Dataset.num_classes, init_features=32, ) net_name = "resunet" elif args.model == "preactivation_resunet": model = PreactResUNet( in_channels=Dataset.in_channels, num_classes=Dataset.num_classes, init_features=32, ) net_name = "preactivation_resunet" elif args.model == "cenet": model = CE_Net(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes) net_name = "cenet" elif args.model == "segnet": model = SegNet(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes) net_name = "segnet" elif args.model == "nested_unet": model = UNet_Nested( in_channels=Dataset.in_channels, num_classes=Dataset.num_classes ) net_name = "nested_unet" elif args.model == "attention_unet": model = AttU_Net( in_channels=Dataset.in_channels, num_classes=Dataset.num_classes ) net_name = "attention_unet" elif args.model == "fcn_resnet101": model = FCN_ResNet101(in_channels=1, num_classes=3) net_name = "fcn_resnet101" elif args.model == "deeplabv3_resnet101": model = Deeplabv3_ResNet101(in_channels=1, num_classes=3) net_name = "deeplabv3_resnet101" elif args.model == "pspnet": model = PSPNet( num_classes=Dataset.num_classes, pretrained=False, backend="resnet101" ) net_name = "pspnet" device = torch.device("cpu" if not torch.cuda.is_available() else args.device) model.to(device) weights_dir = "output/{}/{}/weights".format(Dataset.name, args.model_path) print(weights_dir) model_name = glob(weights_dir + "/{}-{}*".format(net_name, args.weight_num))[0] state_dict = torch.load(model_name, map_location=device) model.load_state_dict(state_dict) test_dir = "output/{}/{}/test".format(Dataset.name, args.model_path) model.eval() dsc = DiceLoss() evaluations_np = [] total_dsc_loss = [] loader = data_loaders(args) loaders = {"test": loader} start = time.time() print("clock started") test_img_num = 1 for i, data in enumerate(loaders["test"], 0): x, y_true = data x, y_true = x.to(device, dtype=torch.float), y_true.to( device, dtype=torch.float ) with torch.set_grad_enabled(False): y_pred = model(x) dsc_loss = dsc(y_pred, y_true) evaluations_ = evals(y_pred, y_true) evaluations_np += evaluations_ total_dsc_loss.append(dsc_loss.item()) if args.test_results: y_pred_np = y_pred.detach().cpu().numpy() x_np = x.detach().cpu().numpy() for img_num in range(y_pred_np.shape[0]): for mask_num in range(y_pred_np.shape[1]): io.imsave( os.path.join( test_dir, "{}_label{}.png".format(test_img_num, mask_num), ), y_pred_np[img_num, mask_num, :, :], ) for mask_num in range(x_np.shape[1]): io.imsave( os.path.join(test_dir, "%d_image.png" % test_img_num), x_np[img_num, mask_num, :, :] * 255, ) test_img_num += 1 end = time.time() print("{} seconds past".format(end - start)) evaluations_np = np.array(evaluations_np) with open( "output/{}/{}/test-eval.npy".format(Dataset.name, args.model_path), "wb" ) as f: np.save(f, evaluations_np) mean_dsc_loss = float(np.mean(total_dsc_loss)) mean_DSC = 1 - mean_dsc_loss metrics = { "mean_dsc_loss": mean_dsc_loss, "mean_DSC": mean_DSC, } with open( "output/{}/{}/metrics.yaml".format(Dataset.name, args.model_path), "w" ) as fp: yaml.dump(metrics, fp) print(f"mean dsc loss={mean_dsc_loss}") print(f"mean DSC={mean_DSC}") def data_loaders(args): dataset_test = datasets(args) return DataLoader( dataset_test, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, ) def datasets(args): return Dataset( args, images_dir=args.images, subset="test", image_size=args.image_size, random_sampling=False, ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Semantic segmentation of G-banding chromosome Images" ) parser.add_argument( "--model", type=str, default="preactivation_resunet", help="choose model", ) parser.add_argument( "--weight-num", type=int, default=0, help="weight number for inference", ) parser.add_argument( "--model-path", type=str, default="", help="path to weights file" ) parser.add_argument( "--batch-size", type=int, default=2, help="input batch size for training (default: 2)", ) parser.add_argument( "--device", type=str, default="cuda:0", help="device for training (default: cuda:0)", ) parser.add_argument( "--workers", type=int, default=1, help="number of workers for data loading (default: 1)", ) parser.add_argument( "--images", type=str, default="./datasets/{}_data/train".format(Dataset.name), help="root folder with images", ) parser.add_argument( "--image-size", type=int, default=Dataset.img_size, help="target input image size (default: 256x256)", ) parser.add_argument( "--test-results", type=bool, default=False, help="Do you want to output the test results? (defauld: False)", ) args = parser.parse_args() main(args)
[ "argparse.ArgumentParser", "segmentation_dataset.RawChromosomeDataset", "models.UNet.UNet", "yaml.dump", "numpy.mean", "models.Segnet.SegNet", "models.AttentionUnet.AttU_Net", "loss.DiceLoss", "os.path.join", "torch.utils.data.DataLoader", "os.path.dirname", "torch.load", "models.FCN.FCN_ResNet101", "numpy.save", "models.ResUNet.ResUNet", "torch.cuda.is_available", "torch.set_grad_enabled", "inspect.currentframe", "models.CENet.CE_Net", "models.DeepLabV3.Deeplabv3_ResNet101", "models.PreactivationResUNet.PreactResUNet", "loss.evals", "models.Unet_nested.UNet_Nested", "sys.path.insert", "time.time", "numpy.array", "models.PSPNet.PSPNet" ]
[((196, 224), 'os.path.dirname', 'os.path.dirname', (['current_dir'], {}), '(current_dir)\n', (211, 224), False, 'import os\n'), ((226, 256), 'sys.path.insert', 'sys.path.insert', (['(0)', 'parent_dir'], {}), '(0, parent_dir)\n', (241, 256), False, 'import sys\n'), ((3355, 3398), 'torch.load', 'torch.load', (['model_name'], {'map_location': 'device'}), '(model_name, map_location=device)\n', (3365, 3398), False, 'import torch\n'), ((3547, 3557), 'loss.DiceLoss', 'DiceLoss', ([], {}), '()\n', (3555, 3557), False, 'from loss import DiceLoss, evals\n'), ((3692, 3703), 'time.time', 'time.time', ([], {}), '()\n', (3701, 3703), False, 'import time\n'), ((5142, 5153), 'time.time', 'time.time', ([], {}), '()\n', (5151, 5153), False, 'import time\n'), ((5228, 5252), 'numpy.array', 'np.array', (['evaluations_np'], {}), '(evaluations_np)\n', (5236, 5252), True, 'import numpy as np\n'), ((5884, 5983), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_test'], {'batch_size': 'args.batch_size', 'drop_last': '(False)', 'num_workers': 'args.workers'}), '(dataset_test, batch_size=args.batch_size, drop_last=False,\n num_workers=args.workers)\n', (5894, 5983), False, 'from torch.utils.data import DataLoader\n'), ((6061, 6169), 'segmentation_dataset.RawChromosomeDataset', 'Dataset', (['args'], {'images_dir': 'args.images', 'subset': '"""test"""', 'image_size': 'args.image_size', 'random_sampling': '(False)'}), "(args, images_dir=args.images, subset='test', image_size=args.\n image_size, random_sampling=False)\n", (6068, 6169), True, 'from segmentation_dataset import RawChromosomeDataset as Dataset\n'), ((6264, 6360), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Semantic segmentation of G-banding chromosome Images"""'}), "(description=\n 'Semantic segmentation of G-banding chromosome Images')\n", (6287, 6360), False, 'import argparse\n'), ((1212, 1304), 'models.UNet.UNet', 'UNet', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes', 'init_features': '(32)'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes,\n init_features=32)\n', (1216, 1304), False, 'from models.UNet import UNet\n'), ((5373, 5399), 'numpy.save', 'np.save', (['f', 'evaluations_np'], {}), '(f, evaluations_np)\n', (5380, 5399), True, 'import numpy as np\n'), ((5429, 5452), 'numpy.mean', 'np.mean', (['total_dsc_loss'], {}), '(total_dsc_loss)\n', (5436, 5452), True, 'import numpy as np\n'), ((5703, 5725), 'yaml.dump', 'yaml.dump', (['metrics', 'fp'], {}), '(metrics, fp)\n', (5712, 5725), False, 'import yaml\n'), ((156, 178), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (176, 178), False, 'import inspect\n'), ((1438, 1533), 'models.ResUNet.ResUNet', 'ResUNet', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes', 'init_features': '(32)'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes,\n init_features=32)\n', (1445, 1533), False, 'from models.ResUNet import ResUNet\n'), ((3966, 3995), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (3988, 3995), False, 'import torch\n'), ((4102, 4123), 'loss.evals', 'evals', (['y_pred', 'y_true'], {}), '(y_pred, y_true)\n', (4107, 4123), False, 'from loss import DiceLoss, evals\n'), ((1677, 1779), 'models.PreactivationResUNet.PreactResUNet', 'PreactResUNet', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes', 'init_features': '(32)'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.\n num_classes, init_features=32)\n', (1690, 1779), False, 'from models.PreactivationResUNet import PreactResUNet\n'), ((3080, 3105), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3103, 3105), False, 'import torch\n'), ((1920, 1992), 'models.CENet.CE_Net', 'CE_Net', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes)\n', (1926, 1992), False, 'from models.CENet import CE_Net\n'), ((2072, 2144), 'models.Segnet.SegNet', 'SegNet', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes)\n', (2078, 2144), False, 'from models.Segnet import SegNet\n'), ((2230, 2307), 'models.Unet_nested.UNet_Nested', 'UNet_Nested', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes)\n', (2241, 2307), False, 'from models.Unet_nested import UNet_Nested\n'), ((4942, 4995), 'os.path.join', 'os.path.join', (['test_dir', "('%d_image.png' % test_img_num)"], {}), "(test_dir, '%d_image.png' % test_img_num)\n", (4954, 4995), False, 'import os\n'), ((2425, 2499), 'models.AttentionUnet.AttU_Net', 'AttU_Net', ([], {'in_channels': 'Dataset.in_channels', 'num_classes': 'Dataset.num_classes'}), '(in_channels=Dataset.in_channels, num_classes=Dataset.num_classes)\n', (2433, 2499), False, 'from models.AttentionUnet import AttU_Net\n'), ((2619, 2662), 'models.FCN.FCN_ResNet101', 'FCN_ResNet101', ([], {'in_channels': '(1)', 'num_classes': '(3)'}), '(in_channels=1, num_classes=3)\n', (2632, 2662), False, 'from models.FCN import FCN_ResNet101\n'), ((2763, 2812), 'models.DeepLabV3.Deeplabv3_ResNet101', 'Deeplabv3_ResNet101', ([], {'in_channels': '(1)', 'num_classes': '(3)'}), '(in_channels=1, num_classes=3)\n', (2782, 2812), False, 'from models.DeepLabV3 import Deeplabv3_ResNet101\n'), ((2906, 2984), 'models.PSPNet.PSPNet', 'PSPNet', ([], {'num_classes': 'Dataset.num_classes', 'pretrained': '(False)', 'backend': '"""resnet101"""'}), "(num_classes=Dataset.num_classes, pretrained=False, backend='resnet101')\n", (2912, 2984), False, 'from models.PSPNet import PSPNet\n')]
import os import struct import numpy as np import xarray as xr import netCDF4 as ds from pathlib import Path import matplotlib.pyplot as plt import struct import itertools import Homogenizer_GUI from enum import Enum from collections import OrderedDict import pickle class UserPrefs(Enum): ScanFoldersPath = 0 CalculateReconstructedImages = 1 CalculateFieldMaps = 2 CalculateInterpolatedFieldMap = 3 SaveReconstructedImages = 4 SaveFieldMaps = 5 SaveInterpolatedFieldMap = 6 ShowReconstructedImages = 7 ShowFieldMaps = 8 ShowInterpolatedFieldMap = 9 class Homogenizer: def __init__(self): self.hGUI = None self.submit_button = "Submit" self.gamma = 48.52*10**6 self.te_array = [] self.delta_te = 0.0001 #standard initialization self.dimensions = np.array([128,128]) #standard initialization self.scan_folders_path = None self.save_path = None self.fids_dict = OrderedDict([]) self.reconstructed_image_dict = OrderedDict([]) self.field_map_dict = OrderedDict([]) self.interpolated_field_map = OrderedDict([]) def get_input(self, user_pref: UserPrefs): return self.hGUI.user_prefs[user_pref.value] def display_image(self, image_list, abs_values = False): ''' Displays given images. mark abs_values as True to get the display images of abs values ''' for image in image_list: if abs_values: image = abs(image) plt.title("Reconstructed Image") else: plt.title("Field Map - B[T] Values as function of location") plt.xlabel("Location") plt.ylabel("Location") plt.imshow(image) plt.colorbar() plt.show() def get_tes(self, folder_path): ''' Finds the TE value in a specific scan (the information exists in the 'method' file of each scan) Then creates an array of all TEs ''' dir_list = os.listdir(folder_path) for scan_dir in dir_list: file_path = folder_path + '\\' + scan_dir if os.path.isdir(file_path): method_path = self.find_file_by_name(file_path, 'method') with open(method_path, mode='rb') as file: method_r = file.read() f=method_r.find(b'EchoTime=') te_locked=method_r[f+9:f+12] te_str=str(te_locked)[2:5] if (str(te_str).find('n') != -1): te=int(te_str[0]) else: te=float(te_str) self.te_array.append(te*10**-3) del self.te_array[-1] self.te_array = np.array(self.te_array) self.delta_te = self.te_array[1] - self.te_array[0] def get_dimensions(self, folder_path): ''' Finds the dimensions of the matrix (the information exists in the 'method' file of each scan) ''' dir_list = os.listdir(folder_path) for scan_dir in dir_list: file_path = folder_path + '\\' + scan_dir if os.path.isdir(file_path): method_path = self.find_file_by_name(file_path, 'method') break with open(method_path, mode='rb') as file: method_r = file.read() f=method_r.find(b'PVM_Matrix=( 2 )\n') dimension_locked=method_r[f+17:f+24] arr=np.zeros(2, np.int16) arr[0]=(str(dimension_locked)[2:5]) arr[0]=int(arr[0]) arr[1]=(str(dimension_locked)[6:9]) arr[1]=int(arr[1]) self.dimensions = arr pickle.dump(self.dimensions, open("dimensions.dat","wb")) def find_file_by_name(self, containing_folder, name_string): ''' Finds and returns the fid file within the given folder ''' pickle.dump(containing_folder, open("containing_folder.dat","wb")) pickle.dump(name_string, open("name_string.dat","wb")) dir_list = os.listdir(containing_folder) for file_name in dir_list: if file_name == name_string: file_path = containing_folder + '\\' + file_name return file_path def save_arrays_to_disk(self, save_path, arrays_dictionary: dict, name_prefix: str): """ Converts every numpy array in arrays_dictionary to xarray and save it in the given path as a NetCDF file. """ if not os.path.exists(save_path): os.makedirs(save_path) for key, array in arrays_dictionary.items(): x_arr = xr.DataArray(array) file_name = name_prefix + str(key) x_arr.to_netcdf(f'{save_path}\\{file_name}.nc', mode='w') def reconstruct_images_from_fids(self, fid_dict): for name_prefix, fid in fid_dict.items(): self.reconstructed_image_dict[name_prefix] = self.reconstruct_image(fid, self.dimensions) def reconstruct_image(self, fid_arr, dimensions): ''' Calculates the K space matrix -> calculates the reconstructed image and returns it ''' pickle.dump(fid_arr, open("fid_arr.dat","wb")) real_vals = fid_arr[:-1:2] imag_vals = fid_arr[1::2] complex_vals = real_vals + 1j*imag_vals if (len(fid_arr) == dimensions[0]*dimensions[1]*2): k_space_scan = np.reshape(complex_vals,(dimensions[0],dimensions[1])) k_casting = k_space_scan.astype(complex) img = np.fft.fftshift(np.fft.ifft2(k_casting)) return img else: raise IndexError('Fid_arr cannot be reshaped to these dimensions') def calc_field_maps_from_fids (self, fid_dict, dimension): ''' Gets an ordered dictionary of FID files and calculates dictionary of field maps by running on pairs of FID files ''' pickle.dump(fid_dict, open("fid_dict.dat","wb")) self.reconstruct_images_from_fids(fid_dict) image_pairs = self.pairwise(self.reconstructed_image_dict.values()) name_index = 0 name_list = list(self.reconstructed_image_dict.keys()) for img1, img2 in image_pairs: field_map_prefix = name_list[name_index] + name_list[name_index+1] name_index +=1 self.field_map_dict[field_map_prefix] = self.calc_field_map_from_reconstructed_images(img1,img2) def calc_field_map_from_reconstructed_images(self, img1,img2): pickle.dump(img1, open("img1.dat","wb")) pickle.dump(img2, open("img2.dat","wb")) phase_map = self.compute_phase(img1,img2) bmap = phase_map/((2*np.pi*self.gamma*(self.delta_te))) return bmap def compute_phase(self, img1,img2): ''' Gets two reconstructed images and computes one phase image ''' conj_img2 = np.conj(img2) if (img1.shape[1] == img2.shape[0]): multiplic_img1_img2 = conj_img2*img1 phase_map = np.angle(multiplic_img1_img2) return phase_map else: raise IndexError('Size of matrices not suitable for linear multiplication') def pairwise(self, object_list): ''' Creates pairs of objects from a list of objects list_of_fids -> (fid0,fid1), (fid1,fid2), (fid2, fid3), and so forth... ''' pickle.dump(list(object_list), open("object_list.dat","wb")) obj1, obj2 = itertools.tee(object_list) next(obj2, None) return zip(obj1, obj2) def interpolate_field_map_from_fids(self, fid_dict): ''' Gets an ordered dictionary of FID files and calculates one interpolated field map ''' signals_amount = len(fid_dict) self.calc_field_maps_from_fids(fid_dict, self.dimensions) self.interpolate_field_map(list(self.field_map_dict.values()), self.te_array, self.dimensions,signals_amount) def interpolate_field_map(self, field_maps_list,te_values, dimension, signals_amount): ''' Calculates one interpolated field map from all the calculated field maps ''' pickle.dump(field_maps_list, open("field_maps_list.dat","wb")) pickle.dump(te_values, open("te_values.dat","wb")) pickle.dump(signals_amount, open("signals_amoung.dat","wb")) slope=np.zeros((dimension[0],dimension[1])) value_vec_in_phase_map = np.zeros(len(field_maps_list)) for x in range(dimension[0]-1): for y in range(dimension[1]-1): for z in range(signals_amount-1): value_vec_in_phase_map[z] = field_maps_list[z][x,y] s,intercept = np.polyfit((te_values[:]),value_vec_in_phase_map,1) slope[x,y] = (s) interp_b=slope/self.gamma self.interpolated_field_map = OrderedDict([('',interp_b)]) def create_fid_dict(self, folder_path): ''' Creates an ordered dictionary of numpy arrays from fid files ''' pickle.dump(folder_path, open("folder_path.dat","wb")) dir_list = os.listdir(folder_path) for scan_dir in dir_list: file_path = folder_path + '\\' + scan_dir if os.path.isdir(file_path): fid_path = self.find_file_by_name(file_path, 'fid') if isinstance(fid_path, str): self.fids_dict[scan_dir] = self.fid_to_nparray(fid_path) def fid_to_nparray(self, fid_path): ''' Opens a binary file and inserts it to a numpy array ''' pickle.dump(fid_path, open("fid_path.dat","wb")) with open(fid_path, mode='rb') as file: # b is important -> binary fid_r = file.read() fid_l = list(struct.unpack("i" * ((len(fid_r) -4) // 4), fid_r[0:-4])) fid_l.append(struct.unpack("i", fid_r[-4:])[0]) fid_arr = np.array(fid_l) return fid_arr def start(self): ''' Triggers calculations begin with given inputs by the user throughout the GUI. ''' self.scan_folders_path = self.hGUI.open_main_window() # Starts job if user had pressed submit: if self.hGUI.last_button_pressed == self.submit_button: # Checks if user requested to save any files, and if so pops up a browser to choose path. if (self.get_input(UserPrefs.SaveReconstructedImages) or self.get_input(UserPrefs.SaveFieldMaps) or self.get_input(UserPrefs.SaveInterpolatedFieldMap) ): self.save_path = self.hGUI.request_save_path() # Cancels the job if the user had closed the window / pressed "Cancel": if self.hGUI.last_button_pressed != self.submit_button: self.start() return if self.save_path == self.hGUI.default_folder_expression: self.save_path = self.scan_folders_path self.create_fid_dict(self.scan_folders_path) self.get_dimensions(self.scan_folders_path) self.get_tes(self.scan_folders_path) # Checks what calculation the user had requested, and performs them: if self.get_input(UserPrefs.CalculateReconstructedImages): self.reconstruct_images_from_fids(self.fids_dict) else: if self.get_input(UserPrefs.CalculateFieldMaps): self.calc_field_maps_from_fids(self.fids_dict, self.dimensions) else: self.interpolate_field_map_from_fids(self.fids_dict) if self.get_input(UserPrefs.SaveInterpolatedFieldMap): self.save_arrays_to_disk(self.save_path, self.interpolated_field_map,'Interpolated_field_map') if self.get_input(UserPrefs.ShowInterpolatedFieldMap): self.display_image(list(self.interpolated_field_map.values())) if self.get_input(UserPrefs.SaveFieldMaps): self.save_arrays_to_disk(self.save_path, self.field_map_dict, 'Field_map_') if self.get_input(UserPrefs.ShowFieldMaps): self.display_image(list(self.field_map_dict.values())) if self.get_input(UserPrefs.SaveReconstructedImages): [real_dict, imaginary_dict] = seperate_complex_values_dict(self.reconstructed_image_dict) self.save_arrays_to_disk(self.save_path, real_dict, 'Reconstructed_image_real') self.save_arrays_to_disk(self.save_path, imaginary_dict, 'Reconstructed_image_imaginary') if self.get_input(UserPrefs.ShowReconstructedImages): self.display_image(list(self.field_map_dict.values()), True) def seperate_complex_values_dict(dict): real_dict = OrderedDict([]) imaginary_dict = OrderedDict([]) for name, complexNum in dict.items(): real_dict[name] = complexNum.real imaginary_dict[name] = complexNum.imag return [real_dict, imaginary_dict] if __name__ == "__main__": homogenizer = Homogenizer() homogenizer.hGUI = Homogenizer_GUI.Homogenizer_GUI() homogenizer.start()
[ "matplotlib.pyplot.title", "Homogenizer_GUI.Homogenizer_GUI", "numpy.polyfit", "numpy.angle", "numpy.fft.ifft2", "matplotlib.pyplot.imshow", "os.path.exists", "matplotlib.pyplot.colorbar", "numpy.reshape", "numpy.conj", "matplotlib.pyplot.show", "struct.unpack", "itertools.tee", "matplotlib.pyplot.ylabel", "os.listdir", "os.makedirs", "os.path.isdir", "numpy.zeros", "numpy.array", "xarray.DataArray", "collections.OrderedDict", "matplotlib.pyplot.xlabel" ]
[((13222, 13237), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (13233, 13237), False, 'from collections import OrderedDict\n'), ((13260, 13275), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (13271, 13275), False, 'from collections import OrderedDict\n'), ((13545, 13578), 'Homogenizer_GUI.Homogenizer_GUI', 'Homogenizer_GUI.Homogenizer_GUI', ([], {}), '()\n', (13576, 13578), False, 'import Homogenizer_GUI\n'), ((875, 895), 'numpy.array', 'np.array', (['[128, 128]'], {}), '([128, 128])\n', (883, 895), True, 'import numpy as np\n'), ((1016, 1031), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (1027, 1031), False, 'from collections import OrderedDict\n'), ((1073, 1088), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (1084, 1088), False, 'from collections import OrderedDict\n'), ((1120, 1135), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (1131, 1135), False, 'from collections import OrderedDict\n'), ((1175, 1190), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (1186, 1190), False, 'from collections import OrderedDict\n'), ((2121, 2144), 'os.listdir', 'os.listdir', (['folder_path'], {}), '(folder_path)\n', (2131, 2144), False, 'import os\n'), ((2838, 2861), 'numpy.array', 'np.array', (['self.te_array'], {}), '(self.te_array)\n', (2846, 2861), True, 'import numpy as np\n'), ((3121, 3144), 'os.listdir', 'os.listdir', (['folder_path'], {}), '(folder_path)\n', (3131, 3144), False, 'import os\n'), ((3581, 3602), 'numpy.zeros', 'np.zeros', (['(2)', 'np.int16'], {}), '(2, np.int16)\n', (3589, 3602), True, 'import numpy as np\n'), ((4171, 4200), 'os.listdir', 'os.listdir', (['containing_folder'], {}), '(containing_folder)\n', (4181, 4200), False, 'import os\n'), ((7123, 7136), 'numpy.conj', 'np.conj', (['img2'], {}), '(img2)\n', (7130, 7136), True, 'import numpy as np\n'), ((7731, 7757), 'itertools.tee', 'itertools.tee', (['object_list'], {}), '(object_list)\n', (7744, 7757), False, 'import itertools\n'), ((8653, 8691), 'numpy.zeros', 'np.zeros', (['(dimension[0], dimension[1])'], {}), '((dimension[0], dimension[1]))\n', (8661, 8691), True, 'import numpy as np\n'), ((9157, 9186), 'collections.OrderedDict', 'OrderedDict', (["[('', interp_b)]"], {}), "([('', interp_b)])\n", (9168, 9186), False, 'from collections import OrderedDict\n'), ((9417, 9440), 'os.listdir', 'os.listdir', (['folder_path'], {}), '(folder_path)\n', (9427, 9440), False, 'import os\n'), ((1740, 1762), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Location"""'], {}), "('Location')\n", (1750, 1762), True, 'import matplotlib.pyplot as plt\n'), ((1776, 1798), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Location"""'], {}), "('Location')\n", (1786, 1798), True, 'import matplotlib.pyplot as plt\n'), ((1812, 1829), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {}), '(image)\n', (1822, 1829), True, 'import matplotlib.pyplot as plt\n'), ((1843, 1857), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1855, 1857), True, 'import matplotlib.pyplot as plt\n'), ((1871, 1881), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1879, 1881), True, 'import matplotlib.pyplot as plt\n'), ((2251, 2275), 'os.path.isdir', 'os.path.isdir', (['file_path'], {}), '(file_path)\n', (2264, 2275), False, 'import os\n'), ((3251, 3275), 'os.path.isdir', 'os.path.isdir', (['file_path'], {}), '(file_path)\n', (3264, 3275), False, 'import os\n'), ((4628, 4653), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (4642, 4653), False, 'import os\n'), ((4668, 4690), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (4679, 4690), False, 'import os\n'), ((4766, 4785), 'xarray.DataArray', 'xr.DataArray', (['array'], {}), '(array)\n', (4778, 4785), True, 'import xarray as xr\n'), ((5583, 5639), 'numpy.reshape', 'np.reshape', (['complex_vals', '(dimensions[0], dimensions[1])'], {}), '(complex_vals, (dimensions[0], dimensions[1]))\n', (5593, 5639), True, 'import numpy as np\n'), ((7269, 7298), 'numpy.angle', 'np.angle', (['multiplic_img1_img2'], {}), '(multiplic_img1_img2)\n', (7277, 7298), True, 'import numpy as np\n'), ((9547, 9571), 'os.path.isdir', 'os.path.isdir', (['file_path'], {}), '(file_path)\n', (9560, 9571), False, 'import os\n'), ((10237, 10252), 'numpy.array', 'np.array', (['fid_l'], {}), '(fid_l)\n', (10245, 10252), True, 'import numpy as np\n'), ((1597, 1629), 'matplotlib.pyplot.title', 'plt.title', (['"""Reconstructed Image"""'], {}), "('Reconstructed Image')\n", (1606, 1629), True, 'import matplotlib.pyplot as plt\n'), ((1666, 1726), 'matplotlib.pyplot.title', 'plt.title', (['"""Field Map - B[T] Values as function of location"""'], {}), "('Field Map - B[T] Values as function of location')\n", (1675, 1726), True, 'import matplotlib.pyplot as plt\n'), ((5741, 5764), 'numpy.fft.ifft2', 'np.fft.ifft2', (['k_casting'], {}), '(k_casting)\n', (5753, 5764), True, 'import numpy as np\n'), ((8997, 9048), 'numpy.polyfit', 'np.polyfit', (['te_values[:]', 'value_vec_in_phase_map', '(1)'], {}), '(te_values[:], value_vec_in_phase_map, 1)\n', (9007, 9048), True, 'import numpy as np\n'), ((10179, 10209), 'struct.unpack', 'struct.unpack', (['"""i"""', 'fid_r[-4:]'], {}), "('i', fid_r[-4:])\n", (10192, 10209), False, 'import struct\n')]
"""Optimization * :function:`.single_nested_cvrs` * :function:`.dual_nested_cvrs` * :function:`.single_cv` * :function:`.chi2_test` """ # data wrangling import numpy as np import pandas as pd from itertools import product from scipy import stats # validation from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score from sklearn.model_selection import KFold from sklearn.preprocessing import MinMaxScaler # from scipy import stats # from pandas import * # # Store sample sizes and number of errors # n1 = 1000 # samples # m1 = 300 # errors # n2 = 1000 # samples # m2 = 360 # errors # # Store errors and correct classifications in a 2x2 table # perf = DataFrame([[m1, m2], [n1-m1, n2-m2]], index=["Error", "Correct"]) # perf.columns = ["S_1", "S_2"] # print(perf) # ##### Chi-2 test for equality of error rates # pvalue = stats.chi2_contingency(perf)[1] # print("p-value = ", '{0:.6f}'.format(pvalue)) # ##### Fisher test for equality of error rates # pvalue = stats.fisher_exact(perf)[1] # print("p-value = ", ’{0:.6f}’.format(pvalue)) # import pandas as pd # res = pd.read_csv("Crossval.csv", index_col=0) # print(res) # """ # algo1 algo2 # 1 75.05 78.08 # 2 74.24 79.77 # 3 76.20 79.61 # 4 81.35 88.39 # 5 80.96 88.27 # 6 84.22 76.20 # 7 77.68 88.04 # 8 82.10 87.50 # 9 81.35 84.37 # 10 81.80 84.04 # """ # ##### t-student test for equality of error rates # pvalue = stats.ttest_rel(res[’algo2’], res[’algo1’])[1] # print("p-value = ", ’{0:.6f}’.format(pvalue)) def nested_single_cv(x_t, y_t, L, grid, k_ext, k_int): """ Summary: Help set a hyper-parameters list for a given model before makes -------- its comparison with others hyper-parameterized models. Input: - x_t: features train (numpy.arrays) ------ - y_t: labels train (numpy.arrays) - L: learning algorithm (class method .predict()) - grid: keys as a parameter name; values as the array of the parameter' values (dict) - K_ext: number of external folds (integer) - K_int: number of internal folds (integer) Output: - inner_result_frame: index: [k_ext], columns: [hp_set], values: [v_bcr_(k_int_mean)] ------- - outter_result_frame: index: [k_ext, hp_hat], columns:[t_bcr, v_bcr], values:[t_bcr, v_bcr] Example: model1= BaggingTrees -------- grid1 = {'epochs':[1] , 'n_trees':[100] , 'criterion': ['entropy'] , 'min_samples_leaf':[0.06] # , 'max_depth':[3] , 'min_samples_split':[0.03] # , 'max_leaf_nodes':[200] } K_int, K_ext = 4, 10 outter, inner = nested_single_cv(x_t, y_t, model1, grid1, K_ext, K_int) outter.groupby('hp_hat').agg({'t_bcr': ['count', 'mean', 'std'] , 'v_bcr': ['mean', 'std']}).reset_index('hp_hat') """ hp_set = [v for v in product(*grid.values())] inner_results = pd.DataFrame(columns = hp_set) outter_results = pd.DataFrame(columns = ['hp_hat' , 't_bcr' , 'v_bcr' ]) # frame pointer i = 0 # partionate "training rows" into "K_ext" sets K_ext_folds = KFold(n_splits = k_ext, shuffle=False).split(x_t) # (markers t_i, v_i) for t_ext_fold, v_ext_fold in K_ext_folds: # sectioning "train set" between "S_k" into "ext_fold" sets x_S_k = x_t[t_ext_fold] # training x y_S_k = y_t[t_ext_fold] # training y x_ext_fold = x_t[v_ext_fold] # test x y_ext_fold = y_t[v_ext_fold] # test y # get hp_hat in the inner loop hp_dic = {} for idx, hp in enumerate(hp_set): hp_dic[idx]=[] # partionate "S_k training rows" into "K_int" sets K_int_folds = KFold(n_splits = k_int, shuffle=False).split(x_S_k) for t_int_fold, v_int_fold in K_int_folds: # sectioning "S_k" between "Ss_k" into "int_fold" sets x_Ss_k = x_S_k[t_int_fold] # training x y_Ss_k = y_S_k[t_int_fold] # training y x_int_fold = x_S_k[v_int_fold] # test x y_int_fold = y_S_k[v_int_fold] # test y # must scaler after partition, for specific a training normalization min_max_scaler = MinMaxScaler(feature_range=(0, 1)) X_t = min_max_scaler.fit_transform(x_Ss_k) X_v = min_max_scaler.fit_transform(x_int_fold) Y_t = y_Ss_k Y_v = y_int_fold # Loading and fitting model model = L(hp) model.fit(X_t, Y_t) # prediction Y_v_predicted = model.predict(X_v) # validation v_bcr = balanced_accuracy_score(Y_v, Y_v_predicted) # append all hp_dic[idx].append(v_bcr) # # Averages the k_int iteractions for each hp in hp_set and stores it inner_results.loc[i] = [sum(arr) / len(arr) for arr in hp_dic.values()] # avg all hp predictions scores to define hp_hat (the highest) # use t-test? ixd_max= max([(k,np.mean(v)) for k,v in hp_dic.items()],key=lambda item:item[1])[0] hp_hat = hp_set[ixd_max] # must scaler after partition, for specific a training normalization min_max_scaler = MinMaxScaler(feature_range=(0, 1)) X_t = min_max_scaler.fit_transform(x_S_k) X_v = min_max_scaler.fit_transform(x_ext_fold) Y_t = y_S_k Y_v = y_ext_fold # Loading and fitting model model = L(hp) model.fit(X_t, Y_t) # prediction Y_v_predicted = model.predict(X_v) # training metrics t_acc = model.acc t_bcr = model.bcr t_f1 = model.f1 t_auc = model.auc # validation metrics v_acc = accuracy_score(Y_v, Y_v_predicted) v_bcr = balanced_accuracy_score(Y_v, Y_v_predicted) v_f1 = f1_score(Y_v, Y_v_predicted, average='macro') v_auc = roc_auc_score(Y_v, Y_v_predicted, average='macro') outter_results.loc[i] = [hp_hat , t_bcr , v_bcr] i += 1 return outter_results, inner_results
[ "pandas.DataFrame", "sklearn.metrics.accuracy_score", "sklearn.preprocessing.MinMaxScaler", "sklearn.metrics.balanced_accuracy_score", "sklearn.model_selection.KFold", "sklearn.metrics.roc_auc_score", "sklearn.metrics.f1_score", "numpy.mean" ]
[((3295, 3323), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'hp_set'}), '(columns=hp_set)\n', (3307, 3323), True, 'import pandas as pd\n'), ((3350, 3400), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['hp_hat', 't_bcr', 'v_bcr']"}), "(columns=['hp_hat', 't_bcr', 'v_bcr'])\n", (3362, 3400), True, 'import pandas as pd\n'), ((5842, 5876), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(0, 1)'}), '(feature_range=(0, 1))\n', (5854, 5876), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((6371, 6405), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_v', 'Y_v_predicted'], {}), '(Y_v, Y_v_predicted)\n', (6385, 6405), False, 'from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score\n'), ((6423, 6466), 'sklearn.metrics.balanced_accuracy_score', 'balanced_accuracy_score', (['Y_v', 'Y_v_predicted'], {}), '(Y_v, Y_v_predicted)\n', (6446, 6466), False, 'from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score\n'), ((6483, 6528), 'sklearn.metrics.f1_score', 'f1_score', (['Y_v', 'Y_v_predicted'], {'average': '"""macro"""'}), "(Y_v, Y_v_predicted, average='macro')\n", (6491, 6528), False, 'from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score\n'), ((6546, 6596), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_v', 'Y_v_predicted'], {'average': '"""macro"""'}), "(Y_v, Y_v_predicted, average='macro')\n", (6559, 6596), False, 'from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score\n'), ((3634, 3670), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'k_ext', 'shuffle': '(False)'}), '(n_splits=k_ext, shuffle=False)\n', (3639, 3670), False, 'from sklearn.model_selection import KFold\n'), ((4764, 4798), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(0, 1)'}), '(feature_range=(0, 1))\n', (4776, 4798), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((5239, 5282), 'sklearn.metrics.balanced_accuracy_score', 'balanced_accuracy_score', (['Y_v', 'Y_v_predicted'], {}), '(Y_v, Y_v_predicted)\n', (5262, 5282), False, 'from sklearn.metrics import balanced_accuracy_score, accuracy_score, f1_score, roc_auc_score\n'), ((4234, 4270), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'k_int', 'shuffle': '(False)'}), '(n_splits=k_int, shuffle=False)\n', (4239, 4270), False, 'from sklearn.model_selection import KFold\n'), ((5633, 5643), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (5640, 5643), True, 'import numpy as np\n')]
from netCDF4 import Dataset from dataclasses import dataclass, field import os import pickle import sys import shutil import numpy as np from variables import modelvar @dataclass class VariableInfo(): nickname: str = "" dimensions: tuple = field(default_factory=lambda: ()) name: str = "" units: str = "" dtype: str = "d" class NetCDF_tools(): """ Basic class to create and write NetCDF files Parameters ---------- filename : str The file name to be created. attrs : dict The global attributes. dimensions : list[(name, size), ...] The list of dimensions. size==None -> unlimited variables : list[VariableInfo, ...] The name of variable.dimensions should match one of dimensions. """ def __init__(self, filename, attrs, dimensions, variables): self.filename = filename self.attrs = attrs self.dimensions = {dim[0]: dim[1] for dim in dimensions} self.variables = {var.nickname: var for var in variables} def create(self): """ Create the empty NetCDF file with - attributes - dimensions - variables """ with Dataset(self.filename, "w", format='NETCDF4') as nc: nc.setncatts(self.attrs) for dim, size in self.dimensions.items(): nc.createDimension(dim, size) for infos in self.variables.values(): assert isinstance(infos.dimensions, tuple) v = nc.createVariable(infos.nickname, infos.dtype, infos.dimensions) v.standard_name = infos.name v.units = infos.units def write(self, variables, nc_start={}, data_start={}): """ Write variables Parameters ---------- variables : list[(nickname, data), ...] where data is an ndarray nc_start : dict{name: (offset, size)} name : the dimension name offset : the offset of that dimension in the NetCDF file size : the size of data in that dimension If a dimension is not in nc_start it is assumed that the data has a size that matches the size defined in the NetCDF. data_start : dict{name: (offset, size)} same that nc_start but for the data in variables """ with Dataset(self.filename, "r+") as nc: for nickname, data in variables.items(): ncidx = self._get_idx(nickname, nc_start) if isinstance(data, np.ndarray): dataidx = self._get_idx(nickname, data_start) nc.variables[nickname][ncidx] = data[dataidx] else: nc.variables[nickname][ncidx] = data def _get_idx(self, nickname, nc_start): """ Return the tuple of slices to either slice through nc.variables or through data """ infos = self.variables[nickname] ncidx = [] for dim in infos.dimensions: if dim in nc_start: istart, size = nc_start[dim] else: istart, size = 0, self.dimensions[dim] if size is not None: ncidx += [slice(istart, istart+size)] return tuple(ncidx) class Ncio(): """ Class that handles all the IO for pyRSW which includes - creating and writing model snapshots in the history.nc - creating and writing model bulk diagnostics in the diags.nc - saving the param.pkl file - saving the Python experiment script """ def __init__(self, param, grid, batchindex=0): self.param = param self.grid = grid self.batchindex = batchindex self.nprocs = np.prod(grid.procs) if self.nprocs > 1: from mpi4py import MPI self.MPI = MPI self._create_output_directory() self.backup_config() hist_infos = get_hist_infos(param, grid) self.hist = NetCDF_tools(self.history_file, *hist_infos) if not self.singlefile or self.master: self.hist.create() self.hist_index = 0 self.write_grid() diag_infos = get_diag_infos(param, grid) self.diag = NetCDF_tools(self.diag_file, *diag_infos) self.diag_index = 0 if self.master: self.diag.create() def _create_output_directory(self): if self.master and not os.path.isdir(self.output_directory): os.makedirs(self.output_directory) @property def myrank(self): return self.grid.myrank @property def master(self): return self.myrank == 0 @property def expname(self): return self.param["expname"] @property def singlefile(self): return self.param["singlefile"] @property def output_directory(self): datadir = os.path.expanduser(self.param["datadir"]) return os.path.join(datadir, self.expname) @property def history_file(self): """ Full path to the NetCDF history file """ his = self._add_batchindex("history") basicname = f"{his}.nc" mpiname = f"{his}_{self.myrank:02}.nc" hisname = basicname if self.singlefile else mpiname return os.path.join(self.output_directory, hisname) @property def diag_file(self): """ Full path to the NetCDF diagnostic file """ diag = self._add_batchindex("diag") diagname = f"{diag}.nc" return os.path.join(self.output_directory, diagname) def _add_batchindex(self, filename): if self.param.restart: return filename + f"_{self.batchindex:02}" else: return filename def backup_config(self): """ Backup the experiment configuration into the output directory - save param in the param.pkl - save the experiment Python script """ if self.master and self.batchindex == 0: dest = f"{self.output_directory}/param.pkl" with open(dest, "wb") as fid: pickle.dump(self.param, fid) python_launch_script = sys.argv[0] dest = os.path.join(self.output_directory, f"{self.expname}.py") shutil.copyfile(python_launch_script, dest) def write_grid(self): """ Write the model grid arrays into the NetCDF file (just once) """ xc = self.grid.coord.x(0, self.grid.ic)[0] yc = self.grid.coord.y(self.grid.jc, 0)[:, 0] xe = self.grid.coord.x(0, self.grid.ie)[0] ye = self.grid.coord.y(self.grid.je, 0)[:, 0] layer = np.arange(self.grid.nz) msk = self.grid.arrays.msk.view("i") datagrid = { "x": xc, "y": yc, "xe": xe, "ye": ye, "layer": layer, "msk": msk } self._history_write_halo_mpi(datagrid) def write_hist(self, state, time, kt): """ Write a model snapshot into the NetCDF file """ datahist = { "time": time, "iteration": kt, } for name in self.param["var_to_save"]: vartype = modelvar[name]["type"] if vartype == "vector": for axis in "xy": compname = name+axis var = state.get(compname) datahist[compname] = var.getproperunits(self.grid) else: var = state.get(name) datahist[name] = var.getproperunits(self.grid) nc_start = {"time": (self.hist_index, 1)} self._history_write_halo_mpi(datahist, nc_start=nc_start) self.hist_index += 1 def _history_write_halo_mpi(self, data, nc_start={}): """ Generic function to write data into the history NetCDF file handle the following special cases - write the arrays without the halo - write in a single history file, even if several MPI ranks """ data_start = {} if not self.param.halo_included: j0, j1, i0, i1 = self.grid.arrays.hb.domainindices nx = self.param.nx ny = self.param.ny data_start["x"] = (i0, nx) data_start["y"] = (j0, ny) data_start["xe"] = (i0, nx+1) data_start["ye"] = (j0, ny+1) if self.singlefile: i0 = self.grid.loc[2]*self.param.nx j0 = self.grid.loc[1]*self.param.ny nc_start["x"] = (i0, nx) nc_start["y"] = (j0, ny) nc_start["xe"] = (i0, nx+1) nc_start["ye"] = (j0, ny+1) if self.singlefile and (self.nprocs > 1): # all MPI ranks write in the same file for rank in range(self.nprocs): if rank == self.myrank: self.hist.write(data, nc_start=nc_start, data_start=data_start) self.MPI.COMM_WORLD.Barrier() else: # each rank writes in its own history file self.hist.write(data, nc_start=nc_start, data_start=data_start) def write_diags(self, diags, time, kt): """ Write the domain integrated diagnostics into the NetCDF file """ datadiag = { "time": time, "iteration": kt, "ke": diags["ke"], "pe": diags["pe"], "me": diags["me"], "enstrophy": diags["potenstrophy"], } start = {"time": (self.diag_index, 1)} if self.master: self.diag.write(datadiag, nc_start=start) self.diag_index += 1 def get_hist_infos(param, grid): attrs = {"model": "pyrsw", "author": "someone"} if param.halo_included: ny, nx = grid.xc.shape else: ny, nx = param.ny, param.nx if param.singlefile: nx *= param.npx ny *= param.npy nz = param.nz dims = [("time", None), ("layer", nz), ("x", nx), ("y", ny), ("xe", nx+1), ("ye", ny+1)] infos = [ ("time", ("time",), "time", "s"), ("iteration", ("time",), "model iteration", "", "i4"), ("x", ("x",), "x coord at center", "m"), ("y", ("y",), "y coord at center", "m"), ("xe", ("xe",), "x coord at edge", "m"), ("ye", ("ye",), "y coord at edge", "m"), ("layer", ("layer",), "layer index", "", "i1"), ("msk", ("y", "x"), "mask at cell centers", "", "i1"), ] vardims = { "scalar": ("time", "layer", "y", "x"), "u": ("time", "layer", "y", "xe"), "v": ("time", "layer", "ye", "x"), "vorticity": ("time", "layer", "ye", "xe") } for name in param["var_to_save"]: longname = modelvar[name]["name"] units = modelvar[name]["unit"] vartype = modelvar[name]["type"] if vartype == "vector": infos += [(name+"x", vardims["u"], longname+" x-component", units)] infos += [(name+"y", vardims["v"], longname+" y-component", units)] else: infos += [(name, vardims[vartype], longname, units)] varinfos = [VariableInfo(*info) for info in infos] hist_infos = (attrs, dims, varinfos) return hist_infos def get_diag_infos(param, grid): attrs = {"model": "pyrsw", "author": "someone"} dims = [("time", None)] infos = [ ("time", ("time",), "time", "s"), ("iteration", ("time",), "model iteration", "", "i4"), ("ke", ("time",), "kinetic energy", "m^2 s^-2"), ("pe", ("time",), "mean available potential energy", "m^2 s^-2"), ("me", ("time",), "kinetic + potential energy", "m^2 s^-2"), ("enstrophy", ("time",), "mean enstrophy", "s^-2 m^-2"), ] varinfos = [VariableInfo(*info) for info in infos] diag_infos = (attrs, dims, varinfos) return diag_infos
[ "netCDF4.Dataset", "pickle.dump", "os.path.join", "os.makedirs", "os.path.isdir", "dataclasses.field", "numpy.arange", "shutil.copyfile", "os.path.expanduser", "numpy.prod" ]
[((250, 284), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : ())'}), '(default_factory=lambda : ())\n', (255, 284), False, 'from dataclasses import dataclass, field\n'), ((3871, 3890), 'numpy.prod', 'np.prod', (['grid.procs'], {}), '(grid.procs)\n', (3878, 3890), True, 'import numpy as np\n'), ((5009, 5050), 'os.path.expanduser', 'os.path.expanduser', (["self.param['datadir']"], {}), "(self.param['datadir'])\n", (5027, 5050), False, 'import os\n'), ((5066, 5101), 'os.path.join', 'os.path.join', (['datadir', 'self.expname'], {}), '(datadir, self.expname)\n', (5078, 5101), False, 'import os\n'), ((5415, 5459), 'os.path.join', 'os.path.join', (['self.output_directory', 'hisname'], {}), '(self.output_directory, hisname)\n', (5427, 5459), False, 'import os\n'), ((5663, 5708), 'os.path.join', 'os.path.join', (['self.output_directory', 'diagname'], {}), '(self.output_directory, diagname)\n', (5675, 5708), False, 'import os\n'), ((6805, 6828), 'numpy.arange', 'np.arange', (['self.grid.nz'], {}), '(self.grid.nz)\n', (6814, 6828), True, 'import numpy as np\n'), ((1205, 1250), 'netCDF4.Dataset', 'Dataset', (['self.filename', '"""w"""'], {'format': '"""NETCDF4"""'}), "(self.filename, 'w', format='NETCDF4')\n", (1212, 1250), False, 'from netCDF4 import Dataset\n'), ((2475, 2503), 'netCDF4.Dataset', 'Dataset', (['self.filename', '"""r+"""'], {}), "(self.filename, 'r+')\n", (2482, 2503), False, 'from netCDF4 import Dataset\n'), ((4615, 4649), 'os.makedirs', 'os.makedirs', (['self.output_directory'], {}), '(self.output_directory)\n', (4626, 4649), False, 'import os\n'), ((6345, 6402), 'os.path.join', 'os.path.join', (['self.output_directory', 'f"""{self.expname}.py"""'], {}), "(self.output_directory, f'{self.expname}.py')\n", (6357, 6402), False, 'import os\n'), ((6415, 6458), 'shutil.copyfile', 'shutil.copyfile', (['python_launch_script', 'dest'], {}), '(python_launch_script, dest)\n', (6430, 6458), False, 'import shutil\n'), ((4565, 4601), 'os.path.isdir', 'os.path.isdir', (['self.output_directory'], {}), '(self.output_directory)\n', (4578, 4601), False, 'import os\n'), ((6249, 6277), 'pickle.dump', 'pickle.dump', (['self.param', 'fid'], {}), '(self.param, fid)\n', (6260, 6277), False, 'import pickle\n')]
import logging as log import os import base64 import json import numpy as np from paprika.restraints import DAT_restraint from parmed.amber import AmberParm from parmed import Structure # https://stackoverflow.com/questions/27909658/json-encoder-and-decoder-for-complex-numpy-arrays # https://stackoverflow.com/a/24375113/901925 # https://stackoverflow.com/questions/3488934/simplejson-and-numpy-array/24375113#24375113 class NumpyEncoder(json.JSONEncoder): """Save DAT_restraints as JSON by re-encoding `numpy` arrays.""" def default(self, obj): """If input object is an ndarray it will be converted into a dict holding dtype, shape and the data, base64 encoded. """ if isinstance(obj, AmberParm): log.info("Encountered AmberParm, returning name.") return obj.name if isinstance(obj, Structure): log.warning("Encountered Structure, which does not store filename.") return "" if isinstance(obj, np.ndarray): if obj.flags["C_CONTIGUOUS"]: obj_data = obj.data else: cont_obj = np.ascontiguousarray(obj) assert cont_obj.flags["C_CONTIGUOUS"] obj_data = cont_obj.data data_b64 = base64.b64encode(obj_data) # obj_data = obj.tolist() return dict( __ndarray__=data_b64.decode("utf-8"), dtype=str(obj.dtype), shape=obj.shape, ) elif isinstance( obj, ( np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, ), ): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): return obj.tolist() # Let the base class default method raise the TypeError # return json.JSONEncoder(self, obj) return super(NumpyEncoder, self).default(obj) def json_numpy_obj_hook(dct): """Decodes a previously encoded numpy ndarray with proper shape and dtype. :param dct: (dict) json encoded ndarray :return: (ndarray) if input was an encoded ndarray """ if isinstance(dct, dict) and "__ndarray__" in dct: data = base64.b64decode(dct["__ndarray__"]) return np.frombuffer(data, dct["dtype"]).reshape(dct["shape"]) # return dct['__ndarray__'] return dct def save_restraints(restraint_list, filepath="restraints.json"): log.debug("Saving restraint information as JSON.") with open(os.path.join(filepath), "w") as f: for restraint in restraint_list: dumped = json.dumps(restraint.__dict__, cls=NumpyEncoder) f.write(dumped) f.write("\n") def load_restraints(filepath="restraints.json"): log.debug("Loading restraint information from JSON.") with open(os.path.join(filepath), "r") as f: json_data = f.read() restraint_json = json_data.split("\n") restraints = [] for restraint in restraint_json: if restraint == "": continue loaded = json.loads(restraint, object_hook=json_numpy_obj_hook) tmp = DAT_restraint() tmp.__dict__ = loaded properties = ["mask1", "mask2", "mask3", "mask4", "topology", "instances", "custom_restraint_values", "auto_apr", "continuous_apr", "attach", "pull", "release", "amber_index"] for class_property in properties: if f"_{class_property}" in tmp.__dict__.keys(): tmp.__dict__[class_property] = tmp.__dict__[f"_{class_property}"] restraints.append(tmp) return restraints
[ "paprika.restraints.DAT_restraint", "logging.debug", "json.loads", "logging.warning", "numpy.frombuffer", "numpy.ascontiguousarray", "base64.b64decode", "json.dumps", "logging.info", "base64.b64encode", "os.path.join" ]
[((2779, 2829), 'logging.debug', 'log.debug', (['"""Saving restraint information as JSON."""'], {}), "('Saving restraint information as JSON.')\n", (2788, 2829), True, 'import logging as log\n'), ((3099, 3152), 'logging.debug', 'log.debug', (['"""Loading restraint information from JSON."""'], {}), "('Loading restraint information from JSON.')\n", (3108, 3152), True, 'import logging as log\n'), ((2549, 2585), 'base64.b64decode', 'base64.b64decode', (["dct['__ndarray__']"], {}), "(dct['__ndarray__'])\n", (2565, 2585), False, 'import base64\n'), ((3397, 3451), 'json.loads', 'json.loads', (['restraint'], {'object_hook': 'json_numpy_obj_hook'}), '(restraint, object_hook=json_numpy_obj_hook)\n', (3407, 3451), False, 'import json\n'), ((3466, 3481), 'paprika.restraints.DAT_restraint', 'DAT_restraint', ([], {}), '()\n', (3479, 3481), False, 'from paprika.restraints import DAT_restraint\n'), ((756, 806), 'logging.info', 'log.info', (['"""Encountered AmberParm, returning name."""'], {}), "('Encountered AmberParm, returning name.')\n", (764, 806), True, 'import logging as log\n'), ((886, 954), 'logging.warning', 'log.warning', (['"""Encountered Structure, which does not store filename."""'], {}), "('Encountered Structure, which does not store filename.')\n", (897, 954), True, 'import logging as log\n'), ((1285, 1311), 'base64.b64encode', 'base64.b64encode', (['obj_data'], {}), '(obj_data)\n', (1301, 1311), False, 'import base64\n'), ((2844, 2866), 'os.path.join', 'os.path.join', (['filepath'], {}), '(filepath)\n', (2856, 2866), False, 'import os\n'), ((2941, 2989), 'json.dumps', 'json.dumps', (['restraint.__dict__'], {'cls': 'NumpyEncoder'}), '(restraint.__dict__, cls=NumpyEncoder)\n', (2951, 2989), False, 'import json\n'), ((3167, 3189), 'os.path.join', 'os.path.join', (['filepath'], {}), '(filepath)\n', (3179, 3189), False, 'import os\n'), ((1141, 1166), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['obj'], {}), '(obj)\n', (1161, 1166), True, 'import numpy as np\n'), ((2601, 2634), 'numpy.frombuffer', 'np.frombuffer', (['data', "dct['dtype']"], {}), "(data, dct['dtype'])\n", (2614, 2634), True, 'import numpy as np\n')]
import numpy from scipy.interpolate import InterpolatedUnivariateSpline as interpolate from scipy.interpolate import interp1d from cosmo4d.lab import (UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh) #from cosmo4d.lab import mapbias as map from cosmo4d import lab from cosmo4d.lab import report, dg, objectives from abopt.algs.lbfgs import scalar as scalar_diag from nbodykit.cosmology import Planck15, EHPower, Cosmology from nbodykit.algorithms.fof import FOF from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog import sys, os, json, yaml from solve import solve from getbiasparams import getbias, eval_bfit sys.path.append('../') sys.path.append('../utils/') import HImodels ######################################### #Set parameters here ## cfname = sys.argv[1] with open(cfname, 'r') as ymlfile: cfg = yaml.load(ymlfile) for i in cfg['basep'].keys(): locals()[i] = cfg['basep'][i] h1model = HImodels.ModelA(aa) truth_pm = ParticleMesh(BoxSize=bs, Nmesh=(nc, nc, nc), dtype='f4') comm = truth_pm.comm rank = comm.rank if numd <= 0: num = -1 else: num = int(bs**3 * numd) if rank == 0: print('Number of objects : ', num) objfunc = getattr(objectives, cfg['mods']['objective']) map = getattr(lab, cfg['mods']['map']) # proj = '/project/projectdirs/cosmosim/lbl/chmodi/cosmo4d/' dfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc) #ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/recon/bias/L%04d-N%04d-T%02d-B%01d/'%(bs, nc, nsteps, B) ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/recon/L%04d-N%04d/'%(bs, nc) if pmdisp: ofolder += 'T%02d-B%01d'%(nsteps, B) else: ofolder += 'ZA/' prefix = '_fourier' if rsdpos: prefix += "_rsdpos" if masswt: if h1masswt : fname = 's999_h1massA%s'%prefix else: fname = 's999_mass%s'%prefix else: fname = 's999_pos%s'%prefix optfolder = ofolder + 'opt_%s/'%fname if truth_pm.comm.rank == 0: print('Output Folder is %s'%optfolder) for folder in [ofolder, optfolder]: try: os.makedirs(folder) except:pass ######################################### #initiate klin, plin = numpy.loadtxt('../../data/pklin_1.0000.txt', unpack = True) ipk = interpolate(klin, plin) #cosmo = Planck15.clone(Omega_cdm = 0.2685, h = 0.6711, Omega_b = 0.049) cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} cosmo = Cosmology.from_dict(cosmodef) data = BigFileCatalog('/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/LL-0.200/'%aa) data = data.gslice(start = 0, stop = num) data['Mass'] = data['Length']*data.attrs['M0']*1e10 if masswt : masswt = data['Mass'].copy() if h1masswt : masswt = h1model.assignhalo(masswt) else: masswt = data['Mass'].copy()*0 + 1. hpos, hmass = data['Position'], masswt rsdfac = 0 if rsdpos: with open('/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/Header/attr-v2'%aa) as ff: for line in ff.readlines(): if 'RSDFactor' in line: rsdfac = float(line.split()[-2]) hpos = data['Position'] + rsdfac*data['Velocity']*numpy.array([0, 0, 1]).reshape(1, -1) hlayout = truth_pm.decompose(hpos) hmesh = truth_pm.paint(hpos, layout=hlayout, mass=hmass) hmesh /= hmesh.cmean() hmesh -= 1. rankweight = sum(masswt.compute()) totweight = comm.allreduce(rankweight) rankweight = sum((masswt**2).compute()) totweight2 = comm.allreduce(rankweight) noise = bs**3 / (totweight**2/totweight2) if rank == 0 : print('Noise : ', noise) ######################################### #dynamics stages = numpy.linspace(0.1, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, truth_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise #Artifically low noise since the data is constructed from the model truth_noise_model = map.NoiseModel(truth_pm, None, noisevar*(truth_pm.BoxSize/truth_pm.Nmesh).prod(), 1234) truth_noise_model = None #Create and save data if not found dyn = BigFileCatalog(dfolder + 'fastpm_%0.4f/1'%aa) s_truth = BigFileMesh(dfolder + 'linear', 'LinearDensityK').paint() mock_model_setup = map.MockModel(dynamic_model, rsdpos=rsdpos, rsdfac=rsdfac) fpos, linear, linearsq, shear = mock_model_setup.get_code().compute(['x', 'linear', 'linearsq', 'shear'], init={'parameters': s_truth}) grid = truth_pm.generate_uniform_particle_grid(shift=0.0, dtype='f4') params, bmod = getbias(truth_pm, hmesh, [linear, linearsq, shear], fpos, grid) title = ['%0.3f'%i for i in params] kerror, perror = eval_bfit(hmesh, bmod, optfolder, noise=noise, title=title, fsize=15) ipkerror = interp1d(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])) mock_model = map.MockModel(dynamic_model, params=params, rsdpos=rsdpos, rsdfac=rsdfac) data_p = mock_model.make_observable(s_truth) data_p.mapp = hmesh.copy() data_p.save(optfolder+'datap/') if rank == 0: print('datap saved') #data_n = truth_noise_model.add_noise(data_p) #data_n.save(optfolder+'datan/') #if rank == 0: print('datan saved') fit_p = mock_model.make_observable(s_truth) fit_p.save(optfolder+'fitp/') if rank == 0: print('fitp saved') ## if rank == 0: print('data_p, data_n created') ################################################ #Optimizer if cfg['init']['sinit'] is None: s_init = truth_pm.generate_whitenoise(777, mode='complex')\ .apply(lambda k, v: v * (ipk(sum(ki **2 for ki in k) **0.5) / v.BoxSize.prod()) ** 0.5)\ .c2r()*0.001 sms = [4.0, 2.0, 1.0, 0.5, 0.0] else: s_init = BigFileMesh(cfg['init']['sinit'], 's').paint() sms = cfg['init']['sms'] if sms is None: [4.0, 2.0, 1.0, 0.5, 0.0] x0 = s_init N0 = nc C = x0.BoxSize[0] / x0.Nmesh[0] for Ns in sms: if truth_pm.comm.rank == 0: print('\nDo for cell smoothing of %0.2f\n'%(Ns)) sml = C * Ns rtol = 0.005 run = '%d-%0.2f'%(N0, Ns) if Ns == sms[0]: if cfg['init']['sinit'] is not None: run += '-nit_%d-sm_%.2f'%(cfg['init']['nit'], cfg['init']['sml']) obj = objfunc(mock_model, truth_noise_model, data_p, prior_ps=ipk, error_ps=ipkerror, sml=sml) x0 = solve(N0, x0, rtol, run, Ns, prefix, mock_model, obj, data_p, truth_pm, optfolder, saveit=20, showit=5, title=None) ######################################### ##def gaussian_smoothing(sm): ## def kernel(k, v): ## return numpy.exp(- 0.5 * sm ** 2 * sum(ki ** 2 for ki in k)) * v ## return kernel ## ######################################### #optimizer ## ##def solve(Nmesh, x0, rtol, run, Nsm): ## ## pm = truth_pm.resize(Nmesh=(Nmesh, Nmesh, Nmesh)) ## atol = pm.Nmesh.prod() * rtol ## x0 = pm.upsample(x0, keep_mean=True) ## #data = data_n.downsample(pm) ## #IDEAL no noise limit ## data = data_p.downsample(pm) ## ## # smooth the data. This breaks the noise model but we don't need it ## # for lower resolution anyways. ## sml = pm.BoxSize[0] / Nmesh * Nsm ## ## #dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) ## #mock_model = map.MockModel(dynamic_model) ## ## # an approximate noise model, due to smoothing this is correct only at large scale. ## noise_model = truth_noise_model #.downsample(pm) ## ## obj = map.SmoothedObjective(mock_model, noise_model, data, prior_ps=pk, sml=sml)#, noised=noised) ## ## prior, chi2 = obj.get_code().compute(['prior', 'chi2'], init={'parameters': data.s}) ## if pm.comm.rank == 0: print('Prior, chi2 : ', prior, chi2) # for 2d chi2 is close to total pixels. ## ## fit_p = mock_model.make_observable(data.s) ## #r = obj.evaluate(fit_p, data) ## r = dg.evaluate(fit_p, data) ## ## try: ## os.makedirs(optfolder + '%s' % run) ## except: ## pass ## try: ## os.makedirs(optfolder + '%s/2pt' % run) ## except: ## pass ## dg.save_report(r, optfolder + "%s/truth.png" % run, pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/truth.png" % run, pm) ## ## ## optimizer = LBFGS(m=10, diag_update=scalar_diag) ## ## prob = obj.get_problem(atol=atol, precond=UseComplexSpaceOptimizer) ## ## def monitor(state): ## if pm.comm.rank == 0: ## print(state) ## if state.nit % 5 == 0: ## fit_p = mock_model.make_observable(state['x']) ## if state.nit % 20 == 0: ## fit_p.save(optfolder + '%s/%04d/fit_p' % (run, state['nit'])) ## r = obj.evaluate(fit_p, data) ## #obj.save_report(r, optfolder + "%s/%s%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit'])) ## dg.save_report(r, optfolder + "%s/%s_N%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit']), pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/%s_N%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit']), pm) ## if pm.comm.rank == 0: ## print('saved') ## ## state = optimizer.minimize(prob, x0=x0, monitor=monitor) ## fit_p = mock_model.make_observable(state['x']) ## fit_p.save(optfolder + '%s/best-fit' % run) ## r = dg.evaluate(fit_p, data) ## dg.save_report(r, optfolder + "%s/%s%02d-best-fit.png" % (run, prefix, int(Nsm*10)), pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/%s_N%02d-best-fit.png" % (run, prefix, int(Nsm*10)), pm) ## return state.x ##
[ "sys.path.append", "cosmo4d.lab.ParticleMesh", "nbodykit.lab.BigFileCatalog", "nbodykit.cosmology.Cosmology.from_dict", "yaml.load", "scipy.interpolate.InterpolatedUnivariateSpline", "solve.solve", "os.makedirs", "getbiasparams.eval_bfit", "nbodykit.lab.BigFileMesh", "cosmo4d.lab.NBodyModel", "HImodels.ModelA", "numpy.loadtxt", "numpy.linspace", "cosmo4d.lab.ZAModel", "getbiasparams.getbias", "scipy.interpolate.interp1d", "numpy.array" ]
[((716, 738), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (731, 738), False, 'import sys, os, json, yaml\n'), ((739, 767), 'sys.path.append', 'sys.path.append', (['"""../utils/"""'], {}), "('../utils/')\n", (754, 767), False, 'import sys, os, json, yaml\n'), ((1003, 1022), 'HImodels.ModelA', 'HImodels.ModelA', (['aa'], {}), '(aa)\n', (1018, 1022), False, 'import HImodels\n'), ((1035, 1091), 'cosmo4d.lab.ParticleMesh', 'ParticleMesh', ([], {'BoxSize': 'bs', 'Nmesh': '(nc, nc, nc)', 'dtype': '"""f4"""'}), "(BoxSize=bs, Nmesh=(nc, nc, nc), dtype='f4')\n", (1047, 1091), False, 'from cosmo4d.lab import UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh\n'), ((2221, 2278), 'numpy.loadtxt', 'numpy.loadtxt', (['"""../../data/pklin_1.0000.txt"""'], {'unpack': '(True)'}), "('../../data/pklin_1.0000.txt', unpack=True)\n", (2234, 2278), False, 'import numpy\n'), ((2287, 2310), 'scipy.interpolate.InterpolatedUnivariateSpline', 'interpolate', (['klin', 'plin'], {}), '(klin, plin)\n', (2298, 2310), True, 'from scipy.interpolate import InterpolatedUnivariateSpline as interpolate\n'), ((2450, 2479), 'nbodykit.cosmology.Cosmology.from_dict', 'Cosmology.from_dict', (['cosmodef'], {}), '(cosmodef)\n', (2469, 2479), False, 'from nbodykit.cosmology import Planck15, EHPower, Cosmology\n'), ((2488, 2608), 'nbodykit.lab.BigFileCatalog', 'BigFileCatalog', (["('/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/LL-0.200/'\n % aa)"], {}), "(\n '/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/LL-0.200/'\n % aa)\n", (2502, 2608), False, 'from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog\n'), ((3669, 3715), 'numpy.linspace', 'numpy.linspace', (['(0.1)', 'aa', 'nsteps'], {'endpoint': '(True)'}), '(0.1, aa, nsteps, endpoint=True)\n', (3683, 3715), False, 'import numpy\n'), ((4143, 4190), 'nbodykit.lab.BigFileCatalog', 'BigFileCatalog', (["(dfolder + 'fastpm_%0.4f/1' % aa)"], {}), "(dfolder + 'fastpm_%0.4f/1' % aa)\n", (4157, 4190), False, 'from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog\n'), ((4556, 4619), 'getbiasparams.getbias', 'getbias', (['truth_pm', 'hmesh', '[linear, linearsq, shear]', 'fpos', 'grid'], {}), '(truth_pm, hmesh, [linear, linearsq, shear], fpos, grid)\n', (4563, 4619), False, 'from getbiasparams import getbias, eval_bfit\n'), ((4673, 4742), 'getbiasparams.eval_bfit', 'eval_bfit', (['hmesh', 'bmod', 'optfolder'], {'noise': 'noise', 'title': 'title', 'fsize': '(15)'}), '(hmesh, bmod, optfolder, noise=noise, title=title, fsize=15)\n', (4682, 4742), False, 'from getbiasparams import getbias, eval_bfit\n'), ((4754, 4839), 'scipy.interpolate.interp1d', 'interp1d', (['kerror', 'perror'], {'bounds_error': '(False)', 'fill_value': '(perror[0], perror[-1])'}), '(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])\n )\n', (4762, 4839), False, 'from scipy.interpolate import interp1d\n'), ((914, 932), 'yaml.load', 'yaml.load', (['ymlfile'], {}), '(ymlfile)\n', (923, 932), False, 'import sys, os, json, yaml\n'), ((3743, 3789), 'cosmo4d.lab.NBodyModel', 'NBodyModel', (['cosmo', 'truth_pm'], {'B': 'B', 'steps': 'stages'}), '(cosmo, truth_pm, B=B, steps=stages)\n', (3753, 3789), False, 'from cosmo4d.lab import UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh\n'), ((3812, 3855), 'cosmo4d.lab.ZAModel', 'ZAModel', (['cosmo', 'truth_pm'], {'B': 'B', 'steps': 'stages'}), '(cosmo, truth_pm, B=B, steps=stages)\n', (3819, 3855), False, 'from cosmo4d.lab import UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh\n'), ((6249, 6368), 'solve.solve', 'solve', (['N0', 'x0', 'rtol', 'run', 'Ns', 'prefix', 'mock_model', 'obj', 'data_p', 'truth_pm', 'optfolder'], {'saveit': '(20)', 'showit': '(5)', 'title': 'None'}), '(N0, x0, rtol, run, Ns, prefix, mock_model, obj, data_p, truth_pm,\n optfolder, saveit=20, showit=5, title=None)\n', (6254, 6368), False, 'from solve import solve\n'), ((2118, 2137), 'os.makedirs', 'os.makedirs', (['folder'], {}), '(folder)\n', (2129, 2137), False, 'import sys, os, json, yaml\n'), ((4199, 4248), 'nbodykit.lab.BigFileMesh', 'BigFileMesh', (["(dfolder + 'linear')", '"""LinearDensityK"""'], {}), "(dfolder + 'linear', 'LinearDensityK')\n", (4210, 4248), False, 'from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog\n'), ((5673, 5711), 'nbodykit.lab.BigFileMesh', 'BigFileMesh', (["cfg['init']['sinit']", '"""s"""'], {}), "(cfg['init']['sinit'], 's')\n", (5684, 5711), False, 'from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog\n'), ((3178, 3200), 'numpy.array', 'numpy.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (3189, 3200), False, 'import numpy\n')]
from re import L import sys from typing import List from tensorflow.python.ops.gen_array_ops import gather sys.path.append('.') import json import numpy as np import tensorflow as tf import tensorflow_probability as tfp from random import randint, randrange from environment.base.base import BaseEnvironment from environment.custom.resource_v3.reward import RewardFactory, ReducedNodeUsage from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up from environment.custom.resource_v3.node import Node as History from environment.custom.resource_v3.resource import Resource as Request class ResourceEnvironmentV3(BaseEnvironment): def __init__(self, name: str, opts: dict): super(ResourceEnvironmentV3, self).__init__(name) ########################################### ##### PROBLEM CONFIGS FROM JSON FILE ###### ########################################### self.gather_stats: bool = False self.generate_request_on_the_fly: bool = opts['generate_request_on_the_fly'] self.mask_nodes_in_mha: bool = opts['mask_nodes_in_mha'] self.seed_value: int = opts['seed_value'] self.normalization_factor: int = opts['normalization_factor'] self.decimal_precision: int = opts['decimal_precision'] self.batch_size: int = opts['batch_size'] self.num_features: int = opts['num_features'] self.num_profiles: int = opts['num_profiles'] self.profiles_sample_size: int = opts['profiles_sample_size'] assert self.num_profiles >= self.profiles_sample_size, 'Resource sample size should be less than total number of resources' self.EOS_CODE: int = opts['EOS_CODE'] self.EOS_BIN = np.full((1, self.num_features), self.EOS_CODE, dtype='float32') self.node_sample_size: int = opts['node_sample_size'] + 1 # + 1 because of the EOS bin self.req_min_val: int = opts['req_min_val'] self.req_max_val: int = opts['req_max_val'] self.node_min_val: int = opts['node_min_val'] self.node_max_val: int = opts['node_max_val'] ################################################ ##### MATERIALIZED VARIABLES FROM CONFIGS ###### ################################################ self.decoding_step = self.node_sample_size self.rewarder = RewardFactory( opts['reward'], self.EOS_BIN ) if isinstance(self.rewarder, ReducedNodeUsage): self.is_empty = np.zeros((self.batch_size, self.node_sample_size + self.profiles_sample_size, 1), dtype='float32') # First position is EOS self.is_empty[:, 0, 0] = self.EOS_BIN[0][0] else: self.is_empty = None # Generate req profiles self.total_profiles = self.generate_dataset() # Problem batch self.batch, self.history = self.generate_batch() # Default masks # Will be updated during at each step() call self.bin_net_mask,\ self.resource_net_mask,\ self.mha_used_mask = self.generate_masks() def reset(self): # Reset decoding step self.decoding_step = self.node_sample_size if isinstance(self.rewarder, ReducedNodeUsage): self.is_empty = np.zeros( (self.batch_size, self.node_sample_size + self.profiles_sample_size, 1), dtype='float32') # First position is EOS self.is_empty[:, 0, 0] = self.EOS_BIN[0][0] self.batch, self.history = self.generate_batch() self.bin_net_mask,\ self.resource_net_mask,\ self.mha_used_mask = self.generate_masks() return self.state() def state(self): decoder_input = self.batch[:, self.decoding_step] decoder_input = np.expand_dims(decoder_input, axis=1) batch = self.batch.copy() if isinstance(self.rewarder, ReducedNodeUsage): batch = self.add_is_empty_dim(batch, self.is_empty) return batch,\ decoder_input,\ self.bin_net_mask.copy(),\ self.mha_used_mask.copy() def step(self, bin_ids: List[int], feasible_bin_mask): # Default is not done isDone = False req_ids = tf.fill(self.batch_size, self.decoding_step) batch_size = self.batch.shape[0] num_elems = self.batch.shape[1] batch_indices = tf.range(batch_size, dtype='int32') # Copy the state before updating the values copy_batch = self.batch.copy() # Grab the selected nodes and resources nodes: np.ndarray = self.batch[batch_indices, bin_ids] reqs: np.ndarray = self.batch[batch_indices, req_ids] # Compute remaining resources after placing reqs at nodes remaining_resources = compute_remaining_resources( nodes, reqs, self.decimal_precision) # Update the batch state self.batch[batch_indices, bin_ids] = remaining_resources # Keep EOS node intact self.batch[batch_indices, 0] = self.EOS_BIN # Item taken mask it self.resource_net_mask[batch_indices, req_ids] = 1 # Update node masks dominant_resource = tf.reduce_min(remaining_resources, axis=-1) is_full = tf.cast(tf.equal(dominant_resource, 0), dtype='float32') # Mask full nodes/bins self.bin_net_mask[batch_indices, bin_ids] = is_full self.bin_net_mask[:, 0] = 0 # EOS is always available # Update the MHA masks self.mha_used_mask[batch_indices, :, :, req_ids] = 1 if self.mask_nodes_in_mha: self.mha_used_mask[batch_indices, :, :, bin_ids] = tf.reshape( is_full, (self.batch_size, 1, 1) ) # EOS is always available self.mha_used_mask[batch_indices, :, :, 0] = 0 if np.all(self.resource_net_mask == 1): isDone = True # Compute rewards rewards = self.rewarder.compute_reward( self.batch, # Already updated values of nodes, i.e., after insertion copy_batch, # Original values of nodes, i.e., before insertion self.node_sample_size, nodes, reqs, feasible_bin_mask, bin_ids, self.is_empty ) rewards = tf.reshape(rewards, (batch_size, 1)) #else: # rewards = tf.zeros((batch_size, 1), dtype='float32') info = { 'bin_net_mask': self.bin_net_mask.copy(), 'resource_net_mask': self.resource_net_mask.copy(), 'mha_used_mask': self.mha_used_mask.copy(), # 'num_resource_to_place': self.num_profiles } if self.gather_stats: self.place_reqs(bin_ids, req_ids, reqs) # Pick next decoder_input self.decoding_step += 1 if self.decoding_step < self.node_sample_size + self.profiles_sample_size: decoder_input = self.batch[:, self.decoding_step] decoder_input = np.expand_dims(decoder_input, axis=1) else: # We are done. No need to generate decoder input decoder_input = np.array([None]) batch = self.batch.copy() if isinstance(self.rewarder, ReducedNodeUsage): batch = self.add_is_empty_dim(batch, self.is_empty) return batch, decoder_input, rewards, isDone, info def generate_dataset(self): profiles = tf.random.uniform( (self.num_profiles, self.num_features), minval=self.req_min_val, maxval=self.req_max_val, dtype='int32', seed=self.seed_value ) / self.normalization_factor return tf.cast(profiles, dtype="float32") def generate_batch(self): history = [] elem_size = self.node_sample_size + self.profiles_sample_size batch: np.ndarray = np.zeros( (self.batch_size, elem_size, self.num_features), dtype="float32" ) # Generate nodes states nodes = tf.random.uniform( (self.batch_size, self.node_sample_size, self.num_features), minval=self.node_min_val, maxval=self.node_max_val, dtype="int32", seed=self.seed_value ) / self.normalization_factor batch[:, :self.node_sample_size, :] = tf.cast(nodes, dtype="float32") # Replace first position with EOS node batch[:, 0, :] = self.EOS_BIN if self.generate_request_on_the_fly: # Generate reqs reqs = tf.random.uniform( (self.batch_size, self.profiles_sample_size, self.num_features), minval=self.req_min_val, maxval=self.req_max_val, dtype="int32", seed=self.seed_value ) / self.normalization_factor batch[:, self.node_sample_size:, :] = tf.cast(reqs, dtype="float32") else: # Sample profiles and add them to batch instances for index in range(self.batch_size): shuffled_profiles = tf.random.shuffle(self.total_profiles) batch[index, self.node_sample_size:, :] = shuffled_profiles[:self.profiles_sample_size] # Create node instances that will gather stats if self.gather_stats: history = self.build_history(batch) return batch, history def generate_masks(self): elem_size = self.node_sample_size + self.profiles_sample_size # Represents positions marked as "0" where resource Ptr Net can point profiles_net_mask = np.zeros((self.batch_size, elem_size), dtype='float32') # Represents positions marked as "0" where bin Ptr Net can point nodes_net_mask = np.ones( (self.batch_size, elem_size), dtype='float32') # Default mask for resources #for batch_id in range(self.batch_size): # for i in range(self.node_sample_size): # profiles_net_mask[batch_id, i] = 1 profiles_net_mask[:, :self.node_sample_size] = 1 # Default mask for bin nodes_net_mask = nodes_net_mask - profiles_net_mask # For Transformer's multi head attention mha_used_mask = np.zeros_like(profiles_net_mask) mha_used_mask = mha_used_mask[:, np.newaxis, np.newaxis, :] return nodes_net_mask, profiles_net_mask, mha_used_mask def sample_action(self): batch_indices = tf.range(self.batch.shape[0], dtype='int32') resource_ids = tf.fill(self.batch_size, self.decoding_step) # Decode the resources decoded_resources = self.batch[batch_indices, resource_ids] decoded_resources = np.expand_dims(decoded_resources, axis=1) bins_mask = self.build_feasible_mask(self.batch, decoded_resources, self.bin_net_mask ) bins_probs = np.random.uniform(size=self.bin_net_mask.shape) bins_probs = tf.nn.softmax(bins_probs - (bins_mask*10e6), axis=-1) dist_bin = tfp.distributions.Categorical(probs = bins_probs) bin_ids = dist_bin.sample() return bin_ids, bins_mask def add_stats_to_agent_config(self, agent_config: dict): agent_config['num_resources'] = self.profiles_sample_size agent_config['num_bins'] = self.node_sample_size agent_config['tensor_size'] = self.node_sample_size + self.profiles_sample_size agent_config['batch_size'] = self.batch_size # Init the object agent_config["encoder_embedding"] = {} if isinstance(self.rewarder, ReducedNodeUsage): agent_config["encoder_embedding"]["common"] = False agent_config["encoder_embedding"]["num_bin_features"] = 4 agent_config["encoder_embedding"]["num_resource_features"] = 3 else: agent_config["encoder_embedding"]["common"] = True # If using the same embedding layer these vars are unused agent_config["encoder_embedding"]["num_bin_features"] = None agent_config["encoder_embedding"]["num_resource_features"] = None return agent_config def set_testing_mode(self, batch_size, node_sample_size, profiles_sample_size, node_min_val, node_max_val ) -> None: self.gather_stats = True self.batch_size = batch_size self.node_min_val = node_min_val self.node_max_val = node_max_val self.node_sample_size = node_sample_size + 1 # +1 For EOS node self.profiles_sample_size = profiles_sample_size def build_history(self, batch): history = [] for batch_id, instance in enumerate(batch): nodes = [] for id, bin in enumerate(instance[:self.node_sample_size]): nodes.append( History( batch_id, id, bin ) ) history.append(nodes) return history def place_reqs(self, bin_ids: List[int], req_ids: List[int], reqs: np.ndarray): for batch_index, bin_id in enumerate(bin_ids): node: History = self.history[batch_index][bin_id] req_id = req_ids[batch_index] req = Request( batch_index, req_id, reqs[batch_index] ) node.insert_req(req) def build_feasible_mask(self, state, resources, bin_net_mask): if isinstance(self.rewarder, ReducedNodeUsage): state = self.remove_is_empty_dim(state) batch = state.shape[0] num_elems = state.shape[1] # Add batch dim to resources # resource_demands = np.reshape(resources, (batch, 1, self.num_features)) # Tile to match the num elems resource_demands = tf.tile(resources, [1, num_elems, 1]) # Compute remaining resources after placement # remaining_resources = state - resource_demands remaining_resources = compute_remaining_resources( state, resource_demands, self.decimal_precision ) dominant_resource = tf.reduce_min(remaining_resources, axis=-1) # Ensure that it's greater that 0 # i.e., that node is not overloaded after_place = tf.less(dominant_resource, 0) after_place = tf.cast(after_place, dtype='float32') # Can't point to resources positions feasible_mask = tf.maximum(after_place, bin_net_mask) feasible_mask = feasible_mask.numpy() assert np.all(dominant_resource*(1-feasible_mask) >= 0), 'Masking Scheme Is Wrong!' # EOS is always available for pointing feasible_mask[:, 0] = 0 # Return as is. At this moment node can be overloaded return feasible_mask def add_is_empty_dim(self, batch, is_empty): batch = np.concatenate([batch, is_empty], axis=-1) return round_half_up(batch, 2) def remove_is_empty_dim(self, batch): batch = batch[:, :, :self.num_features] return round_half_up(batch, 2) def print_history(self, print_details = False) -> None: # pragma: no cover for batch_id in range(self.batch_size): print('_________________________________') node: History for node in self.history[batch_id]: node.print(print_details) print('_________________________________') return def store_dataset(self, location) -> None: np.savetxt(location, self.total_profiles) def load_dataset(self, location): self.total_profiles = np.loadtxt(location) if __name__ == "__main__": # pragma: no cover env_name = 'ResourceEnvironmentV3' with open(f"configs/ResourceV3.json") as json_file: params = json.load(json_file) env_configs = params['env_config'] env_configs['batch_size'] = 2 env = ResourceEnvironmentV3(env_name, env_configs) state, dec, bin_net_mask, mha_mask = env.state() # env.print_history() feasible_net_mask = env.build_feasible_mask(state, dec, bin_net_mask) bin_ids = [0,1] resource_ids = None next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) env.reset() next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) a = 1
[ "tensorflow.maximum", "tensorflow.reshape", "numpy.ones", "sys.path.append", "numpy.full", "tensorflow.nn.softmax", "numpy.zeros_like", "tensorflow.random.uniform", "environment.custom.resource_v3.resource.Resource", "tensorflow_probability.distributions.Categorical", "environment.custom.resource_v3.misc.utils.compute_remaining_resources", "tensorflow.less", "numpy.savetxt", "tensorflow.cast", "numpy.loadtxt", "tensorflow.reduce_min", "tensorflow.equal", "environment.custom.resource_v3.node.Node", "tensorflow.range", "tensorflow.tile", "numpy.all", "numpy.concatenate", "tensorflow.random.shuffle", "numpy.random.uniform", "environment.custom.resource_v3.misc.utils.round_half_up", "json.load", "environment.custom.resource_v3.reward.RewardFactory", "numpy.expand_dims", "numpy.zeros", "tensorflow.fill", "numpy.array" ]
[((109, 129), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (124, 129), False, 'import sys\n'), ((1760, 1823), 'numpy.full', 'np.full', (['(1, self.num_features)', 'self.EOS_CODE'], {'dtype': '"""float32"""'}), "((1, self.num_features), self.EOS_CODE, dtype='float32')\n", (1767, 1823), True, 'import numpy as np\n'), ((2381, 2424), 'environment.custom.resource_v3.reward.RewardFactory', 'RewardFactory', (["opts['reward']", 'self.EOS_BIN'], {}), "(opts['reward'], self.EOS_BIN)\n", (2394, 2424), False, 'from environment.custom.resource_v3.reward import RewardFactory, ReducedNodeUsage\n'), ((3857, 3894), 'numpy.expand_dims', 'np.expand_dims', (['decoder_input'], {'axis': '(1)'}), '(decoder_input, axis=1)\n', (3871, 3894), True, 'import numpy as np\n'), ((4312, 4356), 'tensorflow.fill', 'tf.fill', (['self.batch_size', 'self.decoding_step'], {}), '(self.batch_size, self.decoding_step)\n', (4319, 4356), True, 'import tensorflow as tf\n'), ((4463, 4498), 'tensorflow.range', 'tf.range', (['batch_size'], {'dtype': '"""int32"""'}), "(batch_size, dtype='int32')\n", (4471, 4498), True, 'import tensorflow as tf\n'), ((4870, 4934), 'environment.custom.resource_v3.misc.utils.compute_remaining_resources', 'compute_remaining_resources', (['nodes', 'reqs', 'self.decimal_precision'], {}), '(nodes, reqs, self.decimal_precision)\n', (4897, 4934), False, 'from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up\n'), ((5296, 5339), 'tensorflow.reduce_min', 'tf.reduce_min', (['remaining_resources'], {'axis': '(-1)'}), '(remaining_resources, axis=-1)\n', (5309, 5339), True, 'import tensorflow as tf\n'), ((5944, 5979), 'numpy.all', 'np.all', (['(self.resource_net_mask == 1)'], {}), '(self.resource_net_mask == 1)\n', (5950, 5979), True, 'import numpy as np\n'), ((6417, 6453), 'tensorflow.reshape', 'tf.reshape', (['rewards', '(batch_size, 1)'], {}), '(rewards, (batch_size, 1))\n', (6427, 6453), True, 'import tensorflow as tf\n'), ((7830, 7864), 'tensorflow.cast', 'tf.cast', (['profiles'], {'dtype': '"""float32"""'}), "(profiles, dtype='float32')\n", (7837, 7864), True, 'import tensorflow as tf\n'), ((8017, 8091), 'numpy.zeros', 'np.zeros', (['(self.batch_size, elem_size, self.num_features)'], {'dtype': '"""float32"""'}), "((self.batch_size, elem_size, self.num_features), dtype='float32')\n", (8025, 8091), True, 'import numpy as np\n'), ((8488, 8519), 'tensorflow.cast', 'tf.cast', (['nodes'], {'dtype': '"""float32"""'}), "(nodes, dtype='float32')\n", (8495, 8519), True, 'import tensorflow as tf\n'), ((9787, 9842), 'numpy.zeros', 'np.zeros', (['(self.batch_size, elem_size)'], {'dtype': '"""float32"""'}), "((self.batch_size, elem_size), dtype='float32')\n", (9795, 9842), True, 'import numpy as np\n'), ((9941, 9995), 'numpy.ones', 'np.ones', (['(self.batch_size, elem_size)'], {'dtype': '"""float32"""'}), "((self.batch_size, elem_size), dtype='float32')\n", (9948, 9995), True, 'import numpy as np\n'), ((10432, 10464), 'numpy.zeros_like', 'np.zeros_like', (['profiles_net_mask'], {}), '(profiles_net_mask)\n', (10445, 10464), True, 'import numpy as np\n'), ((10657, 10701), 'tensorflow.range', 'tf.range', (['self.batch.shape[0]'], {'dtype': '"""int32"""'}), "(self.batch.shape[0], dtype='int32')\n", (10665, 10701), True, 'import tensorflow as tf\n'), ((10726, 10770), 'tensorflow.fill', 'tf.fill', (['self.batch_size', 'self.decoding_step'], {}), '(self.batch_size, self.decoding_step)\n', (10733, 10770), True, 'import tensorflow as tf\n'), ((10910, 10951), 'numpy.expand_dims', 'np.expand_dims', (['decoded_resources'], {'axis': '(1)'}), '(decoded_resources, axis=1)\n', (10924, 10951), True, 'import numpy as np\n'), ((11206, 11253), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'self.bin_net_mask.shape'}), '(size=self.bin_net_mask.shape)\n', (11223, 11253), True, 'import numpy as np\n'), ((11275, 11334), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['(bins_probs - bins_mask * 10000000.0)'], {'axis': '(-1)'}), '(bins_probs - bins_mask * 10000000.0, axis=-1)\n', (11288, 11334), True, 'import tensorflow as tf\n'), ((11349, 11396), 'tensorflow_probability.distributions.Categorical', 'tfp.distributions.Categorical', ([], {'probs': 'bins_probs'}), '(probs=bins_probs)\n', (11378, 11396), True, 'import tensorflow_probability as tfp\n'), ((14290, 14327), 'tensorflow.tile', 'tf.tile', (['resources', '[1, num_elems, 1]'], {}), '(resources, [1, num_elems, 1])\n', (14297, 14327), True, 'import tensorflow as tf\n'), ((14470, 14546), 'environment.custom.resource_v3.misc.utils.compute_remaining_resources', 'compute_remaining_resources', (['state', 'resource_demands', 'self.decimal_precision'], {}), '(state, resource_demands, self.decimal_precision)\n', (14497, 14546), False, 'from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up\n'), ((14602, 14645), 'tensorflow.reduce_min', 'tf.reduce_min', (['remaining_resources'], {'axis': '(-1)'}), '(remaining_resources, axis=-1)\n', (14615, 14645), True, 'import tensorflow as tf\n'), ((14763, 14792), 'tensorflow.less', 'tf.less', (['dominant_resource', '(0)'], {}), '(dominant_resource, 0)\n', (14770, 14792), True, 'import tensorflow as tf\n'), ((14815, 14852), 'tensorflow.cast', 'tf.cast', (['after_place'], {'dtype': '"""float32"""'}), "(after_place, dtype='float32')\n", (14822, 14852), True, 'import tensorflow as tf\n'), ((14923, 14960), 'tensorflow.maximum', 'tf.maximum', (['after_place', 'bin_net_mask'], {}), '(after_place, bin_net_mask)\n', (14933, 14960), True, 'import tensorflow as tf\n'), ((15031, 15083), 'numpy.all', 'np.all', (['(dominant_resource * (1 - feasible_mask) >= 0)'], {}), '(dominant_resource * (1 - feasible_mask) >= 0)\n', (15037, 15083), True, 'import numpy as np\n'), ((15346, 15388), 'numpy.concatenate', 'np.concatenate', (['[batch, is_empty]'], {'axis': '(-1)'}), '([batch, is_empty], axis=-1)\n', (15360, 15388), True, 'import numpy as np\n'), ((15404, 15427), 'environment.custom.resource_v3.misc.utils.round_half_up', 'round_half_up', (['batch', '(2)'], {}), '(batch, 2)\n', (15417, 15427), False, 'from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up\n'), ((15538, 15561), 'environment.custom.resource_v3.misc.utils.round_half_up', 'round_half_up', (['batch', '(2)'], {}), '(batch, 2)\n', (15551, 15561), False, 'from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up\n'), ((15989, 16030), 'numpy.savetxt', 'np.savetxt', (['location', 'self.total_profiles'], {}), '(location, self.total_profiles)\n', (15999, 16030), True, 'import numpy as np\n'), ((16108, 16128), 'numpy.loadtxt', 'np.loadtxt', (['location'], {}), '(location)\n', (16118, 16128), True, 'import numpy as np\n'), ((16294, 16314), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (16303, 16314), False, 'import json\n'), ((2544, 2647), 'numpy.zeros', 'np.zeros', (['(self.batch_size, self.node_sample_size + self.profiles_sample_size, 1)'], {'dtype': '"""float32"""'}), "((self.batch_size, self.node_sample_size + self.\n profiles_sample_size, 1), dtype='float32')\n", (2552, 2647), True, 'import numpy as np\n'), ((3337, 3440), 'numpy.zeros', 'np.zeros', (['(self.batch_size, self.node_sample_size + self.profiles_sample_size, 1)'], {'dtype': '"""float32"""'}), "((self.batch_size, self.node_sample_size + self.\n profiles_sample_size, 1), dtype='float32')\n", (3345, 3440), True, 'import numpy as np\n'), ((5366, 5396), 'tensorflow.equal', 'tf.equal', (['dominant_resource', '(0)'], {}), '(dominant_resource, 0)\n', (5374, 5396), True, 'import tensorflow as tf\n'), ((5759, 5803), 'tensorflow.reshape', 'tf.reshape', (['is_full', '(self.batch_size, 1, 1)'], {}), '(is_full, (self.batch_size, 1, 1))\n', (5769, 5803), True, 'import tensorflow as tf\n'), ((7137, 7174), 'numpy.expand_dims', 'np.expand_dims', (['decoder_input'], {'axis': '(1)'}), '(decoder_input, axis=1)\n', (7151, 7174), True, 'import numpy as np\n'), ((7278, 7294), 'numpy.array', 'np.array', (['[None]'], {}), '([None])\n', (7286, 7294), True, 'import numpy as np\n'), ((7571, 7720), 'tensorflow.random.uniform', 'tf.random.uniform', (['(self.num_profiles, self.num_features)'], {'minval': 'self.req_min_val', 'maxval': 'self.req_max_val', 'dtype': '"""int32"""', 'seed': 'self.seed_value'}), "((self.num_profiles, self.num_features), minval=self.\n req_min_val, maxval=self.req_max_val, dtype='int32', seed=self.seed_value)\n", (7588, 7720), True, 'import tensorflow as tf\n'), ((8175, 8351), 'tensorflow.random.uniform', 'tf.random.uniform', (['(self.batch_size, self.node_sample_size, self.num_features)'], {'minval': 'self.node_min_val', 'maxval': 'self.node_max_val', 'dtype': '"""int32"""', 'seed': 'self.seed_value'}), "((self.batch_size, self.node_sample_size, self.\n num_features), minval=self.node_min_val, maxval=self.node_max_val,\n dtype='int32', seed=self.seed_value)\n", (8192, 8351), True, 'import tensorflow as tf\n'), ((9062, 9092), 'tensorflow.cast', 'tf.cast', (['reqs'], {'dtype': '"""float32"""'}), "(reqs, dtype='float32')\n", (9069, 9092), True, 'import tensorflow as tf\n'), ((13709, 13756), 'environment.custom.resource_v3.resource.Resource', 'Request', (['batch_index', 'req_id', 'reqs[batch_index]'], {}), '(batch_index, req_id, reqs[batch_index])\n', (13716, 13756), True, 'from environment.custom.resource_v3.resource import Resource as Request\n'), ((8707, 8886), 'tensorflow.random.uniform', 'tf.random.uniform', (['(self.batch_size, self.profiles_sample_size, self.num_features)'], {'minval': 'self.req_min_val', 'maxval': 'self.req_max_val', 'dtype': '"""int32"""', 'seed': 'self.seed_value'}), "((self.batch_size, self.profiles_sample_size, self.\n num_features), minval=self.req_min_val, maxval=self.req_max_val, dtype=\n 'int32', seed=self.seed_value)\n", (8724, 8886), True, 'import tensorflow as tf\n'), ((9254, 9292), 'tensorflow.random.shuffle', 'tf.random.shuffle', (['self.total_profiles'], {}), '(self.total_profiles)\n', (9271, 9292), True, 'import tensorflow as tf\n'), ((13215, 13241), 'environment.custom.resource_v3.node.Node', 'History', (['batch_id', 'id', 'bin'], {}), '(batch_id, id, bin)\n', (13222, 13241), True, 'from environment.custom.resource_v3.node import Node as History\n')]
import os import numpy as np import matplotlib.pyplot as plt try: import python_scripts.nalu.io as nalu except ImportError: raise ImportError('Download https://github.com/lawsonro3/python_scripts/blob/master/python_scripts/nalu/nalu_functions.py') if __name__ == '__main__': root_dir = '/Users/mlawson/GoogleDrive/Work/NREL/Projects/HFM-ECP/nrel_5mw/results/cori_data/' if os.path.isdir(root_dir) is False: raise Exception('root_dir does not exist') #################################### # Load gC data #################################### file_gC_13 = root_dir+'gCoarse.13/nrel_5mw_gCoarse.log' th_gC_13,t_gC_13 = nalu.read_log(file_gC_13) t_gC_13_avg = np.mean(t_gC_13[375:425,:],axis=0) file_gC_26 = root_dir+'gCoarse.26/nrel_5mw_gCoarse.log' th_gC_26,t_gC_26 = nalu.read_log(file_gC_26) t_gC_26_avg = np.mean(t_gC_26[300:350,:],axis=0) file_gC_52 = root_dir+'gCoarse.52/nrel_5mw_gCoarse.log' th_gC_52,t_gC_52 = nalu.read_log(file_gC_52) t_gC_52_avg = np.mean(t_gC_52[500:550,:],axis=0) file_gC_104 = root_dir+'gCoarse.104/nrel_5mw_gCoarse.log' th_gC_104,t_gC_104 = nalu.read_log(file_gC_104) t_gC_104_avg = np.mean(t_gC_104[200:250,:],axis=0) dofs_gC = 24846302 # num_nodes_gC nodes_gC = np.array([[13],[26],[52],[104]]) cores_gC = nodes_gC*32 dof_per_core_gC = dofs_gC/cores_gC t_avg_gC = np.array([t_gC_13_avg,t_gC_26_avg,t_gC_52_avg,t_gC_104_avg]) t_avg_gC = np.append(nodes_gC,t_avg_gC,axis=1) t_avg_gC = np.append(cores_gC,t_avg_gC,axis=1) t_avg_gC = np.append(dof_per_core_gC,t_avg_gC,axis=1) t_avg_headers_gC = ['dof_per_core_gC','cores_gC','nodes_gC'] t_avg_headers_gC = t_avg_headers_gC + th_gC_13 linear_time_gC = t_avg_gC[0,-1]*(cores_gC[0]/cores_gC) # linear scaling ####################################` # Load g1 data #################################### file_g1_512 = root_dir+'g1.512/nrel_5mw_g1.log' th_g1_512,t_g1_512 = nalu.read_log(file_g1_512) t_g1_512_avg = np.mean(t_g1_512[-50:,:],axis=0) file_g1_1024 = root_dir+'g1.1024/nrel_5mw_g1.log' th_g1_1024,t_g1_1024 = nalu.read_log(file_g1_1024) t_g1_1024_avg = np.mean(t_g1_1024[-50:,:],axis=0) # file_g1_1536 = root_dir+'g1oarse.52/nrel_5mw_g1oarse.log' # th_g1_1536,t_g1_1536 = nalu.read_log(file_g1_1536) # t_g1_1536_avg = np.mean(t_g1_1536[500:550,:],axis=0) dofs_g1 = 761112205 # num_nodes_g1 nodes_g1 = np.array([[512],[1024]])#,[1536]]) cores_g1 = nodes_g1*32 dof_per_core_g1 = dofs_g1/cores_g1 t_avg_g1 = np.array([t_g1_512_avg,t_g1_1024_avg])#,t_g1_1536_avg]) t_avg_g1 = np.append(nodes_g1,t_avg_g1,axis=1) t_avg_g1 = np.append(cores_g1,t_avg_g1,axis=1) t_avg_g1 = np.append(dof_per_core_g1,t_avg_g1,axis=1) t_avg_headers_g1 = ['dof_per_core_g1','cores_g1','nodes_g1'] t_avg_headers_g1 = t_avg_headers_g1 + th_g1_512 linear_time_g1 = t_avg_g1[0,-1]*(cores_g1[0]/cores_g1) # linear scaling #################################### ## Plots #################################### fig1 = '24.8 M Nodes (gCoarse) Timing' fig2 = '761.1 M Nodes (g1) Timing' fig3 = 'Nalu Scaling on Cori - Cores' fig4 = 'Nalu Scaling on Cori - DOFs per Core' #################################### # gC plotting #################################### caption_text_gC = '* NREL 5 MW on Cori Haswell noodes\n* 32 MPI ranks/node 1 OMP thread\n* Muelu solver stack with the v27.xml settings\n * 24.8 M DOF' plt.figure(fig1,figsize=[10,10]) plt.title(fig1) for i in np.arange(1,5,1): plt.plot(t_gC_13[:,i],label=th_gC_13[i]+' 416 cores_gC') plt.plot(t_gC_26[:,i],label=th_gC_26[i]+' 832 cores_gC') plt.plot(t_gC_52[:,i],label=th_gC_52[i]+' 1664 cores_gC') plt.plot(t_gC_104[:,i],label=th_gC_104[i]+'3328 cores_gC') plt.legend() plt.xlabel('Timestep') plt.ylabel('Time (s)') plt.text(0, 100,caption_text_gC, fontsize=12) label = '24.8 M DOF, 32 MPI/node, 1 OMP thread, muelu v27.xml' plt.figure(fig3,figsize=[10,10]) plt.title(fig3) plt.loglog(t_avg_gC[:,1],t_avg_gC[:,-1],'ks-',label=label) plt.loglog(cores_gC,linear_time_gC,'k--',label='Linear') plt.xlabel('Cores') plt.ylabel('Mean Time per Timestep (s)') plt.legend() plt.figure(fig4,figsize=[10,10]) plt.title(fig4) plt.loglog(t_avg_gC[:,0],t_avg_gC[:,-1],'ks-',label=label) plt.loglog(dof_per_core_gC,linear_time_gC,'k--',label='linear') plt.xlabel('DOFs per Core') plt.ylabel('Mean Time per Timestep (s)') plt.legend() #################################### # g1 plotting #################################### caption_text_g1 = '* NREL 5 MW on Cori Haswell noodes\n* 32 MPI ranks/node 1 OMP thread\n* Muelu solver stack with the v27.xml settings\n 761.1 M DOF' color = 'tab:red' plt.figure(fig2,figsize=[10,10]) plt.title(fig2) for i in np.arange(1,5,1): plt.plot(t_g1_512[:,i],label=th_g1_512[i]+' 16,384 cores_g1') plt.plot(t_g1_1024[:,i],label=th_g1_1024[i]+' 32,768 cores_g1') #plt.plot(t_g1_1536[:,i],label=th_g1_1536[i]+'49,152 cores_g1') plt.legend() plt.xlabel('Timestep') plt.ylabel('Time (s)') plt.text(0, 100,caption_text_g1, fontsize=12) label = '761.1 M DOFs, 32 MPI/node, 1 OMP thread, muelu v27.xml' plt.figure(fig3,figsize=[10,10]) plt.loglog(t_avg_g1[:,1],t_avg_g1[:,-1],'s-',label=label,color=color) plt.loglog(cores_g1,linear_time_g1,'--',label='Linear',color=color) plt.xlabel('Cores') plt.ylabel('Mean Time per Timestep (s)') plt.legend() plt.figure(fig4,figsize=[10,10]) plt.loglog(t_avg_g1[:,0],t_avg_g1[:,-1],'s-',label=label,color=color) plt.loglog(dof_per_core_g1,linear_time_g1,'--',label='linear',color=color) plt.xlabel('DOFs per Core') plt.ylabel('Mean Time per Timestep (s)') plt.legend() #################################### # Save plots #################################### plt.figure(fig1); plt.savefig(root_dir+fig1+'.png',dpi=400) plt.figure(fig2); plt.savefig(root_dir+fig2+'.png',dpi=400) plt.figure(fig3); plt.savefig(root_dir+fig3+'.png',dpi=400) plt.figure(fig4); plt.savefig(root_dir+fig4+'.png',dpi=400)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.loglog", "matplotlib.pyplot.plot", "os.path.isdir", "python_scripts.nalu.io.read_log", "matplotlib.pyplot.legend", "matplotlib.pyplot.text", "numpy.append", "matplotlib.pyplot.figure", "numpy.mean", "numpy.array", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((662, 687), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_gC_13'], {}), '(file_gC_13)\n', (675, 687), True, 'import python_scripts.nalu.io as nalu\n'), ((706, 742), 'numpy.mean', 'np.mean', (['t_gC_13[375:425, :]'], {'axis': '(0)'}), '(t_gC_13[375:425, :], axis=0)\n', (713, 742), True, 'import numpy as np\n'), ((825, 850), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_gC_26'], {}), '(file_gC_26)\n', (838, 850), True, 'import python_scripts.nalu.io as nalu\n'), ((869, 905), 'numpy.mean', 'np.mean', (['t_gC_26[300:350, :]'], {'axis': '(0)'}), '(t_gC_26[300:350, :], axis=0)\n', (876, 905), True, 'import numpy as np\n'), ((988, 1013), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_gC_52'], {}), '(file_gC_52)\n', (1001, 1013), True, 'import python_scripts.nalu.io as nalu\n'), ((1032, 1068), 'numpy.mean', 'np.mean', (['t_gC_52[500:550, :]'], {'axis': '(0)'}), '(t_gC_52[500:550, :], axis=0)\n', (1039, 1068), True, 'import numpy as np\n'), ((1155, 1181), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_gC_104'], {}), '(file_gC_104)\n', (1168, 1181), True, 'import python_scripts.nalu.io as nalu\n'), ((1201, 1238), 'numpy.mean', 'np.mean', (['t_gC_104[200:250, :]'], {'axis': '(0)'}), '(t_gC_104[200:250, :], axis=0)\n', (1208, 1238), True, 'import numpy as np\n'), ((1291, 1326), 'numpy.array', 'np.array', (['[[13], [26], [52], [104]]'], {}), '([[13], [26], [52], [104]])\n', (1299, 1326), True, 'import numpy as np\n'), ((1406, 1469), 'numpy.array', 'np.array', (['[t_gC_13_avg, t_gC_26_avg, t_gC_52_avg, t_gC_104_avg]'], {}), '([t_gC_13_avg, t_gC_26_avg, t_gC_52_avg, t_gC_104_avg])\n', (1414, 1469), True, 'import numpy as np\n'), ((1482, 1519), 'numpy.append', 'np.append', (['nodes_gC', 't_avg_gC'], {'axis': '(1)'}), '(nodes_gC, t_avg_gC, axis=1)\n', (1491, 1519), True, 'import numpy as np\n'), ((1533, 1570), 'numpy.append', 'np.append', (['cores_gC', 't_avg_gC'], {'axis': '(1)'}), '(cores_gC, t_avg_gC, axis=1)\n', (1542, 1570), True, 'import numpy as np\n'), ((1584, 1628), 'numpy.append', 'np.append', (['dof_per_core_gC', 't_avg_gC'], {'axis': '(1)'}), '(dof_per_core_gC, t_avg_gC, axis=1)\n', (1593, 1628), True, 'import numpy as np\n'), ((2000, 2026), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_g1_512'], {}), '(file_g1_512)\n', (2013, 2026), True, 'import python_scripts.nalu.io as nalu\n'), ((2046, 2080), 'numpy.mean', 'np.mean', (['t_g1_512[-50:, :]'], {'axis': '(0)'}), '(t_g1_512[-50:, :], axis=0)\n', (2053, 2080), True, 'import numpy as np\n'), ((2161, 2188), 'python_scripts.nalu.io.read_log', 'nalu.read_log', (['file_g1_1024'], {}), '(file_g1_1024)\n', (2174, 2188), True, 'import python_scripts.nalu.io as nalu\n'), ((2209, 2244), 'numpy.mean', 'np.mean', (['t_g1_1024[-50:, :]'], {'axis': '(0)'}), '(t_g1_1024[-50:, :], axis=0)\n', (2216, 2244), True, 'import numpy as np\n'), ((2480, 2505), 'numpy.array', 'np.array', (['[[512], [1024]]'], {}), '([[512], [1024]])\n', (2488, 2505), True, 'import numpy as np\n'), ((2597, 2636), 'numpy.array', 'np.array', (['[t_g1_512_avg, t_g1_1024_avg]'], {}), '([t_g1_512_avg, t_g1_1024_avg])\n', (2605, 2636), True, 'import numpy as np\n'), ((2668, 2705), 'numpy.append', 'np.append', (['nodes_g1', 't_avg_g1'], {'axis': '(1)'}), '(nodes_g1, t_avg_g1, axis=1)\n', (2677, 2705), True, 'import numpy as np\n'), ((2719, 2756), 'numpy.append', 'np.append', (['cores_g1', 't_avg_g1'], {'axis': '(1)'}), '(cores_g1, t_avg_g1, axis=1)\n', (2728, 2756), True, 'import numpy as np\n'), ((2770, 2814), 'numpy.append', 'np.append', (['dof_per_core_g1', 't_avg_g1'], {'axis': '(1)'}), '(dof_per_core_g1, t_avg_g1, axis=1)\n', (2779, 2814), True, 'import numpy as np\n'), ((3539, 3573), 'matplotlib.pyplot.figure', 'plt.figure', (['fig1'], {'figsize': '[10, 10]'}), '(fig1, figsize=[10, 10])\n', (3549, 3573), True, 'import matplotlib.pyplot as plt\n'), ((3576, 3591), 'matplotlib.pyplot.title', 'plt.title', (['fig1'], {}), '(fig1)\n', (3585, 3591), True, 'import matplotlib.pyplot as plt\n'), ((3605, 3623), 'numpy.arange', 'np.arange', (['(1)', '(5)', '(1)'], {}), '(1, 5, 1)\n', (3614, 3623), True, 'import numpy as np\n'), ((3890, 3902), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3900, 3902), True, 'import matplotlib.pyplot as plt\n'), ((3907, 3929), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Timestep"""'], {}), "('Timestep')\n", (3917, 3929), True, 'import matplotlib.pyplot as plt\n'), ((3934, 3956), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (3944, 3956), True, 'import matplotlib.pyplot as plt\n'), ((3961, 4007), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(100)', 'caption_text_gC'], {'fontsize': '(12)'}), '(0, 100, caption_text_gC, fontsize=12)\n', (3969, 4007), True, 'import matplotlib.pyplot as plt\n'), ((4079, 4113), 'matplotlib.pyplot.figure', 'plt.figure', (['fig3'], {'figsize': '[10, 10]'}), '(fig3, figsize=[10, 10])\n', (4089, 4113), True, 'import matplotlib.pyplot as plt\n'), ((4116, 4131), 'matplotlib.pyplot.title', 'plt.title', (['fig3'], {}), '(fig3)\n', (4125, 4131), True, 'import matplotlib.pyplot as plt\n'), ((4136, 4199), 'matplotlib.pyplot.loglog', 'plt.loglog', (['t_avg_gC[:, 1]', 't_avg_gC[:, -1]', '"""ks-"""'], {'label': 'label'}), "(t_avg_gC[:, 1], t_avg_gC[:, -1], 'ks-', label=label)\n", (4146, 4199), True, 'import matplotlib.pyplot as plt\n'), ((4199, 4258), 'matplotlib.pyplot.loglog', 'plt.loglog', (['cores_gC', 'linear_time_gC', '"""k--"""'], {'label': '"""Linear"""'}), "(cores_gC, linear_time_gC, 'k--', label='Linear')\n", (4209, 4258), True, 'import matplotlib.pyplot as plt\n'), ((4260, 4279), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Cores"""'], {}), "('Cores')\n", (4270, 4279), True, 'import matplotlib.pyplot as plt\n'), ((4284, 4324), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mean Time per Timestep (s)"""'], {}), "('Mean Time per Timestep (s)')\n", (4294, 4324), True, 'import matplotlib.pyplot as plt\n'), ((4329, 4341), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4339, 4341), True, 'import matplotlib.pyplot as plt\n'), ((4347, 4381), 'matplotlib.pyplot.figure', 'plt.figure', (['fig4'], {'figsize': '[10, 10]'}), '(fig4, figsize=[10, 10])\n', (4357, 4381), True, 'import matplotlib.pyplot as plt\n'), ((4384, 4399), 'matplotlib.pyplot.title', 'plt.title', (['fig4'], {}), '(fig4)\n', (4393, 4399), True, 'import matplotlib.pyplot as plt\n'), ((4404, 4467), 'matplotlib.pyplot.loglog', 'plt.loglog', (['t_avg_gC[:, 0]', 't_avg_gC[:, -1]', '"""ks-"""'], {'label': 'label'}), "(t_avg_gC[:, 0], t_avg_gC[:, -1], 'ks-', label=label)\n", (4414, 4467), True, 'import matplotlib.pyplot as plt\n'), ((4467, 4533), 'matplotlib.pyplot.loglog', 'plt.loglog', (['dof_per_core_gC', 'linear_time_gC', '"""k--"""'], {'label': '"""linear"""'}), "(dof_per_core_gC, linear_time_gC, 'k--', label='linear')\n", (4477, 4533), True, 'import matplotlib.pyplot as plt\n'), ((4535, 4562), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""DOFs per Core"""'], {}), "('DOFs per Core')\n", (4545, 4562), True, 'import matplotlib.pyplot as plt\n'), ((4567, 4607), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mean Time per Timestep (s)"""'], {}), "('Mean Time per Timestep (s)')\n", (4577, 4607), True, 'import matplotlib.pyplot as plt\n'), ((4612, 4624), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4622, 4624), True, 'import matplotlib.pyplot as plt\n'), ((4908, 4942), 'matplotlib.pyplot.figure', 'plt.figure', (['fig2'], {'figsize': '[10, 10]'}), '(fig2, figsize=[10, 10])\n', (4918, 4942), True, 'import matplotlib.pyplot as plt\n'), ((4945, 4960), 'matplotlib.pyplot.title', 'plt.title', (['fig2'], {}), '(fig2)\n', (4954, 4960), True, 'import matplotlib.pyplot as plt\n'), ((4974, 4992), 'numpy.arange', 'np.arange', (['(1)', '(5)', '(1)'], {}), '(1, 5, 1)\n', (4983, 4992), True, 'import numpy as np\n'), ((5211, 5223), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5221, 5223), True, 'import matplotlib.pyplot as plt\n'), ((5228, 5250), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Timestep"""'], {}), "('Timestep')\n", (5238, 5250), True, 'import matplotlib.pyplot as plt\n'), ((5255, 5277), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (5265, 5277), True, 'import matplotlib.pyplot as plt\n'), ((5282, 5328), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(100)', 'caption_text_g1'], {'fontsize': '(12)'}), '(0, 100, caption_text_g1, fontsize=12)\n', (5290, 5328), True, 'import matplotlib.pyplot as plt\n'), ((5402, 5436), 'matplotlib.pyplot.figure', 'plt.figure', (['fig3'], {'figsize': '[10, 10]'}), '(fig3, figsize=[10, 10])\n', (5412, 5436), True, 'import matplotlib.pyplot as plt\n'), ((5439, 5514), 'matplotlib.pyplot.loglog', 'plt.loglog', (['t_avg_g1[:, 1]', 't_avg_g1[:, -1]', '"""s-"""'], {'label': 'label', 'color': 'color'}), "(t_avg_g1[:, 1], t_avg_g1[:, -1], 's-', label=label, color=color)\n", (5449, 5514), True, 'import matplotlib.pyplot as plt\n'), ((5513, 5584), 'matplotlib.pyplot.loglog', 'plt.loglog', (['cores_g1', 'linear_time_g1', '"""--"""'], {'label': '"""Linear"""', 'color': 'color'}), "(cores_g1, linear_time_g1, '--', label='Linear', color=color)\n", (5523, 5584), True, 'import matplotlib.pyplot as plt\n'), ((5585, 5604), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Cores"""'], {}), "('Cores')\n", (5595, 5604), True, 'import matplotlib.pyplot as plt\n'), ((5609, 5649), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mean Time per Timestep (s)"""'], {}), "('Mean Time per Timestep (s)')\n", (5619, 5649), True, 'import matplotlib.pyplot as plt\n'), ((5654, 5666), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5664, 5666), True, 'import matplotlib.pyplot as plt\n'), ((5672, 5706), 'matplotlib.pyplot.figure', 'plt.figure', (['fig4'], {'figsize': '[10, 10]'}), '(fig4, figsize=[10, 10])\n', (5682, 5706), True, 'import matplotlib.pyplot as plt\n'), ((5709, 5784), 'matplotlib.pyplot.loglog', 'plt.loglog', (['t_avg_g1[:, 0]', 't_avg_g1[:, -1]', '"""s-"""'], {'label': 'label', 'color': 'color'}), "(t_avg_g1[:, 0], t_avg_g1[:, -1], 's-', label=label, color=color)\n", (5719, 5784), True, 'import matplotlib.pyplot as plt\n'), ((5783, 5861), 'matplotlib.pyplot.loglog', 'plt.loglog', (['dof_per_core_g1', 'linear_time_g1', '"""--"""'], {'label': '"""linear"""', 'color': 'color'}), "(dof_per_core_g1, linear_time_g1, '--', label='linear', color=color)\n", (5793, 5861), True, 'import matplotlib.pyplot as plt\n'), ((5862, 5889), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""DOFs per Core"""'], {}), "('DOFs per Core')\n", (5872, 5889), True, 'import matplotlib.pyplot as plt\n'), ((5894, 5934), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mean Time per Timestep (s)"""'], {}), "('Mean Time per Timestep (s)')\n", (5904, 5934), True, 'import matplotlib.pyplot as plt\n'), ((5939, 5951), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5949, 5951), True, 'import matplotlib.pyplot as plt\n'), ((6056, 6072), 'matplotlib.pyplot.figure', 'plt.figure', (['fig1'], {}), '(fig1)\n', (6066, 6072), True, 'import matplotlib.pyplot as plt\n'), ((6074, 6120), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(root_dir + fig1 + '.png')"], {'dpi': '(400)'}), "(root_dir + fig1 + '.png', dpi=400)\n", (6085, 6120), True, 'import matplotlib.pyplot as plt\n'), ((6120, 6136), 'matplotlib.pyplot.figure', 'plt.figure', (['fig2'], {}), '(fig2)\n', (6130, 6136), True, 'import matplotlib.pyplot as plt\n'), ((6138, 6184), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(root_dir + fig2 + '.png')"], {'dpi': '(400)'}), "(root_dir + fig2 + '.png', dpi=400)\n", (6149, 6184), True, 'import matplotlib.pyplot as plt\n'), ((6184, 6200), 'matplotlib.pyplot.figure', 'plt.figure', (['fig3'], {}), '(fig3)\n', (6194, 6200), True, 'import matplotlib.pyplot as plt\n'), ((6202, 6248), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(root_dir + fig3 + '.png')"], {'dpi': '(400)'}), "(root_dir + fig3 + '.png', dpi=400)\n", (6213, 6248), True, 'import matplotlib.pyplot as plt\n'), ((6248, 6264), 'matplotlib.pyplot.figure', 'plt.figure', (['fig4'], {}), '(fig4)\n', (6258, 6264), True, 'import matplotlib.pyplot as plt\n'), ((6266, 6312), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(root_dir + fig4 + '.png')"], {'dpi': '(400)'}), "(root_dir + fig4 + '.png', dpi=400)\n", (6277, 6312), True, 'import matplotlib.pyplot as plt\n'), ((392, 415), 'os.path.isdir', 'os.path.isdir', (['root_dir'], {}), '(root_dir)\n', (405, 415), False, 'import os\n'), ((3631, 3691), 'matplotlib.pyplot.plot', 'plt.plot', (['t_gC_13[:, i]'], {'label': "(th_gC_13[i] + ' 416 cores_gC')"}), "(t_gC_13[:, i], label=th_gC_13[i] + ' 416 cores_gC')\n", (3639, 3691), True, 'import matplotlib.pyplot as plt\n'), ((3696, 3756), 'matplotlib.pyplot.plot', 'plt.plot', (['t_gC_26[:, i]'], {'label': "(th_gC_26[i] + ' 832 cores_gC')"}), "(t_gC_26[:, i], label=th_gC_26[i] + ' 832 cores_gC')\n", (3704, 3756), True, 'import matplotlib.pyplot as plt\n'), ((3761, 3822), 'matplotlib.pyplot.plot', 'plt.plot', (['t_gC_52[:, i]'], {'label': "(th_gC_52[i] + ' 1664 cores_gC')"}), "(t_gC_52[:, i], label=th_gC_52[i] + ' 1664 cores_gC')\n", (3769, 3822), True, 'import matplotlib.pyplot as plt\n'), ((3827, 3889), 'matplotlib.pyplot.plot', 'plt.plot', (['t_gC_104[:, i]'], {'label': "(th_gC_104[i] + '3328 cores_gC')"}), "(t_gC_104[:, i], label=th_gC_104[i] + '3328 cores_gC')\n", (3835, 3889), True, 'import matplotlib.pyplot as plt\n'), ((5000, 5065), 'matplotlib.pyplot.plot', 'plt.plot', (['t_g1_512[:, i]'], {'label': "(th_g1_512[i] + ' 16,384 cores_g1')"}), "(t_g1_512[:, i], label=th_g1_512[i] + ' 16,384 cores_g1')\n", (5008, 5065), True, 'import matplotlib.pyplot as plt\n'), ((5070, 5137), 'matplotlib.pyplot.plot', 'plt.plot', (['t_g1_1024[:, i]'], {'label': "(th_g1_1024[i] + ' 32,768 cores_g1')"}), "(t_g1_1024[:, i], label=th_g1_1024[i] + ' 32,768 cores_g1')\n", (5078, 5137), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- # COPYRIGHT 2017 <NAME> # Truth network model analysis from __future__ import print_function import numpy as np import tellurium as te import antimony import generate import util import clustering def classify(setup, s_arr, c_arr): """ Ground truth classification. Returns initial perturbation response, perturbation response, classification, and reaction index :param g_truth: ground truth network matrix :param s_truth: ground truth species concentrations :param k_truth: ground truth rate constants :param num_node: ground truth numbder of nodes :param num_bound: ground truth numbder of boundary species :param k_pert: perturbation amount :param Thres: classification threshold :rtype: list """ antimony.clearPreviousLoads() # Strip and translate to string t_s = setup.t_s.astype('str') t_k = setup.t_k[setup.t_k != np.array(0)].astype('str') #t_k_count = np.count_nonzero(setup.t_net) t_ant = generate.generateAntimonyNew(setup.t_net, t_s, t_k, s_arr, c_arr) #r_ind = np.array(np.where(setup.t_net != np.array(0))).T r_ind = util.getPersistantOrder(setup.t_net, setup.p_net) rr = te.loada(t_ant) rr.reset() # ALWAYS RESET rr.conservedMoietyAnalysis = True pert_i = rr.steadyStateNamedArray() # Initial steady state r_comb = clustering.getListOfCombinations(r_ind) # Pertubation for rate constants k_pert_output_i = np.empty([len(r_comb), setup.num_float]) for i in range(len(r_comb)): k_pert_output_i[i] = util.perturbRate(rr, r_comb[i], setup.k_pert) # Classification for rate constants k_class_i = np.empty([len(r_comb), setup.num_float], dtype=int) for i in range(len(r_comb)): for j in range(setup.num_float): k_diff = (k_pert_output_i[i][j] - pert_i[0][j]) if (np.abs(k_diff) > setup.Thres): if k_diff < 0.: k_class_i[i][j] = 1 else: k_class_i[i][j] = 2 else: k_class_i[i][j] = 0 antimony.clearPreviousLoads() return pert_i[0], k_pert_output_i, k_class_i def compareClass(t_analysis, k_class): """ Return indices of network matrices that fall into the same category and those that does not fall into the same category as the result from true network :param t_analysis: :param k_class: """ t_net_ind = [] nt_net_ind = [] for i in range(len(k_class)): if np.array_equal(t_analysis[2], k_class[i]): t_net_ind.append(i) else: nt_net_ind.append(i) return t_net_ind, nt_net_ind #@profile def compareIndClass(t_analysis, k_class_i): """ Checks a single instance of classification against the true result. Returns True if classification is identical and false otherwise :param t_analysis: :param k_class: """ partial = False if np.array_equal(t_analysis, k_class_i): partial = True return partial #def compareClass(p_r_ind, t_analysis, k_class, net_ind_group): # """ # Return indices for network matrices that fall into the same category and # those that does not fall into the same category as the output of ground # truth model # # :param p_r_ind: persistant index # :param t_analysis: output of ground truth classification # :param k_class: classification output resulting from perturbing reaction # :param net_ind_group: grouped reaction index # :rtype: list # """ # # t_net_ind = [] # nt_net_ind = [] # # for i in range(len(p_r_ind)): # row = p_r_ind[i][0] # col = p_r_ind[i][1] # # # Get generated classification from target indices # t_k_class = sorted_k_class[row][col] # # # Get truth classification from target indices # comp1 = np.array([np.in1d(t_analysis[3].T[0], row), # np.in1d(t_analysis[3].T[1], col)]) # # truth_k_class = t_analysis[2][comp1.all(axis=0)] # # # Get indices where generated classification and truth # # classification is the same # # TODO: Currently this matches all binary values # ind_id = np.where((t_k_class == truth_k_class).all(axis=1))[0] # # # Network matrix indices that match with truth classification # t_net_ind_i = net_ind_group[row][col][ind_id] # # Network matrix indices that does not match with truth classification # nt_net_ind_i = np.setdiff1d(net_ind_group[row][col], t_net_ind_i) # t_net_ind.append(t_net_ind_i) # nt_net_ind.append(nt_net_ind_i) # # return t_net_ind, nt_net_ind
[ "numpy.array_equal", "numpy.abs", "util.perturbRate", "generate.generateAntimonyNew", "numpy.array", "antimony.clearPreviousLoads", "tellurium.loada", "util.getPersistantOrder", "clustering.getListOfCombinations" ]
[((785, 814), 'antimony.clearPreviousLoads', 'antimony.clearPreviousLoads', ([], {}), '()\n', (812, 814), False, 'import antimony\n'), ((1014, 1079), 'generate.generateAntimonyNew', 'generate.generateAntimonyNew', (['setup.t_net', 't_s', 't_k', 's_arr', 'c_arr'], {}), '(setup.t_net, t_s, t_k, s_arr, c_arr)\n', (1042, 1079), False, 'import generate\n'), ((1159, 1208), 'util.getPersistantOrder', 'util.getPersistantOrder', (['setup.t_net', 'setup.p_net'], {}), '(setup.t_net, setup.p_net)\n', (1182, 1208), False, 'import util\n'), ((1218, 1233), 'tellurium.loada', 'te.loada', (['t_ant'], {}), '(t_ant)\n', (1226, 1233), True, 'import tellurium as te\n'), ((1383, 1422), 'clustering.getListOfCombinations', 'clustering.getListOfCombinations', (['r_ind'], {}), '(r_ind)\n', (1415, 1422), False, 'import clustering\n'), ((2133, 2162), 'antimony.clearPreviousLoads', 'antimony.clearPreviousLoads', ([], {}), '()\n', (2160, 2162), False, 'import antimony\n'), ((3034, 3071), 'numpy.array_equal', 'np.array_equal', (['t_analysis', 'k_class_i'], {}), '(t_analysis, k_class_i)\n', (3048, 3071), True, 'import numpy as np\n'), ((1591, 1636), 'util.perturbRate', 'util.perturbRate', (['rr', 'r_comb[i]', 'setup.k_pert'], {}), '(rr, r_comb[i], setup.k_pert)\n', (1607, 1636), False, 'import util\n'), ((2578, 2619), 'numpy.array_equal', 'np.array_equal', (['t_analysis[2]', 'k_class[i]'], {}), '(t_analysis[2], k_class[i])\n', (2592, 2619), True, 'import numpy as np\n'), ((1901, 1915), 'numpy.abs', 'np.abs', (['k_diff'], {}), '(k_diff)\n', (1907, 1915), True, 'import numpy as np\n'), ((923, 934), 'numpy.array', 'np.array', (['(0)'], {}), '(0)\n', (931, 934), True, 'import numpy as np\n')]
""" test_const_ionization.py Author: <NAME> Affiliation: University of Colorado at Boulder Created on: Thu Oct 16 14:46:48 MDT 2014 Description: """ import ares import numpy as np import matplotlib.pyplot as pl from ares.physics.CrossSections import PhotoIonizationCrossSection as sigma s_per_yr = ares.physics.Constants.s_per_yr pars = \ { 'problem_type': 0, 'grid_cells': 1, 'initial_ionization': [1.-1e-6, 1e-6], #'initial_temperature': 1e4,# make cold so collisional ionization is negligible 'isothermal': False, 'stop_time': 10.0, 'plane_parallel': True, 'recombination': False, # To match analytical solution 'source_type': 'toy', 'source_qdot': 1e4, # solver fails when this is large (like 1e10) 'source_lifetime': 1e10, 'source_E': [13.60000001], 'source_LE': [1.0], 'secondary_ionization': 0, 'collisional_ionization': 0, 'logdtDataDump': 0.5, 'initial_timestep': 1e-15, } def test(rtol=1e-2): # Numerical solution sim = ares.simulations.RaySegment(**pars) sim.run() t, xHII = sim.CellEvolution(field='h_2') fig = pl.figure(1, figsize=(8, 12)) ax1 = fig.add_subplot(211); ax2 = fig.add_subplot(212) ax1.loglog(t / s_per_yr, xHII, color='k', label='numerical') ax1.set_ylim(1e-8, 5) ax1.set_ylabel(r'$x_{\mathrm{HII}}$') # Analytic solution: exponential time evolution sigma0 = sigma(pars['source_E'][0]) qdot = pars['source_qdot'] Gamma = qdot * sigma0 xi0 = pars['initial_ionization'][1] C = 1. - xi0 def xi(t, Gamma=Gamma): return 1. - C * np.exp(-Gamma * t) xHII_anyl = np.array(list(map(xi, t))) ax1.scatter(t / s_per_yr, xHII_anyl, color='b', facecolors='none', s=100, label='analytic') ax1.legend(loc='upper left', fontsize=14) # Only test accuracy at somewhat later times mask = t > 0 err = np.abs(xHII[mask] - xHII_anyl[mask]) / xHII_anyl[mask] ax2.loglog(t / s_per_yr, err) ax2.set_xlabel(r'$t \ (\mathrm{yr})$') ax2.set_ylabel(r'rel. error') pl.draw() pl.savefig('{!s}.png'.format(__file__[0:__file__.rfind('.')])) pl.close() assert np.allclose(xHII[mask], xHII_anyl[mask], rtol=rtol, atol=0) if __name__ == '__main__': test()
[ "numpy.abs", "matplotlib.pyplot.close", "numpy.allclose", "matplotlib.pyplot.draw", "matplotlib.pyplot.figure", "ares.physics.CrossSections.PhotoIonizationCrossSection", "numpy.exp", "ares.simulations.RaySegment" ]
[((976, 1011), 'ares.simulations.RaySegment', 'ares.simulations.RaySegment', ([], {}), '(**pars)\n', (1003, 1011), False, 'import ares\n'), ((1095, 1124), 'matplotlib.pyplot.figure', 'pl.figure', (['(1)'], {'figsize': '(8, 12)'}), '(1, figsize=(8, 12))\n', (1104, 1124), True, 'import matplotlib.pyplot as pl\n'), ((1392, 1418), 'ares.physics.CrossSections.PhotoIonizationCrossSection', 'sigma', (["pars['source_E'][0]"], {}), "(pars['source_E'][0])\n", (1397, 1418), True, 'from ares.physics.CrossSections import PhotoIonizationCrossSection as sigma\n'), ((2073, 2082), 'matplotlib.pyplot.draw', 'pl.draw', ([], {}), '()\n', (2080, 2082), True, 'import matplotlib.pyplot as pl\n'), ((2154, 2164), 'matplotlib.pyplot.close', 'pl.close', ([], {}), '()\n', (2162, 2164), True, 'import matplotlib.pyplot as pl\n'), ((2185, 2244), 'numpy.allclose', 'np.allclose', (['xHII[mask]', 'xHII_anyl[mask]'], {'rtol': 'rtol', 'atol': '(0)'}), '(xHII[mask], xHII_anyl[mask], rtol=rtol, atol=0)\n', (2196, 2244), True, 'import numpy as np\n'), ((1893, 1929), 'numpy.abs', 'np.abs', (['(xHII[mask] - xHII_anyl[mask])'], {}), '(xHII[mask] - xHII_anyl[mask])\n', (1899, 1929), True, 'import numpy as np\n'), ((1590, 1608), 'numpy.exp', 'np.exp', (['(-Gamma * t)'], {}), '(-Gamma * t)\n', (1596, 1608), True, 'import numpy as np\n')]
import scipy.io import numpy as np import sys import os.path import matplotlib.pyplot as plt trans = [139.62,119.43,36.48,14.5] mdata = [] def avgWaveSpeed(data,ampStart,ampEnd,freq,transducers,index1,index2): total = 0 count = 0 print(data) zer = highestPoint(data,ampStart,0)[0] tz = np.arange(ampStart,ampEnd,(1/freq)) for i in tz: tmp = highestPoint(data,i,zer) #print(tmp) print(tmp, " " , index1 , " ", index2) total = total + (transducers[index2]-transducers[index1])/(tmp[index2+1] -tmp[index1+1]) count = count +1 total = total/count return abs(total*1000) def highestPoint(data,val,start): x = [] x.append(0) for b in range(start,len(data)): count = 0 i = data[b] #print(i," ",count) for z in i : if(z[0] > val): x.append(count) break count = count + 1 lowest = 10000 highest = 0 for v in x: if(v <= lowest): lowest = v if(v>= highest): highest = v x[0] = lowest x.append(highest) return x def cailbration(data): high = False for x in data: if(x[0]>2): high = True break if(high): for z in range(0,len(data)): data[z] = ((data[z]*0.5001 + 1.0032 - 1.01325)*10.1974)+10 else: for z in range(0,len(data)): data[z] = ((data[z]*3.1277 - 0.263 - 1.01325)*10.1974)+10 return data def onclick(event): print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' % ('double' if event.dblclick else 'single', event.button, event.x, event.y, event.xdata, event.ydata)) text = "" if(os.path.isfile('testfile.txt')): file2 = open('testfile.txt') text = file2.read() file2.close() file = open('testfile.txt',"w") file.write(text + str(event.ydata)+'\n') file.close() mdata = [] x = open('testfile.txt').read().split('\n') if(len(x) >2): #print(x) mdata.append(float(x[0])) mdata.append(float(x[1])) file = open('testfile.txt',"w") file.write("") file.close() #print(avgWaveSpeed(data,mdata[0],mdata[1],10,trans,2,0)) def main(file,idx,x): fig = plt.figure(x) gid = 200+(x*10)+idx #if(x==1): #fig = plt.figure(3) #else: #fig = plt.figure(4) #location = input('MatLabFile Location\n') location = file mat = scipy.io.loadmat(location) data = [] x = mat.get('VoltageAI0')[0][0][1][0][0] time = [] for i in range(0,x): time.append(i/1000) #print(time) for i in range(0,10): tmp = 'VoltageAI'+str(i) if(mat.get(tmp)==None): break else: data.append(cailbration(mat.get(tmp)[0][0][0])) colors = ['b','y','m','k','r'] count = 0 #zxcv = avgWaveSpeed(data,29.5,31,10,trans,2,0) pltinone = True #zxc = input("All in one? y/n?\n") zxc = "y" if(zxc =="n"): pltinone = False fig = plt.figure(2) for i in data: if(pltinone): plt.subplot(gid) line = plt.plot(time,i) import random r = lambda: random.randint(0,255) colorz = ('#%02X%02X%02X' % (r(),r(),r())) plt.setp(line,'color',colorz,'antialiased',True) else: cur = 221 + count plt.subplot(cur) plt.ylabel('Bar ( gauge )') plt.xlabel('Time ( s )') line = plt.plot(time,i) plt.setp(line,'color',colors[count],'antialiased',True) count = count+1 plt.ylabel('Meters of water( m )') plt.xlabel('Time ( s )') cid = fig.canvas.mpl_connect('button_press_event', onclick) plt.axis([0,8, 25, 35]) fig.canvas.mpl_disconnect(cid) #return zxcv return 1 sumx = 0 vals = [] main("D:\\Files\\Documents\\Programming\\PythonFiles\\SUWSS\\TDMS\\24July2018_Intact_1.mat",1,1) #for i in range(1,2): # print(i) # sumx = sumx+(main('\TDMS\24July2018_Intact_'+str(i)+'.mat',i,2)) #print(sumx) ''' sumy= 0 i = 6 for i in range(6,11): print(i) sumy = sumy+(main('LL Pipe Case\\24July2018_LL_'+str(i)+'.mat',240+i-5,2)) sumy = (sumy/5) ''' #print(abs(sumx-sumy)) plt.show()
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "random.randint", "matplotlib.pyplot.plot", "matplotlib.pyplot.setp", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((4374, 4384), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4382, 4384), True, 'import matplotlib.pyplot as plt\n'), ((309, 346), 'numpy.arange', 'np.arange', (['ampStart', 'ampEnd', '(1 / freq)'], {}), '(ampStart, ampEnd, 1 / freq)\n', (318, 346), True, 'import numpy as np\n'), ((2359, 2372), 'matplotlib.pyplot.figure', 'plt.figure', (['x'], {}), '(x)\n', (2369, 2372), True, 'import matplotlib.pyplot as plt\n'), ((3735, 3769), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Meters of water( m )"""'], {}), "('Meters of water( m )')\n", (3745, 3769), True, 'import matplotlib.pyplot as plt\n'), ((3774, 3798), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time ( s )"""'], {}), "('Time ( s )')\n", (3784, 3798), True, 'import matplotlib.pyplot as plt\n'), ((3867, 3891), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 8, 25, 35]'], {}), '([0, 8, 25, 35])\n', (3875, 3891), True, 'import matplotlib.pyplot as plt\n'), ((3144, 3157), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (3154, 3157), True, 'import matplotlib.pyplot as plt\n'), ((3211, 3227), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gid'], {}), '(gid)\n', (3222, 3227), True, 'import matplotlib.pyplot as plt\n'), ((3247, 3264), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'i'], {}), '(time, i)\n', (3255, 3264), True, 'import matplotlib.pyplot as plt\n'), ((3403, 3455), 'matplotlib.pyplot.setp', 'plt.setp', (['line', '"""color"""', 'colorz', '"""antialiased"""', '(True)'], {}), "(line, 'color', colorz, 'antialiased', True)\n", (3411, 3455), True, 'import matplotlib.pyplot as plt\n'), ((3508, 3524), 'matplotlib.pyplot.subplot', 'plt.subplot', (['cur'], {}), '(cur)\n', (3519, 3524), True, 'import matplotlib.pyplot as plt\n'), ((3537, 3564), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Bar ( gauge )"""'], {}), "('Bar ( gauge )')\n", (3547, 3564), True, 'import matplotlib.pyplot as plt\n'), ((3577, 3601), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time ( s )"""'], {}), "('Time ( s )')\n", (3587, 3601), True, 'import matplotlib.pyplot as plt\n'), ((3621, 3638), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'i'], {}), '(time, i)\n', (3629, 3638), True, 'import matplotlib.pyplot as plt\n'), ((3650, 3709), 'matplotlib.pyplot.setp', 'plt.setp', (['line', '"""color"""', 'colors[count]', '"""antialiased"""', '(True)'], {}), "(line, 'color', colors[count], 'antialiased', True)\n", (3658, 3709), True, 'import matplotlib.pyplot as plt\n'), ((3314, 3336), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (3328, 3336), False, 'import random\n')]
#!/usr/bin/env python # coding: utf-8 # # Registration 101 # # Image registration is a critical tool in longitudinal monitoring: # # - Estimation of local changes # - Comparison to same animal (less variance) # - [3R's](https://www.nc3rs.org.uk/the-3rs) # # # # ## Goal of tutorial: # - Introduce the concept of aligning images # - Demonstrate the use of numerical comparison between images # - Introduce concept of optimisation # - Registering images within framework (Thesis: <NAME> & <NAME>) # ## setting up a responsive enviroment # In[1]: # Please do not edit this code, it is important for choosing a compatible rendered for images # libraries for viewing images import sys sys.path.append("reg101_files") from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost import matplotlib import matplotlib.pyplot as plt import matplotlib.image as mpimg # numpy as always import numpy as np # In[2]: # this is a way of finding the fastest image display on your platform print("Using:", matplotlib.get_backend()) gui_env = ["WXAgg", "TKAgg", "QT5Agg", "GTKAgg", "Qt4Agg"] for gui in gui_env: try: print("testing", gui) matplotlib.use(gui, warn=False, force=True) from matplotlib import pyplot as plt break except: continue print("Using:", matplotlib.get_backend()) # ## What does registration actually do? # # In the example bellow there are images from 2 weeks. # # The position of the animal in the scanner was different each. # # In[3]: get_ipython().run_line_magic("matplotlib", "notebook") # this allows the image to be viewed in the notebook with edge matplotlib.rcParams["figure.figsize"] = (8, 7) images = [ mpimg.imread("reg101_files/week2.tiff"), mpimg.imread("reg101_files/week3.tiff"), ] horizontal_pane(images) # shows images side by side # How can we interpret these images? # # In in vivo studies, it is still common to *dynamic histomorphometry*, where markers are given to the mice at different intervals over the course if a study. These are built into the bone matrix and afterwards can be labeled and visualised in histological sections. # # ![alt text](osteoid.jpg) # # In the above image above the green strain was used to mark the surface where bone formed. While the red is marking Osteoid (newly formed un minerlaised bone). The method is limited to purely observation of anabolic events. Resorption of bone removes material and therefore there is nothing which can be stained. # # Inspired by these histological images we can create a virtual histology image. In these images we will "stain" the change of mineralisation between the two weeks. Both images are grey-scale (1 -color) , we can emulate the histology by using colour channels. Here we put the *Later* week in *green* and the *Former* week in *red*, both weeks are averaged in the blue channel. # # When the images are aligned we see white (R+G+B) when the *Former* week is brighter we see *green* and when the *later* week is brighter we see *red*. This is essentially formation == green and resorption == red. The function bellow does this for use automically. # # In[4]: # puts the images into the Red(week1) and G(week2) channel of an image overlay_RGB(images) # These images are clearly not well aligned. We will now discuss how to align the images. # ## Overlaying an image # # Registration involves finding the best set of transormation paramters for overlaying an image. # # Run the following cell and try to find the best x,y,theta for aligning the images. # In[5]: # manual transform from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from IPython.display import clear_output, display from scipy.ndimage import affine_transform def move_overlay(image1, image2, dx, dy): T = np.identity(3) T[0, 2] = dy T[1, 2] = dx images = [image1, affine_transform(image2, T)] overlay_RGB(images) clear_output(True) # In[6]: interactive( move_overlay, image1=fixed(images[0]), image2=fixed(images[1]), dx=(-50, 50, 0.25), dy=(-50, 50, 0.25), ) # In[7]: class_x = [-4.5, -6.5, -5.0, -4.25, -4, -5, -4.7] class_y = [-18.5, -22, -20.5, -20, -19, -19, -19.5] print("Class variance in X: ", np.mean(class_x)) print("Class variance in Y: ", np.mean(class_y)) # ## Cost functions # # We have now demonstrated the use of a powerful neural network (you) on finding the best fit. In realitiy the computer is not aware of what the images look like. The registration algorithm needs to numerically determine the goodness of fit, it can then optimize until the correct paramters are found. # # Image we have two images X and Y. The lease squared difference would be as follows: # # \begin{equation*} # C^{LS} = \sum \left( X - Y \right)^2 # \end{equation*} # # Where this is the pixel-wise sum of both images. In Python it looks like this: # # # ```python # def least_squared(X,Y): # delta = X-Y # square_delta = delta**2 # return np.sum(square_delta) # # ``` # # Another meausure of similarity is the correlations function: # \begin{equation*} # C^{cor} = \frac{\sum \left( X \cdot Y \right) }{\sqrt{\sum X^2}.\sqrt{\sum Y^2}} # \end{equation*} # # In python it looks like this: # ```python # def correlation(Image1,Image2): # corr = np.corrcoef(Image1,y=Image2) # return(corr[0,1]) # ``` # # ### excercise 2: # Align the images again, this time try and use the cost function to determine your next move. # # In[8]: # abs diference cost def least_squared(Image1, Image2): delta = Image1 - Image2 return np.sum(delta ** 2) # In[9]: def correlation(Image1, Image2): return -1 * np.corrcoef(Image1.flatten(), y=Image2.flatten())[0, 1] # In[10]: c_funs = {"correlation": correlation, "least_squared": least_squared} # In[11]: cost = {c: [] for c in c_funs} cost_function_names = [n for n in c_funs] def move_overlay(image1, image2, dx, dy, cost_history, cost_function, cfuncs): T = np.identity(3) T[0, 2] = dy T[1, 2] = dx images = [image1, affine_transform(image2, T)] overlay_RGB_cost(images, cost_history, cost_function, cfuncs, dx, dy) clear_output(True) # In[12]: interactive( move_overlay, image1=fixed(images[0]), image2=fixed(images[1]), dx=(-60, 60, 0.5), dy=(-60, 60, 0.5), cost_history=fixed(cost), cost_function=cost_function_names, cfuncs=fixed(c_funs), ) # In[13]: comutational_cost = {"correlation": 0, "least_squared": 0, "abs_squared_difference": 0} for function, v in cost.items(): for pix in v: comutational_cost[function] += pix[3] print("The total pixel cost was:", comutational_cost) # This is quite an intenive task. For each movmement you made every pixel was evaluated to determine the cost function. Ideally we should align the images close so that they need less transformations. This can be done through two ways: # # 1. An initial guess # # 2. A multi-resolution scheme # # A good initial guess is a holy grail in image registration, these could involve calcuating principle axes and centerms of mass. However during fracture healing the changes in the bone are large, the formation of new material can cause priciple axes to flip or swap. # # A multi-resolution scheme on the other hand reduces the problem size, progressivly increasing it until the images are comapred at the native resoltuion. This system is "easy" to implement and has an inherent strength over the naive aproach. # # Images contain different frequencies. In general flat areas are low frequency whilke edges (and noise) are high frequency. The lower resolution images are predominatnly low frequency information and have comparatively less noise. A pyramid approach is effectivly using a smoothed cost function, avoiding local minima, while the progressive increasing of the resolution adds high frequency correction to the solution. # # In[14]: def split_frequency(frequency, image): f = np.fft.fft2(image) # forward fft fshift = np.fft.fftshift(f) # shift to center frequencies hff = np.copy(fshift) origin = np.array(hff.shape) * 0.5 y, x = np.ogrid[-origin[0] : origin[0], -origin[1] : origin[1]] mask = ( x * x + y * y <= frequency * frequency ) # mask for high and low pass filtering hff[mask] = 0 # high pass filter lff = np.copy(fshift) lff[mask != 1] = 0 # low pass filter hff_ishift = np.fft.ifftshift(hff) # inverse shift lff_ishift = np.fft.ifftshift(lff) # inverse shift lff_back = np.fft.ifft2(lff_ishift) # inverse fft hff_back = np.fft.ifft2(hff_ishift) # inverse fft hff_back = np.abs(hff_back) lff_back = np.abs(lff_back) # contrast adjustment for viewing image hff_back /= np.percentile(hff_back, 99) hff_back[hff_back > 1] = 1.0 horizontal_pane([image, (lff_back), hff_back]) # In[15]: interactive(split_frequency, frequency=(0, 204, 1), image=fixed(images[0])) # ## Pyrmaid registration # # - Frequencies are dependent on the image resolution # - Easiest way to create a pyramid is to create a stack of rescaled images # In[16]: # manual transform from scipy.ndimage.interpolation import zoom cost_pyramid = {c: [] for c in c_funs} def move_overlay_pyramid( image1, image2, dx, dy, cost_history, cost_function, cfuncs, level, history ): level = int(level) level = 2 ** (level - 1) if level != 1: i1 = zoom(image1, 1 / level, order=0) i2 = zoom(image2, 1 / level, order=0) else: i1 = image1 i2 = image2 T = np.identity(3) T[0, 2] = dy * 1 / level T[1, 2] = dx * 1 / level if level != 1: images = [i1, affine_transform(i2, T, order=0)] else: images = [i1, affine_transform(i2, T)] if len(cost_history) > 0: overlay_RGB_cost(images, cost_history, cost_function, cfuncs, dx, dy, history) else: print("Move around to make some history") clear_output(True) # In[17]: interactive( move_overlay_pyramid, image1=fixed(images[0]), image2=fixed(images[1]), dx=(-60, 60, 0.5), dy=(-60, 60, 0.5), cost_history=fixed(cost_pyramid), cost_function=cost_function_names, cfuncs=fixed(c_funs), level=[5, 4, 3, 2, 1], history=[None, 10, 20, 100], ) # In[18]: comutational_cost_pyramid = {"correlation": 0, "least_squared": 0} for function, v in cost_pyramid.items(): for pix in v: comutational_cost_pyramid[function] += pix[3] print("The total pixel cost was:", comutational_cost_pyramid) # # Automated registration # # This is cleary a difficult problem to do by hand. As we have these functions it should be easy to minimise them. Actualy there is a whole field of mathematics and computer science devoted towards this: Optimisation. It is not really "easy" to do. # # There are several course at the ETH which can give actually useful information on this: # - 401-0647-00L Introduction to Mathematical Optimization # - 227-0707-00L Optimization Methods for Engineers (good for Graeme) # - 261-5110-00L Optimization for Data Science (Machine learning) # - 401-3904-00L Convex Optimization (Applied to specific problems where the only minima is the global minimum) # # In the bellow example the registration is performed using a [Evolutionary Algorithm](https://en.wikipedia.org/wiki/Evolutionary_algorithm). Simply put a random population of initial guesses are used, the cost function is determined for each and only the fittest X% are mated to create a new set of guesses. # # To avoid being captured in local minima *mutations* are introduced, which introduce new paramters values to the increasingly homogenus population. # In[19]: # opitimizer with least squared from scipy.optimize import minimize as ls from scipy.optimize import differential_evolution def correlation(x, i1, i2, path): x = np.array(x) T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] images = [i1.flatten(), affine_transform(i2, T).flatten()] delta = -1 * np.corrcoef(images[0], y=images[1])[0, 1] path.append((x[0], x[1], delta)) return delta def least_squared(x, i1, i2, path): x = np.array(x) T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] images = [i1, affine_transform(i2, T)] delta = np.sum((images[0] - images[1]) ** 2) path.append((x[0], x[1], delta)) return delta path_corralation = [] optimum_c = differential_evolution( correlation, [(-60, 30), (-60, 30)], args=(images[0], images[1], path_corralation), tol=0.00125, ) # ,method='Powell',options={'eps':0.5}) path_least_squared = [] optimum_ls = differential_evolution( least_squared, [(-60, 30), (-60, 30)], args=(images[0], images[1], path_least_squared), tol=0.00125, ) # ,method='Powell',options={'eps':0.5}) # We have now searched for the best transform using both cost functions. What do they look like? # In[20]: # Using the correlation cost function x = optimum_c["x"] T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] overlay_RGB([images[0], affine_transform(images[1], T)]) # In[21]: # Using the Least squared cost function x = optimum_ls["x"] T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] overlay_RGB([images[0], affine_transform(images[1], T)]) # In[22]: # difference in the images diff = [] x = optimum_ls["x"] T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] diff.append(affine_transform(images[1], T)) x = optimum_c["x"] T = np.identity(3) T[0, 2] = x[1] T[1, 2] = x[0] diff.append(affine_transform(images[1], T)) overlay_RGB(diff) # In[23]: print("Difference in the transformation", optimum_ls["x"] - optimum_c["x"]) # In the cell bellow the cost functions are plotted. This can be done as the optimization we used search an entire range of parameters. # # In[24]: p_c = np.array(path_corralation) p_ls = np.array(path_least_squared) import matplotlib.tri as mtri fig = plt.figure() matplotlib.rcParams["figure.figsize"] = (9, 10) """ ax = fig.add_subplot(111, projection='3d') ax.plot_trisurf(p_c[:,0],p_c[:,1],p_c[:,2],cmap=plt.cm.jet) ax.set_title("Correlation") ax.set_xlabel("dx") ax.set_ylabel("dy") ax.set_zlabel("cost (-)") """ ax = fig.add_subplot(111, projection="3d") ax.set_title("Least Squared") ax.set_xlabel("dx") ax.set_ylabel("dy") ax.set_zlabel("cost (-)") ax.plot_trisurf(p_ls[:, 0], p_ls[:, 1], p_ls[:, 2], cmap=plt.cm.jet) # # Conclusion to part 1 # # - Image registration is not black magic # - It is repetitive but simple maths # - Algorithms are fallible: # - Local minima in solution # - Orientation of images # - Qualitiy of images # - Understanding your chosen cost function crucial for: # - Choosing an algorithm # - Knowing if your data is sufficient
[ "numpy.sum", "numpy.abs", "matplotlib.pyplot.figure", "numpy.mean", "ipywidgets.fixed", "numpy.fft.ifft2", "matplotlib.get_backend", "sys.path.append", "image_viewing.overlay_RGB", "numpy.fft.ifftshift", "numpy.copy", "numpy.identity", "image_viewing.horizontal_pane", "scipy.ndimage.interpolation.zoom", "scipy.ndimage.affine_transform", "matplotlib.image.imread", "numpy.corrcoef", "scipy.optimize.differential_evolution", "numpy.percentile", "numpy.fft.fftshift", "matplotlib.use", "numpy.fft.fft2", "IPython.display.clear_output", "numpy.array", "image_viewing.overlay_RGB_cost" ]
[((688, 719), 'sys.path.append', 'sys.path.append', (['"""reg101_files"""'], {}), "('reg101_files')\n", (703, 719), False, 'import sys\n'), ((1790, 1813), 'image_viewing.horizontal_pane', 'horizontal_pane', (['images'], {}), '(images)\n', (1805, 1813), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((3229, 3248), 'image_viewing.overlay_RGB', 'overlay_RGB', (['images'], {}), '(images)\n', (3240, 3248), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((12472, 12595), 'scipy.optimize.differential_evolution', 'differential_evolution', (['correlation', '[(-60, 30), (-60, 30)]'], {'args': '(images[0], images[1], path_corralation)', 'tol': '(0.00125)'}), '(correlation, [(-60, 30), (-60, 30)], args=(images[0],\n images[1], path_corralation), tol=0.00125)\n', (12494, 12595), False, 'from scipy.optimize import differential_evolution\n'), ((12690, 12818), 'scipy.optimize.differential_evolution', 'differential_evolution', (['least_squared', '[(-60, 30), (-60, 30)]'], {'args': '(images[0], images[1], path_least_squared)', 'tol': '(0.00125)'}), '(least_squared, [(-60, 30), (-60, 30)], args=(images[\n 0], images[1], path_least_squared), tol=0.00125)\n', (12712, 12818), False, 'from scipy.optimize import differential_evolution\n'), ((13048, 13062), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (13059, 13062), True, 'import numpy as np\n'), ((13228, 13242), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (13239, 13242), True, 'import numpy as np\n'), ((13405, 13419), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (13416, 13419), True, 'import numpy as np\n'), ((13517, 13531), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (13528, 13531), True, 'import numpy as np\n'), ((13606, 13623), 'image_viewing.overlay_RGB', 'overlay_RGB', (['diff'], {}), '(diff)\n', (13617, 13623), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((13873, 13899), 'numpy.array', 'np.array', (['path_corralation'], {}), '(path_corralation)\n', (13881, 13899), True, 'import numpy as np\n'), ((13907, 13935), 'numpy.array', 'np.array', (['path_least_squared'], {}), '(path_least_squared)\n', (13915, 13935), True, 'import numpy as np\n'), ((13975, 13987), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (13985, 13987), True, 'from matplotlib import pyplot as plt\n'), ((1013, 1037), 'matplotlib.get_backend', 'matplotlib.get_backend', ([], {}), '()\n', (1035, 1037), False, 'import matplotlib\n'), ((1314, 1338), 'matplotlib.get_backend', 'matplotlib.get_backend', ([], {}), '()\n', (1336, 1338), False, 'import matplotlib\n'), ((1701, 1740), 'matplotlib.image.imread', 'mpimg.imread', (['"""reg101_files/week2.tiff"""'], {}), "('reg101_files/week2.tiff')\n", (1713, 1740), True, 'import matplotlib.image as mpimg\n'), ((1746, 1785), 'matplotlib.image.imread', 'mpimg.imread', (['"""reg101_files/week3.tiff"""'], {}), "('reg101_files/week3.tiff')\n", (1758, 1785), True, 'import matplotlib.image as mpimg\n'), ((3827, 3841), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (3838, 3841), True, 'import numpy as np\n'), ((3931, 3950), 'image_viewing.overlay_RGB', 'overlay_RGB', (['images'], {}), '(images)\n', (3942, 3950), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((3955, 3973), 'IPython.display.clear_output', 'clear_output', (['(True)'], {}), '(True)\n', (3967, 3973), False, 'from IPython.display import clear_output, display\n'), ((4273, 4289), 'numpy.mean', 'np.mean', (['class_x'], {}), '(class_x)\n', (4280, 4289), True, 'import numpy as np\n'), ((4322, 4338), 'numpy.mean', 'np.mean', (['class_y'], {}), '(class_y)\n', (4329, 4338), True, 'import numpy as np\n'), ((5618, 5636), 'numpy.sum', 'np.sum', (['(delta ** 2)'], {}), '(delta ** 2)\n', (5624, 5636), True, 'import numpy as np\n'), ((6015, 6029), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (6026, 6029), True, 'import numpy as np\n'), ((6119, 6188), 'image_viewing.overlay_RGB_cost', 'overlay_RGB_cost', (['images', 'cost_history', 'cost_function', 'cfuncs', 'dx', 'dy'], {}), '(images, cost_history, cost_function, cfuncs, dx, dy)\n', (6135, 6188), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((6193, 6211), 'IPython.display.clear_output', 'clear_output', (['(True)'], {}), '(True)\n', (6205, 6211), False, 'from IPython.display import clear_output, display\n'), ((8007, 8025), 'numpy.fft.fft2', 'np.fft.fft2', (['image'], {}), '(image)\n', (8018, 8025), True, 'import numpy as np\n'), ((8054, 8072), 'numpy.fft.fftshift', 'np.fft.fftshift', (['f'], {}), '(f)\n', (8069, 8072), True, 'import numpy as np\n'), ((8114, 8129), 'numpy.copy', 'np.copy', (['fshift'], {}), '(fshift)\n', (8121, 8129), True, 'import numpy as np\n'), ((8391, 8406), 'numpy.copy', 'np.copy', (['fshift'], {}), '(fshift)\n', (8398, 8406), True, 'import numpy as np\n'), ((8466, 8487), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['hff'], {}), '(hff)\n', (8482, 8487), True, 'import numpy as np\n'), ((8522, 8543), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['lff'], {}), '(lff)\n', (8538, 8543), True, 'import numpy as np\n'), ((8576, 8600), 'numpy.fft.ifft2', 'np.fft.ifft2', (['lff_ishift'], {}), '(lff_ishift)\n', (8588, 8600), True, 'import numpy as np\n'), ((8631, 8655), 'numpy.fft.ifft2', 'np.fft.ifft2', (['hff_ishift'], {}), '(hff_ishift)\n', (8643, 8655), True, 'import numpy as np\n'), ((8686, 8702), 'numpy.abs', 'np.abs', (['hff_back'], {}), '(hff_back)\n', (8692, 8702), True, 'import numpy as np\n'), ((8718, 8734), 'numpy.abs', 'np.abs', (['lff_back'], {}), '(lff_back)\n', (8724, 8734), True, 'import numpy as np\n'), ((8795, 8822), 'numpy.percentile', 'np.percentile', (['hff_back', '(99)'], {}), '(hff_back, 99)\n', (8808, 8822), True, 'import numpy as np\n'), ((8861, 8905), 'image_viewing.horizontal_pane', 'horizontal_pane', (['[image, lff_back, hff_back]'], {}), '([image, lff_back, hff_back])\n', (8876, 8905), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((9609, 9623), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (9620, 9623), True, 'import numpy as np\n'), ((9995, 10013), 'IPython.display.clear_output', 'clear_output', (['(True)'], {}), '(True)\n', (10007, 10013), False, 'from IPython.display import clear_output, display\n'), ((11922, 11933), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (11930, 11933), True, 'import numpy as np\n'), ((11942, 11956), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (11953, 11956), True, 'import numpy as np\n'), ((12217, 12228), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (12225, 12228), True, 'import numpy as np\n'), ((12237, 12251), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (12248, 12251), True, 'import numpy as np\n'), ((12345, 12381), 'numpy.sum', 'np.sum', (['((images[0] - images[1]) ** 2)'], {}), '((images[0] - images[1]) ** 2)\n', (12351, 12381), True, 'import numpy as np\n'), ((13462, 13492), 'scipy.ndimage.affine_transform', 'affine_transform', (['images[1]', 'T'], {}), '(images[1], T)\n', (13478, 13492), False, 'from scipy.ndimage import affine_transform\n'), ((13574, 13604), 'scipy.ndimage.affine_transform', 'affine_transform', (['images[1]', 'T'], {}), '(images[1], T)\n', (13590, 13604), False, 'from scipy.ndimage import affine_transform\n'), ((1165, 1208), 'matplotlib.use', 'matplotlib.use', (['gui'], {'warn': '(False)', 'force': '(True)'}), '(gui, warn=False, force=True)\n', (1179, 1208), False, 'import matplotlib\n'), ((3898, 3925), 'scipy.ndimage.affine_transform', 'affine_transform', (['image2', 'T'], {}), '(image2, T)\n', (3914, 3925), False, 'from scipy.ndimage import affine_transform\n'), ((4029, 4045), 'ipywidgets.fixed', 'fixed', (['images[0]'], {}), '(images[0])\n', (4034, 4045), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((4058, 4074), 'ipywidgets.fixed', 'fixed', (['images[1]'], {}), '(images[1])\n', (4063, 4074), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((6086, 6113), 'scipy.ndimage.affine_transform', 'affine_transform', (['image2', 'T'], {}), '(image2, T)\n', (6102, 6113), False, 'from scipy.ndimage import affine_transform\n'), ((6268, 6284), 'ipywidgets.fixed', 'fixed', (['images[0]'], {}), '(images[0])\n', (6273, 6284), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((6297, 6313), 'ipywidgets.fixed', 'fixed', (['images[1]'], {}), '(images[1])\n', (6302, 6313), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((6378, 6389), 'ipywidgets.fixed', 'fixed', (['cost'], {}), '(cost)\n', (6383, 6389), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((6441, 6454), 'ipywidgets.fixed', 'fixed', (['c_funs'], {}), '(c_funs)\n', (6446, 6454), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((8143, 8162), 'numpy.array', 'np.array', (['hff.shape'], {}), '(hff.shape)\n', (8151, 8162), True, 'import numpy as np\n'), ((8980, 8996), 'ipywidgets.fixed', 'fixed', (['images[0]'], {}), '(images[0])\n', (8985, 8996), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((9472, 9504), 'scipy.ndimage.interpolation.zoom', 'zoom', (['image1', '(1 / level)'], {'order': '(0)'}), '(image1, 1 / level, order=0)\n', (9476, 9504), False, 'from scipy.ndimage.interpolation import zoom\n'), ((9518, 9550), 'scipy.ndimage.interpolation.zoom', 'zoom', (['image2', '(1 / level)'], {'order': '(0)'}), '(image2, 1 / level, order=0)\n', (9522, 9550), False, 'from scipy.ndimage.interpolation import zoom\n'), ((9852, 9930), 'image_viewing.overlay_RGB_cost', 'overlay_RGB_cost', (['images', 'cost_history', 'cost_function', 'cfuncs', 'dx', 'dy', 'history'], {}), '(images, cost_history, cost_function, cfuncs, dx, dy, history)\n', (9868, 9930), False, 'from image_viewing import horizontal_pane, overlay_RGB, overlay_RGB_cost\n'), ((10078, 10094), 'ipywidgets.fixed', 'fixed', (['images[0]'], {}), '(images[0])\n', (10083, 10094), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((10107, 10123), 'ipywidgets.fixed', 'fixed', (['images[1]'], {}), '(images[1])\n', (10112, 10123), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((10188, 10207), 'ipywidgets.fixed', 'fixed', (['cost_pyramid'], {}), '(cost_pyramid)\n', (10193, 10207), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((10259, 10272), 'ipywidgets.fixed', 'fixed', (['c_funs'], {}), '(c_funs)\n', (10264, 10272), False, 'from ipywidgets import interact, interactive, fixed, interact_manual\n'), ((12308, 12331), 'scipy.ndimage.affine_transform', 'affine_transform', (['i2', 'T'], {}), '(i2, T)\n', (12324, 12331), False, 'from scipy.ndimage import affine_transform\n'), ((13117, 13147), 'scipy.ndimage.affine_transform', 'affine_transform', (['images[1]', 'T'], {}), '(images[1], T)\n', (13133, 13147), False, 'from scipy.ndimage import affine_transform\n'), ((13297, 13327), 'scipy.ndimage.affine_transform', 'affine_transform', (['images[1]', 'T'], {}), '(images[1], T)\n', (13313, 13327), False, 'from scipy.ndimage import affine_transform\n'), ((9723, 9755), 'scipy.ndimage.affine_transform', 'affine_transform', (['i2', 'T'], {'order': '(0)'}), '(i2, T, order=0)\n', (9739, 9755), False, 'from scipy.ndimage import affine_transform\n'), ((9789, 9812), 'scipy.ndimage.affine_transform', 'affine_transform', (['i2', 'T'], {}), '(i2, T)\n', (9805, 9812), False, 'from scipy.ndimage import affine_transform\n'), ((12075, 12110), 'numpy.corrcoef', 'np.corrcoef', (['images[0]'], {'y': 'images[1]'}), '(images[0], y=images[1])\n', (12086, 12110), True, 'import numpy as np\n'), ((12023, 12046), 'scipy.ndimage.affine_transform', 'affine_transform', (['i2', 'T'], {}), '(i2, T)\n', (12039, 12046), False, 'from scipy.ndimage import affine_transform\n')]
# Python-bioformats is distributed under the GNU General Public # License, but this file is licensed under the more permissive BSD # license. See the accompanying file LICENSE for details. # # Copyright (c) 2009-2014 Broad Institute # All rights reserved. '''formatwriter.py - mechanism to wrap a bioformats WriterWrapper and ImageWriter The following file formats can be written using Bio-Formats: - TIFF (uncompressed or LZW) - OME-TIFF (uncompressed or LZW) - JPEG - PNG - AVI (uncompressed) - QuickTime (uncompressed is supported natively; additional codecs use QTJava) - Encapsulated PostScript (EPS) Support for OME-XML in the near future. The writer API (see loci.formats.IFormatWriter) is very similar to the reader API, in that files are written one plane at time (rather than all at once). All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file. ''' from __future__ import absolute_import, print_function, unicode_literals __version__ = "$Revision$" import numpy as np import os import sys import javabridge as jutil from .. import bioformats import javabridge from ..bioformats import omexml as ome def write_image(pathname, pixels, pixel_type, c = 0, z = 0, t = 0, size_c = 1, size_z = 1, size_t = 1, channel_names = None): """Write the image using bioformats. :param filename: save to this filename :param pixels: the image to save :param pixel_type: save using this pixel type :param c: the image's channel index :param z: the image's `z` index :param t: the image's `t` index :param size_c: # of channels in the stack :param size_z: # of z stacks :param size_t: # of timepoints in the stack :param channel_names: names of the channels (make up names if not present). """ omexml = ome.OMEXML() omexml.image(0).Name = os.path.split(pathname)[1] p = omexml.image(0).Pixels assert isinstance(p, ome.OMEXML.Pixels) p.SizeX = pixels.shape[1] p.SizeY = pixels.shape[0] p.SizeC = size_c p.SizeT = size_t p.SizeZ = size_z p.DimensionOrder = ome.DO_XYCZT p.PixelType = pixel_type index = c + size_c * z + size_c * size_z * t if pixels.ndim == 3: p.SizeC = pixels.shape[2] p.Channel(0).SamplesPerPixel = pixels.shape[2] omexml.structured_annotations.add_original_metadata( ome.OM_SAMPLES_PER_PIXEL, str(pixels.shape[2])) elif size_c > 1: p.channel_count = size_c pixel_buffer = convert_pixels_to_buffer(pixels, pixel_type) xml = omexml.to_xml() script = """ importClass(Packages.loci.formats.services.OMEXMLService, Packages.loci.common.services.ServiceFactory, Packages.loci.formats.ImageWriter); var service = new ServiceFactory().getInstance(OMEXMLService); var metadata = service.createOMEXMLMetadata(xml); var writer = new ImageWriter(); writer.setMetadataRetrieve(metadata); writer.setId(path); writer.setInterleaved(true); writer.saveBytes(index, buffer); writer.close(); """ jutil.run_script(script, dict(path=pathname, xml=xml, index=index, buffer=pixel_buffer)) def convert_pixels_to_buffer(pixels, pixel_type): '''Convert the pixels in the image into a buffer of the right pixel type pixels - a 2d monochrome or color image pixel_type - one of the OME pixel types returns a 1-d byte array ''' if pixel_type in (ome.PT_UINT8, ome.PT_INT8, ome.PT_BIT): as_dtype = np.uint8 elif pixel_type in (ome.PT_UINT16, ome.PT_INT16): as_dtype = "<u2" elif pixel_type in (ome.PT_UINT32, ome.PT_INT32): as_dtype = "<u4" elif pixel_type == ome.PT_FLOAT: as_dtype = "<f4" elif pixel_type == ome.PT_DOUBLE: as_dtype = "<f8" else: raise NotImplementedError("Unsupported pixel type: %d" % pixel_type) buf = np.frombuffer(np.ascontiguousarray(pixels, as_dtype).data, np.uint8) env = jutil.get_env() return env.make_byte_array(buf) def make_iformat_writer_class(class_name): '''Bind a Java class that implements IFormatWriter to a Python class Returns a class that implements IFormatWriter through calls to the implemented class passed in. The returned class can be subclassed to provide additional bindings. ''' class IFormatWriter(object): '''A wrapper for loci.formats.IFormatWriter See http://hudson.openmicroscopy.org.uk/job/LOCI/javadoc/loci/formats/ImageWriter.html ''' canDoStacks = jutil.make_method('canDoStacks', '()Z', 'Reports whether the writer can save multiple images to a single file.') getColorModel = jutil.make_method('getColorModel', '()Ljava/awt/image/ColorModel;', 'Gets the color model.') getCompression = jutil.make_method('getCompression', '()Ljava/lang/String;', 'Gets the current compression type.') getCompressionTypes = jutil.make_method('getCompressionTypes', '()[Ljava/lang/String;', 'Gets the available compression types.') getFramesPerSecond = jutil.make_method('getFramesPerSecond', '()I', 'Gets the frames per second to use when writing.') getMetadataRetrieve = jutil.make_method('getMetadataRetrieve', '()Lloci/formats/meta/MetadataRetrieve;', 'Retrieves the current metadata retrieval object for this writer.') getPixelTypes = jutil.make_method('getPixelTypes', '()[I', 'Gets the supported pixel types.') # getPixelTypes = jutil.make_method('getPixelTypes', '(Ljava/lang/String;)[I', # 'Gets the supported pixel types for the given codec.') isInterleaved = jutil.make_method('isInterleaved', '()Z', 'Gets whether or not the channels in an image are interleaved.') isSupportedType = jutil.make_method('isSupportedType', '(I)Z', 'Checks if the given pixel type is supported.') saveBytes = jutil.make_method('saveBytes', '([BZ)V', 'Saves the given byte array to the current file.') saveBytesIB = jutil.make_method('saveBytes', '(I[B)V', 'Saves bytes, first arg is image #') # saveBytes = jutil.make_method('saveBytes', '([BIZZ)V', # 'Saves the given byte array to the given series in the current file.') savePlane = jutil.make_method('savePlane', '(Ljava/lang/Object;Z)V', 'Saves the given image plane to the current file.') # savePlane = jutil.make_method('savePlane', '(Ljava/lang/Object;IZZ)V', # 'Saves the given image plane to the given series in the current file.') setColorModel = jutil.make_method('setColorModel', '(Ljava/awt/image/ColorModel;)V', 'Sets the color model.') setCompression = jutil.make_method('setCompression', '(Ljava/lang/String;)V', 'Sets the current compression type.') setFramesPerSecond = jutil.make_method('setFramesPerSecond', '(I)V', 'Sets the frames per second to use when writing.') setInterleaved = jutil.make_method('setInterleaved', '(Z)V', 'Sets whether or not the channels in an image are interleaved.') setMetadataRetrieve = jutil.make_method('setMetadataRetrieve', '(Lloci/formats/meta/MetadataRetrieve;)V', 'Sets the metadata retrieval object from which to retrieve standardized metadata.') setValidBitsPerPixel = jutil.make_method( 'setValidBitsPerPixel', '(I)V', 'Sets the number of valid bits per pixel') setSeries = jutil.make_method( 'setSeries', '(I)V', '''Set the series for the image file series - the zero-based index of the image stack in the file, for instance in a multi-image tif.''') return IFormatWriter def make_image_writer_class(): '''Return an image writer class for the given Java environment''' env = jutil.get_env() class_name = 'loci/formats/ImageWriter' klass = env.find_class(class_name) base_klass = env.find_class('loci/formats/IFormatWriter') IFormatWriter = make_iformat_writer_class(class_name) # # This uses the writers.txt file from inside the loci_tools.jar # class_list = jutil.make_instance("loci/formats/ClassList", "(Ljava/lang/String;" "Ljava/lang/Class;" # base "Ljava/lang/Class;)V", # location in jar "writers.txt", base_klass, klass) class ImageWriter(IFormatWriter): new_fn = jutil.make_new(class_name, '(Lloci/formats/ClassList;)V') def __init__(self): self.new_fn(class_list) setId = jutil.make_method('setId', '(Ljava/lang/String;)V', 'Sets the current file name.') addStatusListener = jutil.make_method('addStatusListener', '()Lloci/formats/StatusListener;', 'Adds a listener for status update events.') close = jutil.make_method('close','()V', 'Closes currently open file(s) and frees allocated memory.') getFormat = jutil.make_method('getFormat', '()Ljava/lang/String;', 'Gets the name of this file format.') getNativeDataType = jutil.make_method('getNativeDataType', '()Ljava/lang/Class;', 'Returns the native data type of image planes for this reader, as returned by IFormatReader.openPlane(int, int, int, int, int) or IFormatWriter#saveData.') getStatusListeners = jutil.make_method('getStatusListeners', '()[Lloci/formats/StatusListener;', 'Gets a list of all registered status update listeners.') getSuffixes = jutil.make_method('getSuffixes', '()Ljava/lang/String;', 'Gets the default file suffixes for this file format.') getWriter = jutil.make_method('getWriter', '()Lloci/formats/IFormatWriter;', 'Gets the writer used to save the current file.') # getWriter = jutil.make_method('getWriter', '(Ljava/lang/Class)Lloci/formats/IFormatWriter;', # 'Gets the file format writer instance matching the given class.') # getWriter = jutil.make_method('getWriter', '(Ljava/lang/String;)Lloci/formats/IFormatWriter;', # 'Gets the writer used to save the given file.') getWriters = jutil.make_method('getWriters', '()[Lloci/formats/IFormatWriter;', 'Gets all constituent file format writers.') isThisType = jutil.make_method('isThisType', '(Ljava/lang/String;)Z', 'Checks if the given string is a valid filename for this file format.') removeStatusListener = jutil.make_method('removeStatusListener', '(Lloci/formats/StatusListener;)V', 'Saves the given byte array to the current file.') return ImageWriter def make_ome_tiff_writer_class(): '''Return a class that wraps loci.formats.out.OMETiffWriter''' class_name = 'loci/formats/out/OMETiffWriter' IFormatWriter = make_iformat_writer_class(class_name) class OMETiffWriter(IFormatWriter): def __init__(self): self.new_fn = jutil.make_new(self.class_name, '()V') self.setId = jutil.make_method('setId', '(Ljava/lang/String;)V', 'Sets the current file name.') self.close = jutil.make_method( 'close','()V', 'Closes currently open file(s) and frees allocated memory.') self.saveBytesIFD = jutil.make_method( 'saveBytes', '(I[BLloci/formats/tiff/IFD;)V', '''save a byte array to an image channel index - image index bytes - byte array to save ifd - a loci.formats.tiff.IFD instance that gives all of the IFD values associated with the channel''') self.new_fn() return OMETiffWriter def make_writer_wrapper_class(class_name): '''Make an ImageWriter wrapper class class_name - the name of the wrapper class You can instantiate an instance of the wrapper class like this: writer = XXX(ImageWriter()) ''' IFormatWriter = make_iformat_writer_class(class_name) class WriterWrapper(IFormatWriter): __doc__ = '''A wrapper for %s See http://hudson.openmicroscopy.org.uk/job/LOCI/javadoc/loci/formats/ImageWriter.html '''%class_name new_fn = jutil.make_new(class_name, '(Lloci/formats/IFormatWriter;)V') def __init__(self, writer): self.new_fn(writer) setId = jutil.make_method('setId', '(Ljava/lang/String;)V', 'Sets the current file name.') return WriterWrapper def make_format_writer_class(class_name): '''Make a FormatWriter wrapper class class_name - the name of a class that implements loci.formats.FormatWriter Known names in the loci.formats.out package: APNGWriter, AVIWriter, EPSWriter, ICSWriter, ImageIOWriter, JPEG2000Writer, JPEGWriter, LegacyQTWriter, OMETiffWriter, OMEXMLWriter, QTWriter, TiffWriter ''' new_fn = jutil.make_new(class_name, '(Ljava/lang/String;Ljava/lang/String;)V') class FormatWriter(object): __doc__ = '''A wrapper for %s implementing loci.formats.FormatWriter See http://hudson.openmicroscopy.org.uk/job/LOCI/javadoc/loci/formats/FormatWriter'''%class_name def __init__(self): self.new_fn() canDoStacks = jutil.make_method('canDoStacks','()Z', 'Reports whether the writer can save multiple images to a single file') getColorModel = jutil.make_method('getColorModel', '()Ljava/awt/image/ColorModel;', 'Gets the color model') getCompression = jutil.make_method('getCompression', '()Ljava/lang/String;', 'Gets the current compression type') getCompressionTypes = jutil.make_method('getCompressionTypes', '()[Ljava/lang/String;', 'Gets the available compression types') getFramesPerSecond = jutil.make_method('getFramesPerSecond', '()I', "Gets the frames per second to use when writing") getMetadataRetrieve = jutil.make_method('getMetadataRetrieve', '()Lloci/formats/meta/MetadataRetrieve;', 'Retrieves the current metadata retrieval object for this writer.') getPixelTypes = jutil.make_method('getPixelTypes', '()[I') isInterleaved = jutil.make_method('isInterleaved','()Z', 'Gets whether or not the channels in an image are interleaved') isSupportedType = jutil.make_method('isSupportedType','(I)Z', 'Checks if the given pixel type is supported') saveBytes = jutil.make_method('saveBytes', '([BZ)V', 'Saves the given byte array to the current file') setColorModel = jutil.make_method('setColorModel', '(Ljava/awt/image/ColorModel;)V', 'Sets the color model') setCompression = jutil.make_method('setCompression', '(Ljava/lang/String;)V', 'Sets the current compression type') setFramesPerSecond = jutil.make_method('setFramesPerSecond', '(I)V', 'Sets the frames per second to use when writing') setId = jutil.make_method('setId','(Ljava/lang/String;)V', 'Sets the current file name') setInterleaved = jutil.make_method('setInterleaved', '(Z)V', 'Sets whether or not the channels in an image are interleaved') setMetadataRetrieve = jutil.make_method('setMetadataRetrieve', '(Lloci/formats/meta/MetadataRetrieve;)V', 'Sets the metadata retrieval object from which to retrieve standardized metadata') return FormatWriter def getRGBColorSpace(): '''Get a Java object that represents an RGB color space See java.awt.color.ColorSpace: this returns the linear RGB color space ''' cs_linear_rgb = jutil.get_static_field('java/awt/color/ColorSpace', 'CS_LINEAR_RGB', 'I') return jutil.static_call('java/awt/color/ColorSpace', 'getInstance', '(I)Ljava/awt/color/ColorSpace;', cs_linear_rgb) def getGrayColorSpace(): '''Get a Java object that represents an RGB color space See java.awt.color.ColorSpace: this returns the linear RGB color space ''' cs_gray = jutil.get_static_field('java/awt/color/ColorSpace', 'CS_GRAY', 'I') return jutil.static_call('java/awt/color/ColorSpace', 'getInstance', '(I)Ljava/awt/color/ColorSpace;', cs_gray) '''Constant for color model transparency indicating bitmask transparency''' BITMASK = 'BITMASK' '''Constant for color model transparency indicting an opaque color model''' OPAQUE = 'OPAQUE' '''Constant for color model transparency indicating a transparent color model''' TRANSPARENT = 'TRANSPARENT' '''Constant for color model transfer type indicating byte per pixel''' TYPE_BYTE = 'TYPE_BYTE' '''Constant for color model transfer type indicating unsigned short per pixel''' TYPE_USHORT = 'TYPE_USHORT' '''Constant for color model transfer type indicating integer per pixel''' TYPE_INT = 'TYPE_INT' def getColorModel(color_space, has_alpha=False, is_alpha_premultiplied = False, transparency = OPAQUE, transfer_type = TYPE_BYTE): '''Return a java.awt.image.ColorModel color model color_space - a java.awt.color.ColorSpace such as returned by getGrayColorSpace or getRGBColorSpace has_alpha - True if alpha channel is specified is_alpha_premultiplied - True if other channel values have already been reduced by the alpha multiplier, False if the channel values are independent of the multiplier. transparency - one of BITMASK, OPAQUE or TRANSPARENT. transfer_type - one of TYPE_BYTE, TYPE_USHORT, TYPE_INT ''' jtransparency = jutil.get_static_field('java/awt/Transparency', transparency, 'I') jtransfer_type = jutil.get_static_field('java/awt/image/DataBuffer', transfer_type, 'I') return jutil.make_instance('java/awt/image/ComponentColorModel', '(Ljava/awt/color/ColorSpace;ZZII)V', color_space, has_alpha, is_alpha_premultiplied, jtransparency, jtransfer_type) if __name__ == "__main__": import wx import matplotlib.backends.backend_wxagg as mmmm from .. import bioformats from .formatreader import * from .metadatatools import * app = wx.PySimpleApp() # dlg = wx.FileDialog(None) # if dlg.ShowModal()==wx.ID_OK: # filename = dlg.Path # else: # app.Exit() # sys.exit() filename = '/Users/afraser/Desktop/cpa_example/images/AS_09125_050116000001_A01f00d0.png' filename = '/Users/afraser/Desktop/wedding/header.jpg' out_file = '/Users/afraser/Desktop/test_output.avi' try: os.remove(out_file) print('previous output file deleted') except: print('no output file to delete') env = jutil.attach() ImageReader = make_image_reader_class() ChannelSeparator = make_reader_wrapper_class("loci/formats/ChannelSeparator") FormatTools = make_format_tools_class() # writer testing ImageWriter = make_image_writer_class() writer = ImageWriter() w = 400 h = 400 c = 3 z = 1 t = 4 images = [] for tt in range(t): images += [(np.random.rand(w, h, c) * 255).astype('uint8')] imeta = createOMEXMLMetadata() meta = wrap_imetadata_object(imeta) meta.createRoot() meta.setPixelsBigEndian(True, 0, 0) meta.setPixelsDimensionOrder('XYCZT', 0, 0) meta.setPixelsPixelType(FormatTools.getPixelTypeString(FormatTools.UINT8), 0, 0) meta.setPixelsSizeX(w, 0, 0) meta.setPixelsSizeY(h, 0, 0) meta.setPixelsSizeC(c, 0, 0) meta.setPixelsSizeZ(z, 0, 0) meta.setPixelsSizeT(t, 0, 0) meta.setLogicalChannelSamplesPerPixel(c, 0, 0) print('big endian:', meta.getPixelsBigEndian(0, 0)) print('dim order:', meta.getPixelsDimensionOrder(0, 0)) print('pixel type:', meta.getPixelsPixelType(0, 0)) print('size x:', meta.getPixelsSizeX(0, 0)) print('size y:', meta.getPixelsSizeY(0, 0)) print('size c:', meta.getPixelsSizeC(0, 0)) print('size z:', meta.getPixelsSizeZ(0, 0)) print('size t:', meta.getPixelsSizeT(0, 0)) print('samples per pixel:', meta.getLogicalChannelSamplesPerPixel(0, 0)) writer.setMetadataRetrieve(meta) writer.setId(out_file) for image in images: if len(image.shape)==3 and image.shape[2] == 3: save_im = np.array([image[:,:,0], image[:,:,1], image[:,:,2]]).astype(np.uint8).flatten() else: save_im = image.astype(np.uint8).flatten() writer.saveBytes(env.make_byte_array(save_im), (image is images[-1])) writer.close() print('Done writing image :)') # import PIL.Image as Image # im = Image.open(out_file, 'r') # im.show() jutil.detach() app.MainLoop()
[ "os.remove", "javabridge.static_call", "javabridge.get_env", "javabridge.get_static_field", "numpy.random.rand", "javabridge.make_new", "javabridge.make_method", "javabridge.make_instance", "numpy.array", "wx.PySimpleApp", "os.path.split", "numpy.ascontiguousarray", "javabridge.detach", "javabridge.attach" ]
[((4342, 4357), 'javabridge.get_env', 'jutil.get_env', ([], {}), '()\n', (4355, 4357), True, 'import javabridge as jutil\n'), ((8923, 8938), 'javabridge.get_env', 'jutil.get_env', ([], {}), '()\n', (8936, 8938), True, 'import javabridge as jutil\n'), ((9239, 9385), 'javabridge.make_instance', 'jutil.make_instance', (['"""loci/formats/ClassList"""', '"""(Ljava/lang/String;Ljava/lang/Class;Ljava/lang/Class;)V"""', '"""writers.txt"""', 'base_klass', 'klass'], {}), "('loci/formats/ClassList',\n '(Ljava/lang/String;Ljava/lang/Class;Ljava/lang/Class;)V',\n 'writers.txt', base_klass, klass)\n", (9258, 9385), True, 'import javabridge as jutil\n'), ((14552, 14621), 'javabridge.make_new', 'jutil.make_new', (['class_name', '"""(Ljava/lang/String;Ljava/lang/String;)V"""'], {}), "(class_name, '(Ljava/lang/String;Ljava/lang/String;)V')\n", (14566, 14621), True, 'import javabridge as jutil\n'), ((18217, 18290), 'javabridge.get_static_field', 'jutil.get_static_field', (['"""java/awt/color/ColorSpace"""', '"""CS_LINEAR_RGB"""', '"""I"""'], {}), "('java/awt/color/ColorSpace', 'CS_LINEAR_RGB', 'I')\n", (18239, 18290), True, 'import javabridge as jutil\n'), ((18345, 18459), 'javabridge.static_call', 'jutil.static_call', (['"""java/awt/color/ColorSpace"""', '"""getInstance"""', '"""(I)Ljava/awt/color/ColorSpace;"""', 'cs_linear_rgb'], {}), "('java/awt/color/ColorSpace', 'getInstance',\n '(I)Ljava/awt/color/ColorSpace;', cs_linear_rgb)\n", (18362, 18459), True, 'import javabridge as jutil\n'), ((18698, 18765), 'javabridge.get_static_field', 'jutil.get_static_field', (['"""java/awt/color/ColorSpace"""', '"""CS_GRAY"""', '"""I"""'], {}), "('java/awt/color/ColorSpace', 'CS_GRAY', 'I')\n", (18720, 18765), True, 'import javabridge as jutil\n'), ((18820, 18928), 'javabridge.static_call', 'jutil.static_call', (['"""java/awt/color/ColorSpace"""', '"""getInstance"""', '"""(I)Ljava/awt/color/ColorSpace;"""', 'cs_gray'], {}), "('java/awt/color/ColorSpace', 'getInstance',\n '(I)Ljava/awt/color/ColorSpace;', cs_gray)\n", (18837, 18928), True, 'import javabridge as jutil\n'), ((20331, 20397), 'javabridge.get_static_field', 'jutil.get_static_field', (['"""java/awt/Transparency"""', 'transparency', '"""I"""'], {}), "('java/awt/Transparency', transparency, 'I')\n", (20353, 20397), True, 'import javabridge as jutil\n'), ((20505, 20576), 'javabridge.get_static_field', 'jutil.get_static_field', (['"""java/awt/image/DataBuffer"""', 'transfer_type', '"""I"""'], {}), "('java/awt/image/DataBuffer', transfer_type, 'I')\n", (20527, 20576), True, 'import javabridge as jutil\n'), ((20632, 20814), 'javabridge.make_instance', 'jutil.make_instance', (['"""java/awt/image/ComponentColorModel"""', '"""(Ljava/awt/color/ColorSpace;ZZII)V"""', 'color_space', 'has_alpha', 'is_alpha_premultiplied', 'jtransparency', 'jtransfer_type'], {}), "('java/awt/image/ComponentColorModel',\n '(Ljava/awt/color/ColorSpace;ZZII)V', color_space, has_alpha,\n is_alpha_premultiplied, jtransparency, jtransfer_type)\n", (20651, 20814), True, 'import javabridge as jutil\n'), ((21100, 21116), 'wx.PySimpleApp', 'wx.PySimpleApp', ([], {}), '()\n', (21114, 21116), False, 'import wx\n'), ((21623, 21637), 'javabridge.attach', 'jutil.attach', ([], {}), '()\n', (21635, 21637), True, 'import javabridge as jutil\n'), ((23578, 23592), 'javabridge.detach', 'jutil.detach', ([], {}), '()\n', (23590, 23592), True, 'import javabridge as jutil\n'), ((2112, 2135), 'os.path.split', 'os.path.split', (['pathname'], {}), '(pathname)\n', (2125, 2135), False, 'import os\n'), ((4912, 5028), 'javabridge.make_method', 'jutil.make_method', (['"""canDoStacks"""', '"""()Z"""', '"""Reports whether the writer can save multiple images to a single file."""'], {}), "('canDoStacks', '()Z',\n 'Reports whether the writer can save multiple images to a single file.')\n", (4929, 5028), True, 'import javabridge as jutil\n'), ((5089, 5185), 'javabridge.make_method', 'jutil.make_method', (['"""getColorModel"""', '"""()Ljava/awt/image/ColorModel;"""', '"""Gets the color model."""'], {}), "('getColorModel', '()Ljava/awt/image/ColorModel;',\n 'Gets the color model.')\n", (5106, 5185), True, 'import javabridge as jutil\n'), ((5249, 5350), 'javabridge.make_method', 'jutil.make_method', (['"""getCompression"""', '"""()Ljava/lang/String;"""', '"""Gets the current compression type."""'], {}), "('getCompression', '()Ljava/lang/String;',\n 'Gets the current compression type.')\n", (5266, 5350), True, 'import javabridge as jutil\n'), ((5420, 5530), 'javabridge.make_method', 'jutil.make_method', (['"""getCompressionTypes"""', '"""()[Ljava/lang/String;"""', '"""Gets the available compression types."""'], {}), "('getCompressionTypes', '()[Ljava/lang/String;',\n 'Gets the available compression types.')\n", (5437, 5530), True, 'import javabridge as jutil\n'), ((5604, 5705), 'javabridge.make_method', 'jutil.make_method', (['"""getFramesPerSecond"""', '"""()I"""', '"""Gets the frames per second to use when writing."""'], {}), "('getFramesPerSecond', '()I',\n 'Gets the frames per second to use when writing.')\n", (5621, 5705), True, 'import javabridge as jutil\n'), ((5779, 5937), 'javabridge.make_method', 'jutil.make_method', (['"""getMetadataRetrieve"""', '"""()Lloci/formats/meta/MetadataRetrieve;"""', '"""Retrieves the current metadata retrieval object for this writer."""'], {}), "('getMetadataRetrieve',\n '()Lloci/formats/meta/MetadataRetrieve;',\n 'Retrieves the current metadata retrieval object for this writer.')\n", (5796, 5937), True, 'import javabridge as jutil\n'), ((6002, 6079), 'javabridge.make_method', 'jutil.make_method', (['"""getPixelTypes"""', '"""()[I"""', '"""Gets the supported pixel types."""'], {}), "('getPixelTypes', '()[I', 'Gets the supported pixel types.')\n", (6019, 6079), True, 'import javabridge as jutil\n'), ((6330, 6440), 'javabridge.make_method', 'jutil.make_method', (['"""isInterleaved"""', '"""()Z"""', '"""Gets whether or not the channels in an image are interleaved."""'], {}), "('isInterleaved', '()Z',\n 'Gets whether or not the channels in an image are interleaved.')\n", (6347, 6440), True, 'import javabridge as jutil\n'), ((6505, 6601), 'javabridge.make_method', 'jutil.make_method', (['"""isSupportedType"""', '"""(I)Z"""', '"""Checks if the given pixel type is supported."""'], {}), "('isSupportedType', '(I)Z',\n 'Checks if the given pixel type is supported.')\n", (6522, 6601), True, 'import javabridge as jutil\n'), ((6662, 6757), 'javabridge.make_method', 'jutil.make_method', (['"""saveBytes"""', '"""([BZ)V"""', '"""Saves the given byte array to the current file."""'], {}), "('saveBytes', '([BZ)V',\n 'Saves the given byte array to the current file.')\n", (6679, 6757), True, 'import javabridge as jutil\n'), ((6814, 6891), 'javabridge.make_method', 'jutil.make_method', (['"""saveBytes"""', '"""(I[B)V"""', '"""Saves bytes, first arg is image #"""'], {}), "('saveBytes', '(I[B)V', 'Saves bytes, first arg is image #')\n", (6831, 6891), True, 'import javabridge as jutil\n'), ((7126, 7238), 'javabridge.make_method', 'jutil.make_method', (['"""savePlane"""', '"""(Ljava/lang/Object;Z)V"""', '"""Saves the given image plane to the current file."""'], {}), "('savePlane', '(Ljava/lang/Object;Z)V',\n 'Saves the given image plane to the current file.')\n", (7143, 7238), True, 'import javabridge as jutil\n'), ((7488, 7585), 'javabridge.make_method', 'jutil.make_method', (['"""setColorModel"""', '"""(Ljava/awt/image/ColorModel;)V"""', '"""Sets the color model."""'], {}), "('setColorModel', '(Ljava/awt/image/ColorModel;)V',\n 'Sets the color model.')\n", (7505, 7585), True, 'import javabridge as jutil\n'), ((7649, 7751), 'javabridge.make_method', 'jutil.make_method', (['"""setCompression"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current compression type."""'], {}), "('setCompression', '(Ljava/lang/String;)V',\n 'Sets the current compression type.')\n", (7666, 7751), True, 'import javabridge as jutil\n'), ((7820, 7922), 'javabridge.make_method', 'jutil.make_method', (['"""setFramesPerSecond"""', '"""(I)V"""', '"""Sets the frames per second to use when writing."""'], {}), "('setFramesPerSecond', '(I)V',\n 'Sets the frames per second to use when writing.')\n", (7837, 7922), True, 'import javabridge as jutil\n'), ((7991, 8103), 'javabridge.make_method', 'jutil.make_method', (['"""setInterleaved"""', '"""(Z)V"""', '"""Sets whether or not the channels in an image are interleaved."""'], {}), "('setInterleaved', '(Z)V',\n 'Sets whether or not the channels in an image are interleaved.')\n", (8008, 8103), True, 'import javabridge as jutil\n'), ((8173, 8353), 'javabridge.make_method', 'jutil.make_method', (['"""setMetadataRetrieve"""', '"""(Lloci/formats/meta/MetadataRetrieve;)V"""', '"""Sets the metadata retrieval object from which to retrieve standardized metadata."""'], {}), "('setMetadataRetrieve',\n '(Lloci/formats/meta/MetadataRetrieve;)V',\n 'Sets the metadata retrieval object from which to retrieve standardized metadata.'\n )\n", (8190, 8353), True, 'import javabridge as jutil\n'), ((8420, 8516), 'javabridge.make_method', 'jutil.make_method', (['"""setValidBitsPerPixel"""', '"""(I)V"""', '"""Sets the number of valid bits per pixel"""'], {}), "('setValidBitsPerPixel', '(I)V',\n 'Sets the number of valid bits per pixel')\n", (8437, 8516), True, 'import javabridge as jutil\n'), ((8558, 8768), 'javabridge.make_method', 'jutil.make_method', (['"""setSeries"""', '"""(I)V"""', '"""Set the series for the image file\n\n series - the zero-based index of the image stack in the file,\n for instance in a multi-image tif."""'], {}), '(\'setSeries\', \'(I)V\',\n """Set the series for the image file\n\n series - the zero-based index of the image stack in the file,\n for instance in a multi-image tif."""\n )\n', (8575, 8768), True, 'import javabridge as jutil\n'), ((9612, 9669), 'javabridge.make_new', 'jutil.make_new', (['class_name', '"""(Lloci/formats/ClassList;)V"""'], {}), "(class_name, '(Lloci/formats/ClassList;)V')\n", (9626, 9669), True, 'import javabridge as jutil\n'), ((9751, 9837), 'javabridge.make_method', 'jutil.make_method', (['"""setId"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current file name."""'], {}), "('setId', '(Ljava/lang/String;)V',\n 'Sets the current file name.')\n", (9768, 9837), True, 'import javabridge as jutil\n'), ((9896, 10018), 'javabridge.make_method', 'jutil.make_method', (['"""addStatusListener"""', '"""()Lloci/formats/StatusListener;"""', '"""Adds a listener for status update events."""'], {}), "('addStatusListener', '()Lloci/formats/StatusListener;',\n 'Adds a listener for status update events.')\n", (9913, 10018), True, 'import javabridge as jutil\n'), ((10077, 10175), 'javabridge.make_method', 'jutil.make_method', (['"""close"""', '"""()V"""', '"""Closes currently open file(s) and frees allocated memory."""'], {}), "('close', '()V',\n 'Closes currently open file(s) and frees allocated memory.')\n", (10094, 10175), True, 'import javabridge as jutil\n'), ((10225, 10321), 'javabridge.make_method', 'jutil.make_method', (['"""getFormat"""', '"""()Ljava/lang/String;"""', '"""Gets the name of this file format."""'], {}), "('getFormat', '()Ljava/lang/String;',\n 'Gets the name of this file format.')\n", (10242, 10321), True, 'import javabridge as jutil\n'), ((10384, 10610), 'javabridge.make_method', 'jutil.make_method', (['"""getNativeDataType"""', '"""()Ljava/lang/Class;"""', '"""Returns the native data type of image planes for this reader, as returned by IFormatReader.openPlane(int, int, int, int, int) or IFormatWriter#saveData."""'], {}), "('getNativeDataType', '()Ljava/lang/Class;',\n 'Returns the native data type of image planes for this reader, as returned by IFormatReader.openPlane(int, int, int, int, int) or IFormatWriter#saveData.'\n )\n", (10401, 10610), True, 'import javabridge as jutil\n'), ((10677, 10814), 'javabridge.make_method', 'jutil.make_method', (['"""getStatusListeners"""', '"""()[Lloci/formats/StatusListener;"""', '"""Gets a list of all registered status update listeners."""'], {}), "('getStatusListeners', '()[Lloci/formats/StatusListener;',\n 'Gets a list of all registered status update listeners.')\n", (10694, 10814), True, 'import javabridge as jutil\n'), ((10880, 10996), 'javabridge.make_method', 'jutil.make_method', (['"""getSuffixes"""', '"""()Ljava/lang/String;"""', '"""Gets the default file suffixes for this file format."""'], {}), "('getSuffixes', '()Ljava/lang/String;',\n 'Gets the default file suffixes for this file format.')\n", (10897, 10996), True, 'import javabridge as jutil\n'), ((11053, 11171), 'javabridge.make_method', 'jutil.make_method', (['"""getWriter"""', '"""()Lloci/formats/IFormatWriter;"""', '"""Gets the writer used to save the current file."""'], {}), "('getWriter', '()Lloci/formats/IFormatWriter;',\n 'Gets the writer used to save the current file.')\n", (11070, 11171), True, 'import javabridge as jutil\n'), ((11625, 11740), 'javabridge.make_method', 'jutil.make_method', (['"""getWriters"""', '"""()[Lloci/formats/IFormatWriter;"""', '"""Gets all constituent file format writers."""'], {}), "('getWriters', '()[Lloci/formats/IFormatWriter;',\n 'Gets all constituent file format writers.')\n", (11642, 11740), True, 'import javabridge as jutil\n'), ((11797, 11929), 'javabridge.make_method', 'jutil.make_method', (['"""isThisType"""', '"""(Ljava/lang/String;)Z"""', '"""Checks if the given string is a valid filename for this file format."""'], {}), "('isThisType', '(Ljava/lang/String;)Z',\n 'Checks if the given string is a valid filename for this file format.')\n", (11814, 11929), True, 'import javabridge as jutil\n'), ((11996, 12132), 'javabridge.make_method', 'jutil.make_method', (['"""removeStatusListener"""', '"""(Lloci/formats/StatusListener;)V"""', '"""Saves the given byte array to the current file."""'], {}), "('removeStatusListener',\n '(Lloci/formats/StatusListener;)V',\n 'Saves the given byte array to the current file.')\n", (12013, 12132), True, 'import javabridge as jutil\n'), ((13798, 13859), 'javabridge.make_new', 'jutil.make_new', (['class_name', '"""(Lloci/formats/IFormatWriter;)V"""'], {}), "(class_name, '(Lloci/formats/IFormatWriter;)V')\n", (13812, 13859), True, 'import javabridge as jutil\n'), ((13945, 14031), 'javabridge.make_method', 'jutil.make_method', (['"""setId"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current file name."""'], {}), "('setId', '(Ljava/lang/String;)V',\n 'Sets the current file name.')\n", (13962, 14031), True, 'import javabridge as jutil\n'), ((14941, 15056), 'javabridge.make_method', 'jutil.make_method', (['"""canDoStacks"""', '"""()Z"""', '"""Reports whether the writer can save multiple images to a single file"""'], {}), "('canDoStacks', '()Z',\n 'Reports whether the writer can save multiple images to a single file')\n", (14958, 15056), True, 'import javabridge as jutil\n'), ((15116, 15211), 'javabridge.make_method', 'jutil.make_method', (['"""getColorModel"""', '"""()Ljava/awt/image/ColorModel;"""', '"""Gets the color model"""'], {}), "('getColorModel', '()Ljava/awt/image/ColorModel;',\n 'Gets the color model')\n", (15133, 15211), True, 'import javabridge as jutil\n'), ((15317, 15417), 'javabridge.make_method', 'jutil.make_method', (['"""getCompression"""', '"""()Ljava/lang/String;"""', '"""Gets the current compression type"""'], {}), "('getCompression', '()Ljava/lang/String;',\n 'Gets the current compression type')\n", (15334, 15417), True, 'import javabridge as jutil\n'), ((15530, 15639), 'javabridge.make_method', 'jutil.make_method', (['"""getCompressionTypes"""', '"""()[Ljava/lang/String;"""', '"""Gets the available compression types"""'], {}), "('getCompressionTypes', '()[Ljava/lang/String;',\n 'Gets the available compression types')\n", (15547, 15639), True, 'import javabridge as jutil\n'), ((15761, 15861), 'javabridge.make_method', 'jutil.make_method', (['"""getFramesPerSecond"""', '"""()I"""', '"""Gets the frames per second to use when writing"""'], {}), "('getFramesPerSecond', '()I',\n 'Gets the frames per second to use when writing')\n", (15778, 15861), True, 'import javabridge as jutil\n'), ((15935, 16093), 'javabridge.make_method', 'jutil.make_method', (['"""getMetadataRetrieve"""', '"""()Lloci/formats/meta/MetadataRetrieve;"""', '"""Retrieves the current metadata retrieval object for this writer."""'], {}), "('getMetadataRetrieve',\n '()Lloci/formats/meta/MetadataRetrieve;',\n 'Retrieves the current metadata retrieval object for this writer.')\n", (15952, 16093), True, 'import javabridge as jutil\n'), ((16207, 16249), 'javabridge.make_method', 'jutil.make_method', (['"""getPixelTypes"""', '"""()[I"""'], {}), "('getPixelTypes', '()[I')\n", (16224, 16249), True, 'import javabridge as jutil\n'), ((16316, 16425), 'javabridge.make_method', 'jutil.make_method', (['"""isInterleaved"""', '"""()Z"""', '"""Gets whether or not the channels in an image are interleaved"""'], {}), "('isInterleaved', '()Z',\n 'Gets whether or not the channels in an image are interleaved')\n", (16333, 16425), True, 'import javabridge as jutil\n'), ((16489, 16584), 'javabridge.make_method', 'jutil.make_method', (['"""isSupportedType"""', '"""(I)Z"""', '"""Checks if the given pixel type is supported"""'], {}), "('isSupportedType', '(I)Z',\n 'Checks if the given pixel type is supported')\n", (16506, 16584), True, 'import javabridge as jutil\n'), ((16644, 16738), 'javabridge.make_method', 'jutil.make_method', (['"""saveBytes"""', '"""([BZ)V"""', '"""Saves the given byte array to the current file"""'], {}), "('saveBytes', '([BZ)V',\n 'Saves the given byte array to the current file')\n", (16661, 16738), True, 'import javabridge as jutil\n'), ((16797, 16893), 'javabridge.make_method', 'jutil.make_method', (['"""setColorModel"""', '"""(Ljava/awt/image/ColorModel;)V"""', '"""Sets the color model"""'], {}), "('setColorModel', '(Ljava/awt/image/ColorModel;)V',\n 'Sets the color model')\n", (16814, 16893), True, 'import javabridge as jutil\n'), ((16999, 17100), 'javabridge.make_method', 'jutil.make_method', (['"""setCompression"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current compression type"""'], {}), "('setCompression', '(Ljava/lang/String;)V',\n 'Sets the current compression type')\n", (17016, 17100), True, 'import javabridge as jutil\n'), ((17212, 17313), 'javabridge.make_method', 'jutil.make_method', (['"""setFramesPerSecond"""', '"""(I)V"""', '"""Sets the frames per second to use when writing"""'], {}), "('setFramesPerSecond', '(I)V',\n 'Sets the frames per second to use when writing')\n", (17229, 17313), True, 'import javabridge as jutil\n'), ((17420, 17505), 'javabridge.make_method', 'jutil.make_method', (['"""setId"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current file name"""'], {}), "('setId', '(Ljava/lang/String;)V',\n 'Sets the current file name')\n", (17437, 17505), True, 'import javabridge as jutil\n'), ((17560, 17671), 'javabridge.make_method', 'jutil.make_method', (['"""setInterleaved"""', '"""(Z)V"""', '"""Sets whether or not the channels in an image are interleaved"""'], {}), "('setInterleaved', '(Z)V',\n 'Sets whether or not the channels in an image are interleaved')\n", (17577, 17671), True, 'import javabridge as jutil\n'), ((17741, 17920), 'javabridge.make_method', 'jutil.make_method', (['"""setMetadataRetrieve"""', '"""(Lloci/formats/meta/MetadataRetrieve;)V"""', '"""Sets the metadata retrieval object from which to retrieve standardized metadata"""'], {}), "('setMetadataRetrieve',\n '(Lloci/formats/meta/MetadataRetrieve;)V',\n 'Sets the metadata retrieval object from which to retrieve standardized metadata'\n )\n", (17758, 17920), True, 'import javabridge as jutil\n'), ((21492, 21511), 'os.remove', 'os.remove', (['out_file'], {}), '(out_file)\n', (21501, 21511), False, 'import os\n'), ((4277, 4315), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['pixels', 'as_dtype'], {}), '(pixels, as_dtype)\n', (4297, 4315), True, 'import numpy as np\n'), ((12503, 12541), 'javabridge.make_new', 'jutil.make_new', (['self.class_name', '"""()V"""'], {}), "(self.class_name, '()V')\n", (12517, 12541), True, 'import javabridge as jutil\n'), ((12567, 12653), 'javabridge.make_method', 'jutil.make_method', (['"""setId"""', '"""(Ljava/lang/String;)V"""', '"""Sets the current file name."""'], {}), "('setId', '(Ljava/lang/String;)V',\n 'Sets the current file name.')\n", (12584, 12653), True, 'import javabridge as jutil\n'), ((12718, 12816), 'javabridge.make_method', 'jutil.make_method', (['"""close"""', '"""()V"""', '"""Closes currently open file(s) and frees allocated memory."""'], {}), "('close', '()V',\n 'Closes currently open file(s) and frees allocated memory.')\n", (12735, 12816), True, 'import javabridge as jutil\n'), ((12877, 13206), 'javabridge.make_method', 'jutil.make_method', (['"""saveBytes"""', '"""(I[BLloci/formats/tiff/IFD;)V"""', '"""save a byte array to an image channel\n\n index - image index\n bytes - byte array to save\n ifd - a loci.formats.tiff.IFD instance that gives all of the\n IFD values associated with the channel"""'], {}), '(\'saveBytes\', \'(I[BLloci/formats/tiff/IFD;)V\',\n """save a byte array to an image channel\n\n index - image index\n bytes - byte array to save\n ifd - a loci.formats.tiff.IFD instance that gives all of the\n IFD values associated with the channel"""\n )\n', (12894, 13206), True, 'import javabridge as jutil\n'), ((22016, 22039), 'numpy.random.rand', 'np.random.rand', (['w', 'h', 'c'], {}), '(w, h, c)\n', (22030, 22039), True, 'import numpy as np\n'), ((23209, 23267), 'numpy.array', 'np.array', (['[image[:, :, 0], image[:, :, 1], image[:, :, 2]]'], {}), '([image[:, :, 0], image[:, :, 1], image[:, :, 2]])\n', (23217, 23267), True, 'import numpy as np\n')]
# Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # https://github.com/kmbnw/rank_metrics/blob/master/python/ndcg.py from __future__ import absolute_import, annotations import numpy as np """ Implementation of normalized discounted cumulative gain. Handy for testing ranking algorithms. https://en.wikipedia.org/wiki/Discounted_cumulative_gain """ def cum_gain(relevance): """ Calculate cumulative gain. This ignores the position of a result, but may still be generally useful. @param relevance: Graded relevances of the results. @type relevance: C{seq} or C{numpy.array} """ if relevance is None or len(relevance) < 1: return 0.0 return np.asarray(relevance).sum() def dcg(relevance, alternate=True): """ Calculate discounted cumulative gain. @param relevance: Graded and ordered relevances of the results. @type relevance: C{seq} or C{numpy.array} @param alternate: True to use the alternate scoring (intended to place more emphasis on relevant results). @type alternate: C{bool} """ if relevance is None or len(relevance) < 1: return 0.0 rel = np.asarray(relevance) p = len(rel) if alternate: # from wikipedia: "An alternative formulation of # DCG[5] places stronger emphasis on retrieving relevant documents" log2i = np.log2(np.asarray(range(1, p + 1)) + 1) return ((np.power(2, rel) - 1) / log2i).sum() else: log2i = np.log2(range(2, p + 1)) return rel[0] + (rel[1:] / log2i).sum() def idcg(relevance, alternate=True): """ Calculate ideal discounted cumulative gain (maximum possible DCG). @param relevance: Graded and ordered relevances of the results. @type relevance: C{seq} or C{numpy.array} @param alternate: True to use the alternate scoring (intended to place more emphasis on relevant results). @type alternate: C{bool} """ if relevance is None or len(relevance) < 1: return 0.0 # guard copy before sort rel = np.asarray(relevance).copy() rel.sort() return dcg(rel[::-1], alternate) def ndcg(relevance, nranks, alternate=True): """ Calculate normalized discounted cumulative gain. @param relevance: Graded and ordered relevances of the results. @type relevance: C{seq} or C{numpy.array} @param nranks: Number of ranks to use when calculating NDCG. Will be used to rightpad with zeros if len(relevance) is less than nranks @type nranks: C{int} @param alternate: True to use the alternate scoring (intended to place more emphasis on relevant results). @type alternate: C{bool} """ if relevance is None or len(relevance) < 1: return 0.0 if nranks < 1: raise Exception("nranks < 1") rel = np.asarray(relevance) pad = max(0, nranks - len(rel)) # pad could be zero in which case this will no-op rel = np.pad(rel, (0, pad), "constant") # now slice downto nranks rel = rel[0 : min(nranks, len(rel))] ideal_dcg = idcg(rel, alternate) if ideal_dcg == 0: return 0.0 return dcg(rel, alternate) / ideal_dcg
[ "numpy.pad", "numpy.power", "numpy.asarray" ]
[((1683, 1704), 'numpy.asarray', 'np.asarray', (['relevance'], {}), '(relevance)\n', (1693, 1704), True, 'import numpy as np\n'), ((3342, 3363), 'numpy.asarray', 'np.asarray', (['relevance'], {}), '(relevance)\n', (3352, 3363), True, 'import numpy as np\n'), ((3465, 3498), 'numpy.pad', 'np.pad', (['rel', '(0, pad)', '"""constant"""'], {}), "(rel, (0, pad), 'constant')\n", (3471, 3498), True, 'import numpy as np\n'), ((1221, 1242), 'numpy.asarray', 'np.asarray', (['relevance'], {}), '(relevance)\n', (1231, 1242), True, 'import numpy as np\n'), ((2578, 2599), 'numpy.asarray', 'np.asarray', (['relevance'], {}), '(relevance)\n', (2588, 2599), True, 'import numpy as np\n'), ((1949, 1965), 'numpy.power', 'np.power', (['(2)', 'rel'], {}), '(2, rel)\n', (1957, 1965), True, 'import numpy as np\n')]
import nerdle_cfg import re import luigi import d6tflow import itertools import pandas as pd import numpy as np #helper functions def check_len_int(nerdle): nerdle_str = ''.join(nerdle) try: return all(len(x)==len(str(int(x))) for x in re.split('\+|\-|\*|\/|==',nerdle_str)) except: return False def rt_is_num(nerdle): rt_arr = nerdle[np.where(np.array(nerdle)=='==')[0][0]+1:] test_str = ''.join(rt_arr) return test_str.isnumeric() def join_elems_of_tups(list_o_tups): return list(map(lambda x: ''.join(x),list_o_tups)) def test_eval(nerdle): test_str = ''.join(nerdle) try: return eval(test_str) except: return False class buildNerdles(d6tflow.tasks.TaskPqPandas): nerdle_len = luigi.IntParameter() def run(self): nerdle_len = self.nerdle_len nerdles = list(itertools.combinations_with_replacement(nerdle_cfg.nerd_list,nerdle_len)) #TODO: Optimize second list comprehension using filter if possible nerdles = list(filter( lambda nerdle: ('==' in nerdle)& bool(any(i in nerdle for i in [x for x in nerdle_cfg.nerd_op_list if x!="=="])),nerdles)) nerdle_ser = pd.Series(nerdles) nerdle_df = pd.DataFrame(nerdle_ser) nerdle_df.columns=['nerdle_combinations'] #for each nerdle combination create permutations nerdle_df['perms'] = nerdle_df['nerdle_combinations'].apply(itertools.permutations,nerdle_len) # can't start or end with an equals sign and turns permutation tuples into a list nerdle_df['perm_red_stend_equal'] = nerdle_df['perms'].apply(lambda y: filter(lambda x:(list(x)[0]!='==')&(list(x)[-1]!='=='),y)) # equal sign appears only once nerdle_df['perm_equal_once'] = nerdle_df['perm_red_stend_equal'].apply(lambda y: filter(lambda x: x.count('==')==1,y)) # elements to the right of the equal sign must be a number nerdle_df['right_equal_must_be_number'] = nerdle_df['perm_equal_once'].apply(lambda y: filter(lambda x: rt_is_num(x),y)) #length of string has to be 9 nerdle_df['len_check'] = nerdle_df['right_equal_must_be_number'].apply(lambda y: filter(lambda x: len(x)==nerdle_len,y)) #check that non operater numbers are of proper length nerdle_df['non_op_num_check'] = nerdle_df['len_check'].apply(lambda y: filter(lambda x: check_len_int(x),y)) #check that string evals properly nerdle_df['eval_check'] = nerdle_df['non_op_num_check'].apply(lambda y: filter(lambda x: test_eval(x),y)) self.save(nerdle_df)
[ "pandas.DataFrame", "re.split", "itertools.combinations_with_replacement", "numpy.array", "pandas.Series", "luigi.IntParameter" ]
[((762, 782), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (780, 782), False, 'import luigi\n'), ((1223, 1241), 'pandas.Series', 'pd.Series', (['nerdles'], {}), '(nerdles)\n', (1232, 1241), True, 'import pandas as pd\n'), ((1262, 1286), 'pandas.DataFrame', 'pd.DataFrame', (['nerdle_ser'], {}), '(nerdle_ser)\n', (1274, 1286), True, 'import pandas as pd\n'), ((873, 946), 'itertools.combinations_with_replacement', 'itertools.combinations_with_replacement', (['nerdle_cfg.nerd_list', 'nerdle_len'], {}), '(nerdle_cfg.nerd_list, nerdle_len)\n', (912, 946), False, 'import itertools\n'), ((254, 296), 're.split', 're.split', (['"""\\\\+|\\\\-|\\\\*|\\\\/|=="""', 'nerdle_str'], {}), "('\\\\+|\\\\-|\\\\*|\\\\/|==', nerdle_str)\n", (262, 296), False, 'import re\n'), ((379, 395), 'numpy.array', 'np.array', (['nerdle'], {}), '(nerdle)\n', (387, 395), True, 'import numpy as np\n')]
from ..helpers import eos from ..helpers import alfaFunctions from ..helpers.eosHelpers import A_fun, B_fun, getCubicCoefficients, getMixFugacity,getMixFugacityCoef, dAdT_fun from ..solvers.cubicSolver import cubic_solver from ..helpers import temperatureCorrelations as tempCorr from ..helpers import mixing_rules from numpy import log, exp, sqrt,absolute, array,sum from scipy.optimize import fsolve, newton, root from scipy.integrate import quad def solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals',diagram=False,properties=False,heat_capacities=None): # Vectorization tc = array(tc) pc= array(pc) acentric = array(acentric) liq_compositions=array(liq_compositions) vap_compositions = array(vap_compositions) kij = array(kij) # Method selection eos_fun = eos.selector(method) u,w,omega_a,omega_b,L = eos_fun() # Alfa function selection alfa_fun = alfaFunctions.selector(alfa_function) alfa= alfa_fun(t,tc,acentric) Ai = A_fun(t,p,tc,pc,acentric,omega_a,alfa) Bi = B_fun(t,p,tc,pc,omega_b) # Mixing rules mixing_rule_used = mixing_rules.selector(mixing_rule) A_liq,B_liq,A_i_liq,Aij_liq,dAdT_liq = mixing_rule_used(liq_compositions,tc,acentric,kij,Ai,Bi,alfa,alfa_fun,t) A_vap,B_vap,A_i_vap,Aij_vap,dAdT_vap = mixing_rule_used(vap_compositions,tc,acentric,kij,Ai,Bi,alfa,alfa_fun,t) coefficients_liq = getCubicCoefficients(A_liq,B_liq,u,w) coefficients_vap = getCubicCoefficients(A_vap,B_vap,u,w) z_liq= cubic_solver(coefficients_liq,diagram,B_liq) z_vap = cubic_solver(coefficients_vap,diagram,B_vap) z_liq = z_liq[0] if isinstance(z_liq,tuple) else z_liq z_vap = z_vap[1] if isinstance(z_vap,tuple) else z_vap liq_fugacity_coef = getMixFugacityCoef(z_liq,A_liq,B_liq,A_i_liq,Bi,L) vap_fugacity_coef = getMixFugacityCoef(z_vap,A_vap,B_vap,A_i_vap,Bi,L) if(properties): liq_fugacity = getMixFugacity(z_liq,A_liq,B_liq,A_i_liq,B_liq,L,liq_compositions,p) vap_fugacity = getMixFugacity(z_vap,A_vap,B_vap,A_i_vap,B_vap,L,vap_compositions,p) heat_capacities = array(heat_capacities) ideal_enthalpies = get_ideal_enthalpy(heat_capacities,t) ideal_entropies = get_ideal_entropy(heat_capacities,t,p) dAdt = dAdT_fun(t,p,tc,pc,acentric,omega_a,alfa_fun) enthalpy_liq = get_real_enthalpy(ideal_enthalpies,t,z_liq,A_liq,dAdt,B_liq,L) enthalpy_vap = get_real_enthalpy(ideal_enthalpies,t,z_vap,A_vap,dAdt,B_vap,L) entropy_liq = get_real_entropy(ideal_entropies,z_liq,A_liq,dAdt,B_liq,L) entropy_vap = get_real_entropy(ideal_entropies,z_vap,A_vap,dAdt,B_vap,L) response = { "liq_fugacity":liq_fugacity, "vap_fugacity":vap_fugacity, "enthalpy_liq":enthalpy_liq, "enthalpy_vap":enthalpy_vap, "entropy_liq":entropy_liq, "entropy_vap":entropy_vap, "z_liq":z_liq, "z_vap":z_vap, "liq_compositions":liq_compositions, "vap_compositions":vap_compositions } return response return (liq_fugacity_coef,vap_fugacity_coef) def bubble_temperature(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,delta_t=0.1,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals'): liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sy = sum(Ki*liq_compositions) E = log(Sy) attempts=0 new_t=t new_vap_compositions = vap_compositions while(absolute(E) >= 1e-9): if(attempts == 500): return 'Problem can not be solved' t0 = new_t + delta_t liq_fugacity_coef0,vap_fugacity_coef0 = solve_eos(t0,p,tc,pc,acentric,liq_compositions,new_vap_compositions,kij,method,alfa_function,mixing_rule) Ki0 = liq_fugacity_coef0/vap_fugacity_coef0 Sy0 = sum(Ki0*liq_compositions) E0 = log(Sy0) new_t = (new_t*t0*(E0-E))/(t0*E0-new_t*E) Sy = sum(Ki*liq_compositions) new_vap_compositions = (Ki*liq_compositions)/Sy liq_fugacity_coef,vap_fugacity_coef = solve_eos(new_t,p,tc,pc,acentric,liq_compositions,new_vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sy = sum(Ki*liq_compositions) E=log(Sy) attempts +=1 return(new_t,p,liq_compositions,new_vap_compositions) def bubble_pressure(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,delta_p=0.001,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals'): liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sy = sum(Ki*liq_compositions) E = Sy -1 attempts=0 new_p=p new_vap_compositions = vap_compositions while(absolute(E) >= 1e-9): if(attempts == 100): return 'Probleam can not be solved' p0=new_p*(1+delta_p) liq_fugacity_coef0,vap_fugacity_coef0 = solve_eos(t,p0,tc,pc,acentric,liq_compositions,new_vap_compositions,kij,method,alfa_function,mixing_rule) Ki0 = liq_fugacity_coef0/vap_fugacity_coef0 Sy0 = sum(Ki0*liq_compositions) E0=Sy0-1 new_p = (new_p*p0*(E0-E))/(p0*E0-new_p*E) Sy = sum(Ki*liq_compositions) new_vap_compositions = (Ki*liq_compositions)/Sy liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,new_p,tc,pc,acentric,liq_compositions,new_vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sy = sum(Ki*liq_compositions) E = Sy -1 attempts +=1 return(t,new_p,liq_compositions,new_vap_compositions) def dew_temperature(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,delta_t=0.1,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals'): liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sx = sum(vap_compositions/Ki) E = log(Sx) attempts=0 new_t=t new_liq_compositions = liq_compositions while(absolute(E) >= 1e-9): if(attempts == 500): return 'Probleam can not be solved' t0 = new_t + delta_t liq_fugacity_coef0,vap_fugacity_coef0 = solve_eos(t0,p,tc,pc,acentric,new_liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki0 = liq_fugacity_coef0/vap_fugacity_coef0 Sx0 = sum(vap_compositions/Ki0) E0 = log(Sx0) new_t = (new_t*t0*(E0-E))/(t0*E0-new_t*E) Sx = sum(vap_compositions/Ki) new_liq_compositions = vap_compositions/(Ki*Sx) liq_fugacity_coef,vap_fugacity_coef = solve_eos(new_t,p,tc,pc,acentric,new_liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sx = sum(vap_compositions/Ki) E = log(Sx) attempts +=1 return(new_t,p,new_liq_compositions,vap_compositions) def dew_pressure(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,delta_p=0.001,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals'): liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sx = sum(vap_compositions/Ki) E = Sx -1 attempts=0 new_p=p new_liq_compositions = liq_compositions while(absolute(E) >= 1e-9): if(attempts == 100): return 'Probleam can not be solved' p0=new_p*(1+delta_p) liq_fugacity_coef0,vap_fugacity_coef0 = solve_eos(t,p0,tc,pc,acentric,new_liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki0 = liq_fugacity_coef0/vap_fugacity_coef0 Sx0 = sum(vap_compositions/Ki0) E0=Sx0-1 new_p = (new_p*p0*(E0-E))/(p0*E0-new_p*E) Sx = sum(vap_compositions/Ki) new_liq_compositions = vap_compositions/(Ki*Sx) liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,new_p,tc,pc,acentric,new_liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef Sx = sum(vap_compositions/Ki) E = Sx -1 attempts +=1 return(t,new_p,new_liq_compositions,vap_compositions) def flash(t,p,tc,pc,acentric,feed_compositions,liq_compositions,vap_compositions,v_f,kij,delta_p=0.0001,method='pr',alfa_function='alfa_peng_robinson',mixing_rule='van_der_waals'): tau=1 while(absolute(tau)> 1e-5): liq_fugacity_coef,vap_fugacity_coef = solve_eos(t,p,tc,pc,acentric,liq_compositions,vap_compositions,kij,method,alfa_function,mixing_rule) Ki = liq_fugacity_coef/vap_fugacity_coef S = sum((feed_compositions*(Ki-1))/(1+(v_f*(Ki-1)))) S0 = sum((-feed_compositions*(Ki-1)**2)/(1+v_f*(Ki-1))**2) v_f = v_f-(S/S0) liq_compositions0 = feed_compositions/(1+v_f*(Ki-1)) Sx=sum(liq_compositions0) liq_compositions = liq_compositions0/Sx vap_compositions0=liq_compositions0*Ki Sy=sum(vap_compositions0) vap_compositions=vap_compositions0/Sy tau=sum(absolute(liq_compositions*liq_fugacity_coef-vap_compositions*vap_fugacity_coef)) return (t,p,feed_compositions,liq_compositions,vap_compositions,v_f) def get_ideal_enthalpy(heat_capacities,t): ideal_enthalpies = [] for cp in heat_capacities: number, constants = cp heat_capacity_equation = tempCorr.selector(number) enthalpy,_ = quad(heat_capacity_equation,298,t,args=(constants,)) ideal_enthalpies.append(enthalpy) return array(ideal_enthalpies) def get_ideal_entropy(heat_capacities,t,p): R=8.314 ideal_entropies = [] for cp in heat_capacities: number,constants = cp heat_capacity_equation = lambda t,constants :tempCorr.selector(number)(t,constants)/t I,_ = quad(heat_capacity_equation,298,t,args=(constants,)) entropy = I - R*log(p) ideal_entropies.append(entropy) return array(ideal_entropies) def get_real_enthalpy(ideal_enthalpies,t,z,A,dAdt,B,L): R=8.314 enthalpies = ideal_enthalpies + R*t*(z-1+((dAdt-A)/B)*L(z,B)) return enthalpies def get_real_entropy(ideal_entropies,z,A,dAdt,B,L): R=8.314 entropies = ideal_entropies + R*(log(z-B)+dAdt/B*L(z,B)) return entropies
[ "numpy.absolute", "numpy.sum", "numpy.log", "scipy.integrate.quad", "numpy.array" ]
[((680, 689), 'numpy.array', 'array', (['tc'], {}), '(tc)\n', (685, 689), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((698, 707), 'numpy.array', 'array', (['pc'], {}), '(pc)\n', (703, 707), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((723, 738), 'numpy.array', 'array', (['acentric'], {}), '(acentric)\n', (728, 738), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((760, 783), 'numpy.array', 'array', (['liq_compositions'], {}), '(liq_compositions)\n', (765, 783), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((807, 830), 'numpy.array', 'array', (['vap_compositions'], {}), '(vap_compositions)\n', (812, 830), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((841, 851), 'numpy.array', 'array', (['kij'], {}), '(kij)\n', (846, 851), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((3638, 3664), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (3641, 3664), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((3671, 3678), 'numpy.log', 'log', (['Sy'], {}), '(Sy)\n', (3674, 3678), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((5039, 5065), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (5042, 5065), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6406, 6432), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (6409, 6432), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6439, 6446), 'numpy.log', 'log', (['Sx'], {}), '(Sx)\n', (6442, 6446), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((7779, 7805), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (7782, 7805), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((10130, 10153), 'numpy.array', 'array', (['ideal_enthalpies'], {}), '(ideal_enthalpies)\n', (10135, 10153), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((10545, 10567), 'numpy.array', 'array', (['ideal_entropies'], {}), '(ideal_entropies)\n', (10550, 10567), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((2222, 2244), 'numpy.array', 'array', (['heat_capacities'], {}), '(heat_capacities)\n', (2227, 2244), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((3761, 3772), 'numpy.absolute', 'absolute', (['E'], {}), '(E)\n', (3769, 3772), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((4129, 4156), 'numpy.sum', 'sum', (['(Ki0 * liq_compositions)'], {}), '(Ki0 * liq_compositions)\n', (4132, 4156), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((4168, 4176), 'numpy.log', 'log', (['Sy0'], {}), '(Sy0)\n', (4171, 4176), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((4240, 4266), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (4243, 4266), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((4538, 4564), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (4541, 4564), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((4573, 4580), 'numpy.log', 'log', (['Sy'], {}), '(Sy)\n', (4576, 4580), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((5162, 5173), 'numpy.absolute', 'absolute', (['E'], {}), '(E)\n', (5170, 5173), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((5511, 5538), 'numpy.sum', 'sum', (['(Ki0 * liq_compositions)'], {}), '(Ki0 * liq_compositions)\n', (5514, 5538), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((5617, 5643), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (5620, 5643), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((5915, 5941), 'numpy.sum', 'sum', (['(Ki * liq_compositions)'], {}), '(Ki * liq_compositions)\n', (5918, 5941), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6529, 6540), 'numpy.absolute', 'absolute', (['E'], {}), '(E)\n', (6537, 6540), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6878, 6905), 'numpy.sum', 'sum', (['(vap_compositions / Ki0)'], {}), '(vap_compositions / Ki0)\n', (6881, 6905), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6917, 6925), 'numpy.log', 'log', (['Sx0'], {}), '(Sx0)\n', (6920, 6925), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((6989, 7015), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (6992, 7015), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((7287, 7313), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (7290, 7313), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((7324, 7331), 'numpy.log', 'log', (['Sx'], {}), '(Sx)\n', (7327, 7331), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((7902, 7913), 'numpy.absolute', 'absolute', (['E'], {}), '(E)\n', (7910, 7913), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((8251, 8278), 'numpy.sum', 'sum', (['(vap_compositions / Ki0)'], {}), '(vap_compositions / Ki0)\n', (8254, 8278), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((8357, 8383), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (8360, 8383), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((8655, 8681), 'numpy.sum', 'sum', (['(vap_compositions / Ki)'], {}), '(vap_compositions / Ki)\n', (8658, 8681), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((8991, 9004), 'numpy.absolute', 'absolute', (['tau'], {}), '(tau)\n', (8999, 9004), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((9221, 9277), 'numpy.sum', 'sum', (['(feed_compositions * (Ki - 1) / (1 + v_f * (Ki - 1)))'], {}), '(feed_compositions * (Ki - 1) / (1 + v_f * (Ki - 1)))\n', (9224, 9277), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((9283, 9350), 'numpy.sum', 'sum', (['(-feed_compositions * (Ki - 1) ** 2 / (1 + v_f * (Ki - 1)) ** 2)'], {}), '(-feed_compositions * (Ki - 1) ** 2 / (1 + v_f * (Ki - 1)) ** 2)\n', (9286, 9350), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((9434, 9456), 'numpy.sum', 'sum', (['liq_compositions0'], {}), '(liq_compositions0)\n', (9437, 9456), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((9563, 9585), 'numpy.sum', 'sum', (['vap_compositions0'], {}), '(vap_compositions0)\n', (9566, 9585), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((10023, 10078), 'scipy.integrate.quad', 'quad', (['heat_capacity_equation', '(298)', 't'], {'args': '(constants,)'}), '(heat_capacity_equation, 298, t, args=(constants,))\n', (10027, 10078), False, 'from scipy.integrate import quad\n'), ((10405, 10460), 'scipy.integrate.quad', 'quad', (['heat_capacity_equation', '(298)', 't'], {'args': '(constants,)'}), '(heat_capacity_equation, 298, t, args=(constants,))\n', (10409, 10460), False, 'from scipy.integrate import quad\n'), ((9648, 9737), 'numpy.absolute', 'absolute', (['(liq_compositions * liq_fugacity_coef - vap_compositions * vap_fugacity_coef)'], {}), '(liq_compositions * liq_fugacity_coef - vap_compositions *\n vap_fugacity_coef)\n', (9656, 9737), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((10482, 10488), 'numpy.log', 'log', (['p'], {}), '(p)\n', (10485, 10488), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n'), ((10827, 10837), 'numpy.log', 'log', (['(z - B)'], {}), '(z - B)\n', (10830, 10837), False, 'from numpy import log, exp, sqrt, absolute, array, sum\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import math import numpy as np import tokenization import six import tensorflow as tf from tensorflow import logging class EvalResults(object): def __init__(self, capacity): self.metrics = {} self.capacity = capacity def add_dict(self, indict): for key,value in indict.iteritems(): if key in self.metrics: if len(self.metrics[key]) == self.capacity: self.metrics[key].pop(0) else: self.metrics[key] = [] if isinstance(value, list): self.metrics[key].append(value[-1]) else: self.metrics[key].append(value) def to_string(self): res = ["%s:%.2f"%(key, np.mean(self.metrics[key])) for key in self.metrics.keys()] return " ".join(res) class CQAExample(object): """A single training/test example.""" def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) return s class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputPretrainExample(object): """A single training/test example for pretrain task.""" def __init__(self, guid, input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, masked_lm_weights, next_sentence_labels): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.masked_lm_positions = masked_lm_positions self.masked_lm_ids = masked_lm_ids self.masked_lm_weights = masked_lm_weights self.next_sentence_labels = next_sentence_labels class InputCQAFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id def read_tsv(input_file, quotechar=None): """Reads a tab separated value file.""" import csv with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines def read_examples_do_nothing(input_file, is_training): """do nothing but just return input_file, reserved for tfrecord data""" return input_file def read_textmatch_examples(input_file, is_training): """Creates examples for the training and dev sets.""" if is_training: set_type = 'train' else: set_type = 'dev' examples = [] for (i, line) in enumerate(read_tsv(input_file)): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[3]) text_b = tokenization.convert_to_unicode(line[4]) label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def read_cikm_examples(input_file, is_training): """Creates examples for the training and dev sets.""" if is_training: set_type = 'train' else: set_type = 'dev' examples = [] lengths = [] for (i, line) in enumerate(read_tsv(input_file)): if i == 0: continue guid = "%s-%s" % (set_type, i) lengths.append(len(line[1].split()) + len(line[2].split())) text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) print('length', np.mean(lengths)) raise Exception return examples def read_review_examples(input_file, is_training): """Creates examples for the training and dev sets.""" fold_id = 9 # fold 9 for training, the rest for testing if is_training: set_type = 'train' else: set_type = 'dev' examples = [] lengths = [] for (i, line) in enumerate(read_tsv(input_file)): # if is_training: # if int(line[1]) == fold_id: # continue # else: # if int(line[1]) != fold_id: # continue if int(line[1]) != fold_id: continue lengths.append(len(line[2].split())) # guid = "%s-%s" % (set_type, i) # text_a = tokenization.convert_to_unicode(line[2]) # text_b = None # label = tokenization.convert_to_unicode(line[0]) # examples.append( # InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) print('length', np.mean(lengths)) raise Exception return examples def read_ae_examples(input_file, is_training): """Creates examples for the training and dev sets.""" if is_training: set_type = 'train' else: set_type = 'dev' examples = [] for (i, line) in enumerate(read_tsv(input_file)): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = ' '.join(tokenization.convert_to_unicode(line[0]).split('|')) text_b = ' '.join(tokenization.convert_to_unicode(line[1]).split('|')) if float(line[2]) > 0.5: label = tokenization.convert_to_unicode('1') else: label = tokenization.convert_to_unicode('0') examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def read_pretrain_examples(input_file, is_training): """Creates examples for the training and dev sets.""" fold_id = 9 # fold 9 for training, the rest for testing if is_training: set_type = 'train' else: set_type = 'dev' examples = [] for (i, line) in enumerate(read_tsv(input_file)): tokens = line if i < 3: print(i, line) if len(tokens) != 7: print(len(tokens)) for (i, token) in enumerate(tokens): print(i, token) raise Exception guid = "%s-%s" % (set_type, i) # print(len(tokens[0].split(',')), len(tokens[1].split(',')), # len(tokens[2].split(',')), len(tokens[3].split(',')), # len(tokens[4].split(',')), len(tokens[5].split(',')), # len(tokens[6].split(','))) examples.append(InputPretrainExample( guid=guid, input_ids=[int(idx) for idx in tokens[0].split(',')], input_mask=[int(idx) for idx in tokens[1].split(',')], segment_ids=[int(idx) for idx in tokens[2].split(',')], masked_lm_positions=[int(idx) for idx in tokens[3].split(',')], masked_lm_ids=[int(idx) for idx in tokens[4].split(',')], masked_lm_weights=[float(idx) for idx in tokens[5].split(',')], next_sentence_labels=int(tokens[6]))) return examples # def read_coqa_examples(input_file, is_training): # """Read a CoQA json file into a list of CQAExample.""" # with tf.gfile.Open(input_file, "r") as reader: # input_data = json.load(reader)["data"] # # def is_whitespace(c): # if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: # return True # return False # # examples = [] # for entry in input_data[:10]: # paragraph_text = entry["story"] # doc_tokens = [] # char_to_word_offset = [] # prev_is_whitespace = True # for c in paragraph_text: # if is_whitespace(c): # prev_is_whitespace = True # else: # if prev_is_whitespace: # doc_tokens.append(c) # else: # doc_tokens[-1] += c # prev_is_whitespace = False # char_to_word_offset.append(len(doc_tokens) - 1) # # ############################################################ # # convert the convasational QAs to squad format, with history # ############################################################ # # story_id = entry['id'] # questions = [(item['input_text'], story_id + str(item['turn_id'])) for item in entry['questions']] # [(question, question_id), ()] # answers = [(item['span_text'], item['span_start']) for item in entry['answers']] # # qas = [] # for i, (question, answer) in enumerate(zip(questions, answers)): # start_index = 0 if i - int(FLAGS.history) < 0 else i - int(FLAGS.history) # end_index = i # question_with_histories = '' # # prepend historical questions and answers # for each_question, each_answer in zip(questions[start_index: end_index], answers[start_index: end_index]): # question_with_histories += each_question[0] + ' ' + each_answer[0] + ' ' # # add the current question # question_with_histories += question[0] # if answer[1] == -1: # qas.append({'id': question[1], 'question': question_with_histories, 'answers': [{'answer_start': -1, 'text': "unknown"}]}) # else: # qas.append({'id': question[1], 'question': question_with_histories, 'answers': [{'answer_start': answer[1], 'text': answer[0]}]}) # # for qa in qas: # qas_id = qa["id"] # question_text = qa["question"] # start_position = None # end_position = None # orig_answer_text = None # # # if is_training: # # we read in the groundtruth answer bothing druing training and predicting, because we need to compute acc and f1 at predicting time. # if len(qa["answers"]) != 1: # raise ValueError( # "For training, each question should have exactly 1 answer.") # answer = qa["answers"][0] # orig_answer_text = answer["text"] # answer_offset = answer["answer_start"] # answer_length = len(orig_answer_text) # start_position = char_to_word_offset[answer_offset] # end_position = char_to_word_offset[answer_offset + answer_length - 1] # # Only add answers where the text can be exactly recovered from the # # document. If this CAN'T happen it's likely due to weird Unicode # # stuff so we will just skip the example. # # # # Note that this means for training mode, every example is NOT # # guaranteed to be preserved. # actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) # cleaned_answer_text = " ".join( # tokenization.whitespace_tokenize(orig_answer_text)) # if actual_text.find(cleaned_answer_text) == -1: # logging.warning("Could not find answer: '%s' vs. '%s'", # actual_text, cleaned_answer_text) # continue # # example = CQAExample( # qas_id=qas_id, # question_text=question_text, # doc_tokens=doc_tokens, # orig_answer_text=orig_answer_text, # start_position=start_position, # end_position=end_position) # examples.append(example) # return examples def convert_examples_to_features_do_nothing(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training): """do nothing but just return examples, reserved for tfrecord data""" return examples def convert_examples_to_features_cqa(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None # if is_training: # we do this for both training and predicting, because we need also start/end position at testing time to compute acc and f1 tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 if (example.start_position < doc_start or example.end_position < doc_start or example.start_position > doc_end or example.end_position > doc_end): continue doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset else: # when predicting, we donot throw out any doc span to prevent label leaking doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if example_index < 20: logging.info("*** Example ***") logging.info("unique_id: %s" % (unique_id)) logging.info("example_index: %s" % (example_index)) logging.info("doc_span_index: %s" % (doc_span_index)) logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) logging.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) logging.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logging.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) logging.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logging.info("start_position: %d" % (start_position)) logging.info("end_position: %d" % (end_position)) logging.info( "answer: %s" % (tokenization.printable_text(answer_text))) features.append( InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position)) unique_id += 1 return features def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, model_type='classification'): """Loads a data file into a list of `InputBatch`s.""" label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if model_type == 'classification': label_id = label_map[example.label] else: label_id = float(example.label) if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s" % (example.guid)) logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logging.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logging.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was <NAME> born? # Context: The leader was <NAME> (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file): """Write final predictions to the json file.""" logging.info("Writing predictions to: %s" % (output_prediction_file)) logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json with tf.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = <NAME> # orig_text = <NAME> # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "<NAME>". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def get_dict(train_batch): b_input_ids = train_batch['input_ids'] b_input_mask = train_batch['input_mask'] b_segment_ids = train_batch['segment_ids'] b_labels = train_batch['label_id'] return b_input_ids,b_input_mask,b_segment_ids,b_labels
[ "math.exp", "tokenization.printable_text", "csv.reader", "tensorflow.logging.info", "json.dumps", "collections.defaultdict", "numpy.mean", "tensorflow.gfile.GFile", "collections.namedtuple", "tokenization.BasicTokenizer", "collections.OrderedDict", "tokenization.convert_to_unicode", "six.iteritems", "tensorflow.gfile.Open" ]
[((30082, 30149), 'tensorflow.logging.info', 'logging.info', (["('Writing predictions to: %s' % output_prediction_file)"], {}), "('Writing predictions to: %s' % output_prediction_file)\n", (30094, 30149), False, 'from tensorflow import logging\n'), ((30156, 30212), 'tensorflow.logging.info', 'logging.info', (["('Writing nbest to: %s' % output_nbest_file)"], {}), "('Writing nbest to: %s' % output_nbest_file)\n", (30168, 30212), False, 'from tensorflow import logging\n'), ((30248, 30277), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (30271, 30277), False, 'import collections\n'), ((30525, 30646), 'collections.namedtuple', 'collections.namedtuple', (['"""PrelimPrediction"""', "['feature_index', 'start_index', 'end_index', 'start_logit', 'end_logit']"], {}), "('PrelimPrediction', ['feature_index', 'start_index',\n 'end_index', 'start_logit', 'end_logit'])\n", (30547, 30646), False, 'import collections\n'), ((30715, 30740), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (30738, 30740), False, 'import collections\n'), ((30762, 30787), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (30785, 30787), False, 'import collections\n'), ((37322, 37378), 'tokenization.BasicTokenizer', 'tokenization.BasicTokenizer', ([], {'do_lower_case': 'do_lower_case'}), '(do_lower_case=do_lower_case)\n', (37349, 37378), False, 'import tokenization\n'), ((38272, 38302), 'six.iteritems', 'six.iteritems', (['tok_ns_to_s_map'], {}), '(tok_ns_to_s_map)\n', (38285, 38302), False, 'import six\n'), ((5270, 5300), 'tensorflow.gfile.Open', 'tf.gfile.Open', (['input_file', '"""r"""'], {}), "(input_file, 'r')\n", (5283, 5300), True, 'import tensorflow as tf\n'), ((5322, 5372), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'quotechar'}), "(f, delimiter='\\t', quotechar=quotechar)\n", (5332, 5372), False, 'import csv\n'), ((5981, 6021), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[3]'], {}), '(line[3])\n', (6012, 6021), False, 'import tokenization\n'), ((6039, 6079), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[4]'], {}), '(line[4])\n', (6070, 6079), False, 'import tokenization\n'), ((6096, 6136), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[0]'], {}), '(line[0])\n', (6127, 6136), False, 'import tokenization\n'), ((6707, 6747), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[1]'], {}), '(line[1])\n', (6738, 6747), False, 'import tokenization\n'), ((6765, 6805), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[2]'], {}), '(line[2])\n', (6796, 6805), False, 'import tokenization\n'), ((6822, 6862), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[0]'], {}), '(line[0])\n', (6853, 6862), False, 'import tokenization\n'), ((6989, 7005), 'numpy.mean', 'np.mean', (['lengths'], {}), '(lengths)\n', (6996, 7005), True, 'import numpy as np\n'), ((7989, 8005), 'numpy.mean', 'np.mean', (['lengths'], {}), '(lengths)\n', (7996, 8005), True, 'import numpy as np\n'), ((16921, 16975), 'collections.namedtuple', 'collections.namedtuple', (['"""DocSpan"""', "['start', 'length']"], {}), "('DocSpan', ['start', 'length'])\n", (16943, 16975), False, 'import collections\n'), ((32822, 32901), 'collections.namedtuple', 'collections.namedtuple', (['"""NbestPrediction"""', "['text', 'start_logit', 'end_logit']"], {}), "('NbestPrediction', ['text', 'start_logit', 'end_logit'])\n", (32844, 32901), False, 'import collections\n'), ((35211, 35254), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['output_prediction_file', '"""w"""'], {}), "(output_prediction_file, 'w')\n", (35225, 35254), True, 'import tensorflow as tf\n'), ((35343, 35381), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['output_nbest_file', '"""w"""'], {}), "(output_nbest_file, 'w')\n", (35357, 35381), True, 'import tensorflow as tf\n'), ((36761, 36786), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (36784, 36786), False, 'import collections\n'), ((39924, 39951), 'math.exp', 'math.exp', (['(score - max_score)'], {}), '(score - max_score)\n', (39932, 39951), False, 'import math\n'), ((1639, 1679), 'tokenization.printable_text', 'tokenization.printable_text', (['self.qas_id'], {}), '(self.qas_id)\n', (1666, 1679), False, 'import tokenization\n'), ((1732, 1779), 'tokenization.printable_text', 'tokenization.printable_text', (['self.question_text'], {}), '(self.question_text)\n', (1759, 1779), False, 'import tokenization\n'), ((8599, 8635), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['"""1"""'], {}), "('1')\n", (8630, 8635), False, 'import tokenization\n'), ((8670, 8706), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['"""0"""'], {}), "('0')\n", (8701, 8706), False, 'import tokenization\n'), ((25320, 25351), 'tensorflow.logging.info', 'logging.info', (['"""*** Example ***"""'], {}), "('*** Example ***')\n", (25332, 25351), False, 'from tensorflow import logging\n'), ((25358, 25397), 'tensorflow.logging.info', 'logging.info', (["('guid: %s' % example.guid)"], {}), "('guid: %s' % example.guid)\n", (25370, 25397), False, 'from tensorflow import logging\n'), ((25756, 25819), 'tensorflow.logging.info', 'logging.info', (["('label: %s (id = %d)' % (example.label, label_id))"], {}), "('label: %s (id = %d)' % (example.label, label_id))\n", (25768, 25819), False, 'from tensorflow import logging\n'), ((34794, 34819), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (34817, 34819), False, 'import collections\n'), ((37557, 37631), 'tensorflow.logging.info', 'logging.info', (['("Unable to find text: \'%s\' in \'%s\'" % (pred_text, orig_text))'], {}), '("Unable to find text: \'%s\' in \'%s\'" % (pred_text, orig_text))\n', (37569, 37631), False, 'from tensorflow import logging\n'), ((37948, 38048), 'tensorflow.logging.info', 'logging.info', (['"""Length not equal after stripping spaces: \'%s\' vs \'%s\'"""', 'orig_ns_text', 'tok_ns_text'], {}), '("Length not equal after stripping spaces: \'%s\' vs \'%s\'",\n orig_ns_text, tok_ns_text)\n', (37960, 38048), False, 'from tensorflow import logging\n'), ((38680, 38723), 'tensorflow.logging.info', 'logging.info', (['"""Couldn\'t map start position"""'], {}), '("Couldn\'t map start position")\n', (38692, 38723), False, 'from tensorflow import logging\n'), ((39070, 39111), 'tensorflow.logging.info', 'logging.info', (['"""Couldn\'t map end position"""'], {}), '("Couldn\'t map end position")\n', (39082, 39111), False, 'from tensorflow import logging\n'), ((20361, 20392), 'tensorflow.logging.info', 'logging.info', (['"""*** Example ***"""'], {}), "('*** Example ***')\n", (20373, 20392), False, 'from tensorflow import logging\n'), ((20409, 20450), 'tensorflow.logging.info', 'logging.info', (["('unique_id: %s' % unique_id)"], {}), "('unique_id: %s' % unique_id)\n", (20421, 20450), False, 'from tensorflow import logging\n'), ((20469, 20518), 'tensorflow.logging.info', 'logging.info', (["('example_index: %s' % example_index)"], {}), "('example_index: %s' % example_index)\n", (20481, 20518), False, 'from tensorflow import logging\n'), ((20537, 20588), 'tensorflow.logging.info', 'logging.info', (["('doc_span_index: %s' % doc_span_index)"], {}), "('doc_span_index: %s' % doc_span_index)\n", (20549, 20588), False, 'from tensorflow import logging\n'), ((35287, 35324), 'json.dumps', 'json.dumps', (['all_predictions'], {'indent': '(4)'}), '(all_predictions, indent=4)\n', (35297, 35324), False, 'import json\n'), ((35414, 35450), 'json.dumps', 'json.dumps', (['all_nbest_json'], {'indent': '(4)'}), '(all_nbest_json, indent=4)\n', (35424, 35450), False, 'import json\n'), ((872, 898), 'numpy.mean', 'np.mean', (['self.metrics[key]'], {}), '(self.metrics[key])\n', (879, 898), True, 'import numpy as np\n'), ((8414, 8454), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[0]'], {}), '(line[0])\n', (8445, 8454), False, 'import tokenization\n'), ((8493, 8533), 'tokenization.convert_to_unicode', 'tokenization.convert_to_unicode', (['line[1]'], {}), '(line[1])\n', (8524, 8533), False, 'import tokenization\n'), ((21489, 21540), 'tensorflow.logging.info', 'logging.info', (["('start_position: %d' % start_position)"], {}), "('start_position: %d' % start_position)\n", (21501, 21540), False, 'from tensorflow import logging\n'), ((21563, 21610), 'tensorflow.logging.info', 'logging.info', (["('end_position: %d' % end_position)"], {}), "('end_position: %d' % end_position)\n", (21575, 21610), False, 'from tensorflow import logging\n'), ((21687, 21727), 'tokenization.printable_text', 'tokenization.printable_text', (['answer_text'], {}), '(answer_text)\n', (21714, 21727), False, 'import tokenization\n'), ((25455, 25485), 'tokenization.printable_text', 'tokenization.printable_text', (['x'], {}), '(x)\n', (25482, 25485), False, 'import tokenization\n'), ((20666, 20696), 'tokenization.printable_text', 'tokenization.printable_text', (['x'], {}), '(x)\n', (20693, 20696), False, 'import tokenization\n'), ((20833, 20865), 'six.iteritems', 'six.iteritems', (['token_to_orig_map'], {}), '(token_to_orig_map)\n', (20846, 20865), False, 'import six\n'), ((20989, 21024), 'six.iteritems', 'six.iteritems', (['token_is_max_context'], {}), '(token_is_max_context)\n', (21002, 21024), False, 'import six\n')]
from argparse import ArgumentParser, RawDescriptionHelpFormatter import all_call.train import numpy as np import json import sys import pandas as pd import re import os from glob import glob from arguments import yaml_reader # default parameters for inference DEFAULT_MODEL_PARAMS = (-0.0107736, 0.00244419, 0.0, 0.00440608) DEFAULT_READ_DROP = (479.596, -21.4382) DEFAULT_READ_DROP_REL = (1.18332, -0.0475454) DEFAULT_FIT_FUNCTION = "linear" # functions for training fit_functions = {"const": all_call.train.const_rate, "linear": all_call.train.linear_rate, "n2": all_call.train.n2_rate, "exp": all_call.train.exp_rate} def load_arguments(): """ Loads all arguments and sets default values. :return: argparse arguments """ parser = ArgumentParser(formatter_class=RawDescriptionHelpFormatter) parser.add_argument('dir_structure', type=path_exists, help='Directory with multiple Dante results directories. ' 'Each Dante directory has filled "all_profiles.txt" and "all_profiles.true" files.') # training.add_argument('--model-fig', type=str, default=None, help="File to write .png file with comparison of models and train data. Suffix determines the type of image file.") # parser.add_argument('--profiles', type=str, required=True, help="TSV file or .npy file with one or more profiles. Required.") parser.add_argument('--output-params', type=convert_to_absolute, default=None, help="File with parameters of the model to save to. Default: dir_structure/params.txt") parser.add_argument('--output-profile', type=convert_to_absolute, default=None, help="File, where to collect all the profiles. Default: dir_structure/all_profiles.txt") parser.add_argument('--output-true', type=convert_to_absolute, default=None, help="File, where to collect all the true values. Default: dir_structure/all_profiles.true") parser.add_argument('--input-true', type=convert_to_absolute, default=None, help="File, with all the true values. Default: collect from Dante predictions") parser.add_argument('--config-dir', type=path_exists, default=None, help="Directory, where to save new config files. Default: without saving") parser.add_argument('--fit-function', choices=fit_functions.keys(), default="linear", help="Function to approximate deletion rate of STRs. Default: linear") parser.add_argument('-v', '--verbosity-level', type=int, choices=range(3), default=1, help="Level of verbosity, default 1.") parser.add_argument('-p', '--prepare', action='store_true', help="Only prepare files, do not run training.") # input_args.add_argument('-l', '--len_repeating', type=int, default=3, help="Length of the STR. Used for read drop modelling.") args = parser.parse_args() # check if args.output_profile is None: args.output_profile = '%s/all_profiles.txt' % args.dir_structure if args.output_true is None: args.output_true = '%s/all_profiles.true' % args.dir_structure if args.output_params is None: args.output_params = '%s/params.txt' % args.dir_structure return args def convert_to_absolute(path): """ Converts to absolute path, do not check if exists. :param path: str - path :return: str - absolute path """ return os.path.abspath(path) def path_exists(path): """ Checks if the supplied path exists. :param path: str - path to a file or dir :return: str - absolute path to a file or dir """ try: path = convert_to_absolute(path) except Exception: print('ERROR: %s directory does not exists' % path) exit(-1) return path def crawl_dante(dir_structure): """ Crawl Dante dir and collect config, profile, and true_vals files :param dir_structure: str - directory above the Dante directory structures, here we start the crawl :return: list(str) x3 - list of paths to configs, profiles, and true values """ # read all configs configs = glob('%s/*/config.yaml' % dir_structure) good_configs = [] profiles = [] true_vals = [] # check if every config has its profiles and true_vals for config in configs: profile = '%s/all_profiles.txt' % os.path.dirname(config) if not os.path.exists(profile): print('WARNING: "%s" exists but "%s" does not!!' % (config, profile)) continue true_val = '%s/all_profiles.true' % os.path.dirname(config) if not os.path.exists(true_val): print('WARNING: "%s" exists but "%s" does not!!' % (config, true_val)) continue # all ok, write them: good_configs.append(config) profiles.append(profile) true_vals.append(true_val) return good_configs, profiles, true_vals def get_name(path): """ Get directory name from path to config/profile/... :param path: str - path :return: str - directory name without blanks """ directory = path.split('/')[-2] directory = directory.replace(' ', '_') return directory def update_config(config_path, save_dir, params_file): """ Create new config file with inputs from the outputs of Dante. :param config_path: str - path to the config file :param save_dir: str - directory where to save the new config :param save_dir: str - directory where to save the new config :return: None """ # gather inputs: directory = os.path.dirname(config_path) inputs = glob('%s/*/annotations*' % directory) inputs += glob('%s/*/filtered_primer*' % directory) # read the old config: config = yaml_reader.load_arguments(config_path) # update the config with new inputs config['inputs'] = [] for input in inputs: config['inputs'].append({'path': input}) # update the config with new params config['allcall']['param_file'] = params_file # add "_retrained" to output dirs config['general']['output_dir'] = '%s_retrained' % config['general']['output_dir'] # write it name = get_name(config_path) config_name = '%s/%s_config.yaml' % (save_dir, name) yaml_reader.save_arguments(config, config_name) def merge_profiles(profiles, output_file): """ Merge all profiles according to the name of dirs and output them. :param profiles: list(str) - list of paths to profiles :param output_file: str - output file for merged file :return: pd.DataFrame - merged DataFrame with all data """ if len(profiles) == 0: return None # create empty dataframe all_profiles = pd.DataFrame() # and fill it for profile in profiles: name = get_name(profile) # get the maximal number of columns: max_cols = 0 with open(profile) as f: for line in f: max_cols = max(max_cols, line.count('\t')) # write to aggregated file: current = pd.read_csv(profile, sep='\t', header=None, names=['index'] + range(max_cols), index_col=0, parse_dates=True, engine='python') current.index = list(map(lambda x: '%s_%s' % (name, x), current.index)) all_profiles = pd.concat([all_profiles, current]) # fill not available data: all_profiles = all_profiles.fillna(0) all_profiles = all_profiles.applymap(lambda x: x if type(x) is str else str(int(x))) all_profiles.sort_index(inplace=True) # save it: all_profiles.to_csv(output_file, sep='\t') # return it return all_profiles def read_dante(filename): """ Read profiles from CSV from Dante. :param filename: str - filename to read :return: Pandas.DataFrame with read profiles or None if no read occurred """ # now try to load tsv file: name = filename.split('/')[-2] try: profiles = pd.read_csv(filename, sep="\t", header=None, index_col=None, parse_dates=True) except Exception: return None new_profiles = pd.DataFrame() max_str = max(profiles.max(0)[1:]) + 2 if profiles is not None: for column in profiles.columns[1:]: vals = np.zeros(max_str, dtype=int) for i, c in enumerate(profiles[column]): vals[int(c)] += profiles.iloc[i][0] new_profiles['%s_%d' % (name, column - 1)] = vals if len(new_profiles.index) > 0: profiles = new_profiles.transpose() return profiles def fix_profile_file(filename): """ Fix profile file to be able to read as a tsv. :param filename: str - filename to fix """ # read the file with open(filename) as f: lines = f.readlines() # find separator sep = '\t' if len(lines[0].split('\t')) >= len(lines[0].split(None)) else None # count the number of columns: cols = np.zeros_like(lines, dtype=int) for i, line in enumerate(lines): cols[i] = len(line.split(sep)) # print with the highest number max_cols = max(cols) with open(filename, 'w') as f: for i, line in enumerate(lines): f.write(line.strip()) # append enough zeros for _ in range(max_cols - cols[i]): f.write('\t0') f.write('\n') def read_profiles(filename): """ Read profiles from CSV or from .npy file. :param filename: str - filename to read :return: Pandas.DataFrame with read profiles or None if no read occurred """ # first try to load numpy array try: profiles = np.load(filename) except IOError: profiles = None if profiles is not None: profiles = pd.DataFrame(data=profiles[np.newaxis], index=[int(filename.split('.')[0].split('/')[-1])]) # now try to load tsv file: if profiles is None: try: fix_profile_file(filename) profiles = pd.read_csv(filename, sep='\t', header=None, index_col=0, parse_dates=True) except IOError: profiles = None return profiles def read_true(filename): """ Read true values from json file or from .true file. :param filename: str - json file to read :return: dict - values read from the json file or None if no read occurred """ class WrongCountError(Exception): pass true_values = None try: with open(filename) as f: true_values = json.load(f) except Exception: pass if true_values is None: try: with open(filename) as f: true_values = {} for line in f: split = line.split() if len(split) == 3: m = re.search(r'_\d+$', split[0]) name = split[0] if m is None: name += '_1' true_values[name] = (int(split[1]), int(split[2])) elif len(split) > 3: raise WrongCountError("Wrong number of parsed elements (expected 3, got %d)" % len(split)) except Exception as e: print('ERROR: ', e) return None return true_values def read_params(filename): """ Reads all parameters written with write_params(print_all=True) :param filename: str - filename to read parameters from, if None, load default params :return: 4-tuple, 2-tuple, function - parameters for model, read count drop, and error function for model distributions """ if filename is None: return DEFAULT_MODEL_PARAMS, DEFAULT_READ_DROP, DEFAULT_READ_DROP_REL, DEFAULT_FIT_FUNCTION # read 2nd and last line of the file with open(filename) as f: lines = f.readlines() fit_function = lines[1].strip().split()[1] split = list(map(float, lines[-1].strip().split())) if len(split) < 8: print("ERROR: parameters were not read successfully, using defaults!", file=sys.stderr) return DEFAULT_MODEL_PARAMS, DEFAULT_READ_DROP, DEFAULT_READ_DROP_REL, DEFAULT_FIT_FUNCTION # extract parameters from last line of file model_params = tuple(split[0:4]) read_drop_params = tuple(split[4:6]) read_drop_params_rel = tuple(split[6:8]) return model_params, read_drop_params, read_drop_params_rel, fit_function
[ "pandas.DataFrame", "os.path.abspath", "numpy.zeros_like", "numpy.load", "argparse.ArgumentParser", "json.load", "pandas.read_csv", "os.path.dirname", "arguments.yaml_reader.save_arguments", "os.path.exists", "numpy.zeros", "glob.glob", "arguments.yaml_reader.load_arguments", "re.search", "pandas.concat" ]
[((757, 816), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'formatter_class': 'RawDescriptionHelpFormatter'}), '(formatter_class=RawDescriptionHelpFormatter)\n', (771, 816), False, 'from argparse import ArgumentParser, RawDescriptionHelpFormatter\n'), ((3315, 3336), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (3330, 3336), False, 'import os\n'), ((4019, 4059), 'glob.glob', 'glob', (["('%s/*/config.yaml' % dir_structure)"], {}), "('%s/*/config.yaml' % dir_structure)\n", (4023, 4059), False, 'from glob import glob\n'), ((5462, 5490), 'os.path.dirname', 'os.path.dirname', (['config_path'], {}), '(config_path)\n', (5477, 5490), False, 'import os\n'), ((5504, 5541), 'glob.glob', 'glob', (["('%s/*/annotations*' % directory)"], {}), "('%s/*/annotations*' % directory)\n", (5508, 5541), False, 'from glob import glob\n'), ((5556, 5597), 'glob.glob', 'glob', (["('%s/*/filtered_primer*' % directory)"], {}), "('%s/*/filtered_primer*' % directory)\n", (5560, 5597), False, 'from glob import glob\n'), ((5639, 5678), 'arguments.yaml_reader.load_arguments', 'yaml_reader.load_arguments', (['config_path'], {}), '(config_path)\n', (5665, 5678), False, 'from arguments import yaml_reader\n'), ((6147, 6194), 'arguments.yaml_reader.save_arguments', 'yaml_reader.save_arguments', (['config', 'config_name'], {}), '(config, config_name)\n', (6173, 6194), False, 'from arguments import yaml_reader\n'), ((6598, 6612), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6610, 6612), True, 'import pandas as pd\n'), ((7950, 7964), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7962, 7964), True, 'import pandas as pd\n'), ((8775, 8806), 'numpy.zeros_like', 'np.zeros_like', (['lines'], {'dtype': 'int'}), '(lines, dtype=int)\n', (8788, 8806), True, 'import numpy as np\n'), ((7165, 7199), 'pandas.concat', 'pd.concat', (['[all_profiles, current]'], {}), '([all_profiles, current])\n', (7174, 7199), True, 'import pandas as pd\n'), ((7809, 7887), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None', 'index_col': 'None', 'parse_dates': '(True)'}), "(filename, sep='\\t', header=None, index_col=None, parse_dates=True)\n", (7820, 7887), True, 'import pandas as pd\n'), ((9472, 9489), 'numpy.load', 'np.load', (['filename'], {}), '(filename)\n', (9479, 9489), True, 'import numpy as np\n'), ((4249, 4272), 'os.path.dirname', 'os.path.dirname', (['config'], {}), '(config)\n', (4264, 4272), False, 'import os\n'), ((4288, 4311), 'os.path.exists', 'os.path.exists', (['profile'], {}), '(profile)\n', (4302, 4311), False, 'import os\n'), ((4460, 4483), 'os.path.dirname', 'os.path.dirname', (['config'], {}), '(config)\n', (4475, 4483), False, 'import os\n'), ((4499, 4523), 'os.path.exists', 'os.path.exists', (['true_val'], {}), '(true_val)\n', (4513, 4523), False, 'import os\n'), ((8102, 8130), 'numpy.zeros', 'np.zeros', (['max_str'], {'dtype': 'int'}), '(max_str, dtype=int)\n', (8110, 8130), True, 'import numpy as np\n'), ((9808, 9883), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'header': 'None', 'index_col': '(0)', 'parse_dates': '(True)'}), "(filename, sep='\\t', header=None, index_col=0, parse_dates=True)\n", (9819, 9883), True, 'import pandas as pd\n'), ((10325, 10337), 'json.load', 'json.load', (['f'], {}), '(f)\n', (10334, 10337), False, 'import json\n'), ((10626, 10655), 're.search', 're.search', (['"""_\\\\d+$"""', 'split[0]'], {}), "('_\\\\d+$', split[0])\n", (10635, 10655), False, 'import re\n')]
# coding: utf-8 import numpy as np import matplotlib.pyplot as plt import Transform as Transform import DiffDriveRobot class Wheel(object): """docstring for Wheel.""" def __init__(self): super(Wheel, self).__init__() self.speed = 0 def setSpeed(self, speed): self.speed = speed def getSpeed(self): return self.speed def getDist(self, dT): return self.speed * dT class Robot(object): """docstring for Robot.""" def __init__(self, x, y, theta, robot): super(Robot, self).__init__() self.polygon = np.array([[-150, -150], [-150, 150], [150, 150], [150, -150], [-150, -150]],dtype =float) self.x = x self.y = y self.theta = theta self.robot = robot self.MEntreAxes = 200 self.OEntreAxes = 250 self.xC = x self.yC = y self.thetaC = theta self.XErr = 0 self.YErr = 0 self.ThetaErr = 0 self.DistErr = 0 self.CapErr = 0 self.alpha = [] self.thetaa = [] self.DistErra = [] # mutateurs def setX(self, x): self.x = x def setY(self, y): self.y = y def setTheta(self, theta): self.theta = theta def setXC(self, xC): self.xC = xC def setYC(self, yC): self.yC = yC def setThetaC(self, thetaC): self.thetaC = thetaC # asscenseurs def getX(self): return self.x def getY(self): return self.y def getTheta(self): return self.theta #autres methodes #fonctions traduisant le fonctionment du robot (modèle) def updateOdometry(self, dT): dOL = self.robot.getLeftEncoderDist(dT) dOR = self.robot.getRightEncoderDist(dT) dXrobot = (dOR + dOL)/2 dTheta = (dOR - dOL)/self.OEntreAxes self.theta = self.theta + dTheta if(self.theta <= -np.pi): self.theta = self.theta + 2*np.pi if(self.theta > np.pi): self.theta = self.theta - 2*np.pi self.x = self.x + dXrobot*np.cos(self.theta) self.y = self.y + dXrobot*np.sin(self.theta) def computeError(self): # Equations 11 & 12 self.XErr = self.xC - self.x self.YErr = self.yC - self.y self.ThetaErr = self.thetaC - self.theta #unused Kp = 1 Kalpha = 5 alpha = np.arctan2(self.YErr, self.XErr)-self.theta if alpha <= -np.pi: alpha+= 2*np.pi if alpha > +np.pi: alpha-= 2*np.pi self.thetaa.append(self.theta) self.alpha.append(alpha) self.DistErr = Kp*np.sqrt(self.XErr**2 + self.YErr**2)*np.cos(alpha) # self.CapErr = Kp*np.sin(alpha)*np.cos(alpha) + Kalpha*alpha self.CapErr = Kalpha*np.sin(alpha)*np.cos(alpha) self.DistErra.append(self.DistErr) def setConsign(self): V = self.DistErr Omega = self.CapErr VMG = (V - Omega * self.MEntreAxes/2)/1 #1 = wheelRadius VMD = (V + Omega * self.MEntreAxes/2)/1 self.robot.setLeftMotorSpeed(VMG) self.robot.setRightMotorSpeed(VMD) def draw(self): shape2 = np.transpose(Transform.rotate(self.polygon, self.theta)) shape2 = np.transpose(Transform.translate(np.transpose(shape2), self.x, self.y)) plt.plot( shape2[0], shape2[1]) plt.plot( self.xC, self.yC , 'bx') def update(self, dT): self.updateOdometry(dT) self.computeError() self.setConsign() if __name__== "__main__": import main
[ "numpy.arctan2", "matplotlib.pyplot.plot", "numpy.transpose", "Transform.rotate", "numpy.sin", "numpy.array", "numpy.cos", "numpy.sqrt" ]
[((587, 680), 'numpy.array', 'np.array', (['[[-150, -150], [-150, 150], [150, 150], [150, -150], [-150, -150]]'], {'dtype': 'float'}), '([[-150, -150], [-150, 150], [150, 150], [150, -150], [-150, -150]],\n dtype=float)\n', (595, 680), True, 'import numpy as np\n'), ((3291, 3321), 'matplotlib.pyplot.plot', 'plt.plot', (['shape2[0]', 'shape2[1]'], {}), '(shape2[0], shape2[1])\n', (3299, 3321), True, 'import matplotlib.pyplot as plt\n'), ((3331, 3363), 'matplotlib.pyplot.plot', 'plt.plot', (['self.xC', 'self.yC', '"""bx"""'], {}), "(self.xC, self.yC, 'bx')\n", (3339, 3363), True, 'import matplotlib.pyplot as plt\n'), ((2368, 2400), 'numpy.arctan2', 'np.arctan2', (['self.YErr', 'self.XErr'], {}), '(self.YErr, self.XErr)\n', (2378, 2400), True, 'import numpy as np\n'), ((2635, 2648), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (2641, 2648), True, 'import numpy as np\n'), ((2762, 2775), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (2768, 2775), True, 'import numpy as np\n'), ((3150, 3192), 'Transform.rotate', 'Transform.rotate', (['self.polygon', 'self.theta'], {}), '(self.polygon, self.theta)\n', (3166, 3192), True, 'import Transform as Transform\n'), ((2065, 2083), 'numpy.cos', 'np.cos', (['self.theta'], {}), '(self.theta)\n', (2071, 2083), True, 'import numpy as np\n'), ((2118, 2136), 'numpy.sin', 'np.sin', (['self.theta'], {}), '(self.theta)\n', (2124, 2136), True, 'import numpy as np\n'), ((2598, 2638), 'numpy.sqrt', 'np.sqrt', (['(self.XErr ** 2 + self.YErr ** 2)'], {}), '(self.XErr ** 2 + self.YErr ** 2)\n', (2605, 2638), True, 'import numpy as np\n'), ((2748, 2761), 'numpy.sin', 'np.sin', (['alpha'], {}), '(alpha)\n', (2754, 2761), True, 'import numpy as np\n'), ((3244, 3264), 'numpy.transpose', 'np.transpose', (['shape2'], {}), '(shape2)\n', (3256, 3264), True, 'import numpy as np\n')]
""" Created on 7/17/16 10:08 AM @author: <NAME>, <NAME> """ from __future__ import division, print_function, absolute_import import numpy as np import psutil import joblib import time as tm import h5py import itertools from numbers import Number from multiprocessing import cpu_count try: from mpi4py import MPI if MPI.COMM_WORLD.Get_size() == 1: # mpi4py available but NOT called via mpirun or mpiexec => single node MPI = None except ImportError: # mpi4py not even present! Single node by default: MPI = None mpi_serial_warning = False from pyUSID.io.hdf_utils import check_if_main, check_for_old, get_attributes from pyUSID.io.usi_data import USIDataset from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size """ For hyperthreaded applications: need to tack on the additional flag as shown below No need to specify -n 4 or whatever if you want to use all available processors $ mpirun -use-hwthread-cpus python hello_world.py Check the number of ranks per socket. If only 1 rank per socket - that rank is allowed to call joblib Thus this paradigm will span the pure-mpi and mpi+joblib paradigm. Note that this does not prevent some sockets to run in pure MPI mode while others run in MPI+joblib mode. Eventually, this should allow each rank to use jolib when the number of ranks in a given socket are noticeably less than the number of logical cores.... The naive approach will be to simply allow all ranks to write data directly to file Forcing only a single rank within a socket may negate performance benefits Writing out to separate files and then merging them later on is the most performant option Look into sub-communication worlds that can create mini worlds instead of the general COMM WORLD https://stackoverflow.com/questions/50900655/mpi4py-create-multiple-groups-and-scatter-from-each-group https://www.bu.edu/pasi/files/2011/01/Lisandro-Dalcin-mpi4py.pdf No work will be necessary to figure out the new ranking within the new communicator / group - automatically assigned from lowest value When it is time to write the results chunks back to file. a. If not master -> send data to master b. If master -> gather from this smaller world and then write to file once. IF this is too much memory to handle, then loop over each rank <-- how is this different from just looping over each rank within the new communicator and asking it to write?: i. receive ii. write iii. repeat. A copy of the data will be made on Rank 0. ie - Rank 0 will have to hold N ranks worth of data. Meaning that each rank can hold only around M/(2N) of data where M is the memory per node and N is the number of ranks per socket http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/ https://info.gwdg.de/~ceulig/docs-dev/doku.php?id=en:services:application_services:high_performance_computing:mpi4py https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html Create a giant low precision dataset. Instead of storing indices, let each rank set the completed indices to True. The problem is that the smallest precision is 1 byte and NOT 1 bit. Even boolean = 1 byte! See - http://docs.h5py.org/en/latest/faq.html#faq https://support.hdfgroup.org/HDF5/hdf5-quest.html#bool https://groups.google.com/a/continuum.io/forum/#!topic/anaconda/qFOGRTOxFTM """ def group_ranks_by_socket(verbose=False): """ Groups MPI ranks in COMM_WORLD by socket. Another way to think about this is that it assigns a master rank for each rank such that there is a single master rank per socket (CPU). The results from this function can be used to split MPI communicators based on the socket for intra-node communication. This is necessary when wanting to carve up the memory for all ranks within a socket. This is also relevant when trying to bring down the number of ranks that are writing to the HDF5 file. This is all based on the premise that data analysis involves a fair amount of file writing and writing with 3 ranks is a lot better than writing with 100 ranks. An assumption is made that the communication between the ranks within each socket would be faster than communicating across nodes / scokets. No assumption is made about the names of each socket Parameters ---------- verbose : bool, optional Whether or not to print debugging statements Returns ------- master_ranks : 1D unsigned integer numpy array Array with values that signify which rank a given rank should consider its master. """ comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() # Step 1: Gather all the socket names: sendbuf = MPI.Get_processor_name() if verbose: print('Rank: ', rank, ', sendbuf: ', sendbuf) recvbuf = comm.allgather(sendbuf) if verbose and rank == 0: print('Rank: ', rank, ', recvbuf received: ', recvbuf) # Step 2: Find all unique socket names: recvbuf = np.array(recvbuf) unique_sockets = np.unique(recvbuf) if verbose and rank == 0: print('Unique sockets: {}'.format(unique_sockets)) master_ranks = np.zeros(size, dtype=np.uint16) for item in unique_sockets: temp = np.where(recvbuf == item)[0] master_ranks[temp] = temp[0] if verbose and rank == 0: print('Parent rank for all ranks: {}'.format(master_ranks)) return master_ranks def to_ranges(iterable): """ Converts a sequence of iterables to range tuples From https://stackoverflow.com/questions/4628333/converting-a-list-of-integers-into-range-in-python Credits: @juanchopanza and @luca Parameters ---------- iterable : collections.Iterable object iterable object like a list Returns ------- iterable : generator object Cast to list or similar to use """ iterable = sorted(set(iterable)) for key, group in itertools.groupby(enumerate(iterable), lambda t: t[1] - t[0]): group = list(group) yield group[0][1], group[-1][1] class Process(object): """ Encapsulates the typical steps performed when applying a processing function to a dataset. """ def __init__(self, h5_main, cores=None, max_mem_mb=4*1024, verbose=False): """ Parameters ---------- h5_main : h5py.Dataset instance The dataset over which the analysis will be performed. This dataset should be linked to the spectroscopic indices and values, and position indices and values datasets. cores : uint, optional Default - all available cores - 2 How many cores to use for the computation max_mem_mb : uint, optional How much memory to use for the computation. Default 1024 Mb verbose : Boolean, (Optional, default = False) Whether or not to print debugging statements """ if h5_main.file.mode != 'r+': raise TypeError('Need to ensure that the file is in r+ mode to write results back to the file') if MPI is not None: # If we came here then, the user has intentionally asked for multi-node computation comm = MPI.COMM_WORLD self.mpi_comm = comm self.mpi_rank = comm.Get_rank() self.mpi_size = comm.Get_size() if verbose: print("Rank {} of {} on {} sees {} logical cores on the socket".format(comm.Get_rank(), comm.Get_size(), MPI.Get_processor_name(), cpu_count())) # First, ensure that cores=logical cores in node. No point being economical / considerate cores = psutil.cpu_count() # It is sufficient if just one rank checks all this. if self.mpi_rank == 0: print('Working on {} ranks via MPI'.format(self.mpi_size)) # Ensure that the file is opened in the correct comm or something if h5_main.file.driver != 'mpio': raise TypeError('The HDF5 file should have been opened with driver="mpio". Current driver = "{}"' ''.format(h5_main.file.driver)) """ # Not sure how to check for this correctly messg = None try: if h5_main.file.comm != comm: messg = 'The HDF5 file should have been opened with comm=MPI.COMM_WORLD. Currently comm={}' ''.format(h5_main.file.comm) except AttributeError: messg = 'The HDF5 file should have been opened with comm=MPI.COMM_WORLD' if messg is not None: raise TypeError(messg) """ else: print('No mpi4py found or script was not called via mpixexec / mpirun. Assuming single node computation') self.mpi_comm = None self.mpi_size = 1 self.mpi_rank = 0 # Checking if dataset is "Main" if not check_if_main(h5_main, verbose=verbose and self.mpi_rank == 0): raise ValueError('Provided dataset is not a "Main" dataset with necessary ancillary datasets') if MPI is not None: MPI.COMM_WORLD.barrier() # Not sure if we need a barrier here. # Saving these as properties of the object: self.h5_main = USIDataset(h5_main) self.verbose = verbose self._cores = None self.__ranks_on_socket = 1 self.__socket_master_rank = 0 self._max_pos_per_read = None self._max_mem_mb = None # Now have to be careful here since the below properties are a function of the MPI rank self.__start_pos = None self.__rank_end_pos = None self.__end_pos = None self.__pixels_in_batch = None # Determining the max size of the data that can be put into memory # all ranks go through this and they need to have this value any self._set_memory_and_cores(cores=cores, mem=max_mem_mb) self.duplicate_h5_groups = [] self.partial_h5_groups = [] self.process_name = None # Reset this in the extended classes self.parms_dict = None # The name of the HDF5 dataset that should be present to signify which positions have already been computed self.__status_dset_name = 'completed_positions' self._results = None self.h5_results_grp = None # Check to see if the resuming feature has been implemented: self.__resume_implemented = False try: self._get_existing_datasets() except NotImplementedError: if verbose and self.mpi_rank == 0: print('It appears that this class may not be able to resume computations') except: # NameError for variables that don't exist # AttributeError for self.var_name that don't exist # TypeError (NoneType) etc. self.__resume_implemented = True if self.mpi_rank == 0: print('Consider calling test() to check results before calling compute() which computes on the entire' ' dataset and writes back to the HDF5 file') # DON'T check for duplicates since parms_dict has not yet been initialized. # Sub classes will check by themselves if they are interested. def __assign_job_indices(self): """ Sets the start and end indices for each MPI rank """ # First figure out what positions need to be computed self._compute_jobs = np.where(self._h5_status_dset[()] == 0)[0] if self.verbose and self.mpi_rank == 0: print('Among the {} positions in this dataset, the following positions need to be computed: {}' '.'.format(self.h5_main.shape[0], self._compute_jobs)) pos_per_rank = self._compute_jobs.size // self.mpi_size # integer division if self.verbose and self.mpi_rank == 0: print('Each rank is required to work on {} of the {} (remaining) positions in this dataset' '.'.format(pos_per_rank, self._compute_jobs.size)) # The start and end indices now correspond to the indices in the incomplete jobs rather than the h5 dataset self.__start_pos = self.mpi_rank * pos_per_rank self.__rank_end_pos = (self.mpi_rank + 1) * pos_per_rank self.__end_pos = int(min(self.__rank_end_pos, self.__start_pos + self._max_pos_per_read)) if self.mpi_rank == self.mpi_size - 1: # Force the last rank to go to the end of the dataset self.__rank_end_pos = self._compute_jobs.size if self.verbose: print('Rank {} will read positions {} to {} of {}'.format(self.mpi_rank, self.__start_pos, self.__rank_end_pos, self.h5_main.shape[0])) def _estimate_compute_time_per_pixel(self, *args, **kwargs): """ Estimates how long it takes to compute an average pixel's worth of data. This information should be used by the user to limit the number of pixels that will be processed per batch to make best use of checkpointing. This function is exposed to the developer of the child classes. An approximate can be derived if it is simpler Returns ------- """ chosen_pos = np.random.randint(0, high=self.h5_main.shape[0]-1, size=5) t0 = tm.time() _ = parallel_compute(self.h5_main[chosen_pos, :], self._map_function, cores=1, lengthy_computation=False, func_args=args, func_kwargs=kwargs, verbose=False) return (tm.time() - t0) / len(chosen_pos) def _get_pixels_in_current_batch(self): """ Returns the indices of the pixels that will be processed in this batch. Returns ------- pixels_in_batch : numpy.ndarray 1D array of unsigned integers denoting the pixels that will be read, processed, and written back to """ return self.__pixels_in_batch def test(self, **kwargs): """ Tests the process on a subset (for example a pixel) of the whole data. The class can be reinstantiated with improved parameters and tested repeatedly until the user is content, at which point the user can call compute() on the whole dataset. This is not a function that is expected to be called in mpi Parameters ---------- kwargs - dict, optional keyword arguments to test the process Returns ------- """ # All children classes should call super() OR ensure that they only work for self.mpi_rank == 0 raise NotImplementedError('test_on_subset has not yet been implemented') def _check_for_duplicates(self): """ Checks for instances where the process was applied to the same dataset with the same parameters Returns ------- duplicate_h5_groups : list of h5py.Group objects List of groups satisfying the above conditions """ if self.verbose and self.mpi_rank == 0: print('Checking for duplicates:') # This list will contain completed runs only duplicate_h5_groups = check_for_old(self.h5_main, self.process_name, new_parms=self.parms_dict) partial_h5_groups = [] # First figure out which ones are partially completed: if len(duplicate_h5_groups) > 0: for index, curr_group in enumerate(duplicate_h5_groups): """ Earlier, we only checked the 'last_pixel' but to be rigorous we should check self.__status_dset_name The last_pixel attribute check may be deprecated in the future. Note that legacy computations did not have this dataset. We can add to partially computed datasets """ if self.__status_dset_name in curr_group.keys(): # Case 1: Modern Process results: status_dset = curr_group[self.__status_dset_name] if not isinstance(status_dset, h5py.Dataset): # We should not come here if things were implemented correctly if self.mpi_rank == 0: print('Results group: {} contained an object named: {} that should have been a dataset' '.'.format(curr_group, self.__status_dset_name)) if self.h5_main.shape[0] != status_dset.shape[0] or len(status_dset.shape) > 1 or \ status_dset.dtype != np.uint8: if self.mpi_rank == 0: print('Status dataset: {} was not of the expected shape or datatype'.format(status_dset)) # Finally, check how far the computation was completed. if len(np.where(status_dset[()] == 0)[0]) == 0: # remove from duplicates and move to partial partial_h5_groups.append(duplicate_h5_groups.pop(index)) # Let's write the legacy attribute for safety curr_group.attrs['last_pixel'] = self.h5_main.shape[0] # No further checks necessary continue else: # Optionally calculate how much was completed: if self.mpi_rank == 0: percent_complete = int(100 * len(np.where(status_dset[()] == 0)[0]) / status_dset.shape[0]) print('Group: {}: computation was {}% completed'.format(curr_group, percent_complete)) # Case 2: Legacy results group: if 'last_pixel' not in curr_group.attrs.keys(): if self.mpi_rank == 0: # Should not be coming here at all print('Group: {} had neither the status HDF5 dataset or the legacy attribute: "last_pixel"' '.'.format(curr_group)) # Not sure what to do with such groups. Don't consider them in the future duplicate_h5_groups.pop(index) continue # Finally, do the legacy test: if curr_group.attrs['last_pixel'] < self.h5_main.shape[0]: # Should we create the dataset here, to make the group future-proof? # remove from duplicates and move to partial partial_h5_groups.append(duplicate_h5_groups.pop(index)) if len(duplicate_h5_groups) > 0 and self.mpi_rank == 0: print('Note: ' + self.process_name + ' has already been performed with the same parameters before. ' 'These results will be returned by compute() by default. ' 'Set override to True to force fresh computation') print(duplicate_h5_groups) if len(partial_h5_groups) > 0 and self.mpi_rank == 0: print('Note: ' + self.process_name + ' has already been performed PARTIALLY with the same parameters. ' 'compute() will resuming computation in the last group below. ' 'To choose a different group call use_patial_computation()' 'Set override to True to force fresh computation or resume from a ' 'data group besides the last in the list.') print(partial_h5_groups) return duplicate_h5_groups, partial_h5_groups def use_partial_computation(self, h5_partial_group=None): """ Extracts the necessary parameters from the provided h5 group to resume computation Parameters ---------- h5_partial_group : h5py.Group object Group containing partially computed results """ # Attempt to automatically take partial results if h5_partial_group is None: if len(self.partial_h5_groups) < 1: raise ValueError('No group was found with partial results and no such group was provided') h5_partial_group = self.partial_h5_groups[-1] else: # Make sure that this group is among the legal ones already discovered: if h5_partial_group not in self.partial_h5_groups: raise ValueError('Provided group does not appear to be in the list of discovered groups') self.parms_dict = get_attributes(h5_partial_group) self.h5_results_grp = h5_partial_group def _set_memory_and_cores(self, cores=None, mem=None): """ Checks hardware limitations such as memory, # cpus and sets the recommended datachunk sizes and the number of cores to be used by analysis methods. This function can work with clusters with heterogeneous memory sizes (e.g. CADES SHPC Condo). Parameters ---------- cores : uint, optional Default - 1 How many cores to use for the computation mem : uint, optional Default - 1024 The amount a memory in Mb to use in the computation """ if MPI is None: min_free_cores = 1 + int(psutil.cpu_count() > 4) if cores is None: self._cores = max(1, psutil.cpu_count() - min_free_cores) else: if not isinstance(cores, int): raise TypeError('cores should be an integer but got: {}'.format(cores)) cores = int(abs(cores)) self._cores = max(1, min(psutil.cpu_count(), cores)) self.__socket_master_rank = 0 self.__ranks_on_socket = 1 else: # user-provided input cores will simply be ignored in an effort to use the entire CPU ranks_by_socket = group_ranks_by_socket(verbose=self.verbose) self.__socket_master_rank = ranks_by_socket[self.mpi_rank] # which ranks in this socket? ranks_on_this_socket = np.where(ranks_by_socket == self.__socket_master_rank)[0] # how many in this socket? self.__ranks_on_socket = ranks_on_this_socket.size # Force usage of all available memory mem = None self._cores = 1 # Disabling the following line since mpi4py and joblib didn't play well for Bayesian Inference # self._cores = self.__cores_per_rank = psutil.cpu_count() // self.__ranks_on_socket # TODO: Convert all to bytes! _max_mem_mb = get_available_memory() / 1024 ** 2 # in MB if mem is None: mem = _max_mem_mb else: if not isinstance(mem, int): raise TypeError('mem must be a whole number') mem = abs(mem) self._max_mem_mb = min(_max_mem_mb, mem) # Remember that multiple processes (either via MPI or joblib) will share this socket max_data_chunk = self._max_mem_mb / (self._cores * self.__ranks_on_socket) # Now calculate the number of positions OF RAW DATA ONLY that can be stored in memory in one go PER RANK mb_per_position = self.h5_main.dtype.itemsize * self.h5_main.shape[1] / 1024 ** 2 self._max_pos_per_read = int(np.floor(max_data_chunk / mb_per_position)) if self.verbose and self.mpi_rank == self.__socket_master_rank: # expected to be the same for all ranks so just use this. print('Rank {} - on socket with {} logical cores and {} avail. RAM shared by {} ranks each given {} cores' '.'.format(self.__socket_master_rank, psutil.cpu_count(), format_size(_max_mem_mb * 1024**2, 2), self.__ranks_on_socket, self._cores)) print('Allowed to read {} pixels per chunk'.format(self._max_pos_per_read)) @staticmethod def _map_function(*args, **kwargs): """ The function that manipulates the data on a single instance (position). This will be used by _unit_computation() to process a chunk of data in parallel Parameters ---------- args : list arguments to the function in the correct order kwargs : dictionary keyword arguments to the function Returns ------- object """ raise NotImplementedError('Please override the _unit_function specific to your process') def _read_data_chunk(self): """ Reads a chunk of data for the intended computation into memory """ if self.__start_pos < self.__rank_end_pos: self.__end_pos = int(min(self.__rank_end_pos, self.__start_pos + self._max_pos_per_read)) # DON'T DIRECTLY apply the start and end indices anymore to the h5 dataset. Find out what it means first self.__pixels_in_batch = self._compute_jobs[self.__start_pos: self.__end_pos] self.data = self.h5_main[self.__pixels_in_batch, :] if self.verbose: print('Rank {} - Read positions: {}'.format(self.mpi_rank, self.__pixels_in_batch, self.__rank_end_pos)) # DON'T update the start position else: if self.verbose: print('Rank {} - Finished reading all data!'.format(self.mpi_rank)) self.data = None def _write_results_chunk(self): """ Writes the computed results into appropriate datasets. This needs to be rewritten since the processed data is expected to be at least as large as the dataset """ # Now update the start position self.__start_pos = self.__end_pos # This line can remain as is raise NotImplementedError('Please override the _set_results specific to your process') def _create_results_datasets(self): """ Process specific call that will write the h5 group, guess dataset, corresponding spectroscopic datasets and also link the guess dataset to the spectroscopic datasets. It is recommended that the ancillary datasets be populated within this function. """ raise NotImplementedError('Please override the _create_results_datasets specific to your process') def __create_compute_status_dataset(self): """ Creates a dataset that keeps track of what pixels / rows have already been computed. Users are not expected to extend / modify this function. """ # TODO: This will fail for Fitter and Image Processing class which will need to run Process twice . Need to allow room for customization # Check to make sure that such a group doesn't already exist if self.__status_dset_name in self.h5_results_grp.keys(): self._h5_status_dset = self.h5_results_grp[self.__status_dset_name] if not isinstance(self._h5_status_dset, h5py.Dataset): raise ValueError('Provided results group: {} contains an expected object ({}) that is not a dataset' '.'.format(self.h5_results_grp, self._h5_status_dset)) if self.h5_main.shape[0] != self._h5_status_dset.shape[0] or len(self._h5_status_dset.shape) > 1 or \ self._h5_status_dset.dtype != np.uint8: if self.mpi_rank == 0: raise ValueError('Status dataset: {} was not of the expected shape or datatype' '.'.format(self._h5_status_dset)) else: self._h5_status_dset = self.h5_results_grp.create_dataset(self.__status_dset_name, dtype=np.uint8, shape=(self.h5_main.shape[0],)) # Could be fresh computation or resuming from a legacy computation if 'last_pixel' in self.h5_results_grp.attrs.keys(): completed_pixels = self.h5_results_grp.attrs['last_pixel'] if completed_pixels > 0: self._h5_status_dset[:completed_pixels] = 1 def _get_existing_datasets(self): """ The purpose of this function is to allow processes to resume from partly computed results Start with self.h5_results_grp """ raise NotImplementedError('Please override the _get_existing_datasets specific to your process') def _unit_computation(self, *args, **kwargs): """ The unit computation that is performed per data chunk. This allows room for any data pre / post-processing as well as multiple calls to parallel_compute if necessary """ # TODO: Try to use the functools.partials to preconfigure the map function # cores = number of processes / rank here self._results = parallel_compute(self.data, self._map_function, cores=self._cores, lengthy_computation=False, func_args=args, func_kwargs=kwargs, verbose=self.verbose) def compute(self, override=False, *args, **kwargs): """ Creates placeholders for the results, applies the unit computation to chunks of the dataset Parameters ---------- override : bool, optional. default = False By default, compute will simply return duplicate results to avoid recomputing or resume computation on a group with partial results. Set to True to force fresh computation. args : list arguments to the mapped function in the correct order kwargs : dictionary keyword arguments to the mapped function Returns ------- h5_results_grp : h5py.Group object Group containing all the results """ class SimpleFIFO(object): """ Simple class that maintains a moving average of some numbers. """ def __init__(self, length=5): """ Create a SimpleFIFO object Parameters ---------- length : unsigned integer Number of values that need to be maintained for the moving average """ self.__queue = list() if not isinstance(length, int): raise TypeError('length must be a positive integer') if length <= 0: raise ValueError('length must be a positive integer') self.__max_length = length self.__count = 0 def put(self, item): """ Adds the item to the internal queue. If the size of the queue exceeds its capacity, the oldest item is removed. Parameters ---------- item : float or int Any real valued number """ if (not isinstance(item, Number)) or isinstance(item, complex): raise TypeError('Provided item: {} is not a Number'.format(item)) self.__queue.append(item) self.__count += 1 if len(self.__queue) > self.__max_length: _ = self.__queue.pop(0) def get_mean(self): """ Returns the average of the elements within the queue Returns ------- avg : number.Number Mean of all elements within the queue """ return np.mean(self.__queue) def get_cycles(self): """ Returns the number of items that have been added to the queue in total Returns ------- count : int number of items that have been added to the queue in total """ return self.__count if not override: if len(self.duplicate_h5_groups) > 0: if self.mpi_rank == 0: print('Returned previously computed results at ' + self.duplicate_h5_groups[-1].name) return self.duplicate_h5_groups[-1] elif len(self.partial_h5_groups) > 0: if self.mpi_rank == 0: print('Resuming computation in group: ' + self.partial_h5_groups[-1].name) self.use_partial_computation() resuming = False if self.h5_results_grp is None: # starting fresh if self.verbose and self.mpi_rank == 0: print('Creating HDF5 group and datasets to hold results') self._create_results_datasets() else: # resuming from previous checkpoint resuming = True self._get_existing_datasets() self.__create_compute_status_dataset() if resuming and self.mpi_rank == 0: percent_complete = int(100 * len(np.where(self._h5_status_dset[()] == 0)[0]) / self._h5_status_dset.shape[0]) print('Resuming computation. {}% completed already'.format(percent_complete)) self.__assign_job_indices() # Not sure if this is necessary but I don't think it would hurt either if self.mpi_comm is not None: self.mpi_comm.barrier() compute_times = SimpleFIFO(5) write_times = SimpleFIFO(5) orig_rank_start = self.__start_pos if self.mpi_rank == 0 and self.mpi_size == 1: if self.__resume_implemented: print('\tThis class (likely) supports interruption and resuming of computations!\n' '\tIf you are operating in a python console, press Ctrl+C or Cmd+C to abort\n' '\tIf you are in a Jupyter notebook, click on "Kernel">>"Interrupt"\n' '\tIf you are operating on a cluster and your job gets killed, re-run the job to resume\n') else: print('\tThis class does NOT support interruption and resuming of computations.\n' '\tIn order to enable this feature, simply implement the _get_existing_datasets() function') if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with nothing loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) self._read_data_chunk() if self.mpi_comm is not None: self.mpi_comm.barrier() if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with only raw data loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) while self.data is not None: num_jobs_in_batch = self.__end_pos - self.__start_pos t_start_1 = tm.time() self._unit_computation(*args, **kwargs) comp_time = np.round(tm.time() - t_start_1, decimals=2) # in seconds time_per_pix = comp_time / num_jobs_in_batch compute_times.put(time_per_pix) if self.verbose: print('Rank {} - computed chunk in {} or {} per pixel. Average: {} per pixel' '.'.format(self.mpi_rank, format_time(comp_time), format_time(time_per_pix), format_time(compute_times.get_mean()))) # Ranks can become memory starved. Check memory usage - raw data + results in memory at this point if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - now holding onto raw data + results has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) t_start_2 = tm.time() self._write_results_chunk() # NOW, update the positions. Users are NOT allowed to touch start and end pos self.__start_pos = self.__end_pos # Leaving in this provision that will allow restarting of processes if self.mpi_size == 1: self.h5_results_grp.attrs['last_pixel'] = self.__end_pos # Child classes don't even have to worry about flushing. Process will do it. self.h5_main.file.flush() dump_time = np.round(tm.time() - t_start_2, decimals=2) write_times.put(dump_time / num_jobs_in_batch) if self.verbose: print('Rank {} - wrote its {} pixel chunk in {}'.format(self.mpi_rank, num_jobs_in_batch, format_time(dump_time))) time_remaining = (self.__rank_end_pos - self.__end_pos) * \ (compute_times.get_mean() + write_times.get_mean()) if self.verbose or self.mpi_rank == 0: percent_complete = int(100 * (self.__end_pos - orig_rank_start) / (self.__rank_end_pos - orig_rank_start)) print('Rank {} - {}% complete. Time remaining: {}'.format(self.mpi_rank, percent_complete, format_time(time_remaining))) # All ranks should mark the pixels for this batch as completed. 'last_pixel' attribute will be updated later # Setting each section to 1 independently for section in to_ranges(self.__pixels_in_batch): self._h5_status_dset[section[0]: section[1]+1] = 1 self._read_data_chunk() if self.verbose: print('Rank {} - Finished computing all jobs!'.format(self.mpi_rank)) if self.mpi_comm is not None: self.mpi_comm.barrier() if self.mpi_rank == 0: print('Finished processing the entire dataset!') # Update the legacy 'last_pixel' attribute here: if self.mpi_rank == 0: self.h5_results_grp.attrs['last_pixel'] = self.h5_main.shape[0] return self.h5_results_grp def parallel_compute(data, func, cores=1, lengthy_computation=False, func_args=None, func_kwargs=None, verbose=False): """ Computes the provided function using multiple cores using the joblib library Parameters ---------- data : numpy.ndarray Data to map function to. Function will be mapped to the first axis of data func : callable Function to map to data cores : uint, optional Number of logical cores to use to compute Default - 1 (serial computation) lengthy_computation : bool, optional Whether or not each computation is expected to take substantial time. Sometimes the time for adding more cores can outweigh the time per core Default - False func_args : list, optional arguments to be passed to the function func_kwargs : dict, optional keyword arguments to be passed onto function verbose : bool, optional. default = False Whether or not to print statements that aid in debugging Returns ------- results : list List of computational results """ if not callable(func): raise TypeError('Function argument is not callable') if not isinstance(data, np.ndarray): raise TypeError('data must be a numpy array') if func_args is None: func_args = list() else: if isinstance(func_args, tuple): func_args = list(func_args) if not isinstance(func_args, list): raise TypeError('Arguments to the mapped function should be specified as a list') if func_kwargs is None: func_kwargs = dict() else: if not isinstance(func_kwargs, dict): raise TypeError('Keyword arguments to the mapped function should be specified via a dictionary') req_cores = cores if MPI is not None: rank = MPI.COMM_WORLD.Get_rank() # Was unable to get the MPI + joblib framework to work. Did not compute anything at all. Just froze cores = 1 else: rank = 0 cores = recommend_cpu_cores(data.shape[0], requested_cores=cores, lengthy_computation=lengthy_computation, verbose=verbose) if verbose: print('Rank {} starting computing on {} cores (requested {} cores)'.format(rank, cores, req_cores)) if cores > 1: values = [joblib.delayed(func)(x, *func_args, **func_kwargs) for x in data] results = joblib.Parallel(n_jobs=cores)(values) # Finished reading the entire data set print('Rank {} finished parallel computation'.format(rank)) else: if verbose: print("Rank {} computing serially ...".format(rank)) # List comprehension vs map vs for loop? # https://stackoverflow.com/questions/1247486/python-list-comprehension-vs-map results = [func(vector, *func_args, **func_kwargs) for vector in data] return results
[ "numpy.floor", "numpy.random.randint", "numpy.mean", "pyUSID.io.io_utils.recommend_cpu_cores", "mpi4py.MPI.COMM_WORLD.barrier", "numpy.unique", "psutil.cpu_count", "multiprocessing.cpu_count", "mpi4py.MPI.Get_processor_name", "mpi4py.MPI.COMM_WORLD.Get_size", "pyUSID.io.io_utils.get_available_memory", "mpi4py.MPI.COMM_WORLD.Get_rank", "pyUSID.io.io_utils.format_size", "pyUSID.io.io_utils.format_time", "pyUSID.io.usi_data.USIDataset", "pyUSID.io.hdf_utils.check_if_main", "numpy.zeros", "time.time", "pyUSID.io.hdf_utils.get_attributes", "pyUSID.io.hdf_utils.check_for_old", "numpy.array", "numpy.where", "joblib.Parallel", "joblib.delayed" ]
[((4798, 4822), 'mpi4py.MPI.Get_processor_name', 'MPI.Get_processor_name', ([], {}), '()\n', (4820, 4822), False, 'from mpi4py import MPI\n'), ((5083, 5100), 'numpy.array', 'np.array', (['recvbuf'], {}), '(recvbuf)\n', (5091, 5100), True, 'import numpy as np\n'), ((5122, 5140), 'numpy.unique', 'np.unique', (['recvbuf'], {}), '(recvbuf)\n', (5131, 5140), True, 'import numpy as np\n'), ((5250, 5281), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.uint16'}), '(size, dtype=np.uint16)\n', (5258, 5281), True, 'import numpy as np\n'), ((326, 351), 'mpi4py.MPI.COMM_WORLD.Get_size', 'MPI.COMM_WORLD.Get_size', ([], {}), '()\n', (349, 351), False, 'from mpi4py import MPI\n'), ((9645, 9664), 'pyUSID.io.usi_data.USIDataset', 'USIDataset', (['h5_main'], {}), '(h5_main)\n', (9655, 9664), False, 'from pyUSID.io.usi_data import USIDataset\n'), ((13685, 13745), 'numpy.random.randint', 'np.random.randint', (['(0)'], {'high': '(self.h5_main.shape[0] - 1)', 'size': '(5)'}), '(0, high=self.h5_main.shape[0] - 1, size=5)\n', (13702, 13745), True, 'import numpy as np\n'), ((13757, 13766), 'time.time', 'tm.time', ([], {}), '()\n', (13764, 13766), True, 'import time as tm\n'), ((15593, 15666), 'pyUSID.io.hdf_utils.check_for_old', 'check_for_old', (['self.h5_main', 'self.process_name'], {'new_parms': 'self.parms_dict'}), '(self.h5_main, self.process_name, new_parms=self.parms_dict)\n', (15606, 15666), False, 'from pyUSID.io.hdf_utils import check_if_main, check_for_old, get_attributes\n'), ((21011, 21043), 'pyUSID.io.hdf_utils.get_attributes', 'get_attributes', (['h5_partial_group'], {}), '(h5_partial_group)\n', (21025, 21043), False, 'from pyUSID.io.hdf_utils import check_if_main, check_for_old, get_attributes\n'), ((40598, 40623), 'mpi4py.MPI.COMM_WORLD.Get_rank', 'MPI.COMM_WORLD.Get_rank', ([], {}), '()\n', (40621, 40623), False, 'from mpi4py import MPI\n'), ((40793, 40912), 'pyUSID.io.io_utils.recommend_cpu_cores', 'recommend_cpu_cores', (['data.shape[0]'], {'requested_cores': 'cores', 'lengthy_computation': 'lengthy_computation', 'verbose': 'verbose'}), '(data.shape[0], requested_cores=cores,\n lengthy_computation=lengthy_computation, verbose=verbose)\n', (40812, 40912), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((5330, 5355), 'numpy.where', 'np.where', (['(recvbuf == item)'], {}), '(recvbuf == item)\n', (5338, 5355), True, 'import numpy as np\n'), ((7964, 7982), 'psutil.cpu_count', 'psutil.cpu_count', ([], {}), '()\n', (7980, 7982), False, 'import psutil\n'), ((9286, 9348), 'pyUSID.io.hdf_utils.check_if_main', 'check_if_main', (['h5_main'], {'verbose': '(verbose and self.mpi_rank == 0)'}), '(h5_main, verbose=verbose and self.mpi_rank == 0)\n', (9299, 9348), False, 'from pyUSID.io.hdf_utils import check_if_main, check_for_old, get_attributes\n'), ((9498, 9522), 'mpi4py.MPI.COMM_WORLD.barrier', 'MPI.COMM_WORLD.barrier', ([], {}), '()\n', (9520, 9522), False, 'from mpi4py import MPI\n'), ((11861, 11900), 'numpy.where', 'np.where', (['(self._h5_status_dset[()] == 0)'], {}), '(self._h5_status_dset[()] == 0)\n', (11869, 11900), True, 'import numpy as np\n'), ((23108, 23130), 'pyUSID.io.io_utils.get_available_memory', 'get_available_memory', ([], {}), '()\n', (23128, 23130), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((23818, 23860), 'numpy.floor', 'np.floor', (['(max_data_chunk / mb_per_position)'], {}), '(max_data_chunk / mb_per_position)\n', (23826, 23860), True, 'import numpy as np\n'), ((35478, 35487), 'time.time', 'tm.time', ([], {}), '()\n', (35485, 35487), True, 'import time as tm\n'), ((36409, 36418), 'time.time', 'tm.time', ([], {}), '()\n', (36416, 36418), True, 'import time as tm\n'), ((41263, 41292), 'joblib.Parallel', 'joblib.Parallel', ([], {'n_jobs': 'cores'}), '(n_jobs=cores)\n', (41278, 41292), False, 'import joblib\n'), ((13977, 13986), 'time.time', 'tm.time', ([], {}), '()\n', (13984, 13986), True, 'import time as tm\n'), ((22582, 22636), 'numpy.where', 'np.where', (['(ranks_by_socket == self.__socket_master_rank)'], {}), '(ranks_by_socket == self.__socket_master_rank)\n', (22590, 22636), True, 'import numpy as np\n'), ((32123, 32144), 'numpy.mean', 'np.mean', (['self.__queue'], {}), '(self.__queue)\n', (32130, 32144), True, 'import numpy as np\n'), ((41179, 41199), 'joblib.delayed', 'joblib.delayed', (['func'], {}), '(func)\n', (41193, 41199), False, 'import joblib\n'), ((24180, 24198), 'psutil.cpu_count', 'psutil.cpu_count', ([], {}), '()\n', (24196, 24198), False, 'import psutil\n'), ((24200, 24239), 'pyUSID.io.io_utils.format_size', 'format_size', (['(_max_mem_mb * 1024 ** 2)', '(2)'], {}), '(_max_mem_mb * 1024 ** 2, 2)\n', (24211, 24239), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((35575, 35584), 'time.time', 'tm.time', ([], {}), '()\n', (35582, 35584), True, 'import time as tm\n'), ((36945, 36954), 'time.time', 'tm.time', ([], {}), '()\n', (36952, 36954), True, 'import time as tm\n'), ((7714, 7738), 'mpi4py.MPI.Get_processor_name', 'MPI.Get_processor_name', ([], {}), '()\n', (7736, 7738), False, 'from mpi4py import MPI\n'), ((7827, 7838), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (7836, 7838), False, 'from multiprocessing import cpu_count\n'), ((21771, 21789), 'psutil.cpu_count', 'psutil.cpu_count', ([], {}), '()\n', (21787, 21789), False, 'import psutil\n'), ((21863, 21881), 'psutil.cpu_count', 'psutil.cpu_count', ([], {}), '()\n', (21879, 21881), False, 'import psutil\n'), ((22138, 22156), 'psutil.cpu_count', 'psutil.cpu_count', ([], {}), '()\n', (22154, 22156), False, 'import psutil\n'), ((34984, 35006), 'pyUSID.io.io_utils.get_available_memory', 'get_available_memory', ([], {}), '()\n', (35004, 35006), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((35322, 35344), 'pyUSID.io.io_utils.get_available_memory', 'get_available_memory', ([], {}), '()\n', (35342, 35344), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((35897, 35919), 'pyUSID.io.io_utils.format_time', 'format_time', (['comp_time'], {}), '(comp_time)\n', (35908, 35919), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((35921, 35946), 'pyUSID.io.io_utils.format_time', 'format_time', (['time_per_pix'], {}), '(time_per_pix)\n', (35932, 35946), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((37319, 37341), 'pyUSID.io.io_utils.format_time', 'format_time', (['dump_time'], {}), '(dump_time)\n', (37330, 37341), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((37893, 37920), 'pyUSID.io.io_utils.format_time', 'format_time', (['time_remaining'], {}), '(time_remaining)\n', (37904, 37920), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((36358, 36380), 'pyUSID.io.io_utils.get_available_memory', 'get_available_memory', ([], {}), '()\n', (36378, 36380), False, 'from pyUSID.io.io_utils import recommend_cpu_cores, get_available_memory, format_time, format_size\n'), ((17247, 17277), 'numpy.where', 'np.where', (['(status_dset[()] == 0)'], {}), '(status_dset[()] == 0)\n', (17255, 17277), True, 'import numpy as np\n'), ((33538, 33577), 'numpy.where', 'np.where', (['(self._h5_status_dset[()] == 0)'], {}), '(self._h5_status_dset[()] == 0)\n', (33546, 33577), True, 'import numpy as np\n'), ((17879, 17909), 'numpy.where', 'np.where', (['(status_dset[()] == 0)'], {}), '(status_dset[()] == 0)\n', (17887, 17909), True, 'import numpy as np\n')]
import numpy as np class TicTacToeGame: def __init__(self, size): self.m_SizeSize = size; self.m_Grid = np.zeros((size, size), np.int8) self.m_Grid.fill(-1) self.m_CurentPlayer = 0 def Move(self, player, row, col): if self.IsMoveAllowed(player, row, col) == True: self.m_Grid[row][col] = player def WillMoveWin(self, player, row, col): if not self.IsMoveAllowed(player, row, col): return False # check horizontal hasWon = True for i in range(self.m_SizeSize): colIdx = (col + i) % self.m_SizeSize hasWon = hasWon and self.m_Grid[row][colIdx] == player # Check vertical win if not hasWon: hasWon = True for i in range(self.m_SizeSize): rowIdx = (row + i) % self.m_SizeSize hasWon = hasWon and self.m_Grid[row][colIdx] == player if not hasWon and row == 1 and col == 1: hasWon = True # Test diagonal from upper left to lower right for i in range(self.m_SizeSize): hasWon = hasWon and self.m_Grid[i][i] == player if hasWon: return True # Test diagnol from lower left to upper right hasWon = True for i in range(self.m_SizeSize): hasWon = hasWon and self.m_Grid[2 - i][i] == player return hasWon def RankMove(self, player, row, col): reward = 0 if not self.IsMoveAllowed(player, row, col): reward = reward + -100 backup = self.m_Grid[row][col] self.m_Grid[row][col] = player if self.WillMoveWin(player, row, col): reward = reward + 1000 self.m_Grid[row][col] = backup return reward def IsMoveAllowed(self, player, row, col): if int(row) in range(self.m_SizeSize) and int(col) in range(self.m_SizeSize): return self.m_Grid[row][col] == -1 else: return False def NoEmptySpaces(self): for i in range(self.m_SizeSize): for j in range(self.m_SizeSize): if self.m_Grid[i][j] == -1: return False return True def Render(self): # print (self.m_Grid) print("") for row in range(self.m_SizeSize): lineTxt = "" for col in range(self.m_SizeSize): if (self.m_Grid[row][col] == 0): lineTxt += " O" elif (self.m_Grid[row][col] == 0): lineTxt += " X" else: lineTxt += " _" print(lineTxt)
[ "numpy.zeros" ]
[((134, 165), 'numpy.zeros', 'np.zeros', (['(size, size)', 'np.int8'], {}), '((size, size), np.int8)\n', (142, 165), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import unittest from unittest import TestCase import pkgutil import io import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.models.harmonic_regression import ( HarmonicRegressionModel, HarmonicRegressionParams, ) def load_data(file_name): ROOT = "kats" if "kats" in os.getcwd().lower(): path = "data/" else: path = "kats/data/" data_object = pkgutil.get_data(ROOT, path + file_name) return pd.read_csv(io.BytesIO(data_object), encoding="utf8") class testHarmonicRegression(TestCase): def setUp(self): times = pd.to_datetime( np.arange(start=1576195200, stop=1577836801, step=60 * 60), unit="s" ) self.series_times = pd.Series(times) harms = HarmonicRegressionModel.fourier_series(self.series_times, 24, 3) self.harms_sum = np.sum([1, 1, 1, 1, 1, 1] * harms, axis=1) self.data = TimeSeriesData( pd.DataFrame({"time": self.series_times, "values": self.harms_sum}) ) self.params = HarmonicRegressionParams(24, 3) def test_fit_and_predict(self) -> None: hrm = HarmonicRegressionModel(self.data, self.params) hrm.fit() self.assertIsNotNone(hrm.params) # pyre-fixme[16]: `HarmonicRegressionModel` has no attribute `harms`. self.assertIsNotNone(hrm.harms) # pyre-fixme[6]: Expected `Series` for 1st param but got # `Union[pd.core.frame.DataFrame, pd.core.series.Series]`. preds = hrm.predict(self.series_times.head(1)) self.assertAlmostEqual(preds["fcst"][0], self.harms_sum[0], delta=0.0001) if __name__ == "__main__": unittest.main()
[ "unittest.main", "pkgutil.get_data", "io.BytesIO", "pandas.DataFrame", "numpy.sum", "kats.models.harmonic_regression.HarmonicRegressionModel", "os.getcwd", "kats.models.harmonic_regression.HarmonicRegressionParams", "pandas.Series", "kats.models.harmonic_regression.HarmonicRegressionModel.fourier_series", "numpy.arange" ]
[((606, 646), 'pkgutil.get_data', 'pkgutil.get_data', (['ROOT', '(path + file_name)'], {}), '(ROOT, path + file_name)\n', (622, 646), False, 'import pkgutil\n'), ((1861, 1876), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1874, 1876), False, 'import unittest\n'), ((670, 693), 'io.BytesIO', 'io.BytesIO', (['data_object'], {}), '(data_object)\n', (680, 693), False, 'import io\n'), ((926, 942), 'pandas.Series', 'pd.Series', (['times'], {}), '(times)\n', (935, 942), True, 'import pandas as pd\n'), ((959, 1023), 'kats.models.harmonic_regression.HarmonicRegressionModel.fourier_series', 'HarmonicRegressionModel.fourier_series', (['self.series_times', '(24)', '(3)'], {}), '(self.series_times, 24, 3)\n', (997, 1023), False, 'from kats.models.harmonic_regression import HarmonicRegressionModel, HarmonicRegressionParams\n'), ((1049, 1091), 'numpy.sum', 'np.sum', (['([1, 1, 1, 1, 1, 1] * harms)'], {'axis': '(1)'}), '([1, 1, 1, 1, 1, 1] * harms, axis=1)\n', (1055, 1091), True, 'import numpy as np\n'), ((1241, 1272), 'kats.models.harmonic_regression.HarmonicRegressionParams', 'HarmonicRegressionParams', (['(24)', '(3)'], {}), '(24, 3)\n', (1265, 1272), False, 'from kats.models.harmonic_regression import HarmonicRegressionModel, HarmonicRegressionParams\n'), ((1332, 1379), 'kats.models.harmonic_regression.HarmonicRegressionModel', 'HarmonicRegressionModel', (['self.data', 'self.params'], {}), '(self.data, self.params)\n', (1355, 1379), False, 'from kats.models.harmonic_regression import HarmonicRegressionModel, HarmonicRegressionParams\n'), ((819, 877), 'numpy.arange', 'np.arange', ([], {'start': '(1576195200)', 'stop': '(1577836801)', 'step': '(60 * 60)'}), '(start=1576195200, stop=1577836801, step=60 * 60)\n', (828, 877), True, 'import numpy as np\n'), ((1140, 1207), 'pandas.DataFrame', 'pd.DataFrame', (["{'time': self.series_times, 'values': self.harms_sum}"], {}), "({'time': self.series_times, 'values': self.harms_sum})\n", (1152, 1207), True, 'import pandas as pd\n'), ((506, 517), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (515, 517), False, 'import os\n')]
import argparse import torch import numpy as np import os import data from networks import domain_generator, domain_classifier from utils import util def optimize(opt): dataset_name = 'cifar10' generator_name = 'stylegan2-cc' # class conditional stylegan transform = data.get_transform(dataset_name, 'imval') dset = data.get_dataset(dataset_name, opt.partition, load_w=False, transform=transform) total = len(dset) if opt.indices is None: start_idx = 0 end_idx = total else: start_idx = opt.indices[0] end_idx = opt.indices[1] generator = domain_generator.define_generator( generator_name, dataset_name, load_encoder=False) util.set_requires_grad(False, generator.generator) resnet = domain_classifier.define_classifier(dataset_name, 'imageclassifier') ### iterate ### for i in range(start_idx, end_idx): img, label = dset[i] print("Running img %d/%d" % (i, len(dset))) filename = os.path.join(opt.w_path, '%s_%06d.npy' % (opt.partition, i)) if os.path.isfile(filename): print(filename + ' found... skipping') continue img = img[None].cuda() with torch.no_grad(): pred_logit = resnet(img) _, pred_label = pred_logit.max(1) pred_label = pred_label.item() print("True label %d prd label %d" % (label, pred_label)) ckpt, loss = generator.optimize(img, pred_label) current_z = ckpt['current_z'].detach().cpu().numpy() np.save(filename, current_z) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--partition', type=str, required=True, help='specify train, val, or test partition') parser.add_argument('--w_path', type=str, required=True, help='directory to save the optimized latents') parser.add_argument('--indices', type=int, nargs=2, help='optimize latents for specific image range') opt = parser.parse_args() print(opt) os.makedirs(opt.w_path, exist_ok=True) optimize(opt)
[ "numpy.save", "argparse.ArgumentParser", "data.get_dataset", "os.makedirs", "networks.domain_classifier.define_classifier", "data.get_transform", "os.path.isfile", "networks.domain_generator.define_generator", "torch.no_grad", "os.path.join", "utils.util.set_requires_grad" ]
[((283, 324), 'data.get_transform', 'data.get_transform', (['dataset_name', '"""imval"""'], {}), "(dataset_name, 'imval')\n", (301, 324), False, 'import data\n'), ((337, 422), 'data.get_dataset', 'data.get_dataset', (['dataset_name', 'opt.partition'], {'load_w': '(False)', 'transform': 'transform'}), '(dataset_name, opt.partition, load_w=False, transform=transform\n )\n', (353, 422), False, 'import data\n'), ((637, 724), 'networks.domain_generator.define_generator', 'domain_generator.define_generator', (['generator_name', 'dataset_name'], {'load_encoder': '(False)'}), '(generator_name, dataset_name,\n load_encoder=False)\n', (670, 724), False, 'from networks import domain_generator, domain_classifier\n'), ((734, 784), 'utils.util.set_requires_grad', 'util.set_requires_grad', (['(False)', 'generator.generator'], {}), '(False, generator.generator)\n', (756, 784), False, 'from utils import util\n'), ((799, 867), 'networks.domain_classifier.define_classifier', 'domain_classifier.define_classifier', (['dataset_name', '"""imageclassifier"""'], {}), "(dataset_name, 'imageclassifier')\n", (834, 867), False, 'from networks import domain_generator, domain_classifier\n'), ((1733, 1758), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1756, 1758), False, 'import argparse\n'), ((2206, 2244), 'os.makedirs', 'os.makedirs', (['opt.w_path'], {'exist_ok': '(True)'}), '(opt.w_path, exist_ok=True)\n', (2217, 2244), False, 'import os\n'), ((1079, 1139), 'os.path.join', 'os.path.join', (['opt.w_path', "('%s_%06d.npy' % (opt.partition, i))"], {}), "(opt.w_path, '%s_%06d.npy' % (opt.partition, i))\n", (1091, 1139), False, 'import os\n'), ((1183, 1207), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (1197, 1207), False, 'import os\n'), ((1661, 1689), 'numpy.save', 'np.save', (['filename', 'current_z'], {}), '(filename, current_z)\n', (1668, 1689), True, 'import numpy as np\n'), ((1326, 1341), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1339, 1341), False, 'import torch\n')]
'''Provide fundamental geometry calculations used by the scheduling. ''' import math import numpy as np import brahe.data_models as bdm from brahe.utils import fcross from brahe.constants import RAD2DEG from brahe.coordinates import sECEFtoENZ, sENZtoAZEL, sECEFtoGEOD, sGEODtoECEF from brahe.relative_coordinates import rCARTtoRTN def azelrng(sat_ecef: np.ndarray, loc_ecef: np.ndarray, use_degrees: bool = True) -> np.ndarray: '''Compute satellite azimuth, elevation, and range as viewed from the specified location. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: np.ndarray: azimuth elevation and range as array [deg, deg, m] ''' # Ensure np-ness sat_ecef = np.asarray(sat_ecef) loc_ecef = np.asarray(loc_ecef) # Compute Satellite State in ENZ frame sat_enz = sECEFtoENZ(loc_ecef[0:3], sat_ecef[0:3], conversion='geodetic') # Compute Satellite Elevation azelrng = sENZtoAZEL(sat_enz, use_degrees=use_degrees)[0:3] return azelrng def azimuth(sat_ecef: np.ndarray, loc_ecef: np.ndarray, use_degrees: bool = True) -> np.ndarray: '''Compute satellite azimuth as viewed from the specified location. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: float: Azimuth [deg] ''' return azelrng(sat_ecef, loc_ecef, use_degrees=use_degrees)[0] def elevation(sat_ecef: np.ndarray, loc_ecef: np.ndarray, use_degrees: bool = True) -> np.ndarray: '''Compute satellite elevation as viewed from the specified location. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: float: Elevation [deg] ''' return azelrng(sat_ecef, loc_ecef, use_degrees=use_degrees)[1] def range(sat_ecef: np.ndarray, loc_ecef: np.ndarray, use_degrees: bool = True) -> np.ndarray: '''Compute satellite range from the specified location. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame. loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: float: Range [m] ''' return azelrng(sat_ecef, loc_ecef, use_degrees=use_degrees)[2] def look_angle(sat_ecef: np.ndarray, loc_ecef: np.ndarray, use_degrees: bool = True) -> np.ndarray: '''Compute the look angle angle between the satellite and the specific location. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame. loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: float: look angle angle [deg] ''' # Ensure np-ness sat_ecef = np.asarray(sat_ecef) loc_ecef = np.asarray(loc_ecef) # Satellite state r_sat = sat_ecef[0:3] # Geodetic sub-satellte point sat_geod = sECEFtoGEOD(r_sat) sub_sat_geod = np.array([sat_geod[0], sat_geod[1], 0.0]) sub_sat_ecef = sGEODtoECEF(sub_sat_geod) # look angle nadir_dir = (sub_sat_ecef - r_sat) / np.linalg.norm(sub_sat_ecef - r_sat) target_dir = (loc_ecef - r_sat) / np.linalg.norm(loc_ecef - r_sat) look_angle = math.acos(np.dot(nadir_dir, target_dir)) * RAD2DEG return look_angle def ascdsc(sat_ecef: np.ndarray) -> bdm.AscendingDescending: '''Compute whether whether satellite is ascending or descending in current state. Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame. use_degrees (:obj:`bool`, optional): Return output in degrees. Default: `True` Returns: bdm.AscendingDescending: ascending or descending state ''' # Ensure np-ness sat_ecef = np.asarray(sat_ecef) if sat_ecef[5] > 0: return bdm.AscendingDescending.ascending elif sat_ecef[5] < 0: return bdm.AscendingDescending.descending else: # Handle unlikely case that satellite is exaclty at 0 Z-velocity if sat_ecef[2] < 0: return bdm.AscendingDescending.ascending else: return bdm.AscendingDescending.descending def look_direction(sat_ecef: np.ndarray, loc_ecef: np.ndarray) -> bdm.LookDirection: '''Compute the look direction for viewing the startet Args: sat_ecef (:obj:`np.ndarray`): Satellite position in the ECEF frame. loc_ecef (:obj:`np.ndarray`): Location in ECEF (ITRF) frame.\ Returns: bdm.LookDirection: Look direction. 'left' or 'right' ''' # Ensure np-ness sat_ecef = np.asarray(sat_ecef) loc_ecef = np.asarray(loc_ecef) # Line of Sight Vector in ECEF Frame los_ecef = loc_ecef[0:3] - sat_ecef[0:3] # Apply ECEF to RTN rotation los_rtn = rCARTtoRTN(sat_ecef) @ los_ecef # Compute cross product of RTN velocity and RTN LOS cp = fcross([0, 1, 0], los_rtn) if np.sign(cp[0]) < 0: return bdm.LookDirection.right else: return bdm.LookDirection.left
[ "brahe.coordinates.sENZtoAZEL", "brahe.relative_coordinates.rCARTtoRTN", "numpy.asarray", "brahe.coordinates.sECEFtoGEOD", "brahe.coordinates.sGEODtoECEF", "brahe.coordinates.sECEFtoENZ", "brahe.utils.fcross", "numpy.array", "numpy.linalg.norm", "numpy.sign", "numpy.dot" ]
[((923, 943), 'numpy.asarray', 'np.asarray', (['sat_ecef'], {}), '(sat_ecef)\n', (933, 943), True, 'import numpy as np\n'), ((959, 979), 'numpy.asarray', 'np.asarray', (['loc_ecef'], {}), '(loc_ecef)\n', (969, 979), True, 'import numpy as np\n'), ((1038, 1101), 'brahe.coordinates.sECEFtoENZ', 'sECEFtoENZ', (['loc_ecef[0:3]', 'sat_ecef[0:3]'], {'conversion': '"""geodetic"""'}), "(loc_ecef[0:3], sat_ecef[0:3], conversion='geodetic')\n", (1048, 1101), False, 'from brahe.coordinates import sECEFtoENZ, sENZtoAZEL, sECEFtoGEOD, sGEODtoECEF\n'), ((3395, 3415), 'numpy.asarray', 'np.asarray', (['sat_ecef'], {}), '(sat_ecef)\n', (3405, 3415), True, 'import numpy as np\n'), ((3431, 3451), 'numpy.asarray', 'np.asarray', (['loc_ecef'], {}), '(loc_ecef)\n', (3441, 3451), True, 'import numpy as np\n'), ((3551, 3569), 'brahe.coordinates.sECEFtoGEOD', 'sECEFtoGEOD', (['r_sat'], {}), '(r_sat)\n', (3562, 3569), False, 'from brahe.coordinates import sECEFtoENZ, sENZtoAZEL, sECEFtoGEOD, sGEODtoECEF\n'), ((3589, 3630), 'numpy.array', 'np.array', (['[sat_geod[0], sat_geod[1], 0.0]'], {}), '([sat_geod[0], sat_geod[1], 0.0])\n', (3597, 3630), True, 'import numpy as np\n'), ((3650, 3675), 'brahe.coordinates.sGEODtoECEF', 'sGEODtoECEF', (['sub_sat_geod'], {}), '(sub_sat_geod)\n', (3661, 3675), False, 'from brahe.coordinates import sECEFtoENZ, sENZtoAZEL, sECEFtoGEOD, sGEODtoECEF\n'), ((4384, 4404), 'numpy.asarray', 'np.asarray', (['sat_ecef'], {}), '(sat_ecef)\n', (4394, 4404), True, 'import numpy as np\n'), ((5228, 5248), 'numpy.asarray', 'np.asarray', (['sat_ecef'], {}), '(sat_ecef)\n', (5238, 5248), True, 'import numpy as np\n'), ((5264, 5284), 'numpy.asarray', 'np.asarray', (['loc_ecef'], {}), '(loc_ecef)\n', (5274, 5284), True, 'import numpy as np\n'), ((5518, 5544), 'brahe.utils.fcross', 'fcross', (['[0, 1, 0]', 'los_rtn'], {}), '([0, 1, 0], los_rtn)\n', (5524, 5544), False, 'from brahe.utils import fcross\n'), ((1151, 1195), 'brahe.coordinates.sENZtoAZEL', 'sENZtoAZEL', (['sat_enz'], {'use_degrees': 'use_degrees'}), '(sat_enz, use_degrees=use_degrees)\n', (1161, 1195), False, 'from brahe.coordinates import sECEFtoENZ, sENZtoAZEL, sECEFtoGEOD, sGEODtoECEF\n'), ((3735, 3771), 'numpy.linalg.norm', 'np.linalg.norm', (['(sub_sat_ecef - r_sat)'], {}), '(sub_sat_ecef - r_sat)\n', (3749, 3771), True, 'import numpy as np\n'), ((3810, 3842), 'numpy.linalg.norm', 'np.linalg.norm', (['(loc_ecef - r_sat)'], {}), '(loc_ecef - r_sat)\n', (3824, 3842), True, 'import numpy as np\n'), ((5420, 5440), 'brahe.relative_coordinates.rCARTtoRTN', 'rCARTtoRTN', (['sat_ecef'], {}), '(sat_ecef)\n', (5430, 5440), False, 'from brahe.relative_coordinates import rCARTtoRTN\n'), ((5553, 5567), 'numpy.sign', 'np.sign', (['cp[0]'], {}), '(cp[0])\n', (5560, 5567), True, 'import numpy as np\n'), ((3870, 3899), 'numpy.dot', 'np.dot', (['nadir_dir', 'target_dir'], {}), '(nadir_dir, target_dir)\n', (3876, 3899), True, 'import numpy as np\n')]
import numpy as np class LidarTools(object): ''' Collection of helpers for processing LiDAR point cloud. ''' def get_bev(self, points, resolution=0.1, pixel_values=None, generate_img=None): ''' Returns bird's eye view of a LiDAR point cloud for a given resolution. Optional pixel_values can be used for giving color coded info the point cloud. Optional generate_img function can be used for creating images. ''' x = points[:, 0] y = points[:, 1] z = points[:, 2] x_range = -1 * np.ceil(y.max()).astype(np.int), ((y.min()/np.abs(y.min())) * np.floor(y.min())).astype(np.int) y_range = np.floor(x.min()).astype(np.int), np.ceil(x.max()).astype(np.int) # Create mapping from a 3D point to a pixel based on resolution # floor() used to prevent issues with -ve vals rounding upwards causing index out bound error x_img = (-y / resolution).astype(np.int32) - int(np.floor(x_range[0]/resolution)) y_img = (x / resolution).astype(np.int32) - int(np.floor(y_range[0]/resolution)) img_width = int((x_range[1] - x_range[0])/resolution) img_height = int((y_range[1] - y_range[0])/resolution) if pixel_values is None: pixel_values = (((z - z.min()) / float(z.max() - z.min())) * 255).astype(np.uint8) if generate_img is None: img = np.zeros([img_height, img_width], dtype=np.uint8) img[-y_img, x_img] = pixel_values return img return generate_img(img_height, img_width, -y_img, x_img, pixel_values) def filter_points(self, points, side_range=None, fwd_range=None, \ height_range=None, horizontal_fov=None, vertical_fov=None): ''' Returns filtered points based on side, forward and height range, and, horizontal and vertical field of view. ''' x = points[:, 0] y = points[:, 1] z = points[:, 2] r = points[:, 3] mask = np.full_like(x, True) if side_range is not None: side_mask = np.logical_and((y > -side_range[1]), (y < -side_range[0])) mask = np.logical_and(mask, side_mask) if fwd_range is not None: fwd_mask = np.logical_and((x > fwd_range[0]), (x < fwd_range[1])) mask = np.logical_and(mask, fwd_mask) if height_range is not None: height_mask = np.logical_and((z > height_range[0]), (z < height_range[1])) mask = np.logical_and(mask, height_mask) if horizontal_fov is not None: horizontal_fov_mask = np.logical_and(np.arctan2(y, x) > (-horizontal_fov[1] * np.pi / 180), \ np.arctan2(y, x) < (-horizontal_fov[0] * np.pi / 180)) mask = np.logical_and(mask, horizontal_fov_mask) if vertical_fov is not None: distance = np.sqrt(x ** 2 + y ** 2 + z ** 2) vertical_fov_mask = np.logical_and(np.arctan2(z,distance) < (vertical_fov[1] * np.pi / 180), \ np.arctan2(z,distance) > (vertical_fov[0] * np.pi / 180)) mask = np.logical_and(mask, vertical_fov_mask) indices = np.argwhere(mask).flatten() return points[indices, :]
[ "numpy.full_like", "numpy.arctan2", "numpy.logical_and", "numpy.floor", "numpy.zeros", "numpy.argwhere", "numpy.sqrt" ]
[((2055, 2076), 'numpy.full_like', 'np.full_like', (['x', '(True)'], {}), '(x, True)\n', (2067, 2076), True, 'import numpy as np\n'), ((1428, 1477), 'numpy.zeros', 'np.zeros', (['[img_height, img_width]'], {'dtype': 'np.uint8'}), '([img_height, img_width], dtype=np.uint8)\n', (1436, 1477), True, 'import numpy as np\n'), ((2145, 2199), 'numpy.logical_and', 'np.logical_and', (['(y > -side_range[1])', '(y < -side_range[0])'], {}), '(y > -side_range[1], y < -side_range[0])\n', (2159, 2199), True, 'import numpy as np\n'), ((2223, 2254), 'numpy.logical_and', 'np.logical_and', (['mask', 'side_mask'], {}), '(mask, side_mask)\n', (2237, 2254), True, 'import numpy as np\n'), ((2313, 2363), 'numpy.logical_and', 'np.logical_and', (['(x > fwd_range[0])', '(x < fwd_range[1])'], {}), '(x > fwd_range[0], x < fwd_range[1])\n', (2327, 2363), True, 'import numpy as np\n'), ((2387, 2417), 'numpy.logical_and', 'np.logical_and', (['mask', 'fwd_mask'], {}), '(mask, fwd_mask)\n', (2401, 2417), True, 'import numpy as np\n'), ((2482, 2538), 'numpy.logical_and', 'np.logical_and', (['(z > height_range[0])', '(z < height_range[1])'], {}), '(z > height_range[0], z < height_range[1])\n', (2496, 2538), True, 'import numpy as np\n'), ((2562, 2595), 'numpy.logical_and', 'np.logical_and', (['mask', 'height_mask'], {}), '(mask, height_mask)\n', (2576, 2595), True, 'import numpy as np\n'), ((2856, 2897), 'numpy.logical_and', 'np.logical_and', (['mask', 'horizontal_fov_mask'], {}), '(mask, horizontal_fov_mask)\n', (2870, 2897), True, 'import numpy as np\n'), ((2967, 3000), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2 + z ** 2)'], {}), '(x ** 2 + y ** 2 + z ** 2)\n', (2974, 3000), True, 'import numpy as np\n'), ((3213, 3252), 'numpy.logical_and', 'np.logical_and', (['mask', 'vertical_fov_mask'], {}), '(mask, vertical_fov_mask)\n', (3227, 3252), True, 'import numpy as np\n'), ((998, 1031), 'numpy.floor', 'np.floor', (['(x_range[0] / resolution)'], {}), '(x_range[0] / resolution)\n', (1006, 1031), True, 'import numpy as np\n'), ((1087, 1120), 'numpy.floor', 'np.floor', (['(y_range[0] / resolution)'], {}), '(y_range[0] / resolution)\n', (1095, 1120), True, 'import numpy as np\n'), ((3272, 3289), 'numpy.argwhere', 'np.argwhere', (['mask'], {}), '(mask)\n', (3283, 3289), True, 'import numpy as np\n'), ((2697, 2713), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (2707, 2713), True, 'import numpy as np\n'), ((2782, 2798), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (2792, 2798), True, 'import numpy as np\n'), ((3048, 3071), 'numpy.arctan2', 'np.arctan2', (['z', 'distance'], {}), '(z, distance)\n', (3058, 3071), True, 'import numpy as np\n'), ((3136, 3159), 'numpy.arctan2', 'np.arctan2', (['z', 'distance'], {}), '(z, distance)\n', (3146, 3159), True, 'import numpy as np\n')]
import argparse import os import os.path as osp import pickle import shutil import tempfile import mmcv import torch import torch.distributed as dist from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, load_checkpoint from mmdet.apis import init_dist from mmdet.core import coco_eval, results2json, wrap_fp16_model, get_classes, tensor2imgs from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector from DOTA_devkit.ResultMerge_multi_process import mergebypoly_multiprocess import numpy as np import os import cv2 from DOTA_devkit.dota_utils import GetFileFromThisRootDir, custombasename def draw_bbox(img, bboxes, labels, path, class_names): img_show = mmcv.image.imread(img) # bgr bbox_color = [(0, 255, 0), # green (255, 0, 0), #深蓝 (255, 255, 0), # 浅蓝,亮 (0, 0, 255), #红 (255, 0, 255), # purple (255, 128, 0), #天蓝(比浅蓝深一点) (0, 255, 255), #黄 (207, 203, 211), #white (128, 255, 0), # 青色 (128, 0, 255), #玫红 (255, 0, 128), # 紫 (0, 128, 255), # 橘色 (0, 255, 128), #草绿 (0, 0, 128), #深红 (128, 0, 0)] #藏蓝 text_color = (255, 0, 0) # green for bbox, label in zip(bboxes, labels): bbox_int = bbox.astype(np.int32) pts = np.array([[bbox_int[0], bbox_int[1]], [bbox_int[2], bbox_int[3]], [bbox_int[4], bbox_int[5]], [bbox_int[6], bbox_int[7]]], dtype=np.int32) cv2.polylines(img_show, [pts], True, bbox_color[label], thickness=2) # cv2.polylines(img_show, [pts], True, text_color, thickness=2) label_text = class_names[ label] if class_names is not None else 'cls {}'.format(label) font = 0.5 # cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2), # cv2.FONT_HERSHEY_COMPLEX, font, text_color) cv2.imwrite(path, img) def draw_result(data, result, outdir, class_names, score_thr=0.001): bbox_result = result img_metas = data['img_meta'][0].data[0] if not os.path.exists(outdir): os.makedirs(outdir) for img_meta in img_metas: h, w, _ = img_meta['ori_shape'] filename = img_meta['filename'] img = mmcv.imread(filename) img_show = img[:h, :w, :] path = os.path.basename(os.path.splitext(img_meta['filename'])[0]) path = os.path.join(outdir, path + '.jpg') bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) if score_thr > 0: assert bboxes.shape[1] == 9 scores = bboxes[:, -1] inds = scores > score_thr bboxes = bboxes[inds, :] labels = labels[inds] draw_bbox(img_show, bboxes, labels, path, class_names) def single_gpu_test(model, data_loader, outdir, show=False): model.eval() # model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的 results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=not show, **data) results.append(result) if show: draw_result(data, result, osp.join(outdir, 'images'), dataset.CLASSES, score_thr=0.001) batch_size = data['img'][0].size(0) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) results.append(result) if rank == 0: batch_size = data['img'][0].size(0) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_list.append( pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--outdir', help='output dir') parser.add_argument('--out', help='output result file') # .pkl文件 parser.add_argument( '--gpu_collect', action='store_true', help='whether to use gpu to collect results') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def write_dota_results(path, boxes, dataset, threshold=0.001): ''' :param path: output dir path :param boxes: list(list(ndarray)) :param threshold: 置信度下限,小于此置信度的bbox不输出 :return: ''' classes = dataset.CLASSES img_infos = dataset.img_infos assert len(boxes) == len(img_infos) print("write no merge results\n") for i, img_info in enumerate(img_infos): # print("img {}: {}".format(i, img_info['id'])) img_id = img_info['id'] for j, cls in enumerate(classes): txt_path = osp.join(path, 'Task1_' + cls + '.txt') with open(txt_path, 'a') as f: box = boxes[i][j] # (n, 9) inds = box[:, 8] > threshold box = box[inds] for k in range(box.shape[0]): # print(cls) # print('{} {} {} {} {} {} {} {} {} {}\n'.format( # img_id, box[k, 8], # int(box[k, 0]), int(box[k, 1]), # int(box[k, 2]), int(box[k, 3]), # int(box[k, 4]), int(box[k, 5]), # int(box[k, 6]), int(box[k, 7]))) f.write('{} {} {} {} {} {} {} {} {} {}\n'.format( img_id, box[k, 8], int(box[k, 0]), int(box[k, 1]), int(box[k, 2]), int(box[k, 3]), int(box[k, 4]), int(box[k, 5]), int(box[k, 6]), int(box[k, 7]))) def main(): args = parse_args() assert args.out , \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.outdir, args.show) # outputs:list(list(ndarray)),外层list:图片,内层list:类别 else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() # 将结果保存到.pkl文件中 if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, osp.join(args.outdir, args.out)) if __name__ == '__main__': # os.environ['CUDA_VISIBLE_DEVICES'] = '0' main()
[ "mmcv.runner.get_dist_info", "argparse.ArgumentParser", "mmcv.mkdir_or_exist", "torch.full", "torch.distributed.all_gather", "mmcv.Config.fromfile", "shutil.rmtree", "torch.no_grad", "os.path.join", "mmcv.imread", "numpy.full", "mmdet.models.build_detector", "cv2.imwrite", "os.path.exists", "tempfile.mkdtemp", "torch.zeros", "mmdet.apis.init_dist", "mmdet.datasets.build_dataloader", "pickle.dumps", "mmcv.image.imread", "mmcv.runner.load_checkpoint", "numpy.vstack", "numpy.concatenate", "mmdet.datasets.build_dataset", "cv2.polylines", "os.makedirs", "mmcv.load", "torch.distributed.barrier", "mmdet.core.wrap_fp16_model", "mmcv.parallel.MMDataParallel", "numpy.array", "os.path.splitext", "torch.distributed.broadcast", "torch.tensor" ]
[((781, 803), 'mmcv.image.imread', 'mmcv.image.imread', (['img'], {}), '(img)\n', (798, 803), False, 'import mmcv\n'), ((4896, 4911), 'mmcv.runner.get_dist_info', 'get_dist_info', ([], {}), '()\n', (4909, 4911), False, 'from mmcv.runner import get_dist_info, load_checkpoint\n'), ((5631, 5646), 'mmcv.runner.get_dist_info', 'get_dist_info', ([], {}), '()\n', (5644, 5646), False, 'from mmcv.runner import get_dist_info, load_checkpoint\n'), ((6454, 6468), 'torch.distributed.barrier', 'dist.barrier', ([], {}), '()\n', (6466, 6468), True, 'import torch.distributed as dist\n'), ((7176, 7191), 'mmcv.runner.get_dist_info', 'get_dist_info', ([], {}), '()\n', (7189, 7191), False, 'from mmcv.runner import get_dist_info, load_checkpoint\n'), ((7415, 7461), 'torch.tensor', 'torch.tensor', (['part_tensor.shape'], {'device': '"""cuda"""'}), "(part_tensor.shape, device='cuda')\n", (7427, 7461), False, 'import torch\n'), ((7535, 7576), 'torch.distributed.all_gather', 'dist.all_gather', (['shape_list', 'shape_tensor'], {}), '(shape_list, shape_tensor)\n', (7550, 7576), True, 'import torch.distributed as dist\n'), ((7690, 7746), 'torch.zeros', 'torch.zeros', (['shape_max'], {'dtype': 'torch.uint8', 'device': '"""cuda"""'}), "(shape_max, dtype=torch.uint8, device='cuda')\n", (7701, 7746), False, 'import torch\n'), ((7929, 7971), 'torch.distributed.all_gather', 'dist.all_gather', (['part_recv_list', 'part_send'], {}), '(part_recv_list, part_send)\n', (7944, 7971), True, 'import torch.distributed as dist\n'), ((8489, 8547), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MMDet test detector"""'}), "(description='MMDet test detector')\n", (8512, 8547), False, 'import argparse\n'), ((11352, 11385), 'mmcv.Config.fromfile', 'mmcv.Config.fromfile', (['args.config'], {}), '(args.config)\n', (11372, 11385), False, 'import mmcv\n'), ((11924, 11952), 'mmdet.datasets.build_dataset', 'build_dataset', (['cfg.data.test'], {}), '(cfg.data.test)\n', (11937, 11952), False, 'from mmdet.datasets import build_dataloader, build_dataset\n'), ((11972, 12093), 'mmdet.datasets.build_dataloader', 'build_dataloader', (['dataset'], {'imgs_per_gpu': '(1)', 'workers_per_gpu': 'cfg.data.workers_per_gpu', 'dist': 'distributed', 'shuffle': '(False)'}), '(dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.\n workers_per_gpu, dist=distributed, shuffle=False)\n', (11988, 12093), False, 'from mmdet.datasets import build_dataloader, build_dataset\n'), ((12193, 12257), 'mmdet.models.build_detector', 'build_detector', (['cfg.model'], {'train_cfg': 'None', 'test_cfg': 'cfg.test_cfg'}), '(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)\n', (12207, 12257), False, 'from mmdet.models import build_detector\n'), ((12376, 12435), 'mmcv.runner.load_checkpoint', 'load_checkpoint', (['model', 'args.checkpoint'], {'map_location': '"""cpu"""'}), "(model, args.checkpoint, map_location='cpu')\n", (12391, 12435), False, 'from mmcv.runner import get_dist_info, load_checkpoint\n'), ((13121, 13136), 'mmcv.runner.get_dist_info', 'get_dist_info', ([], {}), '()\n', (13134, 13136), False, 'from mmcv.runner import get_dist_info, load_checkpoint\n'), ((1544, 1687), 'numpy.array', 'np.array', (['[[bbox_int[0], bbox_int[1]], [bbox_int[2], bbox_int[3]], [bbox_int[4],\n bbox_int[5]], [bbox_int[6], bbox_int[7]]]'], {'dtype': 'np.int32'}), '([[bbox_int[0], bbox_int[1]], [bbox_int[2], bbox_int[3]], [bbox_int\n [4], bbox_int[5]], [bbox_int[6], bbox_int[7]]], dtype=np.int32)\n', (1552, 1687), True, 'import numpy as np\n'), ((1767, 1835), 'cv2.polylines', 'cv2.polylines', (['img_show', '[pts]', '(True)', 'bbox_color[label]'], {'thickness': '(2)'}), '(img_show, [pts], True, bbox_color[label], thickness=2)\n', (1780, 1835), False, 'import cv2\n'), ((2187, 2209), 'cv2.imwrite', 'cv2.imwrite', (['path', 'img'], {}), '(path, img)\n', (2198, 2209), False, 'import cv2\n'), ((2367, 2389), 'os.path.exists', 'os.path.exists', (['outdir'], {}), '(outdir)\n', (2381, 2389), False, 'import os\n'), ((2400, 2419), 'os.makedirs', 'os.makedirs', (['outdir'], {}), '(outdir)\n', (2411, 2419), False, 'import os\n'), ((2551, 2572), 'mmcv.imread', 'mmcv.imread', (['filename'], {}), '(filename)\n', (2562, 2572), False, 'import mmcv\n'), ((2702, 2737), 'os.path.join', 'os.path.join', (['outdir', "(path + '.jpg')"], {}), "(outdir, path + '.jpg')\n", (2714, 2737), False, 'import os\n'), ((2758, 2780), 'numpy.vstack', 'np.vstack', (['bbox_result'], {}), '(bbox_result)\n', (2767, 2780), True, 'import numpy as np\n'), ((2936, 2958), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2950, 2958), True, 'import numpy as np\n'), ((5791, 5851), 'torch.full', 'torch.full', (['(MAX_LEN,)', '(32)'], {'dtype': 'torch.uint8', 'device': '"""cuda"""'}), "((MAX_LEN,), 32, dtype=torch.uint8, device='cuda')\n", (5801, 5851), False, 'import torch\n'), ((6187, 6216), 'torch.distributed.broadcast', 'dist.broadcast', (['dir_tensor', '(0)'], {}), '(dir_tensor, 0)\n', (6201, 6216), True, 'import torch.distributed as dist\n'), ((6308, 6335), 'mmcv.mkdir_or_exist', 'mmcv.mkdir_or_exist', (['tmpdir'], {}), '(tmpdir)\n', (6327, 6335), False, 'import mmcv\n'), ((7049, 7070), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {}), '(tmpdir)\n', (7062, 7070), False, 'import shutil\n'), ((11758, 11801), 'mmdet.apis.init_dist', 'init_dist', (['args.launcher'], {}), '(args.launcher, **cfg.dist_params)\n', (11767, 11801), False, 'from mmdet.apis import init_dist\n'), ((12335, 12357), 'mmdet.core.wrap_fp16_model', 'wrap_fp16_model', (['model'], {}), '(model)\n', (12350, 12357), False, 'from mmdet.core import coco_eval, results2json, wrap_fp16_model, get_classes, tensor2imgs\n'), ((12741, 12778), 'mmcv.parallel.MMDataParallel', 'MMDataParallel', (['model'], {'device_ids': '[0]'}), '(model, device_ids=[0])\n', (12755, 12778), False, 'from mmcv.parallel import MMDataParallel, MMDistributedDataParallel\n'), ((2814, 2855), 'numpy.full', 'np.full', (['bbox.shape[0]', 'i'], {'dtype': 'np.int32'}), '(bbox.shape[0], i, dtype=np.int32)\n', (2821, 2855), True, 'import numpy as np\n'), ((3564, 3579), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3577, 3579), False, 'import torch\n'), ((5040, 5055), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5053, 5055), False, 'import torch\n'), ((5997, 6015), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (6013, 6015), False, 'import tempfile\n'), ((7290, 7315), 'pickle.dumps', 'pickle.dumps', (['result_part'], {}), '(result_part)\n', (7302, 7315), False, 'import pickle\n'), ((7642, 7666), 'torch.tensor', 'torch.tensor', (['shape_list'], {}), '(shape_list)\n', (7654, 7666), False, 'import torch\n'), ((10025, 10064), 'os.path.join', 'osp.join', (['path', "('Task1_' + cls + '.txt')"], {}), "(path, 'Task1_' + cls + '.txt')\n", (10033, 10064), True, 'import os.path as osp\n'), ((13277, 13308), 'os.path.join', 'osp.join', (['args.outdir', 'args.out'], {}), '(args.outdir, args.out)\n', (13285, 13308), True, 'import os.path as osp\n'), ((2643, 2681), 'os.path.splitext', 'os.path.splitext', (["img_meta['filename']"], {}), "(img_meta['filename'])\n", (2659, 2681), False, 'import os\n'), ((3745, 3771), 'os.path.join', 'osp.join', (['outdir', '"""images"""'], {}), "(outdir, 'images')\n", (3753, 3771), True, 'import os.path as osp\n'), ((6753, 6773), 'mmcv.load', 'mmcv.load', (['part_file'], {}), '(part_file)\n', (6762, 6773), False, 'import mmcv\n')]
import numpy as np import gym import torch import random from argparse import ArgumentParser import os import pandas as pd import matplotlib.pyplot as plt plt.style.use('ggplot') from scipy.ndimage.filters import gaussian_filter1d class Stats(): def __init__(self, num_episodes=20000, num_states = 6, log_dir='./', continuous=False): self.episode_rewards = np.zeros(num_episodes) self.episode_lengths = np.zeros(num_episodes) if not continuous: self.visitation_count = np.zeros((num_states, num_episodes)) self.target_count = np.zeros((num_states, num_episodes)) self.log_dir = log_dir def log_data(self, file_name): save_name = self.log_dir + file_name np.savez(save_name, reward=self.episode_rewards, step=self.episode_lengths) def plot_rewards(ax, episodes_ydata, smoothing_window = 100, label="",c='b', alpha=0.5): #smoothing_window = 100 overall_stats_q_learning = [] for trialdata in episodes_ydata: overall_stats_q_learning.append(pd.Series(trialdata.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean()) #overall_stats_q_learning.append(pd.Series(trialdata.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean().data) m_stats_q_learning = np.mean(overall_stats_q_learning, axis=0) std_stats_q_learning = np.std(overall_stats_q_learning, axis=0) ax.plot(range(len(m_stats_q_learning)), m_stats_q_learning, label=label, c=c) ax.fill_between(range(len(std_stats_q_learning)), m_stats_q_learning - std_stats_q_learning, m_stats_q_learning + std_stats_q_learning, alpha=alpha, edgecolor=c, facecolor=c) #ax.set_ylabel('Score') #ax.set_xlabel('Episode #') #ax.grid() def plot_steps(ax, episodes_ydata, smoothing_window = 100, label="",c='g',alpha=0.5): #smoothing_window = 100 overall_stats_q_learning = [] for trialdata in episodes_ydata: overall_stats_q_learning.append(pd.Series(trialdata.episode_lengths).rolling(smoothing_window, min_periods=smoothing_window).mean()) #overall_stats_q_learning.append(pd.Series(trialdata.episode_lengths).rolling(smoothing_window, min_periods=smoothing_window).mean().data) m_stats_q_learning = np.mean(overall_stats_q_learning, axis=0) std_stats_q_learning = np.std(overall_stats_q_learning, axis=0) ax.plot(range(len(m_stats_q_learning)), m_stats_q_learning, label=label, c=c) ax.fill_between(range(len(std_stats_q_learning)), m_stats_q_learning - std_stats_q_learning, m_stats_q_learning + std_stats_q_learning, alpha=alpha, edgecolor=c, facecolor=c) #ax.set_ylabel('Steps') #ax.set_xlabel('Episode #') #ax.grid() def plot_visitation_counts(episodes_ydata, smoothing_window = 1000, c=['b', 'g', 'r', 'y', 'k', 'c'], num_states = None): if not num_states: num_states = len(episodes_ydata[0].visitation_count) overall_stats_q_learning = [[] for i in range(num_states)] for trialdata in episodes_ydata: for state in range(num_states): overall_stats_q_learning[state].append(pd.Series(trialdata.visitation_count[state]).rolling(smoothing_window, min_periods=smoothing_window).mean().data) for state in range(num_states): m_stats_q_learning = np.mean(overall_stats_q_learning[state], axis=0) std_stats_q_learning = np.std(overall_stats_q_learning[state], axis=0) plt.plot(range(len(m_stats_q_learning)), m_stats_q_learning, c=c[state]) plt.fill_between(range(len(std_stats_q_learning)), m_stats_q_learning - std_stats_q_learning, m_stats_q_learning + std_stats_q_learning, alpha=0.5, edgecolor=c[state], facecolor=c[state]) def plot_target_counts(episodes_ydata, smoothing_window = 1000, c=['b', 'g', 'r', 'y', 'k', 'c']): num_states = len(episodes_ydata[0].target_count) overall_stats_q_learning = [[] for i in range(num_states)] for trialdata in episodes_ydata: for state in range(num_states): overall_stats_q_learning[state].append(pd.Series(trialdata.target_count[state]).rolling(smoothing_window, min_periods=smoothing_window).mean().data) for state in range(num_states): m_stats_q_learning = np.mean(overall_stats_q_learning[state], axis=0) std_stats_q_learning = np.std(overall_stats_q_learning[state], axis=0) plt.plot(range(len(m_stats_q_learning)), m_stats_q_learning, c=c[state]) plt.fill_between(range(len(std_stats_q_learning)), m_stats_q_learning - std_stats_q_learning, m_stats_q_learning + std_stats_q_learning, alpha=0.5, edgecolor=c[state], facecolor=c[state]) def plot_q_values(model, observation_space, action_space): res = 100 test_observations = np.linspace(observation_space.low, observation_space.high, res) print((action_space.n, res)) q_values = np.zeros((action_space.n, res)) for action in range(action_space.n): for obs in range(res): q_values[action, obs] = model.predict(test_observations[obs])[0, action] plt.plot(test_observations, q_values[action]) def arguments(): parser = ArgumentParser() parser.add_argument('--env', default = 'BipedalWalker-v3') return parser.parse_args() def save(agent, rewards, args): path = './runs/{}/'.format(args.env) try: os.makedirs(path) except: pass torch.save(agent.q.state_dict(), os.path.join(path, 'model_state_dict')) plt.cla() plt.plot(rewards, c = 'r', alpha = 0.3) plt.plot(gaussian_filter1d(rewards, sigma = 5), c = 'r', label = 'Rewards') plt.xlabel('Episodes') plt.ylabel('Cumulative reward') plt.title('Branching DDQN: {}'.format(args.env)) plt.savefig(os.path.join(path, 'reward.png')) pd.DataFrame(rewards, columns = ['Reward']).to_csv(os.path.join(path, 'rewards.csv'), index = False) class AgentConfig: def __init__(self, epsilon_start = 1., epsilon_final = 0.01, epsilon_decay = 8000, gamma = 0.99, lr = 1e-4, target_net_update_freq = 1000, memory_size = 100000, batch_size = 128, learning_starts = 5000, max_frames = 10000000): self.epsilon_start = epsilon_start self.epsilon_final = epsilon_final self.epsilon_decay = epsilon_decay self.epsilon_by_frame = lambda i: self.epsilon_final + (self.epsilon_start - self.epsilon_final) * np.exp(-1. * i / self.epsilon_decay) self.gamma =gamma self.lr =lr self.target_net_update_freq =target_net_update_freq self.memory_size =memory_size self.batch_size =batch_size self.learning_starts = learning_starts self.max_frames = max_frames class ExperienceReplayMemory: def __init__(self, capacity): self.capacity = capacity self.memory = [] def push(self, transition): self.memory.append(transition) if len(self.memory) > self.capacity: del self.memory[0] def sample(self, batch_size): batch = random.sample(self.memory, batch_size) states = [] actions = [] rewards = [] next_states = [] dones = [] for b in batch: states.append(b[0]) actions.append(b[1]) rewards.append(b[2]) next_states.append(b[3]) dones.append(b[4]) return states, actions, rewards, next_states, dones def __len__(self): return len(self.memory) import torch import collections import random class ReplayBuffer(): def __init__(self,buffer_limit,action_space,device): self.buffer = collections.deque(maxlen=buffer_limit) self.action_space = action_space self.device = device def put(self, transition): self.buffer.append(transition) def sample(self, n): mini_batch = random.sample(self.buffer, n) state_lst, reward_lst, next_state_lst, done_mask_lst = [], [], [], [] actions_lst = [[] for i in range(self.action_space)] for transition in mini_batch: state, actions,reward, next_state, done_mask = transition state_lst.append(state) for idx in range(self.action_space): actions_lst[idx].append(actions[idx]) reward_lst.append([reward]) next_state_lst.append(next_state) done_mask_lst.append([done_mask]) actions_lst = [torch.tensor(x,dtype= torch.float).to(self.device) for x in actions_lst] return torch.tensor(state_lst, dtype=torch.float).to(self.device),\ actions_lst ,torch.tensor(reward_lst).to(self.device),\ torch.tensor(next_state_lst, dtype=torch.float).to(self.device),\ torch.tensor(done_mask_lst).to(self.device) def size(self): return len(self.buffer) class TensorEnv(gym.Wrapper): def __init__(self, env_name): super().__init__(gym.make(env_name)) def process(self, x): return torch.tensor(x).reshape(1,-1).float() def reset(self): return self.process(super().reset()) def step(self, a): ns, r, done, infos = super().step(a) return self.process(ns), r, done, infos class BranchingTensorEnv(TensorEnv): def __init__(self, env_name, n): super().__init__(env_name) self.n = n self.discretized = np.linspace(-1.,1., self.n) def step(self, a): action = np.array([self.discretized[aa] for aa in a]) return super().step(action)
[ "scipy.ndimage.filters.gaussian_filter1d", "argparse.ArgumentParser", "random.sample", "matplotlib.pyplot.style.use", "numpy.mean", "numpy.exp", "os.path.join", "collections.deque", "pandas.DataFrame", "numpy.std", "matplotlib.pyplot.cla", "numpy.linspace", "pandas.Series", "matplotlib.pyplot.ylabel", "numpy.savez", "os.makedirs", "matplotlib.pyplot.plot", "gym.make", "numpy.zeros", "numpy.array", "matplotlib.pyplot.xlabel", "torch.tensor" ]
[((163, 186), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (176, 186), True, 'import matplotlib.pyplot as plt\n'), ((1243, 1284), 'numpy.mean', 'np.mean', (['overall_stats_q_learning'], {'axis': '(0)'}), '(overall_stats_q_learning, axis=0)\n', (1250, 1284), True, 'import numpy as np\n'), ((1309, 1349), 'numpy.std', 'np.std', (['overall_stats_q_learning'], {'axis': '(0)'}), '(overall_stats_q_learning, axis=0)\n', (1315, 1349), True, 'import numpy as np\n'), ((2149, 2190), 'numpy.mean', 'np.mean', (['overall_stats_q_learning'], {'axis': '(0)'}), '(overall_stats_q_learning, axis=0)\n', (2156, 2190), True, 'import numpy as np\n'), ((2215, 2255), 'numpy.std', 'np.std', (['overall_stats_q_learning'], {'axis': '(0)'}), '(overall_stats_q_learning, axis=0)\n', (2221, 2255), True, 'import numpy as np\n'), ((4601, 4664), 'numpy.linspace', 'np.linspace', (['observation_space.low', 'observation_space.high', 'res'], {}), '(observation_space.low, observation_space.high, res)\n', (4612, 4664), True, 'import numpy as np\n'), ((4718, 4749), 'numpy.zeros', 'np.zeros', (['(action_space.n, res)'], {}), '((action_space.n, res))\n', (4726, 4749), True, 'import numpy as np\n'), ((4996, 5012), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (5010, 5012), False, 'from argparse import ArgumentParser\n'), ((5331, 5340), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (5338, 5340), True, 'import matplotlib.pyplot as plt\n'), ((5345, 5380), 'matplotlib.pyplot.plot', 'plt.plot', (['rewards'], {'c': '"""r"""', 'alpha': '(0.3)'}), "(rewards, c='r', alpha=0.3)\n", (5353, 5380), True, 'import matplotlib.pyplot as plt\n'), ((5469, 5491), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Episodes"""'], {}), "('Episodes')\n", (5479, 5491), True, 'import matplotlib.pyplot as plt\n'), ((5496, 5527), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cumulative reward"""'], {}), "('Cumulative reward')\n", (5506, 5527), True, 'import matplotlib.pyplot as plt\n'), ((371, 393), 'numpy.zeros', 'np.zeros', (['num_episodes'], {}), '(num_episodes)\n', (379, 393), True, 'import numpy as np\n'), ((419, 441), 'numpy.zeros', 'np.zeros', (['num_episodes'], {}), '(num_episodes)\n', (427, 441), True, 'import numpy as np\n'), ((687, 762), 'numpy.savez', 'np.savez', (['save_name'], {'reward': 'self.episode_rewards', 'step': 'self.episode_lengths'}), '(save_name, reward=self.episode_rewards, step=self.episode_lengths)\n', (695, 762), True, 'import numpy as np\n'), ((3163, 3211), 'numpy.mean', 'np.mean', (['overall_stats_q_learning[state]'], {'axis': '(0)'}), '(overall_stats_q_learning[state], axis=0)\n', (3170, 3211), True, 'import numpy as np\n'), ((3243, 3290), 'numpy.std', 'np.std', (['overall_stats_q_learning[state]'], {'axis': '(0)'}), '(overall_stats_q_learning[state], axis=0)\n', (3249, 3290), True, 'import numpy as np\n'), ((4095, 4143), 'numpy.mean', 'np.mean', (['overall_stats_q_learning[state]'], {'axis': '(0)'}), '(overall_stats_q_learning[state], axis=0)\n', (4102, 4143), True, 'import numpy as np\n'), ((4175, 4222), 'numpy.std', 'np.std', (['overall_stats_q_learning[state]'], {'axis': '(0)'}), '(overall_stats_q_learning[state], axis=0)\n', (4181, 4222), True, 'import numpy as np\n'), ((4917, 4962), 'matplotlib.pyplot.plot', 'plt.plot', (['test_observations', 'q_values[action]'], {}), '(test_observations, q_values[action])\n', (4925, 4962), True, 'import matplotlib.pyplot as plt\n'), ((5203, 5220), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (5214, 5220), False, 'import os\n'), ((5286, 5324), 'os.path.join', 'os.path.join', (['path', '"""model_state_dict"""'], {}), "(path, 'model_state_dict')\n", (5298, 5324), False, 'import os\n'), ((5398, 5433), 'scipy.ndimage.filters.gaussian_filter1d', 'gaussian_filter1d', (['rewards'], {'sigma': '(5)'}), '(rewards, sigma=5)\n', (5415, 5433), False, 'from scipy.ndimage.filters import gaussian_filter1d\n'), ((5597, 5629), 'os.path.join', 'os.path.join', (['path', '"""reward.png"""'], {}), "(path, 'reward.png')\n", (5609, 5629), False, 'import os\n'), ((5687, 5720), 'os.path.join', 'os.path.join', (['path', '"""rewards.csv"""'], {}), "(path, 'rewards.csv')\n", (5699, 5720), False, 'import os\n'), ((7043, 7081), 'random.sample', 'random.sample', (['self.memory', 'batch_size'], {}), '(self.memory, batch_size)\n', (7056, 7081), False, 'import random\n'), ((7650, 7688), 'collections.deque', 'collections.deque', ([], {'maxlen': 'buffer_limit'}), '(maxlen=buffer_limit)\n', (7667, 7688), False, 'import collections\n'), ((7880, 7909), 'random.sample', 'random.sample', (['self.buffer', 'n'], {}), '(self.buffer, n)\n', (7893, 7909), False, 'import random\n'), ((9413, 9443), 'numpy.linspace', 'np.linspace', (['(-1.0)', '(1.0)', 'self.n'], {}), '(-1.0, 1.0, self.n)\n', (9424, 9443), True, 'import numpy as np\n'), ((9484, 9528), 'numpy.array', 'np.array', (['[self.discretized[aa] for aa in a]'], {}), '([self.discretized[aa] for aa in a])\n', (9492, 9528), True, 'import numpy as np\n'), ((490, 526), 'numpy.zeros', 'np.zeros', (['(num_states, num_episodes)'], {}), '((num_states, num_episodes))\n', (498, 526), True, 'import numpy as np\n'), ((550, 586), 'numpy.zeros', 'np.zeros', (['(num_states, num_episodes)'], {}), '((num_states, num_episodes))\n', (558, 586), True, 'import numpy as np\n'), ((5636, 5677), 'pandas.DataFrame', 'pd.DataFrame', (['rewards'], {'columns': "['Reward']"}), "(rewards, columns=['Reward'])\n", (5648, 5677), True, 'import pandas as pd\n'), ((8960, 8978), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (8968, 8978), False, 'import gym\n'), ((6407, 6444), 'numpy.exp', 'np.exp', (['(-1.0 * i / self.epsilon_decay)'], {}), '(-1.0 * i / self.epsilon_decay)\n', (6413, 6444), True, 'import numpy as np\n'), ((8452, 8486), 'torch.tensor', 'torch.tensor', (['x'], {'dtype': 'torch.float'}), '(x, dtype=torch.float)\n', (8464, 8486), False, 'import torch\n'), ((8540, 8582), 'torch.tensor', 'torch.tensor', (['state_lst'], {'dtype': 'torch.float'}), '(state_lst, dtype=torch.float)\n', (8552, 8582), False, 'import torch\n'), ((8629, 8653), 'torch.tensor', 'torch.tensor', (['reward_lst'], {}), '(reward_lst)\n', (8641, 8653), False, 'import torch\n'), ((8688, 8735), 'torch.tensor', 'torch.tensor', (['next_state_lst'], {'dtype': 'torch.float'}), '(next_state_lst, dtype=torch.float)\n', (8700, 8735), False, 'import torch\n'), ((8769, 8796), 'torch.tensor', 'torch.tensor', (['done_mask_lst'], {}), '(done_mask_lst)\n', (8781, 8796), False, 'import torch\n'), ((9024, 9039), 'torch.tensor', 'torch.tensor', (['x'], {}), '(x)\n', (9036, 9039), False, 'import torch\n'), ((979, 1015), 'pandas.Series', 'pd.Series', (['trialdata.episode_rewards'], {}), '(trialdata.episode_rewards)\n', (988, 1015), True, 'import pandas as pd\n'), ((1885, 1921), 'pandas.Series', 'pd.Series', (['trialdata.episode_lengths'], {}), '(trialdata.episode_lengths)\n', (1894, 1921), True, 'import pandas as pd\n'), ((2979, 3023), 'pandas.Series', 'pd.Series', (['trialdata.visitation_count[state]'], {}), '(trialdata.visitation_count[state])\n', (2988, 3023), True, 'import pandas as pd\n'), ((3915, 3955), 'pandas.Series', 'pd.Series', (['trialdata.target_count[state]'], {}), '(trialdata.target_count[state])\n', (3924, 3955), True, 'import pandas as pd\n')]
import os # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import math import argparse import math import h5py import numpy as np import tensorflow as tf # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf.logging.set_verbosity(tf.logging.ERROR) import socket import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import provider import tf_util from model import * parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--log_dir', default='log', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=4096, help='Point number [default: 4096]') parser.add_argument('--max_epoch', type=int, default=50, help='Epoch to run [default: 50]') parser.add_argument('--batch_size', type=int, default=12, help='Batch Size during training [default: 12]') parser.add_argument('--learning_rate', type=float, default=0.000001, help='Initial learning rate [default: 0.000001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='momentum', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=300000, help='Decay step for lr decay [default: 300000]') parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]') parser.add_argument('--test_recordings', type=str, default='11', help='Which recording numbers to use for test, i.e "1,2", "1", "3", "3,4,5" [default: 11]') parser.add_argument('--dir_path_h5', type=str, default='data/apollo_sem_seg_hdf5_data', help='directory containing the h5 files') parser.add_argument('--use_saved_model', type=str, default='no', help='yes or no') FLAGS = parser.parse_args() LOAD_FULL_DATA = False BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) USE_SAVED_MODEL = False if FLAGS.use_saved_model == 'yes': USE_SAVED_MODEL = True print('using saved model') elif FLAGS.use_saved_model != 'no': raise ValueError('use_saved_model param must be eitehr yes or no') os.system('cp model.py %s' % (LOG_DIR)) # bkp of model def os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') MAX_NUM_POINT = 4096 BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 #BN_DECAY_DECAY_STEP = float(DECAY_STEP * 2) BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 HOSTNAME = socket.gethostname() # DIR_PATH_H5 = os.path.join(ROOT_DIR, 'data/apollo_sem_seg_hdf5_data_test') DIR_PATH_H5 = FLAGS.dir_path_h5 if not os.path.exists(DIR_PATH_H5): raise ValueError('the given h5 directory is invalid') H5_FILES = [os.path.join(DIR_PATH_H5, file_h5) for file_h5 in os.listdir(DIR_PATH_H5) if file_h5[-2:] == 'h5'] #ALL_FILES = provider.getDataFiles('data/apollo_sem_seg_hdf5_data') room_filelist = [line.rstrip() for line in open(os.path.join(DIR_PATH_H5, 'room_filelist.txt'))] classMappings = [line.rstrip() for line in open(os.path.join(DIR_PATH_H5, 'class_mappings.txt'))] NUM_CLASSES = len(classMappings) BATCH_SIZE_H5 = provider.loadDataFile(H5_FILES[0])[0].shape[0] # Load ALL data # if LOAD_FULL_DATA: # data_batch_list = [] # label_batch_list = [] # for i,h5_filename in enumerate(H5_FILES): # if i%10 == 0: # print("loading h5 file: " , i, h5_filename) # data_batch, label_batch = provider.loadDataFile(h5_filename) # data_batch_list.append(data_batch) # label_batch_list.append(label_batch) # if LOAD_FULL_DATA: # print('---all loaded---') # data_batches = np.concatenate(data_batch_list, 0) # data_batch_list = None # label_batches = np.concatenate(label_batch_list, 0) # label_batch_list = None # print(data_batches.shape) # print(label_batches.shape) data_for_training = np.empty(len(room_filelist), dtype=bool) test_recordings = [str(int(recording_number)).zfill(3) for recording_number in FLAGS.test_recordings.split(',')] #test_recordings = 'Area_'+str(FLAGS.test_area) # if LOAD_FULL_DATA: # train_idxs = [] # test_idxs = [] total_training_data = 0 total_testing_data = 0 for i,room_name in enumerate(room_filelist): #remove this if i%4==0: total_testing_data += 1 data_for_training[i] = False #if room_name[6:9] in test_recordings: # if LOAD_FULL_DATA: # test_idxs.append(i) else: total_training_data += 1 data_for_training[i] = True # if LOAD_FULL_DATA: # train_idxs.append(i) # if LOAD_FULL_DATA: # train_data = data_batches[train_idxs,...] # train_label = label_batches[train_idxs] # test_data = data_batches[test_idxs,...] # test_label = label_batches[test_idxs] # data_batches = None # label_batches = None # print(train_data.shape, train_label.shape) # print(test_data.shape, test_label.shape) current_train_idx = 0 current_test_idx = 0 last_loaded_file_index = None last_loaded_file_data = None last_loaded_file_label = None def reset_train_data(): global current_train_idx current_train_idx = 0 def reset_test_data(): global current_test_idx current_test_idx = 0 def can_get_test_data(): global current_test_idx return current_test_idx < data_for_training.shape[0] def can_get_train_data(): global current_train_idx global last_loaded_file_index global last_loaded_file_data global last_loaded_file_label return current_train_idx < data_for_training.shape[0] # h5_fileindex = int(math.floor( current_train_idx / float(BATCH_SIZE_H5) )) # if h5_fileindex + 1 < len(H5_FILES): # return True # if last_loaded_file_index != h5_fileindex: # h5_filename = H5_FILES[h5_fileindex] # last_loaded_file_data, last_loaded_file_label = provider.loadDataFile(h5_filename) # last_loaded_file_index = h5_fileindex # start_idx_batch = current_train_idx - (h5_fileindex * BATCH_SIZE_H5) # h5_remaining_batch_size = BATCH_SIZE_H5 - start_idx_batch # return h5_remaining_batch_size > 0 def get_train_or_test_data(amount, for_training): global current_train_idx global current_test_idx global last_loaded_file_index global last_loaded_file_data global last_loaded_file_label local_data_batch_list = [] local_label_batch_list = [] total_retrieved = 0 if for_training: index_for_run = current_train_idx else: index_for_run = current_test_idx while total_retrieved < amount and index_for_run < data_for_training.shape[0]: #total_retrieved += 1 h5_fileindex = int(math.floor( index_for_run / float(BATCH_SIZE_H5) )) if last_loaded_file_index != h5_fileindex: h5_filename = H5_FILES[h5_fileindex] last_loaded_file_data, last_loaded_file_label = provider.loadDataFile(h5_filename) last_loaded_file_index = h5_fileindex amount_to_retrieve = amount - total_retrieved start_idx_batch = index_for_run - (h5_fileindex * BATCH_SIZE_H5) h5_remaining_batch_size = BATCH_SIZE_H5 - start_idx_batch total_remaining_size = data_for_training.shape[0] - start_idx_batch amount_to_fetch_from_batch = min(amount_to_retrieve, h5_remaining_batch_size, total_remaining_size) start_idx_total = index_for_run end_idx_total = start_idx_total + amount_to_fetch_from_batch end_idx_batch = start_idx_batch + amount_to_fetch_from_batch if for_training: data_batch = (last_loaded_file_data[start_idx_batch:end_idx_batch]) [data_for_training[start_idx_total:end_idx_total],:,:] label_batch = (last_loaded_file_label[start_idx_batch:end_idx_batch]) [data_for_training[start_idx_total:end_idx_total],:] else: arr = data_for_training[start_idx_total:end_idx_total] == False data_batch = (last_loaded_file_data[start_idx_batch:end_idx_batch]) [arr,:,:] label_batch = (last_loaded_file_label[start_idx_batch:end_idx_batch]) [arr,:] total_retrieved += data_batch.shape[0] index_for_run += amount_to_fetch_from_batch local_data_batch_list.append(data_batch) local_label_batch_list.append(label_batch) local_data_batches = np.concatenate(local_data_batch_list, 0) local_label_batches = np.concatenate(local_label_batch_list, 0) if for_training: current_train_idx = index_for_run else: current_test_idx = index_for_run return local_data_batches, local_label_batches def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(use_saved_model ): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl, labels_pl = placeholder_inputs(BATCH_SIZE, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred = get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay, num_classes=NUM_CLASSES) loss = get_loss(pred, labels_pl) tf.summary.scalar('loss', loss) correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINT) tf.summary.scalar('accuracy', accuracy) # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Init variables init = tf.global_variables_initializer() sess.run(init, {is_training_pl:True}) if use_saved_model: saver.restore(sess, os.path.join(LOG_DIR,'model.ckpt')) # Add summary writers merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test')) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch} if use_saved_model: eval_one_epoch(sess, ops, test_writer) for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer) save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt")) log_string("Model saved in file: %s" % save_path) eval_one_epoch(sess, ops, test_writer) # # Save the variables to disk. # if epoch % 1 == 0: def train_one_epoch(sess, ops, train_writer): reset_train_data() """ ops: dict mapping from string to tf ops """ is_training = True log_string('----') #checking to confirm get_train_data is functioning correctly # if LOAD_FULL_DATA: # current_data = train_data # current_label = train_label # file_size = current_data.shape[0] # num_batches = file_size // BATCH_SIZE # num_batches = total_training_data / BATCH_SIZE total_correct = 0 total_seen = 0 loss_sum = 0 batch_idx = -1 # for batch_idx in range(num_batches): while can_get_train_data(): batch_idx += 1 if batch_idx % 10 == 0: print('Current batch: %d'%(batch_idx)) start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE data_for_loop, label_for_loop = get_train_or_test_data(BATCH_SIZE, True) #this is in case the last batch has insufficient blocks, so we simply bail if not can_get_train_data(): break; #checking to confirm get_train_data is functioning correctly # check_data_for_loop = current_data[start_idx:end_idx, :, :] # check_label_for_loop = current_label[start_idx:end_idx] # if sum(sum(sum(data_for_loop == check_data_for_loop))) != 442368: # z = 32131 # log_string('check data for loop not match what it should be') # raise ValueError('check data for loop not match what it should be') #remove below comments feed_dict = {ops['pointclouds_pl']: data_for_loop, ops['labels_pl']: label_for_loop, ops['is_training_pl']: is_training,} summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict) train_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 2) correct = np.sum(pred_val == label_for_loop) total_correct += correct total_seen += (BATCH_SIZE*NUM_POINT) loss_sum += loss_val #remove below comments # log_string('mean loss: %f' % (loss_sum / float(num_batches))) # log_string('accuracy: %f' % (total_correct / float(total_seen))) def eval_one_epoch(sess, ops, test_writer): reset_test_data() """ ops: dict mapping from string to tf ops """ is_training = False total_correct = 0 total_seen = 0 loss_sum = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] log_string('----') # current_data = test_data[:,0:NUM_POINT,:] # current_label = np.squeeze(test_label) # file_size = current_data.shape[0] # num_batches = file_size // BATCH_SIZE batch_idx = -1 # for batch_idx in range(num_batches): while can_get_test_data(): batch_idx += 1 data_for_loop, label_for_loop = get_train_or_test_data(BATCH_SIZE, False) #this is in case the last batch has insufficient blocks if not can_get_test_data(): break start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE feed_dict = {ops['pointclouds_pl']: data_for_loop, ops['labels_pl']: label_for_loop, ops['is_training_pl']: is_training} summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['loss'], ops['pred']], feed_dict=feed_dict) test_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 2) correct = np.sum(pred_val == label_for_loop) total_correct += correct total_seen += (BATCH_SIZE*NUM_POINT) loss_sum += (loss_val*BATCH_SIZE) for i in range(start_idx, end_idx): for j in range(NUM_POINT): try: l = label_for_loop[i - start_idx, j - start_idx] total_seen_class[l] += 1 total_correct_class[l] += (pred_val[i-start_idx, j] == l) except: l = label_for_loop[i - start_idx, j - start_idx] total_seen_class[l] += 1 total_correct_class[l] += (pred_val[i-start_idx, j] == l) log_string('eval mean loss: %f' % (loss_sum / float(total_seen/NUM_POINT))) log_string('eval accuracy: %f'% (total_correct / float(total_seen))) log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)))) print('total correct class') print(total_correct_class) print('total seen class') print(total_seen_class) if __name__ == "__main__": train(USE_SAVED_MODEL) LOG_FOUT.close()
[ "os.mkdir", "numpy.sum", "argparse.ArgumentParser", "numpy.argmax", "tensorflow.maximum", "tensorflow.ConfigProto", "tensorflow.Variable", "sys.stdout.flush", "os.path.join", "provider.loadDataFile", "sys.path.append", "os.path.abspath", "os.path.dirname", "tensorflow.to_int64", "os.path.exists", "tensorflow.minimum", "socket.gethostname", "tensorflow.placeholder", "tensorflow.cast", "tensorflow.summary.merge_all", "tensorflow.summary.scalar", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.Session", "os.system", "tensorflow.train.MomentumOptimizer", "tensorflow.Graph", "tensorflow.train.exponential_decay", "os.listdir", "numpy.concatenate", "tensorflow.argmax", "numpy.array", "tensorflow.train.AdamOptimizer" ]
[((329, 354), 'os.path.dirname', 'os.path.dirname', (['BASE_DIR'], {}), '(BASE_DIR)\n', (344, 354), False, 'import os\n'), ((355, 380), 'sys.path.append', 'sys.path.append', (['BASE_DIR'], {}), '(BASE_DIR)\n', (370, 380), False, 'import sys\n'), ((381, 406), 'sys.path.append', 'sys.path.append', (['ROOT_DIR'], {}), '(ROOT_DIR)\n', (396, 406), False, 'import sys\n'), ((519, 544), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (542, 544), False, 'import argparse\n'), ((2540, 2577), 'os.system', 'os.system', (["('cp model.py %s' % LOG_DIR)"], {}), "('cp model.py %s' % LOG_DIR)\n", (2549, 2577), False, 'import os\n'), ((2599, 2636), 'os.system', 'os.system', (["('cp train.py %s' % LOG_DIR)"], {}), "('cp train.py %s' % LOG_DIR)\n", (2608, 2636), False, 'import os\n'), ((2945, 2965), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (2963, 2965), False, 'import socket\n'), ((291, 316), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (306, 316), False, 'import os\n'), ((423, 454), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""utils"""'], {}), "(ROOT_DIR, 'utils')\n", (435, 454), False, 'import os\n'), ((2265, 2288), 'os.path.exists', 'os.path.exists', (['LOG_DIR'], {}), '(LOG_DIR)\n', (2279, 2288), False, 'import os\n'), ((2295, 2312), 'os.mkdir', 'os.mkdir', (['LOG_DIR'], {}), '(LOG_DIR)\n', (2303, 2312), False, 'import os\n'), ((2680, 2718), 'os.path.join', 'os.path.join', (['LOG_DIR', '"""log_train.txt"""'], {}), "(LOG_DIR, 'log_train.txt')\n", (2692, 2718), False, 'import os\n'), ((3083, 3110), 'os.path.exists', 'os.path.exists', (['DIR_PATH_H5'], {}), '(DIR_PATH_H5)\n', (3097, 3110), False, 'import os\n'), ((3182, 3216), 'os.path.join', 'os.path.join', (['DIR_PATH_H5', 'file_h5'], {}), '(DIR_PATH_H5, file_h5)\n', (3194, 3216), False, 'import os\n'), ((8878, 8918), 'numpy.concatenate', 'np.concatenate', (['local_data_batch_list', '(0)'], {}), '(local_data_batch_list, 0)\n', (8892, 8918), True, 'import numpy as np\n'), ((8945, 8986), 'numpy.concatenate', 'np.concatenate', (['local_label_batch_list', '(0)'], {}), '(local_label_batch_list, 0)\n', (8959, 8986), True, 'import numpy as np\n'), ((9315, 9425), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['BASE_LEARNING_RATE', '(batch * BATCH_SIZE)', 'DECAY_STEP', 'DECAY_RATE'], {'staircase': '(True)'}), '(BASE_LEARNING_RATE, batch * BATCH_SIZE,\n DECAY_STEP, DECAY_RATE, staircase=True)\n', (9341, 9425), True, 'import tensorflow as tf\n'), ((9667, 9699), 'tensorflow.maximum', 'tf.maximum', (['learning_rate', '(1e-05)'], {}), '(learning_rate, 1e-05)\n', (9677, 9699), True, 'import tensorflow as tf\n'), ((9806, 9929), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['BN_INIT_DECAY', '(batch * BATCH_SIZE)', 'BN_DECAY_DECAY_STEP', 'BN_DECAY_DECAY_RATE'], {'staircase': '(True)'}), '(BN_INIT_DECAY, batch * BATCH_SIZE,\n BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True)\n', (9832, 9929), True, 'import tensorflow as tf\n'), ((10050, 10092), 'tensorflow.minimum', 'tf.minimum', (['BN_DECAY_CLIP', '(1 - bn_momentum)'], {}), '(BN_DECAY_CLIP, 1 - bn_momentum)\n', (10060, 10092), True, 'import tensorflow as tf\n'), ((3232, 3255), 'os.listdir', 'os.listdir', (['DIR_PATH_H5'], {}), '(DIR_PATH_H5)\n', (3242, 3255), False, 'import os\n'), ((11768, 11784), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (11782, 11784), True, 'import tensorflow as tf\n'), ((11934, 11959), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (11944, 11959), True, 'import tensorflow as tf\n'), ((12003, 12036), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (12034, 12036), True, 'import tensorflow as tf\n'), ((12230, 12252), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (12250, 12252), True, 'import tensorflow as tf\n'), ((15332, 15354), 'numpy.argmax', 'np.argmax', (['pred_val', '(2)'], {}), '(pred_val, 2)\n', (15341, 15354), True, 'import numpy as np\n'), ((15373, 15407), 'numpy.sum', 'np.sum', (['(pred_val == label_for_loop)'], {}), '(pred_val == label_for_loop)\n', (15379, 15407), True, 'import numpy as np\n'), ((17040, 17062), 'numpy.argmax', 'np.argmax', (['pred_val', '(2)'], {}), '(pred_val, 2)\n', (17049, 17062), True, 'import numpy as np\n'), ((17081, 17115), 'numpy.sum', 'np.sum', (['(pred_val == label_for_loop)'], {}), '(pred_val == label_for_loop)\n', (17087, 17115), True, 'import numpy as np\n'), ((3399, 3445), 'os.path.join', 'os.path.join', (['DIR_PATH_H5', '"""room_filelist.txt"""'], {}), "(DIR_PATH_H5, 'room_filelist.txt')\n", (3411, 3445), False, 'import os\n'), ((3496, 3543), 'os.path.join', 'os.path.join', (['DIR_PATH_H5', '"""class_mappings.txt"""'], {}), "(DIR_PATH_H5, 'class_mappings.txt')\n", (3508, 3543), False, 'import os\n'), ((3598, 3632), 'provider.loadDataFile', 'provider.loadDataFile', (['H5_FILES[0]'], {}), '(H5_FILES[0])\n', (3619, 3632), False, 'import provider\n'), ((7426, 7460), 'provider.loadDataFile', 'provider.loadDataFile', (['h5_filename'], {}), '(h5_filename)\n', (7447, 7460), False, 'import provider\n'), ((10336, 10369), 'tensorflow.placeholder', 'tf.placeholder', (['tf.bool'], {'shape': '()'}), '(tf.bool, shape=())\n', (10350, 10369), True, 'import tensorflow as tf\n'), ((10582, 10596), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {}), '(0)\n', (10593, 10596), True, 'import tensorflow as tf\n'), ((10652, 10691), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""bn_decay"""', 'bn_decay'], {}), "('bn_decay', bn_decay)\n", (10669, 10691), True, 'import tensorflow as tf\n'), ((10889, 10920), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss'], {}), "('loss', loss)\n", (10906, 10920), True, 'import tensorflow as tf\n'), ((11106, 11145), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (11123, 11145), True, 'import tensorflow as tf\n'), ((11248, 11297), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""learning_rate"""', 'learning_rate'], {}), "('learning_rate', learning_rate)\n", (11265, 11297), True, 'import tensorflow as tf\n'), ((11692, 11708), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (11706, 11708), True, 'import tensorflow as tf\n'), ((12298, 12328), 'os.path.join', 'os.path.join', (['LOG_DIR', '"""train"""'], {}), "(LOG_DIR, 'train')\n", (12310, 12328), False, 'import os\n'), ((12420, 12449), 'os.path.join', 'os.path.join', (['LOG_DIR', '"""test"""'], {}), "(LOG_DIR, 'test')\n", (12432, 12449), False, 'import os\n'), ((12937, 12955), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (12953, 12955), False, 'import sys\n'), ((10152, 10162), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (10160, 10162), True, 'import tensorflow as tf\n'), ((10953, 10971), 'tensorflow.argmax', 'tf.argmax', (['pred', '(2)'], {}), '(pred, 2)\n', (10962, 10971), True, 'import tensorflow as tf\n'), ((10973, 10995), 'tensorflow.to_int64', 'tf.to_int64', (['labels_pl'], {}), '(labels_pl)\n', (10984, 10995), True, 'import tensorflow as tf\n'), ((11366, 11426), 'tensorflow.train.MomentumOptimizer', 'tf.train.MomentumOptimizer', (['learning_rate'], {'momentum': 'MOMENTUM'}), '(learning_rate, momentum=MOMENTUM)\n', (11392, 11426), True, 'import tensorflow as tf\n'), ((12146, 12181), 'os.path.join', 'os.path.join', (['LOG_DIR', '"""model.ckpt"""'], {}), "(LOG_DIR, 'model.ckpt')\n", (12158, 12181), False, 'import os\n'), ((13064, 13099), 'os.path.join', 'os.path.join', (['LOG_DIR', '"""model.ckpt"""'], {}), "(LOG_DIR, 'model.ckpt')\n", (13076, 13099), False, 'import os\n'), ((11034, 11062), 'tensorflow.cast', 'tf.cast', (['correct', 'tf.float32'], {}), '(correct, tf.float32)\n', (11041, 11062), True, 'import tensorflow as tf\n'), ((11493, 11530), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (11515, 11530), True, 'import tensorflow as tf\n'), ((17967, 17996), 'numpy.array', 'np.array', (['total_correct_class'], {}), '(total_correct_class)\n', (17975, 17996), True, 'import numpy as np\n'), ((17997, 18039), 'numpy.array', 'np.array', (['total_seen_class'], {'dtype': 'np.float'}), '(total_seen_class, dtype=np.float)\n', (18005, 18039), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ 201901, Dr. <NAME>, Beijing & Xinglong, NAOC 202101-? Dr. <NAME> & Dr./Prof. <NAME> Light_Curve_Pipeline v3 (2021A) Upgrade from former version, remove unused code """ import numpy as np import matplotlib #matplotlib.use('Agg') from matplotlib import pyplot as plt from .JZ_utils import meanclip def plot_im_star(ini, img, x, y, mag, err, title, filename): """ Plot observed image and overplot stars :param ini: :param img: :param x: :param y: :param mag: :param err: :param title: :param filename: file to save :return: """ ny, nx = img.shape fig = plt.figure(figsize=(nx/50.0, ny/50.0)) ax = fig.add_subplot(111) d_m, d_s = meanclip(img) ax.imshow(img, cmap="gray", vmin=d_m - d_s * ini["plot_img_lowsigma"], vmax=d_m + d_s * ini["plot_img_highsigma"]) ax.set_xlim(0, nx) ax.set_ylim(0, ny) ix_g = np.where(err < 0.1) ix_b = np.where(err >= 0.1) ms = (25.0 - mag) * 5 ms[mag > 25] = 1.0 # ms[mag < 10] = 15.0 ax.scatter(x[ix_g], y[ix_g], marker="o", s=ms[ix_g], c="", edgecolors="r") ax.scatter(x[ix_b], y[ix_b], marker="o", s=ms[ix_b], c="", edgecolors="c") ax.set_title(title) fig.savefig(filename, bbox_inches='tight') plt.close() def plot_magerr(ini, mag, err, title, filename): """ Plot mag-err figure :param ini: :param mag: :param err: :param title: :param filename: file to save :return: """ fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111) ax.plot(mag, err, '.') ax.set_xlim(10, 25) ax.set_ylim(-0.001, 1.0) ax.set_xlabel("Mag (Inst)") ax.set_ylabel("Error") ax.set_title(title) fig.savefig(filename) plt.close() def plot_im_target(ini, img, target_x, target_y, ref_x, ref_y, chk_x, chk_y, title, filename, target_marker=("s", "r"), ref_marker=("s", "y"), chk_marker=("o", "y"), noplot=False, ): """ Plot image and mark target, referenece, and check stars :param ini: :param img: :param target_x: :param target_y: :param ref_x: :param ref_y: :param chk_x: :param chk_y: :param title: :param filename: :param target_marker: 2-tuple for marker, marker type and border color :param ref_marker: :param chk_marker: :param noplot: :return: """ ny, nx = img.shape fig = plt.figure(figsize=(nx / 100.0, ny / 100.0)) ax = fig.add_subplot(111) fsize = nx / 100 # font size msize = fsize * 5 # marker size d_m, d_s = meanclip(img) ax.imshow(img, cmap="gray", vmin=d_m - d_s * ini["plot_img_lowsigma"], vmax=d_m + d_s * ini["plot_img_highsigma"]) ax.set_xlim(0, nx) ax.set_ylim(0, ny) if target_x is not None: ax.scatter(target_x, target_y, marker=target_marker[0], s=msize, c=None, edgecolors=target_marker[1]) if np.isscalar(target_x): target_x = (target_x, ) if np.isscalar(target_y): target_y = (target_y, ) for i in range(len(target_x)): ax.text(target_x[i]+fsize/2, target_y[i]+fsize/2, "T-{}".format(i), color=target_marker[1], fontsize=fsize) if ref_x is not None: ax.scatter(ref_x, ref_y, marker=ref_marker[0], s=msize, c=None, edgecolors=ref_marker[1]) if np.isscalar(ref_x): ref_x = (ref_x, ) if np.isscalar(ref_y): ref_y = (ref_y, ) for i in range(len(ref_x)): ax.text(ref_x[i]+fsize/2, ref_y[i]+fsize/2, "R-{}".format(i), color=ref_marker[1], fontsize=fsize) if chk_x is not None: ax.scatter(chk_x, chk_y, marker=chk_marker[0], s=msize, c=None, edgecolors=chk_marker[1]) if np.isscalar(chk_x): chk_x = (chk_x, ) if np.isscalar(chk_y): chk_y = (chk_y, ) for i in range(len(chk_x)): ax.text(chk_x[i]+fsize/2, chk_y[i]+fsize/2, "C-{}".format(i), color=chk_marker[1], fontsize=fsize) ax.set_title(title) fig.savefig(filename, bbox_inches='tight') if noplot: plt.close(fig) def plot_im_obj(ini, img, obj_x, obj_y, title, filename, target_marker=("s", "r"), noplot=False, ): """ Plot only objects, without using ref or check :param ini: :param img: :param obj_x: :param obj_y: :param title: :param filename: :param target_marker: :param noplot: :return: """ plot_im_target(ini, img, obj_x, obj_y, None, None, None, None, title, filename, target_marker, noplot=noplot, )
[ "numpy.isscalar", "matplotlib.pyplot.close", "matplotlib.pyplot.figure", "numpy.where" ]
[((655, 697), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(nx / 50.0, ny / 50.0)'}), '(figsize=(nx / 50.0, ny / 50.0))\n', (665, 697), True, 'from matplotlib import pyplot as plt\n'), ((959, 978), 'numpy.where', 'np.where', (['(err < 0.1)'], {}), '(err < 0.1)\n', (967, 978), True, 'import numpy as np\n'), ((990, 1010), 'numpy.where', 'np.where', (['(err >= 0.1)'], {}), '(err >= 0.1)\n', (998, 1010), True, 'import numpy as np\n'), ((1321, 1332), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1330, 1332), True, 'from matplotlib import pyplot as plt\n'), ((1548, 1575), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (1558, 1575), True, 'from matplotlib import pyplot as plt\n'), ((1802, 1813), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1811, 1813), True, 'from matplotlib import pyplot as plt\n'), ((2618, 2662), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(nx / 100.0, ny / 100.0)'}), '(figsize=(nx / 100.0, ny / 100.0))\n', (2628, 2662), True, 'from matplotlib import pyplot as plt\n'), ((3139, 3160), 'numpy.isscalar', 'np.isscalar', (['target_x'], {}), '(target_x)\n', (3150, 3160), True, 'import numpy as np\n'), ((3197, 3218), 'numpy.isscalar', 'np.isscalar', (['target_y'], {}), '(target_y)\n', (3208, 3218), True, 'import numpy as np\n'), ((3559, 3577), 'numpy.isscalar', 'np.isscalar', (['ref_x'], {}), '(ref_x)\n', (3570, 3577), True, 'import numpy as np\n'), ((3608, 3626), 'numpy.isscalar', 'np.isscalar', (['ref_y'], {}), '(ref_y)\n', (3619, 3626), True, 'import numpy as np\n'), ((3949, 3967), 'numpy.isscalar', 'np.isscalar', (['chk_x'], {}), '(chk_x)\n', (3960, 3967), True, 'import numpy as np\n'), ((3998, 4016), 'numpy.isscalar', 'np.isscalar', (['chk_y'], {}), '(chk_y)\n', (4009, 4016), True, 'import numpy as np\n'), ((4299, 4313), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (4308, 4313), True, 'from matplotlib import pyplot as plt\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jul 15 15:16:06 2018 @author: Arpit """ import numpy as np import matplotlib.pyplot as plt import threading from settings import charts_folder class GraphPlot: lock = threading.Lock() def __init__(self, name, xCnt=1, yCnt=1, labels=None): self.name = name self.xCnt = xCnt self.yCnt = yCnt self.labels = labels self.X = [] self.Ys = np.empty((yCnt,), dtype=object) for i,v in enumerate(self.Ys): self.Ys[i] = list() def add(self, X, Y): self.X.append(X) for i in range(self.yCnt): self.Ys[i].append(Y[i]) def save(self): try: with self.lock: fig = plt.figure() for i in range(self.yCnt): plt.plot(self.X, self.Ys[i], label=self.labels[i] if self.labels is not None else i) plt.legend(loc = "best") plt.savefig(charts_folder + str(self.name) + '.png') plt.close(fig) except Exception as e: print("error: " + str(e)) plt.close()
[ "matplotlib.pyplot.plot", "numpy.empty", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "threading.Lock", "matplotlib.pyplot.figure" ]
[((239, 255), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (253, 255), False, 'import threading\n'), ((471, 502), 'numpy.empty', 'np.empty', (['(yCnt,)'], {'dtype': 'object'}), '((yCnt,), dtype=object)\n', (479, 502), True, 'import numpy as np\n'), ((781, 793), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (791, 793), True, 'import matplotlib.pyplot as plt\n'), ((975, 997), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (985, 997), True, 'import matplotlib.pyplot as plt\n'), ((1085, 1099), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (1094, 1099), True, 'import matplotlib.pyplot as plt\n'), ((1198, 1209), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1207, 1209), True, 'import matplotlib.pyplot as plt\n'), ((857, 945), 'matplotlib.pyplot.plot', 'plt.plot', (['self.X', 'self.Ys[i]'], {'label': '(self.labels[i] if self.labels is not None else i)'}), '(self.X, self.Ys[i], label=self.labels[i] if self.labels is not\n None else i)\n', (865, 945), True, 'import matplotlib.pyplot as plt\n')]
import os import random import numpy as np from scipy.spatial.distance import cdist import cv2 import time import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F # import torch.multiprocessing as mp from torch.utils.data import DataLoader from torch.optim import Adam, SGD # from torch.utils.tensorboard import SummaryWriter from scipy.spatial.distance import cdist from package.model.cmt import CMT from package.loss.cmt_loss import _CMT_loss from package.dataset.data_cmt import * from package.args.cmt_args import parse_config from package.dataset.utils import make_logger from package.model.utils import * from package.loss.regularization import _Regularization import numpy as np from sklearn.neighbors import NearestNeighbors as NN DEBUG = False def dr_dec(optimizer, args): args.lr *= 0.5 args.lr = max(args.lr, 5e-5) optimizer.param_groups[0]['lr'] = args.lr def _get_pre_from_matches(matches): """ :param matches: A n-by-m matrix. n is number of test samples, m is the top m elements used for evaluation :return: precision """ return np.mean(matches) def _map_change(inputArr): dup = np.copy(inputArr) for idx in range(inputArr.shape[1]): if idx != 0: # dup cannot be bool type dup[:,idx] = dup[:,idx-1] + dup[:,idx] return np.multiply(dup, inputArr) def _get_map_from_matches(matches): """ mAP's calculation refers to https://github.com/ShivaKrishnaM/ZS-SBIR/blob/master/trainCVAE_pre.py. :param matches: A n-by-m matrix. n is number of test samples, m is the top m elements used for evaluation matches[i][j] == 1 indicates the j-th retrieved test image j belongs to the same class as test sketch i, otherwise, matches[i][j] = 0. :return: mAP """ temp = [np.arange(matches.shape[1]) for _ in range(matches.shape[0])] mAP_term = 1.0 / (np.stack(temp, axis=0) + 1.0) precisions = np.multiply(_map_change(matches), mAP_term) mAP = np.mean(precisions, axis=1) return np.mean(mAP) def _eval(feats_labels_sk, feats_labels_im, n=200): """ :param feats_labels_sk: a two-element tuple [features_of_sketches, labels_of_sketches] labels_of_sketches and labels_of_images are scalars(class id). :param feats_labels_im: a two-element tuple [features_of_images, labels_of_images] features_of_images and features_of_sketches are used for distance calculation. :param n: the top n elements used for evaluation :return: precision@n, mAP@n, mAP@all """ nn = NN(n_neighbors=feats_labels_im[0].shape[0], metric='cosine', algorithm='brute').fit(feats_labels_im[0]) _, indices = nn.kneighbors(feats_labels_sk[0]) retrieved_classes = np.array(feats_labels_im[1])[indices] matches = np.vstack([(retrieved_classes[i] == feats_labels_sk[1][i]) for i in range(retrieved_classes.shape[0])]).astype(np.uint16) return _get_pre_from_matches(matches[:, :n]), _get_map_from_matches(matches[:, :n]) def _test_and_save(epochs, optimizer, data_test, model, logger, args, loss_sum): if not hasattr(_test_and_save, 'best_acc'): _test_and_save.best_acc = 0 n = 200 start_cpu_t = time.time() feats_labels_sk, feats_labels_im = _extract_feats_sk_im(data=data_test, model=model, batch_size=args.batch_size) pre, mAPn = _eval(feats_labels_sk, feats_labels_im, n) logger.info("Precision@{}: {}, mAP@{}: {}, bestPrecsion: {}".format(n, pre, n, mAPn, max(pre, _test_and_save.best_acc)) + " " + 'epochs: {}, loss_sk: {}, loss_im: {}, (eval cpu time: {}s)'. format(epochs, np.mean(loss_sum[SK]), np.mean(loss_sum[IM]), time.time() - start_cpu_t)) if pre > _test_and_save.best_acc: _test_and_save.best_acc = pre torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epochs': epochs, 'args': args}, save_fn(args.save_dir, epochs, pre, mAPn)) torch.cuda.empty_cache() def save_fn(save_dir, it, pre=0, mAP=0): return join(mkdir(join(save_dir, 'models')), 'Iter__{}__{}_{}.pkl'.format(it, int(pre * 1000), int(mAP * 1000))) def _try_load(args, logger, model, optimizer): if args.start_from is None: # try to find the latest checkpoint files = os.listdir(mkdir(join(mkdir(args.save_dir), 'models'))) if len(files) == 0: logger.info("Cannot find any checkpoint. Start new training.") return 0 latest = max(files, key=lambda name: int(name.split('\\')[-1].split('/')[-1].split('.')[0].split('__')[1])) checkpoint = join(args.save_dir, 'models', latest) else: try: checkpoint = save_fn(args.save_dir, str(int(args.start_from))) except: checkpoint = args.start_from logger.info("Load model from {}".format(checkpoint)) ckpt = torch.load(checkpoint, map_location='cpu') model.load_state_dict(ckpt['model']) optimizer.load_state_dict(ckpt['optimizer']) return ckpt['epochs'] def _extract_feats_sk_im(data, model, batch_size=64): skip = 1 model.eval() feats_labels_sk = _extract_feats(data, lambda x: model(sk=x), SK, skip=skip, batch_size=batch_size) feats_labels_im = _extract_feats(data, lambda x: model(im=x), IM, skip=skip, batch_size=batch_size) model.train() return feats_labels_sk, feats_labels_im def _extract_feats(data_test, model, what, skip=1, batch_size=16): """ :param data_test: test Dataset :param model: network model :param what: SK or IM :param skip: skip a certain number of image/sketches to reduce computation :return: a two-element list [extracted_features, extracted_labels] """ labels = [] feats = [] for batch_idx, (xs, id) in \ enumerate(data_test.traverse(what, skip=skip, batch_size=batch_size)): feats.append(model(xs.cuda()).data.cpu().numpy()) # print(type(labels[0]), labels[0].shape)# <class 'numpy.ndarray'> (16, 256) # print(type(id), id) # <class 'torch.Tensor'> tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) labels.append(id.numpy()) # print(feats[-1][-1][:4]) return np.concatenate(feats), np.concatenate(labels) def _parse_args_paths(args): if args.dataset == 'sketchy': sketch_folder = SKETCH_FOLDER_SKETCHY im_folder = IMAGE_FOLDER_SKETCHY path_semantic = PATH_SEMANTIC_SKETCHY train_class = TRAIN_CLASS_SKETCHY test_class = TEST_CLASS_SKETCHY npy_folder = NPY_FOLDER_SKETCHY elif args.dataset == 'tuberlin': sketch_folder = SKETCH_FOLDER_TUBERLIN im_folder = IMAGE_FOLDER_TUBERLIN path_semantic = PATH_SEMANTIC_TUBERLIN train_class = TRAIN_CLASS_TUBERLIN test_class = TEST_CLASS_TUBERLIN npy_folder = NPY_FOLDER_TUBERLIN else: raise Exception("dataset args error!") if args.sketch_dir != '': sketch_folder = args.sketch_dir if args.image_dir != '': im_folder = args.image_dir if args.path_semantic != '': im_folder = args.path_semantic if args.npy_dir == '0': args.npy_dir = npy_folder elif args.npy_dir == '': args.npy_dir = None if args.ni_path == '0': args.ni_path = PATH_NAMES return sketch_folder, im_folder, path_semantic, train_class, test_class def train(args): # srun -p gpu --gres=gpu:1 --exclusive --output=san10.out python main_san.py --epochs 50000 --print_every 500 --save_every 2000 --batch_size 96 --dataset sketchy --margin 10 --npy_dir 0 --save_dir san_sketchy10 # srun -p gpu --gres=gpu:1 --exclusive --output=san1.out python main_san.py --epochs 50000 --print_every 500 --save_every 2000 --batch_size 96 --dataset sketchy --margin 1 --npy_dir 0 --save_dir san_sketchy1 # srun -p gpu --gres=gpu:1 --output=san_sketchy03.out python main_san.py --epochs 30000 --print_every 200 --save_every 3000 --batch_size 96 --dataset sketchy --margin 0.3 --npy_dir 0 --save_dir san_sketchy03 --lr 0.0001 sketch_folder, image_folder, path_semantic, train_class, test_class = _parse_args_paths(args) if DEBUG: args.back_bone = 'default' args.npy_dir = NPY_FOLDER_SKETCHY args.ni_path = PATH_NAMES args.print_every = 1 args.save_every = 5 args.paired = True args.epochs = 20000 # args.lr = 0.001 args.sz = 32 # args.l2_reg = 0.0001 args.back_bone = 'default' args.batch_size = 32 args.h = 500 test_class = train_class[5:7] train_class = train_class[:5] logger = make_logger(join(mkdir(args.save_dir), curr_time_str() + '.log')) data_train = CMT_dataloader(folder_sk=sketch_folder, clss=train_class, folder_nps=args.npy_dir, path_semantic=path_semantic, paired=args.paired, names=args.ni_path, folder_im=image_folder, normalize01=False, doaug=False, logger=logger, sz=None if args.back_bone=='vgg' else args.sz) dataloader_train = DataLoader(dataset=data_train, batch_size=args.batch_size, shuffle=True) data_test = CMT_dataloader(folder_sk=sketch_folder, clss=test_class, folder_nps=args.npy_dir, path_semantic=path_semantic, folder_im=image_folder, normalize01=False, doaug=False, logger=logger, sz=None if args.back_bone=='vgg' else args.sz) model = CMT(d=data_train.d(), h=args.h, back_bone=args.back_bone, batch_normalization=args.bn, sz=args.sz) model.cuda() if not args.ft: model.fix_vgg() optimizer = SGD(params=model.parameters(), lr=args.lr, momentum=0.6) epochs = _try_load(args, logger, model, optimizer) logger.info(str(args)) args.epochs += epochs cmt_loss = _CMT_loss() model.train() l2_regularization = _Regularization(model, args.l2_reg, p=2, logger=None) loss_sum = [[0], [0]] logger.info("Start training:\n train_classes: {}\n test_classes: {}".format(train_class, test_class)) _test_and_save(epochs=epochs, optimizer=optimizer, data_test=data_test, model=model, logger=logger, args=args, loss_sum=loss_sum) while True: for mode, get_feat in [[IM, lambda data: model(im=data)], [SK, lambda data: model(sk=data)]]: data_train.mode = mode for _, (data, semantics) in enumerate(dataloader_train): # Skip one-element batch in consideration of batch normalization if data.shape[0] == 1: continue # print(data.shape) optimizer.zero_grad() loss = cmt_loss(get_feat(data.cuda()), semantics.cuda()) \ + l2_regularization() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() loss_sum[mode].append(float(loss.item())) epochs += 1 dr_dec(optimizer=optimizer, args=args) if (epochs + 1) % args.save_every == 0: _test_and_save(epochs=epochs, optimizer=optimizer, data_test=data_test, model=model, logger=logger, args=args, loss_sum=loss_sum) if (epochs + 1) % args.print_every == 0: logger.info('epochs: {}, loss_sk: {}, loss_im: {},'. format(epochs, np.mean(loss_sum[SK]), np.mean(loss_sum[IM]))) loss_sum = [[], []] if epochs >= args.epochs: break def gen_args(h=500, dataset='sketchy', back_bone='vgg', sz=32, ft=True, paired=False): ft = int(ft) paired = int(paired) return \ """ ### #!/bin/bash #SBATCH --job-name=ZXLing #SBATCH --partition=gpu #SBATCH --gres=gpu:1 #SBATCH --output=cmt_%j.out #SBATCH --time=7-00:00:00 module load gcc/7.3.0 anaconda/3 cuda/9.2 cudnn/7.1.4 source activate lzxtc2 python main_cmt.py --npy_dir 0 --dataset {} --save_dir cmts/cmt{}{}_{}_{}_{}_{} --h {} --back_bone {} --sz {} --ft {} --paired {} --ni_path 0 """.format(dataset, int(ft), int(paired) , dataset, h, back_bone, sz if back_bone=='default' else "", h, back_bone, sz, ft, paired) if __name__ == '__main__': if False: print(gen_args(back_bone='vgg', ft=False, paired=True)) print(gen_args(back_bone='vgg', ft=True, paired=False)) print(gen_args(back_bone='vgg', ft=True, paired=True)) print(gen_args(back_bone='vgg', ft=False, paired=False)) print(gen_args(back_bone='default')) exit() args = parse_config() print(str(args)) # train(args) # srun --gres=gpu:1 --output=cmt_%j.out python main_cmt.py ''' #!/bin/bash #SBATCH --job-name=ZXLing #SBATCH --partition=gpu #SBATCH --gres=gpu:1 #SBATCH --output=cmt_%j.out #SBATCH --time=7-00:00:00 module load gcc/7.3.0 anaconda/3 cuda/9.2 cudnn/7.1.4 source activate lzxtc2 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt11_sketchy_500_default_32 --h 500 --back_bone default --sz 32 --ft 1 --paired 1 --ni_path 0 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt01_sketchy_500_vgg_ --h 500 --back_bone vgg --sz 32 --ft 0 --paired 1 --ni_path 0 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt10_sketchy_500_vgg_ --h 500 --back_bone vgg --sz 32 --ft 1 --paired 0 --ni_path 0 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt11_sketchy_500_vgg_ --h 500 --back_bone vgg --sz 32 --ft 1 --paired 1 --ni_path 0 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt00_sketchy_500_vgg_ --h 500 --back_bone vgg --sz 32 --ft 0 --paired 0 --ni_path 0 python main_cmt.py --npy_dir 0 --dataset sketchy --save_dir cmts/cmt10_sketchy_500_default_32 --h 500 --back_bone default --sz 32 --ft 1 --paired 0 --ni_path 0 '''
[ "package.loss.regularization._Regularization", "numpy.stack", "numpy.multiply", "numpy.copy", "torch.utils.data.DataLoader", "torch.load", "time.time", "numpy.mean", "package.loss.cmt_loss._CMT_loss", "package.args.cmt_args.parse_config", "torch.cuda.empty_cache", "torch.nn.kneighbors", "numpy.arange", "numpy.array", "sklearn.neighbors.NearestNeighbors", "numpy.concatenate" ]
[((1129, 1145), 'numpy.mean', 'np.mean', (['matches'], {}), '(matches)\n', (1136, 1145), True, 'import numpy as np\n'), ((1185, 1202), 'numpy.copy', 'np.copy', (['inputArr'], {}), '(inputArr)\n', (1192, 1202), True, 'import numpy as np\n'), ((1365, 1391), 'numpy.multiply', 'np.multiply', (['dup', 'inputArr'], {}), '(dup, inputArr)\n', (1376, 1391), True, 'import numpy as np\n'), ((2032, 2059), 'numpy.mean', 'np.mean', (['precisions'], {'axis': '(1)'}), '(precisions, axis=1)\n', (2039, 2059), True, 'import numpy as np\n'), ((2071, 2083), 'numpy.mean', 'np.mean', (['mAP'], {}), '(mAP)\n', (2078, 2083), True, 'import numpy as np\n'), ((2718, 2751), 'torch.nn.kneighbors', 'nn.kneighbors', (['feats_labels_sk[0]'], {}), '(feats_labels_sk[0])\n', (2731, 2751), True, 'import torch.nn as nn\n'), ((3258, 3269), 'time.time', 'time.time', ([], {}), '()\n', (3267, 3269), False, 'import time\n'), ((4148, 4172), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4170, 4172), False, 'import torch\n'), ((5028, 5070), 'torch.load', 'torch.load', (['checkpoint'], {'map_location': '"""cpu"""'}), "(checkpoint, map_location='cpu')\n", (5038, 5070), False, 'import torch\n'), ((9291, 9363), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'data_train', 'batch_size': 'args.batch_size', 'shuffle': '(True)'}), '(dataset=data_train, batch_size=args.batch_size, shuffle=True)\n', (9301, 9363), False, 'from torch.utils.data import DataLoader\n'), ((10043, 10054), 'package.loss.cmt_loss._CMT_loss', '_CMT_loss', ([], {}), '()\n', (10052, 10054), False, 'from package.loss.cmt_loss import _CMT_loss\n'), ((10098, 10151), 'package.loss.regularization._Regularization', '_Regularization', (['model', 'args.l2_reg'], {'p': '(2)', 'logger': 'None'}), '(model, args.l2_reg, p=2, logger=None)\n', (10113, 10151), False, 'from package.loss.regularization import _Regularization\n'), ((12838, 12852), 'package.args.cmt_args.parse_config', 'parse_config', ([], {}), '()\n', (12850, 12852), False, 'from package.args.cmt_args import parse_config\n'), ((1847, 1874), 'numpy.arange', 'np.arange', (['matches.shape[1]'], {}), '(matches.shape[1])\n', (1856, 1874), True, 'import numpy as np\n'), ((2776, 2804), 'numpy.array', 'np.array', (['feats_labels_im[1]'], {}), '(feats_labels_im[1])\n', (2784, 2804), True, 'import numpy as np\n'), ((6431, 6452), 'numpy.concatenate', 'np.concatenate', (['feats'], {}), '(feats)\n', (6445, 6452), True, 'import numpy as np\n'), ((6454, 6476), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (6468, 6476), True, 'import numpy as np\n'), ((1931, 1953), 'numpy.stack', 'np.stack', (['temp'], {'axis': '(0)'}), '(temp, axis=0)\n', (1939, 1953), True, 'import numpy as np\n'), ((2597, 2676), 'sklearn.neighbors.NearestNeighbors', 'NN', ([], {'n_neighbors': 'feats_labels_im[0].shape[0]', 'metric': '"""cosine"""', 'algorithm': '"""brute"""'}), "(n_neighbors=feats_labels_im[0].shape[0], metric='cosine', algorithm='brute')\n", (2599, 2676), True, 'from sklearn.neighbors import NearestNeighbors as NN\n'), ((3753, 3774), 'numpy.mean', 'np.mean', (['loss_sum[SK]'], {}), '(loss_sum[SK])\n', (3760, 3774), True, 'import numpy as np\n'), ((3776, 3797), 'numpy.mean', 'np.mean', (['loss_sum[IM]'], {}), '(loss_sum[IM])\n', (3783, 3797), True, 'import numpy as np\n'), ((3799, 3810), 'time.time', 'time.time', ([], {}), '()\n', (3808, 3810), False, 'import time\n'), ((11702, 11723), 'numpy.mean', 'np.mean', (['loss_sum[SK]'], {}), '(loss_sum[SK])\n', (11709, 11723), True, 'import numpy as np\n'), ((11725, 11746), 'numpy.mean', 'np.mean', (['loss_sum[IM]'], {}), '(loss_sum[IM])\n', (11732, 11746), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # This software component is licensed by ST under BSD 3-Clause license, # the "License"; You may not use this file except in compliance with the # License. You may obtain a copy of the License at: # https://opensource.org/licenses/BSD-3-Clause """ Optimze Full int8 - with reference dataset Fully quantized model tflite ASC - TF 1.14.0ASC 3CL Training script from Pre calculated features. """ import numpy as np import tensorflow as tf # load ASC training Set as representative quantization dataset (100 samples) # reduced 'dummy' data set is provided , a full representative one should be provided instead x_train_dataset = np.load('Asc_quant_representative_data_dummy.npz') x_train = x_train_dataset['x_train'] ASC_SHAPE = (30, 32, 1) N_CLASSES = 3 def representative_dataset_gen(): for i in range(len(x_train)): # Get sample input data as a numpy array in a method of your choosing. yield [x_train[i].reshape((-1, ) + ASC_SHAPE)] converter = tf.lite.TFLiteConverter.from_keras_model_file("Session_keras_mod_93_Model.h5" ) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_dataset_gen converter.target_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 print("\nConverting the model...", flush=True) tflite_model = converter.convert() open('asc_keras_mod_93_to_tflite_int8_xtrain.tflite','wb').write(tflite_model)
[ "numpy.load", "tensorflow.lite.TFLiteConverter.from_keras_model_file" ]
[((723, 773), 'numpy.load', 'np.load', (['"""Asc_quant_representative_data_dummy.npz"""'], {}), "('Asc_quant_representative_data_dummy.npz')\n", (730, 773), True, 'import numpy as np\n'), ((1075, 1153), 'tensorflow.lite.TFLiteConverter.from_keras_model_file', 'tf.lite.TFLiteConverter.from_keras_model_file', (['"""Session_keras_mod_93_Model.h5"""'], {}), "('Session_keras_mod_93_Model.h5')\n", (1120, 1153), True, 'import tensorflow as tf\n')]
import numpy as np from .utils import Timer def run(size='large', repeats=3 ): sizes = {'huge': 28000, 'large': 15000, 'small': 6000, 'tiny': 2000, 'test': 2} n = sizes[size] A = np.array(np.random.rand(n,n)) A = [email protected] num_runs = repeats print('num_runs =', num_runs) results = [] for i in range(num_runs): print("run ", i) with Timer() as t: L = np.linalg.cholesky(A) run_time=t.elapsed print(f'Time {t.elapsed} seconds from Timer') ops = 1E-9 * (n**3/3.0) gflops = ops/run_time results.append({'run_time': run_time, 'gflops': gflops}) return results if __name__ == '__main__': run()
[ "numpy.random.rand", "numpy.linalg.cholesky" ]
[((208, 228), 'numpy.random.rand', 'np.random.rand', (['n', 'n'], {}), '(n, n)\n', (222, 228), True, 'import numpy as np\n'), ((417, 438), 'numpy.linalg.cholesky', 'np.linalg.cholesky', (['A'], {}), '(A)\n', (435, 438), True, 'import numpy as np\n')]
'''Module to load and use GloVe Models. Code Inspiration from: https://www.kaggle.com/jhoward/improved-lstm-baseline-glove-dropout ''' import os import numpy as np import pandas as pd import urllib.request from zipfile import ZipFile from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import KMeans folder = os.path.dirname(os.path.realpath(__file__)) def download(name): '''Downloads the relevant dataset and extracts it. Args: name (str): Name of the model to download (options are: [twitter, wikipedia]) Returns: True if successful, otherwise False ''' url = None if name == 'twitter': url = 'http://nlp.stanford.edu/data/wordvecs/glove.twitter.27B.zip' elif name == 'wikipedia': url = 'http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip' if url is not None: try: urllib.request.urlretrieve(url, os.path.join(folder, '{}.zip'.format(name))) except: print("download failed") return False try: # Create a ZipFile Object and load sample.zip in it with ZipFile(os.path.join(folder, '{}.zip'.format(name)), 'r') as zipObj: # Extract all the contents of zip file in current directory zipObj.extractall(folder) return True except: print("extraction failed") return False return False class GloveEmbeddings: '''Class to load embeddings model and generate it for words or sentences.''' def __init__(self, name, dim=25): # load data self.emb = self.load_vectors(name, dim) self.emb_size = dim # calculate items for randomization (explicit convert to list to avoid numpy warning) all_embs = np.stack(list(self.emb.values())) self.emb_mean,self.emb_std = all_embs.mean(), all_embs.std() def get_coefs(self, word, *arr): '''Helper Function to transform the given vector into a float array.''' return word, np.asarray(arr, dtype='float32') def load_vectors(self, name, dim): '''Load the given vector data.''' # retrieve file name file = None if name == 'twitter': file = os.path.join(folder, 'glove.{}.27B.{}d.txt'.format(name, dim)) elif name == 'wikipedia': file = os.path.join(folder, 'glove.840B.{}d.txt'.format(dim)) else: raise ValueError('Unkown model type ({})'.format(name)) # load the embeddings with open(file, encoding='utf-8') as file: embeddings_index = [self.get_coefs(*o.strip().split()) for o in file] embeddings_index = list(filter(lambda x: len(x[1]) == dim, embeddings_index)) return dict(embeddings_index) def word_vector(self,word): '''Tries to retrieve the embedding for the given word, otherwise returns random vector.''' # generate randomness otherwise vec = self.emb.get(word) return vec if vec is not None else np.random.normal(self.emb_mean, self.emb_std, (self.emb_size)) def sent_vector(self, sent, use_rand=True): '''Generates a single embedding vector. Args: sent (list): List of tokenized words to use use_rand (bool): Defines if unkown words should be filled with random vectors (otherwise only use known vectors) Returns: Single normalized Vector to be used as embedding ''' vec = None vec_count = 0 for word in sent: wvec = self.emb.get(word) if wvec is None and use_rand: wvec = np.random.normal(self.emb_mean, self.emb_std, (self.emb_size)) if wvec is not None: if vec is None: vec = wvec else: vec += wvec vec_count += 1 # normalize the vector if vec is not None and vec_count > 0: vec = vec / vec_count # if no word is found return random vector return vec if vec is not None else np.random.normal(self.emb_mean, self.emb_std, (self.emb_size)) def sent_matrix(self, sent, max_feat, pad, dedub=False): '''Generates a Matrix of single embeddings for the item. Args: sent (list): List of tokenized words max_feat (int): Number of maximal features to extract pad (bool): Defines if the resulting matrix should be zero-padded to max_feat dedub (bool): Defines if the word list should be de-duplicated Returns: 2-D Matrix with dimensions [max_feat, embedding_size] ''' # remove duplicates if dedub: sent = list(set(sent)) # setup matrix nb_words = min(max_feat, len(sent)) embedding_matrix = np.random.normal(self.emb_mean, self.emb_std, (nb_words, self.emb_size)) # iterate through all words for i, word in enumerate(sent): if i >= max_feat: continue vec = self.emb.get(word) if vec is not None: embedding_matrix[i] = vec # pad the matrix to max features if pad and nb_words < max_feat: embedding_matrix = np.pad(embedding_matrix, (max_feat, self.emb_size), 'constant', constant_values=[0]) return embedding_matrix def centroid_vectors(self, sent, max_feat): '''Generates a list of `max_feat` vectors to be used as representation. Args: sent (list): Tokenized words in the document max_feat (int): Number of vectors to generate Returns: Array of centroid vectors for the given document ''' # generate list of vectors (use set as order not relevant and to avoid duplicates) vecs = [] for word in set(sent): vec = self.emb.get(word) if vec is not None: vecs.append(vec) # return random vector if none found if len(vecs) < max_feat: return np.array(vecs + [np.random.normal(self.emb_mean, self.emb_std, (self.emb_size)) for i in range(max_feat - len(vecs))]) elif len(vecs) == max_feat: return np.array(vecs) # perform clustering kmeans = KMeans(n_clusters=max_feat).fit(vecs) # return the centroid vectors return kmeans.cluster_centers_ class GloVeTransformer(BaseEstimator, TransformerMixin): '''Transformer for the GloVe Model.''' def __init__(self, name, dim, type, tokenizer, max_feat=None): '''Create the Transformer. Note that the centroid option might be slow. Args: name (str): Name of the model dim (int): Number of dimensions to use type (str): Type of the transformation (options are: ['word', 'sent', 'sent-matrix', 'centroid']) tokenizer (fct): Function to tokenize the input data max_feat (int): Number of maximal feature vectors used per input ''' # safty checks if type not in ['word', 'sent', 'sent-matrix', 'centroid']: raise ValueError("Invalid value for type: ({})".format(type)) if type in ['sent-matrix', 'centroid'] and max_feat is None: raise ValueError("Required value for max_feat for type ({})".format(type)) # set values self.glove = GloveEmbeddings(name, dim) self.type = type self.tokenizer = tokenizer self.max_feat = max_feat def fit(self, x, y=None): return self def vectors(self, text): '''Extracts the specified type of vector for the given input data.''' # retrieve the vectors tokens = self.tokenizer(text) if self.type == 'word': return np.concat([self.glove.word_vector(tok) for tok in tokens]) elif self.type == 'sent': return self.glove.sent_vector(tokens) elif self.type == 'sent-matrix': # note: use padding to avoid pipeline problems return self.glove.sent_matrix(tokens, self.max_feat, True).reshape([-1]) elif self.type == 'centroid': return self.glove.centroid_vectors(tokens, self.max_feat).reshape([-1]) return np.nan def transform(self, X): X_tagged = pd.Series(X).apply(lambda x: pd.Series(self.vectors(x))) df = pd.DataFrame(X_tagged).fillna(0).replace([-np.inf], -1).replace([np.inf], 1) return df
[ "numpy.pad", "pandas.DataFrame", "sklearn.cluster.KMeans", "numpy.asarray", "os.path.realpath", "numpy.array", "pandas.Series", "numpy.random.normal" ]
[((354, 380), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (370, 380), False, 'import os\n'), ((4413, 4485), 'numpy.random.normal', 'np.random.normal', (['self.emb_mean', 'self.emb_std', '(nb_words, self.emb_size)'], {}), '(self.emb_mean, self.emb_std, (nb_words, self.emb_size))\n', (4429, 4485), True, 'import numpy as np\n'), ((1890, 1922), 'numpy.asarray', 'np.asarray', (['arr'], {'dtype': '"""float32"""'}), "(arr, dtype='float32')\n", (1900, 1922), True, 'import numpy as np\n'), ((2807, 2867), 'numpy.random.normal', 'np.random.normal', (['self.emb_mean', 'self.emb_std', 'self.emb_size'], {}), '(self.emb_mean, self.emb_std, self.emb_size)\n', (2823, 2867), True, 'import numpy as np\n'), ((3731, 3791), 'numpy.random.normal', 'np.random.normal', (['self.emb_mean', 'self.emb_std', 'self.emb_size'], {}), '(self.emb_mean, self.emb_std, self.emb_size)\n', (3747, 3791), True, 'import numpy as np\n'), ((4768, 4856), 'numpy.pad', 'np.pad', (['embedding_matrix', '(max_feat, self.emb_size)', '"""constant"""'], {'constant_values': '[0]'}), "(embedding_matrix, (max_feat, self.emb_size), 'constant',\n constant_values=[0])\n", (4774, 4856), True, 'import numpy as np\n'), ((3356, 3416), 'numpy.random.normal', 'np.random.normal', (['self.emb_mean', 'self.emb_std', 'self.emb_size'], {}), '(self.emb_mean, self.emb_std, self.emb_size)\n', (3372, 3416), True, 'import numpy as np\n'), ((5645, 5659), 'numpy.array', 'np.array', (['vecs'], {}), '(vecs)\n', (5653, 5659), True, 'import numpy as np\n'), ((5699, 5726), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'max_feat'}), '(n_clusters=max_feat)\n', (5705, 5726), False, 'from sklearn.cluster import KMeans\n'), ((7549, 7561), 'pandas.Series', 'pd.Series', (['X'], {}), '(X)\n', (7558, 7561), True, 'import pandas as pd\n'), ((5498, 5558), 'numpy.random.normal', 'np.random.normal', (['self.emb_mean', 'self.emb_std', 'self.emb_size'], {}), '(self.emb_mean, self.emb_std, self.emb_size)\n', (5514, 5558), True, 'import numpy as np\n'), ((7615, 7637), 'pandas.DataFrame', 'pd.DataFrame', (['X_tagged'], {}), '(X_tagged)\n', (7627, 7637), True, 'import pandas as pd\n')]
""" This file contains a function to generate a single synthetic tree, prepared for multiprocessing. """ import pandas as pd import numpy as np # import dill as pickle # import gzip from syn_net.data_generation.make_dataset import synthetic_tree_generator from syn_net.utils.data_utils import ReactionSet path_reaction_file = '/pool001/whgao/data/synth_net/st_pis/reactions_pis.json.gz' path_to_building_blocks = '/pool001/whgao/data/synth_net/st_pis/enamine_us_matched.csv.gz' building_blocks = pd.read_csv(path_to_building_blocks, compression='gzip')['SMILES'].tolist() r_set = ReactionSet() r_set.load(path_reaction_file) rxns = r_set.rxns # with gzip.open(path_reaction_file, 'rb') as f: # rxns = pickle.load(f) print('Finish reading the templates and building blocks list!') def func(_): np.random.seed(_) tree, action = synthetic_tree_generator(building_blocks, rxns, max_step=15) return tree, action
[ "syn_net.utils.data_utils.ReactionSet", "pandas.read_csv", "numpy.random.seed", "syn_net.data_generation.make_dataset.synthetic_tree_generator" ]
[((584, 597), 'syn_net.utils.data_utils.ReactionSet', 'ReactionSet', ([], {}), '()\n', (595, 597), False, 'from syn_net.utils.data_utils import ReactionSet\n'), ((807, 824), 'numpy.random.seed', 'np.random.seed', (['_'], {}), '(_)\n', (821, 824), True, 'import numpy as np\n'), ((844, 904), 'syn_net.data_generation.make_dataset.synthetic_tree_generator', 'synthetic_tree_generator', (['building_blocks', 'rxns'], {'max_step': '(15)'}), '(building_blocks, rxns, max_step=15)\n', (868, 904), False, 'from syn_net.data_generation.make_dataset import synthetic_tree_generator\n'), ((500, 556), 'pandas.read_csv', 'pd.read_csv', (['path_to_building_blocks'], {'compression': '"""gzip"""'}), "(path_to_building_blocks, compression='gzip')\n", (511, 556), True, 'import pandas as pd\n')]
import logging import numpy as np import tensorflow as tf from collections import OrderedDict import utils from clf_model_multitask import predict def get_latest_checkpoint_and_log(logdir, filename): init_checkpoint_path = utils.get_latest_model_checkpoint_path(logdir, filename) logging.info('Checkpoint path: %s' % init_checkpoint_path) last_step = int(init_checkpoint_path.split('/')[-1].split('-')[-1]) logging.info('Latest step was: %d' % last_step) return init_checkpoint_path def evaluate_scores(true_labels, prediction, measures_dict): scores_one_exp = OrderedDict() for measure_name, measure in measures_dict.items(): logging.info('evaluating ' + measure_name) logging.info(measure) scores_one_exp[measure_name] = measure(y_true = np.asarray(true_labels), y_pred = np.asarray(prediction)) return scores_one_exp def map_labels_to_list(labels, label_list): # label_list is a python list with the labels # map labels in range(len(label_list)) to the labels in label_list # E.g. [0,0,1,1] becomes [0,0,2,2] (if 1 doesnt exist in the data) # label gets mapped to label_list[label] label_lookup = tf.constant(np.array(label_list)) return tf.gather(label_lookup, labels) def build_clf_graph(img_tensor_shape, clf_config, joint=False): graph_classifier = tf.Graph() with graph_classifier.as_default(): # image (batch size = 1) x_clf_pl = tf.placeholder(tf.float32, img_tensor_shape, name='z') # classification of the real source image and the fake target image predicted_labels, softmax, age_softmaxs = predict(x_clf_pl, clf_config) # scope = tf.get_variable_scope() # scope.reuse_variables() # map labels in range(len(label_list)) to the labels in label_list # E.g. [0,0,1,1] becomes [0,0,2,2] (if 1 doesnt exist in the data) predicted_labels_mapped = map_labels_to_list(predicted_labels, clf_config.label_list) # Add the variable initializer Op. init = tf.global_variables_initializer() # Create a savers for writing training checkpoints. saver = tf.train.Saver() # disc loss is scaled negative EM distance predictions = {'label': predicted_labels_mapped, 'diag_softmax': softmax, 'age_softmaxs': age_softmaxs} return graph_classifier, x_clf_pl, predictions, init, saver def build_gen_graph(img_tensor_shape, gan_config): # noise_shape generator = gan_config.generator graph_generator = tf.Graph() with graph_generator.as_default(): # source image (batch size = 1) xs_pl = tf.placeholder(tf.float32, img_tensor_shape, name='xs_pl') if gan_config.use_generator_input_noise: noise_shape = gan_config.generator_input_noise_shape.copy() # adjust batch size noise_shape[0] = img_tensor_shape[0] noise_in_gen_pl = tf.random_uniform(shape=noise_shape, minval=-1, maxval=1) else: noise_in_gen_pl = None # generated fake image batch xf = generator(xs=xs_pl, z_noise=noise_in_gen_pl, training=False) # Add the variable initializer Op. init = tf.global_variables_initializer() # Create a savers for writing training checkpoints. saver = tf.train.Saver() return graph_generator, xs_pl, xf, init, saver
[ "tensorflow.random_uniform", "tensorflow.train.Saver", "tensorflow.gather", "tensorflow.global_variables_initializer", "numpy.asarray", "logging.info", "utils.get_latest_model_checkpoint_path", "tensorflow.placeholder", "numpy.array", "clf_model_multitask.predict", "tensorflow.Graph", "collections.OrderedDict" ]
[((231, 287), 'utils.get_latest_model_checkpoint_path', 'utils.get_latest_model_checkpoint_path', (['logdir', 'filename'], {}), '(logdir, filename)\n', (269, 287), False, 'import utils\n'), ((292, 350), 'logging.info', 'logging.info', (["('Checkpoint path: %s' % init_checkpoint_path)"], {}), "('Checkpoint path: %s' % init_checkpoint_path)\n", (304, 350), False, 'import logging\n'), ((427, 474), 'logging.info', 'logging.info', (["('Latest step was: %d' % last_step)"], {}), "('Latest step was: %d' % last_step)\n", (439, 474), False, 'import logging\n'), ((591, 604), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (602, 604), False, 'from collections import OrderedDict\n'), ((1229, 1260), 'tensorflow.gather', 'tf.gather', (['label_lookup', 'labels'], {}), '(label_lookup, labels)\n', (1238, 1260), True, 'import tensorflow as tf\n'), ((1350, 1360), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1358, 1360), True, 'import tensorflow as tf\n'), ((2527, 2537), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2535, 2537), True, 'import tensorflow as tf\n'), ((669, 711), 'logging.info', 'logging.info', (["('evaluating ' + measure_name)"], {}), "('evaluating ' + measure_name)\n", (681, 711), False, 'import logging\n'), ((720, 741), 'logging.info', 'logging.info', (['measure'], {}), '(measure)\n', (732, 741), False, 'import logging\n'), ((1196, 1216), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (1204, 1216), True, 'import numpy as np\n'), ((1453, 1507), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'img_tensor_shape'], {'name': '"""z"""'}), "(tf.float32, img_tensor_shape, name='z')\n", (1467, 1507), True, 'import tensorflow as tf\n'), ((1635, 1664), 'clf_model_multitask.predict', 'predict', (['x_clf_pl', 'clf_config'], {}), '(x_clf_pl, clf_config)\n', (1642, 1664), False, 'from clf_model_multitask import predict\n'), ((2045, 2078), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2076, 2078), True, 'import tensorflow as tf\n'), ((2156, 2172), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2170, 2172), True, 'import tensorflow as tf\n'), ((2633, 2691), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'img_tensor_shape'], {'name': '"""xs_pl"""'}), "(tf.float32, img_tensor_shape, name='xs_pl')\n", (2647, 2691), True, 'import tensorflow as tf\n'), ((3203, 3236), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3234, 3236), True, 'import tensorflow as tf\n'), ((3314, 3330), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3328, 3330), True, 'import tensorflow as tf\n'), ((2925, 2982), 'tensorflow.random_uniform', 'tf.random_uniform', ([], {'shape': 'noise_shape', 'minval': '(-1)', 'maxval': '(1)'}), '(shape=noise_shape, minval=-1, maxval=1)\n', (2942, 2982), True, 'import tensorflow as tf\n'), ((798, 821), 'numpy.asarray', 'np.asarray', (['true_labels'], {}), '(true_labels)\n', (808, 821), True, 'import numpy as np\n'), ((832, 854), 'numpy.asarray', 'np.asarray', (['prediction'], {}), '(prediction)\n', (842, 854), True, 'import numpy as np\n')]
from simulations import simulation, simulation2 from pandas import DataFrame from pandas import Series from pandas import concat from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Bidirectional from keras.layers import LSTM from math import sqrt from matplotlib import pyplot import numpy # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag + 1)] columns.append(df) df = concat(columns, axis=1) df.fillna(0, inplace=True) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = [x for x in X] + [value] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size, nb_epoch): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(Bidirectional(LSTM(50, activation='relu'), batch_input_shape=(batch_size, X.shape[1], X.shape[2]))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False) model.reset_states() print('Epoch {}'.format(i)) return model # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(1, 1, len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0, 0] # load dataset sim = simulation2.Simulator(50) sim.simulate() s = simulation.Simulation([[1, 1]], # to_plot, to_report [[0.1, [0.2, 0.1], [15, 2], [30, 2]]], # interarrivals, demand, replenishment_lead, expiry [[70.0, 110.0, 5.0, 30.0, 100.0, 100.0]], # purchase price, sales price, handling, backorder, overflow, recycle [[50, 35]]) # storage, reorder point s.simulate() #raw_values = sim.stats.inventory_vector raw_values = s.w.products[0].stats.storage raw_values = raw_values[0::30] print(len(raw_values)) diff_values = difference(raw_values, 1) # transform data to be supervised learning supervised = timeseries_to_supervised(diff_values, 1) supervised_values = supervised.values # split data into train and test-sets train, test = supervised_values[0:-30], supervised_values[-30:] # transform the scale of the data scaler, train_scaled, test_scaled = scale(train, test) # fit the model lstm_model = fit_lstm(train_scaled, 1, 10) # forecast the entire training dataset to build up state for forecasting train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1) #lstm_model.predict(train_reshaped, batch_size=1) # walk-forward validation on the test data predictions = list() for i in range(len(test_scaled)): # make one-step forecast X, y = test_scaled[i, 0:-1], test_scaled[i, -1] yhat = forecast_lstm(lstm_model, 1, X) # invert scaling yhat = invert_scale(scaler, X, yhat) # invert differencing yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i) # store forecast predictions.append(yhat) expected = raw_values[len(train) + i + 1] print('Time=%d, Predicted=%f, Expected=%f' % (i + 1, yhat, expected)) # report performance mse = mean_squared_error(raw_values[-30:-2], predictions[1:-1]) rmse = sqrt(mse) ape = [] real_values = raw_values[-30:-2] raw_value = raw_values[-30:-2] predictions = predictions[1:-1] for i in range(len(predictions)): value = abs(predictions[i]-real_values[i])/real_values[i] if value < 1: ape.append(value) mape = sum(ape)/len(ape)*100 print('Test RMSE: %.3f' % rmse) print('Test MSE: %.3f' % mse) print('Mean absolute percentage error: ', round(mape,2), "%") # plot pyplot.plot(raw_values[-30:-2], label='simulation') pyplot.plot(predictions[1:-1], label='predicted by LSTM neural network') pyplot.xlabel('time') pyplot.ylabel('inventory level') pyplot.grid() pyplot.legend() pyplot.show()
[ "pandas.DataFrame", "matplotlib.pyplot.show", "math.sqrt", "matplotlib.pyplot.plot", "pandas.concat", "keras.models.Sequential", "matplotlib.pyplot.legend", "sklearn.preprocessing.MinMaxScaler", "keras.layers.LSTM", "simulations.simulation.Simulation", "keras.layers.Dense", "numpy.array", "pandas.Series", "simulations.simulation2.Simulator", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "sklearn.metrics.mean_squared_error" ]
[((2515, 2540), 'simulations.simulation2.Simulator', 'simulation2.Simulator', (['(50)'], {}), '(50)\n', (2536, 2540), False, 'from simulations import simulation, simulation2\n'), ((2561, 2690), 'simulations.simulation.Simulation', 'simulation.Simulation', (['[[1, 1]]', '[[0.1, [0.2, 0.1], [15, 2], [30, 2]]]', '[[70.0, 110.0, 5.0, 30.0, 100.0, 100.0]]', '[[50, 35]]'], {}), '([[1, 1]], [[0.1, [0.2, 0.1], [15, 2], [30, 2]]], [[\n 70.0, 110.0, 5.0, 30.0, 100.0, 100.0]], [[50, 35]])\n', (2582, 2690), False, 'from simulations import simulation, simulation2\n'), ((4294, 4351), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['raw_values[-30:-2]', 'predictions[1:-1]'], {}), '(raw_values[-30:-2], predictions[1:-1])\n', (4312, 4351), False, 'from sklearn.metrics import mean_squared_error\n'), ((4359, 4368), 'math.sqrt', 'sqrt', (['mse'], {}), '(mse)\n', (4363, 4368), False, 'from math import sqrt\n'), ((4778, 4829), 'matplotlib.pyplot.plot', 'pyplot.plot', (['raw_values[-30:-2]'], {'label': '"""simulation"""'}), "(raw_values[-30:-2], label='simulation')\n", (4789, 4829), False, 'from matplotlib import pyplot\n'), ((4830, 4902), 'matplotlib.pyplot.plot', 'pyplot.plot', (['predictions[1:-1]'], {'label': '"""predicted by LSTM neural network"""'}), "(predictions[1:-1], label='predicted by LSTM neural network')\n", (4841, 4902), False, 'from matplotlib import pyplot\n'), ((4903, 4924), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""time"""'], {}), "('time')\n", (4916, 4924), False, 'from matplotlib import pyplot\n'), ((4925, 4957), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""inventory level"""'], {}), "('inventory level')\n", (4938, 4957), False, 'from matplotlib import pyplot\n'), ((4958, 4971), 'matplotlib.pyplot.grid', 'pyplot.grid', ([], {}), '()\n', (4969, 4971), False, 'from matplotlib import pyplot\n'), ((4972, 4987), 'matplotlib.pyplot.legend', 'pyplot.legend', ([], {}), '()\n', (4985, 4987), False, 'from matplotlib import pyplot\n'), ((4988, 5001), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (4999, 5001), False, 'from matplotlib import pyplot\n'), ((507, 522), 'pandas.DataFrame', 'DataFrame', (['data'], {}), '(data)\n', (516, 522), False, 'from pandas import DataFrame\n'), ((610, 633), 'pandas.concat', 'concat', (['columns'], {'axis': '(1)'}), '(columns, axis=1)\n', (616, 633), False, 'from pandas import concat\n'), ((899, 911), 'pandas.Series', 'Series', (['diff'], {}), '(diff)\n', (905, 911), False, 'from pandas import Series\n'), ((1124, 1159), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(-1, 1)'}), '(feature_range=(-1, 1))\n', (1136, 1159), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((1605, 1625), 'numpy.array', 'numpy.array', (['new_row'], {}), '(new_row)\n', (1616, 1625), False, 'import numpy\n'), ((1922, 1934), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1932, 1934), False, 'from keras.models import Sequential\n'), ((2063, 2071), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (2068, 2071), False, 'from keras.layers import Dense, Bidirectional\n'), ((1963, 1990), 'keras.layers.LSTM', 'LSTM', (['(50)'], {'activation': '"""relu"""'}), "(50, activation='relu')\n", (1967, 1990), False, 'from keras.layers import LSTM\n')]
# MIT License # # Copyright (c) 2017 <NAME> and (c) 2020 Google LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import time from collections import deque import gym import numpy as np import torch from third_party.a2c_ppo_acktr import algo, utils from third_party.a2c_ppo_acktr.arguments import get_args from third_party.a2c_ppo_acktr.envs import make_vec_envs from third_party.a2c_ppo_acktr.model import Policy from third_party.a2c_ppo_acktr.storage import RolloutStorage from my_pybullet_envs import utils as gan_utils import logging import sys from my_pybullet_envs.laikago import mirror_obs, mirror_action sys.path.append("third_party") def main(): args, extra_dict = get_args() # this file for normal ppo training, sim-gan(gail-dyn) training in main_gail_dyn_ppo.py assert not args.gail torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) if args.cuda and torch.cuda.is_available() and args.cuda_deterministic: torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True log_dir = os.path.expanduser(args.log_dir) eval_log_dir = log_dir + "_eval" utils.cleanup_log_dir(log_dir) utils.cleanup_log_dir(eval_log_dir) torch.set_num_threads(1) device = torch.device("cuda:0" if args.cuda else "cpu") Tensor = torch.cuda.FloatTensor if args.cuda else torch.FloatTensor envs = make_vec_envs(args.env_name, args.seed, args.num_processes, args.gamma, args.log_dir, device, False, render=False, **extra_dict) if args.warm_start == '': actor_critic = Policy( envs.observation_space.shape, envs.action_space, base_kwargs={'recurrent': args.recurrent_policy, 'hidden_size': args.hidden_size}) actor_critic.to(device) else: # TODO: assume no state normalize ob_rms if args.cuda: actor_critic, _ = torch.load(args.warm_start) else: actor_critic, _ = torch.load(args.warm_start, map_location='cpu') actor_critic.reset_critic(envs.observation_space.shape) if args.warm_start_logstd is not None: actor_critic.reset_variance(envs.action_space, args.warm_start_logstd) actor_critic.to(device) dummy = gym.make(args.env_name, render=False, **extra_dict) save_path = os.path.join(args.save_dir, args.algo) print("SAVE PATH:") print(save_path) try: os.makedirs(save_path) except FileExistsError: print("warning: path existed") # input("warning: path existed") except OSError: exit() pathname = os.path.join(save_path, "source_test.py") text_file = open(pathname, "w+") text_file.write(dummy.getSourceCode()) text_file.close() print("source file stored") # input("source file stored press enter") dummy.reset() # dummy.close() log_formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) file_handler = logging.FileHandler("{0}/{1}.log".format(save_path, "console_output")) file_handler.setFormatter(log_formatter) root_logger.addHandler(file_handler) console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(log_formatter) root_logger.addHandler(console_handler) if args.algo == 'a2c': agent = algo.A2C_ACKTR( actor_critic, args.value_loss_coef, args.entropy_coef, lr=args.lr, eps=args.eps, alpha=args.alpha, max_grad_norm=args.max_grad_norm) elif args.algo == 'ppo': if args.loss_sym > 0.0: agent = algo.PPO( actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch, args.value_loss_coef, args.entropy_coef, symmetry_coef=args.loss_sym, lr=args.lr, eps=args.eps, max_grad_norm=args.max_grad_norm, mirror_act=mirror_action, mirror_obs=mirror_obs ) else: agent = algo.PPO( actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch, args.value_loss_coef, args.entropy_coef, lr=args.lr, eps=args.eps, max_grad_norm=args.max_grad_norm) elif args.algo == 'acktr': agent = algo.A2C_ACKTR( actor_critic, args.value_loss_coef, args.entropy_coef, acktr=True) else: agent = None feat_select_func = None obs = envs.reset() obs_feat = gan_utils.replace_obs_with_feat(obs, args.cuda, feat_select_func, return_tensor=True) feat_len = obs_feat.size(1) # TODO: multi-dim obs broken if args.dup_sym: buffer_np = args.num_processes * 2 else: buffer_np = args.num_processes rollouts = RolloutStorage(args.num_steps, buffer_np, envs.observation_space.shape, envs.action_space, actor_critic.recurrent_hidden_state_size, feat_len) rollouts.to(device) if args.dup_sym: obs_s = gan_utils.mirror_obsact_batch(obs, args.cuda, mirror_obs, augment=True) obs_feat_s = obs_feat.repeat(2, 1) rollouts.obs[0].copy_(obs_s) rollouts.obs_feat[0].copy_(obs_feat_s) else: rollouts.obs[0].copy_(obs) rollouts.obs_feat[0].copy_(obs_feat) episode_rewards = deque(maxlen=10000) total_num_episodes = 0 j = 0 max_num_episodes = args.num_episodes if args.num_episodes else np.infty start = time.time() num_updates = int( args.num_env_steps) // args.num_steps // args.num_processes while j < num_updates and total_num_episodes < max_num_episodes: if args.use_linear_lr_decay: # decrease learning rate linearly utils.update_linear_schedule( agent.optimizer, j, num_updates, agent.optimizer.lr if args.algo == "acktr" else args.lr) for step in range(args.num_steps): # print(args.num_steps) 300*8 # Sample actions with torch.no_grad(): value, action, action_log_prob, recurrent_hidden_states = actor_critic.act( rollouts.obs[step, :args.num_processes, :], rollouts.recurrent_hidden_states[step, :args.num_processes, :], rollouts.masks[step, :args.num_processes, :]) # Obser reward and next obs obs, reward, done, infos = envs.step(action) obs_feat = gan_utils.replace_obs_with_feat(obs, args.cuda, feat_select_func, return_tensor=True) for info in infos: if 'episode' in info.keys(): episode_rewards.append(info['episode']['r']) # If done then clean the history of observations. masks = Tensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = Tensor( [[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]) if args.dup_sym: obs_s = gan_utils.mirror_obsact_batch(obs, args.cuda, mirror_obs, augment=True) action_s = gan_utils.mirror_obsact_batch(action, args.cuda, mirror_action, augment=True) recurrent_hidden_states_s = recurrent_hidden_states.repeat(2, 1) action_log_prob_s = action_log_prob.repeat(2, 1) value_s = value.repeat(2, 1) reward_s = reward.repeat(2, 1) masks_s = masks.repeat(2, 1) bad_masks_s = bad_masks.repeat(2, 1) obs_feat_s = obs_feat.repeat(2, 1) rollouts.insert(obs_s, recurrent_hidden_states_s, action_s, action_log_prob_s, value_s, reward_s, masks_s, bad_masks_s, obs_feat_s) else: rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks, bad_masks, obs_feat) with torch.no_grad(): next_value = actor_critic.get_value( rollouts.obs[-1], rollouts.recurrent_hidden_states[-1], rollouts.masks[-1]).detach() rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.gae_lambda, not args.no_proper_time_limits) value_loss, action_loss, dist_entropy = agent.update(rollouts) rollouts.after_update() # save for every interval-th episode or for the last epoch if (j % args.save_interval == 0 or j == num_updates - 1) and args.save_dir != "": torch.save([ actor_critic, getattr(utils.get_vec_normalize(envs), 'ob_rms', None) ], os.path.join(save_path, args.env_name + ".pt")) torch.save([ actor_critic, getattr(utils.get_vec_normalize(envs), 'ob_rms', None) ], os.path.join(save_path, args.env_name + "_" + str(j) + ".pt")) if j % args.log_interval == 0 and len(episode_rewards) > 1: total_num_steps = (j + 1) * args.num_processes * args.num_steps end = time.time() root_logger.info( ("Updates {}, num timesteps {}, FPS {} \n Last {} training episodes:" + " mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, " + "dist en {}, l_pi {}, l_vf {} \n").format( j, total_num_steps, int(total_num_steps / (end - start)), len(episode_rewards), np.mean(episode_rewards), np.median(episode_rewards), np.min(episode_rewards), np.max(episode_rewards), dist_entropy, value_loss, action_loss ) ) # actor_critic.dist.logstd._bias, total_num_episodes += len(episode_rewards) episode_rewards.clear() j += 1 if __name__ == "__main__": main()
[ "logging.Formatter", "torch.set_num_threads", "numpy.mean", "third_party.a2c_ppo_acktr.algo.PPO", "torch.device", "third_party.a2c_ppo_acktr.algo.A2C_ACKTR", "third_party.a2c_ppo_acktr.storage.RolloutStorage", "torch.no_grad", "os.path.join", "third_party.a2c_ppo_acktr.utils.get_vec_normalize", "collections.deque", "sys.path.append", "third_party.a2c_ppo_acktr.model.Policy", "torch.load", "third_party.a2c_ppo_acktr.utils.cleanup_log_dir", "numpy.max", "third_party.a2c_ppo_acktr.utils.update_linear_schedule", "numpy.median", "torch.manual_seed", "logging.StreamHandler", "numpy.min", "my_pybullet_envs.utils.replace_obs_with_feat", "torch.cuda.is_available", "third_party.a2c_ppo_acktr.arguments.get_args", "my_pybullet_envs.utils.mirror_obsact_batch", "third_party.a2c_ppo_acktr.envs.make_vec_envs", "gym.make", "os.makedirs", "time.time", "torch.cuda.manual_seed_all", "os.path.expanduser", "logging.getLogger" ]
[((1657, 1687), 'sys.path.append', 'sys.path.append', (['"""third_party"""'], {}), "('third_party')\n", (1672, 1687), False, 'import sys\n'), ((1725, 1735), 'third_party.a2c_ppo_acktr.arguments.get_args', 'get_args', ([], {}), '()\n', (1733, 1735), False, 'from third_party.a2c_ppo_acktr.arguments import get_args\n'), ((1859, 1887), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1876, 1887), False, 'import torch\n'), ((1892, 1929), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (1918, 1929), False, 'import torch\n'), ((2119, 2151), 'os.path.expanduser', 'os.path.expanduser', (['args.log_dir'], {}), '(args.log_dir)\n', (2137, 2151), False, 'import os\n'), ((2193, 2223), 'third_party.a2c_ppo_acktr.utils.cleanup_log_dir', 'utils.cleanup_log_dir', (['log_dir'], {}), '(log_dir)\n', (2214, 2223), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((2228, 2263), 'third_party.a2c_ppo_acktr.utils.cleanup_log_dir', 'utils.cleanup_log_dir', (['eval_log_dir'], {}), '(eval_log_dir)\n', (2249, 2263), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((2269, 2293), 'torch.set_num_threads', 'torch.set_num_threads', (['(1)'], {}), '(1)\n', (2290, 2293), False, 'import torch\n'), ((2307, 2353), 'torch.device', 'torch.device', (["('cuda:0' if args.cuda else 'cpu')"], {}), "('cuda:0' if args.cuda else 'cpu')\n", (2319, 2353), False, 'import torch\n'), ((2438, 2570), 'third_party.a2c_ppo_acktr.envs.make_vec_envs', 'make_vec_envs', (['args.env_name', 'args.seed', 'args.num_processes', 'args.gamma', 'args.log_dir', 'device', '(False)'], {'render': '(False)'}), '(args.env_name, args.seed, args.num_processes, args.gamma,\n args.log_dir, device, False, render=False, **extra_dict)\n', (2451, 2570), False, 'from third_party.a2c_ppo_acktr.envs import make_vec_envs\n'), ((3325, 3376), 'gym.make', 'gym.make', (['args.env_name'], {'render': '(False)'}), '(args.env_name, render=False, **extra_dict)\n', (3333, 3376), False, 'import gym\n'), ((3393, 3431), 'os.path.join', 'os.path.join', (['args.save_dir', 'args.algo'], {}), '(args.save_dir, args.algo)\n', (3405, 3431), False, 'import os\n'), ((3675, 3716), 'os.path.join', 'os.path.join', (['save_path', '"""source_test.py"""'], {}), "(save_path, 'source_test.py')\n", (3687, 3716), False, 'import os\n'), ((3957, 4050), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s"""'], {}), "(\n '%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s')\n", (3974, 4050), False, 'import logging\n'), ((4064, 4083), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (4081, 4083), False, 'import logging\n'), ((4323, 4356), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (4344, 4356), False, 'import logging\n'), ((5867, 5956), 'my_pybullet_envs.utils.replace_obs_with_feat', 'gan_utils.replace_obs_with_feat', (['obs', 'args.cuda', 'feat_select_func'], {'return_tensor': '(True)'}), '(obs, args.cuda, feat_select_func,\n return_tensor=True)\n', (5898, 5956), True, 'from my_pybullet_envs import utils as gan_utils\n'), ((6144, 6290), 'third_party.a2c_ppo_acktr.storage.RolloutStorage', 'RolloutStorage', (['args.num_steps', 'buffer_np', 'envs.observation_space.shape', 'envs.action_space', 'actor_critic.recurrent_hidden_state_size', 'feat_len'], {}), '(args.num_steps, buffer_np, envs.observation_space.shape,\n envs.action_space, actor_critic.recurrent_hidden_state_size, feat_len)\n', (6158, 6290), False, 'from third_party.a2c_ppo_acktr.storage import RolloutStorage\n'), ((6751, 6770), 'collections.deque', 'deque', ([], {'maxlen': '(10000)'}), '(maxlen=10000)\n', (6756, 6770), False, 'from collections import deque\n'), ((6897, 6908), 'time.time', 'time.time', ([], {}), '()\n', (6906, 6908), False, 'import time\n'), ((1952, 1977), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1975, 1977), False, 'import torch\n'), ((2646, 2789), 'third_party.a2c_ppo_acktr.model.Policy', 'Policy', (['envs.observation_space.shape', 'envs.action_space'], {'base_kwargs': "{'recurrent': args.recurrent_policy, 'hidden_size': args.hidden_size}"}), "(envs.observation_space.shape, envs.action_space, base_kwargs={\n 'recurrent': args.recurrent_policy, 'hidden_size': args.hidden_size})\n", (2652, 2789), False, 'from third_party.a2c_ppo_acktr.model import Policy\n'), ((3494, 3516), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (3505, 3516), False, 'import os\n'), ((4493, 4645), 'third_party.a2c_ppo_acktr.algo.A2C_ACKTR', 'algo.A2C_ACKTR', (['actor_critic', 'args.value_loss_coef', 'args.entropy_coef'], {'lr': 'args.lr', 'eps': 'args.eps', 'alpha': 'args.alpha', 'max_grad_norm': 'args.max_grad_norm'}), '(actor_critic, args.value_loss_coef, args.entropy_coef, lr=\n args.lr, eps=args.eps, alpha=args.alpha, max_grad_norm=args.max_grad_norm)\n', (4507, 4645), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((6439, 6510), 'my_pybullet_envs.utils.mirror_obsact_batch', 'gan_utils.mirror_obsact_batch', (['obs', 'args.cuda', 'mirror_obs'], {'augment': '(True)'}), '(obs, args.cuda, mirror_obs, augment=True)\n', (6468, 6510), True, 'from my_pybullet_envs import utils as gan_utils\n'), ((2965, 2992), 'torch.load', 'torch.load', (['args.warm_start'], {}), '(args.warm_start)\n', (2975, 2992), False, 'import torch\n'), ((3037, 3084), 'torch.load', 'torch.load', (['args.warm_start'], {'map_location': '"""cpu"""'}), "(args.warm_start, map_location='cpu')\n", (3047, 3084), False, 'import torch\n'), ((7166, 7289), 'third_party.a2c_ppo_acktr.utils.update_linear_schedule', 'utils.update_linear_schedule', (['agent.optimizer', 'j', 'num_updates', "(agent.optimizer.lr if args.algo == 'acktr' else args.lr)"], {}), "(agent.optimizer, j, num_updates, agent.\n optimizer.lr if args.algo == 'acktr' else args.lr)\n", (7194, 7289), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((7894, 7983), 'my_pybullet_envs.utils.replace_obs_with_feat', 'gan_utils.replace_obs_with_feat', (['obs', 'args.cuda', 'feat_select_func'], {'return_tensor': '(True)'}), '(obs, args.cuda, feat_select_func,\n return_tensor=True)\n', (7925, 7983), True, 'from my_pybullet_envs import utils as gan_utils\n'), ((9406, 9421), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (9419, 9421), False, 'import torch\n'), ((10563, 10574), 'time.time', 'time.time', ([], {}), '()\n', (10572, 10574), False, 'import time\n'), ((4807, 5075), 'third_party.a2c_ppo_acktr.algo.PPO', 'algo.PPO', (['actor_critic', 'args.clip_param', 'args.ppo_epoch', 'args.num_mini_batch', 'args.value_loss_coef', 'args.entropy_coef'], {'symmetry_coef': 'args.loss_sym', 'lr': 'args.lr', 'eps': 'args.eps', 'max_grad_norm': 'args.max_grad_norm', 'mirror_act': 'mirror_action', 'mirror_obs': 'mirror_obs'}), '(actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch,\n args.value_loss_coef, args.entropy_coef, symmetry_coef=args.loss_sym,\n lr=args.lr, eps=args.eps, max_grad_norm=args.max_grad_norm, mirror_act=\n mirror_action, mirror_obs=mirror_obs)\n', (4815, 5075), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((5303, 5488), 'third_party.a2c_ppo_acktr.algo.PPO', 'algo.PPO', (['actor_critic', 'args.clip_param', 'args.ppo_epoch', 'args.num_mini_batch', 'args.value_loss_coef', 'args.entropy_coef'], {'lr': 'args.lr', 'eps': 'args.eps', 'max_grad_norm': 'args.max_grad_norm'}), '(actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch,\n args.value_loss_coef, args.entropy_coef, lr=args.lr, eps=args.eps,\n max_grad_norm=args.max_grad_norm)\n', (5311, 5488), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((5673, 5759), 'third_party.a2c_ppo_acktr.algo.A2C_ACKTR', 'algo.A2C_ACKTR', (['actor_critic', 'args.value_loss_coef', 'args.entropy_coef'], {'acktr': '(True)'}), '(actor_critic, args.value_loss_coef, args.entropy_coef, acktr\n =True)\n', (5687, 5759), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((7450, 7465), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7463, 7465), False, 'import torch\n'), ((8468, 8539), 'my_pybullet_envs.utils.mirror_obsact_batch', 'gan_utils.mirror_obsact_batch', (['obs', 'args.cuda', 'mirror_obs'], {'augment': '(True)'}), '(obs, args.cuda, mirror_obs, augment=True)\n', (8497, 8539), True, 'from my_pybullet_envs import utils as gan_utils\n'), ((8567, 8644), 'my_pybullet_envs.utils.mirror_obsact_batch', 'gan_utils.mirror_obsact_batch', (['action', 'args.cuda', 'mirror_action'], {'augment': '(True)'}), '(action, args.cuda, mirror_action, augment=True)\n', (8596, 8644), True, 'from my_pybullet_envs import utils as gan_utils\n'), ((10147, 10193), 'os.path.join', 'os.path.join', (['save_path', "(args.env_name + '.pt')"], {}), "(save_path, args.env_name + '.pt')\n", (10159, 10193), False, 'import os\n'), ((10980, 11004), 'numpy.mean', 'np.mean', (['episode_rewards'], {}), '(episode_rewards)\n', (10987, 11004), True, 'import numpy as np\n'), ((11026, 11052), 'numpy.median', 'np.median', (['episode_rewards'], {}), '(episode_rewards)\n', (11035, 11052), True, 'import numpy as np\n'), ((11054, 11077), 'numpy.min', 'np.min', (['episode_rewards'], {}), '(episode_rewards)\n', (11060, 11077), True, 'import numpy as np\n'), ((11099, 11122), 'numpy.max', 'np.max', (['episode_rewards'], {}), '(episode_rewards)\n', (11105, 11122), True, 'import numpy as np\n'), ((10085, 10114), 'third_party.a2c_ppo_acktr.utils.get_vec_normalize', 'utils.get_vec_normalize', (['envs'], {}), '(envs)\n', (10108, 10114), False, 'from third_party.a2c_ppo_acktr import algo, utils\n'), ((10275, 10304), 'third_party.a2c_ppo_acktr.utils.get_vec_normalize', 'utils.get_vec_normalize', (['envs'], {}), '(envs)\n', (10298, 10304), False, 'from third_party.a2c_ppo_acktr import algo, utils\n')]
import os import logging logging.basicConfig(level=logging.INFO) import numpy as np import matplotlib.pyplot as plt from stompy.grid import paver from stompy.spatial.linestring_utils import upsample_linearring,resample_linearring from stompy.grid import paver from stompy.spatial import field,constrained_delaunay,wkb2shp ## from stompy.grid import exact_delaunay from stompy.grid import live_dt from stompy.grid import paver reload(exact_delaunay) reload(live_dt) reload(paver) ## def test_basic(): # Define a polygon boundary=np.array([[0,0],[1000,0],[1000,1000],[0,1000]]) island =np.array([[200,200],[600,200],[200,600]]) rings=[boundary,island] # And the scale: scale=field.ConstantField(50) p=paver.Paving(rings=rings,density=scale) p.pave_all() ## def test_basic_apollo(): # Define a polygon boundary=np.array([[0,0],[1000,0],[1000,1000],[0,1000]]) island =np.array([[200,200],[600,200],[200,600]]) rings=[boundary,island] # And the scale: scale=field.PyApolloniusField() scale.insert([50,50],20) p=paver.Paving(rings=rings,density=scale) p.pave_all() return p ## # A circle - r = 100, C=628, n_points = 628 def test_circle(): r = 100 thetas = np.linspace(0,2*np.pi,200)[:-1] circle = np.zeros((len(thetas),2),np.float64) circle[:,0] = r*np.cos(thetas) circle[:,1] = r*np.sin(thetas) class CircleDensityField(field.Field): # horizontally varying, from 5 to 20 def value(self,X): X = np.array(X) return 5 + 15 * (X[...,0] + 100) / 200.0 density = CircleDensityField() p=paver.Paving(circle,density,label='circle') p.pave_all() def test_long_channel(): l = 2000 w = 50 long_channel = np.array([[0,0], [l,0], [l,w], [0,w]], np.float64 ) density = field.ConstantField( 19.245 ) p=paver.Paving(long_channel,density) p.pave_all() def test_long_channel_rigid(): l = 2000 w = 50 long_channel = np.array([[0,0], [l,0], [l,w], [0,w]], np.float64 ) density = field.ConstantField( 19.245 ) p=paver.Paving(long_channel,density,initial_node_status=paver.Paving.RIGID) p.pave_all() def test_narrow_channel(): l = 1000 w = 50 long_channel = np.array([[0,0], [l,0.375*w], [l,0.625*w], [0,w]], np.float64 ) density = field.ConstantField( w/np.sin(60*np.pi/180.) / 4 ) p=paver.Paving(long_channel,density) p.pave_all() def test_small_island(): l = 100 square = np.array([[0,0], [l,0], [l,l], [0,l]], np.float64 ) r=10 theta = np.linspace(0,2*np.pi,30) circle = r/np.sqrt(2) * np.swapaxes( np.array([np.cos(theta), np.sin(theta)]), 0,1) island1 = circle + np.array([45,45]) island2 = circle + np.array([65,65]) island3 = circle + np.array([20,80]) rings = [square,island1,island2,island3] density = field.ConstantField( 10 ) p=paver.Paving(rings,density) p.pave_all() def test_tight_peanut(): r = 100 thetas = np.linspace(0,2*np.pi,300) peanut = np.zeros( (len(thetas),2), np.float64) x = r*np.cos(thetas) y = r*np.sin(thetas) * (0.9/10000 * x*x + 0.05) peanut[:,0] = x peanut[:,1] = y density = field.ConstantField( 6.0 ) p=paver.Paving(peanut,density,label='tight_peanut') p.pave_all() def test_tight_with_island(): # build a peanut first: r = 100 thetas = np.linspace(0,2*np.pi,250) peanut = np.zeros( (len(thetas),2), np.float64) x = r*np.cos(thetas) y = r*np.sin(thetas) * (0.9/10000 * x*x + 0.05) peanut[:,0] = x peanut[:,1] = y # put two holes into it thetas = np.linspace(0,2*np.pi,30) hole1 = np.zeros( (len(thetas),2), np.float64) hole1[:,0] = 10*np.cos(thetas) - 75 hole1[:,1] = 10*np.sin(thetas) hole2 = np.zeros( (len(thetas),2), np.float64) hole2[:,0] = 20*np.cos(thetas) + 75 hole2[:,1] = 20*np.sin(thetas) rings = [peanut,hole1,hole2] density = field.ConstantField( 6.0 ) p=paver.Paving(rings,density,label='tight_with_island') p.pave_all() def test_peninsula(): r = 100 thetas = np.linspace(0,2*np.pi,1000) pen = np.zeros( (len(thetas),2), np.float64) pen[:,0] = r*(0.2+ np.abs(np.sin(2*thetas))**0.2)*np.cos(thetas) pen[:,1] = r*(0.2+ np.abs(np.sin(2*thetas))**0.2)*np.sin(thetas) density = field.ConstantField( 10.0 ) pen2 = upsample_linearring(pen,density) p=paver.Paving(pen2,density,label='peninsula') p.pave_all() def test_peanut(): # like a figure 8, or a peanut r = 100 thetas = np.linspace(0,2*np.pi,1000) peanut = np.zeros( (len(thetas),2), np.float64) peanut[:,0] = r*(0.5+0.3*np.cos(2*thetas))*np.cos(thetas) peanut[:,1] = r*(0.5+0.3*np.cos(2*thetas))*np.sin(thetas) min_pnt = peanut.min(axis=0) max_pnt = peanut.max(axis=0) d_data = np.array([ [min_pnt[0],min_pnt[1], 1.5], [min_pnt[0],max_pnt[1], 1.5], [max_pnt[0],min_pnt[1], 8], [max_pnt[0],max_pnt[1], 8]]) density = field.XYZField(X=d_data[:,:2],F=d_data[:,2]) p=paver.Paving(peanut,density) p.pave_all() def test_cul_de_sac(): r=5 theta = np.linspace(-np.pi/2,np.pi/2,20) cap = r * np.swapaxes( np.array([np.cos(theta), np.sin(theta)]), 0,1) box = np.array([ [-3*r,r], [-4*r,-r] ]) ring = np.concatenate((box,cap)) density = field.ConstantField(2*r/(np.sqrt(3)/2)) p=paver.Paving(ring,density,label='cul_de_sac') p.pave_all() def test_bow(): x = np.linspace(-100,100,50) # with /1000 it seems to do okay # with /500 it still looks okay y = x**2 / 250.0 bow = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1) height = np.array([0,20]) ring = np.concatenate( (bow+height,bow[::-1]-height) ) density = field.ConstantField(2) p=paver.Paving(ring,density,label='bow') p.pave_all() def test_ngon(nsides=7): # hexagon works ok, though a bit of perturbation # septagon starts to show expansion issues, but never pronounced # octagon - works fine. theta = np.linspace(0,2*np.pi,nsides+1)[:-1] r=100 x = r*np.cos(theta) y = r*np.sin(theta) poly = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1) density = field.ConstantField(6) p=paver.Paving(poly,density,label='ngon%02d'%nsides) p.pave_all() def test_expansion(): # 40: too close to a 120deg angle - always bisect on centerline # 30: rows alternate with wall and bisect seams # 35: starts to diverge, but recovers. # 37: too close to 120. d = 36 pnts = np.array([[0.,0.], [100,-d], [200,0], [200,100], [100,100+d], [0,100]]) density = field.ConstantField(6) p=paver.Paving([pnts],density,label='expansion') p.pave_all() def test_embedded_channel(): # trying out degenerate internal lines - the trick may be mostly in # how to specify them. # make a large rectangle, with a sinuous channel in the middle L = 500.0 W = 300.0 rect = np.array([[0,0], [L,0], [L,W], [0,W]]) x = np.linspace(0.1*L,0.9*L,50) y = W/2 + 0.1*W*np.cos(4*np.pi*x/L) shore = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1) density = field.ConstantField(10) # this will probably get moved into Paver itself. # Note closed_ring=0 ! shore = resample_linearring(shore,density,closed_ring=0) south_shore = shore - np.array([0,0.1*W]) north_shore = shore + np.array([0,0.1*W]) p=paver.Paving([rect],density,degenerates=[north_shore,south_shore]) p.pave_all() # dumbarton... def test_dumbarton(): shp=os.path.join( os.path.dirname(__file__), 'data','dumbarton.shp') features=wkb2shp.shp2geom(shp) geom = features['geom'][0] dumbarton = np.array(geom.exterior) density = field.ConstantField(250.0) p=paver.Paving(dumbarton, density,label='dumbarton') p.pave_all() # #def log_spiral_channel(): # t = linspace(1.0,12*pi,200) # a = 1 ; b = 0.1 # x = a*exp(b*t)*cos(t) # y = a*exp(b*t)*sin(t) # # each 2*pi, the radius gets bigger by exp(2pi*b) # x2 = a*exp(b*t-b*pi)*cos(t) # y2 = a*exp(b*t-b*pi)*sin(t) # cla(); plot(x,y,'b',x2,y2,'r') ## # This is going to require a fair bit of porting -- # hmm - maybe better just to have a sinusoid channel, then perturb it # and put some islands in there. having a wide range of scales looks # nice but isn't going to be a great test. def gen_sine_sine(): t = np.linspace(1.0,12*np.pi,400) x1 = 100*t y1 = 200*np.sin(t) # each 2*pi, the radius gets bigger by exp(2pi*b) x2 = x1 y2 = y1+50 # now perturb both sides, but keep amplitude < 20 y1 = y1 + 20*np.sin(10*t) y2 = y2 + 10*np.cos(5*t) x = np.concatenate( (x1,x2[::-1]) ) y = np.concatenate( (y1,y2[::-1]) ) shore = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1) rings = [shore] # and make some islands: north_island_shore = 0.4*y1 + 0.6*y2 south_island_shore = 0.6*y1 + 0.4*y2 Nislands = 20 # islands same length as space between islands, so divide # island shorelines into 2*Nislands blocks for i in range(Nislands): i_start = int( (2*i+0.5)*len(t)/(2*Nislands) ) i_stop = int( (2*i+1.5)*len(t)/(2*Nislands) ) north_y = north_island_shore[i_start:i_stop] south_y = south_island_shore[i_start:i_stop] north_x = x1[i_start:i_stop] south_x = x2[i_start:i_stop] x = np.concatenate( (north_x,south_x[::-1]) ) y = np.concatenate( (north_y,south_y[::-1]) ) island = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1) rings.append(island) density = field.ConstantField(25.0) min_density = field.ConstantField(2.0) p = paver.Paving(rings,density=density,min_density=min_density) print("Smoothing to nominal 1.0m") # mostly just to make sure that long segments are # sampled well relative to the local feature scale. p.smooth() print("Adjusting other densities to local feature size") p.telescope_rate=1.1 p.adjust_density_by_apollonius() return p def test_sine_sine(): p=gen_sine_sine() p.pave_all() if 0: # debugging the issue with sine_sine() # fails deep inside here, step 512 # lots of crap coming from this one, too. # at some point, dt_incident_constraints reports only 1 constraint, # but it should have two, which happens because of a bad slide. # Tricky to guard against - # Several avenues to fix this: # 1. Make the resample_neighbors code (which I'm pretty sure is the culprit) # more cautious and willing to accept a local maximum in distance instead # of shoving a node far away. This is a nice but incomplete solution. # 2. The resample code, which I think is responsible for adding the new node # that screwed it all up, should check for self-intersections # this is probably the appropriate thing to do. # test_sine_sine() p=gen_sine_sine() p.pave_all(n_steps=512) ## p.verbose=3 p.pave_all(n_steps=513) ## zoom=plt.axis() plt.figure(1).clf() p.plot() p.plot_boundary() plt.axis('equal') plt.axis(zoom) ## # Step 510 really takes the end off an island # yep. p.pave_all(n_steps=512) ## # node is 3626 # to_remove: an edge with nodes 5374, 3626 # pnt2edges: [3626, 5915] # part of the problem is that there is some sliding around # at the beginning of step 512 that really wreaks havoc on # what was already a dicey node. p.plot_nodes([3626,5374])
[ "stompy.spatial.field.PyApolloniusField", "stompy.spatial.linestring_utils.upsample_linearring", "logging.basicConfig", "stompy.grid.paver.Paving", "os.path.dirname", "stompy.spatial.field.ConstantField", "matplotlib.pyplot.axis", "stompy.spatial.field.XYZField", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.linspace", "numpy.cos", "stompy.spatial.linestring_utils.resample_linearring", "numpy.sqrt", "numpy.concatenate", "stompy.spatial.wkb2shp.shp2geom" ]
[((25, 64), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (44, 64), False, 'import logging\n'), ((541, 595), 'numpy.array', 'np.array', (['[[0, 0], [1000, 0], [1000, 1000], [0, 1000]]'], {}), '([[0, 0], [1000, 0], [1000, 1000], [0, 1000]])\n', (549, 595), True, 'import numpy as np\n'), ((602, 648), 'numpy.array', 'np.array', (['[[200, 200], [600, 200], [200, 600]]'], {}), '([[200, 200], [600, 200], [200, 600]])\n', (610, 648), True, 'import numpy as np\n'), ((705, 728), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(50)'], {}), '(50)\n', (724, 728), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((736, 776), 'stompy.grid.paver.Paving', 'paver.Paving', ([], {'rings': 'rings', 'density': 'scale'}), '(rings=rings, density=scale)\n', (748, 776), False, 'from stompy.grid import paver\n'), ((860, 914), 'numpy.array', 'np.array', (['[[0, 0], [1000, 0], [1000, 1000], [0, 1000]]'], {}), '([[0, 0], [1000, 0], [1000, 1000], [0, 1000]])\n', (868, 914), True, 'import numpy as np\n'), ((921, 967), 'numpy.array', 'np.array', (['[[200, 200], [600, 200], [200, 600]]'], {}), '([[200, 200], [600, 200], [200, 600]])\n', (929, 967), True, 'import numpy as np\n'), ((1024, 1049), 'stompy.spatial.field.PyApolloniusField', 'field.PyApolloniusField', ([], {}), '()\n', (1047, 1049), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((1086, 1126), 'stompy.grid.paver.Paving', 'paver.Paving', ([], {'rings': 'rings', 'density': 'scale'}), '(rings=rings, density=scale)\n', (1098, 1126), False, 'from stompy.grid import paver\n'), ((1645, 1690), 'stompy.grid.paver.Paving', 'paver.Paving', (['circle', 'density'], {'label': '"""circle"""'}), "(circle, density, label='circle')\n", (1657, 1690), False, 'from stompy.grid import paver\n'), ((1775, 1829), 'numpy.array', 'np.array', (['[[0, 0], [l, 0], [l, w], [0, w]]', 'np.float64'], {}), '([[0, 0], [l, 0], [l, w], [0, w]], np.float64)\n', (1783, 1829), True, 'import numpy as np\n'), ((1929, 1956), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(19.245)'], {}), '(19.245)\n', (1948, 1956), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((1965, 2000), 'stompy.grid.paver.Paving', 'paver.Paving', (['long_channel', 'density'], {}), '(long_channel, density)\n', (1977, 2000), False, 'from stompy.grid import paver\n'), ((2092, 2146), 'numpy.array', 'np.array', (['[[0, 0], [l, 0], [l, w], [0, w]]', 'np.float64'], {}), '([[0, 0], [l, 0], [l, w], [0, w]], np.float64)\n', (2100, 2146), True, 'import numpy as np\n'), ((2246, 2273), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(19.245)'], {}), '(19.245)\n', (2265, 2273), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((2282, 2357), 'stompy.grid.paver.Paving', 'paver.Paving', (['long_channel', 'density'], {'initial_node_status': 'paver.Paving.RIGID'}), '(long_channel, density, initial_node_status=paver.Paving.RIGID)\n', (2294, 2357), False, 'from stompy.grid import paver\n'), ((2446, 2516), 'numpy.array', 'np.array', (['[[0, 0], [l, 0.375 * w], [l, 0.625 * w], [0, w]]', 'np.float64'], {}), '([[0, 0], [l, 0.375 * w], [l, 0.625 * w], [0, w]], np.float64)\n', (2454, 2516), True, 'import numpy as np\n'), ((2669, 2704), 'stompy.grid.paver.Paving', 'paver.Paving', (['long_channel', 'density'], {}), '(long_channel, density)\n', (2681, 2704), False, 'from stompy.grid import paver\n'), ((2776, 2830), 'numpy.array', 'np.array', (['[[0, 0], [l, 0], [l, l], [0, l]]', 'np.float64'], {}), '([[0, 0], [l, 0], [l, l], [0, l]], np.float64)\n', (2784, 2830), True, 'import numpy as np\n'), ((2919, 2948), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(30)'], {}), '(0, 2 * np.pi, 30)\n', (2930, 2948), True, 'import numpy as np\n'), ((3216, 3239), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(10)'], {}), '(10)\n', (3235, 3239), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((3248, 3276), 'stompy.grid.paver.Paving', 'paver.Paving', (['rings', 'density'], {}), '(rings, density)\n', (3260, 3276), False, 'from stompy.grid import paver\n'), ((3344, 3374), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(300)'], {}), '(0, 2 * np.pi, 300)\n', (3355, 3374), True, 'import numpy as np\n'), ((3554, 3578), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(6.0)'], {}), '(6.0)\n', (3573, 3578), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((3587, 3638), 'stompy.grid.paver.Paving', 'paver.Paving', (['peanut', 'density'], {'label': '"""tight_peanut"""'}), "(peanut, density, label='tight_peanut')\n", (3599, 3638), False, 'from stompy.grid import paver\n'), ((3738, 3768), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(250)'], {}), '(0, 2 * np.pi, 250)\n', (3749, 3768), True, 'import numpy as np\n'), ((3976, 4005), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(30)'], {}), '(0, 2 * np.pi, 30)\n', (3987, 4005), True, 'import numpy as np\n'), ((4305, 4329), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(6.0)'], {}), '(6.0)\n', (4324, 4329), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((4338, 4393), 'stompy.grid.paver.Paving', 'paver.Paving', (['rings', 'density'], {'label': '"""tight_with_island"""'}), "(rings, density, label='tight_with_island')\n", (4350, 4393), False, 'from stompy.grid import paver\n'), ((4457, 4488), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1000)'], {}), '(0, 2 * np.pi, 1000)\n', (4468, 4488), True, 'import numpy as np\n'), ((4688, 4713), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(10.0)'], {}), '(10.0)\n', (4707, 4713), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((4727, 4760), 'stompy.spatial.linestring_utils.upsample_linearring', 'upsample_linearring', (['pen', 'density'], {}), '(pen, density)\n', (4746, 4760), False, 'from stompy.spatial.linestring_utils import upsample_linearring, resample_linearring\n'), ((4771, 4817), 'stompy.grid.paver.Paving', 'paver.Paving', (['pen2', 'density'], {'label': '"""peninsula"""'}), "(pen2, density, label='peninsula')\n", (4783, 4817), False, 'from stompy.grid import paver\n'), ((4914, 4945), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1000)'], {}), '(0, 2 * np.pi, 1000)\n', (4925, 4945), True, 'import numpy as np\n'), ((5199, 5334), 'numpy.array', 'np.array', (['[[min_pnt[0], min_pnt[1], 1.5], [min_pnt[0], max_pnt[1], 1.5], [max_pnt[0],\n min_pnt[1], 8], [max_pnt[0], max_pnt[1], 8]]'], {}), '([[min_pnt[0], min_pnt[1], 1.5], [min_pnt[0], max_pnt[1], 1.5], [\n max_pnt[0], min_pnt[1], 8], [max_pnt[0], max_pnt[1], 8]])\n', (5207, 5334), True, 'import numpy as np\n'), ((5413, 5460), 'stompy.spatial.field.XYZField', 'field.XYZField', ([], {'X': 'd_data[:, :2]', 'F': 'd_data[:, 2]'}), '(X=d_data[:, :2], F=d_data[:, 2])\n', (5427, 5460), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((5465, 5494), 'stompy.grid.paver.Paving', 'paver.Paving', (['peanut', 'density'], {}), '(peanut, density)\n', (5477, 5494), False, 'from stompy.grid import paver\n'), ((5555, 5593), 'numpy.linspace', 'np.linspace', (['(-np.pi / 2)', '(np.pi / 2)', '(20)'], {}), '(-np.pi / 2, np.pi / 2, 20)\n', (5566, 5593), True, 'import numpy as np\n'), ((5672, 5709), 'numpy.array', 'np.array', (['[[-3 * r, r], [-4 * r, -r]]'], {}), '([[-3 * r, r], [-4 * r, -r]])\n', (5680, 5709), True, 'import numpy as np\n'), ((5738, 5764), 'numpy.concatenate', 'np.concatenate', (['(box, cap)'], {}), '((box, cap))\n', (5752, 5764), True, 'import numpy as np\n'), ((5825, 5872), 'stompy.grid.paver.Paving', 'paver.Paving', (['ring', 'density'], {'label': '"""cul_de_sac"""'}), "(ring, density, label='cul_de_sac')\n", (5837, 5872), False, 'from stompy.grid import paver\n'), ((5913, 5939), 'numpy.linspace', 'np.linspace', (['(-100)', '(100)', '(50)'], {}), '(-100, 100, 50)\n', (5924, 5939), True, 'import numpy as np\n'), ((6114, 6131), 'numpy.array', 'np.array', (['[0, 20]'], {}), '([0, 20])\n', (6122, 6131), True, 'import numpy as np\n'), ((6142, 6192), 'numpy.concatenate', 'np.concatenate', (['(bow + height, bow[::-1] - height)'], {}), '((bow + height, bow[::-1] - height))\n', (6156, 6192), True, 'import numpy as np\n'), ((6204, 6226), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(2)'], {}), '(2)\n', (6223, 6226), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((6233, 6273), 'stompy.grid.paver.Paving', 'paver.Paving', (['ring', 'density'], {'label': '"""bow"""'}), "(ring, density, label='bow')\n", (6245, 6273), False, 'from stompy.grid import paver\n'), ((6672, 6694), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(6)'], {}), '(6)\n', (6691, 6694), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((6701, 6755), 'stompy.grid.paver.Paving', 'paver.Paving', (['poly', 'density'], {'label': "('ngon%02d' % nsides)"}), "(poly, density, label='ngon%02d' % nsides)\n", (6713, 6755), False, 'from stompy.grid import paver\n'), ((7005, 7091), 'numpy.array', 'np.array', (['[[0.0, 0.0], [100, -d], [200, 0], [200, 100], [100, 100 + d], [0, 100]]'], {}), '([[0.0, 0.0], [100, -d], [200, 0], [200, 100], [100, 100 + d], [0, \n 100]])\n', (7013, 7091), True, 'import numpy as np\n'), ((7197, 7219), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(6)'], {}), '(6)\n', (7216, 7219), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((7226, 7274), 'stompy.grid.paver.Paving', 'paver.Paving', (['[pnts]', 'density'], {'label': '"""expansion"""'}), "([pnts], density, label='expansion')\n", (7238, 7274), False, 'from stompy.grid import paver\n'), ((7530, 7572), 'numpy.array', 'np.array', (['[[0, 0], [L, 0], [L, W], [0, W]]'], {}), '([[0, 0], [L, 0], [L, W], [0, W]])\n', (7538, 7572), True, 'import numpy as np\n'), ((7632, 7665), 'numpy.linspace', 'np.linspace', (['(0.1 * L)', '(0.9 * L)', '(50)'], {}), '(0.1 * L, 0.9 * L, 50)\n', (7643, 7665), True, 'import numpy as np\n'), ((7790, 7813), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(10)'], {}), '(10)\n', (7809, 7813), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((7912, 7962), 'stompy.spatial.linestring_utils.resample_linearring', 'resample_linearring', (['shore', 'density'], {'closed_ring': '(0)'}), '(shore, density, closed_ring=0)\n', (7931, 7962), False, 'from stompy.spatial.linestring_utils import upsample_linearring, resample_linearring\n'), ((8061, 8130), 'stompy.grid.paver.Paving', 'paver.Paving', (['[rect]', 'density'], {'degenerates': '[north_shore, south_shore]'}), '([rect], density, degenerates=[north_shore, south_shore])\n', (8073, 8130), False, 'from stompy.grid import paver\n'), ((8269, 8290), 'stompy.spatial.wkb2shp.shp2geom', 'wkb2shp.shp2geom', (['shp'], {}), '(shp)\n', (8285, 8290), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((8338, 8361), 'numpy.array', 'np.array', (['geom.exterior'], {}), '(geom.exterior)\n', (8346, 8361), True, 'import numpy as np\n'), ((8376, 8402), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(250.0)'], {}), '(250.0)\n', (8395, 8402), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((8409, 8460), 'stompy.grid.paver.Paving', 'paver.Paving', (['dumbarton', 'density'], {'label': '"""dumbarton"""'}), "(dumbarton, density, label='dumbarton')\n", (8421, 8460), False, 'from stompy.grid import paver\n'), ((9018, 9051), 'numpy.linspace', 'np.linspace', (['(1.0)', '(12 * np.pi)', '(400)'], {}), '(1.0, 12 * np.pi, 400)\n', (9029, 9051), True, 'import numpy as np\n'), ((9293, 9323), 'numpy.concatenate', 'np.concatenate', (['(x1, x2[::-1])'], {}), '((x1, x2[::-1]))\n', (9307, 9323), True, 'import numpy as np\n'), ((9333, 9363), 'numpy.concatenate', 'np.concatenate', (['(y1, y2[::-1])'], {}), '((y1, y2[::-1]))\n', (9347, 9363), True, 'import numpy as np\n'), ((10264, 10289), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(25.0)'], {}), '(25.0)\n', (10283, 10289), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((10308, 10332), 'stompy.spatial.field.ConstantField', 'field.ConstantField', (['(2.0)'], {}), '(2.0)\n', (10327, 10332), False, 'from stompy.spatial import field, constrained_delaunay, wkb2shp\n'), ((10341, 10402), 'stompy.grid.paver.Paving', 'paver.Paving', (['rings'], {'density': 'density', 'min_density': 'min_density'}), '(rings, density=density, min_density=min_density)\n', (10353, 10402), False, 'from stompy.grid import paver\n'), ((11719, 11729), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (11727, 11729), True, 'import matplotlib.pyplot as plt\n'), ((11794, 11811), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (11802, 11811), True, 'import matplotlib.pyplot as plt\n'), ((11816, 11830), 'matplotlib.pyplot.axis', 'plt.axis', (['zoom'], {}), '(zoom)\n', (11824, 11830), True, 'import matplotlib.pyplot as plt\n'), ((1256, 1286), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(200)'], {}), '(0, 2 * np.pi, 200)\n', (1267, 1286), True, 'import numpy as np\n'), ((1358, 1372), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (1364, 1372), True, 'import numpy as np\n'), ((1393, 1407), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (1399, 1407), True, 'import numpy as np\n'), ((3056, 3074), 'numpy.array', 'np.array', (['[45, 45]'], {}), '([45, 45])\n', (3064, 3074), True, 'import numpy as np\n'), ((3097, 3115), 'numpy.array', 'np.array', (['[65, 65]'], {}), '([65, 65])\n', (3105, 3115), True, 'import numpy as np\n'), ((3138, 3156), 'numpy.array', 'np.array', (['[20, 80]'], {}), '([20, 80])\n', (3146, 3156), True, 'import numpy as np\n'), ((3433, 3447), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (3439, 3447), True, 'import numpy as np\n'), ((3827, 3841), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (3833, 3841), True, 'import numpy as np\n'), ((4114, 4128), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (4120, 4128), True, 'import numpy as np\n'), ((4241, 4255), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (4247, 4255), True, 'import numpy as np\n'), ((4589, 4603), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (4595, 4603), True, 'import numpy as np\n'), ((4658, 4672), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (4664, 4672), True, 'import numpy as np\n'), ((5042, 5056), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (5048, 5056), True, 'import numpy as np\n'), ((5104, 5118), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (5110, 5118), True, 'import numpy as np\n'), ((6055, 6095), 'numpy.concatenate', 'np.concatenate', (['(x[None, :], y[None, :])'], {}), '((x[None, :], y[None, :]))\n', (6069, 6095), True, 'import numpy as np\n'), ((6477, 6514), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(nsides + 1)'], {}), '(0, 2 * np.pi, nsides + 1)\n', (6488, 6514), True, 'import numpy as np\n'), ((6540, 6553), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (6546, 6553), True, 'import numpy as np\n'), ((6564, 6577), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (6570, 6577), True, 'import numpy as np\n'), ((6607, 6647), 'numpy.concatenate', 'np.concatenate', (['(x[None, :], y[None, :])'], {}), '((x[None, :], y[None, :]))\n', (6621, 6647), True, 'import numpy as np\n'), ((7725, 7765), 'numpy.concatenate', 'np.concatenate', (['(x[None, :], y[None, :])'], {}), '((x[None, :], y[None, :]))\n', (7739, 7765), True, 'import numpy as np\n'), ((7988, 8010), 'numpy.array', 'np.array', (['[0, 0.1 * W]'], {}), '([0, 0.1 * W])\n', (7996, 8010), True, 'import numpy as np\n'), ((8034, 8056), 'numpy.array', 'np.array', (['[0, 0.1 * W]'], {}), '([0, 0.1 * W])\n', (8042, 8056), True, 'import numpy as np\n'), ((8205, 8230), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (8220, 8230), False, 'import os\n'), ((9076, 9085), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (9082, 9085), True, 'import numpy as np\n'), ((9391, 9431), 'numpy.concatenate', 'np.concatenate', (['(x[None, :], y[None, :])'], {}), '((x[None, :], y[None, :]))\n', (9405, 9431), True, 'import numpy as np\n'), ((10047, 10087), 'numpy.concatenate', 'np.concatenate', (['(north_x, south_x[::-1])'], {}), '((north_x, south_x[::-1]))\n', (10061, 10087), True, 'import numpy as np\n'), ((10101, 10141), 'numpy.concatenate', 'np.concatenate', (['(north_y, south_y[::-1])'], {}), '((north_y, south_y[::-1]))\n', (10115, 10141), True, 'import numpy as np\n'), ((1539, 1550), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (1547, 1550), True, 'import numpy as np\n'), ((2960, 2970), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2967, 2970), True, 'import numpy as np\n'), ((3458, 3472), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (3464, 3472), True, 'import numpy as np\n'), ((3852, 3866), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (3858, 3866), True, 'import numpy as np\n'), ((4074, 4088), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (4080, 4088), True, 'import numpy as np\n'), ((4201, 4215), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (4207, 4215), True, 'import numpy as np\n'), ((7680, 7705), 'numpy.cos', 'np.cos', (['(4 * np.pi * x / L)'], {}), '(4 * np.pi * x / L)\n', (7686, 7705), True, 'import numpy as np\n'), ((9238, 9252), 'numpy.sin', 'np.sin', (['(10 * t)'], {}), '(10 * t)\n', (9244, 9252), True, 'import numpy as np\n'), ((9268, 9281), 'numpy.cos', 'np.cos', (['(5 * t)'], {}), '(5 * t)\n', (9274, 9281), True, 'import numpy as np\n'), ((10173, 10213), 'numpy.concatenate', 'np.concatenate', (['(x[None, :], y[None, :])'], {}), '((x[None, :], y[None, :]))\n', (10187, 10213), True, 'import numpy as np\n'), ((11735, 11748), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (11745, 11748), True, 'import matplotlib.pyplot as plt\n'), ((2635, 2661), 'numpy.sin', 'np.sin', (['(60 * np.pi / 180.0)'], {}), '(60 * np.pi / 180.0)\n', (2641, 2661), True, 'import numpy as np\n'), ((5804, 5814), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (5811, 5814), True, 'import numpy as np\n'), ((2996, 3009), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (3002, 3009), True, 'import numpy as np\n'), ((3011, 3024), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (3017, 3024), True, 'import numpy as np\n'), ((5024, 5042), 'numpy.cos', 'np.cos', (['(2 * thetas)'], {}), '(2 * thetas)\n', (5030, 5042), True, 'import numpy as np\n'), ((5086, 5104), 'numpy.cos', 'np.cos', (['(2 * thetas)'], {}), '(2 * thetas)\n', (5092, 5104), True, 'import numpy as np\n'), ((5625, 5638), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (5631, 5638), True, 'import numpy as np\n'), ((5640, 5653), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (5646, 5653), True, 'import numpy as np\n'), ((4565, 4583), 'numpy.sin', 'np.sin', (['(2 * thetas)'], {}), '(2 * thetas)\n', (4571, 4583), True, 'import numpy as np\n'), ((4634, 4652), 'numpy.sin', 'np.sin', (['(2 * thetas)'], {}), '(2 * thetas)\n', (4640, 4652), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: <NAME> from collections import defaultdict import os import re import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import numpy as np from pandas import DataFrame import scipy.stats import seaborn as sns import lda_metrics N_PROPS_LIST = ['None', 0.001, 0.01, 0.1] N_FREQS_LIST = [1, 2, 4, 8] N_TOPICS_LIST = [5, 10, 20, 40, 80, 160, 320] sns.set(style='whitegrid', context='poster') to_print_name = { 'reusl-train': 'REUSL 25k', 'reusl-short': 'REUSL 2.5k', 'nyt-train': 'NYT 25k', 'nyt-short': 'NYT 2.5k', } def validate_fname( fname, extension, file_prefix=None, process=None, n_topics=None, n_props_list=N_PROPS_LIST, n_freqs_list=N_FREQS_LIST, n_topics_list=N_TOPICS_LIST): if not fname.startswith(file_prefix + '-'): return None is_seq_file = (extension == 'txt') is_exact_duplicate = (len(fname.split('-')) == 6 - int(is_seq_file)) if is_exact_duplicate: if is_seq_file: fname_regex = r'[a-z\-]+(?P<proc_id>\d+)-(?P<prop>[\d.]+|None)-(?P<freq>\d+).' + extension else: fname_regex = r'[a-z\-]+(?P<proc_id>\d+)-(?P<prop>[\d.]+|None)-(?P<freq>\d+)-(?P<topic_ct>\d+).' + extension else: if is_seq_file: fname_regex = r'[a-z\-]+(?P<proc_id>\d+)-(?P<prop>[\d.]+|None).' + extension else: fname_regex = r'[a-z\-]+(?P<proc_id>\d+)-(?P<prop>[\d.]+|None)-(?P<topic_ct>\d+).' + extension match_obj = re.match(fname_regex, fname) if match_obj is None: return None ret_dict = {} proc_id = int(match_obj.group('proc_id')) if process is not None and proc_id != process: return None else: ret_dict['proc_id'] = proc_id prop = match_obj.group('prop') if prop != 'None': prop = float(prop) if prop not in n_props_list: return None else: ret_dict['prop'] = prop if not is_seq_file: topic_ct = int(match_obj.group('topic_ct')) if not (n_topics is None) and topic_ct != n_topics: return None elif not (topic_ct in n_topics_list): return None else: ret_dict['topic_ct'] = topic_ct if is_exact_duplicate: freq = int(match_obj.group('freq')) if freq not in n_freqs_list: return None else: ret_dict['freq'] = freq return ret_dict def make_entity_from_fields(n_topics, val, label, fields): return { 'proportion': fields['prop'], 'c': fields.get('freq', 0), 'K': n_topics, 'process_id': fields['proc_id'], 'value': val, 'label': label } def print_significances(entities): val_collection = defaultdict(list) for entity in entities: key = "{} {} {} {}".format( entity['label'], entity['proportion'], entity['k'], entity['c']) val_collection[key].append(entity['value']) for key in sorted(val_collection.keys()): print(key, np.mean(val_collection[key]), 1.96*scipy.stats.sem(val_collection[key])) def plot_cmap_from_entity_list(entities, save_file, vmax=1.0, value_name="value"): plt.figure(figsize=(25, 15)) if not entities: raise ValueError("No entities in list") dataf = DataFrame([e for e in entities]) g = sns.FacetGrid( dataf, col='k', row='label') cbar_ax = g.fig.add_axes([.92, .3, .02, .4]) g.map_dataframe(facet_heatmap, cbar_ax=cbar_ax, vmax=vmax) g.set_titles(col_template="{col_name} topics", row_template="{row_name}") g.fig.subplots_adjust(right=.9) plt.savefig(save_file) def plot_pplot_from_entity_list(entities, save_file, value_name="value"): plt.figure(figsize=(25, 15)) if not entities: raise ValueError("No entities in list") dataf = DataFrame([e for e in entities]) g = sns.factorplot( x='c', y='value', hue='proportion', col='k', row='label', capsize=.2, markers='.', scale=0.5, data=dataf) g.set_titles(col_template="{col_name} topics", row_template="{row_name}") g.set_axis_labels("# copies", value_name) plt.savefig(save_file) def print_data_table(entities): dataf = DataFrame([e for e in entities]) data = dataf.pivot_table(index='proportion', columns='c', values='value') print(data) def facet_heatmap(data, color, vmax=1.0, **kws): data = data.pivot_table(index='proportion', columns='c', values='value') sns.heatmap(data, cmap='Blues', annot=True, fmt=".2f", vmin=0, vmax=vmax, **kws)
[ "pandas.DataFrame", "seaborn.heatmap", "seaborn.factorplot", "re.match", "collections.defaultdict", "matplotlib.pyplot.figure", "matplotlib.use", "numpy.mean", "seaborn.set", "seaborn.FacetGrid", "matplotlib.pyplot.savefig" ]
[((138, 159), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (152, 159), False, 'import matplotlib\n'), ((426, 470), 'seaborn.set', 'sns.set', ([], {'style': '"""whitegrid"""', 'context': '"""poster"""'}), "(style='whitegrid', context='poster')\n", (433, 470), True, 'import seaborn as sns\n'), ((1573, 1601), 're.match', 're.match', (['fname_regex', 'fname'], {}), '(fname_regex, fname)\n', (1581, 1601), False, 'import re\n'), ((2827, 2844), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2838, 2844), False, 'from collections import defaultdict\n'), ((3317, 3345), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(25, 15)'}), '(figsize=(25, 15))\n', (3327, 3345), True, 'from matplotlib import pyplot as plt\n'), ((3427, 3459), 'pandas.DataFrame', 'DataFrame', (['[e for e in entities]'], {}), '([e for e in entities])\n', (3436, 3459), False, 'from pandas import DataFrame\n'), ((3468, 3510), 'seaborn.FacetGrid', 'sns.FacetGrid', (['dataf'], {'col': '"""k"""', 'row': '"""label"""'}), "(dataf, col='k', row='label')\n", (3481, 3510), True, 'import seaborn as sns\n'), ((3778, 3800), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_file'], {}), '(save_file)\n', (3789, 3800), True, 'from matplotlib import pyplot as plt\n'), ((3881, 3909), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(25, 15)'}), '(figsize=(25, 15))\n', (3891, 3909), True, 'from matplotlib import pyplot as plt\n'), ((3991, 4023), 'pandas.DataFrame', 'DataFrame', (['[e for e in entities]'], {}), '([e for e in entities])\n', (4000, 4023), False, 'from pandas import DataFrame\n'), ((4032, 4157), 'seaborn.factorplot', 'sns.factorplot', ([], {'x': '"""c"""', 'y': '"""value"""', 'hue': '"""proportion"""', 'col': '"""k"""', 'row': '"""label"""', 'capsize': '(0.2)', 'markers': '"""."""', 'scale': '(0.5)', 'data': 'dataf'}), "(x='c', y='value', hue='proportion', col='k', row='label',\n capsize=0.2, markers='.', scale=0.5, data=dataf)\n", (4046, 4157), True, 'import seaborn as sns\n'), ((4390, 4412), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_file'], {}), '(save_file)\n', (4401, 4412), True, 'from matplotlib import pyplot as plt\n'), ((4459, 4491), 'pandas.DataFrame', 'DataFrame', (['[e for e in entities]'], {}), '([e for e in entities])\n', (4468, 4491), False, 'from pandas import DataFrame\n'), ((4718, 4803), 'seaborn.heatmap', 'sns.heatmap', (['data'], {'cmap': '"""Blues"""', 'annot': '(True)', 'fmt': '""".2f"""', 'vmin': '(0)', 'vmax': 'vmax'}), "(data, cmap='Blues', annot=True, fmt='.2f', vmin=0, vmax=vmax, **kws\n )\n", (4729, 4803), True, 'import seaborn as sns\n'), ((3155, 3183), 'numpy.mean', 'np.mean', (['val_collection[key]'], {}), '(val_collection[key])\n', (3162, 3183), True, 'import numpy as np\n')]
from flask import Flask from flask import request, jsonify import numpy as np import torch from flask_cors import CORS, cross_origin import socket import argparse import random import json import re from tokenize_code import tokenize_code from serverHelpers import notebook_to_frontend from gensim.models.doc2vec import Doc2Vec from model import BertModel, Generator from RetrievalDB_doc2vec import RetrievalDB_doc2vec, inferenceRNN_doc2vec from RetrievalDB_CodeBERT import RetrievalDB_CodeBERT, inferenceRNN_CodeBERT # Get the path to the data PATH_TO_SLICED_SCRIPTS = '../../yizhi/EDA/kaggle-dataset/sliced-notebooks-full-new' PATH_TO_NOTEBOOKS = '../../yizhi/EDA/kaggle-dataset/notebooks-full' PATH_TO_CODEBERT_MODELS = '../../yizhi/EDA/EDA-prediction/' # retrievalDB_doc2vec = RetrievalDB_doc2vec() retrievalDB_CodeBERT = RetrievalDB_CodeBERT(PATH_TO_CODEBERT_MODELS) app = Flask(__name__) CORS(app) def randomSublists(someList): resultList = [] #result container index = 0 #start at the start of the list length = len(someList) #and cache the length for performance on large lists while (index < length): randomNumber = np.random.randint(1, length-index+1) #get a number between 1 and the remaining choices resultList.append(someList[index:index+randomNumber]) #append a list starting at index with randomNumber length to it index = index + randomNumber #increment index by amount of list used return resultList #return the list of randomized sublists def create_app(): @app.route("/", methods=["GET"]) def index(): return "SmartEDA API Server" @app.route("/generate_answer", methods=["GET","POST"]) def generate_answer(): #nl_input = request.form['input'] files_to_read = ['2.ipynb', '11111.ipynb', '8570777.ipynb', '9582250.ipynb', '10269993.ipynb'] store = [] for file_name in files_to_read: file = open("examples/" + file_name) line = file.read() file.close() store.append(line) json_parsed = [] for file_content in store: json_parsed.append(json.loads(file_content)) all_ops = [] all_op_type = [] all_if_demon = [] for notebook in json_parsed: cells = notebook['cells'] operations = [] one_op_type = [] one_if_demon = [] for a_cell in cells: # a code cell if a_cell['cell_type'] == 'code': for a_line in a_cell['source']: # a line of code replaced_line = a_line.replace('"', '@').replace("'", '@') if replaced_line[-1] != '\n': operations.append(replaced_line + '\n') else: operations.append(replaced_line) one_op_type.append(np.random.randint(4) + 1) one_if_demon.append(np.random.randint(2)) all_ops.append(operations) all_op_type.append(one_op_type) all_if_demon.append(one_if_demon) all_keywords = [] for j in range(len(all_if_demon)): one_notebook = all_if_demon[j] a_keyword = [] length = len(one_notebook) i = 0 while i < length: if one_notebook[i] == 0: i += 1 # skip else: start = i end = start while i < length: if one_notebook[i] == 1: # no worries, just check if it is the end if i == length - 1: # 1 all the way to the end. end = i else: # 0, time to stop i = i - 1 end = i break i = i + 1 try: a_keyword.append(random.choice(re.sub("[^a-zA-Z]+", " ", ' '.join(all_ops[j][start:end+1])).split())) except: a_keyword.append('random_stuff') i += 1 all_keywords.append(a_keyword) response = jsonify(all_operation_types=all_op_type, all_operations=all_ops, all_if_demonstrated=all_if_demon, all_kwds=all_keywords) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route("/predict_next", methods=["POST"]) def predict_next(): if request.method == "POST": print("Inferring next sequence") # Axios request body is {notebook: stringified json} # So we need to access the notebook field and parse it with json.loads notebookSrc = json.loads(request.get_json()['notebook']) print("notebooksrc json is", notebookSrc) print("Notebook is", notebookSrc.keys()) # Do inference topNotebooks = inferenceRNN_CodeBERT(notebookSrc, retrievalDB_CodeBERT, PATH_TO_CODEBERT_MODELS) notebook_filepaths = [] # Parse the returned results for (name, seqNum ) in topNotebooks: # Name format is "competition\filename_seqNum" competition = name.split('\\')[0] filename_and_idx = name.split('\\')[1] filename = filename_and_idx.split('_')[0] idx = filename_and_idx.split('_')[1] filepath = PATH_TO_NOTEBOOKS + '/' + competition + '/' + filename + '.ipynb' notebook_filepaths.append(filepath) data_to_frontend = notebook_to_frontend(notebook_filepaths) response_formatted = jsonify(all_operation_types=data_to_frontend[0], all_operations=data_to_frontend[1], all_if_demonstrated=data_to_frontend[2], all_kwds=data_to_frontend[3]) # Prevent CORS error response_formatted.headers.add('Access-Control-Allow-Origin', '*') return response_formatted # POST /predict_next_doc2vec @app.route("/predict_next_doc2vec", methods=["POST"]) def predict_next_doc2vec(): if request.method == "POST": print("Inferring next sequence") # Axios request body is {notebook: stringified json} # So we need to access the notebook field and parse it with json.loads notebookSrc = json.loads(request.get_json()['notebook']) print("notebooksrc json is", notebookSrc) print("Notebook is", notebookSrc.keys()) # Do inference topNotebooks = inferenceRNN_doc2vec(notebookSrc, retrievalDB_doc2vec) notebook_filepaths = [] # Parse the returned results for (name, seqNum ) in topNotebooks: # Name format is "competition\filename_seqNum" competition = name.split('\\')[0] filename_and_idx = name.split('\\')[1] filename = filename_and_idx.split('_')[0] idx = filename_and_idx.split('_')[1] filepath = PATH_TO_NOTEBOOKS + '/' + competition + '/' + filename + '.ipynb' notebook_filepaths.append(filepath) print("notebooks filepaths is", notebook_filepaths) response = jsonify(topNotebooks) data_to_frontend = notebook_to_frontend(notebook_filepaths) response_formatted = jsonify(all_operation_types=data_to_frontend[0], all_operations=data_to_frontend[1], all_if_demonstrated=data_to_frontend[2], all_kwds=data_to_frontend[3]) # Prevent CORS error response_formatted.headers.add('Access-Control-Allow-Origin', '*') return response_formatted @app.route("/search_by_nl", methods=["POST"]) def search_by_nl(): if request.method == "POST": return jsonify(hello="world search by nl") return app def main(args): hostname = socket.gethostname() local_ip = socket.gethostbyname(hostname) print("hostname is", hostname) print("local ip is", local_ip) app = create_app() app.run(host=args.host, debug=True, port=args.port) if __name__ == "__main__": parser = argparse.ArgumentParser(description="") parser.add_argument( "--beam_size", default=10, type=int, help="beam size for beam search" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default=5000) args = parser.parse_args() args.device_name = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" args.device = torch.device(args.device_name) args.beam_size = (args.beam_size if torch.cuda.is_available() and not args.no_cuda else 1) main(args)
[ "argparse.ArgumentParser", "json.loads", "flask_cors.CORS", "flask.Flask", "RetrievalDB_doc2vec.inferenceRNN_doc2vec", "socket.gethostbyname", "RetrievalDB_CodeBERT.RetrievalDB_CodeBERT", "socket.gethostname", "numpy.random.randint", "flask.jsonify", "RetrievalDB_CodeBERT.inferenceRNN_CodeBERT", "torch.cuda.is_available", "torch.device", "serverHelpers.notebook_to_frontend", "flask.request.get_json" ]
[((835, 880), 'RetrievalDB_CodeBERT.RetrievalDB_CodeBERT', 'RetrievalDB_CodeBERT', (['PATH_TO_CODEBERT_MODELS'], {}), '(PATH_TO_CODEBERT_MODELS)\n', (855, 880), False, 'from RetrievalDB_CodeBERT import RetrievalDB_CodeBERT, inferenceRNN_CodeBERT\n'), ((887, 902), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (892, 902), False, 'from flask import Flask\n'), ((903, 912), 'flask_cors.CORS', 'CORS', (['app'], {}), '(app)\n', (907, 912), False, 'from flask_cors import CORS, cross_origin\n'), ((8501, 8521), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (8519, 8521), False, 'import socket\n'), ((8537, 8567), 'socket.gethostbyname', 'socket.gethostbyname', (['hostname'], {}), '(hostname)\n', (8557, 8567), False, 'import socket\n'), ((8758, 8797), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (8781, 8797), False, 'import argparse\n'), ((9270, 9300), 'torch.device', 'torch.device', (['args.device_name'], {}), '(args.device_name)\n', (9282, 9300), False, 'import torch\n'), ((1160, 1200), 'numpy.random.randint', 'np.random.randint', (['(1)', '(length - index + 1)'], {}), '(1, length - index + 1)\n', (1177, 1200), True, 'import numpy as np\n'), ((4434, 4559), 'flask.jsonify', 'jsonify', ([], {'all_operation_types': 'all_op_type', 'all_operations': 'all_ops', 'all_if_demonstrated': 'all_if_demon', 'all_kwds': 'all_keywords'}), '(all_operation_types=all_op_type, all_operations=all_ops,\n all_if_demonstrated=all_if_demon, all_kwds=all_keywords)\n', (4441, 4559), False, 'from flask import request, jsonify\n'), ((5243, 5328), 'RetrievalDB_CodeBERT.inferenceRNN_CodeBERT', 'inferenceRNN_CodeBERT', (['notebookSrc', 'retrievalDB_CodeBERT', 'PATH_TO_CODEBERT_MODELS'], {}), '(notebookSrc, retrievalDB_CodeBERT,\n PATH_TO_CODEBERT_MODELS)\n', (5264, 5328), False, 'from RetrievalDB_CodeBERT import RetrievalDB_CodeBERT, inferenceRNN_CodeBERT\n'), ((5916, 5956), 'serverHelpers.notebook_to_frontend', 'notebook_to_frontend', (['notebook_filepaths'], {}), '(notebook_filepaths)\n', (5936, 5956), False, 'from serverHelpers import notebook_to_frontend\n'), ((5991, 6156), 'flask.jsonify', 'jsonify', ([], {'all_operation_types': 'data_to_frontend[0]', 'all_operations': 'data_to_frontend[1]', 'all_if_demonstrated': 'data_to_frontend[2]', 'all_kwds': 'data_to_frontend[3]'}), '(all_operation_types=data_to_frontend[0], all_operations=\n data_to_frontend[1], all_if_demonstrated=data_to_frontend[2], all_kwds=\n data_to_frontend[3])\n', (5998, 6156), False, 'from flask import request, jsonify\n'), ((7017, 7071), 'RetrievalDB_doc2vec.inferenceRNN_doc2vec', 'inferenceRNN_doc2vec', (['notebookSrc', 'retrievalDB_doc2vec'], {}), '(notebookSrc, retrievalDB_doc2vec)\n', (7037, 7071), False, 'from RetrievalDB_doc2vec import RetrievalDB_doc2vec, inferenceRNN_doc2vec\n'), ((7719, 7740), 'flask.jsonify', 'jsonify', (['topNotebooks'], {}), '(topNotebooks)\n', (7726, 7740), False, 'from flask import request, jsonify\n'), ((7773, 7813), 'serverHelpers.notebook_to_frontend', 'notebook_to_frontend', (['notebook_filepaths'], {}), '(notebook_filepaths)\n', (7793, 7813), False, 'from serverHelpers import notebook_to_frontend\n'), ((7848, 8013), 'flask.jsonify', 'jsonify', ([], {'all_operation_types': 'data_to_frontend[0]', 'all_operations': 'data_to_frontend[1]', 'all_if_demonstrated': 'data_to_frontend[2]', 'all_kwds': 'data_to_frontend[3]'}), '(all_operation_types=data_to_frontend[0], all_operations=\n data_to_frontend[1], all_if_demonstrated=data_to_frontend[2], all_kwds=\n data_to_frontend[3])\n', (7855, 8013), False, 'from flask import request, jsonify\n'), ((8418, 8453), 'flask.jsonify', 'jsonify', ([], {'hello': '"""world search by nl"""'}), "(hello='world search by nl')\n", (8425, 8453), False, 'from flask import request, jsonify\n'), ((9194, 9219), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (9217, 9219), False, 'import torch\n'), ((9341, 9366), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (9364, 9366), False, 'import torch\n'), ((2147, 2171), 'json.loads', 'json.loads', (['file_content'], {}), '(file_content)\n', (2157, 2171), False, 'import json\n'), ((5048, 5066), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (5064, 5066), False, 'from flask import request, jsonify\n'), ((6822, 6840), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (6838, 6840), False, 'from flask import request, jsonify\n'), ((3025, 3045), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (3042, 3045), True, 'import numpy as np\n'), ((2955, 2975), 'numpy.random.randint', 'np.random.randint', (['(4)'], {}), '(4)\n', (2972, 2975), True, 'import numpy as np\n')]
import pysmurf #S = pysmurf.SmurfControl(make_logfile=False,setup=False,epics_root='test_epics',cfg_file='/usr/local/controls/Applications/smurf/pysmurf/pysmurf/cfg_files/experiment_fp28_smurfsrv04.cfg') import numpy as np import time Vrange=np.linspace(0,0.195/6.,100)+S.get_tes_bias_bipolar(3) Vrange=[Vrange,Vrange[::-1]] Vrange=np.array(Vrange).flatten() while True: for Vtes in Vrange: S.set_tes_bias_bipolar(7,Vtes) time.sleep(0.005)
[ "numpy.array", "numpy.linspace", "time.sleep" ]
[((246, 278), 'numpy.linspace', 'np.linspace', (['(0)', '(0.195 / 6.0)', '(100)'], {}), '(0, 0.195 / 6.0, 100)\n', (257, 278), True, 'import numpy as np\n'), ((336, 352), 'numpy.array', 'np.array', (['Vrange'], {}), '(Vrange)\n', (344, 352), True, 'import numpy as np\n'), ((447, 464), 'time.sleep', 'time.sleep', (['(0.005)'], {}), '(0.005)\n', (457, 464), False, 'import time\n')]
# Reference Book: Python Data Science Handbook (page:(70-77)) # Date(13 April, 2019) Day-3, Time = 3:25 PM # This section covers the use of Boolean masks to examine and manipulate values # within NumPy arrays. import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn; seaborn.set() #set plot style # use Pandas to extract rainfall inches as a NumPy array rainfall = pd.read_csv('/media/nahid/New Volume/GitHub/Numpy/Seattle2014.csv')['PRCP'].values # print(rainfall) inches = rainfall / 254 #1/10mm -> inches print(inches.shape) #(365,) # fig = plt.figure() # plt.hist(inches, 40) # print(plt.show()) # fig.savefig('rainfallHistogram.png') ''' This histogram gives us a general idea of what the data looks like: despite its reputa‐ tion, the vast majority of days in Seattle saw near zero measured rainfall in 2014. But this doesn’t do a good job of conveying some information we’d like to see: for exam‐ ple, how many rainy days were there in the year? What is the average precipitation on those rainy days? How many days were there with more than half an inch of rain? Digging into the data One approach to this would be to answer these questions by hand: loop through the data, incrementing a counter each time we see values in some desired range. For rea‐ sons discussed throughout this chapter, such an approach is very inefficient, both from the standpoint of time writing code and time computing the result. We saw in “Computation on NumPy Arrays: Universal Functions” on page 50 that NumPy’s ufuncs can be used in place of loops to do fast element-wise arithmetic operations on arrays; in the same way, we can use other ufuncs to do element-wise comparisons over arrays, and we can then manipulate the results to answer the questions we have. We’ll leave the data aside for right now, and discuss some general tools in NumPy to use masking to quickly answer these types of questions. ''' a = np.array([1,2,3,4,5]) print(a < 3) # [ True True False False False] # check this apply all of others relational operator # like print(a != 3) # [ True True False True True] # It is also possible to do an element-by-element comparison of two arrays, and to # include compound expressions: print((2 * a) == (a ** 2)) # [False True False False False] ''' As in the case of arithmetic operators, the comparison operators are implemented as ufuncs in NumPy; for example, when you write x < 3 , internally NumPy uses np.less(x, 3) . A summary of the comparison operators and their equivalent ufunc is shown here: Operator Equivalent ufunc == np.equal != np.not_equal < np.less <= np.less_equal > np.greater >= np.greater_equal ''' # Just as in the case of arithmetic ufuncs, these will work on arrays of any size and # shape. Here is a two-dimensional example: rng = np.random.RandomState(0) x = rng.randint(10, size=(3,4)) print(x) print(x < 5) ''' [[5 0 3 3] [7 9 3 5] [2 4 7 6]] [[False True True True] [False False True False] [ True True False False]] ''' print(np.count_nonzero(x < 6)) # 8 print(np.sum(x < 6)) # 8 # how many values less than 6 in each row? print(np.sum(x < 6, axis=1)) # [4 2 2] # If we’re interested in quickly checking whether any or all the values are true, we can # use(you guessed it) np.any() or np.all(): print(np.any(x < 8)) #True print(np.any(x < 0)) #False print(np.all(x < 10)) #True print(np.all(x == 6)) # False # np.all() and np.any() can be used along particular axes as well. For example: print(np.all(x < 8, axis=1)) # [ True False True] # Here all the elements in the first and third rows are less than 8, while this is not the # case for the second row. #Boolean operators print(np.sum((inches > .5) & (inches < 1))) # 29 #So we see that there are 29 days with rainfall between 0.5 and 1.0 inches. #Using the equivalence of A AND B and NOT (A OR B) print(np.sum(~((inches <= 0.5) | (inches >= 1)))) # 29 ''' The following table summarizes the bitwise Boolean operators and their equivalent ufuncs: Operator Equivalent ufunc & np.bitwise_and | np.bitwise_or ^ np.bitwise_xor ~ np.bitwise_not ''' print('Number of days without rain :',np.sum(inches == 0)) print('Number of days with rain :',np.sum(inches != 0)) print('Days with more than .5 inches :',np.sum(inches > 0.5)) ''' Number of days without rain : 215 Number of days with rain : 150 Days with more than .5 inches : 37 ''' print(x[x < 5]) # [0 3 3 3 2 4] # construct a mask of all rainy days rainy = (inches > 0) # construct a mask of all summer days (June 21st is the 172nd day) summer = (np.arange(365) - 172 < 90) & (np.arange(365) - 172 > 0) print("Median precip on rainy days in 2014 (inches):", np.median(inches[rainy])) print("Median precip on summer days in 2014 (inches): ", np.median(inches[summer])) print("Maximum precip on summer days in 2014 (inches): ", np.max(inches[summer])) print("Median precip on non-summer rainy days (inches):", np.median(inches[rainy & ~summer])) #Using the Keywords and/or Versus the Operators &/| print(bool(42), bool(0)) #True False print(bool(42 and 0)) #False print(bool(42 or 0)) #True print(bin(42)) # 0b101010 print(bin(59)) # 0b111011 print(bin(42 | 59)) # 0b111011 a = np.array([1, 0, 1, 0, 1, 0], dtype=bool) b = np.array([1, 1, 1, 0, 1, 1], dtype=bool) print(a | b) # [ True True True False True True] #ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() # print( a or b)
[ "numpy.count_nonzero", "numpy.sum", "numpy.median", "pandas.read_csv", "numpy.random.RandomState", "numpy.any", "numpy.max", "numpy.array", "numpy.arange", "seaborn.set", "numpy.all" ]
[((302, 315), 'seaborn.set', 'seaborn.set', ([], {}), '()\n', (313, 315), False, 'import seaborn\n'), ((1941, 1966), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5]'], {}), '([1, 2, 3, 4, 5])\n', (1949, 1966), True, 'import numpy as np\n'), ((2867, 2891), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (2888, 2891), True, 'import numpy as np\n'), ((5349, 5389), 'numpy.array', 'np.array', (['[1, 0, 1, 0, 1, 0]'], {'dtype': 'bool'}), '([1, 0, 1, 0, 1, 0], dtype=bool)\n', (5357, 5389), True, 'import numpy as np\n'), ((5394, 5434), 'numpy.array', 'np.array', (['[1, 1, 1, 0, 1, 1]'], {'dtype': 'bool'}), '([1, 1, 1, 0, 1, 1], dtype=bool)\n', (5402, 5434), True, 'import numpy as np\n'), ((3076, 3099), 'numpy.count_nonzero', 'np.count_nonzero', (['(x < 6)'], {}), '(x < 6)\n', (3092, 3099), True, 'import numpy as np\n'), ((3111, 3124), 'numpy.sum', 'np.sum', (['(x < 6)'], {}), '(x < 6)\n', (3117, 3124), True, 'import numpy as np\n'), ((3180, 3201), 'numpy.sum', 'np.sum', (['(x < 6)'], {'axis': '(1)'}), '(x < 6, axis=1)\n', (3186, 3201), True, 'import numpy as np\n'), ((3355, 3368), 'numpy.any', 'np.any', (['(x < 8)'], {}), '(x < 8)\n', (3361, 3368), True, 'import numpy as np\n'), ((3383, 3396), 'numpy.any', 'np.any', (['(x < 0)'], {}), '(x < 0)\n', (3389, 3396), True, 'import numpy as np\n'), ((3412, 3426), 'numpy.all', 'np.all', (['(x < 10)'], {}), '(x < 10)\n', (3418, 3426), True, 'import numpy as np\n'), ((3440, 3454), 'numpy.all', 'np.all', (['(x == 6)'], {}), '(x == 6)\n', (3446, 3454), True, 'import numpy as np\n'), ((3551, 3572), 'numpy.all', 'np.all', (['(x < 8)'], {'axis': '(1)'}), '(x < 8, axis=1)\n', (3557, 3572), True, 'import numpy as np\n'), ((3742, 3779), 'numpy.sum', 'np.sum', (['((inches > 0.5) & (inches < 1))'], {}), '((inches > 0.5) & (inches < 1))\n', (3748, 3779), True, 'import numpy as np\n'), ((3920, 3962), 'numpy.sum', 'np.sum', (['(~((inches <= 0.5) | (inches >= 1)))'], {}), '(~((inches <= 0.5) | (inches >= 1)))\n', (3926, 3962), True, 'import numpy as np\n'), ((4244, 4263), 'numpy.sum', 'np.sum', (['(inches == 0)'], {}), '(inches == 0)\n', (4250, 4263), True, 'import numpy as np\n'), ((4310, 4329), 'numpy.sum', 'np.sum', (['(inches != 0)'], {}), '(inches != 0)\n', (4316, 4329), True, 'import numpy as np\n'), ((4376, 4396), 'numpy.sum', 'np.sum', (['(inches > 0.5)'], {}), '(inches > 0.5)\n', (4382, 4396), True, 'import numpy as np\n'), ((4808, 4832), 'numpy.median', 'np.median', (['inches[rainy]'], {}), '(inches[rainy])\n', (4817, 4832), True, 'import numpy as np\n'), ((4897, 4922), 'numpy.median', 'np.median', (['inches[summer]'], {}), '(inches[summer])\n', (4906, 4922), True, 'import numpy as np\n'), ((4988, 5010), 'numpy.max', 'np.max', (['inches[summer]'], {}), '(inches[summer])\n', (4994, 5010), True, 'import numpy as np\n'), ((5076, 5110), 'numpy.median', 'np.median', (['inches[rainy & ~summer]'], {}), '(inches[rainy & ~summer])\n', (5085, 5110), True, 'import numpy as np\n'), ((401, 468), 'pandas.read_csv', 'pd.read_csv', (['"""/media/nahid/New Volume/GitHub/Numpy/Seattle2014.csv"""'], {}), "('/media/nahid/New Volume/GitHub/Numpy/Seattle2014.csv')\n", (412, 468), True, 'import pandas as pd\n'), ((4697, 4711), 'numpy.arange', 'np.arange', (['(365)'], {}), '(365)\n', (4706, 4711), True, 'import numpy as np\n'), ((4727, 4741), 'numpy.arange', 'np.arange', (['(365)'], {}), '(365)\n', (4736, 4741), True, 'import numpy as np\n')]
from numpy.testing._private.utils import assert_allclose from sysidentpy.polynomial_basis import PolynomialNarmax from sysidentpy.utils.generate_data import get_miso_data, get_siso_data import numpy as np from numpy.testing import assert_almost_equal, assert_array_equal from numpy.testing import assert_raises from sysidentpy.polynomial_basis import SimulatePolynomialNarmax def test_get_index_from_regressor_code(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) regressor_space = np.array( [ [0, 0], [1001, 0], [2001, 0], [2002, 0], [1001, 1001], [2001, 1001], [2002, 1001], [2001, 2001], [2002, 2001], [2002, 2002], ] ) index = s._get_index_from_regressor_code( regressor_code=regressor_space, model_code=model ) assert (index == np.array([1, 3, 5])).all() def test_list_output_regressor(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) y_code = s._list_output_regressor_code(model) assert (y_code == np.array([1001, 1001])).all() def test_list_input_regressor(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) x_code = s._list_input_regressor_code(model) assert (x_code == np.array([2001, 2002])).all() def test_get_lag_from_regressor_code(): s = SimulatePolynomialNarmax() list_regressor1 = np.array([2001, 2002]) list_regressor2 = np.array([1004, 1002]) max_lag1 = s._get_lag_from_regressor_code(list_regressor1) max_lag2 = s._get_lag_from_regressor_code(list_regressor2) assert max_lag1 == 2 assert max_lag2 == 4 def test_simulate(): x_train, x_valid, y_train, y_valid = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=90 ) s = SimulatePolynomialNarmax() # the model must be a numpy array model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) # theta must be a numpy array of shape (n, 1) where n is the number of regressors theta = np.array([[0.2, 0.9, 0.1]]).T yhat, results = s.simulate( X_test=x_valid, y_test=y_valid, model_code=model, theta=theta, plot=False ) assert yhat.shape == (100, 1) assert len(results) == 3 def test_simulate_theta(): x_train, x_valid, y_train, y_valid = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=90 ) s = SimulatePolynomialNarmax(estimate_parameter=True) # the model must be a numpy array model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) yhat, results = s.simulate( X_train=x_train, y_train=y_train, X_test=x_valid, y_test=y_valid, model_code=model, plot=False, ) theta = np.array([[0.2, 0.9, 0.1]]).T assert_almost_equal(s.theta, theta, decimal=1) def test_estimate_parameter(): assert_raises(TypeError, SimulatePolynomialNarmax, estimmate_parameter=1)
[ "numpy.testing.assert_raises", "numpy.testing.assert_almost_equal", "sysidentpy.polynomial_basis.SimulatePolynomialNarmax", "numpy.array", "sysidentpy.utils.generate_data.get_siso_data" ]
[((428, 454), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {}), '()\n', (452, 454), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((467, 513), 'numpy.array', 'np.array', (['[[1001, 0], [2001, 1001], [2002, 0]]'], {}), '([[1001, 0], [2001, 1001], [2002, 0]])\n', (475, 513), True, 'import numpy as np\n'), ((636, 776), 'numpy.array', 'np.array', (['[[0, 0], [1001, 0], [2001, 0], [2002, 0], [1001, 1001], [2001, 1001], [2002,\n 1001], [2001, 2001], [2002, 2001], [2002, 2002]]'], {}), '([[0, 0], [1001, 0], [2001, 0], [2002, 0], [1001, 1001], [2001, \n 1001], [2002, 1001], [2001, 2001], [2002, 2001], [2002, 2002]])\n', (644, 776), True, 'import numpy as np\n'), ((1119, 1145), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {}), '()\n', (1143, 1145), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((1158, 1204), 'numpy.array', 'np.array', (['[[1001, 0], [2001, 1001], [2002, 0]]'], {}), '([[1001, 0], [2001, 1001], [2002, 0]])\n', (1166, 1204), True, 'import numpy as np\n'), ((1450, 1476), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {}), '()\n', (1474, 1476), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((1489, 1535), 'numpy.array', 'np.array', (['[[1001, 0], [2001, 1001], [2002, 0]]'], {}), '([[1001, 0], [2001, 1001], [2002, 0]])\n', (1497, 1535), True, 'import numpy as np\n'), ((1787, 1813), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {}), '()\n', (1811, 1813), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((1836, 1858), 'numpy.array', 'np.array', (['[2001, 2002]'], {}), '([2001, 2002])\n', (1844, 1858), True, 'import numpy as np\n'), ((1881, 1903), 'numpy.array', 'np.array', (['[1004, 1002]'], {}), '([1004, 1002])\n', (1889, 1903), True, 'import numpy as np\n'), ((2145, 2221), 'sysidentpy.utils.generate_data.get_siso_data', 'get_siso_data', ([], {'n': '(1000)', 'colored_noise': '(False)', 'sigma': '(0.001)', 'train_percentage': '(90)'}), '(n=1000, colored_noise=False, sigma=0.001, train_percentage=90)\n', (2158, 2221), False, 'from sysidentpy.utils.generate_data import get_miso_data, get_siso_data\n'), ((2245, 2271), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {}), '()\n', (2269, 2271), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((2323, 2369), 'numpy.array', 'np.array', (['[[1001, 0], [2001, 1001], [2002, 0]]'], {}), '([[1001, 0], [2001, 1001], [2002, 0]])\n', (2331, 2369), True, 'import numpy as np\n'), ((2851, 2927), 'sysidentpy.utils.generate_data.get_siso_data', 'get_siso_data', ([], {'n': '(1000)', 'colored_noise': '(False)', 'sigma': '(0.001)', 'train_percentage': '(90)'}), '(n=1000, colored_noise=False, sigma=0.001, train_percentage=90)\n', (2864, 2927), False, 'from sysidentpy.utils.generate_data import get_miso_data, get_siso_data\n'), ((2951, 3000), 'sysidentpy.polynomial_basis.SimulatePolynomialNarmax', 'SimulatePolynomialNarmax', ([], {'estimate_parameter': '(True)'}), '(estimate_parameter=True)\n', (2975, 3000), False, 'from sysidentpy.polynomial_basis import SimulatePolynomialNarmax\n'), ((3052, 3098), 'numpy.array', 'np.array', (['[[1001, 0], [2001, 1001], [2002, 0]]'], {}), '([[1001, 0], [2001, 1001], [2002, 0]])\n', (3060, 3098), True, 'import numpy as np\n'), ((3427, 3473), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['s.theta', 'theta'], {'decimal': '(1)'}), '(s.theta, theta, decimal=1)\n', (3446, 3473), False, 'from numpy.testing import assert_almost_equal, assert_array_equal\n'), ((3511, 3584), 'numpy.testing.assert_raises', 'assert_raises', (['TypeError', 'SimulatePolynomialNarmax'], {'estimmate_parameter': '(1)'}), '(TypeError, SimulatePolynomialNarmax, estimmate_parameter=1)\n', (3524, 3584), False, 'from numpy.testing import assert_raises\n'), ((2567, 2594), 'numpy.array', 'np.array', (['[[0.2, 0.9, 0.1]]'], {}), '([[0.2, 0.9, 0.1]])\n', (2575, 2594), True, 'import numpy as np\n'), ((3393, 3420), 'numpy.array', 'np.array', (['[[0.2, 0.9, 0.1]]'], {}), '([[0.2, 0.9, 0.1]])\n', (3401, 3420), True, 'import numpy as np\n'), ((1048, 1067), 'numpy.array', 'np.array', (['[1, 3, 5]'], {}), '([1, 3, 5])\n', (1056, 1067), True, 'import numpy as np\n'), ((1377, 1399), 'numpy.array', 'np.array', (['[1001, 1001]'], {}), '([1001, 1001])\n', (1385, 1399), True, 'import numpy as np\n'), ((1707, 1729), 'numpy.array', 'np.array', (['[2001, 2002]'], {}), '([2001, 2002])\n', (1715, 1729), True, 'import numpy as np\n')]
""" Unit and regression test for the tau_screened_coulomb method. """ from ThermoElectric import tau_screened_coulomb import numpy as np from pytest import approx def test_tau_screened_coulomb(): energy = np.array([[0.1]]) e_eff_mass = np.array([[0.23 * 9.109e-31]]) dielectric = 11.7 imp = np.array([[1e23]]) screen_len = np.array([[1e-7]]) expected_tau = 1.8e-10 calculated_tau = tau_screened_coulomb(energy=energy, mass_c=e_eff_mass, n_imp=imp, dielectric=dielectric, screen_len = screen_len) assert approx(expected_tau, abs=1e-11) == calculated_tau
[ "pytest.approx", "numpy.array", "ThermoElectric.tau_screened_coulomb" ]
[((213, 230), 'numpy.array', 'np.array', (['[[0.1]]'], {}), '([[0.1]])\n', (221, 230), True, 'import numpy as np\n'), ((248, 278), 'numpy.array', 'np.array', (['[[0.23 * 9.109e-31]]'], {}), '([[0.23 * 9.109e-31]])\n', (256, 278), True, 'import numpy as np\n'), ((311, 330), 'numpy.array', 'np.array', (['[[1e+23]]'], {}), '([[1e+23]])\n', (319, 330), True, 'import numpy as np\n'), ((347, 366), 'numpy.array', 'np.array', (['[[1e-07]]'], {}), '([[1e-07]])\n', (355, 366), True, 'import numpy as np\n'), ((415, 530), 'ThermoElectric.tau_screened_coulomb', 'tau_screened_coulomb', ([], {'energy': 'energy', 'mass_c': 'e_eff_mass', 'n_imp': 'imp', 'dielectric': 'dielectric', 'screen_len': 'screen_len'}), '(energy=energy, mass_c=e_eff_mass, n_imp=imp,\n dielectric=dielectric, screen_len=screen_len)\n', (435, 530), False, 'from ThermoElectric import tau_screened_coulomb\n'), ((583, 614), 'pytest.approx', 'approx', (['expected_tau'], {'abs': '(1e-11)'}), '(expected_tau, abs=1e-11)\n', (589, 614), False, 'from pytest import approx\n')]
# - * - coding: utf-8 - * - import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches def ecg_fixpeaks(rpeaks, sampling_rate=1000, iterative=True, show=False): """Correct R-peaks location based on their interval (RRi). Identify erroneous inter-beat-intervals. Lipponen & Tarvainen (2019). Parameters ---------- rpeaks : dict The samples at which the R-peak occur. Dict returned by `ecg_findpeaks()`. sampling_rate : int The sampling frequency of the signal that contains the peaks (in Hz, i.e., samples/second). iterative : bool Whether or not to apply the artifact correction repeatedly (results in superior artifact correction). show : bool Whether or not to visualize artifacts and artifact thresholds. Returns ------- artifacts : dict A dictionary containing the indices of artifacts, accessible with the keys "ectopic", "missed", "extra", and "longshort". See Also -------- ecg_clean, ecg_findpeaks, ecg_peaks, ecg_rate, ecg_process, ecg_plot Examples -------- >>> import neurokit2 as nk >>> import matplotlib.pyplot as plt >>> ecg = nk.ecg_simulate(duration=240, noise=0.1, heart_rate=70, >>> random_state=41) >>> rpeaks_uncorrected = nk.ecg_findpeaks(ecg) >>> artifacts, rpeaks_corrected = nk.ecg_fixpeaks(rpeaks_uncorrected, >>> iterative=True, >>> show=True) >>> rate_corrected = nk.ecg_rate(rpeaks_uncorrected, >>> desired_length=len(ecg)) >>> rate_uncorrected = nk.ecg_rate(rpeaks, desired_length=len(ecg_signal)) >>> >>> fig, ax = plt.subplots() >>> ax.plot(rate_uncorrected, label="heart rate without artifact correction") >>> ax.plot(rate_corrected, label="heart rate with artifact correction") >>> ax.legend(loc="upper right") References ---------- - <NAME>., & <NAME>. (2019). A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of medical engineering & technology, 43(3), 173-181. 10.1080/03091902.2019.1640306 """ # Format input. rpeaks = rpeaks["ECG_R_Peaks"] # Get corrected peaks and normal-to-normal intervals. artifacts, subspaces = _find_artifacts(rpeaks, sampling_rate=sampling_rate) peaks_clean = _correct_artifacts(artifacts, rpeaks) if iterative: # Iteratively apply the artifact correction until the number of artifact # reaches an equilibrium (i.e., the number of artifacts does not change # anymore from one iteration to the next). n_artifacts_previous = np.inf n_artifacts_current = sum([len(i) for i in artifacts.values()]) previous_diff = 0 while n_artifacts_current - n_artifacts_previous != previous_diff: previous_diff = n_artifacts_previous - n_artifacts_current artifacts, subspaces = _find_artifacts(peaks_clean, sampling_rate=sampling_rate) peaks_clean = _correct_artifacts(artifacts, peaks_clean) n_artifacts_previous = n_artifacts_current n_artifacts_current = sum([len(i) for i in artifacts.values()]) if show: _plot_artifacts_lipponen2019(artifacts, subspaces) return artifacts, {"ECG_R_Peaks": peaks_clean} # ============================================================================= # Lipponen & Tarvainen (2019). # ============================================================================= def _find_artifacts(rpeaks, c1=0.13, c2=0.17, alpha=5.2, window_width=91, medfilt_order=11, sampling_rate=1000): peaks = np.ravel(rpeaks) # Compute period series (make sure it has same numer of elements as peaks); # peaks are in samples, convert to seconds. rr = np.ediff1d(peaks, to_begin=0) / sampling_rate # For subsequent analysis it is important that the first element has # a value in a realistic range (e.g., for median filtering). rr[0] = np.mean(rr[1:]) # Artifact identification ################################################# ########################################################################### # Compute dRRs: time series of differences of consecutive periods (dRRs). drrs = np.ediff1d(rr, to_begin=0) drrs[0] = np.mean(drrs[1:]) # Normalize by threshold. th1 = _compute_threshold(drrs, alpha, window_width) drrs /= th1 # Cast dRRs to subspace s12. # Pad drrs with one element. padding = 2 drrs_pad = np.pad(drrs, padding, "reflect") s12 = np.zeros(drrs.size) for d in np.arange(padding, padding + drrs.size): if drrs_pad[d] > 0: s12[d - padding] = np.max([drrs_pad[d - 1], drrs_pad[d + 1]]) elif drrs_pad[d] < 0: s12[d - padding] = np.min([drrs_pad[d - 1], drrs_pad[d + 1]]) # Cast dRRs to subspace s22. s22 = np.zeros(drrs.size) for d in np.arange(padding, padding + drrs.size): if drrs_pad[d] >= 0: s22[d - padding] = np.min([drrs_pad[d + 1], drrs_pad[d + 2]]) elif drrs_pad[d] < 0: s22[d - padding] = np.max([drrs_pad[d + 1], drrs_pad[d + 2]]) # Compute mRRs: time series of deviation of RRs from median. df = pd.DataFrame({'signal': rr}) medrr = df.rolling(medfilt_order, center=True, min_periods=1).median().signal.to_numpy() mrrs = rr - medrr mrrs[mrrs < 0] = mrrs[mrrs < 0] * 2 # Normalize by threshold. th2 = _compute_threshold(mrrs, alpha, window_width) mrrs /= th2 # Artifact classification ################################################# ########################################################################### # Artifact classes. extra_idcs = [] missed_idcs = [] ectopic_idcs = [] longshort_idcs = [] i = 0 while i < rr.size - 2: # The flow control is implemented based on Figure 1 if np.abs(drrs[i]) <= 1: # Figure 1 i += 1 continue eq1 = np.logical_and(drrs[i] > 1, s12[i] < (-c1 * drrs[i] - c2)) # Figure 2a eq2 = np.logical_and(drrs[i] < -1, s12[i] > (-c1 * drrs[i] + c2)) # Figure 2a if np.any([eq1, eq2]): # If any of the two equations is true. ectopic_idcs.append(i) i += 1 continue # If none of the two equations is true. if ~np.any([np.abs(drrs[i]) > 1, np.abs(mrrs[i]) > 3]): # Figure 1 i += 1 continue longshort_candidates = [i] # Check if the following beat also needs to be evaluated. if np.abs(drrs[i + 1]) < np.abs(drrs[i + 2]): longshort_candidates.append(i + 1) for j in longshort_candidates: # Long beat. eq3 = np.logical_and(drrs[j] > 1, s22[j] < -1) # Figure 2b # Long or short. eq4 = np.abs(mrrs[j]) > 3 # Figure 1 # Short beat. eq5 = np.logical_and(drrs[j] < -1, s22[j] > 1) # Figure 2b if ~np.any([eq3, eq4, eq5]): # If none of the three equations is true: normal beat. i += 1 continue # If any of the three equations is true: check for missing or extra # peaks. # Missing. eq6 = np.abs(rr[j] / 2 - medrr[j]) < th2[j] # Figure 1 # Extra. eq7 = np.abs(rr[j] + rr[j + 1] - medrr[j]) < th2[j] # Figure 1 # Check if extra. if np.all([eq5, eq7]): extra_idcs.append(j) i += 1 continue # Check if missing. if np.all([eq3, eq6]): missed_idcs.append(j) i += 1 continue # If neither classified as extra or missing, classify as "long or # short". longshort_idcs.append(j) i += 1 # Prepare output artifacts = {"ectopic": ectopic_idcs, "missed": missed_idcs, "extra": extra_idcs, "longshort": longshort_idcs} subspaces = {"rr": rr, "drrs": drrs, "mrrs": mrrs, "s12": s12, "s22": s22, "c1": c1, "c2": c2} return artifacts, subspaces def _compute_threshold(signal, alpha, window_width): df = pd.DataFrame({'signal': np.abs(signal)}) q1 = df.rolling(window_width, center=True, min_periods=1).quantile(.25).signal.to_numpy() q3 = df.rolling(window_width, center=True, min_periods=1).quantile(.75).signal.to_numpy() th = alpha * ((q3 - q1) / 2) return th def _correct_artifacts(artifacts, peaks): # Artifact correction ##################### # The integrity of indices must be maintained if peaks are inserted or # deleted: for each deleted beat, decrease indices following that beat in # all other index lists by 1. Likewise, for each added beat, increment the # indices following that beat in all other lists by 1. extra_idcs = artifacts["extra"] missed_idcs = artifacts["missed"] ectopic_idcs = artifacts["ectopic"] longshort_idcs = artifacts["longshort"] # Delete extra peaks. if extra_idcs: peaks = _correct_extra(extra_idcs, peaks) # Update remaining indices. missed_idcs = _update_indices(extra_idcs, missed_idcs, -1) ectopic_idcs = _update_indices(extra_idcs, ectopic_idcs, -1) longshort_idcs = _update_indices(extra_idcs, longshort_idcs, -1) # Add missing peaks. if missed_idcs: peaks = _correct_missed(missed_idcs, peaks) # Update remaining indices. ectopic_idcs = _update_indices(missed_idcs, ectopic_idcs, 1) longshort_idcs = _update_indices(missed_idcs, longshort_idcs, 1) if ectopic_idcs: peaks = _correct_misaligned(ectopic_idcs, peaks) if longshort_idcs: peaks = _correct_misaligned(longshort_idcs, peaks) return peaks def _correct_extra(extra_idcs, peaks): corrected_peaks = peaks.copy() corrected_peaks = np.delete(corrected_peaks, extra_idcs) return corrected_peaks def _correct_missed(missed_idcs, peaks): corrected_peaks = peaks.copy() missed_idcs = np.array(missed_idcs) # Calculate the position(s) of new beat(s). Make sure to not generate # negative indices. prev_peaks and next_peaks must have the same # number of elements. valid_idcs = np.logical_and(missed_idcs > 1, missed_idcs < len(corrected_peaks)) missed_idcs = missed_idcs[valid_idcs] prev_peaks = corrected_peaks[[i - 1 for i in missed_idcs]] next_peaks = corrected_peaks[missed_idcs] added_peaks = prev_peaks + (next_peaks - prev_peaks) / 2 # Add the new peaks before the missed indices (see numpy docs). corrected_peaks = np.insert(corrected_peaks, missed_idcs, added_peaks) return corrected_peaks def _correct_misaligned(misaligned_idcs, peaks): corrected_peaks = peaks.copy() misaligned_idcs = np.array(misaligned_idcs) # Make sure to not generate negative indices, or indices that exceed # the total number of peaks. prev_peaks and next_peaks must have the # same number of elements. valid_idcs = np.logical_and(misaligned_idcs > 1, misaligned_idcs < len(corrected_peaks)) misaligned_idcs = misaligned_idcs[valid_idcs] prev_peaks = corrected_peaks[[i - 1 for i in misaligned_idcs]] next_peaks = corrected_peaks[[i + 1 for i in misaligned_idcs]] half_ibi = (next_peaks - prev_peaks) / 2 peaks_interp = prev_peaks + half_ibi # Shift the R-peaks from the old to the new position. corrected_peaks = np.delete(corrected_peaks, misaligned_idcs) corrected_peaks = np.concatenate((corrected_peaks, peaks_interp)).astype(int) corrected_peaks.sort(kind="mergesort") return corrected_peaks def _update_indices(source_idcs, update_idcs, update): """ For every element s in source_idcs, change every element u in update_idcs according to update, if u is larger than s. """ if not update_idcs: return update_idcs for s in source_idcs: update_idcs = [u + update if u > s else u for u in update_idcs] return update_idcs def _plot_artifacts_lipponen2019(artifacts, info): """ """ # Extract parameters longshort_idcs = artifacts["longshort"] ectopic_idcs = artifacts["ectopic"] extra_idcs = artifacts["extra"] missed_idcs = artifacts["missed"] rr = info["rr"] drrs = info["drrs"] mrrs = info["mrrs"] s12 = info["s12"] s22 = info["s22"] c1 = info["c1"] c2 = info["c2"] # Visualize artifact type indices. # Set grids gs = matplotlib.gridspec.GridSpec(ncols=4, nrows=3, width_ratios=[1, 2, 2, 2]) fig = plt.figure(constrained_layout=False) ax0 = fig.add_subplot(gs[0, :-2]) ax1 = fig.add_subplot(gs[1, :-2]) ax2 = fig.add_subplot(gs[2, :-2]) ax3 = fig.add_subplot(gs[:, -1]) ax4 = fig.add_subplot(gs[:, -2]) ax0.set_title("Artifact types", fontweight="bold") ax0.plot(rr, label="heart period") ax0.scatter(longshort_idcs, rr[longshort_idcs], marker='x', c='m', s=100, zorder=3, label="long/short") ax0.scatter(ectopic_idcs, rr[ectopic_idcs], marker='x', c='g', s=100, zorder=3, label="ectopic") ax0.scatter(extra_idcs, rr[extra_idcs], marker='x', c='y', s=100, zorder=3, label="false positive") ax0.scatter(missed_idcs, rr[missed_idcs], marker='x', c='r', s=100, zorder=3, label="false negative") ax0.legend(loc="upper right") # Visualize first threshold. ax1.set_title("Consecutive-difference criterion", fontweight="bold") ax1.plot(np.abs(drrs), label="difference consecutive heart periods") ax1.axhline(1, c='r', label="artifact threshold") ax1.legend(loc="upper right") # Visualize second threshold. ax2.set_title("Difference-from-median criterion", fontweight="bold") ax2.plot(np.abs(mrrs), label="difference from median over 11 periods") ax2.axhline(3, c="r", label="artifact threshold") ax2.legend(loc="upper right") # Visualize subspaces. ax4.set_title("Subspace 1", fontweight="bold") ax4.set_xlabel("S11") ax4.set_ylabel("S12") ax4.scatter(drrs, s12, marker="x", label="heart periods") verts0 = [(min(drrs), max(s12)), (min(drrs), -c1 * min(drrs) + c2), (-1, -c1 * -1 + c2), (-1, max(s12))] poly0 = matplotlib.patches.Polygon(verts0, alpha=0.3, facecolor="r", edgecolor=None, label="ectopic periods") ax4.add_patch(poly0) verts1 = [(1, -c1 * 1 - c2), (1, min(s12)), (max(drrs), min(s12)), (max(drrs), -c1 * max(drrs) - c2)] poly1 = matplotlib.patches.Polygon(verts1, alpha=0.3, facecolor="r", edgecolor=None) ax4.add_patch(poly1) ax4.legend(loc="upper right") ax3.set_title("Subspace 2", fontweight="bold") ax3.set_xlabel("S21") ax3.set_ylabel("S22") ax3.scatter(drrs, s22, marker="x", label="heart periods") verts2 = [(min(drrs), max(s22)), (min(drrs), 1), (-1, 1), (-1, max(s22))] poly2 = matplotlib.patches.Polygon(verts2, alpha=0.3, facecolor="r", edgecolor=None, label="short periods") ax3.add_patch(poly2) verts3 = [(1, -1), (1, min(s22)), (max(drrs), min(s22)), (max(drrs), -1)] poly3 = matplotlib.patches.Polygon(verts3, alpha=0.3, facecolor="y", edgecolor=None, label="long periods") ax3.add_patch(poly3) ax3.legend(loc="upper right")
[ "numpy.pad", "pandas.DataFrame", "numpy.abs", "numpy.concatenate", "numpy.logical_and", "numpy.ravel", "numpy.zeros", "numpy.insert", "numpy.any", "matplotlib.pyplot.figure", "numpy.mean", "numpy.arange", "numpy.array", "numpy.max", "numpy.min", "numpy.delete", "numpy.all", "numpy.ediff1d" ]
[((3895, 3911), 'numpy.ravel', 'np.ravel', (['rpeaks'], {}), '(rpeaks)\n', (3903, 3911), True, 'import numpy as np\n'), ((4246, 4261), 'numpy.mean', 'np.mean', (['rr[1:]'], {}), '(rr[1:])\n', (4253, 4261), True, 'import numpy as np\n'), ((4513, 4539), 'numpy.ediff1d', 'np.ediff1d', (['rr'], {'to_begin': '(0)'}), '(rr, to_begin=0)\n', (4523, 4539), True, 'import numpy as np\n'), ((4554, 4571), 'numpy.mean', 'np.mean', (['drrs[1:]'], {}), '(drrs[1:])\n', (4561, 4571), True, 'import numpy as np\n'), ((4772, 4804), 'numpy.pad', 'np.pad', (['drrs', 'padding', '"""reflect"""'], {}), "(drrs, padding, 'reflect')\n", (4778, 4804), True, 'import numpy as np\n'), ((4816, 4835), 'numpy.zeros', 'np.zeros', (['drrs.size'], {}), '(drrs.size)\n', (4824, 4835), True, 'import numpy as np\n'), ((4849, 4888), 'numpy.arange', 'np.arange', (['padding', '(padding + drrs.size)'], {}), '(padding, padding + drrs.size)\n', (4858, 4888), True, 'import numpy as np\n'), ((5141, 5160), 'numpy.zeros', 'np.zeros', (['drrs.size'], {}), '(drrs.size)\n', (5149, 5160), True, 'import numpy as np\n'), ((5174, 5213), 'numpy.arange', 'np.arange', (['padding', '(padding + drrs.size)'], {}), '(padding, padding + drrs.size)\n', (5183, 5213), True, 'import numpy as np\n'), ((5498, 5526), 'pandas.DataFrame', 'pd.DataFrame', (["{'signal': rr}"], {}), "({'signal': rr})\n", (5510, 5526), True, 'import pandas as pd\n'), ((10327, 10365), 'numpy.delete', 'np.delete', (['corrected_peaks', 'extra_idcs'], {}), '(corrected_peaks, extra_idcs)\n', (10336, 10365), True, 'import numpy as np\n'), ((10491, 10512), 'numpy.array', 'np.array', (['missed_idcs'], {}), '(missed_idcs)\n', (10499, 10512), True, 'import numpy as np\n'), ((11101, 11153), 'numpy.insert', 'np.insert', (['corrected_peaks', 'missed_idcs', 'added_peaks'], {}), '(corrected_peaks, missed_idcs, added_peaks)\n', (11110, 11153), True, 'import numpy as np\n'), ((11291, 11316), 'numpy.array', 'np.array', (['misaligned_idcs'], {}), '(misaligned_idcs)\n', (11299, 11316), True, 'import numpy as np\n'), ((11969, 12012), 'numpy.delete', 'np.delete', (['corrected_peaks', 'misaligned_idcs'], {}), '(corrected_peaks, misaligned_idcs)\n', (11978, 12012), True, 'import numpy as np\n'), ((13170, 13206), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(False)'}), '(constrained_layout=False)\n', (13180, 13206), True, 'import matplotlib.pyplot as plt\n'), ((4050, 4079), 'numpy.ediff1d', 'np.ediff1d', (['peaks'], {'to_begin': '(0)'}), '(peaks, to_begin=0)\n', (4060, 4079), True, 'import numpy as np\n'), ((6275, 6331), 'numpy.logical_and', 'np.logical_and', (['(drrs[i] > 1)', '(s12[i] < -c1 * drrs[i] - c2)'], {}), '(drrs[i] > 1, s12[i] < -c1 * drrs[i] - c2)\n', (6289, 6331), True, 'import numpy as np\n'), ((6363, 6420), 'numpy.logical_and', 'np.logical_and', (['(drrs[i] < -1)', '(s12[i] > -c1 * drrs[i] + c2)'], {}), '(drrs[i] < -1, s12[i] > -c1 * drrs[i] + c2)\n', (6377, 6420), True, 'import numpy as np\n'), ((6450, 6468), 'numpy.any', 'np.any', (['[eq1, eq2]'], {}), '([eq1, eq2])\n', (6456, 6468), True, 'import numpy as np\n'), ((14127, 14139), 'numpy.abs', 'np.abs', (['drrs'], {}), '(drrs)\n', (14133, 14139), True, 'import numpy as np\n'), ((14396, 14408), 'numpy.abs', 'np.abs', (['mrrs'], {}), '(mrrs)\n', (14402, 14408), True, 'import numpy as np\n'), ((4950, 4992), 'numpy.max', 'np.max', (['[drrs_pad[d - 1], drrs_pad[d + 1]]'], {}), '([drrs_pad[d - 1], drrs_pad[d + 1]])\n', (4956, 4992), True, 'import numpy as np\n'), ((5276, 5318), 'numpy.min', 'np.min', (['[drrs_pad[d + 1], drrs_pad[d + 2]]'], {}), '([drrs_pad[d + 1], drrs_pad[d + 2]])\n', (5282, 5318), True, 'import numpy as np\n'), ((6185, 6200), 'numpy.abs', 'np.abs', (['drrs[i]'], {}), '(drrs[i])\n', (6191, 6200), True, 'import numpy as np\n'), ((6874, 6893), 'numpy.abs', 'np.abs', (['drrs[i + 1]'], {}), '(drrs[i + 1])\n', (6880, 6893), True, 'import numpy as np\n'), ((6896, 6915), 'numpy.abs', 'np.abs', (['drrs[i + 2]'], {}), '(drrs[i + 2])\n', (6902, 6915), True, 'import numpy as np\n'), ((7047, 7087), 'numpy.logical_and', 'np.logical_and', (['(drrs[j] > 1)', '(s22[j] < -1)'], {}), '(drrs[j] > 1, s22[j] < -1)\n', (7061, 7087), True, 'import numpy as np\n'), ((7228, 7268), 'numpy.logical_and', 'np.logical_and', (['(drrs[j] < -1)', '(s22[j] > 1)'], {}), '(drrs[j] < -1, s22[j] > 1)\n', (7242, 7268), True, 'import numpy as np\n'), ((7785, 7803), 'numpy.all', 'np.all', (['[eq5, eq7]'], {}), '([eq5, eq7])\n', (7791, 7803), True, 'import numpy as np\n'), ((7937, 7955), 'numpy.all', 'np.all', (['[eq3, eq6]'], {}), '([eq3, eq6])\n', (7943, 7955), True, 'import numpy as np\n'), ((8592, 8606), 'numpy.abs', 'np.abs', (['signal'], {}), '(signal)\n', (8598, 8606), True, 'import numpy as np\n'), ((12035, 12082), 'numpy.concatenate', 'np.concatenate', (['(corrected_peaks, peaks_interp)'], {}), '((corrected_peaks, peaks_interp))\n', (12049, 12082), True, 'import numpy as np\n'), ((5054, 5096), 'numpy.min', 'np.min', (['[drrs_pad[d - 1], drrs_pad[d + 1]]'], {}), '([drrs_pad[d - 1], drrs_pad[d + 1]])\n', (5060, 5096), True, 'import numpy as np\n'), ((5380, 5422), 'numpy.max', 'np.max', (['[drrs_pad[d + 1], drrs_pad[d + 2]]'], {}), '([drrs_pad[d + 1], drrs_pad[d + 2]])\n', (5386, 5422), True, 'import numpy as np\n'), ((7150, 7165), 'numpy.abs', 'np.abs', (['mrrs[j]'], {}), '(mrrs[j])\n', (7156, 7165), True, 'import numpy as np\n'), ((7301, 7324), 'numpy.any', 'np.any', (['[eq3, eq4, eq5]'], {}), '([eq3, eq4, eq5])\n', (7307, 7324), True, 'import numpy as np\n'), ((7588, 7616), 'numpy.abs', 'np.abs', (['(rr[j] / 2 - medrr[j])'], {}), '(rr[j] / 2 - medrr[j])\n', (7594, 7616), True, 'import numpy as np\n'), ((7679, 7715), 'numpy.abs', 'np.abs', (['(rr[j] + rr[j + 1] - medrr[j])'], {}), '(rr[j] + rr[j + 1] - medrr[j])\n', (7685, 7715), True, 'import numpy as np\n'), ((6664, 6679), 'numpy.abs', 'np.abs', (['drrs[i]'], {}), '(drrs[i])\n', (6670, 6679), True, 'import numpy as np\n'), ((6685, 6700), 'numpy.abs', 'np.abs', (['mrrs[i]'], {}), '(mrrs[i])\n', (6691, 6700), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import sys import math import random import operator def euclidean(x, x_p): return ((x[0] - x_p[0]) ** 2 + (x[1] - x_p[1]) ** 2) ** 0.5 def greatest_euclidean(data, centers): maxi = {} for x in centers: for x_p in data: euc = euclidean(x, x_p) if x_p not in maxi: maxi[x_p] = 0 maxi[x_p] += euc return max(maxi.items(), key=operator.itemgetter(1))[0] # Uses a greedy approach, selects a data point at random and assigns this as a center for a classification # it then finds the furthest data point from this and assigns this as a center and places it in the set # the next center will be the furthest datapoint from all centers until all regions have a center def gen_centers(M, data): centers = [] N = len(data) rand = random.randint(0, N - 1) centers.append(data.pop(rand)) center = (0, 0) classifiers = [] for i in range(M - 1): center = greatest_euclidean(data, centers) data.remove(center) centers.append(center) for x in data: num = voronoi(x, centers) classifiers.append(num) return centers, classifiers # Determine the Voronoi region for the data point. This basically just decides how to classify all the data points # assigning it to the closest center by euclidean distance def voronoi(x, centers): order = [] for i in range(len(centers)): datapoint = centers[i] # Euclidean to x order.append((euclidean(x, datapoint), i)) order.sort() g = order[0][1] return g # Generates 10,000 random datapoints with x and y values between 0 and 1 def generate_data(): data = [] for x1_ in range(100): for x2_ in range(100): x1 = np.random.uniform(0, 1) x2 = np.random.uniform(0, 1) data.append((x1, x2)) return data def plot(M): data = generate_data() centers, classifers = gen_centers(M, data) unique=set(classifers) print(unique) plt.scatter(*zip(*data), c=classifers, cmap='rainbow') plt.scatter(*zip(*centers), c='black') plt.title('Greedy with {} Regions'.format(M)) plt.xlabel('x1', color='#1C2833') plt.ylabel('x2', color='#1C2833') plt.grid() plt.show() if __name__ == "__main__": # 10 Clusters for users regions = 10 plot(regions) # Assumption: Users will be datapoints, users will create a voronoi region and counselors # will be assigned to their closest associated region. # Just using greedy. May add in branch and bound.
[ "numpy.random.uniform", "matplotlib.pyplot.show", "random.randint", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "operator.itemgetter" ]
[((862, 886), 'random.randint', 'random.randint', (['(0)', '(N - 1)'], {}), '(0, N - 1)\n', (876, 886), False, 'import random\n'), ((2213, 2246), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x1"""'], {'color': '"""#1C2833"""'}), "('x1', color='#1C2833')\n", (2223, 2246), True, 'import matplotlib.pyplot as plt\n'), ((2251, 2284), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x2"""'], {'color': '"""#1C2833"""'}), "('x2', color='#1C2833')\n", (2261, 2284), True, 'import matplotlib.pyplot as plt\n'), ((2289, 2299), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (2297, 2299), True, 'import matplotlib.pyplot as plt\n'), ((2304, 2314), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2312, 2314), True, 'import matplotlib.pyplot as plt\n'), ((1808, 1831), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (1825, 1831), True, 'import numpy as np\n'), ((1849, 1872), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (1866, 1872), True, 'import numpy as np\n'), ((453, 475), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (472, 475), False, 'import operator\n')]
# func.py import numpy as np from numba import njit, jit, prange #------------------------ Distance Functions -----------------------# def corr_dist(A): return 1 - np.corrcoef(A) def abs_diff(A): target_matrix = np.zeros((len(A), len(A))) mat_dim = target_matrix.shape[0] for r in range(mat_dim): for c in range(r, mat_dim): target_matrix[r,c] = np.absolute(np.subtract(A[r], A[c])) target_matrix[c,r] = target_matrix[r,c] return target_matrix def cond_diff(A): target_matrix = np.ones((len(A), len(A)), dtype = bool) mat_dim = target_matrix.shape[0] for r in range(mat_dim): for c in range(r, mat_dim): target_matrix[r,c] = (A[r] == A[c]) target_matrix[c,r] = target_matrix[r,c] return target_matrix def len_diff(A): target_matrix = np.ones((len(A), len(A)), dtype = int) mat_dim = target_matrix.shape[0] for r in range(mat_dim): for c in range(r, mat_dim): target_matrix[r,c] = np.absolute(np.subtract(len(A[r]), len(A[c]))) target_matrix[c,r] = target_matrix[r,c] return target_matrix def levenshtein_dist(A): target_matrix = np.ones((len(A), len(A)), dtype = int) mat_dim = target_matrix.shape[0] for r in range(mat_dim): for c in range(r, mat_dim): target_matrix[r,c] = levenshtein(A[r], A[c]) target_matrix[c,r] = target_matrix[r,c] return target_matrix def weighted_euclidian(A, weights): matrices = [] for arr in A: mat = np.zeros((len(arr), len(arr))) matrix_iteration(arr, mat, squared_dist) matrices.append(mat) weighted_dist = np.zeros((len(arr), len(arr))) for ind in range(len(weights)): weighted_dist = weighted_dist + weights[ind] * matrices[ind] return np.sqrt(weighted_dist) #------------------------ Transform Functions -----------------------# def corrcoef_z_transform(A): A = np.subtract(1, A) results = np.empty(len(A), dtype = A.dtype) quick_z_transform(A, results) return results def invert_corrcoef(A): return np.subtract(1, A) def z_transform(A): results = np.empty(len(A), dtype = A.dtype) quick_z_transform(A, results) return results @njit(parallel = True) def quick_z_transform(A, results): for i in prange(len(A)): results[i] = np.log((1+A[i])/(1-A[i]))/2 #------------------------ Other Functions -----------------------# def levenshtein(seq1, seq2): size_x = len(seq1) + 1 size_y = len(seq2) + 1 matrix = np.zeros((size_x, size_y)) for x in range(size_x): matrix [x, 0] = x for y in range(size_y): matrix [0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x-1] == seq2[y-1]: matrix [x,y] = min( matrix[x-1, y] + 1, matrix[x-1, y-1], matrix[x, y-1] + 1 ) else: matrix [x,y] = min( matrix[x-1,y] + 1, matrix[x-1,y-1] + 1, matrix[x,y-1] + 1 ) return (matrix[size_x - 1, size_y - 1])
[ "numpy.subtract", "numpy.log", "numpy.corrcoef", "numba.njit", "numpy.zeros", "numpy.sqrt" ]
[((2052, 2071), 'numba.njit', 'njit', ([], {'parallel': '(True)'}), '(parallel=True)\n', (2056, 2071), False, 'from numba import njit, jit, prange\n'), ((1644, 1666), 'numpy.sqrt', 'np.sqrt', (['weighted_dist'], {}), '(weighted_dist)\n', (1651, 1666), True, 'import numpy as np\n'), ((1776, 1793), 'numpy.subtract', 'np.subtract', (['(1)', 'A'], {}), '(1, A)\n', (1787, 1793), True, 'import numpy as np\n'), ((1919, 1936), 'numpy.subtract', 'np.subtract', (['(1)', 'A'], {}), '(1, A)\n', (1930, 1936), True, 'import numpy as np\n'), ((2346, 2372), 'numpy.zeros', 'np.zeros', (['(size_x, size_y)'], {}), '((size_x, size_y))\n', (2354, 2372), True, 'import numpy as np\n'), ((170, 184), 'numpy.corrcoef', 'np.corrcoef', (['A'], {}), '(A)\n', (181, 184), True, 'import numpy as np\n'), ((2150, 2181), 'numpy.log', 'np.log', (['((1 + A[i]) / (1 - A[i]))'], {}), '((1 + A[i]) / (1 - A[i]))\n', (2156, 2181), True, 'import numpy as np\n'), ((373, 396), 'numpy.subtract', 'np.subtract', (['A[r]', 'A[c]'], {}), '(A[r], A[c])\n', (384, 396), True, 'import numpy as np\n')]
import warnings import biorbd_casadi as biorbd import numpy as np from scipy import interpolate from bioptim import ( OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics, ) from ..initial_guess.humanoid_initial_pose import set_initial_pose class HumanoidOcp: def __init__( self, biorbd_model_path: str = None, n_shooting: int = 10, phase_time: float = 0.3, n_threads: int = 8, control_type: ControlType = ControlType.CONSTANT, ode_solver: OdeSolver = OdeSolver.COLLOCATION(), rigidbody_dynamics: RigidBodyDynamics = RigidBodyDynamics.ODE, step_length: float = 0.8, right_foot_location: np.array = np.zeros(3), use_sx: bool = False, ): self.biorbd_model_path = biorbd_model_path self.n_shooting = n_shooting self.phase_time = phase_time self.n_threads = n_threads self.control_type = control_type self.ode_solver = ode_solver self.rigidbody_dynamics = rigidbody_dynamics if biorbd_model_path is not None: self.biorbd_model = biorbd.Model(biorbd_model_path) self.n_shooting = n_shooting self.phase_time = phase_time self._set_head() self._set_knee() self._set_shoulder() self.n_q = self.biorbd_model.nbQ() self.n_qdot = self.biorbd_model.nbQdot() self.n_qddot = self.biorbd_model.nbQddot() self.n_qdddot = self.n_qddot self.n_tau = self.biorbd_model.nbGeneralizedTorque() self.tau_min, self.tau_init, self.tau_max = -500, 0, 500 self.qddot_min, self.qddot_init, self.qddot_max = -1000, 0, 1000 self.qdddot_min, self.qdddot_init, self.qdddot_max = -10000, 0, 10000 self.right_foot_location = right_foot_location self.step_length = step_length self.initial_left_foot_location = right_foot_location - np.array([0, step_length / 2, 0]) self.final_left_foot_location = right_foot_location + np.array([0, step_length / 2, 0]) self.dynamics = DynamicsList() self.constraints = ConstraintList() self.objective_functions = ObjectiveList() self.phase_transitions = PhaseTransitionList() self.x_bounds = BoundsList() self.u_bounds = BoundsList() self.initial_states = [] self.x_init = InitialGuessList() self.u_init = InitialGuessList() self.control_type = control_type self.control_nodes = Node.ALL if self.control_type == ControlType.LINEAR_CONTINUOUS else Node.ALL_SHOOTING self._set_dynamics() self._set_constraints() self._set_objective_functions() self._set_phase_transition() self._set_boundary_conditions() self._set_initial_guesses() self.ocp = OptimalControlProgram( self.biorbd_model, self.dynamics, self.n_shooting, self.phase_time, x_init=self.x_init, x_bounds=self.x_bounds, u_init=self.u_init, u_bounds=self.u_bounds, objective_functions=self.objective_functions, constraints=self.constraints, n_threads=n_threads, control_type=self.control_type, ode_solver=ode_solver, use_sx=use_sx, ) def _set_head(self): self.has_head = False for i in range(self.biorbd_model.nbSegment()): seg = self.biorbd_model.segment(i) if seg.name().to_string() == "Head": self.has_head = True break def _set_knee(self): self.has_knee = False for i in range(self.biorbd_model.nbSegment()): seg = self.biorbd_model.segment(i) if seg.name().to_string() == "RShank": self.has_knee = True break def _set_shoulder(self): self.has_shoulder = False for i in range(self.biorbd_model.nbSegment()): seg = self.biorbd_model.segment(i) if seg.name().to_string() == "RArm": self.has_shoulder = True break def _set_dynamics(self): # warnings.warn("not implemented under this version of bioptim") self.dynamics.add( DynamicsFcn.TORQUE_DRIVEN, rigidbody_dynamics=self.rigidbody_dynamics, with_contact=True, phase=0 ) # self.dynamics.add(DynamicsFcn.TORQUE_DRIVEN, with_contact=True, phase=0) def _set_objective_functions(self): # --- Objective function --- # self.objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", phase=0) idx_stability = [0, 1, 2] if self.has_head: idx_stability.append(3) # torso stability self.objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_QDDOT, phase=0, index=idx_stability, weight=0.01) # head stability if self.has_head: self.objective_functions.add( ObjectiveFcn.Lagrange.MINIMIZE_QDDOT, derivative=True, phase=0, index=3, weight=0.01 ) self.objective_functions.add( ObjectiveFcn.Lagrange.MINIMIZE_STATE, key="qdot", phase=0, index=3, weight=0.01 ) # keep velocity CoM around 1.5 m/s self.objective_functions.add( ObjectiveFcn.Mayer.MINIMIZE_COM_VELOCITY, index=1, target=1.5, node=Node.START, weight=1000 ) self.objective_functions.add( ObjectiveFcn.Mayer.MINIMIZE_COM_VELOCITY, index=1, target=1.5, node=Node.END, weight=1000 ) # instead of phase transition along z self.objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_COM_VELOCITY, index=2, weight=0.1) if ( self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS_JERK or self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS_JERK ): self.objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, phase=0, key="qdddot", weight=1e-4) def _set_constraints(self): # --- Constraints --- # # Contact force in Z are positive self.constraints.add( ConstraintFcn.TRACK_CONTACT_FORCES, min_bound=0, max_bound=np.inf, node=Node.ALL, contact_index=1, phase=0 ) # FP0 > 0 en Z # contact node at zero position and zero speed # node = Node.ALL if self.implicit_dynamics else Node.START node = Node.START self.constraints.add( ConstraintFcn.TRACK_MARKERS, node=node, target=self.right_foot_location, marker_index="RFoot", phase=0 ) self.constraints.add(ConstraintFcn.TRACK_MARKERS_VELOCITY, node=node, marker_index="RFoot", phase=0) # node = Node.END # self.constraints.add( # ConstraintFcn.TRACK_MARKERS, node=node, target=self.right_foot_location, marker_index="RFoot", phase=0 # ) # self.constraints.add(ConstraintFcn.TRACK_MARKERS_VELOCITY, node=node, marker_index="RFoot", phase=0) # first and last step constraints self.constraints.add( ConstraintFcn.TRACK_MARKERS, target=self.initial_left_foot_location, node=Node.START, marker_index="LFoot", phase=0, ) self.constraints.add( ConstraintFcn.TRACK_MARKERS, target=self.final_left_foot_location, node=Node.END, marker_index="LFoot", phase=0, ) # Ensure lift of foot if self.has_knee: self.constraints.add( ConstraintFcn.TRACK_MARKERS, index=2, min_bound=0.05, max_bound=np.inf, node=Node.MID, marker_index="LFoot", phase=0, ) def _set_phase_transition(self): idx = [0, 1, 2] idx = idx.append(3) if self.has_head else idx self.phase_transitions.add(PhaseTransitionFcn.CYCLIC, index=idx, weight=1000) def _set_boundary_conditions(self): self.x_bounds = BoundsList() self.x_bounds.add( bounds=QAndQDotAndQDDotBounds(self.biorbd_model) if self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS_JERK or self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS_JERK else QAndQDotBounds(self.biorbd_model) ) nq = self.n_q self.x_bounds[0].max[2, :] = 0 # torso bended forward if self.has_head: self.x_bounds[0][nq + 3, 0] = 0 # head velocity zero at the beginning self.x_bounds[0][nq + 3, -1] = 0 # head velocity zero at the end if self.has_knee: self.x_bounds[0].min[nq - 2 : nq, 0] = -np.pi / 8 # driving knees # Supervised shoulders if self.has_shoulder: i = 1 if self.has_head else 0 self.x_bounds[0][5 + i, 0] = -np.pi / 6 self.x_bounds[0][6 + i, 0] = np.pi / 6 self.x_bounds[0][5 + i, -1] = np.pi / 6 self.x_bounds[0][6 + i, -1] = -np.pi / 6 self.x_bounds[0][5 + i + nq, 0] = 0 self.x_bounds[0][5 + i + nq, -1] = 0 self.x_bounds[0][6 + i + nq, 0] = 0 self.x_bounds[0][6 + i + nq, -1] = 0 # Unsupervised arms not working trying another time with cyclic constraints # x_bounds[0].max[5, 0] = -1e-5 # position is negative at start # x_bounds[0].min[6, 0] = 1e-5 # position is positive at start # # x_bounds[0].min[5, -1] = 1e-5 # position is positive at the end # x_bounds[0].max[6, -1] = -1e-5 # position is negative at the end # # x_bounds[0][n_q + 5, [0, -1]] = 0 # velocity of shoulders zero at begining and end # x_bounds[0][n_q + 6, [0, -1]] = 0 # velocity of shoulders zero at begining and end # x_bounds[0].max[n_q + 6, 1] = -1e-5 # velocity of left shoulder negative # x_bounds[0].min[n_q + 6, 1] = -5 # velocity of left shoulder negative # x_bounds[0].min[n_q + 5, 1] = 1e-5 # velocity of right shoulder positive # x_bounds[0].max[n_q + 5, 1] = 5 # velocity of right shoulder positive if self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS: self.u_bounds.add( [self.tau_min] * self.n_tau + [self.qddot_min] * self.n_qddot + [self.qddot_min] * self.biorbd_model.nbContacts(), [self.tau_max] * self.n_tau + [self.qddot_max] * self.n_qddot + [self.qddot_max] * self.biorbd_model.nbContacts(), ) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS: self.u_bounds.add( [self.tau_min] * self.n_tau + [self.qddot_min] * self.n_qddot, [self.tau_max] * self.n_tau + [self.qddot_max] * self.n_qddot, ) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS_JERK: self.u_bounds.add( [self.tau_min] * self.n_tau + [self.qdddot_min] * self.n_qddot + [self.qddot_min] * self.biorbd_model.nbContacts(), [self.tau_max] * self.n_tau + [self.qdddot_max] * self.n_qddot + [self.qddot_max] * self.biorbd_model.nbContacts(), ) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS_JERK: self.u_bounds.add( [self.tau_min] * self.n_tau + [self.qdddot_min] * self.n_qddot, [self.tau_max] * self.n_tau + [self.qdddot_max] * self.n_qddot, ) else: self.u_bounds.add([self.tau_min] * self.n_tau, [self.tau_max] * self.n_tau) # root is not actuated self.u_bounds[0][:3, :] = 0 def _set_initial_guesses(self): """ Set initial guess for the optimization problem. """ # --- Initial guess --- # q0 = [0] * self.n_q # Torso over the floor and bent q0[1] = 0.8 q0[2] = -np.pi / 6 self.q0i = set_initial_pose( self.biorbd_model_path, np.array(q0), self.right_foot_location, self.initial_left_foot_location ) self.q0end = set_initial_pose( self.biorbd_model_path, np.array(q0), self.right_foot_location, self.final_left_foot_location ) qdot0 = [0] * self.n_qdot X0i = [] X0i.extend(self.q0i) X0i.extend(qdot0) X0end = [] X0end.extend(self.q0end) X0end.extend(qdot0) if ( self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS_JERK or self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS_JERK ): X0i.extend([0] * self.n_qddot) X0end.extend([0] * self.n_qddot) # X0i.extend([0] * self.n_qddot + [0] * self.biorbd_model.nbContacts()) # X0end.extend([0] * self.n_qddot + [0] * self.biorbd_model.nbContacts()) x = np.linspace(0, self.phase_time, 2) y = np.array([X0i, X0end]).T f = interpolate.interp1d(x, y) x_new = np.linspace(0, self.phase_time, self.n_shooting + 1) X0 = f(x_new) # use interpolation function returned by `interp1d` self._set_initial_states(X0) self._set_initial_controls() def _set_initial_states(self, X0: np.array = None): if X0 is None: self.x_init.add([0] * (self.n_q + self.n_q)) else: if X0.shape[1] != self.n_shooting + 1: X0 = self._interpolate_initial_states(X0) if not self.ode_solver.is_direct_shooting: n = self.ode_solver.polynomial_degree X0 = np.repeat(X0, n + 1, axis=1) X0 = X0[:, :-n] self.x_init.add(X0, interpolation=InterpolationType.EACH_FRAME) def _set_initial_controls(self, U0: np.array = None): if U0 is None: if self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS: self.u_init.add( [self.tau_init] * self.n_tau + [self.qddot_init] * self.n_qddot + [5] * self.biorbd_model.nbContacts() ) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_INVERSE_DYNAMICS_JERK: self.u_init.add( [self.tau_init] * self.n_tau + [self.qdddot_init] * self.n_qdddot + [5] * self.biorbd_model.nbContacts() ) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS_JERK: self.u_init.add([self.tau_init] * self.n_tau + [self.qdddot_init] * self.n_qdddot) elif self.rigidbody_dynamics == RigidBodyDynamics.DAE_FORWARD_DYNAMICS: self.u_init.add([self.tau_init] * self.n_tau + [self.qddot_init] * self.n_qddot) else: self.u_init.add([self.tau_init] * self.n_tau) else: if U0.shape[1] != self.n_shooting: U0 = self._interpolate_initial_controls(U0) self.u_init.add(U0, interpolation=InterpolationType.EACH_FRAME) def _interpolate_initial_states(self, X0: np.array): print("interpolating initial states to match the number of shooting nodes") x = np.linspace(0, self.phase_time, X0.shape[1]) y = X0 f = interpolate.interp1d(x, y) x_new = np.linspace(0, self.phase_time, self.n_shooting + 1) y_new = f(x_new) # use interpolation function returned by `interp1d` return y_new def _interpolate_initial_controls(self, U0: np.array): print("interpolating initial controls to match the number of shooting nodes") x = np.linspace(0, self.phase_time, U0.shape[1]) y = U0 f = interpolate.interp1d(x, y) x_new = np.linspace(0, self.phase_time, self.n_shooting) y_new = f(x_new) # use interpolation function returned by `interp1d` return y_new
[ "bioptim.BoundsList", "bioptim.OdeSolver.COLLOCATION", "bioptim.ObjectiveList", "bioptim.PhaseTransitionList", "bioptim.InitialGuessList", "biorbd_casadi.Model", "numpy.zeros", "bioptim.QAndQDotBounds", "numpy.array", "bioptim.OptimalControlProgram", "numpy.linspace", "bioptim.ConstraintList", "scipy.interpolate.interp1d", "bioptim.QAndQDotAndQDDotBounds", "bioptim.DynamicsList", "numpy.repeat" ]
[((864, 887), 'bioptim.OdeSolver.COLLOCATION', 'OdeSolver.COLLOCATION', ([], {}), '()\n', (885, 887), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((1034, 1045), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1042, 1045), True, 'import numpy as np\n'), ((8682, 8694), 'bioptim.BoundsList', 'BoundsList', ([], {}), '()\n', (8692, 8694), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((13751, 13785), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', '(2)'], {}), '(0, self.phase_time, 2)\n', (13762, 13785), True, 'import numpy as np\n'), ((13835, 13861), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x', 'y'], {}), '(x, y)\n', (13855, 13861), False, 'from scipy import interpolate\n'), ((13878, 13930), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', '(self.n_shooting + 1)'], {}), '(0, self.phase_time, self.n_shooting + 1)\n', (13889, 13930), True, 'import numpy as np\n'), ((16093, 16137), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', 'X0.shape[1]'], {}), '(0, self.phase_time, X0.shape[1])\n', (16104, 16137), True, 'import numpy as np\n'), ((16165, 16191), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x', 'y'], {}), '(x, y)\n', (16185, 16191), False, 'from scipy import interpolate\n'), ((16208, 16260), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', '(self.n_shooting + 1)'], {}), '(0, self.phase_time, self.n_shooting + 1)\n', (16219, 16260), True, 'import numpy as np\n'), ((16518, 16562), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', 'U0.shape[1]'], {}), '(0, self.phase_time, U0.shape[1])\n', (16529, 16562), True, 'import numpy as np\n'), ((16590, 16616), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x', 'y'], {}), '(x, y)\n', (16610, 16616), False, 'from scipy import interpolate\n'), ((16633, 16681), 'numpy.linspace', 'np.linspace', (['(0)', 'self.phase_time', 'self.n_shooting'], {}), '(0, self.phase_time, self.n_shooting)\n', (16644, 16681), True, 'import numpy as np\n'), ((1450, 1481), 'biorbd_casadi.Model', 'biorbd.Model', (['biorbd_model_path'], {}), '(biorbd_model_path)\n', (1462, 1481), True, 'import biorbd_casadi as biorbd\n'), ((2481, 2495), 'bioptim.DynamicsList', 'DynamicsList', ([], {}), '()\n', (2493, 2495), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2527, 2543), 'bioptim.ConstraintList', 'ConstraintList', ([], {}), '()\n', (2541, 2543), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2583, 2598), 'bioptim.ObjectiveList', 'ObjectiveList', ([], {}), '()\n', (2596, 2598), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2636, 2657), 'bioptim.PhaseTransitionList', 'PhaseTransitionList', ([], {}), '()\n', (2655, 2657), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2686, 2698), 'bioptim.BoundsList', 'BoundsList', ([], {}), '()\n', (2696, 2698), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2727, 2739), 'bioptim.BoundsList', 'BoundsList', ([], {}), '()\n', (2737, 2739), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2803, 2821), 'bioptim.InitialGuessList', 'InitialGuessList', ([], {}), '()\n', (2819, 2821), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((2848, 2866), 'bioptim.InitialGuessList', 'InitialGuessList', ([], {}), '()\n', (2864, 2866), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((3296, 3658), 'bioptim.OptimalControlProgram', 'OptimalControlProgram', (['self.biorbd_model', 'self.dynamics', 'self.n_shooting', 'self.phase_time'], {'x_init': 'self.x_init', 'x_bounds': 'self.x_bounds', 'u_init': 'self.u_init', 'u_bounds': 'self.u_bounds', 'objective_functions': 'self.objective_functions', 'constraints': 'self.constraints', 'n_threads': 'n_threads', 'control_type': 'self.control_type', 'ode_solver': 'ode_solver', 'use_sx': 'use_sx'}), '(self.biorbd_model, self.dynamics, self.n_shooting,\n self.phase_time, x_init=self.x_init, x_bounds=self.x_bounds, u_init=\n self.u_init, u_bounds=self.u_bounds, objective_functions=self.\n objective_functions, constraints=self.constraints, n_threads=n_threads,\n control_type=self.control_type, ode_solver=ode_solver, use_sx=use_sx)\n', (3317, 3658), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((12863, 12875), 'numpy.array', 'np.array', (['q0'], {}), '(q0)\n', (12871, 12875), True, 'import numpy as np\n'), ((13020, 13032), 'numpy.array', 'np.array', (['q0'], {}), '(q0)\n', (13028, 13032), True, 'import numpy as np\n'), ((13798, 13820), 'numpy.array', 'np.array', (['[X0i, X0end]'], {}), '([X0i, X0end])\n', (13806, 13820), True, 'import numpy as np\n'), ((2318, 2351), 'numpy.array', 'np.array', (['[0, step_length / 2, 0]'], {}), '([0, step_length / 2, 0])\n', (2326, 2351), True, 'import numpy as np\n'), ((2418, 2451), 'numpy.array', 'np.array', (['[0, step_length / 2, 0]'], {}), '([0, step_length / 2, 0])\n', (2426, 2451), True, 'import numpy as np\n'), ((14472, 14500), 'numpy.repeat', 'np.repeat', (['X0', '(n + 1)'], {'axis': '(1)'}), '(X0, n + 1, axis=1)\n', (14481, 14500), True, 'import numpy as np\n'), ((8741, 8782), 'bioptim.QAndQDotAndQDDotBounds', 'QAndQDotAndQDDotBounds', (['self.biorbd_model'], {}), '(self.biorbd_model)\n', (8763, 8782), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n'), ((8972, 9005), 'bioptim.QAndQDotBounds', 'QAndQDotBounds', (['self.biorbd_model'], {}), '(self.biorbd_model)\n', (8986, 9005), False, 'from bioptim import OdeSolver, Node, OptimalControlProgram, ConstraintFcn, DynamicsFcn, ObjectiveFcn, QAndQDotBounds, QAndQDotAndQDDotBounds, ConstraintList, ObjectiveList, DynamicsList, Bounds, BoundsList, InitialGuessList, ControlType, Solver, InitialGuess, InterpolationType, PhaseTransitionList, PhaseTransitionFcn, RigidBodyDynamics\n')]
import os from pathlib import Path import numpy as np import pandas as pd import spacy from spacy.compat import pickle import lz4.frame from tqdm import tqdm from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping from ehr_classification.tokenizer import get_features, get_custom_tokenizer from ehr_classification.classifier_model import compile_lstm def run_multiple_models(df, features, weights, word_vectors, max_note_length=2000, batch_size=64, gpu_device='0' ): ''' Run model on infile, adds columns for predictions and save it to outfile :param df: :param features: :param weights: :param word_vectors: :param max_note_length: :param batch_size: :param gpu_device: :return: ''' # use specified gpu device os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_device) nlp = get_custom_tokenizer(word_vectors) embeddings = nlp.vocab.vectors.data model = compile_lstm(embeddings, {'nr_hidden': 64, 'max_length': max_note_length, 'nr_class': 4}, {'dropout': 0.5, 'lr': 0.0001}) for target, weight in tqdm(list(weights.items())): model.load_weights(weight) print(f'Predicting {target}.') predictions = model.predict(features, batch_size=batch_size, verbose=True) print(f'Done predicting {target}.') df[(target + '_predictions')] = predictions[0] df[(target + '_raw')] = predictions[1] return df def run_multiple_models_pickle(infile, outfile, word_vectors, overwrite=False, **kwargs ): # only run when not already there outfile = Path(outfile) if not outfile.exists() or overwrite: outfile.touch() from .utils import lz4_load data_dict = lz4_load(infile) predictions = run_multiple_models(df=data_dict['meta'], features=data_dict['data'], word_vectors=word_vectors, **kwargs) print('Writing to file') predictions.to_parquet(outfile) print('Done writing to file') def run_multiple_models_parquet(infile, outfile, word_vectors, note_column='NoteTXT', max_note_length=2000, **kwargs ): def select_rows(df): # Remove rows with empty note text df = pd.DataFrame(df.loc[df[note_column].notnull()]) return df eval_data = pd.read_parquet(infile) lz4_file = infile.replace('.parquet', '.pic.lz4') if Path(lz4_file).exists(): print('Loading features') with lz4.frame.open(lz4_file, mode='r') as f: eval_docs = pickle.load(f) else: print('Extracting tokens') tokenizer = get_custom_tokenizer(word_vectors) note_texts = eval_data[note_column] tokens = list(tokenizer.pipe(note_texts)) print('Extracting features') eval_features = get_features(tokens, max_note_length) eval_data = select_rows(eval_data) eval_data = run_multiple_models(df=eval_data, features=eval_features, word_vectors=word_vectors, **kwargs) print('Writing to file') eval_data.to_parquet(outfile) print('Done writing to file') def run_current_models(infile, outfile, classifier_type, input_type='parquet', **kwargs): # use models and vectors path from environment (or use defaults) models_path = os.getenv("PREDICT_EHR_MODELS") if not models_path: models_path = '/mnt/obi0/phi/ehr/models/' vectors_path = os.getenv("PREDICT_EHR_VECTORS") if not vectors_path: vectors_path = '/mnt/obi0/phi/ehr/word_vectors/filtered_20-05-23.bigram' if classifier_type == 'event': weights = { 'Event_PCI': f'{models_path}/Events/PCI/LSTM_CNN_BEST_model.hdf5', 'Event_ACS': f'{models_path}/Events/ACS/LSTM_CNN_BEST_model.hdf5', 'Event_HF': f'{models_path}/Events/HF/LSTM_CNN_BEST_model.hdf5', 'Event_IS': f'{models_path}/Events/IS/LSTM_CNN_BEST_model.hdf5' } elif classifier_type == 'history': weights = { 'History_CAD': f'{models_path}/History/CAD/LSTM_CNN_BEST_model.hdf5', 'History_CAD_UI': f'{models_path}/History/CAD_UI/LSTM_CNN_BEST_model.hdf5', 'History_HF': f'{models_path}/History/HF/LSTM_CNN_BEST_model.hdf5', 'History_HF_UI': f'{models_path}/History/HF_UI/LSTM_CNN_BEST_model.hdf5', } else: raise NotImplementedError print(f'Predicting using weights: {weights}') if input_type == 'parquet': run_multiple_models_parquet(infile=infile, outfile=outfile, weights=weights, word_vectors=vectors_path, **kwargs) elif input_type == 'pickle': run_multiple_models_pickle(infile=infile, outfile=outfile, weights=weights, word_vectors=vectors_path, **kwargs) def predict(output_directory, classifier_type: ('note classifier, `event` or `history`', 'option', 't') = 'event', gpu: ('gpu to use', 'option', 'g') = 0, gpu_offset: ('subtract gpu offset', 'option', 's') = 0, input_type: ('input type, can be `parquet` or `pickle`', 'option', 'i') = 'parquet', *file_names): """Takes one or more parquet files and writes tokenized text to output file. # set environment variables for models and word vectors export PREDICT_EHR_VECTORS=en_core_web_lg export PREDICT_EHR_MODELS=PATH/TO/MODELS # run predictions for events on one or more parquet files predict_ehr -t event out_dir text1.parquet predict_ehr -t event out_dir text1.parquet text2.parquet text3.parquet # run on multiple files in parallel with 4 gpus, using text that has been tokenized before: 'parallel -j 4 predict_ehr . -t event -g {%} -s 1 -i pickle {} ::: *.pic.lz4' 'parallel -j 4 predict_ehr . -t history -g {%} -s 1 -i pickle {} ::: *.pic.lz4' """ print(f'Predicting with the following input files: {file_names}') for infile in file_names: input_file = Path(infile) assert Path(output_directory).exists() output_file = Path(output_directory) / (input_file.name + '.predictions.pq') print('Processing', infile) run_current_models(infile, str(output_file), classifier_type=classifier_type, gpu_device=int(gpu) - int(gpu_offset), input_type=input_type) def predict_(): """Entry point for console_scripts """ import plac plac.call(predict) def train_model(train_texts, train_labels, validation_texts, validation_labels, model_name, output_path='.', max_note_length=2000, learning_rate=0.0001, epochs=150, batch_size=64, gpu_device='0', save_best_only=True, **kwargs): """ Train a model with train_texts and train_labels and validate on validation_texts and validation_labels. train_texts: array of notes to be used for model training. train_labels: a binary label to be used for training. The index should correspond to the train_texts """ # use specified gpu device os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_device) # use word vectors from environment variable (or defaults) vectors_path = os.getenv("PREDICT_EHR_VECTORS") if not vectors_path: vectors_path = '/mnt/obi0/phi/ehr/word_vectors/filtered_20-05-23.bigram' nlp = get_custom_tokenizer(vectors_path) embeddings = nlp.vocab.vectors.data print('Parsing texts...') train_docs = list(nlp.pipe(train_texts, batch_size=2000)) validation_docs = list(nlp.pipe(validation_texts, batch_size=2000)) train_x = get_features(train_docs, max_note_length) validation_x = get_features(validation_docs, max_note_length) train_labels = [train_labels, train_labels] validation_labels = [validation_labels, validation_labels] model = compile_lstm(embeddings, {'max_length': max_note_length}, {'lr': learning_rate}) # define callbacks checkpoint_file = model_name + '_{epoch:02d}-{val_loss:.2f}.hdf5' checkpoint_path = os.path.join(output_path, 'checkpoints', checkpoint_file) print(f'Saving checkpoints to {checkpoint_path}') checkpoint_callback = ModelCheckpoint( filepath=checkpoint_path, monitor='val_loss', save_best_only=save_best_only, save_weights_only=True ) tensorboard_path = os.path.join(output_path, 'tensorboard', model_name) print(f'Writing tensorboard output to {tensorboard_path}') tensorboard_callback = TensorBoard( log_dir=tensorboard_path, write_graph=False, profile_batch=0 ) early_stopping_callback = EarlyStopping(monitor='val_loss', patience=50) print('Training...') model.fit(train_x, train_labels, validation_data=(validation_x, validation_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpoint_callback, tensorboard_callback, early_stopping_callback]) return model def train(labels_path, model_name, output_path, epochs: ('number of epochs', 'option', 'e') = 150, gpu: ('gpu to use', 'option', 'g') = 0, gpu_offset: ('subtract gpu offset', 'option', 's') = 0, testrun: ('do short testrun on 200 samples', 'flag', 't') = False, all_checkpoints: ('save all or best checkpoint only', 'flag', 'a') = False): """Basic training method that takes parquet file with labeled data, splits into training and validation set and trains model (with early stopping). # first configure a spacy model to use as word vector mapping export PREDICT_EHR_VECTORS=en_core_web_lg # then train a classifier model given labels train_ehr --gpu 0 mgb_predictions_event/Event_PCI_labels.parquet Event_PCI mimic_models_event """ if not Path(output_path).exists(): Path(output_path).mkdir(parents=True) print('Processing', labels_path) labels_df = pd.read_parquet(labels_path) # shuffle the labels labels_df = labels_df.sample(frac=1, random_state=42) if testrun: labels_df = labels_df.iloc[:100] # split into two sets for training and validation train_df, validation_df = np.array_split(labels_df, 2) print(f'Train data shape: {train_df.shape}') print(f'Validation data shape: {validation_df.shape}') print(f'Training model: {model_name}') model = train_model(train_texts=train_df['NoteTXT'], train_labels=train_df['label'], validation_texts=validation_df['NoteTXT'], validation_labels=validation_df['label'], model_name=model_name, output_path=output_path, epochs=int(epochs), save_best_only=not all_checkpoints, gpu_device=int(gpu) - int(gpu_offset)) model.save_weights(os.path.join(output_path, model_name + '.hdf5')) def train_(): """Entry point for console_scripts """ import plac plac.call(train) if __name__ == "__main__": predict_()
[ "ehr_classification.classifier_model.compile_lstm", "tensorflow.keras.callbacks.TensorBoard", "plac.call", "tensorflow.keras.callbacks.ModelCheckpoint", "ehr_classification.tokenizer.get_custom_tokenizer", "pathlib.Path", "tensorflow.keras.callbacks.EarlyStopping", "pandas.read_parquet", "numpy.array_split", "ehr_classification.tokenizer.get_features", "os.path.join", "os.getenv", "spacy.compat.pickle.load" ]
[((1076, 1110), 'ehr_classification.tokenizer.get_custom_tokenizer', 'get_custom_tokenizer', (['word_vectors'], {}), '(word_vectors)\n', (1096, 1110), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((1163, 1288), 'ehr_classification.classifier_model.compile_lstm', 'compile_lstm', (['embeddings', "{'nr_hidden': 64, 'max_length': max_note_length, 'nr_class': 4}", "{'dropout': 0.5, 'lr': 0.0001}"], {}), "(embeddings, {'nr_hidden': 64, 'max_length': max_note_length,\n 'nr_class': 4}, {'dropout': 0.5, 'lr': 0.0001})\n", (1175, 1288), False, 'from ehr_classification.classifier_model import compile_lstm\n'), ((2008, 2021), 'pathlib.Path', 'Path', (['outfile'], {}), '(outfile)\n', (2012, 2021), False, 'from pathlib import Path\n'), ((2998, 3021), 'pandas.read_parquet', 'pd.read_parquet', (['infile'], {}), '(infile)\n', (3013, 3021), True, 'import pandas as pd\n'), ((4063, 4094), 'os.getenv', 'os.getenv', (['"""PREDICT_EHR_MODELS"""'], {}), "('PREDICT_EHR_MODELS')\n", (4072, 4094), False, 'import os\n'), ((4188, 4220), 'os.getenv', 'os.getenv', (['"""PREDICT_EHR_VECTORS"""'], {}), "('PREDICT_EHR_VECTORS')\n", (4197, 4220), False, 'import os\n'), ((7503, 7521), 'plac.call', 'plac.call', (['predict'], {}), '(predict)\n', (7512, 7521), False, 'import plac\n'), ((8458, 8490), 'os.getenv', 'os.getenv', (['"""PREDICT_EHR_VECTORS"""'], {}), "('PREDICT_EHR_VECTORS')\n", (8467, 8490), False, 'import os\n'), ((8607, 8641), 'ehr_classification.tokenizer.get_custom_tokenizer', 'get_custom_tokenizer', (['vectors_path'], {}), '(vectors_path)\n', (8627, 8641), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((8861, 8902), 'ehr_classification.tokenizer.get_features', 'get_features', (['train_docs', 'max_note_length'], {}), '(train_docs, max_note_length)\n', (8873, 8902), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((8922, 8968), 'ehr_classification.tokenizer.get_features', 'get_features', (['validation_docs', 'max_note_length'], {}), '(validation_docs, max_note_length)\n', (8934, 8968), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((9093, 9178), 'ehr_classification.classifier_model.compile_lstm', 'compile_lstm', (['embeddings', "{'max_length': max_note_length}", "{'lr': learning_rate}"], {}), "(embeddings, {'max_length': max_note_length}, {'lr': learning_rate}\n )\n", (9105, 9178), False, 'from ehr_classification.classifier_model import compile_lstm\n'), ((9291, 9348), 'os.path.join', 'os.path.join', (['output_path', '"""checkpoints"""', 'checkpoint_file'], {}), "(output_path, 'checkpoints', checkpoint_file)\n", (9303, 9348), False, 'import os\n'), ((9429, 9549), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', ([], {'filepath': 'checkpoint_path', 'monitor': '"""val_loss"""', 'save_best_only': 'save_best_only', 'save_weights_only': '(True)'}), "(filepath=checkpoint_path, monitor='val_loss',\n save_best_only=save_best_only, save_weights_only=True)\n", (9444, 9549), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping\n'), ((9591, 9643), 'os.path.join', 'os.path.join', (['output_path', '"""tensorboard"""', 'model_name'], {}), "(output_path, 'tensorboard', model_name)\n", (9603, 9643), False, 'import os\n'), ((9734, 9807), 'tensorflow.keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': 'tensorboard_path', 'write_graph': '(False)', 'profile_batch': '(0)'}), '(log_dir=tensorboard_path, write_graph=False, profile_batch=0)\n', (9745, 9807), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping\n'), ((9860, 9906), 'tensorflow.keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': '(50)'}), "(monitor='val_loss', patience=50)\n", (9873, 9906), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping\n'), ((11180, 11208), 'pandas.read_parquet', 'pd.read_parquet', (['labels_path'], {}), '(labels_path)\n', (11195, 11208), True, 'import pandas as pd\n'), ((11433, 11461), 'numpy.array_split', 'np.array_split', (['labels_df', '(2)'], {}), '(labels_df, 2)\n', (11447, 11461), True, 'import numpy as np\n'), ((12277, 12293), 'plac.call', 'plac.call', (['train'], {}), '(train)\n', (12286, 12293), False, 'import plac\n'), ((3300, 3334), 'ehr_classification.tokenizer.get_custom_tokenizer', 'get_custom_tokenizer', (['word_vectors'], {}), '(word_vectors)\n', (3320, 3334), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((3490, 3527), 'ehr_classification.tokenizer.get_features', 'get_features', (['tokens', 'max_note_length'], {}), '(tokens, max_note_length)\n', (3502, 3527), False, 'from ehr_classification.tokenizer import get_features, get_custom_tokenizer\n'), ((6981, 6993), 'pathlib.Path', 'Path', (['infile'], {}), '(infile)\n', (6985, 6993), False, 'from pathlib import Path\n'), ((12145, 12192), 'os.path.join', 'os.path.join', (['output_path', "(model_name + '.hdf5')"], {}), "(output_path, model_name + '.hdf5')\n", (12157, 12192), False, 'import os\n'), ((3083, 3097), 'pathlib.Path', 'Path', (['lz4_file'], {}), '(lz4_file)\n', (3087, 3097), False, 'from pathlib import Path\n'), ((3220, 3234), 'spacy.compat.pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3231, 3234), False, 'from spacy.compat import pickle\n'), ((7063, 7085), 'pathlib.Path', 'Path', (['output_directory'], {}), '(output_directory)\n', (7067, 7085), False, 'from pathlib import Path\n'), ((7009, 7031), 'pathlib.Path', 'Path', (['output_directory'], {}), '(output_directory)\n', (7013, 7031), False, 'from pathlib import Path\n'), ((11053, 11070), 'pathlib.Path', 'Path', (['output_path'], {}), '(output_path)\n', (11057, 11070), False, 'from pathlib import Path\n'), ((11089, 11106), 'pathlib.Path', 'Path', (['output_path'], {}), '(output_path)\n', (11093, 11106), False, 'from pathlib import Path\n')]
import math import warnings from collections import OrderedDict from enum import Enum import efel import matplotlib.pyplot as plt import numpy as np from lib.Model import Model from lib.NrnModel import NrnModel class Level(Enum): HIGH = 0.5 MID = 5.0 LOW = 10.0 VLOW = 50.0 EFEL_NAME_MAP = { "AP Amplitude": "AP_amplitude", "AP Height": "AP_height", "AP Width": "AP_width", "AHP Absolute Depth": "AHP_depth_abs", "AHP time from peak": "AHP_time_from_peak", "Spike Count": "Spikecount", "Time to First Spike": "time_to_first_spike", } EFEL2NAME_MAP = {v: k for k, v in EFEL_NAME_MAP.items()} def _zero_valued_dict(keys): return dict.fromkeys(keys, 0) class EfelMeasurements(): def __init__(self, model:Model , config: dict): self.cell = model self.voltage = None self.t = None self.delay = None self.duration = None self.current_amplitude = None self.Tstop = None self.trace = {} self._setup(config) def _setup(self, config): self.voltage, self.t = self.cell.stimulateCell( float(config["Amplitude"]), float( config["Duration"]), float(config["Delay"]), float( config["T stop"]), config["Stimulus Section"], config["Recording Section"], clampAt=float(config["Stimulus Position"]), recordAt=float(config["Recording Position"]), init=float(config["Vinit"])) self.delay = float(config["Delay"]) self.duration = float(config["Duration"]) self.Tstop = float(config["T stop"]) self.current_amplitude = float(config["Amplitude"]) self._initialize() def _initialize(self): # start = sorted(self._closeMatches(self.t,delay,0.025),key=lambda x: x[0])[0][0] # end = sorted(self._closeMatches(self.t,delay+duration,0.025),key=lambda x: x[0])[0][0] # print(t[2]-t[1]) efel.setDoubleSetting('stimulus_current', self.current_amplitude) efel.setIntSetting("strict_stiminterval", True) self.trace['T'] = self.t self.trace['V'] = self.voltage # max because delay may be less than 5ms self.trace['stim_start'] = [max(self.delay-5, 0)] self.trace['stim_end'] = [self.Tstop] return self.voltage, self.t def get_measurements(self, outputDict: dict,featureNames: list): traces = [self.trace] efel_feature_names = self._convert_to_efel_names(featureNames) warnings.filterwarnings("ignore", category=RuntimeWarning) check_peaks = efel.getFeatureValues(traces, ["Spikecount_stimint"]) if check_peaks[0]["Spikecount_stimint"][0] == 0: return _zero_valued_dict(featureNames) amplitudes = efel.getFeatureValues(traces, ["AP_amplitude"]) if (amplitudes[0]["AP_amplitude"] is None): # print("efel failed",len(traces_results[0]["AP_amplitude"]) , len(traces_results[0]["AP_height"])) print(f"n spikes are {check_peaks[0]['Spikecount_stimint'][0]}") return _zero_valued_dict(featureNames) traces_results = efel.getFeatureValues(traces, efel_feature_names) warnings.filterwarnings("default", category=RuntimeWarning) for trace_results in traces_results: # trace_result is a dictionary, with as keys the requested eFeatures for feature_name, feature_values in trace_results.items(): if len(feature_values) > 0: outputDict[EFEL2NAME_MAP[feature_name] ] = np.mean(feature_values) else: print(f"{feature_name} failed") print(f"{feature_name} equals {feature_values}") outputDict[EFEL2NAME_MAP[feature_name]] = 0 if "Time to First Spike" in list(outputDict.keys()): if outputDict["Time to First Spike"] !=0: outputDict["Time to First Spike"] +=self.delay self.measurements = outputDict # for name in featureNames: # if name == "Input Resistance": # self.measurements[name] = self.inputResistance(-0.5, # plotting=False, printing=False) # elif name == "Rheobase": # self.measurements[name] = self.Rheobase( # Level.VLOW, 1, plotting=False, printing=False) # elif name == "Time Constant": # self.measurements[name] = self.timeConstant( # -0.5, plotting=False, printing=False) return self.measurements def _closeMatches(self, lst: list, findVal, tolerance): """ find a list of closest matches to a specific value with a spicified tolerance Args: :param lst: target list to search into :param findVal: target value :param tolerance: accepted error in matches :return: list of (value,index) pairs """ # matches = [(val,index) for index,val in enumerate(lst) if abs(val - findVal) < tolerance] matches = [(val, index) for index, val in enumerate(lst) if math.isclose(val, findVal, abs_tol=tolerance)] return matches def _convert_to_efel_names(self, regular_feature_names: list): efel_feature_names = [] for fName in regular_feature_names: if fName not in list(EFEL_NAME_MAP.keys()): raise ValueError( f" Feature: '{fName}' is not availabe in Efel or not spelled well") efel_feature_names.append(EFEL_NAME_MAP[fName]) return efel_feature_names if __name__ == '__main__': fig, ax = plt.subplots() for i in range(1): delay = 150 # 150 duration = 1 current = 21 efel.setDoubleSetting('stimulus_current', current) # efel.setDoubleSetting('interp_step', 0.025) # efel.setIntSetting("strict_stiminterval", True) testEFEL = EfelMeasurements() testEFEL.stimulateCell(current, duration, delay, testEFEL.iseg, 0.5, 500) testEFEL.get_measurements(["Spikecount", "time_to_first_spike", "AP_amplitude", "AP_height", 'AP_width', 'AHP_depth_abs', "AHP_time_from_peak"]) testEFEL.model.graphVolt( testEFEL.voltage, testEFEL.t, "trace", ax, color=np.random.rand(3,)) # ax.set_color("red") plt.show()
[ "matplotlib.pyplot.show", "warnings.filterwarnings", "efel.setDoubleSetting", "efel.setIntSetting", "efel.getFeatureValues", "numpy.mean", "math.isclose", "numpy.random.rand", "matplotlib.pyplot.subplots" ]
[((5889, 5903), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5901, 5903), True, 'import matplotlib.pyplot as plt\n'), ((6657, 6667), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6665, 6667), True, 'import matplotlib.pyplot as plt\n'), ((2056, 2121), 'efel.setDoubleSetting', 'efel.setDoubleSetting', (['"""stimulus_current"""', 'self.current_amplitude'], {}), "('stimulus_current', self.current_amplitude)\n", (2077, 2121), False, 'import efel\n'), ((2130, 2177), 'efel.setIntSetting', 'efel.setIntSetting', (['"""strict_stiminterval"""', '(True)'], {}), "('strict_stiminterval', True)\n", (2148, 2177), False, 'import efel\n'), ((2619, 2677), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning'}), "('ignore', category=RuntimeWarning)\n", (2642, 2677), False, 'import warnings\n'), ((2700, 2753), 'efel.getFeatureValues', 'efel.getFeatureValues', (['traces', "['Spikecount_stimint']"], {}), "(traces, ['Spikecount_stimint'])\n", (2721, 2753), False, 'import efel\n'), ((2884, 2931), 'efel.getFeatureValues', 'efel.getFeatureValues', (['traces', "['AP_amplitude']"], {}), "(traces, ['AP_amplitude'])\n", (2905, 2931), False, 'import efel\n'), ((3251, 3300), 'efel.getFeatureValues', 'efel.getFeatureValues', (['traces', 'efel_feature_names'], {}), '(traces, efel_feature_names)\n', (3272, 3300), False, 'import efel\n'), ((3309, 3368), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""default"""'], {'category': 'RuntimeWarning'}), "('default', category=RuntimeWarning)\n", (3332, 3368), False, 'import warnings\n'), ((6004, 6054), 'efel.setDoubleSetting', 'efel.setDoubleSetting', (['"""stimulus_current"""', 'current'], {}), "('stimulus_current', current)\n", (6025, 6054), False, 'import efel\n'), ((5358, 5403), 'math.isclose', 'math.isclose', (['val', 'findVal'], {'abs_tol': 'tolerance'}), '(val, findVal, abs_tol=tolerance)\n', (5370, 5403), False, 'import math\n'), ((6603, 6620), 'numpy.random.rand', 'np.random.rand', (['(3)'], {}), '(3)\n', (6617, 6620), True, 'import numpy as np\n'), ((3711, 3734), 'numpy.mean', 'np.mean', (['feature_values'], {}), '(feature_values)\n', (3718, 3734), True, 'import numpy as np\n')]
#!/usr/bin/env python3.7 import unittest import numpy import os import librosa import soundfile import sys from tempfile import TemporaryDirectory def main(): dest = "tests/test_1_note_Csharp3.wav" tone = librosa.tone(138.59, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with note C#3".format(dest)) dest = "tests/test_1_note_E4.wav" tone = librosa.tone(329.63, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with note E4".format(dest)) dest = "tests/test_2_notes_E2_F3.wav" tone = numpy.zeros(44100) tone += librosa.tone(82.41, sr=22050, length=44100) tone += librosa.tone(174.61, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes E2, F3".format(dest)) dest = "tests/test_2_notes_G3_Asharp4.wav" tone = numpy.zeros(44100) tone += librosa.tone(196, sr=22050, length=44100) tone += librosa.tone(466.16, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes G3, A#4".format(dest)) dest = "tests/test_3_notes_G2_B2_G#3.wav" tone = numpy.zeros(44100) tone += librosa.tone(98, sr=22050, length=44100) tone += librosa.tone(123.47, sr=22050, length=44100) tone += librosa.tone(207.65, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes G2, B2, G#3".format(dest)) return 0 if __name__ == "__main__": sys.exit(main())
[ "librosa.tone", "numpy.zeros", "soundfile.write" ]
[((216, 260), 'librosa.tone', 'librosa.tone', (['(138.59)'], {'sr': '(22050)', 'length': '(44100)'}), '(138.59, sr=22050, length=44100)\n', (228, 260), False, 'import librosa\n'), ((265, 299), 'soundfile.write', 'soundfile.write', (['dest', 'tone', '(22050)'], {}), '(dest, tone, 22050)\n', (280, 299), False, 'import soundfile\n'), ((402, 446), 'librosa.tone', 'librosa.tone', (['(329.63)'], {'sr': '(22050)', 'length': '(44100)'}), '(329.63, sr=22050, length=44100)\n', (414, 446), False, 'import librosa\n'), ((451, 485), 'soundfile.write', 'soundfile.write', (['dest', 'tone', '(22050)'], {}), '(dest, tone, 22050)\n', (466, 485), False, 'import soundfile\n'), ((591, 609), 'numpy.zeros', 'numpy.zeros', (['(44100)'], {}), '(44100)\n', (602, 609), False, 'import numpy\n'), ((622, 665), 'librosa.tone', 'librosa.tone', (['(82.41)'], {'sr': '(22050)', 'length': '(44100)'}), '(82.41, sr=22050, length=44100)\n', (634, 665), False, 'import librosa\n'), ((678, 722), 'librosa.tone', 'librosa.tone', (['(174.61)'], {'sr': '(22050)', 'length': '(44100)'}), '(174.61, sr=22050, length=44100)\n', (690, 722), False, 'import librosa\n'), ((727, 761), 'soundfile.write', 'soundfile.write', (['dest', 'tone', '(22050)'], {}), '(dest, tone, 22050)\n', (742, 761), False, 'import soundfile\n'), ((877, 895), 'numpy.zeros', 'numpy.zeros', (['(44100)'], {}), '(44100)\n', (888, 895), False, 'import numpy\n'), ((908, 949), 'librosa.tone', 'librosa.tone', (['(196)'], {'sr': '(22050)', 'length': '(44100)'}), '(196, sr=22050, length=44100)\n', (920, 949), False, 'import librosa\n'), ((962, 1006), 'librosa.tone', 'librosa.tone', (['(466.16)'], {'sr': '(22050)', 'length': '(44100)'}), '(466.16, sr=22050, length=44100)\n', (974, 1006), False, 'import librosa\n'), ((1011, 1045), 'soundfile.write', 'soundfile.write', (['dest', 'tone', '(22050)'], {}), '(dest, tone, 22050)\n', (1026, 1045), False, 'import soundfile\n'), ((1161, 1179), 'numpy.zeros', 'numpy.zeros', (['(44100)'], {}), '(44100)\n', (1172, 1179), False, 'import numpy\n'), ((1192, 1232), 'librosa.tone', 'librosa.tone', (['(98)'], {'sr': '(22050)', 'length': '(44100)'}), '(98, sr=22050, length=44100)\n', (1204, 1232), False, 'import librosa\n'), ((1245, 1289), 'librosa.tone', 'librosa.tone', (['(123.47)'], {'sr': '(22050)', 'length': '(44100)'}), '(123.47, sr=22050, length=44100)\n', (1257, 1289), False, 'import librosa\n'), ((1302, 1346), 'librosa.tone', 'librosa.tone', (['(207.65)'], {'sr': '(22050)', 'length': '(44100)'}), '(207.65, sr=22050, length=44100)\n', (1314, 1346), False, 'import librosa\n'), ((1351, 1385), 'soundfile.write', 'soundfile.write', (['dest', 'tone', '(22050)'], {}), '(dest, tone, 22050)\n', (1366, 1385), False, 'import soundfile\n')]
import numpy as np import itertools from scintillations.stream import modulate as apply_turbulence from scintillations.stream import transverse_speed from streaming.stream import Stream, BlockStream from streaming.signal import * import streaming.signal import logging from acoustics.signal import impulse_response_real_even import auraliser.tools logger = auraliser.tools.create_logger(__name__) def apply_atmospheric_attenuation(signal, fs, distance, nhop, atmosphere, ntaps, inverse=False, distance_reducer=np.mean): """Apply atmospheric attenuation to signal. :param distance: Iterable with distances. :param fs: Sample frequency. :param atmosphere: Atmosphere. :param ntaps: Amount of filter taps. :param sign: Sign. :rtype: :class:`streaming.Stream` Compute and apply the attenuation due to atmospheric absorption. The attenuation can change with distance. The attenuation is a magnitude-only filter. We design a linear-phase filter .. note:: The filter delay is compensated by dropping the first `ntaps//2` samples. """ # Partition `distance` into blocks, and reduce with `distance_reducer`. distance = distance.blocks(nhop).map(distance_reducer) ir = Stream(atmosphere.impulse_response(d, fs, ntaps=ntaps, inverse=inverse) for d in distance) signal = convolve_overlap_save(signal, ir, nhop, ntaps) signal = signal.samples().drop(int(ntaps//2)) # Linear phase, correct for group delay caused by FIR filter. return signal def apply_reflection_strength(emission, nhop, spectra, effective, ntaps, force_hard): """Apply mirror source strength. :param signal: Signal. :param nblock: Amount of samples per block. :param spectra: Spectrum per block. :param effective: Whether the source is effective or not. :param ntaps: Amount of filter taps. :param force_hard: Whether to force a hard ground. :returns: Signal with correct strength. .. warning:: This operation will cause a delay that may vary over time. """ if effective is not None: # We have an effectiveness value for each hop (which is a block of samples) emission = BlockStream(map(lambda x,y: x *y, emission.blocks(nhop), effective), nblock=nhop) if force_hard: logger.info("apply_reflection_strength: Hard ground.") else: logger.info("apply_reflection_strength: Soft ground.") impulse_responses = Stream(impulse_response_real_even(s, ntaps) for s in spectra) emission = convolve_overlap_save(emission, impulse_responses, nhop, ntaps) # Filter has a delay we need to correct for. emission = emission.samples().drop(int(ntaps//2)) return emission #def apply_ground_reflection(signal, ir, nblock): #"""Apply ground reflection strength. #:param signal: Signal before ground reflection strength is applied. #:param ir: Impulse response per block. #:param nblock: Amount of samples per block. #:returns: Signal after reflection strength is applied. #:type: :class:`streaming.BlockStream` #""" #signal = convolve(signal=signal, impulse_responses=ir, nblock=nblock) def apply_doppler(signal, delay, fs, initial_value=0.0, inverse=False): """Apply Doppler shift. :param signal: Signal before Doppler shift. :param delay: Propagation delay. :param fs: Constant sample frequency. :returns: Doppler-shifted signal. :rtype: :class:`streaming.Stream` """ if inverse: delay = delay * -1 # Unary operators are not yet implemented in Stream return vdl(signal, times(1./fs), delay, initial_value=initial_value) def apply_spherical_spreading(signal, distance, inverse=False):#, nblock): """Apply spherical spreading. :param signal. Signal. Iterable. :param distance: Distance. Iterable. :param nblock: Amount of samples in block. """ if inverse: return signal * distance else: return signal / distance #def undo_reflection(signal, nhop, impedance, angle, ntaps, force_hard): #"""Undo reflection #:param signal: Signal. #:param nhop: Hop size. #:param impedance: Fixed impedance. #:param angle: Angle per hop. #:param ntaps: Taps. #:param force_hard: Whether to assume infinite impedance. #""" #if force_hard: #tf = #strength = Stream(reflection_factor_plane_wave(impedance, a) for a in angles.samples()) #tf = 1. / (1. + strength) #impulse_responses = Stream(atmosphere.impulse_response(d, fs, ntaps=ntaps, inverse=inverse) for d in distance) #signal = convolve_overlap_save(signal, impulse_responses, nhop, ntaps) def nextpow2(x): return int(2**np.ceil(np.log2(x)))
[ "numpy.log2", "acoustics.signal.impulse_response_real_even" ]
[((2442, 2478), 'acoustics.signal.impulse_response_real_even', 'impulse_response_real_even', (['s', 'ntaps'], {}), '(s, ntaps)\n', (2468, 2478), False, 'from acoustics.signal import impulse_response_real_even\n'), ((4702, 4712), 'numpy.log2', 'np.log2', (['x'], {}), '(x)\n', (4709, 4712), True, 'import numpy as np\n')]
#!/usr/bin/env python #Copyright (c) 2014, <NAME> <<EMAIL>> #All rights reserved. # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are met: # #* Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # #* Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE #FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL #DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR #SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, #OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ccl_c_dir="ccl_single_pass_c_code/" import subprocess import signal import glob import os import re import numpy as np import threading from PIL import Image from cola import ComponentLabeling as cola from converter import Img_conv as Img_conv class CompareCP: def get_error_cnt (self): return self.__error_cnt def get_report (self): return self.__report def __init__(self, timeout, max_x, max_y, file_show=None): self.__timeout = timeout self.__report = "" self.__error_cnt = 0 self.__c_box = [] # convert images try: os.mkdir(ccl_c_dir + "/img"); except: None for files in glob.glob(ccl_c_dir + "/img/*.pbm"): os.remove(files) destreg = re.compile(r".*/(.*)$") file_chk="" file_cnt=0 if file_show is None: for files in glob.glob("../img/*.pbm"): if files != "../img/sim_in.pbm" and files != "../img\\sim_in.pbm": img = Img_conv(files, max_x, max_y, 0.5) m = destreg.match(files) if m.group(1) is not None: file_cnt+=1 file_chk+="img/" + m.group(1) + "\n" img.save(ccl_c_dir + "/img/" + m.group(1)) else: img = Img_conv(file_show, max_x, max_y, 0.5) m = destreg.match(file_show) if m.group(1) is not None: file_cnt+=1 file_chk+="img/" + m.group(1) + "\n" img.save(ccl_c_dir + "/img/" + m.group(1)) f = open(ccl_c_dir + "/test_batch_01.txt", "w") f.write(str(file_cnt) + "\n" + file_chk) f.close() del f self.get_c_box() if file_show is None: for files in glob.glob("../img/*.pbm"): if files != "../img/sim_in.pbm" and files != "../img\\sim_in.pbm": file_cnt+=1 pycola = cola(files, max_x=max_x, max_y=max_y); self.chk_file(files, pycola) del pycola else: pycola = cola(file_show, max_x=max_x, max_y=max_y); c_boxes=self.chk_file(file_show, pycola) print((str(c_boxes))) pycola.plot_sp_add('Boxes C', None, c_boxes) def chk_file(self, files, pycola): self.__report += "Check file: " + files + "\n" py_boxes = pycola.get_boxes().copy() c_boxes = {} box_cnt = 0 for b in py_boxes: ((py_start_x, py_start_y), (py_end_x, py_end_y)) = py_boxes[b] found = False for bc in self.__c_box: (stim_file, c_start_y, c_start_x, c_end_y, c_end_x) = bc c_end_x -= 1 c_end_y -= 1 c_boxes[str(c_start_x) + str(c_start_y) + str(c_end_x) + str(c_end_y)] = ((c_start_x, c_start_y), (c_end_x, c_end_y)) box_cnt += 1 if stim_file == files[3:] and py_start_x == c_start_x and py_start_y == c_start_y and py_end_x == c_end_x and py_end_y == c_end_y: found = True self.__c_box.remove(bc) break if not found: self.__report += "\033[91mError\033[0m" + " Python Box: ((" + str(py_start_x) self.__report += ", " + str(py_start_y) + "), (" + str(py_end_x) + ", " + str(py_end_y) + ")" self.__report += " not in C implementation\n" self.__error_cnt += 1 for bc in self.__c_box: (stim_file, c_start_y, c_start_x, c_end_y, c_end_x) = bc c_end_x -= 1 c_end_y -= 1 if stim_file == files[3:]: self.__report += "\033[91mError\033[0m" + " C Box: ((" + str(c_start_x) self.__report += ", " + str(c_start_y) + "), (" + str(c_end_x) + ", " + str(c_end_y) + ")" self.__report += " not in Python implementation\n" self.__error_cnt += 1 del pycola return c_boxes def get_c_box(self): c_box = C_parser() c_box.start() while not c_box.done: c_box.event.wait(self.__timeout) if not c_box.event.is_set(): break; if not c_box.done: self.__report += "\033[91mError\033[0m" + " Verification with C Code timedout\n" self.__error_cnt += 1 else: self.__c_box = c_box.getMessages() del c_box class CompareF: def get_py_lable (self): return self.__py_lable def get_hdl_lable (self): return self.__hdl_lable def get_hdl_boxes (self): return self.__hdl_boxes def get_error_cnt (self): return self.__error_cnt def get_report (self): return self.__report def get_pycola(self): return self.__pycola def __init__(self, stim_file, passone, timeout, wdir, hdl_file, box_only, resolution, max_x, max_y, continuous, run_only=False): self.__timeout = timeout self.__wdir = wdir self.__max_x__ = max_x self.__max_y__ = max_y self.__passone__ = passone self.__continuous__ = continuous self.__resolution__ = resolution self.__hdl_file__ = hdl_file self.__stim_file__ = stim_file self.__regmeta = re.compile(r".*metavalue detected.*") self.__py_colas = {} self.__py_lables = {} self.__hdl_lables = {} self.__px_boxes = {} self.__hdl_boxes = {} self.__report = "" self.__error_cnt=0 if not run_only: self.__prepare__() else: #write stimulus file j = Image.fromarray(self.__stim_file__.astype(np.uint8)) j.mode = "1"; j.save("../img/sim_in.pbm") del j def __prepare__(self): from cola import ComponentLabeling as cola self.__pycola = cola(self.__stim_file__, max_x=self.__max_x__, max_y=self.__max_y__); #labels of first pass if self.__passone__: self.__py_lable = self.__pycola.get_lable_f() else: self.__py_lable = self.__pycola.get_lable_s() #generate empty array to store results of vhdl output self.__hdl_lable = -1*np.ones(self.__py_lable.shape, dtype=np.int) if not self.__continuous__: self.__py_colas[self.__stim_file__] = self.__pycola self.__py_lables[self.__stim_file__] = self.__py_lable self.__hdl_lables[self.__stim_file__] = self.__hdl_lable #write test image file for vhdl j = Image.fromarray(self.__pycola.get_img().astype(np.uint8)) j.mode = "1"; j.save("../img/sim_in.pbm") del j #if stim_file != "../img/sim_in.pbm": # shutil.copy(stim_file, "../img/sim_in.pbm") if not box_only: self.verify_labels(self.__hdl_file__, self.__stim_file__, self.__resolution__, self.__continuous__) if not self.__passone__: if self.__hdl_file__ == "tb_labeling": self.run_boxes("tb_labeling_box", self.__stim_file__, self.__resolution__, self.__continuous__) elif self.__hdl_file__ == "tb_labeling_cont": self.run_boxes("tb_labeling_box_cont", self.__stim_file__, self.__resolution__, self.__continuous__) else: self.run_boxes(self.__hdl_file__, self.__stim_file__, self.__resolution__, self.__continuous__) def verify_labels(self, hdl_file, stim_file, resolution="ns", continuous=False): vsim = VSIM_parser(hdl_file, "vhdl/", resolution) vsim.start() #compile some regex pattern if continuous: regline = re.compile(r"File: '([^']+)' Label: ([0-9]+).*") else: regline = re.compile(r"(Label:) ([0-9]+).*") # index of picture pos_x=0 pos_y=0 while not vsim.done: vsim.event.wait(self.__timeout) if not vsim.event.is_set(): break; messages = vsim.getMessages() for message in messages: (time, severity, text) = message if severity == "Note": res = regline.match(text) if res is None: print(("unparsed text: " + text)) elif res.group(2) is not None: label = int(res.group(2)) if continuous: img_file = res.group(1)[3:] stim_file = img_file if img_file not in self.__py_lables: pos_x = 0 pos_y = 0 self.__py_colas[img_file] = cola(stim_file, max_x=self.__max_x__, max_y=self.__max_y__); self.__py_lables[img_file] = self.__py_colas[img_file].get_lable_s() self.__hdl_lables[img_file] = -1*np.ones(self.__py_lables[img_file].shape, dtype=np.int) if pos_y >= len(self.__py_lables[stim_file]): self.__report += stim_file + ": additional pixel (x=" + str(pos_x) +", y=" + str(pos_y) +")\n" self.__error_cnt += 1 else: self.__hdl_lables[stim_file][pos_y][pos_x] = label if self.__py_lables[stim_file][pos_y][pos_x] != label: self.__report += ("\033[91mError\033[0m" + " File: "+ stim_file +" at pixel x=" + str(pos_x) + " y=" + str(pos_y) + " expected: " + str(self.__py_lables[stim_file][pos_y][pos_x]) + " vhdl: " + str(label) + " at time: " + str(time) + "\n") self.__error_cnt += 1 pos_x = pos_x + 1 if pos_x == len(self.__py_lable[0]): pos_y = pos_y + 1 pos_x = 0 elif res.group(2) is not None: self.__report = "\033[91mError\033[0m" + "Unknown Message: " + text + "\n" else: metaval = self.__regmeta.match(text) if not(severity == "Warning" and metaval is not None): self.__report += severity + " " + text + "\n" if severity != "Note" and severity != "Warning": #self.__error_cnt += 1 None #TODO report this seperately if not vsim.done: self.__report = self.__report + stim_file + ": Output of data reached timeout in 2-pass simulation. Simulation abort\n" self.__error_cnt += 1 for files in self.__py_lables: if len(self.__py_lables[files][0]) > pos_y and pos_x != 0: self.__report = self.__report + files + ": Not all pixels processed. First unprocessed pixel: x=" + str(pos_x+1) + " y=" + str(pos_y+1) + "\n" self.__error_cnt += 1 del vsim def run_boxes(self, hdl_file, stim_file, resolution="ns", continuous=False, compare=True): vsim = VSIM_parser(hdl_file, self.__wdir, resolution) vsim.start() if continuous: regline = re.compile(r"File: '([^']+)' Box: \(([0-9]+), ([0-9]+)\), \(([0-9]+), ([0-9]+)\).*|Box: (error).*") else: regline = re.compile(r"(Box): \(([0-9]+), ([0-9]+)\), \(([0-9]+), ([0-9]+)\).*|Box: (error).*") cnt={} if (stim_file not in self.__px_boxes) and compare: self.__px_boxes[stim_file] = self.__py_colas[stim_file].get_boxes().copy() self.__hdl_boxes[stim_file] = {} cnt[stim_file] = 0 elif not compare: self.__hdl_boxes[stim_file] = {} cnt[stim_file] = 0 while not vsim.done: vsim.event.wait(self.__timeout) if not vsim.event.is_set(): break; messages = vsim.getMessages() for message in messages: (time, severity, text) = message #print ("test:" + str(message)) if severity == "Note": res = regline.match(text) if res is None: print(("unparsed text: \""+text+ "\"")) elif res.group(6) is not None: self.__error_cnt += 1 self.__report = "Recognised error with to small heap\n" elif res.group(2) is not None: img_file = res.group(1)[3:] if continuous: self.__px_boxes[img_file] = self.__px_boxes[stim_file] self.__hdl_boxes[img_file] = self.__hdl_boxes[stim_file] cnt[stim_file] = cnt[img_file] stim_file = img_file start_x = int(res.group(2)) start_y = int(res.group(3)) end_x = int(res.group(4)) end_y = int(res.group(5)) self.__hdl_boxes[stim_file][cnt[stim_file]] = ((start_x, start_y), (end_x, end_y)) cnt[stim_file] += 1 if compare: found = False for b in self.__px_boxes[stim_file]: ((py_start_x, py_start_y), (py_end_x, py_end_y)) = self.__px_boxes[stim_file][b] if py_start_x == start_x and py_start_y == start_y and py_end_x == end_x and py_end_y == end_y: found = True del self.__px_boxes[stim_file][b] break if not found: self.__report += "\033[91mError\033[0m" + " File: '" + stim_file self.__report += "' VHDL found box ((" + str(start_x) + ", " self.__report += str(start_y) + "), (" + str(end_x) + ", " self.__report += str(end_y) + ")) but python not\n" self.__error_cnt += 1 elif res.group(3) is not None: self.__report = "\033[91mError\033[0m" + "Unknown Message: " + text else: metaval = self.__regmeta.match(text) if not(severity == "Warning" and metaval is not None): self.__report += severity + " " + text + "\n" if severity != "Note" and severity != "Warning": #self.__error_cnt += 1 #TODO: Report this separatly None if compare: for f in self.__px_boxes: if self.__px_boxes[f] != {}: for b in self.__px_boxes[f]: ((start_x, start_y), (end_x, end_y)) = self.__px_boxes[f][b] self.__report += "\033[91mError\033[0m" + " File: '" + f self.__report += "' VHDL missing box ((" + str(start_x) + ", " self.__report += str(start_y) + "), (" + str(end_x) + ", " + str(end_y) + "))\n" self.__error_cnt += 1 if not vsim.done: self.__report = self.__report + stim_file + ": Output of data reached timeout in simulation of 2-pass with boundbox calculation. Simulation abort\n" self.__error_cnt += 1 del vsim class Exec_parser(threading.Thread): ## Executes a binary file and parses the output # # You can use the event.wait to wait for new messages or the done signal # The boolean done gives you the information if the simulation is done # @param cmd command to execute # @param cwd working directory # @param regex used to parse the output of each line of stdout and # use the result as parameter to run the eval_line def __init__(self, cmd, cwd=".", regex = None): super(Exec_parser, self).__init__() self.__cmd = cmd; self.__cwd = cwd self.event = threading.Event() self.__sema = threading.Semaphore() self.__messages = [] self.done = False self.__stop = False # store parsed messages # overwrite this values self.__regline = re.compile(regex) print(("Exec: " + str(cmd))) print(("CWD: " + self.__cwd)) self.__proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, cwd=self.__cwd) def add_message(self, m): with self.__sema: self.__messages.append(m) self.event.set() ## Get all Messages stored in the message queue def getMessages(self): with self.__sema: ret_msg = self.__messages self.__messages = [] self.event.clear() return ret_msg def __del__(self): self.__stop = True os.kill(self.__proc.pid, signal.SIGKILL) ## This methode has to evaluate the result of the regex for each line # you need to overwrite this methode def eval_line(self, res): None def run(self): line = ' '; while not self.__stop and line != '': #apply precompile regex pattern line = self.__proc.stdout.readline().decode() res = self.__regline.match(line) if res is not None: self.eval_line(res) # notify the event if done with self.__sema: self.event.set() self.done = True class VSIM_parser(Exec_parser): vsim="vsim" ## Executes Modelsim and parses the output # # You can use the event.wait to wait for new messages or the done signal # The boolean done gives you the information if the simulation is done # @param hdl_entity entity wich should be executed # @param cwd working directory this has to be the directory where the vlib is stored def __init__(self, hdl_entity, cwd=".", resolution="ns"): super(VSIM_parser, self).__init__([self.vsim, "-c", "-do", "run -all;quit", "-t", resolution, hdl_entity], cwd, r"# Time: ([0-9]+ [fpnum]s).*|# \*\* (Note|Warning|Error|Failure): (.*)") self.__msg = [] ## This methode has to evaluate the result of the regex for each line def eval_line(self, res): if res.group(1) is not None: # this is the output of a time info for m in self.__msg: (severity, text) = m self.add_message((res.group(1), severity, text)) self.__msg = [] else: if res.group(2) is not None: severity = res.group(2) if res.group(3) is not None: self.__msg.append((severity, res.group(3))) class C_parser(Exec_parser): ## Executes Cpp Code and parses the output # # You can use the event.wait to wait for new messages or the done signal # The boolean done gives you the information if the simulation is done # @param cwd working directory this has to be the directory where the vlib is stored def __init__(self, cwd=ccl_c_dir): super(C_parser, self).__init__(["./ccl"], cwd, r"Processing file '([^']+)' and .*|Completed object:\[([0-9]+), ([0-9]+)\]x\[([0-9]+), ([0-9]+)\].*") self.__file="" ## This methode has to evaluate the result of the regex for each line def eval_line(self, res): if res.group(1) is not None: # filename of analyzed file self.__file = res.group(1) else: if res.group(2) is not None and res.group(3) is not None and res.group(4) is not None and res.group(5) is not None : self.add_message((self.__file, int(res.group(2)), int(res.group(3)), int(res.group(4)), int(res.group(5)))) if __name__== "__main__": from optparse import OptionParser parser = OptionParser() parser.add_option("-s", "--sim-file", dest="sim_file", help="filename for which the simulation should run and the result be visualized") parser.add_option("-p", "--pass-one", dest="passone", action="store_true", help="only the first pass will be analyzed otherwise the lables after the second pass and the boundboxes will be analyzed") parser.add_option("-u", "--uart-tb", dest="uart_tb", action="store_true", help="Simulates the uart_tb and compare the output with the python implementation") parser.add_option("-n", "--continuous", dest="continuous", action="store_true", help="Sends all Pictures in one continuous stream to the DUT") parser.add_option("-t", "--timeout", dest="timeout", type="float", default=120.0, help="seconds (as float) how long the time between two outputs before abort the simulation") parser.add_option("-c", dest="c", action="store_true", help="Checks the Python boundbox calculation against the cpp") parser.add_option("-v", "--vhdl-dut", dest="v", action="store_true", help="Checks the Python boundbox calculation against the vhdl DUT") parser.add_option("--no-lables", dest="nl", action="store_true", help="Don't check lables") parser.add_option("-x", "--max-x", dest="max_x", type="int", default=32, help="Max width of image send to ccl") parser.add_option("-y", "--max-y", dest="max_y", type="int", default=32, help="Max height of image send to ccl") parser.add_option("-d", "--input-dir", dest="indir" , default="../img/", help="Input dir used to check all Files") parser.add_option("-e", "--file-extension", dest="fext", default="pbm", help="File extension for the input dir run (default \"pbm\")") (option, args) = parser.parse_args() fext = option.fext indir = option.indir box_only = False hdl_file = "tb_labeling" resolution = "ns" if option.uart_tb: hdl_file = "tb_com_uart" resolution = "ps" box_only = True if option.passone: hdl_file = "tb_labeling_p1" wdir="vhdl/" if option.v: wdir="vhdl/ccl_dut/" box_only = True if option.nl: box_only = True if (not option.c) and option.sim_file: if option.passone: comp_first=CompareF(option.sim_file, option.passone, option.timeout, wdir, hdl_file, box_only, resolution, option.max_x, option.max_y, False) comp_first.get_pycola().plot_fp_add('First Pass HDL', comp_first.get_hdl_lable()) else: comp_first=CompareF(option.sim_file, False, option.timeout, wdir, hdl_file, box_only, resolution, option.max_x, option.max_y, False) errors = comp_first.get_error_cnt() print(str(errors) + " errors reported") print("error report: \n" + comp_first.get_report()) if box_only: boxes = comp_first.get_hdl_boxes() if len(boxes) == 1: for k in boxes: comp_first.get_pycola().plot_sp_add('Boxes HDL', None, boxes[k]) elif len(boxes) == 0: comp_first.get_pycola().plot_sp_add('Boxes HDL', None, None) else: print ("more outputs received than expected") print((str(boxes))) else: boxes = comp_first.get_hdl_boxes() if len(boxes) <= 1: for k in boxes: comp_first.get_pycola().plot_sp_add('Second Pass HDL', comp_first.get_hdl_lable(), boxes[k]) elif len(boxes) == 0: comp_first.get_pycola().plot_sp_add('Second Pass HDL', comp_first.get_hdl_lable(), None) else: print ("more outputs received than expected") print((str(boxes))) else: # run verification of all availible stimuli files and generate a report # count errors errors=0 chkdfiles="" err_by_file={} report="" if option.c: cmp_cp = CompareCP(option.timeout, option.max_x, option.max_y, option.sim_file) errors = cmp_cp.get_error_cnt() print((cmp_cp.get_report())) elif option.continuous: cnt = 0 filenames = "" for files in glob.glob(indir + "/*." + option.fext): if files != indir + "/sim_in." + fext and files != indir + "\\sim_in."+fext: filenames += "../" + files + "\n" cnt += 1 f = open("../img/continuous.files", 'w') f.write(str(cnt) + "\n") f.write(str(option.max_x) + "\n") f.write(str(option.max_y) + "\n") f.write(filenames) f.close() hdl_file="tb_labeling_cont" comp_first=CompareF(files, option.passone, option.timeout, wdir, hdl_file, box_only, resolution, option.max_x, option.max_y, True) errors = errors + comp_first.get_error_cnt() print((comp_first.get_report())) else: #run vhdl simulation for each input file for files in glob.glob(indir + "/*."+fext): if files != indir + "/sim_in." +fext and files != indir + "\\sim_in." +fext: print(("\n\nStart verification with input of " + files+"\n")) chkdfiles = chkdfiles + files +'\n' comp_first=CompareF(files, option.passone, option.timeout, wdir, hdl_file, box_only, resolution, option.max_x, option.max_y, False) errors = errors + comp_first.get_error_cnt() err_by_file[files] = comp_first.get_error_cnt() print((comp_first.get_report())) print("Verification with the following files:") for filename in err_by_file: if err_by_file[filename] == 0: print(("\033[92m" + filename + "\033[0m")) else: print(("\033[91m" + filename + " errors: " + str(err_by_file[filename]) + "\033[0m")) if errors == 0: print("\033[92mVerification successful\033[0m") else: print(report) print(("\033[91mVerification failed\033[0m with " + str(errors) + " errors")) if wdir == "vhdl/ccl_dut/": print(("The verification is only valid if you run ./mk_build.sh in "+wdir)) print("Don't forget to run ./mk_synthesis.sh before a synthesis run")
[ "os.mkdir", "subprocess.Popen", "os.remove", "optparse.OptionParser", "converter.Img_conv", "numpy.ones", "os.kill", "threading.Event", "glob.glob", "cola.ComponentLabeling", "threading.Semaphore", "re.compile" ]
[((21936, 21950), 'optparse.OptionParser', 'OptionParser', ([], {}), '()\n', (21948, 21950), False, 'from optparse import OptionParser\n'), ((2045, 2080), 'glob.glob', 'glob.glob', (["(ccl_c_dir + '/img/*.pbm')"], {}), "(ccl_c_dir + '/img/*.pbm')\n", (2054, 2080), False, 'import glob\n'), ((2130, 2152), 're.compile', 're.compile', (['""".*/(.*)$"""'], {}), "('.*/(.*)$')\n", (2140, 2152), False, 'import re\n'), ((6778, 6814), 're.compile', 're.compile', (['""".*metavalue detected.*"""'], {}), "('.*metavalue detected.*')\n", (6788, 6814), False, 'import re\n'), ((7382, 7450), 'cola.ComponentLabeling', 'cola', (['self.__stim_file__'], {'max_x': 'self.__max_x__', 'max_y': 'self.__max_y__'}), '(self.__stim_file__, max_x=self.__max_x__, max_y=self.__max_y__)\n', (7386, 7450), True, 'from cola import ComponentLabeling as cola\n'), ((18098, 18115), 'threading.Event', 'threading.Event', ([], {}), '()\n', (18113, 18115), False, 'import threading\n'), ((18138, 18159), 'threading.Semaphore', 'threading.Semaphore', ([], {}), '()\n', (18157, 18159), False, 'import threading\n'), ((18334, 18351), 're.compile', 're.compile', (['regex'], {}), '(regex)\n', (18344, 18351), False, 'import re\n'), ((18449, 18510), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdout': 'subprocess.PIPE', 'cwd': 'self.__cwd'}), '(cmd, stdout=subprocess.PIPE, cwd=self.__cwd)\n', (18465, 18510), False, 'import subprocess\n'), ((18930, 18970), 'os.kill', 'os.kill', (['self.__proc.pid', 'signal.SIGKILL'], {}), '(self.__proc.pid, signal.SIGKILL)\n', (18937, 18970), False, 'import os\n'), ((1960, 1988), 'os.mkdir', 'os.mkdir', (["(ccl_c_dir + '/img')"], {}), "(ccl_c_dir + '/img')\n", (1968, 1988), False, 'import os\n'), ((2094, 2110), 'os.remove', 'os.remove', (['files'], {}), '(files)\n', (2103, 2110), False, 'import os\n'), ((2249, 2274), 'glob.glob', 'glob.glob', (['"""../img/*.pbm"""'], {}), "('../img/*.pbm')\n", (2258, 2274), False, 'import glob\n'), ((2708, 2746), 'converter.Img_conv', 'Img_conv', (['file_show', 'max_x', 'max_y', '(0.5)'], {}), '(file_show, max_x, max_y, 0.5)\n', (2716, 2746), True, 'from converter import Img_conv as Img_conv\n'), ((3188, 3213), 'glob.glob', 'glob.glob', (['"""../img/*.pbm"""'], {}), "('../img/*.pbm')\n", (3197, 3213), False, 'import glob\n'), ((3513, 3554), 'cola.ComponentLabeling', 'cola', (['file_show'], {'max_x': 'max_x', 'max_y': 'max_y'}), '(file_show, max_x=max_x, max_y=max_y)\n', (3517, 3554), True, 'from cola import ComponentLabeling as cola\n'), ((7751, 7795), 'numpy.ones', 'np.ones', (['self.__py_lable.shape'], {'dtype': 'np.int'}), '(self.__py_lable.shape, dtype=np.int)\n', (7758, 7795), True, 'import numpy as np\n'), ((9301, 9348), 're.compile', 're.compile', (['"""File: \'([^\']+)\' Label: ([0-9]+).*"""'], {}), '("File: \'([^\']+)\' Label: ([0-9]+).*")\n', (9311, 9348), False, 'import re\n'), ((9386, 9419), 're.compile', 're.compile', (['"""(Label:) ([0-9]+).*"""'], {}), "('(Label:) ([0-9]+).*')\n", (9396, 9419), False, 'import re\n'), ((13049, 13161), 're.compile', 're.compile', (['"""File: \'([^\']+)\' Box: \\\\(([0-9]+), ([0-9]+)\\\\), \\\\(([0-9]+), ([0-9]+)\\\\).*|Box: (error).*"""'], {}), '(\n "File: \'([^\']+)\' Box: \\\\(([0-9]+), ([0-9]+)\\\\), \\\\(([0-9]+), ([0-9]+)\\\\).*|Box: (error).*"\n )\n', (13059, 13161), False, 'import re\n'), ((13193, 13291), 're.compile', 're.compile', (['"""(Box): \\\\(([0-9]+), ([0-9]+)\\\\), \\\\(([0-9]+), ([0-9]+)\\\\).*|Box: (error).*"""'], {}), "(\n '(Box): \\\\(([0-9]+), ([0-9]+)\\\\), \\\\(([0-9]+), ([0-9]+)\\\\).*|Box: (error).*'\n )\n", (13203, 13291), False, 'import re\n'), ((26581, 26619), 'glob.glob', 'glob.glob', (["(indir + '/*.' + option.fext)"], {}), "(indir + '/*.' + option.fext)\n", (26590, 26619), False, 'import glob\n'), ((27432, 27463), 'glob.glob', 'glob.glob', (["(indir + '/*.' + fext)"], {}), "(indir + '/*.' + fext)\n", (27441, 27463), False, 'import glob\n'), ((2385, 2419), 'converter.Img_conv', 'Img_conv', (['files', 'max_x', 'max_y', '(0.5)'], {}), '(files, max_x, max_y, 0.5)\n', (2393, 2419), True, 'from converter import Img_conv as Img_conv\n'), ((3359, 3396), 'cola.ComponentLabeling', 'cola', (['files'], {'max_x': 'max_x', 'max_y': 'max_y'}), '(files, max_x=max_x, max_y=max_y)\n', (3363, 3396), True, 'from cola import ComponentLabeling as cola\n'), ((10381, 10440), 'cola.ComponentLabeling', 'cola', (['stim_file'], {'max_x': 'self.__max_x__', 'max_y': 'self.__max_y__'}), '(stim_file, max_x=self.__max_x__, max_y=self.__max_y__)\n', (10385, 10440), True, 'from cola import ComponentLabeling as cola\n'), ((10608, 10663), 'numpy.ones', 'np.ones', (['self.__py_lables[img_file].shape'], {'dtype': 'np.int'}), '(self.__py_lables[img_file].shape, dtype=np.int)\n', (10615, 10663), True, 'import numpy as np\n')]
""" Simple audio clustering 1. Get the embeddings - at an interval of 0.5s each 2. Get the VAD - variable interval 3. Get embeddings for a VAD interval -> Take average of the embeddings 4. Get the ground truth for embedding for each speaker - marked 0.5s interval 5. L2 Normalize the embeddings before taking a distance measure 6. Clustering - Speaker Verification Task 1. Fix the ground truth embedding as the centroid for each speaker 2. Cluster all the points to the closest centroid 3. Verify the output """ import os import argparse import json import yaml import pickle import numpy as np import pandas as pd import utils import isat_diarization as isat_d import constants def dist_emb(emb_1, emb_2, dist_type="euclid"): """ Distance between two embeddings """ dist = None if dist_type == "euclid": # Euclidean distance dist = np.linalg.norm(emb_1 - emb_2) elif dist_type == "cosine": # Cosine similarity dist = np.dot(emb_1, emb_2) / (np.linalg.norm(emb_1) * np.linalg.norm(emb_2)) return dist def cluster_gt(embeddings, vad, dict_gt_speakers): dict_clusters = { val: { "embedding_id": key, "embedding_val": embeddings[key], } for key, val in dict_gt_speakers.items() } list_emb = [(dict_gt_speakers[key], embeddings[key]) for key, val in dict_gt_speakers.items()] labels = [] for emb_index, emb_actual in enumerate(embeddings): min_dist = np.inf label = "NoSpeaker" for speaker, emb_ref in list_emb: dist = dist_emb(emb_ref, emb_actual) if min_dist > dist: min_dist = dist label = speaker labels.append(label) return labels def normalize_embeddings(embeddings): """ https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html """ l2_norm = np.linalg.norm(embeddings, ord=2) return embeddings def get_embeddings(audio_path, dir_target, src="gen"): """ :param src: "gen" for generate, "file" for read from file """ embeddings = None if src == "gen": print(f"Generating embeddings") embeddings = isat_d.gen_embeddings(audio_path, dir_target) elif src == "file": embeddings_path = os.path.join(dir_target, "embeddings.pkl") with open(embeddings_path, "rb") as fh: embeddings = pickle.load(fh) print(f"Loaded embeddings from: {embeddings_path}") print(f"embeddings: type: {type(embeddings)}") embeddings_data = embeddings.data return embeddings_data def get_vad(vad_path): with open(vad_path, "rb") as fh: vad = json.load(fh) print(f"Loaded vad from: {vad_path}") print(f"vad: type: {type(vad)}") return vad def get_gt_emb(): dict_gt = { 0: "A", 20: "B", 30: "C", } return dict_gt def yml_dump(): import yaml dict_gt = { 0: { "audio_path": "x.wav", "output_path": "../outputs", "num_speakers": 2, "ground_truths": [ { "start": 2.1, "end": 3.1, "id": 123, "name": "Krishna" }, { "start": 4.4, "end": 7.1, "id": 500, "name": "Gauranga" } ] }, 1: { "audio_path": "y.wav", "output_path": "../outputs", "num_speakers": 2, "ground_truths": [ { "start": 2.1, "end": 3.1, "id": 123, "name": "Krishna" }, { "start": 4.4, "end": 7.1, "id": 500, "name": "Gauranga" } ] } } with open("../data/spkr_diarization_gt_temp.yml", "w") as fh: yaml.dump(dict_gt, fh) def round_off_embedding(start_time, float_embed_width=0.5): """Round a number to the closest half integer. round_off_embedding(1.3) 1.5 round_off_embedding(2.6) 2.5 round_off_embedding(3.0) 3.0 round_off_embedding(4.1) 4.0 round_off_embedding(4.1, 0.25) 4.0 """ reciprocal = int(1 / float_embed_width) embed_id = round(start_time * reciprocal) / reciprocal embed_id = round(start_time * reciprocal) return embed_id def get_embed_from_start_end(dict_all_gt): dict_all_embed_gt = {} for file_index, dict_gt in dict_all_gt.items(): dict_embed_gt = { "ground_truths": [], "audio_path": dict_gt["audio_path"], "output_path": dict_gt["output_path"], "num_speakers": dict_gt["num_speakers"] } list_ground_truths = [] for spkr_index, dict_spkr in enumerate(dict_gt["ground_truths"]): start = dict_spkr["start"] # end = dict_spkr["end"] # id = dict_spkr["id"] # name = dict_spkr["name"] embed_start_id = round_off_embedding(start) dict_gt = { "embed_start_id": embed_start_id, "id": dict_spkr["id"], "name": dict_spkr["name"] } list_ground_truths.append(dict_gt) dict_embed_gt["ground_truths"] = list_ground_truths dict_all_embed_gt[file_index] = dict_embed_gt return dict_all_embed_gt def cluster_all(gt_yml_fp): dict_all_embed_gt = read_ground_truths(gt_yml_fp) status = "Done" for file_index, dict_gt in dict_all_embed_gt.items(): list_ground_truths = dict_gt["ground_truths"] audio_path = dict_gt["audio_path"] output_path = dict_gt["output_path"] dict_emb_gt = {dict_spkr["embed_start_id"]: dict_spkr["name"] for dict_spkr in list_ground_truths} # for spkr_index, dict_spkr in enumerate(list_ground_truths): # dict_emb_gt[dict_spkr["embed_start_id"]] = dict_spkr["name"] if not os.path.exists(output_path): os.makedirs(output_path) run_clustering(audio_path, output_path, dict_emb_gt) return status def read_ground_truths(gt_yml_fp): with open(gt_yml_fp, "r") as fh: dict_all_gt = yaml.load(fh) print(dict_all_gt) dict_all_embed_gt = get_embed_from_start_end(dict_all_gt) print(dict_all_embed_gt) return dict_all_embed_gt def run_clustering(audio_path, output_path, dict_gt): embeddings = get_embeddings(audio_path, output_path) # vad_path = os.path.join(output_path, "vad.json") # vad = get_vad(vad_path) vad = None labels = cluster_gt(embeddings, vad, dict_gt) print(utils.print_list(labels, "Clustered Embeddings")) df = pd.DataFrame() df["embed_index"] = [x for x in range(len(labels))] df["labels"] = labels out_path = os.path.join(output_path, "cluster_labels.csv") df.to_csv(out_path, index=False) return df def run_yaml(args): gt_yml_fp = args.get("gt_yml_fp", "../data/spkr_diarization_gt.yml") cluster_all(gt_yml_fp) def run(args): audio_path = args.get("audio_path", "../no/audio") output_path = args.get("output_path", "../outputs") dict_gt = get_gt_emb() run_clustering(audio_path, output_path, dict_gt) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--audio_path", type=str, help="audio filepath", default="../data/panel_discussion_0045_15s.wav") parser.add_argument("--output_path", type=str, help="output_path", default="../outputs/panel_discussion_0045_15s_5") parser.add_argument("--gt_yml_fp", type=str, help="ground truth yaml file path", default="../data/spkr_diarization_gt.yml") parser.add_argument("--config_path", type=str, help="config_path", default="../configs/config_5.yml") # parser.add_argument("-v", "--verbose", action="store_true", # help="increase output verbosity") args = parser.parse_args() dict_args = vars(args) dir_output = dict_args.get("output_path", "../outputs") if not os.path.exists(dir_output): os.makedirs(dir_output) else: print(f"ATTENTION: directory: [{dir_output}] already exists.") return dict_args def main(): args = parse_args() run_yaml(args) # yml_dump() # print(round_off_embedding(4.1, 0.25)) # print(round_off_embedding(4.1, 0.35)) # print(round_off_embedding(4.1, 0.5)) # print(round_off_embedding(4.35, 0.25)) # print(round_off_embedding(4.35, 0.35)) # print(round_off_embedding(4.35, 0.5)) # read_ground_truths() if __name__ == '__main__': main()
[ "pandas.DataFrame", "yaml.load", "json.load", "argparse.ArgumentParser", "os.makedirs", "yaml.dump", "os.path.exists", "isat_diarization.gen_embeddings", "utils.print_list", "pickle.load", "numpy.linalg.norm", "numpy.dot", "os.path.join" ]
[((1913, 1946), 'numpy.linalg.norm', 'np.linalg.norm', (['embeddings'], {'ord': '(2)'}), '(embeddings, ord=2)\n', (1927, 1946), True, 'import numpy as np\n'), ((6918, 6932), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6930, 6932), True, 'import pandas as pd\n'), ((7031, 7078), 'os.path.join', 'os.path.join', (['output_path', '"""cluster_labels.csv"""'], {}), "(output_path, 'cluster_labels.csv')\n", (7043, 7078), False, 'import os\n'), ((7495, 7520), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (7518, 7520), False, 'import argparse\n'), ((886, 915), 'numpy.linalg.norm', 'np.linalg.norm', (['(emb_1 - emb_2)'], {}), '(emb_1 - emb_2)\n', (900, 915), True, 'import numpy as np\n'), ((2209, 2254), 'isat_diarization.gen_embeddings', 'isat_d.gen_embeddings', (['audio_path', 'dir_target'], {}), '(audio_path, dir_target)\n', (2230, 2254), True, 'import isat_diarization as isat_d\n'), ((2697, 2710), 'json.load', 'json.load', (['fh'], {}), '(fh)\n', (2706, 2710), False, 'import json\n'), ((4086, 4108), 'yaml.dump', 'yaml.dump', (['dict_gt', 'fh'], {}), '(dict_gt, fh)\n', (4095, 4108), False, 'import yaml\n'), ((6424, 6437), 'yaml.load', 'yaml.load', (['fh'], {}), '(fh)\n', (6433, 6437), False, 'import yaml\n'), ((6858, 6906), 'utils.print_list', 'utils.print_list', (['labels', '"""Clustered Embeddings"""'], {}), "(labels, 'Clustered Embeddings')\n", (6874, 6906), False, 'import utils\n'), ((8544, 8570), 'os.path.exists', 'os.path.exists', (['dir_output'], {}), '(dir_output)\n', (8558, 8570), False, 'import os\n'), ((8580, 8603), 'os.makedirs', 'os.makedirs', (['dir_output'], {}), '(dir_output)\n', (8591, 8603), False, 'import os\n'), ((2306, 2348), 'os.path.join', 'os.path.join', (['dir_target', '"""embeddings.pkl"""'], {}), "(dir_target, 'embeddings.pkl')\n", (2318, 2348), False, 'import os\n'), ((6181, 6208), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (6195, 6208), False, 'import os\n'), ((6222, 6246), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (6233, 6246), False, 'import os\n'), ((992, 1012), 'numpy.dot', 'np.dot', (['emb_1', 'emb_2'], {}), '(emb_1, emb_2)\n', (998, 1012), True, 'import numpy as np\n'), ((2422, 2437), 'pickle.load', 'pickle.load', (['fh'], {}), '(fh)\n', (2433, 2437), False, 'import pickle\n'), ((1016, 1037), 'numpy.linalg.norm', 'np.linalg.norm', (['emb_1'], {}), '(emb_1)\n', (1030, 1037), True, 'import numpy as np\n'), ((1040, 1061), 'numpy.linalg.norm', 'np.linalg.norm', (['emb_2'], {}), '(emb_2)\n', (1054, 1061), True, 'import numpy as np\n')]
import numpy as np from distributions.distribution import Distribution class NonParametric(Distribution): """ Provides functions for a non-parametric forecast distribution. """ @staticmethod def pdf(x, pdf_x, x_eval): pass @staticmethod def cdf(x, cdf_x, x_eval): """ Computes the CDF of the non-parametric distribution at x given the CDF at evaluation points, by linear interpolation. """ # Linear interpolation insertion_points = np.searchsorted(x_eval, x) r = np.minimum(insertion_points, len(x_eval) - 1) l = np.maximum(0, insertion_points - 1) idx = np.arange(len(x)) slope = (cdf_x[r, idx] - cdf_x[l, idx]) / np.maximum(x_eval[r] - x_eval[l], 1e-6) return cdf_x[l, idx] + slope * (x - x_eval[l]) @staticmethod def mean(pdf_x, x_eval): """ Computes the mean of the non-parametric distribution by integrating the PDF at evaluation points, using the trapezoidal rule. """ return np.trapz( y=x_eval[:, np.newaxis] * pdf_x, x=x_eval[:, np.newaxis], axis=0 ) @staticmethod def var(pdf_x, x_eval): """ Computes the variance of the non-parametric distribution by integrating the PDF at evaluation points, using the trapezoidal rule. """ return np.trapz( y=x_eval[:, np.newaxis] ** 2 * pdf_x, x=x_eval[:, np.newaxis], axis=0 ) - np.trapz( y=x_eval[:, np.newaxis] * pdf_x, x=x_eval[:, np.newaxis], axis=0 ) ** 2 @staticmethod def percentile(p, cdf_x, x_eval): """ Computes the p-percentile of the non-parametric distribution given the CDF at evaluation points, by linear interpolation. """ # Linear interpolation insertion_points = [] for i in range(cdf_x.shape[1]): insertion_points.append(np.searchsorted(cdf_x[:, i], p / 100)) insertion_points = np.array(insertion_points) r = np.minimum(insertion_points, len(cdf_x) - 1) l = np.maximum(0, insertion_points - 1) idx = np.arange(cdf_x.shape[1]) slope = (x_eval[r] - x_eval[l]) / np.maximum(cdf_x[r, idx] - cdf_x[l, idx], 1e-6) return x_eval[l] + slope * (p / 100 - cdf_x[l, idx]) @staticmethod def crps(x, cdf_x, x_eval): """ Computes the Continuous Ranked Probability Score (CRPS) of the non-parametric distribution with true value x, using the trapezoidal rule. """ return np.trapz( y=(cdf_x - (x_eval[:, np.newaxis] >= x[np.newaxis, :])) ** 2, x=x_eval[:, np.newaxis], axis=0 )
[ "numpy.trapz", "numpy.maximum", "numpy.searchsorted", "numpy.array", "numpy.arange" ]
[((522, 548), 'numpy.searchsorted', 'np.searchsorted', (['x_eval', 'x'], {}), '(x_eval, x)\n', (537, 548), True, 'import numpy as np\n'), ((619, 654), 'numpy.maximum', 'np.maximum', (['(0)', '(insertion_points - 1)'], {}), '(0, insertion_points - 1)\n', (629, 654), True, 'import numpy as np\n'), ((1061, 1135), 'numpy.trapz', 'np.trapz', ([], {'y': '(x_eval[:, np.newaxis] * pdf_x)', 'x': 'x_eval[:, np.newaxis]', 'axis': '(0)'}), '(y=x_eval[:, np.newaxis] * pdf_x, x=x_eval[:, np.newaxis], axis=0)\n', (1069, 1135), True, 'import numpy as np\n'), ((2091, 2117), 'numpy.array', 'np.array', (['insertion_points'], {}), '(insertion_points)\n', (2099, 2117), True, 'import numpy as np\n'), ((2187, 2222), 'numpy.maximum', 'np.maximum', (['(0)', '(insertion_points - 1)'], {}), '(0, insertion_points - 1)\n', (2197, 2222), True, 'import numpy as np\n'), ((2237, 2262), 'numpy.arange', 'np.arange', (['cdf_x.shape[1]'], {}), '(cdf_x.shape[1])\n', (2246, 2262), True, 'import numpy as np\n'), ((2658, 2766), 'numpy.trapz', 'np.trapz', ([], {'y': '((cdf_x - (x_eval[:, np.newaxis] >= x[np.newaxis, :])) ** 2)', 'x': 'x_eval[:, np.newaxis]', 'axis': '(0)'}), '(y=(cdf_x - (x_eval[:, np.newaxis] >= x[np.newaxis, :])) ** 2, x=\n x_eval[:, np.newaxis], axis=0)\n', (2666, 2766), True, 'import numpy as np\n'), ((737, 777), 'numpy.maximum', 'np.maximum', (['(x_eval[r] - x_eval[l])', '(1e-06)'], {}), '(x_eval[r] - x_eval[l], 1e-06)\n', (747, 777), True, 'import numpy as np\n'), ((1414, 1493), 'numpy.trapz', 'np.trapz', ([], {'y': '(x_eval[:, np.newaxis] ** 2 * pdf_x)', 'x': 'x_eval[:, np.newaxis]', 'axis': '(0)'}), '(y=x_eval[:, np.newaxis] ** 2 * pdf_x, x=x_eval[:, np.newaxis], axis=0)\n', (1422, 1493), True, 'import numpy as np\n'), ((2305, 2353), 'numpy.maximum', 'np.maximum', (['(cdf_x[r, idx] - cdf_x[l, idx])', '(1e-06)'], {}), '(cdf_x[r, idx] - cdf_x[l, idx], 1e-06)\n', (2315, 2353), True, 'import numpy as np\n'), ((1542, 1616), 'numpy.trapz', 'np.trapz', ([], {'y': '(x_eval[:, np.newaxis] * pdf_x)', 'x': 'x_eval[:, np.newaxis]', 'axis': '(0)'}), '(y=x_eval[:, np.newaxis] * pdf_x, x=x_eval[:, np.newaxis], axis=0)\n', (1550, 1616), True, 'import numpy as np\n'), ((2025, 2062), 'numpy.searchsorted', 'np.searchsorted', (['cdf_x[:, i]', '(p / 100)'], {}), '(cdf_x[:, i], p / 100)\n', (2040, 2062), True, 'import numpy as np\n')]
import numpy as np from math import log, sqrt, ceil import random import string from copy import copy import pyximport from tabulate import tabulate pyximport.install() from ..util import math_functions import matplotlib.pyplot as plt import textwrap from textwrap import dedent from multiprocessing import Pool from multiprocessing.pool import ThreadPool from joblib import Parallel, delayed class FuzzyNode: feature = None is_terminal=None classification=None # __slots__ = ['is_terminal', # 'classification', # 'feature' # 'partitioning'] class FuzzyPartitioning: def __init__(self): self.partitions = [] self.gain = None # __slots__ = ['partitions', 'gain'] class FuzzyPartition: __slots__ = ['f', 'node', 'properties', 'ranges'] class FuzzySetProperties: __slots__ = ['cardinality', 'entropy', 'data', 'memberships'] # noinspection PyAttributeOutsideInit,PyPropertyAccess,PyUnresolvedReferences class RandomFuzzyTree: def __init__(self, n_jobs=1, p="sqrt", terminal_n_threshold=10, categorical_features=[], a_cut = 0.5, test_generation_file=None, test_indendation_level=1): self.test_generation_file = test_generation_file self.test_cases_generated = 0 self.n_jobs = n_jobs self.p = p self.is_fit = False self.terminal_n_threshold = terminal_n_threshold self.categorical_features = categorical_features self.a_cut = a_cut self.test_indentation_level = test_indendation_level def fit(self, data, ranges, copy_data=False, classes=(1, 2)): self.classes = classes if copy_data: data = np.copy(data) self.ranges = ranges self.n_feature = self.count_features(data) if self.p == "sqrt": self.p = ceil(sqrt(self.n_feature)) elif self.p == "log": self.p = ceil(log(self.n_feature, 2)) elif self.p == "all": self.p = self.n_feature tree = self.build_tree(data, np.array([1.0 for d in data])) self.root = tree self.is_fit = True def predict(self, x): assert self.is_fit memberships = self.predict_memberships(x) return max(memberships) def predict_memberships(self, x): memberships = dict([(c, 0) for c in self.classes]) self.forward_pass(memberships, x, self.root) return memberships def score(self, data): correct = 0 for x in data: if self.predict(x[:-1]) == x[-1]: correct += 1 return correct / data.shape[0] def build_tree(self, data, memberships, lvl=0, ranges=None): if ranges == None: ranges = self.ranges # print("\t\t Bulting tree lvl %d" % (lvl + 1) ) regular_features = self.get_regular_features(data) if len(regular_features) != 0: node = self.select_partitioning(data, memberships, regular_features, ranges) else: node = self.generate_leaf(data, memberships) if node.is_terminal or self.is_terminal(node, data, memberships): node.is_terminal = True node.classification = self.classification(data, memberships) else: for p in node.partitioning.partitions: next_ranges = copy(ranges) next_ranges[node.feature] = p.ranges[node.feature] p.node = self.build_tree(p.properties.data, p.properties.memberships, lvl + 1, next_ranges) return node def generate_leaf(self, data, memberships): node = FuzzyNode() node.is_terminal = True node.classification = self.classification(data, memberships) return node def select_partitioning(self, data, memberships, regular_features, ranges): node = FuzzyNode() features = np.random.choice(regular_features, min(self.p, len(regular_features)), replace=False) feature_partitionings = {} for feature in features: feature_partitionings[feature] = \ self.best_partitioning(feature, data, memberships, ranges) node.feature = max(feature_partitionings, key=lambda x: feature_partitionings[x].gain) node.partitioning = feature_partitionings[node.feature] node.partitioning.gain = self._fuzzy_entropy(data, memberships)# + node.partitioning.gain return node def get_regular_features(self, data): regular_features = [] for i in range(len(self.ranges)): curr_range = self.ranges[i] inds = np.logical_and(data[:, i] != curr_range[0], data[:, i] != curr_range[1]).nonzero()[0] if curr_range[0] != curr_range[1] and inds.shape[0] != 0: regular_features.append(i) return regular_features def is_terminal(self, node, data, memberships): if memberships.shape[0] == 0: return True empty_partitions = 0 for partition in node.partitioning.partitions: if partition.properties.memberships.shape[0] <= 1: empty_partitions += 1 if empty_partitions >= 2: return True data_classes = data[:, -1] all_same = True for i in range(1, data_classes.shape[0]): if int(data_classes[i]) != int(data_classes[0]): all_same = False break if all_same: return True if abs(node.partitioning.gain) <= 0.000001: return True else: return False def forward_pass(self, result_memberships, x, node, membership=1): if node.is_terminal: for c in self.classes: result_memberships[c] += node.classification[c] * membership else: for partition in node.partitioning.partitions: next_membership = membership * partition.f(x[node.feature]) next_node = partition.node self.forward_pass(result_memberships, x, next_node, next_membership) @staticmethod def count_features(data): return data.shape[1] - 1 def classification(self, data, memberships): classification_val = {} for c in self.classes: inds = (data[:, -1] == c).nonzero()[0] classification_val[c] = np.sum(memberships[inds]) return classification_val def best_partitioning(self, feature, data, memberships, ranges): if feature in self.categorical_features: max_partitioning = FuzzyPartitioning() max_category = int(self.ranges[feature][1]) min_category = int(self.ranges[feature][0]) for category in range(min_category, max_category + 1): partition = FuzzyPartition() partition.properties = FuzzySetProperties() def f(x): if int(x) == category: return 1 else: return 0 partition.f = f inds = (data[:, feature] == category).nonzero()[0] partition.properties.data = data[inds, :] max_partitioning.partitions.append(partition) self.set_properties(max_partitioning.partitions, data, feature, memberships) max_partitioning.gain = \ self.gain(max_partitioning.partitions, memberships) else: points = np.unique(data[:, feature]) L, U = self.ranges[feature] point_partitionings = {} regular_point_occured = False last_point = None meaningful_length = (U - L) / 10 for p in points: if last_point is None or p - last_point > meaningful_length: if p != L and p != U: curr_partitioning = self.partitioning(data, feature, p, memberships, ranges) if self.count_zero(curr_partitioning) < 2: regular_point_occured = True point_partitionings[p] = \ curr_partitioning last_point = p if not regular_point_occured: midpoint = L + (U - L) / 2 max_partitioning = self.partitioning(data, feature, midpoint, memberships, ranges) max_partitioning.midpoint = midpoint else: max_partitioning_key = max(point_partitionings, key=lambda x: point_partitionings[x].gain) max_partitioning = point_partitionings[max_partitioning_key] max_partitioning.midpoint = max_partitioning_key self.print_partitioning(max_partitioning, data, feature, ranges) return max_partitioning def count_zero(self, partitioning): cnt = 0 for part in partitioning.partitions: if part.properties.entropy == 0: cnt += 1 return cnt def partitioning(self, data, feature, p, memberships, ranges): part = FuzzyPartitioning() L, U = self.ranges[feature] W_left = 2 * (p - L) W_middle_left = (p - L) W_middle_right = (U - p) W_right = 2 * (U - p) # TODO: generalize to more left_partition = FuzzyPartition() left_partition.f = math_functions.triangular(L, W_left) left_partition.ranges = copy(ranges) left_partition.ranges[feature] = L, p left_partition.properties = [] middle_partition = FuzzyPartition() middle_partition.f = \ math_functions.composite_triangular(p, W_middle_left, W_middle_right) middle_partition.ranges = copy(ranges) middle_partition.ranges[feature] = L, U middle_partition.properties = [] right_partition = FuzzyPartition() right_partition.f = math_functions.triangular(U, W_right) right_partition.ranges = copy(ranges) right_partition.ranges[feature] = p, U right_partition.properties = [] part.partitions = [left_partition, middle_partition, right_partition] self.set_properties(part.partitions, data, feature, memberships) part.gain = self.gain(part.partitions, memberships) return part def print_partitioning(self, partitioning, data, feature, ranges): rng = ranges[feature] data = data[data[:, feature].argsort()] data_table = [] for d in data: data_arr = [d[-1]] for partition in partitioning.partitions: data_arr.append(round(partition.f(d[feature]), 2)) data_table.append(data_arr) print(tabulate(data_table, headers=['Class', 'First', 'Second', 'Third'], tablefmt='orgtbl')) for partition in partitioning.partitions: partition_sums = {} for d in data: for c in self.classes: if d[-1] in partition_sums: if partition.f(d[feature]) >= 0.5: partition_sums[d[-1]] += partition.f(d[feature]) else: partition_sums[d[-1]] = 0 print(partition_sums) print("Gain: ", partitioning.gain) xs = np.arange(rng[0], rng[1], 0.05).tolist() for partition in partitioning.partitions: ys = [] for x in xs: ys.append(partition.f(x)) plt.plot(xs, ys, color="g") xs = [] ys = [] zs = [] for d in data: xs.append(d[feature]) ys.append(0.5) zs.append(d[-1]) plt.scatter(xs, ys, c=zs) plt.show() def set_properties(self, partitions, data, feature, memberships): for partition in partitions: prop = self._fuzzy_set_properties(data, feature, partition, memberships) partition.properties = prop def gain(self, partitions, memberships): data_cardinality = np.sum(memberships) if len(partitions) == 0: raise ValueError("Empty partitions") properties = [part.properties for part in partitions] gain_value = 0 for prop in properties: gain_value -= (prop.cardinality / data_cardinality) * prop.entropy return gain_value def _fuzzy_set_properties(self, data, feature, partition, memberships): if data.shape.__contains__(0): raise ValueError("Empty array") membership_f = np.vectorize(partition.f) data_at_feature = np.copy(data[:, feature]) set_memberships = membership_f(data_at_feature) set_memberships = np.multiply(memberships, set_memberships) non_zero_inds = (set_memberships >= self.a_cut).nonzero()[0] set_memberships = set_memberships[non_zero_inds] set_data = data[non_zero_inds, :] cardinality = np.sum(set_memberships) entropy = self._fuzzy_entropy(set_data, set_memberships, cardinality) properties = FuzzySetProperties() properties.cardinality = cardinality properties.entropy = entropy non_zero_inds = (set_memberships >= self.a_cut).nonzero()[0] set_data = data[non_zero_inds, :] set_memberships = set_memberships[non_zero_inds] properties.data = set_data properties.memberships = set_memberships return properties def _fuzzy_entropy(self, data, memberships, cardinality=None): if self.should_generate_tests(data): self.generate_fuzzy_entropy_test(data, memberships, cardinality) if data.shape.__contains__(0): return 0 # raise ValueError("Empty array") entropy = 0 if cardinality is None: cardinality = np.sum(memberships) if cardinality != 0: for c in self.classes: inds = (data[:, -1] == c).nonzero()[0] memberships_at_inds = memberships[inds] proba = np.sum(memberships_at_inds) / cardinality if proba != 0: entropy -= proba * log(proba, 2) return entropy def should_generate_tests(self, data): return self.test_generation_file is not None and \ 20 < data.shape[0] < 50 and \ self.test_cases_generated < 3 def generate_fuzzy_entropy_test(self, data, memberships, cardinality): self.test_cases_generated += 1 test_cases_file = open(self.test_generation_file, "a") print("\t\tGenerating tests") data = data[:, (-2, -1)].tolist() memberships = memberships.tolist() indentation = [" " for i in range(self.test_indentation_level)] indentation = "".join(indentation) print("", file=test_cases_file) test_id = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(5)) print("%sdef testFuzzyEntropy_generated_%s(self):" % (indentation, test_id), file=test_cases_file) wrapper = textwrap.TextWrapper(initial_indent="%s " % indentation, width=80, subsequent_indent=' ' * 24) data_str = "data = np.array(%s)" % (data) print(wrapper.fill(data_str), file=test_cases_file) memberships_str = "memberships= np.array(%s)" % (memberships) print(wrapper.fill(memberships_str), file=test_cases_file) print("%s cardinality = %s" % (indentation, cardinality), file=test_cases_file) result = "self.tree._fuzzy_entropy(data, memberships, cardinality)" print("%s self.assertAlmostEqual(%s, 0, 2)" % (indentation, result), file=test_cases_file) print("", file=test_cases_file) test_cases_file.close() def __str__(self): raise NotImplementedError()
[ "matplotlib.pyplot.show", "numpy.sum", "numpy.vectorize", "numpy.copy", "numpy.multiply", "matplotlib.pyplot.scatter", "matplotlib.pyplot.plot", "math.sqrt", "copy.copy", "random.choice", "numpy.logical_and", "textwrap.TextWrapper", "numpy.array", "tabulate.tabulate", "numpy.arange", "math.log", "pyximport.install", "numpy.unique" ]
[((149, 168), 'pyximport.install', 'pyximport.install', ([], {}), '()\n', (166, 168), False, 'import pyximport\n'), ((10474, 10486), 'copy.copy', 'copy', (['ranges'], {}), '(ranges)\n', (10478, 10486), False, 'from copy import copy\n'), ((10860, 10872), 'copy.copy', 'copy', (['ranges'], {}), '(ranges)\n', (10864, 10872), False, 'from copy import copy\n'), ((11159, 11171), 'copy.copy', 'copy', (['ranges'], {}), '(ranges)\n', (11163, 11171), False, 'from copy import copy\n'), ((12980, 13005), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xs', 'ys'], {'c': 'zs'}), '(xs, ys, c=zs)\n', (12991, 13005), True, 'import matplotlib.pyplot as plt\n'), ((13014, 13024), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13022, 13024), True, 'import matplotlib.pyplot as plt\n'), ((13470, 13489), 'numpy.sum', 'np.sum', (['memberships'], {}), '(memberships)\n', (13476, 13489), True, 'import numpy as np\n'), ((13979, 14004), 'numpy.vectorize', 'np.vectorize', (['partition.f'], {}), '(partition.f)\n', (13991, 14004), True, 'import numpy as np\n'), ((14032, 14057), 'numpy.copy', 'np.copy', (['data[:, feature]'], {}), '(data[:, feature])\n', (14039, 14057), True, 'import numpy as np\n'), ((14141, 14182), 'numpy.multiply', 'np.multiply', (['memberships', 'set_memberships'], {}), '(memberships, set_memberships)\n', (14152, 14182), True, 'import numpy as np\n'), ((14375, 14398), 'numpy.sum', 'np.sum', (['set_memberships'], {}), '(set_memberships)\n', (14381, 14398), True, 'import numpy as np\n'), ((16677, 16778), 'textwrap.TextWrapper', 'textwrap.TextWrapper', ([], {'initial_indent': "('%s ' % indentation)", 'width': '(80)', 'subsequent_indent': "(' ' * 24)"}), "(initial_indent='%s ' % indentation, width=80,\n subsequent_indent=' ' * 24)\n", (16697, 16778), False, 'import textwrap\n'), ((1880, 1893), 'numpy.copy', 'np.copy', (['data'], {}), '(data)\n', (1887, 1893), True, 'import numpy as np\n'), ((2237, 2268), 'numpy.array', 'np.array', (['[(1.0) for d in data]'], {}), '([(1.0) for d in data])\n', (2245, 2268), True, 'import numpy as np\n'), ((6951, 6976), 'numpy.sum', 'np.sum', (['memberships[inds]'], {}), '(memberships[inds])\n', (6957, 6976), True, 'import numpy as np\n'), ((8179, 8206), 'numpy.unique', 'np.unique', (['data[:, feature]'], {}), '(data[:, feature])\n', (8188, 8206), True, 'import numpy as np\n'), ((11954, 12044), 'tabulate.tabulate', 'tabulate', (['data_table'], {'headers': "['Class', 'First', 'Second', 'Third']", 'tablefmt': '"""orgtbl"""'}), "(data_table, headers=['Class', 'First', 'Second', 'Third'],\n tablefmt='orgtbl')\n", (11962, 12044), False, 'from tabulate import tabulate\n'), ((12781, 12808), 'matplotlib.pyplot.plot', 'plt.plot', (['xs', 'ys'], {'color': '"""g"""'}), "(xs, ys, color='g')\n", (12789, 12808), True, 'import matplotlib.pyplot as plt\n'), ((15426, 15445), 'numpy.sum', 'np.sum', (['memberships'], {}), '(memberships)\n', (15432, 15445), True, 'import numpy as np\n'), ((2031, 2051), 'math.sqrt', 'sqrt', (['self.n_feature'], {}), '(self.n_feature)\n', (2035, 2051), False, 'from math import log, sqrt, ceil\n'), ((3545, 3557), 'copy.copy', 'copy', (['ranges'], {}), '(ranges)\n', (3549, 3557), False, 'from copy import copy\n'), ((12590, 12621), 'numpy.arange', 'np.arange', (['rng[0]', 'rng[1]', '(0.05)'], {}), '(rng[0], rng[1], 0.05)\n', (12599, 12621), True, 'import numpy as np\n'), ((16478, 16531), 'random.choice', 'random.choice', (['(string.ascii_uppercase + string.digits)'], {}), '(string.ascii_uppercase + string.digits)\n', (16491, 16531), False, 'import random\n'), ((2109, 2131), 'math.log', 'log', (['self.n_feature', '(2)'], {}), '(self.n_feature, 2)\n', (2112, 2131), False, 'from math import log, sqrt, ceil\n'), ((15646, 15673), 'numpy.sum', 'np.sum', (['memberships_at_inds'], {}), '(memberships_at_inds)\n', (15652, 15673), True, 'import numpy as np\n'), ((5027, 5099), 'numpy.logical_and', 'np.logical_and', (['(data[:, i] != curr_range[0])', '(data[:, i] != curr_range[1])'], {}), '(data[:, i] != curr_range[0], data[:, i] != curr_range[1])\n', (5041, 5099), True, 'import numpy as np\n'), ((15758, 15771), 'math.log', 'log', (['proba', '(2)'], {}), '(proba, 2)\n', (15761, 15771), False, 'from math import log, sqrt, ceil\n')]
import numpy as np a = np.array([ [1, 2, 3], [4, 5, 6] ]) print("print(a)") print(a) print() print("print(a.T)") print(a.T) print() print("print(a.dot(2))") print(a.dot(2)) print() print("print(a.dot(np.array([2, 2, 2])))") print(a.dot(np.array([2, 2, 2]))) print()
[ "numpy.array" ]
[((24, 56), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (32, 56), True, 'import numpy as np\n'), ((250, 269), 'numpy.array', 'np.array', (['[2, 2, 2]'], {}), '([2, 2, 2])\n', (258, 269), True, 'import numpy as np\n')]
import random import numpy import torch from backobs.integration import extend as backobs_extend from backobs.integration import ( extend_with_access_unreduced_loss as backobs_extend_with_access_unreduced_loss, ) def set_deepobs_seed(seed=0): """Set all seeds used by DeepOBS.""" random.seed(seed) numpy.random.seed(seed) torch.manual_seed(seed) def set_up_problem( tproblem_cls, batch_size, force_no_l2_reg=True, seed=None, extend=False, unreduced_loss=False, ): """Create problem with neural network, and set to train mode.""" if seed is not None: set_deepobs_seed(0) if force_no_l2_reg: tproblem = tproblem_cls(batch_size, l2_reg=0.0) else: tproblem = tproblem_cls(batch_size) tproblem.set_up() tproblem.train_init_op() if unreduced_loss and not extend: raise ValueError("To use unreduced_loss, enable the extend option.") if extend: if unreduced_loss: backobs_extend_with_access_unreduced_loss(tproblem) else: tproblem = backobs_extend(tproblem) return tproblem def get_reduction_factor(loss, unreduced_loss): """Return the factor used to reduce the individual losses.""" mean_loss = unreduced_loss.flatten().mean() sum_loss = unreduced_loss.flatten().sum() if torch.allclose(mean_loss, sum_loss): raise RuntimeError( "Cannot determine reduction factor. ", "Results from 'mean' and 'sum' reduction are identical. ", f"'mean': {mean_loss}, 'sum': {sum_loss}", ) if torch.allclose(loss, mean_loss): factor = 1.0 / unreduced_loss.numel() elif torch.allclose(loss, sum_loss): factor = 1.0 else: raise RuntimeError( "Reductions 'mean' or 'sum' do not match with loss. ", f"'mean': {mean_loss}, 'sum': {sum_loss}, loss: {loss}", ) return factor atol = 1e-5 rtol = 1e-5 def report_nonclose_values(x, y): x_numpy = x.data.cpu().numpy().flatten() y_numpy = y.data.cpu().numpy().flatten() close = numpy.isclose(x_numpy, y_numpy, atol=atol, rtol=rtol) where_not_close = numpy.argwhere(numpy.logical_not(close)) for idx in where_not_close: x, y = x_numpy[idx], y_numpy[idx] print("{} versus {}. Ratio of {}".format(x, y, y / x)) def check_sizes_and_values(*plists, atol=atol, rtol=rtol): check_sizes(*plists) list1, list2 = plists check_values(list1, list2, atol=atol, rtol=rtol) def check_sizes(*plists): for i in range(len(plists) - 1): assert len(plists[i]) == len(plists[i + 1]) for params in zip(*plists): for i in range(len(params) - 1): assert params[i].size() == params[i + 1].size() def check_values(list1, list2, atol=atol, rtol=rtol): for i, (g1, g2) in enumerate(zip(list1, list2)): print(i) print(g1.size()) report_nonclose_values(g1, g2) assert torch.allclose(g1, g2, atol=atol, rtol=rtol)
[ "numpy.random.seed", "torch.manual_seed", "numpy.logical_not", "numpy.isclose", "random.seed", "backobs.integration.extend_with_access_unreduced_loss", "torch.allclose", "backobs.integration.extend" ]
[((296, 313), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (307, 313), False, 'import random\n'), ((318, 341), 'numpy.random.seed', 'numpy.random.seed', (['seed'], {}), '(seed)\n', (335, 341), False, 'import numpy\n'), ((346, 369), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (363, 369), False, 'import torch\n'), ((1348, 1383), 'torch.allclose', 'torch.allclose', (['mean_loss', 'sum_loss'], {}), '(mean_loss, sum_loss)\n', (1362, 1383), False, 'import torch\n'), ((1608, 1639), 'torch.allclose', 'torch.allclose', (['loss', 'mean_loss'], {}), '(loss, mean_loss)\n', (1622, 1639), False, 'import torch\n'), ((2117, 2170), 'numpy.isclose', 'numpy.isclose', (['x_numpy', 'y_numpy'], {'atol': 'atol', 'rtol': 'rtol'}), '(x_numpy, y_numpy, atol=atol, rtol=rtol)\n', (2130, 2170), False, 'import numpy\n'), ((1696, 1726), 'torch.allclose', 'torch.allclose', (['loss', 'sum_loss'], {}), '(loss, sum_loss)\n', (1710, 1726), False, 'import torch\n'), ((2208, 2232), 'numpy.logical_not', 'numpy.logical_not', (['close'], {}), '(close)\n', (2225, 2232), False, 'import numpy\n'), ((2992, 3036), 'torch.allclose', 'torch.allclose', (['g1', 'g2'], {'atol': 'atol', 'rtol': 'rtol'}), '(g1, g2, atol=atol, rtol=rtol)\n', (3006, 3036), False, 'import torch\n'), ((995, 1046), 'backobs.integration.extend_with_access_unreduced_loss', 'backobs_extend_with_access_unreduced_loss', (['tproblem'], {}), '(tproblem)\n', (1036, 1046), True, 'from backobs.integration import extend_with_access_unreduced_loss as backobs_extend_with_access_unreduced_loss\n'), ((1084, 1108), 'backobs.integration.extend', 'backobs_extend', (['tproblem'], {}), '(tproblem)\n', (1098, 1108), True, 'from backobs.integration import extend as backobs_extend\n')]