code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import copy import numpy as np import os import torch import pickle from detectron2.data import MetadataCatalog from detectron2.data import detection_utils as utils from detectron2.structures import ( BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask, ) import pycocotools.mask as mask_util from PIL import Image import torchvision.transforms as transforms from . import GaussianBlur __all__ = ["PlaneRCNNMapper"] def convert_PIL_to_numpy(image, format): """ Convert PIL image to numpy array of target format. Args: image (PIL.Image): a PIL image format (str): the format of output image Returns: (np.ndarray): also see `read_image` """ if format is not None: # PIL only supports RGB, so convert to RGB and flip channels over below conversion_format = format if format in ["BGR", "YUV-BT.601"]: conversion_format = "RGB" image = image.convert(conversion_format) image = np.asarray(image) # PIL squeezes out the channel dimension for "L", so make it HWC if format == "L": image = np.expand_dims(image, -1) # handle formats not supported by PIL elif format == "BGR": # flip channels if needed image = image[:, :, ::-1] elif format == "YUV-BT.601": image = image / 255.0 image = np.dot(image, np.array(_M_RGB2YUV).T) return image def annotations_to_instances( annos, image_size, mask_format="polygon", max_num_planes=20 ): """ Create an :class:`Instances` object used by the models, from instance annotations in the dataset dict. Args: annos (list[dict]): a list of annotations, one per instance. image_size (tuple): height, width Returns: Instances: It will contains fields "gt_boxes", "gt_classes", "gt_masks", "gt_keypoints", if they can be obtained from `annos`. """ boxes = [ BoxMode.convert(obj["bbox"], BoxMode(obj["bbox_mode"]), BoxMode.XYXY_ABS) for obj in annos ] target = Instances(image_size) boxes = target.gt_boxes = Boxes(boxes) boxes.clip(image_size) classes = [obj["category_id"] for obj in annos] classes = torch.tensor(classes, dtype=torch.int64) target.gt_classes = classes if len(annos) and "segmentation" in annos[0]: segms = [obj["segmentation"] for obj in annos] if mask_format == "polygon": masks = PolygonMasks(segms) else: assert mask_format == "bitmask", mask_format masks = [] for segm in segms: if isinstance(segm, list): # polygon masks.append(polygons_to_bitmask(segm, *image_size)) elif isinstance(segm, dict): # COCO RLE masks.append(mask_util.decode(segm)) elif isinstance(segm, np.ndarray): assert ( segm.ndim == 2 ), "Expect segmentation of 2 dimensions, got {}.".format(segm.ndim) # mask array masks.append(segm) else: raise ValueError( "Cannot convert segmentation of type '{}' to BitMasks!" "Supported types are: polygons as list[list[float] or ndarray]," " COCO-style RLE as a dict, or a full-image segmentation mask " "as a 2D ndarray.".format(type(segm)) ) # torch.from_numpy does not support array with negative stride. masks = BitMasks( torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks]) ) target.gt_masks = masks if len(annos) and "plane" in annos[0]: plane = [torch.tensor(obj["plane"]) for obj in annos] plane_idx = [torch.tensor([i]) for i in range(len(plane))] target.gt_planes = torch.stack(plane, dim=0) target.gt_plane_idx = torch.stack(plane_idx, dim=0) return target class PlaneRCNNMapper: """ A callable which takes a dict produced by the detection dataset, and applies transformations, including image resizing and flipping. The transformation parameters are parsed from cfg file and depending on the is_train condition. Note that for our existing models, mean/std normalization is done by the model instead of here. """ def __init__(self, cfg, is_train=True, dataset_names=None): self.cfg = cfg # fmt: off self.img_format = cfg.INPUT.FORMAT self.depth_on = cfg.MODEL.DEPTH_ON self.camera_on = cfg.MODEL.CAMERA_ON self.load_proposals = cfg.MODEL.LOAD_PROPOSALS self._eval_gt_box = cfg.TEST.EVAL_GT_BOX self._augmentation = cfg.DATALOADER.AUGMENTATION # fmt: on if self.load_proposals: raise ValueError("Loading proposals not yet supported") self.is_train = is_train assert dataset_names is not None if self.camera_on: kmeans_trans_path = cfg.MODEL.CAMERA_HEAD.KMEANS_TRANS_PATH kmeans_rots_path = cfg.MODEL.CAMERA_HEAD.KMEANS_ROTS_PATH assert os.path.exists(kmeans_trans_path) assert os.path.exists(kmeans_rots_path) with open(kmeans_trans_path, "rb") as f: self.kmeans_trans = pickle.load(f) with open(kmeans_rots_path, "rb") as f: self.kmeans_rots = pickle.load(f) if self._augmentation: color_jitter = transforms.ColorJitter(0.8, 0.8, 0.8, 0.2) augmentation = [ transforms.RandomApply([color_jitter], p=0.2), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5), transforms.ToTensor(), ] self.img_transform = transforms.Compose(augmentation) def __call__(self, dataset_dict): """ Transform the dataset_dict according to the configured transformations. Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a new dict that's going to be processed by the model. It currently does the following: 1. Read the image from "file_name" 2. Transform the image and annotations 3. Prepare the annotations to :class:`Instances` """ dataset_dict = copy.deepcopy(dataset_dict) for i in range(2): image = utils.read_image( dataset_dict[str(i)]["file_name"], format=self.img_format ) utils.check_image_size(dataset_dict[str(i)], image) if self.is_train and self._augmentation: image = Image.fromarray(image) dataset_dict[str(i)]["image"] = self.img_transform(image) * 255.0 image_shape = dataset_dict[str(i)]["image"].shape[1:] else: image_shape = image.shape[:2] dataset_dict[str(i)]["image"] = torch.as_tensor( image.transpose(2, 0, 1).astype("float32") ) # Can use uint8 if it turns out to be slow some day if self.depth_on: if "depth_head" in self.cfg.MODEL.FREEZE: dataset_dict[str(i)]["depth"] = torch.as_tensor( np.zeros((480, 640)).astype("float32") ) else: # load depth map house, img_id = dataset_dict[str(i)]["image_id"].split("_", 1) depth_path = os.path.join( "/Pool1/users/jinlinyi/dataset/mp3d_rpnet_v4_sep20/observations", house, img_id + ".pkl", ) with open(depth_path, "rb") as f: obs = pickle.load(f) # This assertion is to check dataset is clean # assert((obs['color_sensor'][:,:,:3][:,:,::-1].transpose(2, 0, 1)-dataset_dict[str(i)]["image"].numpy()).sum()==0) depth = obs["depth_sensor"] dataset_dict[str(i)]["depth"] = torch.as_tensor( depth.astype("float32") ) if self.camera_on: relative_pose = dataset_dict["rel_pose"] x, y, z = relative_pose["position"] w, xi, yi, zi = relative_pose["rotation"] dataset_dict["rel_pose"]["tran_cls"] = torch.LongTensor( self.xyz2class(x, y, z) ) dataset_dict["rel_pose"]["rot_cls"] = torch.LongTensor( self.quat2class(w, xi, yi, zi) ) if not self.is_train and not self._eval_gt_box: return dataset_dict if not self._eval_gt_box: for i in range(2): if "annotations" in dataset_dict[str(i)]: annos = [ self.transform_annotations(obj) for obj in dataset_dict[str(i)].pop("annotations") if obj.get("iscrowd", 0) == 0 ] # Should not be empty during training instances = annotations_to_instances(annos, image_shape) dataset_dict[str(i)]["instances"] = instances[ instances.gt_boxes.nonempty() ] else: for i in range(2): if "annotations" in dataset_dict[str(i)]: annos = [ self.transform_annotations(obj) for obj in dataset_dict[str(i)]["annotations"] if obj.get("iscrowd", 0) == 0 ] # Should not be empty during training instances = annotations_to_instances(annos, image_shape) dataset_dict[str(i)]["instances"] = instances[ instances.gt_boxes.nonempty() ] return dataset_dict def transform_annotations(self, annotation, transforms=None, image_size=None): """ Apply image transformations to the annotations. After this method, the box mode will be set to XYXY_ABS. """ return annotation def xyz2class(self, x, y, z): return self.kmeans_trans.predict([[x, y, z]]) def quat2class(self, w, xi, yi, zi): return self.kmeans_rots.predict([[w, xi, yi, zi]]) def class2xyz(self, cls): assert (cls >= 0).all() and (cls < self.kmeans_trans.n_clusters).all() return self.kmeans_trans.cluster_centers_[cls] def class2quat(self, cls): assert (cls >= 0).all() and (cls < self.kmeans_rots.n_clusters).all() return self.kmeans_rots.cluster_centers_[cls]
[ "pycocotools.mask.decode", "pickle.load", "detectron2.structures.Instances", "os.path.join", "detectron2.structures.polygons_to_bitmask", "detectron2.structures.PolygonMasks", "os.path.exists", "torchvision.transforms.Compose", "copy.deepcopy", "numpy.asarray", "detectron2.structures.Boxes", "torchvision.transforms.RandomApply", "detectron2.structures.BoxMode", "torchvision.transforms.ColorJitter", "torch.stack", "numpy.zeros", "numpy.expand_dims", "torchvision.transforms.RandomGrayscale", "numpy.array", "PIL.Image.fromarray", "numpy.ascontiguousarray", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((1016, 1033), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (1026, 1033), True, 'import numpy as np\n'), ((2086, 2107), 'detectron2.structures.Instances', 'Instances', (['image_size'], {}), '(image_size)\n', (2095, 2107), False, 'from detectron2.structures import BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask\n'), ((2138, 2150), 'detectron2.structures.Boxes', 'Boxes', (['boxes'], {}), '(boxes)\n', (2143, 2150), False, 'from detectron2.structures import BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask\n'), ((2245, 2285), 'torch.tensor', 'torch.tensor', (['classes'], {'dtype': 'torch.int64'}), '(classes, dtype=torch.int64)\n', (2257, 2285), False, 'import torch\n'), ((1141, 1166), 'numpy.expand_dims', 'np.expand_dims', (['image', '(-1)'], {}), '(image, -1)\n', (1155, 1166), True, 'import numpy as np\n'), ((4025, 4050), 'torch.stack', 'torch.stack', (['plane'], {'dim': '(0)'}), '(plane, dim=0)\n', (4036, 4050), False, 'import torch\n'), ((4081, 4110), 'torch.stack', 'torch.stack', (['plane_idx'], {'dim': '(0)'}), '(plane_idx, dim=0)\n', (4092, 4110), False, 'import torch\n'), ((6618, 6645), 'copy.deepcopy', 'copy.deepcopy', (['dataset_dict'], {}), '(dataset_dict)\n', (6631, 6645), False, 'import copy\n'), ((1997, 2022), 'detectron2.structures.BoxMode', 'BoxMode', (["obj['bbox_mode']"], {}), "(obj['bbox_mode'])\n", (2004, 2022), False, 'from detectron2.structures import BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask\n'), ((2481, 2500), 'detectron2.structures.PolygonMasks', 'PolygonMasks', (['segms'], {}), '(segms)\n', (2493, 2500), False, 'from detectron2.structures import BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask\n'), ((3886, 3912), 'torch.tensor', 'torch.tensor', (["obj['plane']"], {}), "(obj['plane'])\n", (3898, 3912), False, 'import torch\n'), ((3952, 3969), 'torch.tensor', 'torch.tensor', (['[i]'], {}), '([i])\n', (3964, 3969), False, 'import torch\n'), ((5309, 5342), 'os.path.exists', 'os.path.exists', (['kmeans_trans_path'], {}), '(kmeans_trans_path)\n', (5323, 5342), False, 'import os\n'), ((5362, 5394), 'os.path.exists', 'os.path.exists', (['kmeans_rots_path'], {}), '(kmeans_rots_path)\n', (5376, 5394), False, 'import os\n'), ((5660, 5702), 'torchvision.transforms.ColorJitter', 'transforms.ColorJitter', (['(0.8)', '(0.8)', '(0.8)', '(0.2)'], {}), '(0.8, 0.8, 0.8, 0.2)\n', (5682, 5702), True, 'import torchvision.transforms as transforms\n'), ((6007, 6039), 'torchvision.transforms.Compose', 'transforms.Compose', (['augmentation'], {}), '(augmentation)\n', (6025, 6039), True, 'import torchvision.transforms as transforms\n'), ((5484, 5498), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5495, 5498), False, 'import pickle\n'), ((5586, 5600), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5597, 5600), False, 'import pickle\n'), ((5748, 5793), 'torchvision.transforms.RandomApply', 'transforms.RandomApply', (['[color_jitter]'], {'p': '(0.2)'}), '([color_jitter], p=0.2)\n', (5770, 5793), True, 'import torchvision.transforms as transforms\n'), ((5811, 5844), 'torchvision.transforms.RandomGrayscale', 'transforms.RandomGrayscale', ([], {'p': '(0.2)'}), '(p=0.2)\n', (5837, 5844), True, 'import torchvision.transforms as transforms\n'), ((5937, 5958), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (5956, 5958), True, 'import torchvision.transforms as transforms\n'), ((6940, 6962), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (6955, 6962), False, 'from PIL import Image\n'), ((7806, 7912), 'os.path.join', 'os.path.join', (['"""/Pool1/users/jinlinyi/dataset/mp3d_rpnet_v4_sep20/observations"""', 'house', "(img_id + '.pkl')"], {}), "('/Pool1/users/jinlinyi/dataset/mp3d_rpnet_v4_sep20/observations',\n house, img_id + '.pkl')\n", (7818, 7912), False, 'import os\n'), ((1397, 1417), 'numpy.array', 'np.array', (['_M_RGB2YUV'], {}), '(_M_RGB2YUV)\n', (1405, 1417), True, 'import numpy as np\n'), ((2732, 2770), 'detectron2.structures.polygons_to_bitmask', 'polygons_to_bitmask', (['segm', '*image_size'], {}), '(segm, *image_size)\n', (2751, 2770), False, 'from detectron2.structures import BitMasks, Boxes, BoxMode, Instances, PolygonMasks, polygons_to_bitmask\n'), ((8088, 8102), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8099, 8102), False, 'import pickle\n'), ((2881, 2903), 'pycocotools.mask.decode', 'mask_util.decode', (['segm'], {}), '(segm)\n', (2897, 2903), True, 'import pycocotools.mask as mask_util\n'), ((3737, 3760), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['x'], {}), '(x)\n', (3757, 3760), True, 'import numpy as np\n'), ((7570, 7590), 'numpy.zeros', 'np.zeros', (['(480, 640)'], {}), '((480, 640))\n', (7578, 7590), True, 'import numpy as np\n')]
from datetime import datetime from multiprocessing import Array from queue import Empty, Full # except AttributeError: # from multiprocessing import Queue import numpy as np # try: from arrayqueues.portable_queue import PortableQueue # as Queue class ArrayView: def __init__(self, array, max_bytes, dtype, el_shape, i_item=0): self.dtype = dtype self.el_shape = el_shape self.nbytes_el = self.dtype.itemsize * np.product(self.el_shape) self.n_items = int(np.floor(max_bytes / self.nbytes_el)) self.total_shape = (self.n_items,) + self.el_shape self.i_item = i_item self.view = np.frombuffer(array, dtype, np.product(self.total_shape)).reshape( self.total_shape ) def __eq__(self, other): """Overrides the default implementation""" if isinstance(self, other.__class__): return self.el_shape == other.el_shape and self.dtype == other.dtype return False def push(self, element): self.view[self.i_item, ...] = element i_inserted = self.i_item self.i_item = (self.i_item + 1) % self.n_items # a tuple is returned to maximise performance return self.dtype, self.el_shape, i_inserted def pop(self, i_item): return self.view[i_item, ...] def fits(self, item): if isinstance(item, np.ndarray): return item.dtype == self.dtype and item.shape == self.el_shape return ( item[0] == self.dtype and item[1] == self.el_shape and item[2] < self.n_items ) class ArrayQueue: """A drop-in replacement for the multiprocessing queue, usable only for numpy arrays, which removes the need for pickling and should provide higher speeds and lower memory usage """ def __init__(self, max_mbytes=10): self.maxbytes = int(max_mbytes * 1000000) self.array = Array("c", self.maxbytes) self.view = None self.queue = PortableQueue() self.read_queue = PortableQueue() self.last_item = 0 def check_full(self): while True: try: self.last_item = self.read_queue.get(timeout=0.00001) except Empty: break if self.view.i_item == self.last_item: raise Full( "Queue of length {} full when trying to insert {}," " last item read was {}".format( self.view.n_items, self.view.i_item, self.last_item ) ) def put(self, element): if self.view is None or not self.view.fits(element): self.view = ArrayView( self.array.get_obj(), self.maxbytes, element.dtype, element.shape ) self.last_item = 0 else: self.check_full() qitem = self.view.push(element) self.queue.put(qitem) def get(self, **kwargs): aritem = self.queue.get(**kwargs) if self.view is None or not self.view.fits(aritem): self.view = ArrayView(self.array.get_obj(), self.maxbytes, *aritem) self.read_queue.put(aritem[2]) return self.view.pop(aritem[2]) def clear(self): """Empties the queue without the need to read all the existing elements :return: nothing """ self.view = None while True: try: _ = self.queue.get_nowait() except Empty: break while True: try: _ = self.read_queue.get_nowait() except Empty: break self.last_item = 0 def empty(self): return self.queue.empty() def qsize(self): return self.queue.qsize() class TimestampedArrayQueue(ArrayQueue): """A small extension to support timestamps saved alongside arrays""" def put(self, element, timestamp=None): if self.view is None or not self.view.fits(element): self.view = ArrayView( self.array.get_obj(), self.maxbytes, element.dtype, element.shape ) else: self.check_full() qitem = self.view.push(element) if timestamp is None: timestamp = datetime.now() self.queue.put((timestamp, qitem)) def get(self, **kwargs): timestamp, aritem = self.queue.get(**kwargs) if self.view is None or not self.view.fits(aritem): self.view = ArrayView(self.array.get_obj(), self.maxbytes, *aritem) self.read_queue.put(aritem[2]) return timestamp, self.view.pop(aritem[2]) class IndexedArrayQueue(ArrayQueue): """A small extension to support timestamps saved alongside arrays""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.counter = 0 def put(self, element, timestamp=None): if self.view is None or not self.view.fits(element): self.view = ArrayView( self.array.get_obj(), self.maxbytes, element.dtype, element.shape ) else: self.check_full() qitem = self.view.push(element) if timestamp is None: timestamp = datetime.now() self.queue.put((timestamp, self.counter, qitem)) self.counter += 1 def get(self, **kwargs): timestamp, index, aritem = self.queue.get(**kwargs) if self.view is None or not self.view.fits(aritem): self.view = ArrayView(self.array.get_obj(), self.maxbytes, *aritem) self.read_queue.put(aritem[2]) return timestamp, index, self.view.pop(aritem[2])
[ "multiprocessing.Array", "arrayqueues.portable_queue.PortableQueue", "numpy.floor", "numpy.product", "datetime.datetime.now" ]
[((1929, 1954), 'multiprocessing.Array', 'Array', (['"""c"""', 'self.maxbytes'], {}), "('c', self.maxbytes)\n", (1934, 1954), False, 'from multiprocessing import Array\n'), ((2001, 2016), 'arrayqueues.portable_queue.PortableQueue', 'PortableQueue', ([], {}), '()\n', (2014, 2016), False, 'from arrayqueues.portable_queue import PortableQueue\n'), ((2043, 2058), 'arrayqueues.portable_queue.PortableQueue', 'PortableQueue', ([], {}), '()\n', (2056, 2058), False, 'from arrayqueues.portable_queue import PortableQueue\n'), ((443, 468), 'numpy.product', 'np.product', (['self.el_shape'], {}), '(self.el_shape)\n', (453, 468), True, 'import numpy as np\n'), ((496, 532), 'numpy.floor', 'np.floor', (['(max_bytes / self.nbytes_el)'], {}), '(max_bytes / self.nbytes_el)\n', (504, 532), True, 'import numpy as np\n'), ((4287, 4301), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4299, 4301), False, 'from datetime import datetime\n'), ((5257, 5271), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5269, 5271), False, 'from datetime import datetime\n'), ((670, 698), 'numpy.product', 'np.product', (['self.total_shape'], {}), '(self.total_shape)\n', (680, 698), True, 'import numpy as np\n')]
''' ์ „๋žต : ํ•˜๋ฃจ์˜ ์ฃผ๊ฐ€๋ฅผ ๋†“๊ณ  ๋ณด๋ฉด ์˜ค๋ฅธ ๊ฒฝ์šฐ๊ฐ€ 42%, ๋‚ด๋ฆฐ ๊ฒฝ์šฐ๊ฐ€ 46%, ๋‚˜๋จธ์ง€ 12%๋Š” ๋ณ€๋™์ด ์—†๋‹ค. ์ฆ๋ช… ์•Œ๊ณ ๋ฆฌ์ฆ˜ : PyportfolioOpt ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ด์šฉํ•œ ์ตœ์ ํ™” (max sharp, risk, return, fund remaining) ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import FinanceDataReader as fdr import datetime from pykrx import stock import requests from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices # ์˜ค๋Š˜ KOSPI&KOSDAQ ์ข…๋ชฉ ์ „์ฒด ๋ถˆ๋Ÿฌ์˜ค๊ธฐ today = datetime.datetime.today().strftime("%Y%m%d") kospi = stock.get_market_fundamental_by_ticker(today, market='KOSPI').index kosdaq = stock.get_market_fundamental_by_ticker(today, market='KOSDAQ').index stocks = kospi.append(kosdaq) def up_down_zero(code): # ์ข…๋ชฉ๊ณผ ์—ฐ๋„์— ๋งž๋Š” ์ƒ์Šน/ํ•˜๋ฝ/๋ณ€๋™ ์—†๋Š” ๋‚  ์ˆ˜๋ฅผ ๋ฆฌ์ŠคํŠธ ๋ฐ˜ํ™˜ today = datetime.datetime.today().strftime("%Y-%m-%d") year = today[0:4] month_day = today[4:] one_year_ago = str(int(year) - 1) + month_day data = fdr.DataReader(code, one_year_ago)[['Close']] data_rtn = data.pct_change() up = 0 nothing = 0 down = 0 for i, date in enumerate(data.index): if data_rtn.Close.iloc[i] > 0: up = up + 1 elif data_rtn.Close.iloc[i] == 0: nothing = nothing + 1 else: down = down + 1 total_days = len(data_rtn.index) return up / total_days, down / total_days, nothing / total_days def get_up_down_zero_df(stocks): # stocks ๋ฆฌ์ŠคํŠธ๋ฅผ ๋„ฃ์œผ๋ฉด, ์ƒ์Šน/ํ•˜๋ฝ/๋ณ€๋™์—†๋Š” ํ™•๋ฅ  ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋ฐ˜ํ™˜ up_list = [] down_list = [] zero_list = [] for i in stocks: temp = up_down_zero(i) up_list.append(temp[0]) down_list.append(temp[1]) zero_list.append(temp[2]) # ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๋งŒ๋“ค๊ธฐ up_down_zero_df = pd.DataFrame() up_down_zero_df['์ข…๋ชฉ ์ฝ”๋“œ'] = stocks # ์ข…๋ชฉ์ฝ”๋“œ up_down_zero_df['์ƒ์Šน ํ™•๋ฅ '] = up_list # ์ผ๊ฐ„ ๋ณ€๋™๋ฅ ์ด ์–‘์ˆ˜์ธ ๋‚ ์˜ ์ˆ˜ up_down_zero_df['ํ•˜๋ฝ ํ™•๋ฅ '] = down_list # ์ผ๊ฐ„ ๋ณ€๋™๋ฅ ์ด ์Œ์ˆ˜์ธ ๋‚ ์˜ ์ˆ˜ up_down_zero_df['๋ณ€๋™ ์—†๋Š” ํ™•๋ฅ '] = zero_list # ์ผ๊ฐ„ ๋ณ€๋™๋ฅ ์ด 0์ธ ๋‚ ์˜ ์ˆ˜ up_down_zero_df['์ƒ์Šน ํ™•๋ฅ  ๋†’์€ ์ˆœ์œ„'] = up_down_zero_df['์ƒ์Šน ํ™•๋ฅ '].rank(ascending=False) up_down_zero_df = up_down_zero_df.sort_values(by='์ƒ์Šน ํ™•๋ฅ  ๋†’์€ ์ˆœ์œ„') return up_down_zero_df up_down_zero_df = get_up_down_zero_df(stocks) symbol_udz = [] for i in idx_list: symbol_udz.append(up_down_zero_df.loc[i][0]) symbol_udz # ๊ธ‰๋“ฑ์ฃผ ์ข…๋ชฉ ์ €์žฅ assets = np.array(symbol_udz) start_date = '2018-07-21' end_date = '2021-07-21' df = pd.DataFrame() for stock in assets: df[stock] = fdr.DataReader(stock, start_date, end_date)['Close'] df_dropna = df.dropna(axis = 1) mu = expected_returns.mean_historical_return(df_dropna) S = risk_models.sample_cov(df_dropna) ef = EfficientFrontier(mu, S, solver="SCS") weights = ef.max_sharpe() cleaned_weights = ef.clean_weights() print(ef.portfolio_performance(verbose=True)) portfolio_val = 15000000 latest_prices = get_latest_prices(df_dropna) weights = cleaned_weights da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=portfolio_val) allocation, leftover = da.lp_portfolio(verbose=False) #rmse = da._allocation_rmse_error(verbose=False) print('Discrete Allocaion: ', allocation) print('Funds Remaining: ', leftover, ' KRW') discrete_allocation_list = [] for symbol in allocation: discrete_allocation_list.append(allocation.get(symbol)) portfolio_df = pd.DataFrame(columns = ['company_Ticker', 'Discrete_val_'+str(portfolio_val)]) portfolio_df['company_Ticker'] = allocation portfolio_df['Discrete_val_'+str(portfolio_val)] = discrete_allocation_list portfolio_df_sorted = portfolio_df.sort_values('Discrete_val_'+str(portfolio_val), ascending = False) portfolio_df_sorted = portfolio_df_sorted.reset_index(drop=True) print('Funds Remaining: ', leftover, ' KRW') print(ef.portfolio_performance(verbose=True)) print('Allocation has RMSE: {:.3f}'.format(rmse))
[ "pandas.DataFrame", "pypfopt.risk_models.sample_cov", "pykrx.stock.get_market_fundamental_by_ticker", "datetime.datetime.today", "pypfopt.efficient_frontier.EfficientFrontier", "pypfopt.discrete_allocation.get_latest_prices", "numpy.array", "pypfopt.expected_returns.mean_historical_return", "pypfopt.discrete_allocation.DiscreteAllocation", "FinanceDataReader.DataReader" ]
[((2378, 2398), 'numpy.array', 'np.array', (['symbol_udz'], {}), '(symbol_udz)\n', (2386, 2398), True, 'import numpy as np\n'), ((2454, 2468), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2466, 2468), True, 'import pandas as pd\n'), ((2596, 2646), 'pypfopt.expected_returns.mean_historical_return', 'expected_returns.mean_historical_return', (['df_dropna'], {}), '(df_dropna)\n', (2635, 2646), False, 'from pypfopt import expected_returns\n'), ((2651, 2684), 'pypfopt.risk_models.sample_cov', 'risk_models.sample_cov', (['df_dropna'], {}), '(df_dropna)\n', (2673, 2684), False, 'from pypfopt import risk_models\n'), ((2691, 2729), 'pypfopt.efficient_frontier.EfficientFrontier', 'EfficientFrontier', (['mu', 'S'], {'solver': '"""SCS"""'}), "(mu, S, solver='SCS')\n", (2708, 2729), False, 'from pypfopt.efficient_frontier import EfficientFrontier\n'), ((2881, 2909), 'pypfopt.discrete_allocation.get_latest_prices', 'get_latest_prices', (['df_dropna'], {}), '(df_dropna)\n', (2898, 2909), False, 'from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices\n'), ((2941, 3020), 'pypfopt.discrete_allocation.DiscreteAllocation', 'DiscreteAllocation', (['weights', 'latest_prices'], {'total_portfolio_value': 'portfolio_val'}), '(weights, latest_prices, total_portfolio_value=portfolio_val)\n', (2959, 3020), False, 'from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices\n'), ((604, 665), 'pykrx.stock.get_market_fundamental_by_ticker', 'stock.get_market_fundamental_by_ticker', (['today'], {'market': '"""KOSPI"""'}), "(today, market='KOSPI')\n", (642, 665), False, 'from pykrx import stock\n'), ((681, 743), 'pykrx.stock.get_market_fundamental_by_ticker', 'stock.get_market_fundamental_by_ticker', (['today'], {'market': '"""KOSDAQ"""'}), "(today, market='KOSDAQ')\n", (719, 743), False, 'from pykrx import stock\n'), ((1789, 1803), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1801, 1803), True, 'import pandas as pd\n'), ((551, 576), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (574, 576), False, 'import datetime\n'), ((1013, 1047), 'FinanceDataReader.DataReader', 'fdr.DataReader', (['code', 'one_year_ago'], {}), '(code, one_year_ago)\n', (1027, 1047), True, 'import FinanceDataReader as fdr\n'), ((2504, 2547), 'FinanceDataReader.DataReader', 'fdr.DataReader', (['stock', 'start_date', 'end_date'], {}), '(stock, start_date, end_date)\n', (2518, 2547), True, 'import FinanceDataReader as fdr\n'), ((856, 881), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (879, 881), False, 'import datetime\n')]
# pylint: disable=invalid-name,protected-access from copy import deepcopy from unittest import TestCase import codecs import gzip import logging import os import shutil from keras import backend as K import numpy from numpy.testing import assert_allclose from deep_qa.common.checks import log_keras_version_info from deep_qa.data.instances.instance import TextInstance from deep_qa.data.tokenizers import tokenizers from deep_qa.common.params import Params class DeepQaTestCase(TestCase): # pylint: disable=too-many-public-methods TEST_DIR = './TMP_TEST/' TRAIN_FILE = TEST_DIR + 'train_file' VALIDATION_FILE = TEST_DIR + 'validation_file' TEST_FILE = TEST_DIR + 'test_file' TRAIN_BACKGROUND = TEST_DIR + 'train_background' VALIDATION_BACKGROUND = TEST_DIR + 'validation_background' SNLI_FILE = TEST_DIR + 'snli_file' PRETRAINED_VECTORS_FILE = TEST_DIR + 'pretrained_glove_vectors_file' PRETRAINED_VECTORS_GZIP = TEST_DIR + 'pretrained_glove_vectors_file.gz' def setUp(self): logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=logging.DEBUG) log_keras_version_info() os.makedirs(self.TEST_DIR, exist_ok=True) def tearDown(self): shutil.rmtree(self.TEST_DIR) TextInstance.tokenizer = tokenizers["words"](Params({})) K.clear_session() def get_model_params(self, additional_arguments=None): params = Params({}) params['save_models'] = False params['model_serialization_prefix'] = self.TEST_DIR params['train_files'] = [self.TRAIN_FILE] params['validation_files'] = [self.VALIDATION_FILE] params['embeddings'] = {'words': {'dimension': 6}, 'characters': {'dimension': 2}} params['encoder'] = {"default": {'type': 'bow'}} params['num_epochs'] = 1 params['validation_split'] = 0.0 if additional_arguments: for key, value in additional_arguments.items(): params[key] = deepcopy(value) return params def get_model(self, model_class, additional_arguments=None): params = self.get_model_params(additional_arguments) return model_class(params) def ensure_model_trains_and_loads(self, model_class, args: Params): args['save_models'] = True # Our loading tests work better if you're not using data generators. Unless you # specifically request it in your test, we'll avoid using them here, and if you _do_ use # them, we'll skip some of the stuff below that isn't compatible. args.setdefault('data_generator', None) model = self.get_model(model_class, args) model.train() # load the model that we serialized loaded_model = self.get_model(model_class, args) loaded_model.load_model() # verify that original model and the loaded model predict the same outputs if model._uses_data_generators(): # We shuffle the data in the data generator. Instead of making that logic more # complicated, we'll just pass on the loading tests here. See comment above. pass else: model_predictions = model.model.predict(model.validation_arrays[0]) loaded_model_predictions = loaded_model.model.predict(model.validation_arrays[0]) for model_prediction, loaded_prediction in zip(model_predictions, loaded_model_predictions): assert_allclose(model_prediction, loaded_prediction) # We should get the same result if we index the data from the original model and the loaded # model. _, indexed_validation_arrays = loaded_model.load_data_arrays(model.validation_files) if model._uses_data_generators(): # As above, we'll just pass on this. pass else: model_predictions = model.model.predict(model.validation_arrays[0]) loaded_model_predictions = loaded_model.model.predict(indexed_validation_arrays[0]) for model_prediction, loaded_prediction in zip(model_predictions, loaded_model_predictions): assert_allclose(model_prediction, loaded_prediction) return model, loaded_model @staticmethod def one_hot(index, length): vector = numpy.zeros(length) vector[index] = 1 return vector def write_snli_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\ttext 1\thypothesis1\tentails\n') train_file.write('2\ttext 2\thypothesis2\tcontradicts\n') train_file.write('3\ttext3\thypothesis3\tentails\n') train_file.write('4\ttext 4\thypothesis4\tneutral\n') train_file.write('5\ttext5\thypothesis 5\tentails\n') train_file.write('6\ttext6\thypothesis6\tcontradicts\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\ttext 1 with extra words\thypothesis1\tentails\n') validation_file.write('2\ttext 2\tlonger hypothesis 2\tcontradicts\n') validation_file.write('3\ttext3\thypothesis withreallylongfakeword\tentails\n') def write_sequence_tagging_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('cats###N\tare###V\tanimals###N\t.###N\n') train_file.write('dogs###N\tare###V\tanimals###N\t.###N\n') train_file.write('snakes###N\tare###V\tanimals###N\t.###N\n') train_file.write('birds###N\tare###V\tanimals###N\t.###N\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('horses###N\tare###V\tanimals###N\t.###N\n') validation_file.write('blue###N\tcows###N\tare###V\tanimals###N\t.###N\n') validation_file.write('monkeys###N\tare###V\tanimals###N\t.###N\n') validation_file.write('caterpillars###N\tare###V\tanimals###N\t.###N\n') def write_verb_semantics_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('root####absorb####water\t1,1\t2,2\tMOVE\t-1,-1\t0,0\n') train_file.write('this####mixture####is####converted####into####sugar####inside####leaf' '\t2,3\t5,5\tCREATE\t7,7\t-1,-1\n') train_file.write('lakes####contain####water\t1,1\t2,2\tNONE\t-1,-1\t-1,-1\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('root####absorb####water\t1,1\t2,2\tMOVE\t-1,-1\t0,0\n') validation_file.write('this####mixture####is####converted####into####sugar####inside####leaf' '\t2,3\t5,5\tCREATE\t7,7\t-1,-1\n') validation_file.write('lakes####contain####water\t1,1\t2,2\tNONE\t-1,-1\t-1,-1\n') def write_true_false_model_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tq1a1\t0\n') validation_file.write('2\tq1a2\t1\n') validation_file.write('3\tq1a3\t0\n') validation_file.write('4\tq1a4\t0\n') validation_file.write('5\tq2a1\t0\n') validation_file.write('6\tq2a2\t0\n') validation_file.write('7\tq2a3\t1\n') validation_file.write('8\tq2a4\t0\n') validation_file.write('9\tq3a1\t0\n') validation_file.write('10\tq3a2\t0\n') validation_file.write('11\tq3a3\t0\n') validation_file.write('12\tq3a4\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tsentence1\t0\n') train_file.write('2\tsentence2 word2 word3\t1\n') train_file.write('3\tsentence3 word2\t0\n') train_file.write('4\tsentence4\t1\n') train_file.write('5\tsentence5\t0\n') train_file.write('6\tsentence6\t0\n') with codecs.open(self.TEST_FILE, 'w', 'utf-8') as test_file: test_file.write('1\ttestsentence1\t0\n') test_file.write('2\ttestsentence2 word2 word3\t1\n') test_file.write('3\ttestsentence3 word2\t0\n') test_file.write('4\ttestsentence4\t1\n') test_file.write('5\ttestsentence5 word4\t0\n') test_file.write('6\ttestsentence6\t0\n') def write_additional_true_false_model_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tq4a1\t0\n') validation_file.write('2\tq4a2\t1\n') validation_file.write('3\tq4a3\t0\n') validation_file.write('4\tq4a4\t0\n') validation_file.write('5\tq5a1\t0\n') validation_file.write('6\tq5a2\t0\n') validation_file.write('7\tq5a3\t1\n') validation_file.write('8\tq5a4\t0\n') validation_file.write('9\tq6a1\t0\n') validation_file.write('10\tq6a2\t0\n') validation_file.write('11\tq6a3\t0\n') validation_file.write('12\tq6a4\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tsentence7\t0\n') train_file.write('2\tsentence8 word4 word5\t1\n') train_file.write('3\tsentence9 word4\t0\n') train_file.write('4\tsentence10\t1\n') train_file.write('5\tsentence11 word3 word2\t0\n') train_file.write('6\tsentence12\t0\n') def write_question_answer_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tquestion1\tanswer1###answer2\t0\n') with codecs.open(self.VALIDATION_BACKGROUND, 'w', 'utf-8') as validation_background: validation_background.write('1\tvb1\tvb2\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\ta b e i d\tanswer 1###answer2\t0\n') train_file.write('2\ta b c d\tanswer3###answer4\t1\n') train_file.write('3\te d w f d s a b\tanswer5###answer6###answer9\t2\n') train_file.write('4\te fj k w q\tanswer7###answer8\t0\n') with codecs.open(self.TRAIN_BACKGROUND, 'w', 'utf-8') as train_background: train_background.write('1\tsb1\tsb2\n') train_background.write('2\tsb3\n') train_background.write('3\tsb4\n') train_background.write('4\tsb5\tsb6\n') def write_who_did_what_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tHe went to the store to buy goods, because he wanted to.' '\tHe bought xxxxx\tgoods###store\t0\n') validation_file.write('1\tShe hiking on the weekend with her friend.' '\tShe went xxxxx\thiking###friend###weekend###her friend\t0\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # document, question, answers train_file.write('1\tFred hit the ball with the bat.\tHe hit the ball with the xxxxx\tbat###ball\t0\n') train_file.write('1\tShe walked the dog today.\tThe xxxxx was walked today.\tShe###dog###today\t1\n') train_file.write('1\tHe kept typing at his desk.\tHe typed at his xxxxx\tdesk###kept\t0\n') train_file.write('1\tThe pup at the bone but not the biscuit.\tThe pup ate the xxxxx\t' 'bone###biscuit\t0\n') def write_tuple_inference_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tss<>v f d<>oo o<>c$$$s<>v ff<>o i###ss r<>v<>o e<>o ee\t' 'ss ss<>ve gg<>o sd<>ccs\t0\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # document, question, answers train_file.write('1\tss<>v<>oo o<>c$$$s e<>ff<>o ii i###ss r<>rr<>o e<>o ee\t' 'ss<>ve gg<>o sd<>ccs\t0\n') train_file.write('2\tsg g<>vg<>oo o<>c$$$s e<>v ff<>o ii i###ss<>v rr<>o e<>o ee' '###hh kk<>hdj d<>hh\tss ss<>ve gg<>o sd<>ccs\t2\n') train_file.write('3\ts r<>v f d<>o ss<>c$$$s e<>v ff<>o ss i$$$r<>v ss<>s o e<>o ee\t' 'ss ss<>v g<>o sd<>ccs\t0\n') train_file.write('4\tty y<>cf fv ss<>s ss<>c$$$rt e<>vv f<>oss i i###ss<>v<>os e<>o ee\t' 'ss ss<>ve gg<>o sd<>ccs\t1\n') def write_span_prediction_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tquestion 1 with extra words\t' 'passage with answer and a reallylongword\t13,18\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tquestion 1\tpassage1 with answer1\t14,20\n') train_file.write('2\tquestion 2\tpassage2 with answer2\t0,8\n') train_file.write('3\tquestion 3\tpassage3 with answer3\t9,13\n') train_file.write('4\tquestion 4\tpassage4 with answer4\t14,20\n') def write_sentence_selection_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tWhere is Paris?\tParis is the capital of France.###It ' 'is by the Seine.###It is quite old###this is a ' 'very long sentence meant to test that loading ' 'and padding works properly in the model.\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tWho won Super Bowl 50?\tSuper Bowl 50 was in Santa ' 'Clara.###The Patriots beat the Broncos.\t1\n') train_file.write('2\tWhen is Thanksgiving?\tFolk tales tell ' 'of the Pilgrims celebrating the holiday.###Many ' 'people eat a lot.###It is in November.\t2\n') train_file.write('3\tWhen were computers invented?\tThe ancient Chinese used ' 'abacuses.###Alan Turing cracked Enigma.###It is hard to ' 'pinpoint an inventor of the computer.\t2\n') def write_pretrained_vector_files(self): # write the file with codecs.open(self.PRETRAINED_VECTORS_FILE, 'w', 'utf-8') as vector_file: vector_file.write('word2 0.21 0.57 0.51 0.31\n') vector_file.write('sentence1 0.81 0.48 0.19 0.47\n') # compress the file with open(self.PRETRAINED_VECTORS_FILE, 'rb') as f_in: with gzip.open(self.PRETRAINED_VECTORS_GZIP, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def write_sentence_data(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write("This is a sentence for language modelling.\n") train_file.write("Here's another one for language modelling.\n") def write_original_snli_data(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # pylint: disable=line-too-long train_file.write("""{"annotator_labels": ["neutral"],"captionID": "3416050480.jpg#4", "gold_label": "neutral", "pairID": "3416050480.jpg#4r1n", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is training his horse for a competition.", "sentence2_binary_parse": "( ( A person ) ( ( is ( ( training ( his horse ) ) ( for ( a competition ) ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (VP (VBG training) (NP (PRP$ his) (NN horse)) (PP (IN for) (NP (DT a) (NN competition))))) (. .)))"}\n""") train_file.write("""{"annotator_labels": ["contradiction"], "captionID": "3416050480.jpg#4", "gold_label": "contradiction", "pairID": "3416050480.jpg#4r1c", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is at a diner, ordering an omelette.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is ( at ( a diner ) ) ) , ) ( ordering ( an omelette ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (PP (IN at) (NP (DT a) (NN diner))) (, ,) (S (VP (VBG ordering) (NP (DT an) (NN omelette))))) (. .)))"}\n""") train_file.write("""{"annotator_labels": ["entailment"], "captionID": "3416050480.jpg#4", "gold_label": "entailment", "pairID": "3416050480.jpg#4r1e", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is outdoors, on a horse.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is outdoors ) , ) ( on ( a horse ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (ADVP (RB outdoors)) (, ,) (PP (IN on) (NP (DT a) (NN horse)))) (. .)))"}\n""") # pylint: enable=line-too-long with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: # pylint: disable=line-too-long validation_file.write("""{"annotator_labels": ["neutral"],"captionID": "3416050480.jpg#4", "gold_label": "neutral", "pairID": "3416050480.jpg#4r1n", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is training his horse for a competition.", "sentence2_binary_parse": "( ( A person ) ( ( is ( ( training ( his horse ) ) ( for ( a competition ) ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (VP (VBG training) (NP (PRP$ his) (NN horse)) (PP (IN for) (NP (DT a) (NN competition))))) (. .)))"}\n""") validation_file.write("""{"annotator_labels": ["contradiction"], "captionID": "3416050480.jpg#4", "gold_label": "contradiction", "pairID": "3416050480.jpg#4r1c", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is at a diner, ordering an omelette.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is ( at ( a diner ) ) ) , ) ( ordering ( an omelette ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (PP (IN at) (NP (DT a) (NN diner))) (, ,) (S (VP (VBG ordering) (NP (DT an) (NN omelette))))) (. .)))"}\n""") validation_file.write("""{"annotator_labels": ["entailment"], "captionID": "3416050480.jpg#4", "gold_label": "entailment", "pairID": "3416050480.jpg#4r1e", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is outdoors, on a horse.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is outdoors ) , ) ( on ( a horse ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (ADVP (RB outdoors)) (, ,) (PP (IN on) (NP (DT a) (NN horse)))) (. .)))"}\n""") # pylint: enable=line-too-long
[ "copy.deepcopy", "gzip.open", "os.makedirs", "logging.basicConfig", "codecs.open", "numpy.testing.assert_allclose", "numpy.zeros", "deep_qa.common.params.Params", "deep_qa.common.checks.log_keras_version_info", "shutil.rmtree", "shutil.copyfileobj", "keras.backend.clear_session" ]
[((1030, 1143), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(levelname)s - %(name)s - %(message)s"""', 'level': 'logging.DEBUG'}), "(format=\n '%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=logging.DEBUG\n )\n", (1049, 1143), False, 'import logging\n'), ((1170, 1194), 'deep_qa.common.checks.log_keras_version_info', 'log_keras_version_info', ([], {}), '()\n', (1192, 1194), False, 'from deep_qa.common.checks import log_keras_version_info\n'), ((1203, 1244), 'os.makedirs', 'os.makedirs', (['self.TEST_DIR'], {'exist_ok': '(True)'}), '(self.TEST_DIR, exist_ok=True)\n', (1214, 1244), False, 'import os\n'), ((1278, 1306), 'shutil.rmtree', 'shutil.rmtree', (['self.TEST_DIR'], {}), '(self.TEST_DIR)\n', (1291, 1306), False, 'import shutil\n'), ((1380, 1397), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (1395, 1397), True, 'from keras import backend as K\n'), ((1475, 1485), 'deep_qa.common.params.Params', 'Params', (['{}'], {}), '({})\n', (1481, 1485), False, 'from deep_qa.common.params import Params\n'), ((4340, 4359), 'numpy.zeros', 'numpy.zeros', (['length'], {}), '(length)\n', (4351, 4359), False, 'import numpy\n'), ((1360, 1370), 'deep_qa.common.params.Params', 'Params', (['{}'], {}), '({})\n', (1366, 1370), False, 'from deep_qa.common.params import Params\n'), ((4454, 4496), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (4465, 4496), False, 'import codecs\n'), ((4927, 4974), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (4938, 4974), False, 'import codecs\n'), ((5316, 5358), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (5327, 5358), False, 'import codecs\n'), ((5678, 5725), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (5689, 5725), False, 'import codecs\n'), ((6133, 6175), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (6144, 6175), False, 'import codecs\n'), ((6546, 6593), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (6557, 6593), False, 'import codecs\n'), ((7034, 7081), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (7045, 7081), False, 'import codecs\n'), ((7718, 7760), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (7729, 7760), False, 'import codecs\n'), ((8107, 8148), 'codecs.open', 'codecs.open', (['self.TEST_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TEST_FILE, 'w', 'utf-8')\n", (8118, 8148), False, 'import codecs\n'), ((8574, 8621), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (8585, 8621), False, 'import codecs\n'), ((9258, 9300), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (9269, 9300), False, 'import codecs\n'), ((9706, 9753), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (9717, 9753), False, 'import codecs\n'), ((9861, 9914), 'codecs.open', 'codecs.open', (['self.VALIDATION_BACKGROUND', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_BACKGROUND, 'w', 'utf-8')\n", (9872, 9914), False, 'import codecs\n'), ((10011, 10053), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (10022, 10053), False, 'import codecs\n'), ((10374, 10422), 'codecs.open', 'codecs.open', (['self.TRAIN_BACKGROUND', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_BACKGROUND, 'w', 'utf-8')\n", (10385, 10422), False, 'import codecs\n'), ((10696, 10743), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (10707, 10743), False, 'import codecs\n'), ((11129, 11171), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (11140, 11171), False, 'import codecs\n'), ((11773, 11820), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (11784, 11820), False, 'import codecs\n'), ((12016, 12058), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (12027, 12058), False, 'import codecs\n'), ((12819, 12866), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (12830, 12866), False, 'import codecs\n'), ((13056, 13098), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (13067, 13098), False, 'import codecs\n'), ((13483, 13530), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (13494, 13530), False, 'import codecs\n'), ((13908, 13950), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (13919, 13950), False, 'import codecs\n'), ((14697, 14752), 'codecs.open', 'codecs.open', (['self.PRETRAINED_VECTORS_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.PRETRAINED_VECTORS_FILE, 'w', 'utf-8')\n", (14708, 14752), False, 'import codecs\n'), ((15156, 15198), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (15167, 15198), False, 'import codecs\n'), ((15422, 15464), 'codecs.open', 'codecs.open', (['self.TRAIN_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.TRAIN_FILE, 'w', 'utf-8')\n", (15433, 15464), False, 'import codecs\n'), ((18223, 18270), 'codecs.open', 'codecs.open', (['self.VALIDATION_FILE', '"""w"""', '"""utf-8"""'], {}), "(self.VALIDATION_FILE, 'w', 'utf-8')\n", (18234, 18270), False, 'import codecs\n'), ((2041, 2056), 'copy.deepcopy', 'deepcopy', (['value'], {}), '(value)\n', (2049, 2056), False, 'from copy import deepcopy\n'), ((3500, 3552), 'numpy.testing.assert_allclose', 'assert_allclose', (['model_prediction', 'loaded_prediction'], {}), '(model_prediction, loaded_prediction)\n', (3515, 3552), False, 'from numpy.testing import assert_allclose\n'), ((4184, 4236), 'numpy.testing.assert_allclose', 'assert_allclose', (['model_prediction', 'loaded_prediction'], {}), '(model_prediction, loaded_prediction)\n', (4199, 4236), False, 'from numpy.testing import assert_allclose\n'), ((15003, 15048), 'gzip.open', 'gzip.open', (['self.PRETRAINED_VECTORS_GZIP', '"""wb"""'], {}), "(self.PRETRAINED_VECTORS_GZIP, 'wb')\n", (15012, 15048), False, 'import gzip\n'), ((15075, 15106), 'shutil.copyfileobj', 'shutil.copyfileobj', (['f_in', 'f_out'], {}), '(f_in, f_out)\n', (15093, 15106), False, 'import shutil\n')]
import torch import random import socket import os import numpy as np def get_device(device): assert device in ( 'cpu', 'cuda'), 'device {} should be in (cpu, cuda)'.format(device) if socket.gethostname() == 'gemini' or not torch.cuda.is_available(): device = 'cpu' else: device = 'cuda' if device == 'cuda' else "cpu" return device def seed_exp(seed, device='cuda'): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if device == 'cuda': torch.cuda.manual_seed(seed) torch.set_num_threads(1) def update_arguments(model=None, dataset=None, collect=None, sim2real=None): """ User provides the arguments in a user-friendly way. This function takes care of converting them to the format used by the repo. """ from bc.settings import MODEL_LOGDIR, DATASET_LOGDIR def update_model_args(model): if model is None: return None # convert the input_type argument from a string to a tuple if isinstance(model['input_type'], (tuple, list)): return input_type_str2list = { 'rgb': ('rgb', ), 'depth': ('depth', ), 'rgbd': ('depth', 'rgb') } assert model['input_type'] in input_type_str2list model['input_type'] = input_type_str2list[model['input_type']] # get the full paths using the user-speicified settings model['model_dir'] = os.path.join(MODEL_LOGDIR, model['name']) model.pop('name') return model def update_dataset_args(dataset): if dataset is None: return None dataset['dataset_dir'] = os.path.join(DATASET_LOGDIR, dataset['name']) dataset.pop('name') signal_keys_updated = [] for signal_key in dataset['signal_keys']: signal_keys_updated.append(('state', signal_key)) dataset['signal_keys'] = signal_keys_updated return dataset def update_collect_args(collect): if collect is None: return None collect['collect_dir'] = os.path.join(DATASET_LOGDIR, collect['folder']) collect.pop('folder') return collect def update_sim2real_args(sim2real): if sim2real is None: return None sim2real['mcts_dir'] = os.path.join(MODEL_LOGDIR, sim2real['name']) sim2real['trainset_dir'] = os.path.join(DATASET_LOGDIR, sim2real['trainset_name']) sim2real['evalset_dir'] = os.path.join(DATASET_LOGDIR, sim2real['evalset_name']) sim2real.pop('name') return sim2real model = update_model_args(model) dataset = update_dataset_args(dataset) collect = update_collect_args(collect) sim2real = update_sim2real_args(sim2real) return [args for args in (model, dataset, collect, sim2real) if args is not None]
[ "numpy.random.seed", "torch.manual_seed", "torch.cuda.manual_seed", "socket.gethostname", "torch.set_num_threads", "random.seed", "torch.cuda.is_available", "os.path.join" ]
[((416, 433), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (427, 433), False, 'import random\n'), ((438, 458), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (452, 458), True, 'import numpy as np\n'), ((463, 486), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (480, 486), False, 'import torch\n'), ((553, 577), 'torch.set_num_threads', 'torch.set_num_threads', (['(1)'], {}), '(1)\n', (574, 577), False, 'import torch\n'), ((520, 548), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (542, 548), False, 'import torch\n'), ((1453, 1494), 'os.path.join', 'os.path.join', (['MODEL_LOGDIR', "model['name']"], {}), "(MODEL_LOGDIR, model['name'])\n", (1465, 1494), False, 'import os\n'), ((1666, 1711), 'os.path.join', 'os.path.join', (['DATASET_LOGDIR', "dataset['name']"], {}), "(DATASET_LOGDIR, dataset['name'])\n", (1678, 1711), False, 'import os\n'), ((2085, 2132), 'os.path.join', 'os.path.join', (['DATASET_LOGDIR', "collect['folder']"], {}), "(DATASET_LOGDIR, collect['folder'])\n", (2097, 2132), False, 'import os\n'), ((2311, 2355), 'os.path.join', 'os.path.join', (['MODEL_LOGDIR', "sim2real['name']"], {}), "(MODEL_LOGDIR, sim2real['name'])\n", (2323, 2355), False, 'import os\n'), ((2391, 2446), 'os.path.join', 'os.path.join', (['DATASET_LOGDIR', "sim2real['trainset_name']"], {}), "(DATASET_LOGDIR, sim2real['trainset_name'])\n", (2403, 2446), False, 'import os\n'), ((2481, 2535), 'os.path.join', 'os.path.join', (['DATASET_LOGDIR', "sim2real['evalset_name']"], {}), "(DATASET_LOGDIR, sim2real['evalset_name'])\n", (2493, 2535), False, 'import os\n'), ((202, 222), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (220, 222), False, 'import socket\n'), ((242, 267), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (265, 267), False, 'import torch\n')]
import torch import pandas as pd import numpy as np from os import path from torch.utils.data import Dataset, sampler from scipy.ndimage.filters import gaussian_filter class MRIDataset(Dataset): """Dataset of MRI organized in a CAPS folder.""" def __init__(self, img_dir, data_file, preprocessing='linear', transform=None): """ Args: img_dir (string): Directory of all the images. data_file (string): File name of the train/test split file. preprocessing (string): Defines the path to the data in CAPS transform (callable, optional): Optional transform to be applied on a sample. """ self.img_dir = img_dir self.transform = transform self.diagnosis_code = {'CN': 0, 'AD': 1, 'sMCI': 0, 'pMCI': 1, 'MCI': 1, 'unlabeled': -1} self.data_path = preprocessing # Check the format of the tsv file here if isinstance(data_file, str): self.df = pd.read_csv(data_file, sep='\t') elif isinstance(data_file, pd.DataFrame): self.df = data_file else: raise Exception('The argument datafile is not of correct type.') if ('diagnosis' not in list(self.df.columns.values)) or ('session_id' not in list(self.df.columns.values)) or \ ('participant_id' not in list(self.df.columns.values)): raise Exception("the data file is not in the correct format." "Columns should include ['participant_id', 'session_id', 'diagnosis']") self.size = self[0]['image'].numpy().size def __len__(self): return len(self.df) def __getitem__(self, idx): img_name = self.df.loc[idx, 'participant_id'] img_label = self.df.loc[idx, 'diagnosis'] sess_name = self.df.loc[idx, 'session_id'] # Not in BIDS but in CAPS if self.data_path == "linear": image_path = path.join(self.img_dir, 'subjects', img_name, sess_name, 't1', 'preprocessing_dl', img_name + '_' + sess_name + '_space-MNI_res-1x1x1.pt') elif self.data_path == "mni": image_path = path.join(self.img_dir, 'subjects', img_name, sess_name, 't1', 'spm', 'segmentation', 'normalized_space', img_name + '_' + sess_name + '_space-Ixi549Space_T1w.pt') else: raise NotImplementedError("The data path %s is not implemented" % self.data_path) image = torch.load(image_path) label = self.diagnosis_code[img_label] if self.transform: image = self.transform(image) sample = {'image': image, 'label': label, 'participant_id': img_name, 'session_id': sess_name, 'image_path': image_path} return sample def session_restriction(self, session): """ Allows to generate a new MRIDataset using some specific sessions only (mostly used for evaluation of test) :param session: (str) the session wanted. Must be 'all' or 'ses-MXX' :return: (DataFrame) the dataset with the wanted sessions """ from copy import copy data_output = copy(self) if session == "all": return data_output else: df_session = self.df[self.df.session_id == session] df_session.reset_index(drop=True, inplace=True) data_output.df = df_session if len(data_output) == 0: raise Exception("The session %s doesn't exist for any of the subjects in the test data" % session) return data_output class GaussianSmoothing(object): def __init__(self, sigma): self.sigma = sigma def __call__(self, sample): image = sample['image'] np.nan_to_num(image, copy=False) smoothed_image = gaussian_filter(image, sigma=self.sigma) sample['image'] = smoothed_image return sample class ToTensor(object): """Convert image type to Tensor and diagnosis to diagnosis code""" def __call__(self, image): np.nan_to_num(image, copy=False) image = image.astype(float) return torch.from_numpy(image[np.newaxis, :]).float() class MinMaxNormalization(object): """Normalizes a tensor between 0 and 1""" def __call__(self, image): return (image - image.min()) / (image.max() - image.min()) def load_data(train_val_path, diagnoses_list, split, n_splits=None, baseline=True): train_df = pd.DataFrame() valid_df = pd.DataFrame() if n_splits is None: train_path = path.join(train_val_path, 'train') valid_path = path.join(train_val_path, 'validation') else: train_path = path.join(train_val_path, 'train_splits-' + str(n_splits), 'split-' + str(split)) valid_path = path.join(train_val_path, 'validation_splits-' + str(n_splits), 'split-' + str(split)) print("Train", train_path) print("Valid", valid_path) for diagnosis in diagnoses_list: if baseline: train_diagnosis_path = path.join(train_path, diagnosis + '_baseline.tsv') else: train_diagnosis_path = path.join(train_path, diagnosis + '.tsv') valid_diagnosis_path = path.join(valid_path, diagnosis + '_baseline.tsv') train_diagnosis_df = pd.read_csv(train_diagnosis_path, sep='\t') valid_diagnosis_df = pd.read_csv(valid_diagnosis_path, sep='\t') train_df = pd.concat([train_df, train_diagnosis_df]) valid_df = pd.concat([valid_df, valid_diagnosis_df]) train_df.reset_index(inplace=True, drop=True) valid_df.reset_index(inplace=True, drop=True) return train_df, valid_df def load_data_test(test_path, diagnoses_list): test_df = pd.DataFrame() for diagnosis in diagnoses_list: test_diagnosis_path = path.join(test_path, diagnosis + '_baseline.tsv') test_diagnosis_df = pd.read_csv(test_diagnosis_path, sep='\t') test_df = pd.concat([test_df, test_diagnosis_df]) test_df.reset_index(inplace=True, drop=True) return test_df
[ "pandas.DataFrame", "scipy.ndimage.filters.gaussian_filter", "numpy.nan_to_num", "pandas.read_csv", "torch.load", "copy.copy", "os.path.join", "pandas.concat", "torch.from_numpy" ]
[((4592, 4606), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4604, 4606), True, 'import pandas as pd\n'), ((4622, 4636), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4634, 4636), True, 'import pandas as pd\n'), ((5913, 5927), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (5925, 5927), True, 'import pandas as pd\n'), ((2569, 2591), 'torch.load', 'torch.load', (['image_path'], {}), '(image_path)\n', (2579, 2591), False, 'import torch\n'), ((3276, 3286), 'copy.copy', 'copy', (['self'], {}), '(self)\n', (3280, 3286), False, 'from copy import copy\n'), ((3876, 3908), 'numpy.nan_to_num', 'np.nan_to_num', (['image'], {'copy': '(False)'}), '(image, copy=False)\n', (3889, 3908), True, 'import numpy as np\n'), ((3934, 3974), 'scipy.ndimage.filters.gaussian_filter', 'gaussian_filter', (['image'], {'sigma': 'self.sigma'}), '(image, sigma=self.sigma)\n', (3949, 3974), False, 'from scipy.ndimage.filters import gaussian_filter\n'), ((4176, 4208), 'numpy.nan_to_num', 'np.nan_to_num', (['image'], {'copy': '(False)'}), '(image, copy=False)\n', (4189, 4208), True, 'import numpy as np\n'), ((4684, 4718), 'os.path.join', 'path.join', (['train_val_path', '"""train"""'], {}), "(train_val_path, 'train')\n", (4693, 4718), False, 'from os import path\n'), ((4740, 4779), 'os.path.join', 'path.join', (['train_val_path', '"""validation"""'], {}), "(train_val_path, 'validation')\n", (4749, 4779), False, 'from os import path\n'), ((5396, 5446), 'os.path.join', 'path.join', (['valid_path', "(diagnosis + '_baseline.tsv')"], {}), "(valid_path, diagnosis + '_baseline.tsv')\n", (5405, 5446), False, 'from os import path\n'), ((5477, 5520), 'pandas.read_csv', 'pd.read_csv', (['train_diagnosis_path'], {'sep': '"""\t"""'}), "(train_diagnosis_path, sep='\\t')\n", (5488, 5520), True, 'import pandas as pd\n'), ((5550, 5593), 'pandas.read_csv', 'pd.read_csv', (['valid_diagnosis_path'], {'sep': '"""\t"""'}), "(valid_diagnosis_path, sep='\\t')\n", (5561, 5593), True, 'import pandas as pd\n'), ((5614, 5655), 'pandas.concat', 'pd.concat', (['[train_df, train_diagnosis_df]'], {}), '([train_df, train_diagnosis_df])\n', (5623, 5655), True, 'import pandas as pd\n'), ((5675, 5716), 'pandas.concat', 'pd.concat', (['[valid_df, valid_diagnosis_df]'], {}), '([valid_df, valid_diagnosis_df])\n', (5684, 5716), True, 'import pandas as pd\n'), ((5997, 6046), 'os.path.join', 'path.join', (['test_path', "(diagnosis + '_baseline.tsv')"], {}), "(test_path, diagnosis + '_baseline.tsv')\n", (6006, 6046), False, 'from os import path\n'), ((6075, 6117), 'pandas.read_csv', 'pd.read_csv', (['test_diagnosis_path'], {'sep': '"""\t"""'}), "(test_diagnosis_path, sep='\\t')\n", (6086, 6117), True, 'import pandas as pd\n'), ((6136, 6175), 'pandas.concat', 'pd.concat', (['[test_df, test_diagnosis_df]'], {}), '([test_df, test_diagnosis_df])\n', (6145, 6175), True, 'import pandas as pd\n'), ((981, 1013), 'pandas.read_csv', 'pd.read_csv', (['data_file'], {'sep': '"""\t"""'}), "(data_file, sep='\\t')\n", (992, 1013), True, 'import pandas as pd\n'), ((1938, 2080), 'os.path.join', 'path.join', (['self.img_dir', '"""subjects"""', 'img_name', 'sess_name', '"""t1"""', '"""preprocessing_dl"""', "(img_name + '_' + sess_name + '_space-MNI_res-1x1x1.pt')"], {}), "(self.img_dir, 'subjects', img_name, sess_name, 't1',\n 'preprocessing_dl', img_name + '_' + sess_name + '_space-MNI_res-1x1x1.pt')\n", (1947, 2080), False, 'from os import path\n'), ((5222, 5272), 'os.path.join', 'path.join', (['train_path', "(diagnosis + '_baseline.tsv')"], {}), "(train_path, diagnosis + '_baseline.tsv')\n", (5231, 5272), False, 'from os import path\n'), ((5322, 5363), 'os.path.join', 'path.join', (['train_path', "(diagnosis + '.tsv')"], {}), "(train_path, diagnosis + '.tsv')\n", (5331, 5363), False, 'from os import path\n'), ((2210, 2381), 'os.path.join', 'path.join', (['self.img_dir', '"""subjects"""', 'img_name', 'sess_name', '"""t1"""', '"""spm"""', '"""segmentation"""', '"""normalized_space"""', "(img_name + '_' + sess_name + '_space-Ixi549Space_T1w.pt')"], {}), "(self.img_dir, 'subjects', img_name, sess_name, 't1', 'spm',\n 'segmentation', 'normalized_space', img_name + '_' + sess_name +\n '_space-Ixi549Space_T1w.pt')\n", (2219, 2381), False, 'from os import path\n'), ((4261, 4299), 'torch.from_numpy', 'torch.from_numpy', (['image[np.newaxis, :]'], {}), '(image[np.newaxis, :])\n', (4277, 4299), False, 'import torch\n')]
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses from typing import List, Callable, Tuple import cirq import numpy as np import pyqsp.phases import scipy.linalg from plot_qsp import qsp_plot from qsp import to_r_z_from_wx @dataclasses.dataclass class FixedPointAmplitudeAmplification: """Amplitude amplification inputs. Based on the inputs for an amplitude amplification problem, it creates the fixed point amplitude amplification circuit and after the proper projection (depending on whether the number of coefficients is even or odd) it returns the amplitude. On a real quantum computer, we'll need to provide all of u, u_inv, a0, b0, rotA0=e^(i * phi * (2|a0><a0|-I)) and rotB0=e^(i * phi * (2|b0><b0|-I)) for the algorithm as black boxes, but in this simulation we can just calculate them from u, a0, b0. Finally, coeffs determine the polynomial we'd like to convert <a0|u|b0> with. Attributes: u: the unitary to amplify a0: the goal state b0: the starting state coeffs: the coefficients in QSP(R, <0|.|0>) convention """ u: cirq.Gate a0: cirq.STATE_VECTOR_LIKE b0: cirq.STATE_VECTOR_LIKE coeffs: List[float] u_inv: cirq.Gate = None rot_a0: Callable[[float], cirq.Gate] = None rot_b0: Callable[[float], cirq.Gate] = None num_qubits: int = 2 _amplitude_projector: Callable[[np.ndarray], np.complex] = None def __post_init__(self): self.u_inv = cirq.inverse(self.u) self.rot_a0 = self._rot_state("a0", self.a0) self.rot_b0 = self._rot_state("b0", self.b0) self.num_qubits = cirq.num_qubits(self.u) self._amplitude_projector = lambda uni: ( self.a0 @ uni @ self.b0 if len(self.coeffs) % 2 == 1 else self.b0 @ uni @ self.b0 ) def _rot_state( self, name: str, state_vector: np.ndarray ) -> Callable[[float], cirq.Gate]: """Rotates the state around a given state.""" return lambda phi: cirq.MatrixGate( name=f"{name}[{phi:.2f}]", matrix=scipy.linalg.expm( 1j * phi * (2 * np.outer(state_vector, state_vector) - np.identity(4)) ), ) def get_circuit(self) -> cirq.Circuit: qs = cirq.LineQubit.range(self.num_qubits) # reverse operation order for circuits # we mandatorily start with U, as this is the U|B0> in Eq (13) if len(self.coeffs) == 0: return cirq.Circuit(self.u(*qs)) ops = [] i = 1 for phi in self.coeffs[::-1]: if i % 2 == 1: ops += [self.u(*qs)] ops += [self.rot_a0(phi)(*qs)] else: ops += [self.u_inv(*qs)] ops += [self.rot_b0(phi)(*qs)] i += 1 return cirq.Circuit(ops) def run(self) -> float: return self._amplitude_projector(cirq.unitary(self.get_circuit())) def __str__(self): return f"""FixedPointAmplification: num qubits: {self.num_qubits}, u: {self.u}, a0: {self.a0}, b0: {self.b0}, {self.get_circuit()}""" class Experiment: def __init__( self, coeffs: List[float], n_points: int, basis_a: int = 2, basis_b: int = 3, n_qubits: int = 2, ): self.coeffs = coeffs self.basis_a = basis_a self.basis_b = basis_b self.n_points = n_points self.a_s = [] self.fa_s = [] self.a0 = cirq.to_valid_state_vector(basis_a, n_qubits) self.b0 = cirq.to_valid_state_vector(basis_b, n_qubits) def _get_u_gate_and_initial_amplitude( self, p: float, sign: int ) -> Tuple[float, cirq.Gate]: """Creates a CNOT-like unitary with a real amplitude.""" u = sign * scipy.linalg.expm(1j * p * cirq.unitary(cirq.CX)) a = u[self.basis_a][self.basis_b] new_a = a * sign * np.conj(a) / np.abs(a) return new_a, cirq.MatrixGate( name="u", matrix=sign * np.conj(a) / np.abs(a) * u ) def _run_half(self, sign: int): for p in np.linspace(1e-8, np.pi, self.n_points): a, u = self._get_u_gate_and_initial_amplitude(p, sign) fp_amp = self._get_fpamp(u) self.a_s.append(a) self.fa_s.append(fp_amp.run()) def _get_fpamp(self, u): return FixedPointAmplitudeAmplification(u, self.a0, self.b0, self.coeffs) def run(self) -> Tuple[List[float], List[float]]: _, sample_fpamp = self._get_u_gate_and_initial_amplitude(0.123, -1) print(self._get_fpamp(sample_fpamp)) self._run_half(-1) self._run_half(1) return self.a_s, self.fa_s def experiment( coeffs, npoints=50, title=None, filename="fp_amp.png", target_fn=None, target_fn_label: str = None, ): """The main function to qsp the two cases presented in the paper.""" title = f"Fixed amplitude amplification for {title}" a_s, f_as = Experiment(coeffs, npoints).run() qsp_plot(np.real(a_s), f_as, filename, target_fn, target_fn_label, title) if __name__ == "__main__": experiment( title="$T_1$", coeffs=to_r_z_from_wx([0, 0]), npoints=10, filename="fp_amp_t1.png", target_fn=lambda a_s: a_s, target_fn_label="$T_1(a)=a$", ) experiment( title="$T_2$", coeffs=to_r_z_from_wx([0, 0, 0]), npoints=100, filename="fp_amp_t2.png", target_fn=lambda a_s: 2 * a_s ** 2 - 1, target_fn_label="$T_2(a)=2a^2-1$", ) experiment( title="$T_3$", coeffs=to_r_z_from_wx([0, 0, 0, 0]), npoints=100, filename="fp_amp_t3.png", target_fn=lambda a_s: 4 * a_s ** 3 - 3 * a_s, target_fn_label="$T_3(a)=4 a^3-3 a$", ) experiment( title="$T_4$", coeffs=to_r_z_from_wx([0, 0, 0, 0, 0]), npoints=100, filename="fp_amp_t4.png", target_fn=lambda a_s: 8 * a_s ** 4 - 8 * a_s ** 2 + 1, target_fn_label="$T_4(a)=8 a^4-8 a^2 +1$", ) experiment( title="$T_5$", coeffs=to_r_z_from_wx([0, 0, 0, 0, 0, 0]), npoints=100, filename="fp_amp_t5.png", target_fn=lambda a_s: 16 * a_s ** 5 - 20 * a_s ** 3 + 5 * a_s, target_fn_label="$T_5(a)=16 a^5-20 a^3 + 5 a$", ) # these are the same as in the Martyn et al paper wx_phis = pyqsp.phases.FPSearch().generate(10, 0.5) experiment( title="FPSearch(10,0.5)", coeffs=to_r_z_from_wx(wx_phis), npoints=100, filename="fp_amp_fpsearch_10_0.5.png", )
[ "numpy.conj", "numpy.outer", "numpy.abs", "cirq.inverse", "cirq.unitary", "cirq.to_valid_state_vector", "numpy.identity", "cirq.num_qubits", "qsp.to_r_z_from_wx", "cirq.Circuit", "numpy.linspace", "numpy.real", "cirq.LineQubit.range" ]
[((2056, 2076), 'cirq.inverse', 'cirq.inverse', (['self.u'], {}), '(self.u)\n', (2068, 2076), False, 'import cirq\n'), ((2209, 2232), 'cirq.num_qubits', 'cirq.num_qubits', (['self.u'], {}), '(self.u)\n', (2224, 2232), False, 'import cirq\n'), ((2865, 2902), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['self.num_qubits'], {}), '(self.num_qubits)\n', (2885, 2902), False, 'import cirq\n'), ((3424, 3441), 'cirq.Circuit', 'cirq.Circuit', (['ops'], {}), '(ops)\n', (3436, 3441), False, 'import cirq\n'), ((4102, 4147), 'cirq.to_valid_state_vector', 'cirq.to_valid_state_vector', (['basis_a', 'n_qubits'], {}), '(basis_a, n_qubits)\n', (4128, 4147), False, 'import cirq\n'), ((4166, 4211), 'cirq.to_valid_state_vector', 'cirq.to_valid_state_vector', (['basis_b', 'n_qubits'], {}), '(basis_b, n_qubits)\n', (4192, 4211), False, 'import cirq\n'), ((4716, 4756), 'numpy.linspace', 'np.linspace', (['(1e-08)', 'np.pi', 'self.n_points'], {}), '(1e-08, np.pi, self.n_points)\n', (4727, 4756), True, 'import numpy as np\n'), ((5655, 5667), 'numpy.real', 'np.real', (['a_s'], {}), '(a_s)\n', (5662, 5667), True, 'import numpy as np\n'), ((4540, 4549), 'numpy.abs', 'np.abs', (['a'], {}), '(a)\n', (4546, 4549), True, 'import numpy as np\n'), ((5803, 5825), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['[0, 0]'], {}), '([0, 0])\n', (5817, 5825), False, 'from qsp import to_r_z_from_wx\n'), ((6014, 6039), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (6028, 6039), False, 'from qsp import to_r_z_from_wx\n'), ((6247, 6275), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['[0, 0, 0, 0]'], {}), '([0, 0, 0, 0])\n', (6261, 6275), False, 'from qsp import to_r_z_from_wx\n'), ((6492, 6523), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['[0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0])\n', (6506, 6523), False, 'from qsp import to_r_z_from_wx\n'), ((6754, 6788), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['[0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0])\n', (6768, 6788), False, 'from qsp import to_r_z_from_wx\n'), ((7154, 7177), 'qsp.to_r_z_from_wx', 'to_r_z_from_wx', (['wx_phis'], {}), '(wx_phis)\n', (7168, 7177), False, 'from qsp import to_r_z_from_wx\n'), ((4527, 4537), 'numpy.conj', 'np.conj', (['a'], {}), '(a)\n', (4534, 4537), True, 'import numpy as np\n'), ((4435, 4456), 'cirq.unitary', 'cirq.unitary', (['cirq.CX'], {}), '(cirq.CX)\n', (4447, 4456), False, 'import cirq\n'), ((4638, 4647), 'numpy.abs', 'np.abs', (['a'], {}), '(a)\n', (4644, 4647), True, 'import numpy as np\n'), ((2767, 2781), 'numpy.identity', 'np.identity', (['(4)'], {}), '(4)\n', (2778, 2781), True, 'import numpy as np\n'), ((4625, 4635), 'numpy.conj', 'np.conj', (['a'], {}), '(a)\n', (4632, 4635), True, 'import numpy as np\n'), ((2728, 2764), 'numpy.outer', 'np.outer', (['state_vector', 'state_vector'], {}), '(state_vector, state_vector)\n', (2736, 2764), True, 'import numpy as np\n')]
from ...isa.inst import * import numpy as np class Vmfeq_vf(Inst): name = 'vmfeq.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['rs1'] == self['vs2'][no] result = np.packbits( result, bitorder='little' ) return result else: return 0 class Vmfne_vf(Inst): name = 'vmfne.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['rs1'] != self['vs2'][no] result = np.packbits( result, bitorder='little' ) return result else: return 0 class Vmflt_vf(Inst): name = 'vmflt.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['vs2'][no] < self['rs1'] result = np.packbits( result, bitorder='little' ) return result else: return 0 class Vmfle_vf(Inst): name = 'vmfle.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['vs2'][no] <= self['rs1'] result = np.packbits( result, bitorder='little' ) return result else: return 0 class Vmfgt_vf(Inst): name = 'vmfgt.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['vs2'][no] > self['rs1'] result = np.packbits( result, bitorder='little' ) return result else: return 0 class Vmfge_vf(Inst): name = 'vmfge.vf' def golden(self): if 'vs2' in self: result = np.unpackbits( self['orig'], bitorder='little' ) if 'vstart' in self: vstart = self['vstart'] else: vstart = 0 if 'mask' in self: mask = np.unpackbits(self['mask'], bitorder='little')[vstart: self['vl']] else: if self['vl'] >= vstart: mask = np.ones( self['vl'] - vstart, dtype = np.uint8 ) for no in range(vstart, self['vl']): if mask[ no - vstart ] == 1: result[ no ] = self['vs2'][no] >= self['rs1'] result = np.packbits( result, bitorder='little' ) return result else: return 0
[ "numpy.packbits", "numpy.ones", "numpy.unpackbits" ]
[((161, 207), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (174, 207), True, 'import numpy as np\n'), ((782, 820), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (793, 820), True, 'import numpy as np\n'), ((1003, 1049), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (1016, 1049), True, 'import numpy as np\n'), ((1624, 1662), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (1635, 1662), True, 'import numpy as np\n'), ((1844, 1890), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (1857, 1890), True, 'import numpy as np\n'), ((2465, 2503), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (2476, 2503), True, 'import numpy as np\n'), ((2686, 2732), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (2699, 2732), True, 'import numpy as np\n'), ((3308, 3346), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (3319, 3346), True, 'import numpy as np\n'), ((3530, 3576), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (3543, 3576), True, 'import numpy as np\n'), ((4151, 4189), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (4162, 4189), True, 'import numpy as np\n'), ((4373, 4419), 'numpy.unpackbits', 'np.unpackbits', (["self['orig']"], {'bitorder': '"""little"""'}), "(self['orig'], bitorder='little')\n", (4386, 4419), True, 'import numpy as np\n'), ((4995, 5033), 'numpy.packbits', 'np.packbits', (['result'], {'bitorder': '"""little"""'}), "(result, bitorder='little')\n", (5006, 5033), True, 'import numpy as np\n'), ((385, 431), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (398, 431), True, 'import numpy as np\n'), ((538, 582), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (545, 582), True, 'import numpy as np\n'), ((1227, 1273), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (1240, 1273), True, 'import numpy as np\n'), ((1380, 1424), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (1387, 1424), True, 'import numpy as np\n'), ((2068, 2114), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (2081, 2114), True, 'import numpy as np\n'), ((2221, 2265), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (2228, 2265), True, 'import numpy as np\n'), ((2910, 2956), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (2923, 2956), True, 'import numpy as np\n'), ((3063, 3107), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (3070, 3107), True, 'import numpy as np\n'), ((3754, 3800), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (3767, 3800), True, 'import numpy as np\n'), ((3907, 3951), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (3914, 3951), True, 'import numpy as np\n'), ((4597, 4643), 'numpy.unpackbits', 'np.unpackbits', (["self['mask']"], {'bitorder': '"""little"""'}), "(self['mask'], bitorder='little')\n", (4610, 4643), True, 'import numpy as np\n'), ((4750, 4794), 'numpy.ones', 'np.ones', (["(self['vl'] - vstart)"], {'dtype': 'np.uint8'}), "(self['vl'] - vstart, dtype=np.uint8)\n", (4757, 4794), True, 'import numpy as np\n')]
from typing import List, Tuple import numpy as np from evobench.benchmark import Benchmark # from evobench.linkage import DependencyStructureMatrix from evobench.model import Population, Solution from ..operator import Operator class RestrictedMixing(Operator): def __init__(self, benchmark: Benchmark): super(RestrictedMixing, self).__init__(benchmark) # def apply( # self, # population: Population, # dsm: DependencyStructureMatrix # ) -> Population: def mix( self, source: Solution, ils: List[int], population: Population ) -> Tuple[Solution, np.ndarray]: assert source.genome.size == self.benchmark.genome_size if not source.fitness: source.fitness = self.benchmark.evaluate_solution(source) trial = Solution(source.genome.copy()) best_fitness = source.fitness mask = np.zeros(self.benchmark.genome_size, dtype=bool) for gene_index in ils: trial.genome[gene_index] = 1 - trial.genome[gene_index] fitness = self.benchmark.evaluate_solution(trial) # ! TODO: benchmark min/max if fitness >= best_fitness and not population.contains(trial): best_fitness = fitness mask[gene_index] = True else: trial.genome[gene_index] = 1 - trial.genome[gene_index] trial.fitness = best_fitness return trial, mask
[ "numpy.zeros" ]
[((911, 959), 'numpy.zeros', 'np.zeros', (['self.benchmark.genome_size'], {'dtype': 'bool'}), '(self.benchmark.genome_size, dtype=bool)\n', (919, 959), True, 'import numpy as np\n')]
from unittest import TestCase import os import tempfile import numpy as np from keras_trans_mask.backend import keras from keras_trans_mask import CreateMask, RemoveMask, RestoreMask class TestMasks(TestCase): def test_over_fit(self): input_layer = keras.layers.Input(shape=(None,)) embed_layer = keras.layers.Embedding( input_dim=10, output_dim=15, )(input_layer) mask_layer = CreateMask(mask_value=9)(input_layer) embed_layer = RestoreMask()([embed_layer, mask_layer]) removed_layer = RemoveMask()(embed_layer) conv_layer = keras.layers.Conv1D( filters=32, kernel_size=3, padding='same', )(removed_layer) restored_layer = RestoreMask()([conv_layer, embed_layer]) lstm_layer = keras.layers.LSTM(units=5)(restored_layer) dense_layer = keras.layers.Dense(units=2, activation='softmax')(lstm_layer) model = keras.models.Model(inputs=input_layer, outputs=dense_layer) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') model.summary() x = np.array([ [1, 2, 3, 4, 5, 9, 9, 9], [6, 7, 8, 9, 9, 9, 9, 9], ] * 1024) y = np.array([[0], [1]] * 1024) model_path = os.path.join(tempfile.gettempdir(), 'test_trans_mask_%f.h5' % np.random.random()) model.save(model_path) model = keras.models.load_model(model_path, custom_objects={ 'CreateMask': CreateMask, 'RemoveMask': RemoveMask, 'RestoreMask': RestoreMask, }) model.fit(x, y, epochs=10)
[ "keras_trans_mask.RestoreMask", "keras_trans_mask.RemoveMask", "keras_trans_mask.backend.keras.layers.Embedding", "tempfile.gettempdir", "keras_trans_mask.backend.keras.layers.Input", "keras_trans_mask.backend.keras.models.Model", "keras_trans_mask.CreateMask", "numpy.array", "keras_trans_mask.backend.keras.layers.Conv1D", "numpy.random.random", "keras_trans_mask.backend.keras.layers.LSTM", "keras_trans_mask.backend.keras.layers.Dense", "keras_trans_mask.backend.keras.models.load_model" ]
[((266, 299), 'keras_trans_mask.backend.keras.layers.Input', 'keras.layers.Input', ([], {'shape': '(None,)'}), '(shape=(None,))\n', (284, 299), False, 'from keras_trans_mask.backend import keras\n'), ((970, 1029), 'keras_trans_mask.backend.keras.models.Model', 'keras.models.Model', ([], {'inputs': 'input_layer', 'outputs': 'dense_layer'}), '(inputs=input_layer, outputs=dense_layer)\n', (988, 1029), False, 'from keras_trans_mask.backend import keras\n'), ((1146, 1215), 'numpy.array', 'np.array', (['([[1, 2, 3, 4, 5, 9, 9, 9], [6, 7, 8, 9, 9, 9, 9, 9]] * 1024)'], {}), '([[1, 2, 3, 4, 5, 9, 9, 9], [6, 7, 8, 9, 9, 9, 9, 9]] * 1024)\n', (1154, 1215), True, 'import numpy as np\n'), ((1263, 1290), 'numpy.array', 'np.array', (['([[0], [1]] * 1024)'], {}), '([[0], [1]] * 1024)\n', (1271, 1290), True, 'import numpy as np\n'), ((1441, 1577), 'keras_trans_mask.backend.keras.models.load_model', 'keras.models.load_model', (['model_path'], {'custom_objects': "{'CreateMask': CreateMask, 'RemoveMask': RemoveMask, 'RestoreMask': RestoreMask\n }"}), "(model_path, custom_objects={'CreateMask':\n CreateMask, 'RemoveMask': RemoveMask, 'RestoreMask': RestoreMask})\n", (1464, 1577), False, 'from keras_trans_mask.backend import keras\n'), ((322, 373), 'keras_trans_mask.backend.keras.layers.Embedding', 'keras.layers.Embedding', ([], {'input_dim': '(10)', 'output_dim': '(15)'}), '(input_dim=10, output_dim=15)\n', (344, 373), False, 'from keras_trans_mask.backend import keras\n'), ((443, 467), 'keras_trans_mask.CreateMask', 'CreateMask', ([], {'mask_value': '(9)'}), '(mask_value=9)\n', (453, 467), False, 'from keras_trans_mask import CreateMask, RemoveMask, RestoreMask\n'), ((503, 516), 'keras_trans_mask.RestoreMask', 'RestoreMask', ([], {}), '()\n', (514, 516), False, 'from keras_trans_mask import CreateMask, RemoveMask, RestoreMask\n'), ((568, 580), 'keras_trans_mask.RemoveMask', 'RemoveMask', ([], {}), '()\n', (578, 580), False, 'from keras_trans_mask import CreateMask, RemoveMask, RestoreMask\n'), ((615, 677), 'keras_trans_mask.backend.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(32)', 'kernel_size': '(3)', 'padding': '"""same"""'}), "(filters=32, kernel_size=3, padding='same')\n", (634, 677), False, 'from keras_trans_mask.backend import keras\n'), ((765, 778), 'keras_trans_mask.RestoreMask', 'RestoreMask', ([], {}), '()\n', (776, 778), False, 'from keras_trans_mask import CreateMask, RemoveMask, RestoreMask\n'), ((827, 853), 'keras_trans_mask.backend.keras.layers.LSTM', 'keras.layers.LSTM', ([], {'units': '(5)'}), '(units=5)\n', (844, 853), False, 'from keras_trans_mask.backend import keras\n'), ((892, 941), 'keras_trans_mask.backend.keras.layers.Dense', 'keras.layers.Dense', ([], {'units': '(2)', 'activation': '"""softmax"""'}), "(units=2, activation='softmax')\n", (910, 941), False, 'from keras_trans_mask.backend import keras\n'), ((1325, 1346), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (1344, 1346), False, 'import tempfile\n'), ((1374, 1392), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1390, 1392), True, 'import numpy as np\n')]
import numpy as np from scipy.stats import entropy from bisect import bisect from scipy import stats from scipy.stats import median_absolute_deviation as mad from sklearn.metrics import r2_score, mean_squared_error from pyapprox.multivariate_polynomials import conditional_moments_of_polynomial_chaos_expansion as cond_moments def group_fix(partial_result, func, x, y_true, x_default, rand, pool_results, file_exist=False): """ Function for compare results between conditioned and unconditioned QoI. Fix parameters from the least influential group based on results from partially sorting. Four error measure types will be returned. Parameters ---------- partial_result : dict, dictionary of parameter groups, results of partial sort func : list of function, function for analysis (analytical formula or model) x : np.array, Input with shape of N * D where N is sampling size and D is the number of parameters y_true : list, Function results with all x varying (the raw sampling matrix of x) x_default : int, float, list, Default values of x as a scalar or list of scalars rand : np.ndarray, Resample index in bootstrap, shape of R * N, where R is the number of resamples pool_results : dict, Index of fixed parameters and the corresponding results file_exist : bool (default: False), If true, reads cached partial-ranking results from a file. Otherwise, calculates results. Returns ---------- Tuple of: dict_return: dictionary of uncertainty measures mae and the uncertain ranges: Changes in absolute mean error of the func results due to fixing parameters var and the uncertain ranges : Changes in variance of the func results due to fixing parameters ks measures and the uncertain ranges : Changes in pearson correlation coefficients of the func results due to fixing parameters pool_results: """ num_group = len(partial_result) - 1 # store results from fixing parameters in dict cf_upper = {i: None for i in range(num_group)} cf_lower, cv, ks, pvalue = dict(cf_upper), dict(cf_upper), dict(cf_upper), dict(cf_upper) cf_upper_upper, cf_upper_lower, ks_upper, pvalue_upper = dict(cf_upper), dict(cf_upper), dict(cf_upper), dict(cf_upper) cf_lower_lower, cf_lower_upper, ks_lower, pvalue_lower = dict(cf_upper), dict(cf_upper), dict(cf_upper), dict(cf_upper) cf_width, cf_width_lower, cf_width_upper, cond_mean = dict(cf_upper), dict(cf_upper), dict(cf_upper), dict(cf_upper) ind_fix = [] conf_level = [0.025, 0.975] measures_all = [cf_upper, cf_lower, ks, pvalue, cv, cf_upper_upper, cf_upper_lower, cf_lower_upper, cf_lower_lower, ks_lower, ks_upper, pvalue_lower, pvalue_upper, cf_width, cf_width_lower, cf_width_upper, cond_mean] for i in range(num_group, -1, -1): if file_exist: try: ind_fix.extend(partial_result[str(i)]) except NameError: ind_fix = partial_result[str(i)] else: try: ind_fix.extend(partial_result[i]) except NameError: ind_fix = partial_result[i] ind_fix.sort() x_temp = x_default[ind_fix] # check whether results existing skip_calcul = results_exist(ind_fix, pool_results) # print(skip_calcul) if skip_calcul == False: x_copy = np.copy(x) x_copy[ind_fix, :] = x_temp # compare results with insignificant parameters fixed Nresample = rand.shape[0] num_func = len(func) total_resample = num_func * Nresample pvalue_bt, ks_bt, cf_upper_bt, cf_lower_bt, cf_width_bt, y_true_width = \ np.zeros(total_resample), np.zeros(total_resample), np.zeros(total_resample), np.zeros(total_resample), \ np.zeros(total_resample), np.zeros(total_resample) ## Add the bootstrap of PCE for jj in range(num_func): fun = func[jj] results_fix = fun(x_copy).flatten() for ii in range(Nresample): I = rand[ii] ind_resample = jj * Nresample + ii [cf_lower_bt[ind_resample], cf_upper_bt[ind_resample], ks_bt[ind_resample], pvalue_bt[ind_resample], y_true_width[ind_resample]] \ = error_measure(I, y_true[jj], results_fix, conf_level) cf_width_bt = (cf_upper_bt - cf_lower_bt) / y_true_width # End for cf_upper[i], cf_lower[i], ks[i], pvalue[i] = cf_upper_bt.mean(), cf_lower_bt.mean(), ks_bt.mean(), pvalue_bt.mean() cf_upper_lower[i], cf_upper_upper[i] = np.quantile(cf_upper_bt, conf_level) cf_lower_lower[i], cf_lower_upper[i] = np.quantile(cf_lower_bt, conf_level) cf_width[i], cf_width_lower[i], cf_width_upper[i] = cf_width_bt.mean(), *np.quantile(cf_width_bt, conf_level) ks_lower[i], ks_upper[i] = np.quantile(ks_bt, conf_level) pvalue_lower[i], pvalue_upper[i] = np.quantile(pvalue_bt, conf_level) cond_mean[i] = results_fix.mean() if len(ind_fix) == x.shape[0]: cv[i] = 0 # cond_mean[i] = func(x_temp)[0][0] else: mean, variance = cond_moments(fun, x_temp, ind_fix, return_variance=True) # cond_mean[i] = mean[0] cv[i] = (np.sqrt(variance) / mean)[0] # End If # update pool_results measure_list = [measure_ele[i] for measure_ele in measures_all] pool_results = pool_update(ind_fix, measure_list, pool_results) else: # map index to calculated values for ele in range(len(measures_all)): measures_all[ele][i] = skip_calcul[ele] # End if # End for() names = ['cf_upper', 'cf_lower', 'ks', 'pvalue', 'cv', 'cf_upper_upper', 'cf_upper_lower', 'cf_lower_upper', 'cf_lower_lower', 'ks_lower', 'ks_upper', 'pvalue_lower', 'pvalue_upper', 'cf_width', 'cf_width_lower', 'cf_width_upper', 'cond_mean'] dict_return = dict(zip(names, measures_all)) return dict_return, pool_results def error_measure(I, y_true, results_fix, conf_level): """ Calculate the error measures with a resample dataset. Parameters: ---------- I : np.array the random index of each bootstrap y_true : list, Function results with all x varying (the raw sampling matrix of x) result_fix : list, Conditional results with all some x fixed conf_level: list, percentiles used to calculate the confidence intervals Returns: ---------- List, values of uncertainty measures """ y_true_resample = y_true[I] results_fix_resample = results_fix[I] cf_lower_temp, cf_upper_temp = np.quantile(results_fix_resample, conf_level) ks_bt_temp, pvalue_bt_temp = stats.ks_2samp(y_true_resample, results_fix_resample) y_true_width_temp = np.quantile(y_true_resample, conf_level[1]) - np.quantile(y_true_resample, conf_level[0]) return [cf_lower_temp, cf_upper_temp, ks_bt_temp, pvalue_bt_temp, y_true_width_temp] def uncond_cal(y_true, conf_level, rand): """ Calculate the unconditional results Parameters: ---------- y_true : list, Function results with all x varying (the raw sampling matrix of x) conf_level: list, percentiles used to calculate the confidence intervals rand : np.ndarray, Resample index in bootstrap, shape of R * N, where R is the number of resamples Returns: ---------- """ # if rand is None: # y_true_bt = y_true # elif isinstance(rand, np.ndarray): # y_true_bt = y_true[rand] # else: # AssertionError y_true_bt = np.zeros(shape=(y_true.shape[0], rand.shape[0], y_true.shape[1])) # import pdb; pdb.set_trace() for ii in range(y_true.shape[0]): y_true_bt[ii] = y_true[ii][rand] uncond_cf_bt = np.quantile(y_true_bt, conf_level, axis=2) uncond_cf_low, uncond_cf_up = {}, {} uncond_cf_low['mean'] = uncond_cf_bt[0].mean() uncond_cf_low['low'], uncond_cf_low['up'] = np.quantile(uncond_cf_bt[0], conf_level) uncond_cf_up['mean'] = uncond_cf_bt[1].mean() uncond_cf_up['low'], uncond_cf_up['up'] = np.quantile(uncond_cf_bt[1], conf_level) uncond_dict = { 'uncond_cf_low' : uncond_cf_low, 'uncond_cf_up' : uncond_cf_up, 'uncond_mean': y_true_bt.mean() } return uncond_dict def results_exist(parms_fixed, pool_results): """ Helper function to determine whether results exist. Parameters ---------- parms_fixed : list, Index of parameters to fix pool_results : dict, Contains both index of parameters fixed and the corresponding results Returns ------- skip_cal : bool """ if pool_results == {}: skip_cal = False elif parms_fixed in pool_results['parms']: index_measure = pool_results['parms'].index(parms_fixed) skip_cal = pool_results[f'measures_{index_measure}'] else: skip_cal = False return skip_cal def pool_update(parms_fixed, measure_list, pool_results): """Update pool_results with new values. Parameters ---------- parms_fixed : list, Index of parameters to fix measure_list : list, Measures newly calculated for parameters in parms_fixed pool_results : dict, Contains both index of parameters fixed and the corresponding results Returns ---------- Updated pool_results """ try: pool_results['parms'].append(parms_fixed[:]) except KeyError: pool_results['parms'] = [parms_fixed[:]] index_measure = pool_results['parms'].index(parms_fixed) pool_results[f'measures_{index_measure}'] = measure_list return pool_results
[ "numpy.quantile", "pyapprox.multivariate_polynomials.conditional_moments_of_polynomial_chaos_expansion", "numpy.copy", "numpy.zeros", "scipy.stats.ks_2samp", "numpy.sqrt" ]
[((7295, 7340), 'numpy.quantile', 'np.quantile', (['results_fix_resample', 'conf_level'], {}), '(results_fix_resample, conf_level)\n', (7306, 7340), True, 'import numpy as np\n'), ((7374, 7427), 'scipy.stats.ks_2samp', 'stats.ks_2samp', (['y_true_resample', 'results_fix_resample'], {}), '(y_true_resample, results_fix_resample)\n', (7388, 7427), False, 'from scipy import stats\n'), ((8267, 8332), 'numpy.zeros', 'np.zeros', ([], {'shape': '(y_true.shape[0], rand.shape[0], y_true.shape[1])'}), '(shape=(y_true.shape[0], rand.shape[0], y_true.shape[1]))\n', (8275, 8332), True, 'import numpy as np\n'), ((8465, 8507), 'numpy.quantile', 'np.quantile', (['y_true_bt', 'conf_level'], {'axis': '(2)'}), '(y_true_bt, conf_level, axis=2)\n', (8476, 8507), True, 'import numpy as np\n'), ((8657, 8697), 'numpy.quantile', 'np.quantile', (['uncond_cf_bt[0]', 'conf_level'], {}), '(uncond_cf_bt[0], conf_level)\n', (8668, 8697), True, 'import numpy as np\n'), ((8797, 8837), 'numpy.quantile', 'np.quantile', (['uncond_cf_bt[1]', 'conf_level'], {}), '(uncond_cf_bt[1], conf_level)\n', (8808, 8837), True, 'import numpy as np\n'), ((7452, 7495), 'numpy.quantile', 'np.quantile', (['y_true_resample', 'conf_level[1]'], {}), '(y_true_resample, conf_level[1])\n', (7463, 7495), True, 'import numpy as np\n'), ((7498, 7541), 'numpy.quantile', 'np.quantile', (['y_true_resample', 'conf_level[0]'], {}), '(y_true_resample, conf_level[0])\n', (7509, 7541), True, 'import numpy as np\n'), ((3705, 3715), 'numpy.copy', 'np.copy', (['x'], {}), '(x)\n', (3712, 3715), True, 'import numpy as np\n'), ((5033, 5069), 'numpy.quantile', 'np.quantile', (['cf_upper_bt', 'conf_level'], {}), '(cf_upper_bt, conf_level)\n', (5044, 5069), True, 'import numpy as np\n'), ((5121, 5157), 'numpy.quantile', 'np.quantile', (['cf_lower_bt', 'conf_level'], {}), '(cf_lower_bt, conf_level)\n', (5132, 5157), True, 'import numpy as np\n'), ((5319, 5349), 'numpy.quantile', 'np.quantile', (['ks_bt', 'conf_level'], {}), '(ks_bt, conf_level)\n', (5330, 5349), True, 'import numpy as np\n'), ((5397, 5431), 'numpy.quantile', 'np.quantile', (['pvalue_bt', 'conf_level'], {}), '(pvalue_bt, conf_level)\n', (5408, 5431), True, 'import numpy as np\n'), ((4043, 4067), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4051, 4067), True, 'import numpy as np\n'), ((4069, 4093), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4077, 4093), True, 'import numpy as np\n'), ((4095, 4119), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4103, 4119), True, 'import numpy as np\n'), ((4121, 4145), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4129, 4145), True, 'import numpy as np\n'), ((4161, 4185), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4169, 4185), True, 'import numpy as np\n'), ((4187, 4211), 'numpy.zeros', 'np.zeros', (['total_resample'], {}), '(total_resample)\n', (4195, 4211), True, 'import numpy as np\n'), ((5651, 5707), 'pyapprox.multivariate_polynomials.conditional_moments_of_polynomial_chaos_expansion', 'cond_moments', (['fun', 'x_temp', 'ind_fix'], {'return_variance': '(True)'}), '(fun, x_temp, ind_fix, return_variance=True)\n', (5663, 5707), True, 'from pyapprox.multivariate_polynomials import conditional_moments_of_polynomial_chaos_expansion as cond_moments\n'), ((5243, 5279), 'numpy.quantile', 'np.quantile', (['cf_width_bt', 'conf_level'], {}), '(cf_width_bt, conf_level)\n', (5254, 5279), True, 'import numpy as np\n'), ((5791, 5808), 'numpy.sqrt', 'np.sqrt', (['variance'], {}), '(variance)\n', (5798, 5808), True, 'import numpy as np\n')]
import numpy as np import gpflow import matplotlib.pyplot as plt import matplotlib.pylab as pl from mpl_toolkits.mplot3d import axes3d, Axes3D from BoManifolds.Riemannian_utils.sphere_utils import logmap from BoManifolds.kernel_utils.kernels_sphere_tf import SphereGaussianKernel, SphereLaplaceKernel from BoManifolds.plot_utils.manifold_plots import plot_sphere plt.rcParams['text.usetex'] = True # use Latex font for plots plt.rcParams['text.latex.preamble'] = [r'\usepackage{bm}'] """ This example shows the use of different kernels for the hypershere manifold S^n , used for Gaussian process regression. The tested function corresponds to a Gaussian distribution with a mean defined on the sphere and a covariance defined on the tangent space of the mean. Training data are generated "far" from the mean. The trained Gaussian process is then used to determine the value of the function from test data sampled around the mean of the test function. The kernels used are: - Manifold-RBF kernel (geometry-aware) - Laplace kernel (geometry-aware) - Euclidean kernel (classical geometry-unaware) This example works with GPflow version = 0.5 (used by GPflowOpt). Authors: <NAME> and <NAME>, 2019 License: MIT Contact: <EMAIL>, <EMAIL> """ def test_function(x, mu_test_function): # Parameters sigma_test_fct = np.array([[0.6, 0.2, 0], [0.2, 0.3, -0.01], [0, -0.01, 0.2]]) inv_sigma_test_fct = np.linalg.inv(sigma_test_fct) det_sigma_test_fct = np.linalg.det(sigma_test_fct) # Function value x_proj = logmap(x, mu_test_function) return np.exp(- 0.5 * np.dot(x_proj.T, np.dot(inv_sigma_test_fct, x_proj))) / np.sqrt( (2 * np.pi) ** dim * det_sigma_test_fct) def plot_gaussian_process_prediction(figure_handle, mu, test_data, mean_est, mu_test_fct, title): ax = Axes3D(figure_handle) # Make the panes transparent ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # Make the grid lines transparent ax.xaxis._axinfo["grid"]['color'] = (1, 1, 1, 0) ax.yaxis._axinfo["grid"]['color'] = (1, 1, 1, 0) ax.zaxis._axinfo["grid"]['color'] = (1, 1, 1, 0) # Remove axis ax._axis3don = False # Initial view # ax.view_init(elev=10, azim=-20.) # (default: elev=30, azim=-60) ax.view_init(elev=10, azim=30.) # (default: elev=30, azim=-60) # Plot sphere plot_sphere(ax, alpha=0.4) # Plot training data on the manifold plt_scale_fact = test_function(mu_test_fct, mu_test_fct)[0, 0] nb_data_test = test_data.shape[0] for n in range(nb_data_test): ax.scatter(test_data[n, 0], test_data[n, 1], test_data[n, 2], c=pl.cm.inferno(mean_est[n] / plt_scale_fact)) # Plot mean of Gaussian test function ax.scatter(mu[0], mu[1], mu[2], c='g', marker='D') plt.title(title, size=25) if __name__ == "__main__": np.random.seed(1234) # Define the test function mean mu_test_fct = np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0]) # Generate random data on the sphere nb_data = 20 dim = 3 mean = np.array([1, 0, 0]) mean = mean / np.linalg.norm(mean) fact_cov = 0.1 cov = fact_cov * np.eye(dim) data = np.random.multivariate_normal(mean, cov, nb_data) x_man = data / np.linalg.norm(data, axis=1)[:, None] y_train = np.zeros((nb_data,1)) for n in range(nb_data): y_train[n] = test_function(x_man[n], mu_test_fct) # Generate test data on the sphere nb_data_test = 10 mean_test = mu_test_fct mean_test = mean_test / np.linalg.norm(mean) fact_cov = 0.1 cov_test = fact_cov * np.eye(dim) data = np.random.multivariate_normal(mean_test, cov_test, nb_data_test) x_man_test = data / np.linalg.norm(data, axis=1)[:, None] y_test = np.zeros((nb_data_test, 1)) for n in range(nb_data_test): y_test[n] = test_function(x_man_test[n], mu_test_fct) # Plot training data - 3D figure fig = plt.figure(figsize=(5, 5)) plot_gaussian_process_prediction(fig, mu_test_fct, x_man, y_train, mu_test_fct, r'Training data') # Plot true test data - 3D figure fig = plt.figure(figsize=(5, 5)) plot_gaussian_process_prediction(fig, mu_test_fct, x_man_test, y_test, mu_test_fct, r'Test data (ground truth)') # ### Gaussian kernel # Define the kernel k_gauss = SphereGaussianKernel(input_dim=dim, active_dims=range(dim), beta_min=7.0, beta=10.0, variance=1.) # Kernel computation K1 = k_gauss.compute_K_symm(x_man) K12 = k_gauss.compute_K(x_man, x_man_test) K2 = k_gauss.compute_K_symm(x_man_test) # GPR model m_gauss = gpflow.gpr.GPR(x_man, y_train, kern=k_gauss, mean_function=None) # Optimization of the model parameters m_gauss.optimize() # Compute posterior samples # Does not always work due to Cholesky decomposition used in gpflow # nb_samples_post = 10 # posterior_samples = m.predict_f_samples(y_man_test.T, nb_samples_post) # Prediction mean_est_gauss, cov_est_gauss = m_gauss.predict_f_full_cov(x_man_test) # mean, cov = m.predict_y(x_new) # includes noise variance (seems not to be included in predict_f functions var_est_gauss = np.diag(cov_est_gauss[0])[:, None] # Error computation error_gauss = np.sqrt(np.sum((y_test - mean_est_gauss) ** 2) / nb_data_test) print('Estimation error (Manifold-RBF kernel) = ', error_gauss) # Plot test data fig = plt.figure(figsize=(5, 5)) plot_gaussian_process_prediction(fig, mu_test_fct, x_man_test, mean_est_gauss, mu_test_fct, r'Manifold-RBF kernel') # ### Laplace kernel # Define the kernel k_laplace = SphereLaplaceKernel(input_dim=dim, active_dims=range(dim), beta=10.0, variance=1.) # Kernel computation K1 = k_laplace.compute_K_symm(x_man) K12 = k_laplace.compute_K(x_man, x_man_test) K2 = k_laplace.compute_K_symm(x_man_test) # GPR model m_laplace = gpflow.gpr.GPR(x_man, y_train, kern=k_laplace, mean_function=None) # Optimization of the model parameters m_laplace.optimize() # Compute posterior samples # Does not always work due to Cholesky decomposition used in gpflow # nb_samples_post = 10 # posterior_samples = m.predict_f_samples(y_man_test.T, nb_samples_post) # Prediction mean_est_laplace, cov_est_laplace = m_laplace.predict_f_full_cov(x_man_test) # mean, cov = m.predict_y(x_new) # includes noise variance (seems not to be included in predict_f functions var_est_laplace = np.diag(cov_est_laplace[0])[:, None] # Error computation error_laplace = np.sqrt(np.sum((y_test - mean_est_laplace) ** 2) / nb_data_test) print('Estimation error (Laplace kernel) = ', error_laplace) # Plot test data fig = plt.figure(figsize=(5, 5)) plot_gaussian_process_prediction(fig, mu_test_fct, x_man_test, mean_est_laplace, mu_test_fct, r'Laplace kernel') # ### Euclidean RBF # Define the kernel k_eucl = gpflow.kernels.RBF(input_dim=dim, ARD=False) # Kernel computation K1 = k_eucl.compute_K_symm(x_man) K12 = k_eucl.compute_K(x_man, x_man_test) K2 = k_eucl.compute_K_symm(x_man_test) # GPR model m_eucl = gpflow.gpr.GPR(x_man, y_train, kern=k_eucl, mean_function=None) # Optimization of the model parameters m_eucl.optimize() # Compute posterior samples # Does not always work due to Cholesky decomposition used in gpflow # nb_samples_post = 10 # posterior_samples = m.predict_f_samples(y_man_test.T, nb_samples_post) # Prediction mean_est_eucl, cov_est_eucl = m_eucl.predict_f_full_cov(x_man_test) # mean, cov = m_eucl.predict_y(x_new) # includes noise variance (seems not to be included in predict_f functions var_est_eucl = np.diag(cov_est_eucl[0])[:, None] # Error computation error_eucl = np.sqrt(np.sum((y_test - mean_est_eucl) ** 2) / nb_data_test) print('Estimation error (Euclidean-RBF kernel) = ', error_eucl) # Plot test data fig = plt.figure(figsize=(5, 5)) plot_gaussian_process_prediction(fig, mu_test_fct, x_man_test, mean_est_eucl, mu_test_fct, r'Euclidean-RBF kernel') plt.show()
[ "matplotlib.pyplot.title", "numpy.random.seed", "numpy.sum", "BoManifolds.Riemannian_utils.sphere_utils.logmap", "matplotlib.pyplot.figure", "numpy.linalg.norm", "gpflow.kernels.RBF", "numpy.diag", "numpy.linalg.det", "matplotlib.pylab.cm.inferno", "matplotlib.pyplot.show", "mpl_toolkits.mplot3d.Axes3D", "numpy.linalg.inv", "gpflow.gpr.GPR", "numpy.dot", "numpy.zeros", "BoManifolds.plot_utils.manifold_plots.plot_sphere", "numpy.array", "numpy.random.multivariate_normal", "numpy.eye", "numpy.sqrt" ]
[((1336, 1397), 'numpy.array', 'np.array', (['[[0.6, 0.2, 0], [0.2, 0.3, -0.01], [0, -0.01, 0.2]]'], {}), '([[0.6, 0.2, 0], [0.2, 0.3, -0.01], [0, -0.01, 0.2]])\n', (1344, 1397), True, 'import numpy as np\n'), ((1423, 1452), 'numpy.linalg.inv', 'np.linalg.inv', (['sigma_test_fct'], {}), '(sigma_test_fct)\n', (1436, 1452), True, 'import numpy as np\n'), ((1478, 1507), 'numpy.linalg.det', 'np.linalg.det', (['sigma_test_fct'], {}), '(sigma_test_fct)\n', (1491, 1507), True, 'import numpy as np\n'), ((1543, 1570), 'BoManifolds.Riemannian_utils.sphere_utils.logmap', 'logmap', (['x', 'mu_test_function'], {}), '(x, mu_test_function)\n', (1549, 1570), False, 'from BoManifolds.Riemannian_utils.sphere_utils import logmap\n'), ((1820, 1841), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['figure_handle'], {}), '(figure_handle)\n', (1826, 1841), False, 'from mpl_toolkits.mplot3d import axes3d, Axes3D\n'), ((2450, 2476), 'BoManifolds.plot_utils.manifold_plots.plot_sphere', 'plot_sphere', (['ax'], {'alpha': '(0.4)'}), '(ax, alpha=0.4)\n', (2461, 2476), False, 'from BoManifolds.plot_utils.manifold_plots import plot_sphere\n'), ((2878, 2903), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'size': '(25)'}), '(title, size=25)\n', (2887, 2903), True, 'import matplotlib.pyplot as plt\n'), ((2937, 2957), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (2951, 2957), True, 'import numpy as np\n'), ((3142, 3161), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (3150, 3161), True, 'import numpy as np\n'), ((3265, 3314), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mean', 'cov', 'nb_data'], {}), '(mean, cov, nb_data)\n', (3294, 3314), True, 'import numpy as np\n'), ((3387, 3409), 'numpy.zeros', 'np.zeros', (['(nb_data, 1)'], {}), '((nb_data, 1))\n', (3395, 3409), True, 'import numpy as np\n'), ((3705, 3769), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mean_test', 'cov_test', 'nb_data_test'], {}), '(mean_test, cov_test, nb_data_test)\n', (3734, 3769), True, 'import numpy as np\n'), ((3846, 3873), 'numpy.zeros', 'np.zeros', (['(nb_data_test, 1)'], {}), '((nb_data_test, 1))\n', (3854, 3873), True, 'import numpy as np\n'), ((4018, 4044), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (4028, 4044), True, 'import matplotlib.pyplot as plt\n'), ((4196, 4222), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (4206, 4222), True, 'import matplotlib.pyplot as plt\n'), ((4688, 4752), 'gpflow.gpr.GPR', 'gpflow.gpr.GPR', (['x_man', 'y_train'], {'kern': 'k_gauss', 'mean_function': 'None'}), '(x_man, y_train, kern=k_gauss, mean_function=None)\n', (4702, 4752), False, 'import gpflow\n'), ((5491, 5517), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (5501, 5517), True, 'import matplotlib.pyplot as plt\n'), ((5980, 6046), 'gpflow.gpr.GPR', 'gpflow.gpr.GPR', (['x_man', 'y_train'], {'kern': 'k_laplace', 'mean_function': 'None'}), '(x_man, y_train, kern=k_laplace, mean_function=None)\n', (5994, 6046), False, 'import gpflow\n'), ((6798, 6824), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (6808, 6824), True, 'import matplotlib.pyplot as plt\n'), ((7004, 7048), 'gpflow.kernels.RBF', 'gpflow.kernels.RBF', ([], {'input_dim': 'dim', 'ARD': '(False)'}), '(input_dim=dim, ARD=False)\n', (7022, 7048), False, 'import gpflow\n'), ((7230, 7293), 'gpflow.gpr.GPR', 'gpflow.gpr.GPR', (['x_man', 'y_train'], {'kern': 'k_eucl', 'mean_function': 'None'}), '(x_man, y_train, kern=k_eucl, mean_function=None)\n', (7244, 7293), False, 'import gpflow\n'), ((8029, 8055), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (8039, 8055), True, 'import matplotlib.pyplot as plt\n'), ((8181, 8191), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8189, 8191), True, 'import matplotlib.pyplot as plt\n'), ((1653, 1701), 'numpy.sqrt', 'np.sqrt', (['((2 * np.pi) ** dim * det_sigma_test_fct)'], {}), '((2 * np.pi) ** dim * det_sigma_test_fct)\n', (1660, 1701), True, 'import numpy as np\n'), ((3180, 3200), 'numpy.linalg.norm', 'np.linalg.norm', (['mean'], {}), '(mean)\n', (3194, 3200), True, 'import numpy as np\n'), ((3241, 3252), 'numpy.eye', 'np.eye', (['dim'], {}), '(dim)\n', (3247, 3252), True, 'import numpy as np\n'), ((3615, 3635), 'numpy.linalg.norm', 'np.linalg.norm', (['mean'], {}), '(mean)\n', (3629, 3635), True, 'import numpy as np\n'), ((3681, 3692), 'numpy.eye', 'np.eye', (['dim'], {}), '(dim)\n', (3687, 3692), True, 'import numpy as np\n'), ((5252, 5277), 'numpy.diag', 'np.diag', (['cov_est_gauss[0]'], {}), '(cov_est_gauss[0])\n', (5259, 5277), True, 'import numpy as np\n'), ((6556, 6583), 'numpy.diag', 'np.diag', (['cov_est_laplace[0]'], {}), '(cov_est_laplace[0])\n', (6563, 6583), True, 'import numpy as np\n'), ((7793, 7817), 'numpy.diag', 'np.diag', (['cov_est_eucl[0]'], {}), '(cov_est_eucl[0])\n', (7800, 7817), True, 'import numpy as np\n'), ((3334, 3362), 'numpy.linalg.norm', 'np.linalg.norm', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (3348, 3362), True, 'import numpy as np\n'), ((3794, 3822), 'numpy.linalg.norm', 'np.linalg.norm', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (3808, 3822), True, 'import numpy as np\n'), ((5337, 5375), 'numpy.sum', 'np.sum', (['((y_test - mean_est_gauss) ** 2)'], {}), '((y_test - mean_est_gauss) ** 2)\n', (5343, 5375), True, 'import numpy as np\n'), ((6645, 6685), 'numpy.sum', 'np.sum', (['((y_test - mean_est_laplace) ** 2)'], {}), '((y_test - mean_est_laplace) ** 2)\n', (6651, 6685), True, 'import numpy as np\n'), ((7876, 7913), 'numpy.sum', 'np.sum', (['((y_test - mean_est_eucl) ** 2)'], {}), '((y_test - mean_est_eucl) ** 2)\n', (7882, 7913), True, 'import numpy as np\n'), ((2730, 2773), 'matplotlib.pylab.cm.inferno', 'pl.cm.inferno', (['(mean_est[n] / plt_scale_fact)'], {}), '(mean_est[n] / plt_scale_fact)\n', (2743, 2773), True, 'import matplotlib.pylab as pl\n'), ((3027, 3037), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (3034, 3037), True, 'import numpy as np\n'), ((3043, 3053), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (3050, 3053), True, 'import numpy as np\n'), ((1614, 1648), 'numpy.dot', 'np.dot', (['inv_sigma_test_fct', 'x_proj'], {}), '(inv_sigma_test_fct, x_proj)\n', (1620, 1648), True, 'import numpy as np\n')]
import os, logging, json, re import pandas as pd import numpy as np from BarSeqPy.translate_R_to_pandas import * def data_prep_1(data_dir, FEBA_dir, debug_bool=False, meta_ix=7, cfg=None): """ The first phase of data preparation for the BarSeqR Computations Args: data_dir: (str) Path to directory which contains the following files: 'all.poolcount', 'genes', 'exps', 'pool' - all TSV files. Optionally contains the following files: strainusage.barcodes.json - json list strainusage.genes.json - json list strainusage.genes12.json - json list ignore_list.json - json list ( list of str with sample-index name to ignore ) All these files are changed depending on the input. FEBA_dir: (str) Path to directory which contains the following files: 'desc_short_rules' debug_bool: Whether you'd like to print the dataframes as a test to the data_dir before running FEBA_Fit meta_ix (int): The number of meta column indeces in all.poolcount cfg (python dict): The default and config variables required: drop_exps (bool): Do we drop the 'Drop' experiments from the experiments dataframe already? okControls (bool): Are we defining controls by the method where it's written into the Experiments file? Returns: list<exps_df, all_df, genes_df, strainsUsed_list, genesUsed_list, genesUsed12_list> exps_df (pandas DataFrame): Must contain cols: (Variable) all_df (pandas DataFrame): Must contain cols: genes_df (pandas DataFrame): Must contain cols: scaffold, begin strainsUsed_list (py list or None): genesUsed_list (py list or None): genesUsed12_list (py list or None): Description: Within data_prep1 we perform the following functions: getDataFrames: We import the tables genes, all, exps, rules using a dict to say which data type is in each column. The dataframes we get are called: genes_df, all_df, exps_df, rules_df Within exps_df: We optionally remove the rows who have 'Drop' set to True (if drop_exps==True). We strip (remove the spaces from) the values in 'Group', 'Condition_1', 'Condition_2' We check that the right column names exist in each of the tables. checkLocusIdEquality: We check all the locusIds in all_df are also present in genes_df If debugging we also print the number of unique locusIds in each. check_exps_df_against_all_df: We check that the index names in all.poolcount are equivalent to the 'SetName' + '.' + 'Index' in exps prepare_set_names: We replace the SetNames from their original version to a simplified standard one, remove the period in between SetName and Index in all.poolcount columns, and make the 'names' column in the experiments file and the all.poolcount columns have the same values. For example, we move column name from Keio_ML9_set2.IT004 to set2IT004, and rename the values in the Experiments file similarly. get_special_lists: We get the lists from the files in data_dir if they are there, otherwise we return their values as empty lists. The lists we look for are genesUsed, which should be a list of locusIds from this genome that we are using, and ignore_list, which is a list of experiment names to ignore (columns from all.poolcount). If debug_bool is set to true we print out resultant exps, all, genes to 'tmp' dir We return the following variables: 'exps_df' (The experiments dataframe) 'all_df' (The barcodes and locations dataframe) 'genes_df' (The total genes dataframe) 'genesUsed_list' (A python list of locusIds that we will use) 'ignore_list' (A python list of experiment names to ignore) """ genes_df, all_df, exps_df, rules_df = getDataFrames(data_dir, FEBA_dir, drop_exps=cfg['drop_exps'], okControls = cfg['okControls'], dbg_lvl=0) # Makes no changes to the variables checkLocusIdEquality(all_df, genes_df, debug_bool=debug_bool) # We check that SetNames and Indexes in experiments file match all.poolcount file check_exps_df_against_all_df(exps_df, all_df, meta_ix) # We make it so the names are cleaner and create 'names', 'num', 'short' in exps_df exps_df, all_df, replace_col_d = prepare_set_names(exps_df, all_df, rules_df, okControls=cfg['okControls'], meta_ix=meta_ix, debug_bool=debug_bool) genesUsed_list, ignore_list = get_special_lists(data_dir, all_df, replace_col_d, debug_bool=debug_bool) if debug_bool: exps_df.to_csv("tmp/py_test1_exps_fp.tsv", sep="\t") all_df.to_csv("tmp/py_test1_all_fp.tsv", sep="\t") genes_df.to_csv("tmp/py_test1_genes_fp.tsv", sep="\t") return [exps_df, all_df, genes_df, genesUsed_list, ignore_list] def getDataFrames(data_dir, FEBA_dir, drop_exps=False, okControls=False, dbg_lvl=0): """ Args: data_dir: (str) Path to directory which contains the following files: 'all.poolcount', 'genes', 'exps' - all TSV files. Optionally contains the following files: strainusage.barcodes.json - json list strainusage.genes.json - json list strainusage.genes12.json - json list All these files are changed depending on the input. FEBA_dir: (str) Path to directory which contains the following files: 'desc_short_rules' drop_exps (bool): Should we drop all experiments that have Drop=True already? Returns: genes_df (pandas DataFrame): Contains columns: locusId, sysName, type, scaffoldId, begin, end, strand, name, desc, GC, nTA all_df (pandas DataFrame): Contains columns: barcode, rcbarcode, scaffold, strand, pos, locusId, f, setName1, ..., setNameN exps_df (pandas DataFrame): Must contains columns: Index (str) Date_pool_expt_started (str) Description (str) SetName (Str) Group (str) Drop (bool) [Condition_1] [Condition_2] rules_df (pandas DataFrame): Contains columns: V1 (str): Original string to replace V2 (str): String to replace V1 by Description: We import the tables using a dict to say which data type is in each column. In exps_df: We might remove the rows who have 'Drop' set to True (if drop_exps==True). We remove the spaces from the values in 'Group', 'Condition_1', 'Condition_2' We check that the right column names exist in each of the tables. To Do: Should we strip all of the column names when we import them? """ data_files = os.listdir(data_dir) for x in ["all.poolcount", "genes", "exps", "pool"]: if x not in data_files: raise Exception("Input data_dir to RunFEBA must include files:\n" "all.poolcount, genes, exps, and pool." " Currently missing: " + x) all_fp = os.path.join(data_dir, "all.poolcount") genes_fp = os.path.join(data_dir, "genes") exps_fp = os.path.join(data_dir, "exps") short_rules_fp = os.path.join(FEBA_dir, "desc_short_rules.tsv") # Checking access permissions for x in [all_fp, genes_fp, exps_fp]: if not os.access(x, os.R_OK): raise Exception("To run, program requires read permission to file " + x) # Read tsv files into dataframes, making sure columns locusId and scaffoldId read as stings genes_dtypes = { 'locusId': str, 'sysName': str, 'type': int, 'scaffoldId': str, 'begin': int, 'end': int, 'strand': str, 'name': str, 'desc': str, 'GC': float, 'nTA': int } genes_df = pd.read_table(genes_fp, dtype=genes_dtypes) #barcode rcbarcode scaffold strand pos locusId f all_dtypes = { 'barcode': str, 'rcbarcode': str, 'scaffold': str, 'strand': str, 'pos': int, 'locusId': str, 'f': float } all_df = pd.read_table(all_fp, dtype=all_dtypes) exps_dtypes = { 'SetName': str, 'Index': str, 'Date_pool_expt_started': str, "Description": str, "Group": str, "Drop": str, "Condition_1": str, "Condition_2": str, "control_group": str, "control_bool": str } exps_df = pd.read_table(exps_fp, dtype=exps_dtypes) # We update the 'Drop' experiments if 'Drop' in exps_df: new_drops = [] for ix, value in exps_df['Drop'].items(): if not isinstance(value, str): if pd.isna(value): new_drops.append(False) else: raise Exception(f"Value in 'Drop' not string: {value}") elif str(value).strip().upper() == "TRUE": new_drops.append(True) elif value.strip().upper() == "FALSE": new_drops.append(False) else: raise Exception(f"Cannot recognize Drop value in row {ix}:" f" {value}") exps_df['Drop'] = new_drops else: exps_df['Drop'] = [False]*exps_df.shape[0] """ if drop_exps: # Removing Drop rows exps_df.drop(remove_indeces, axis=0, inplace=True) """ # Remove trailing spaces: for x in ["Group", "Condition_1", "Condition_2", "control_bool"]: if x in exps_df: # We take the entire column (pandas Series) and remove the spaces # from either end exps_df[x] = exps_df[x].str.strip() rules_dtypes = { "V1": str, "V2": str } rules_df = pd.read_table(short_rules_fp, keep_default_na=False, dtype=rules_dtypes) # Checking genes.GC for x in ["scaffoldId", "locusId", "sysName", "desc", "begin", "end"]: if x not in genes_df.columns: raise Exception(f"Genes table must include header {x}") # Checking exps table for x in ["SetName", "Index", "Date_pool_expt_started", "Description"]: if x not in exps_df.columns: raise Exception(f"Experiments table must include header {x}") if okControls: for x in ["control_group", "control_bool"]: if x not in exps_df.columns: raise Exception("If okControls is set To True, then " f"experiments table must include header {x}") # Checking all_df for x in ["scaffold", "locusId", "f", "pos"]: if x not in all_df.columns: raise Exception(f"All.PoolCount file must include header {x}") if dbg_lvl > 1: print(genes_df) print(all_df) print(exps_df) print(rules_df) return [genes_df, all_df, exps_df, rules_df] def checkLocusIdEquality(all_df, genes_df, debug_bool=False): """ We check all the locusIds in all_df are also present in genes_df Description: We check all the locusIds in all_df are also present in genes_df If debugging we also print the number of unique locusIds """ if debug_bool: logging.debug("Original locusId col") logging.debug(all_df['locusId']) # below both are pandas series unique_all_locusIds = all_df['locusId'].dropna().unique() unique_genes_locusIds = genes_df['locusId'].dropna().unique() if debug_bool: # All logging.debug("Unique All Locus Ids: ") logging.debug(unique_all_locusIds) logging.debug("Number of Unique All Locus Ids: ") logging.debug(len(unique_all_locusIds)) # Genes logging.debug("Unique Gene Locus Ids: ") logging.debug(unique_genes_locusIds) logging.debug("Number of Unique Gene Locus Ids: ") logging.debug(len(unique_genes_locusIds)) # Checking if every locusId from all.poolcount also exists in genes not_found_locusIds = [] for x in unique_all_locusIds: if x not in unique_genes_locusIds: not_found_locusIds.append(x) if len(not_found_locusIds) > 0: raise Exception("The following locusIds were not found in the genes file." " (All locusIds from all.poolcount must also be in the genes" " file.)" "', '".join(not_found_locusIds)) def check_exps_df_against_all_df(exps_df, all_df, meta_ix): """ We make sure that all the experiment names left in the all_df dataframe are the same as the experiment names in the rows of the experiments dataframe. """ experiment_names_test = [exps_df['SetName'].iat[i] + "." + exps_df['Index'].iat[i] for i in \ range(len(exps_df['SetName']))] index_names = list(all_df.head())[meta_ix:] # Number of rows: if len(index_names) != exps_df.shape[0]: raise Exception(f"Number of data columns in {all_fp} does not match" f" number of rows in {exps_fp}\n" f"{len(index_names)} != {exps_df.shape[0]}") for i in range(len(index_names)): if index_names[i] not in experiment_names_test: raise Exception(f"Column names in {all_fp} do not match names from" f"{exps_fp} at index {i}") logging.debug("There are the same experiment names in all_df and exps_df.") def prepare_set_names(exps_df, all_df, rules_df, okControls=False, meta_ix=7, debug_bool=False): """ Description: We replace the SetNames from the complicated version to a simpler one, remove the period in between SetName and Index in all.poolcount columns, and make the 'names' column in the experiments file and the all.poolcount columns have the same values. For example, we move column name from Keio_ML9_set2.IT004 to set2IT004, and rename the values in the Experiments file similarly. We also add multiple new columns to exps_df: "num", "short", "name", "t0set" We also make sure that any experiment with its "Group" being "Time0" has its short as "Time0" as well. We initialize the 't0set' column as being the date + the set name (lane). """ # Below is a numpy array, not a series uniqueSetNames_nparray = exps_df['SetName'].unique() # shortSetNames is numpy ndarray, shortNamesTranslation_d is a dict which contains # conversions from original names to short names. shortSetNames, shortNamesTranslation_d = ShortSetNames(uniqueSetNames_nparray) if debug_bool: logging.debug("uniqueSetNames:") logging.debug(uniqueSetNames_nparray) logging.debug("shortSetNames") logging.debug(shortSetNames) logging.debug("Above 2 arrays should be the same length.") # We concatenate the string of the set name and the index column # But first we need to find the original location of the set name # match_list is a list of indeces (int) for each element in the first list # where it is found in the second list. match_list = match_ix(list(exps_df['SetName']), list(uniqueSetNames_nparray)) # We apply the match list to shortSetNames_list to recreate the original SetName order # just with the newly created 'short' setNames. short_names_srs = shortSetNames[match_list] if debug_bool: logging.info("short_names_srs: (shortSetNames[match_list])") logging.info(short_names_srs) logging.info("original set Names:") logging.info(exps_df['SetName']) logging.info('match_list') logging.info(match_list) # If there are 3 unique set names and 100 items in exps_df['SetName'], # then match_list will contain 100 items with only 3 different values (0, 1, 2) # expNamesNew ends up being a list<str> expNamesNew = [] for i in range(len(short_names_srs)): if not short_names_srs[i] in [None, np.nan]: expNamesNew.append(short_names_srs[i] + exps_df['Index'][i]) else: expNamesNew.append(exps_df['Index'][i]) if debug_bool: logging.info('expNamesNew:') logging.info(expNamesNew) exps_df['num'] = range(1, exps_df.shape[0] + 1) # We replace certain strings with others using the 'rules' table. exps_df['short'] = applyRules(rules_df, list(exps_df['Description'])) if okControls: if not "control_bool" in exps_df.columns: raise Exception("Using manual control label but no column " "'control_bool' in Experiments file!") else: for ix, val in exps_df["control_bool"].iteritems(): if val.strip().upper() == "TRUE": exps_df["short"].loc[ix] = "Time0" else: # Should not be a Time0 short if exps_df["short"].loc[ix].upper() == "TIME0": raise Exception("Description of experiment indicates Time0, but" f" value in control_bool is not 'True', instead '{val}'.") if debug_bool: logging.info("exps_df of col 'short':") logging.info(exps_df['short']) # We remove the "." in the names of the values. Just SetNameIndex now replace_col_d = {list(all_df.head())[meta_ix + i]: expNamesNew[i] for i in range(len(expNamesNew))} if debug_bool: logging.info('replace_col_d') logging.info(replace_col_d) logging.info('original all_df col names:') logging.info(list(all_df.columns)) all_df = all_df.rename(columns=replace_col_d) if debug_bool: logging.info('after replacement all_df col names:') logging.info(list(all_df.columns)) exps_df['name'] = expNamesNew # updating short to include Groups with Time0 num_time_zero = 0 for ix, val in exps_df['Group'].items(): if val.strip().upper() == "TIME0": num_time_zero += 1 exps_df.loc[ix, 'short'] = "Time0" # Updating column 't0sets' which refers to the date and SetName exps_df['t0set'] = [exps_df['Date_pool_expt_started'].iat[ix] + " " + \ val for ix, val in exps_df['SetName'].items()] if okControls: if not "control_group" in exps_df.columns: raise Exception("Using manual control label but no column " "'control_group' in Experiments file!") else: for ix, val in exps_df["control_group"].iteritems(): exps_df['t0set'].loc[ix] = val if debug_bool: logging.info('exps_df short: ') logging.info(exps_df['short']) logging.info('exps_df t0set: ') logging.info(exps_df['t0set']) logging.info(f"Total number of time zeros: {num_time_zero}") return exps_df, all_df, replace_col_d def ShortSetNames(set_names_nparray, dbg_lvl=0): """ Using a table with rules, shorten the names of these sets Args: set_names_nparray (numpy.ndarray): Array of string, unique set names from exps file Returns: set_names_nparray (numpy.ndarray): Edited set Names to be in the format setX* or testX* This might convert [ Keio_ML9_set2, Keio_ML9_set2, Keio_ML9_set2, ..., Keio_ML9_set3, Keio_ML9_set3,..., Keio_ML9_set3] to [ set2, set2, set2, ..., set3, set3, ..., set3] """ set_names_nparray = np.copy(set_names_nparray) # Below returns a TRUE/FALSE vector indicating which # elements of the character vector contain a match (i.o.w a simple name) simple = [bool(re.search(r"(set|test)[0-9A-Z]+[0-9A-Z0-9]*$", x)) for x in set_names_nparray] if dbg_lvl > 0: if len(simple) > 0: logging.debug("simple names: \n" + ",".join(list([str(x) for x in simple]))) else: logging.debug("No simple names found.") # We edit the values of set_names_nparray who are true for simple # by removing anything before 'set' or 'test' # We count the number of values that were false nleft = 0 simple_set_names = [] for i in range(len(simple)): if simple[i]: new_set_name = re.sub("^.*(set|test)", "\\1", set_names_nparray[i]) set_names_nparray[i] = new_set_name simple_set_names.append(new_set_name) else: nleft += 1 if dbg_lvl > 0: logging.debug("fixed set_names:\n" + ",".join(list(set_names_nparray))) candidates = [] for x in "A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z".split("."): candidates.append("set" + x) if dbg_lvl > 0: logging.debug(candidates) # get the elements in candidates that are not in set_names_nparray[simple] candidates = [x for x in candidates if x not in simple_set_names] if (nleft > len(candidates)): raise Exception(f"Too many unexpected set names: {nleft}.\n To fix this, contact developer " "and say to change the number of possible extensions in list candidates (A.B...Z).") # Get the non-simple values from set_names_nparray oldComplex = [x for x in set_names_nparray if x not in simple_set_names] if dbg_lvl > 0: logging.debug("oldComplex:\n" + ",".join(oldComplex)) cnd_ix = 0 translation_dict = {} for i in range(len(simple)): if not simple[i]: logging.info(f"Set {set_names_nparray[i]} simplified to {candidates[cnd_ix]}") translation_dict[set_names_nparray[i]] = candidates[cnd_ix] set_names_nparray[i] = candidates[cnd_ix] cnd_ix += 1 crnt_unq = list(pd.Series(set_names_nparray).unique()) repeats = [] for x in list(set_names_nparray): if x in crnt_unq: crnt_unq.remove(x) else: repeats.append(x) if not (len(repeats) == 0): raise Exception("Non-unique set names! :\n" + \ ", ".join(repeats)) else: logging.debug("Finished running short set names") if dbg_lvl > 0: logging.debug("Final set names list: " + ", ".join(set_names_nparray)) return set_names_nparray, translation_dict def get_special_lists(data_dir, all_df, replace_col_d, debug_bool=False): """ Args: replace_col_d: Dict mapping original all_df experiment name to replacement name data_dir Returns: genesUsed_list list<str>: LocusIds of genes to use ignore_list: List<str> New names for the experiments we want to ignore. Description: We get the lists from the files in data_dir if they are there. Otherwise we return their values as empty lists. The lists we look for are genesUsed, which should be a list of locusIds from this genome that we are using, and ignore_list, which is a list of experiment names to ignore (columns from all.poolcount) """ genesUsed_list = [] ignore_list = [] # list of locusIds genesUsed_fp = os.path.join(data_dir, "strainusage.genes.json") # list of extra ignored experiments ignore_list_fp = os.path.join(data_dir, "ignore_list.json") if os.path.isfile(genesUsed_fp) and os.access(genesUsed_fp, os.R_OK): genesUsed_list = json.loads(open(GenesUsed_fp).read()) logging.info(f"Loaded {len(genesUsed_list)} genes to include in the " "analysis\n") if os.path.isfile(ignore_list_fp) and os.access(ignore_list_fp, os.R_OK): pre_ignore_list = json.loads(open(ignore_list_fp).read()) for x in pre_ignore_list: if x in replace_col_d: ignore_list.append(x) else: raise Exception(f"Avoid list contains experiment {x} but experiment name" " not found in all.poolcount." f" Possible names: {', '.join(list(replace_col_d.keys()))}") ignore_list = [replace_col_d[x] for x in ignore_list] return genesUsed_list, ignore_list def applyRules(rules_df, desc_str_list): """ We replace str value in V1 with value in V2 Args: rules_df: data frame with cols: V1, V2 desc_str_list: list<str> Returns: new_desc_list: list<str> """ new_desc_list = [] for j in range(len(desc_str_list)): new_desc_list.append(desc_str_list[j]) for i in range(0, rules_df.shape[0]): new_desc_list[-1] = new_desc_list[-1].replace(rules_df["V1"].iloc[i], rules_df["V2"].iloc[i]) return new_desc_list
[ "logging.debug", "numpy.copy", "logging.info", "os.path.isfile", "pandas.Series", "re.search", "os.access", "pandas.read_table", "pandas.isna", "os.path.join", "os.listdir", "re.sub" ]
[((8321, 8341), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (8331, 8341), False, 'import os, logging, json, re\n'), ((8648, 8687), 'os.path.join', 'os.path.join', (['data_dir', '"""all.poolcount"""'], {}), "(data_dir, 'all.poolcount')\n", (8660, 8687), False, 'import os, logging, json, re\n'), ((8703, 8734), 'os.path.join', 'os.path.join', (['data_dir', '"""genes"""'], {}), "(data_dir, 'genes')\n", (8715, 8734), False, 'import os, logging, json, re\n'), ((8749, 8779), 'os.path.join', 'os.path.join', (['data_dir', '"""exps"""'], {}), "(data_dir, 'exps')\n", (8761, 8779), False, 'import os, logging, json, re\n'), ((8801, 8847), 'os.path.join', 'os.path.join', (['FEBA_dir', '"""desc_short_rules.tsv"""'], {}), "(FEBA_dir, 'desc_short_rules.tsv')\n", (8813, 8847), False, 'import os, logging, json, re\n'), ((9482, 9525), 'pandas.read_table', 'pd.read_table', (['genes_fp'], {'dtype': 'genes_dtypes'}), '(genes_fp, dtype=genes_dtypes)\n', (9495, 9525), True, 'import pandas as pd\n'), ((9814, 9853), 'pandas.read_table', 'pd.read_table', (['all_fp'], {'dtype': 'all_dtypes'}), '(all_fp, dtype=all_dtypes)\n', (9827, 9853), True, 'import pandas as pd\n'), ((10210, 10251), 'pandas.read_table', 'pd.read_table', (['exps_fp'], {'dtype': 'exps_dtypes'}), '(exps_fp, dtype=exps_dtypes)\n', (10223, 10251), True, 'import pandas as pd\n'), ((11528, 11600), 'pandas.read_table', 'pd.read_table', (['short_rules_fp'], {'keep_default_na': '(False)', 'dtype': 'rules_dtypes'}), '(short_rules_fp, keep_default_na=False, dtype=rules_dtypes)\n', (11541, 11600), True, 'import pandas as pd\n'), ((15136, 15211), 'logging.debug', 'logging.debug', (['"""There are the same experiment names in all_df and exps_df."""'], {}), "('There are the same experiment names in all_df and exps_df.')\n", (15149, 15211), False, 'import os, logging, json, re\n'), ((21318, 21344), 'numpy.copy', 'np.copy', (['set_names_nparray'], {}), '(set_names_nparray)\n', (21325, 21344), True, 'import numpy as np\n'), ((24942, 24990), 'os.path.join', 'os.path.join', (['data_dir', '"""strainusage.genes.json"""'], {}), "(data_dir, 'strainusage.genes.json')\n", (24954, 24990), False, 'import os, logging, json, re\n'), ((25052, 25094), 'os.path.join', 'os.path.join', (['data_dir', '"""ignore_list.json"""'], {}), "(data_dir, 'ignore_list.json')\n", (25064, 25094), False, 'import os, logging, json, re\n'), ((12964, 13001), 'logging.debug', 'logging.debug', (['"""Original locusId col"""'], {}), "('Original locusId col')\n", (12977, 13001), False, 'import os, logging, json, re\n'), ((13010, 13042), 'logging.debug', 'logging.debug', (["all_df['locusId']"], {}), "(all_df['locusId'])\n", (13023, 13042), False, 'import os, logging, json, re\n'), ((13249, 13288), 'logging.debug', 'logging.debug', (['"""Unique All Locus Ids: """'], {}), "('Unique All Locus Ids: ')\n", (13262, 13288), False, 'import os, logging, json, re\n'), ((13297, 13331), 'logging.debug', 'logging.debug', (['unique_all_locusIds'], {}), '(unique_all_locusIds)\n', (13310, 13331), False, 'import os, logging, json, re\n'), ((13340, 13389), 'logging.debug', 'logging.debug', (['"""Number of Unique All Locus Ids: """'], {}), "('Number of Unique All Locus Ids: ')\n", (13353, 13389), False, 'import os, logging, json, re\n'), ((13462, 13502), 'logging.debug', 'logging.debug', (['"""Unique Gene Locus Ids: """'], {}), "('Unique Gene Locus Ids: ')\n", (13475, 13502), False, 'import os, logging, json, re\n'), ((13511, 13547), 'logging.debug', 'logging.debug', (['unique_genes_locusIds'], {}), '(unique_genes_locusIds)\n', (13524, 13547), False, 'import os, logging, json, re\n'), ((13556, 13606), 'logging.debug', 'logging.debug', (['"""Number of Unique Gene Locus Ids: """'], {}), "('Number of Unique Gene Locus Ids: ')\n", (13569, 13606), False, 'import os, logging, json, re\n'), ((16443, 16475), 'logging.debug', 'logging.debug', (['"""uniqueSetNames:"""'], {}), "('uniqueSetNames:')\n", (16456, 16475), False, 'import os, logging, json, re\n'), ((16484, 16521), 'logging.debug', 'logging.debug', (['uniqueSetNames_nparray'], {}), '(uniqueSetNames_nparray)\n', (16497, 16521), False, 'import os, logging, json, re\n'), ((16530, 16560), 'logging.debug', 'logging.debug', (['"""shortSetNames"""'], {}), "('shortSetNames')\n", (16543, 16560), False, 'import os, logging, json, re\n'), ((16569, 16597), 'logging.debug', 'logging.debug', (['shortSetNames'], {}), '(shortSetNames)\n', (16582, 16597), False, 'import os, logging, json, re\n'), ((16606, 16664), 'logging.debug', 'logging.debug', (['"""Above 2 arrays should be the same length."""'], {}), "('Above 2 arrays should be the same length.')\n", (16619, 16664), False, 'import os, logging, json, re\n'), ((17241, 17301), 'logging.info', 'logging.info', (['"""short_names_srs: (shortSetNames[match_list])"""'], {}), "('short_names_srs: (shortSetNames[match_list])')\n", (17253, 17301), False, 'import os, logging, json, re\n'), ((17310, 17339), 'logging.info', 'logging.info', (['short_names_srs'], {}), '(short_names_srs)\n', (17322, 17339), False, 'import os, logging, json, re\n'), ((17348, 17383), 'logging.info', 'logging.info', (['"""original set Names:"""'], {}), "('original set Names:')\n", (17360, 17383), False, 'import os, logging, json, re\n'), ((17392, 17424), 'logging.info', 'logging.info', (["exps_df['SetName']"], {}), "(exps_df['SetName'])\n", (17404, 17424), False, 'import os, logging, json, re\n'), ((17433, 17459), 'logging.info', 'logging.info', (['"""match_list"""'], {}), "('match_list')\n", (17445, 17459), False, 'import os, logging, json, re\n'), ((17468, 17492), 'logging.info', 'logging.info', (['match_list'], {}), '(match_list)\n', (17480, 17492), False, 'import os, logging, json, re\n'), ((17989, 18017), 'logging.info', 'logging.info', (['"""expNamesNew:"""'], {}), "('expNamesNew:')\n", (18001, 18017), False, 'import os, logging, json, re\n'), ((18026, 18051), 'logging.info', 'logging.info', (['expNamesNew'], {}), '(expNamesNew)\n', (18038, 18051), False, 'import os, logging, json, re\n'), ((19002, 19041), 'logging.info', 'logging.info', (['"""exps_df of col \'short\':"""'], {}), '("exps_df of col \'short\':")\n', (19014, 19041), False, 'import os, logging, json, re\n'), ((19050, 19080), 'logging.info', 'logging.info', (["exps_df['short']"], {}), "(exps_df['short'])\n", (19062, 19080), False, 'import os, logging, json, re\n'), ((19287, 19316), 'logging.info', 'logging.info', (['"""replace_col_d"""'], {}), "('replace_col_d')\n", (19299, 19316), False, 'import os, logging, json, re\n'), ((19325, 19352), 'logging.info', 'logging.info', (['replace_col_d'], {}), '(replace_col_d)\n', (19337, 19352), False, 'import os, logging, json, re\n'), ((19361, 19403), 'logging.info', 'logging.info', (['"""original all_df col names:"""'], {}), "('original all_df col names:')\n", (19373, 19403), False, 'import os, logging, json, re\n'), ((19524, 19575), 'logging.info', 'logging.info', (['"""after replacement all_df col names:"""'], {}), "('after replacement all_df col names:')\n", (19536, 19575), False, 'import os, logging, json, re\n'), ((20480, 20511), 'logging.info', 'logging.info', (['"""exps_df short: """'], {}), "('exps_df short: ')\n", (20492, 20511), False, 'import os, logging, json, re\n'), ((20520, 20550), 'logging.info', 'logging.info', (["exps_df['short']"], {}), "(exps_df['short'])\n", (20532, 20550), False, 'import os, logging, json, re\n'), ((20559, 20590), 'logging.info', 'logging.info', (['"""exps_df t0set: """'], {}), "('exps_df t0set: ')\n", (20571, 20590), False, 'import os, logging, json, re\n'), ((20599, 20629), 'logging.info', 'logging.info', (["exps_df['t0set']"], {}), "(exps_df['t0set'])\n", (20611, 20629), False, 'import os, logging, json, re\n'), ((20638, 20698), 'logging.info', 'logging.info', (['f"""Total number of time zeros: {num_time_zero}"""'], {}), "(f'Total number of time zeros: {num_time_zero}')\n", (20650, 20698), False, 'import os, logging, json, re\n'), ((22542, 22567), 'logging.debug', 'logging.debug', (['candidates'], {}), '(candidates)\n', (22555, 22567), False, 'import os, logging, json, re\n'), ((23893, 23942), 'logging.debug', 'logging.debug', (['"""Finished running short set names"""'], {}), "('Finished running short set names')\n", (23906, 23942), False, 'import os, logging, json, re\n'), ((25103, 25131), 'os.path.isfile', 'os.path.isfile', (['genesUsed_fp'], {}), '(genesUsed_fp)\n', (25117, 25131), False, 'import os, logging, json, re\n'), ((25136, 25168), 'os.access', 'os.access', (['genesUsed_fp', 'os.R_OK'], {}), '(genesUsed_fp, os.R_OK)\n', (25145, 25168), False, 'import os, logging, json, re\n'), ((25357, 25387), 'os.path.isfile', 'os.path.isfile', (['ignore_list_fp'], {}), '(ignore_list_fp)\n', (25371, 25387), False, 'import os, logging, json, re\n'), ((25392, 25426), 'os.access', 'os.access', (['ignore_list_fp', 'os.R_OK'], {}), '(ignore_list_fp, os.R_OK)\n', (25401, 25426), False, 'import os, logging, json, re\n'), ((8940, 8961), 'os.access', 'os.access', (['x', 'os.R_OK'], {}), '(x, os.R_OK)\n', (8949, 8961), False, 'import os, logging, json, re\n'), ((21500, 21548), 're.search', 're.search', (['"""(set|test)[0-9A-Z]+[0-9A-Z0-9]*$"""', 'x'], {}), "('(set|test)[0-9A-Z]+[0-9A-Z0-9]*$', x)\n", (21509, 21548), False, 'import os, logging, json, re\n'), ((21743, 21782), 'logging.debug', 'logging.debug', (['"""No simple names found."""'], {}), "('No simple names found.')\n", (21756, 21782), False, 'import os, logging, json, re\n'), ((22082, 22134), 're.sub', 're.sub', (['"""^.*(set|test)"""', '"""\\\\1"""', 'set_names_nparray[i]'], {}), "('^.*(set|test)', '\\\\1', set_names_nparray[i])\n", (22088, 22134), False, 'import os, logging, json, re\n'), ((23291, 23369), 'logging.info', 'logging.info', (['f"""Set {set_names_nparray[i]} simplified to {candidates[cnd_ix]}"""'], {}), "(f'Set {set_names_nparray[i]} simplified to {candidates[cnd_ix]}')\n", (23303, 23369), False, 'import os, logging, json, re\n'), ((10453, 10467), 'pandas.isna', 'pd.isna', (['value'], {}), '(value)\n', (10460, 10467), True, 'import pandas as pd\n'), ((23547, 23575), 'pandas.Series', 'pd.Series', (['set_names_nparray'], {}), '(set_names_nparray)\n', (23556, 23575), True, 'import pandas as pd\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2018 herrlich10 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function, division, absolute_import, unicode_literals import sys, shlex, time import subprocess, multiprocessing, ctypes import numpy as np __author__ = 'herrlich10 <<EMAIL>>' __version__ = '0.1.3' if sys.version_info[0] == 3: string_types = (str,) else: string_types = (basestring,) def cmd_for_exec(cmd, cmd_kws): ''' Format cmd appropriately for execution according to whether shell=True. Split the cmd string into a list, if not shell=True. Join the cmd list into a string, if shell=True. Do nothing to callable. ''' if not callable(cmd): if 'shell' in cmd_kws and cmd_kws['shell']: # cmd string is required if not isinstance(cmd, string_types): cmd = ' '.join(cmd) else: # cmd list is required if isinstance(cmd, string_types): cmd = shlex.split(cmd) # Split by space, preserving quoted substrings return cmd def cmd_for_disp(cmd): ''' Format cmd for printing. ''' if isinstance(cmd, list): return ' '.join(cmd) else: return cmd def format_duration(duration, format='standard'): ''' Format duration (in seconds) in a more human friendly way. ''' if format == 'short': units = ['d', 'h', 'm', 's'] elif format == 'long': units = [' days', ' hours', ' minutes', ' seconds'] else: units = [' day', ' hr', ' min', ' sec'] values = [int(duration//86400), int(duration%86400//3600), int(duration%3600//60), duration%60] for K in range(len(values)): # values[K] would be the first non-zero value if values[K] > 0: break formatted = ((('%d' if k<len(values)-1 else '%.3f') % values[k]) + units[k] for k in range(len(values)) if k >= K) return ' '.join(formatted) class PooledCaller(object): ''' Execute multiple command line programs, as well as python callables, asynchronously and parallelly across a pool of processes. ''' def __init__(self, pool_size=None): if pool_size is None: self.pool_size = multiprocessing.cpu_count() * 3 // 4 else: self.pool_size = pool_size self.ps = [] self.cmd_queue = [] self._n_cmds = 0 # Accumulated counter for generating cmd idx self._pid2idx = {} self._return_codes = [] def check_call(self, cmd, *args, **kwargs): ''' Asynchronous check_call (queued execution, return immediately). See subprocess.Popen() for more information about the arguments. Multiple commands can be separated with ";" and executed sequentially within a single subprocess in linux/mac, only if shell=True. Python callable can also be executed in parallel via multiprocessing. Note that only the return code of the child process will be retrieved later when calling wait(), not the actual return value of the callable. So the result of the computation needs to be saved in a file. Parameters ---------- cmd : list, str, or callable Computation in command line programs is handled with subprocess. Computation in python callable is handled with multiprocessing. shell : bool If provided, must be a keyword argument. If shell is True, the command will be executed through the shell. *args, **kwargs : If cmd is a callable, *args and **kwargs are passed to the callable as its arguments. If cmd is a list or str, **kwargs are passed to subprocess.Popen(). ''' cmd = cmd_for_exec(cmd, kwargs) self.cmd_queue.append((self._n_cmds, cmd, args, kwargs)) self._n_cmds += 1 def dispatch(self): # If there are free slot and more jobs while len(self.ps) < self.pool_size and len(self.cmd_queue) > 0: idx, cmd, args, kwargs = self.cmd_queue.pop(0) print('>> job {0}: {1}'.format(idx, cmd_for_disp(cmd))) if callable(cmd): p = multiprocessing.Process(target=cmd, args=args, kwargs=kwargs) p.start() else: p = subprocess.Popen(cmd, **kwargs) self.ps.append(p) self._pid2idx[p.pid] = idx def wait(self): ''' Wait for all jobs in the queue to finish. Returns ------- codes : list The return code of the child process for each job. ''' self._start_time = time.time() while len(self.ps) > 0 or len(self.cmd_queue) > 0: # Dispatch jobs if possible self.dispatch() # Poll workers' state for p in self.ps: if isinstance(p, subprocess.Popen) and p.poll() is not None: # If the process is terminated self._return_codes.append((self._pid2idx[p.pid], p.returncode)) self.ps.remove(p) elif isinstance(p, multiprocessing.Process) and not p.is_alive(): # If the process is terminated self._return_codes.append((self._pid2idx[p.pid], p.exitcode)) self.ps.remove(p) time.sleep(0.1) codes = [code for idx, code in sorted(self._return_codes)] duration = time.time() - self._start_time print('>> All {0} jobs done in {1}.'.format(self._n_cmds, format_duration(duration))) if np.any(codes): print('returncode: {0}', codes) else: print('all returncodes are 0.') self._n_cmds = 0 self._pid2idx = {} self._return_codes = [] return codes class ArrayWrapper(type): ''' This is the metaclass for classes that wrap an np.ndarray and delegate non-reimplemented operators (among other magic functions) to the wrapped array. ''' def __init__(cls, name, bases, dct): def make_descriptor(name): return property(lambda self: getattr(self.arr, name)) type.__init__(cls, name, bases, dct) ignore = 'class mro new init setattr getattr getattribute' ignore = set('__{0}__'.format(name) for name in ignore.split()) for name in dir(np.ndarray): if name.startswith('__'): if name not in ignore and name not in dct: setattr(cls, name, make_descriptor(name)) class SharedMemoryArray(object, metaclass=ArrayWrapper): ''' This class can be used as a usual np.ndarray, but its data buffer is allocated in shared memory (under Cached Files in memory monitor), and can be passed across processes without any data copy/duplication, even when write access happens (which is lock-synchronized). The idea is to allocate memory using multiprocessing.Array, and access it from current or another process via a numpy.ndarray view, without actually copying the data. So it is both convenient and efficient when used with multiprocessing. This implementation also demonstrates the power of composition + metaclass, as opposed to the canonical multiple inheritance. ''' def __init__(self, dtype, shape, initializer=None, lock=True): self.dtype = np.dtype(dtype) self.shape = shape if initializer is None: # Preallocate memory using multiprocessing is the preferred usage self.shared_arr = multiprocessing.Array(self.dtype2ctypes[self.dtype], int(np.prod(self.shape)), lock=lock) else: self.shared_arr = multiprocessing.Array(self.dtype2ctypes[self.dtype], initializer, lock=lock) if not lock: self.arr = np.frombuffer(self.shared_arr, dtype=self.dtype).reshape(self.shape) else: self.arr = np.frombuffer(self.shared_arr.get_obj(), dtype=self.dtype).reshape(self.shape) @classmethod def zeros(cls, shape, dtype=float, lock=True): ''' Return a new array of given shape and dtype, filled with zeros. This is the preferred usage, which avoids holding two copies of the potentially very large data simultaneously in the memory. ''' return cls(dtype, shape, lock=lock) @classmethod def from_array(cls, arr, lock=True): ''' Initialize a new shared-memory array with an existing array. ''' # return cls(arr.dtype, arr.shape, arr.ravel(), lock=lock) # Slow and memory inefficient, why? a = cls.zeros(arr.shape, dtype=arr.dtype, lock=lock) a[:] = arr # This is a more efficient way of initialization return a def __getattr__(self, attr): if attr in ['acquire', 'release']: return getattr(self.shared_arr, attr) else: return getattr(self.arr, attr) def __dir__(self): return list(self.__dict__.keys()) + ['acquire', 'release'] + dir(self.arr) # At present, only numerical dtypes are supported. dtype2ctypes = { bool: ctypes.c_bool, int: ctypes.c_long, float: ctypes.c_double, np.dtype('bool'): ctypes.c_bool, np.dtype('int64'): ctypes.c_long, np.dtype('int32'): ctypes.c_int, np.dtype('int16'): ctypes.c_short, np.dtype('int8'): ctypes.c_byte, np.dtype('uint64'): ctypes.c_ulong, np.dtype('uint32'): ctypes.c_uint, np.dtype('uint16'): ctypes.c_ushort, np.dtype('uint8'): ctypes.c_ubyte, np.dtype('float64'): ctypes.c_double, np.dtype('float32'): ctypes.c_float, }
[ "subprocess.Popen", "multiprocessing.Array", "numpy.frombuffer", "numpy.dtype", "shlex.split", "time.sleep", "numpy.any", "time.time", "multiprocessing.Process", "numpy.prod", "multiprocessing.cpu_count" ]
[((5724, 5735), 'time.time', 'time.time', ([], {}), '()\n', (5733, 5735), False, 'import sys, shlex, time\n'), ((6640, 6653), 'numpy.any', 'np.any', (['codes'], {}), '(codes)\n', (6646, 6653), True, 'import numpy as np\n'), ((8430, 8445), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (8438, 8445), True, 'import numpy as np\n'), ((10272, 10288), 'numpy.dtype', 'np.dtype', (['"""bool"""'], {}), "('bool')\n", (10280, 10288), True, 'import numpy as np\n'), ((10313, 10330), 'numpy.dtype', 'np.dtype', (['"""int64"""'], {}), "('int64')\n", (10321, 10330), True, 'import numpy as np\n'), ((10355, 10372), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (10363, 10372), True, 'import numpy as np\n'), ((10396, 10413), 'numpy.dtype', 'np.dtype', (['"""int16"""'], {}), "('int16')\n", (10404, 10413), True, 'import numpy as np\n'), ((10439, 10455), 'numpy.dtype', 'np.dtype', (['"""int8"""'], {}), "('int8')\n", (10447, 10455), True, 'import numpy as np\n'), ((10480, 10498), 'numpy.dtype', 'np.dtype', (['"""uint64"""'], {}), "('uint64')\n", (10488, 10498), True, 'import numpy as np\n'), ((10524, 10542), 'numpy.dtype', 'np.dtype', (['"""uint32"""'], {}), "('uint32')\n", (10532, 10542), True, 'import numpy as np\n'), ((10567, 10585), 'numpy.dtype', 'np.dtype', (['"""uint16"""'], {}), "('uint16')\n", (10575, 10585), True, 'import numpy as np\n'), ((10612, 10629), 'numpy.dtype', 'np.dtype', (['"""uint8"""'], {}), "('uint8')\n", (10620, 10629), True, 'import numpy as np\n'), ((10655, 10674), 'numpy.dtype', 'np.dtype', (['"""float64"""'], {}), "('float64')\n", (10663, 10674), True, 'import numpy as np\n'), ((10701, 10720), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (10709, 10720), True, 'import numpy as np\n'), ((6402, 6417), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (6412, 6417), False, 'import sys, shlex, time\n'), ((6504, 6515), 'time.time', 'time.time', ([], {}), '()\n', (6513, 6515), False, 'import sys, shlex, time\n'), ((8747, 8823), 'multiprocessing.Array', 'multiprocessing.Array', (['self.dtype2ctypes[self.dtype]', 'initializer'], {'lock': 'lock'}), '(self.dtype2ctypes[self.dtype], initializer, lock=lock)\n', (8768, 8823), False, 'import subprocess, multiprocessing, ctypes\n'), ((2030, 2046), 'shlex.split', 'shlex.split', (['cmd'], {}), '(cmd)\n', (2041, 2046), False, 'import sys, shlex, time\n'), ((5250, 5311), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'cmd', 'args': 'args', 'kwargs': 'kwargs'}), '(target=cmd, args=args, kwargs=kwargs)\n', (5273, 5311), False, 'import subprocess, multiprocessing, ctypes\n'), ((5376, 5407), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {}), '(cmd, **kwargs)\n', (5392, 5407), False, 'import subprocess, multiprocessing, ctypes\n'), ((3260, 3287), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3285, 3287), False, 'import subprocess, multiprocessing, ctypes\n'), ((8670, 8689), 'numpy.prod', 'np.prod', (['self.shape'], {}), '(self.shape)\n', (8677, 8689), True, 'import numpy as np\n'), ((8868, 8916), 'numpy.frombuffer', 'np.frombuffer', (['self.shared_arr'], {'dtype': 'self.dtype'}), '(self.shared_arr, dtype=self.dtype)\n', (8881, 8916), True, 'import numpy as np\n')]
import numpy as np from pommerman import constants from pommerman.constants import Item from util.data import calc_dist def staying_alive_reward(nobs, agent_id): """ Return a reward if the agent with the given id is alive. :param nobs: The game state :param agent_id: The agent to check :return: The reward for staying alive """ #print(nobs[0]['position'][0]) if agent_id in nobs[0]['alive']: return 1.0 else: return 0.0 def go_down_right_reward(nobs, high_pos, agent_num, act): """ Return a reward for going to the low or right side of the board :param nobs: The current observation :param high_pos: Tuple of lowest and most-right position :param agent_num: The id of the agent to check (0-3) :return: The reward for going down or right """ # only give rewards if a new highest point is reached bomb_bonus = 0 if act[agent_num] == 5: bomb_bonus = 0.00 if nobs[agent_num]['position'][0] > high_pos[0]: return 1 + bomb_bonus, (nobs[agent_num]['position'][0], high_pos[1]) elif nobs[agent_num]['position'][1] > high_pos[1]: return 1 + bomb_bonus, (high_pos[0], nobs[agent_num]['position'][1]) else: return 0 + bomb_bonus, high_pos def bomb_reward(nobs, act, agent_ind): dist = calc_dist(agent_ind, nobs) rwd = 0.0 if act[agent_ind] == 5: rwd = 5.0/dist elif act[agent_ind] == 0: rwd = 0.0 else: rwd = 1.0/dist return rwd def skynet_reward(obs, act, nobs, fifo, agent_inds, log): """ Skynet reward function rewarding enemy deaths, powerup pickups and stepping on blocks not in FIFO :param obs: previous observation :param nobs: new observation :param fifo: 121 (11x11) cell queue :return: """ # calculate rewards for player agents, rest are zero r = [0.0] * len(obs) for i in range(len(obs)): if i not in agent_inds: continue log_ind = 0 if i <= 1 else 1 teammate_ind = i + 2 if log_ind == 0 else i - 2 n_enemies_prev = 0 alive_prev = obs[i]['alive'] for e in obs[i]['enemies']: if e.value in alive_prev: n_enemies_prev += 1 prev_n_teammate = 1 if obs[i]['teammate'].value in alive_prev else 0 prev_can_kick = obs[i]['can_kick'] prev_n_ammo = obs[i]['ammo'] prev_n_blast = obs[i]['blast_strength'] cur_alive = nobs[i]['alive'] n_enemy_cur = 0 for e in nobs[i]['enemies']: if e.value in cur_alive: n_enemy_cur += 1 cur_n_teammate = 1 if nobs[i]['teammate'].value in cur_alive else 0 cur_can_kick = nobs[i]['can_kick'] cur_n_ammo = nobs[i]['ammo'] cur_n_blast = nobs[i]['blast_strength'] cur_position = nobs[i]['position'] if n_enemies_prev - n_enemy_cur > 0: r[i] += (n_enemies_prev - n_enemy_cur) * 0.5 log[log_ind][0] += (n_enemies_prev - n_enemy_cur) * 0.5 # if prev_n_teammate - cur_n_teammate > 0: # r[i] -= (prev_n_teammate-cur_n_teammate)*0.5 # log[log_ind][4] -= (prev_n_teammate-cur_n_teammate)*0.5 if not prev_can_kick and cur_can_kick: r[i] += 0.02 log[log_ind][1] += 0.02 if cur_n_ammo - prev_n_ammo > 0 and obs[i]['board'][cur_position[0]][cur_position[1]] == Item.ExtraBomb.value: r[i] += 0.01 log[log_ind][1] += 0.01 if cur_n_blast - prev_n_blast > 0: r[i] += 0.01 log[log_ind][1] += 0.01 if cur_position not in fifo[i]: r[i] += 0.001 log[log_ind][2] += 0.001 if len(fifo[i]) == 121: fifo[i].pop() fifo[i].append(cur_position) return r def _get_positions(board, value): wood_bitmap = np.isin(board, value).astype(np.uint8) wood_positions = np.where(wood_bitmap == 1) return list(zip(wood_positions[0], wood_positions[1])) def woods_close_to_bomb_reward(obs, bomb_pos, blast_strength, agent_ids): ''' :param obs: observation :param bomb_pos: position bomb is layed :param blast_strength: current blast strength of the agent :param agent_ids: agent ids of teammates :return: reward for laying bombs near wood and enemies ''' board = obs['board'] wood_positions = _get_positions(board, constants.Item.Wood.value) rigid_positions = _get_positions(board, constants.Item.Rigid.value) enemy_ids = [10,11,12,13] for id in agent_ids: enemy_ids.remove(id) enemy_positions =[] for e in enemy_ids: enemy_positions += _get_positions(board, e) woods_in_range = 0.0 enemies_in_range = 0.0 # for every wooden block check if it would be destroyed left_pos = np.asarray(bomb_pos) for i in range(1, blast_strength+1): if left_pos[0] == 0: break left_pos = (bomb_pos[0] - i, bomb_pos[1]) if left_pos in rigid_positions: break elif left_pos in enemy_positions: enemies_in_range +=1 break elif left_pos in wood_positions: woods_in_range += 1 break right_pos = np.asarray(bomb_pos) for i in range(1, blast_strength + 1): if right_pos[0] == len(board)-1: break right_pos = (bomb_pos[0] + i, bomb_pos[1]) if right_pos in rigid_positions: break elif right_pos in enemy_positions: enemies_in_range += 1 break elif right_pos in wood_positions: woods_in_range += 1 break down_pos = np.asarray(bomb_pos) for i in range(1, blast_strength + 1): if down_pos[1] == 0: break down_pos = (bomb_pos[0], bomb_pos[1] - i) if down_pos in rigid_positions: break elif down_pos in enemy_positions: enemies_in_range += 1 break elif down_pos in wood_positions: woods_in_range += 1 break up_pos = np.asarray(bomb_pos) for i in range(1, blast_strength + 1): if up_pos[1] == len(board)-1: break up_pos = (bomb_pos[0], bomb_pos[1] + i) if up_pos in rigid_positions: break elif up_pos in enemy_positions: enemies_in_range += 1 break elif up_pos in wood_positions: woods_in_range += 1 break # for each wood close to bomb reward x reward = (0.01 * woods_in_range) + (0.3 * enemies_in_range) return reward
[ "numpy.isin", "numpy.asarray", "numpy.where", "util.data.calc_dist" ]
[((1392, 1418), 'util.data.calc_dist', 'calc_dist', (['agent_ind', 'nobs'], {}), '(agent_ind, nobs)\n', (1401, 1418), False, 'from util.data import calc_dist\n'), ((4096, 4122), 'numpy.where', 'np.where', (['(wood_bitmap == 1)'], {}), '(wood_bitmap == 1)\n', (4104, 4122), True, 'import numpy as np\n'), ((5017, 5037), 'numpy.asarray', 'np.asarray', (['bomb_pos'], {}), '(bomb_pos)\n', (5027, 5037), True, 'import numpy as np\n'), ((5447, 5467), 'numpy.asarray', 'np.asarray', (['bomb_pos'], {}), '(bomb_pos)\n', (5457, 5467), True, 'import numpy as np\n'), ((5895, 5915), 'numpy.asarray', 'np.asarray', (['bomb_pos'], {}), '(bomb_pos)\n', (5905, 5915), True, 'import numpy as np\n'), ((6325, 6345), 'numpy.asarray', 'np.asarray', (['bomb_pos'], {}), '(bomb_pos)\n', (6335, 6345), True, 'import numpy as np\n'), ((4035, 4056), 'numpy.isin', 'np.isin', (['board', 'value'], {}), '(board, value)\n', (4042, 4056), True, 'import numpy as np\n')]
import numpy as np import pandas as pd def intersection_cartesian(L1: pd.DataFrame, L2: pd.DataFrame): """ Compute cartesian coordinates of intersection points given two list of lines in general form. General form for a line: Ax+By+C=0 :param L1: :param L2: :return: """ if not {'A', 'B', 'C'}.issubset(set(L1.columns)) or not {'A', 'B', 'C'}.issubset(set(L2.columns)): raise ValueError('L1 and L2 should both contains columns A, B and C, which depicts lines in general form') d = (L1['A'] * L2['B'] - L1['B'] * L2['A']) dx = L1['B'] * L2['C'] - L1['C'] * L2['B'] dy = L1['C'] * L2['A'] - L1['A'] * L2['C'] x = dx / d y = dy / d return list(zip(x.values.tolist(), y.values.tolist())) def points2line(p1, p2): """ Compute Ax+By+C=0 given a list of point [(x1,y1)] and [(x2,y2)]. Single point is also acceptable. :param p1: point in tuple or array (x1,y1) or a list of points in tuple or array [(x1_1,y1_1),(x1_2,y1_2),...] :param p2: point in tuple or array (x2,y2) or a list of points in tuple or array [(x2_1,y2_1),(x2_2,y2_2),...] :return: pd.DataFrame objects of lines in general form(Ax+By+C=0) """ p1 = np.array(p1) p2 = np.array(p2) if p1.dtype == np.object or p2.dtype == np.object: raise ValueError("p1 and p2 should matrix alike") elif len(p1.shape) == 2 and len(p2.shape) == 2: if p1.shape[1] != 2 or p2.shape[1] != 2: raise ValueError("p1 and p2 should be matrix with column size of exactly 2") elif len(p1.shape) == 1 and len(p1) == 2 and len(p1.shape) == 1 and len(p2) == 2: p1 = p1.reshape(-1, 2) p2 = p2.reshape(-1, 2) else: raise ValueError("Invalid p1 and p2") a = (p1[:, 1] - p2[:, 1]) b = (p2[:, 0] - p1[:, 0]) c = (p1[:, 0] * p2[:, 1] - p2[:, 0] * p1[:, 1]) return pd.DataFrame([a, b, c], index=['A', 'B', 'C']).T def find_y_on_lines(lines: np.array, x: np.array): """ find y of a list of x on a list of lines that in polar form. :param lines: :param x: :return: a list of points, 1th dimension for different x and 2th dimension for different lines """ if len(lines) == 0: return lines lines = np.array(lines) if lines.dtype == np.object: raise ValueError("lines should be matrix alike") elif len(lines.shape) == 1: if len(lines) == 2: lines = lines.reshape(-1, 2) else: raise ValueError("the length of line vector should 2") elif len(lines.shape) == 2: if lines.shape[1] != 2: raise ValueError("lines should be matrix with column size of exactly 2") else: raise ValueError("Invalid lines") x = np.array(x) if x.dtype == np.object: raise ValueError("x should be matrix alike") rho = lines[:, 1].reshape(-1, 1) phi = lines[:, 0].reshape(-1, 1) y = (rho - x * np.cos(phi)) / np.sin(phi) return y def find_points_on_lines(lines: np.array, x: np.array): """ find points of a list of x on a list of lines that in polar form. :param lines: :param x: :return: a list of points, 1th dimension for different x and 2th dimension for different lines """ if len(lines) == 0: return lines lines = np.array(lines) if len(lines.shape) == 1: if len(lines) == 2: lines = lines.reshape(-1, 2) x = np.array(x) y = find_y_on_lines(lines, x) points = list() for ix in range(len(x)): points_on_a_line = np.zeros((len(lines), 2)) points_on_a_line[:, 0] = x[ix] points_on_a_line[:, 1] = y[:, ix] points.append(list(map(lambda x: tuple(x), points_on_a_line.tolist()))) return points def interpolate_pixels_along_line(p1: np.array or tuple, p2: np.array or tuple, width=2): """Uses Xiaolin Wu's line algorithm to interpolate all of the pixels along a straight line, given two points (x0, y0) and (x1, y1) Wikipedia article containing pseudo code that function was based off of: http://en.wikipedia.org/wiki/Xiaolin_Wu's_line_algorithm Given by Rick(https://stackoverflow.com/users/2025958/rick) on https://stackoverflow.com/questions/24702868/python3-pillow-get-all-pixels-on-a-line. """ if type(p1) is np.ndarray and type(p2) is np.ndarray: (x1, y1) = p1.flatten() (x2, y2) = p2.flatten() elif len(p1) == 2 and len(p2) == 2: (x1, y1) = p1 (x2, y2) = p2 else: raise TypeError("p1 and p2 must be tuple or ndarray depicting points") pixels = [] steep = np.abs(y2 - y1) > np.abs(x2 - x1) # Ensure that the path to be interpolated is shallow and from left to right if steep: t = x1 x1 = y1 y1 = t t = x2 x2 = y2 y2 = t if x1 > x2: t = x1 x1 = x2 x2 = t t = y1 y1 = y2 y2 = t dx = x2 - x1 dy = y2 - y1 gradient = dy / dx # slope # Get the first given coordinate and add it to the return list x_end = np.round(x1) y_end = y1 + (gradient * (x_end - x1)) xpxl0 = x_end ypxl0 = np.round(y_end) if steep: pixels.extend([(ypxl0, xpxl0), (ypxl0 + 1, xpxl0)]) else: pixels.extend([(xpxl0, ypxl0), (xpxl0, ypxl0 + 1)]) interpolated_y = y_end + gradient # Get the second given coordinate to give the main loop a range x_end = np.round(x2) y_end = y2 + (gradient * (x_end - x2)) xpxl1 = x_end ypxl1 = np.round(y_end) # Loop between the first x coordinate and the second x coordinate, interpolating the y coordinates for x in np.arange(xpxl0 + 1, xpxl1): if steep: pixels.extend([(np.floor(interpolated_y) + i, x) for i in range(1 - width, width + 1)]) else: pixels.extend([(x, np.floor(interpolated_y) + i) for i in range(1 - width, width + 1)]) interpolated_y += gradient # Add the second given coordinate to the given list if steep: pixels.extend([(ypxl1, xpxl1), (ypxl1 + 1, xpxl1)]) else: pixels.extend([(xpxl1, ypxl1), (xpxl1, ypxl1 + 1)]) # convert to int return list(map(lambda x: tuple(x), np.array(pixels, dtype=np.int)))
[ "pandas.DataFrame", "numpy.abs", "numpy.floor", "numpy.sin", "numpy.array", "numpy.arange", "numpy.cos", "numpy.round" ]
[((1209, 1221), 'numpy.array', 'np.array', (['p1'], {}), '(p1)\n', (1217, 1221), True, 'import numpy as np\n'), ((1231, 1243), 'numpy.array', 'np.array', (['p2'], {}), '(p2)\n', (1239, 1243), True, 'import numpy as np\n'), ((2246, 2261), 'numpy.array', 'np.array', (['lines'], {}), '(lines)\n', (2254, 2261), True, 'import numpy as np\n'), ((2744, 2755), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2752, 2755), True, 'import numpy as np\n'), ((3304, 3319), 'numpy.array', 'np.array', (['lines'], {}), '(lines)\n', (3312, 3319), True, 'import numpy as np\n'), ((3427, 3438), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (3435, 3438), True, 'import numpy as np\n'), ((5098, 5110), 'numpy.round', 'np.round', (['x1'], {}), '(x1)\n', (5106, 5110), True, 'import numpy as np\n'), ((5184, 5199), 'numpy.round', 'np.round', (['y_end'], {}), '(y_end)\n', (5192, 5199), True, 'import numpy as np\n'), ((5464, 5476), 'numpy.round', 'np.round', (['x2'], {}), '(x2)\n', (5472, 5476), True, 'import numpy as np\n'), ((5550, 5565), 'numpy.round', 'np.round', (['y_end'], {}), '(y_end)\n', (5558, 5565), True, 'import numpy as np\n'), ((5683, 5710), 'numpy.arange', 'np.arange', (['(xpxl0 + 1)', 'xpxl1'], {}), '(xpxl0 + 1, xpxl1)\n', (5692, 5710), True, 'import numpy as np\n'), ((1875, 1921), 'pandas.DataFrame', 'pd.DataFrame', (['[a, b, c]'], {'index': "['A', 'B', 'C']"}), "([a, b, c], index=['A', 'B', 'C'])\n", (1887, 1921), True, 'import pandas as pd\n'), ((2946, 2957), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (2952, 2957), True, 'import numpy as np\n'), ((4619, 4634), 'numpy.abs', 'np.abs', (['(y2 - y1)'], {}), '(y2 - y1)\n', (4625, 4634), True, 'import numpy as np\n'), ((4637, 4652), 'numpy.abs', 'np.abs', (['(x2 - x1)'], {}), '(x2 - x1)\n', (4643, 4652), True, 'import numpy as np\n'), ((6244, 6274), 'numpy.array', 'np.array', (['pixels'], {'dtype': 'np.int'}), '(pixels, dtype=np.int)\n', (6252, 6274), True, 'import numpy as np\n'), ((2931, 2942), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (2937, 2942), True, 'import numpy as np\n'), ((5758, 5782), 'numpy.floor', 'np.floor', (['interpolated_y'], {}), '(interpolated_y)\n', (5766, 5782), True, 'import numpy as np\n'), ((5876, 5900), 'numpy.floor', 'np.floor', (['interpolated_y'], {}), '(interpolated_y)\n', (5884, 5900), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- #code adapted from https://github.com/analyticalmindsltd/smote_variants import numpy as np import time import logging import itertools from sklearn.neighbors import NearestNeighbors # setting the _logger format _logger = logging.getLogger('smote_variants') _logger.setLevel(logging.DEBUG) _logger_ch = logging.StreamHandler() _logger_ch.setFormatter(logging.Formatter( "%(asctime)s:%(levelname)s:%(message)s")) _logger.addHandler(_logger_ch) def mode(data): values, counts = np.unique(data, return_counts=True) return values[np.where(counts == max(counts))[0][0]] class StatisticsMixin: """ Mixin to compute class statistics and determine minority/majority labels """ def class_label_statistics(self, X, y): """ determines class sizes and minority and majority labels Args: X (np.array): features y (np.array): target labels """ unique, counts = np.unique(y, return_counts=True) self.class_stats = dict(zip(unique, counts)) self.min_label = unique[0] if counts[0] < counts[1] else unique[1] self.maj_label = unique[1] if counts[0] < counts[1] else unique[0] # shorthands self.min_label = self.min_label self.maj_label = self.maj_label def check_enough_min_samples_for_sampling(self, threshold=2): if self.class_stats[self.min_label] < threshold: m = ("The number of minority samples (%d) is not enough " "for sampling") m = m % self.class_stats[self.min_label] _logger.warning(self.__class__.__name__ + ": " + m) return False return True class RandomStateMixin: """ Mixin to set random state """ def set_random_state(self, random_state): """ sets the random_state member of the object Args: random_state (int/np.random.RandomState/None): the random state initializer """ self._random_state_init = random_state if random_state is None: self.random_state = np.random elif isinstance(random_state, int): self.random_state = np.random.RandomState(random_state) elif isinstance(random_state, np.random.RandomState): self.random_state = random_state elif random_state is np.random: self.random_state = random_state else: raise ValueError( "random state cannot be initialized by " + str(random_state)) class ParameterCheckingMixin: """ Mixin to check if parameters come from a valid range """ def check_in_range(self, x, name, r): """ Check if parameter is in range Args: x (numeric): the parameter value name (str): the parameter name r (list-like(2)): the lower and upper bound of a range Throws: ValueError """ if x < r[0] or x > r[1]: m = ("Value for parameter %s outside the range [%f,%f] not" " allowed: %f") m = m % (name, r[0], r[1], x) raise ValueError(self.__class__.__name__ + ": " + m) def check_out_range(self, x, name, r): """ Check if parameter is outside of range Args: x (numeric): the parameter value name (str): the parameter name r (list-like(2)): the lower and upper bound of a range Throws: ValueError """ if x >= r[0] and x <= r[1]: m = "Value for parameter %s in the range [%f,%f] not allowed: %f" m = m % (name, r[0], r[1], x) raise ValueError(self.__class__.__name__ + ": " + m) def check_less_or_equal(self, x, name, val): """ Check if parameter is less than or equal to value Args: x (numeric): the parameter value name (str): the parameter name val (numeric): value to compare to Throws: ValueError """ if x > val: m = "Value for parameter %s greater than %f not allowed: %f > %f" m = m % (name, val, x, val) raise ValueError(self.__class__.__name__ + ": " + m) def check_less_or_equal_par(self, x, name_x, y, name_y): """ Check if parameter is less than or equal to another parameter Args: x (numeric): the parameter value name_x (str): the parameter name y (numeric): the other parameter value name_y (str): the other parameter name Throws: ValueError """ if x > y: m = ("Value for parameter %s greater than parameter %s not" " allowed: %f > %f") m = m % (name_x, name_y, x, y) raise ValueError(self.__class__.__name__ + ": " + m) def check_less(self, x, name, val): """ Check if parameter is less than value Args: x (numeric): the parameter value name (str): the parameter name val (numeric): value to compare to Throws: ValueError """ if x >= val: m = ("Value for parameter %s greater than or equal to %f" " not allowed: %f >= %f") m = m % (name, val, x, val) raise ValueError(self.__class__.__name__ + ": " + m) def check_less_par(self, x, name_x, y, name_y): """ Check if parameter is less than another parameter Args: x (numeric): the parameter value name_x (str): the parameter name y (numeric): the other parameter value name_y (str): the other parameter name Throws: ValueError """ if x >= y: m = ("Value for parameter %s greater than or equal to parameter" " %s not allowed: %f >= %f") m = m % (name_x, name_y, x, y) raise ValueError(self.__class__.__name__ + ": " + m) def check_greater_or_equal(self, x, name, val): """ Check if parameter is greater than or equal to value Args: x (numeric): the parameter value name (str): the parameter name val (numeric): value to compare to Throws: ValueError """ if x < val: m = "Value for parameter %s less than %f is not allowed: %f < %f" m = m % (name, val, x, val) raise ValueError(self.__class__.__name__ + ": " + m) def check_greater_or_equal_par(self, x, name_x, y, name_y): """ Check if parameter is less than or equal to another parameter Args: x (numeric): the parameter value name_x (str): the parameter name y (numeric): the other parameter value name_y (str): the other parameter name Throws: ValueError """ if x < y: m = ("Value for parameter %s less than parameter %s is not" " allowed: %f < %f") m = m % (name_x, name_y, x, y) raise ValueError(self.__class__.__name__ + ": " + m) def check_greater(self, x, name, val): """ Check if parameter is greater than value Args: x (numeric): the parameter value name (str): the parameter name val (numeric): value to compare to Throws: ValueError """ if x <= val: m = ("Value for parameter %s less than or equal to %f not allowed" " %f < %f") m = m % (name, val, x, val) raise ValueError(self.__class__.__name__ + ": " + m) def check_greater_par(self, x, name_x, y, name_y): """ Check if parameter is greater than or equal to another parameter Args: x (numeric): the parameter value name_x (str): the parameter name y (numeric): the other parameter value name_y (str): the other parameter name Throws: ValueError """ if x <= y: m = ("Value for parameter %s less than or equal to parameter %s" " not allowed: %f <= %f") m = m % (name_x, name_y, x, y) raise ValueError(self.__class__.__name__ + ": " + m) def check_equal(self, x, name, val): """ Check if parameter is equal to value Args: x (numeric): the parameter value name (str): the parameter name val (numeric): value to compare to Throws: ValueError """ if x == val: m = ("Value for parameter %s equal to parameter %f is not allowed:" " %f == %f") m = m % (name, val, x, val) raise ValueError(self.__class__.__name__ + ": " + m) def check_equal_par(self, x, name_x, y, name_y): """ Check if parameter is equal to another parameter Args: x (numeric): the parameter value name_x (str): the parameter name y (numeric): the other parameter value name_y (str): the other parameter name Throws: ValueError """ if x == y: m = ("Value for parameter %s equal to parameter %s is not " "allowed: %f == %f") m = m % (name_x, name_y, x, y) raise ValueError(self.__class__.__name__ + ": " + m) def check_isin(self, x, name, li): """ Check if parameter is in list Args: x (numeric): the parameter value name (str): the parameter name li (list): list to check if parameter is in it Throws: ValueError """ if x not in li: m = "Value for parameter %s not in list %s is not allowed: %s" m = m % (name, str(li), str(x)) raise ValueError(self.__class__.__name__ + ": " + m) def check_n_jobs(self, x, name): """ Check n_jobs parameter Args: x (int/None): number of jobs name (str): the parameter name Throws: ValueError """ if not ((x is None) or (x is not None and isinstance(x, int) and not x == 0)): m = "Value for parameter n_jobs is not allowed: %s" % str(x) raise ValueError(self.__class__.__name__ + ": " + m) class ParameterCombinationsMixin: """ Mixin to generate parameter combinations """ @classmethod def generate_parameter_combinations(cls, dictionary, raw): """ Generates reasonable paramter combinations Args: dictionary (dict): dictionary of paramter ranges num (int): maximum number of combinations to generate """ if raw: return dictionary keys = sorted(list(dictionary.keys())) values = [dictionary[k] for k in keys] combinations = [dict(zip(keys, p)) for p in list(itertools.product(*values))] return combinations class NoiseFilter(StatisticsMixin, ParameterCheckingMixin, ParameterCombinationsMixin): """ Parent class of noise filtering methods """ def __init__(self): """ Constructor """ pass def remove_noise(self, X, y): """ Removes noise Args: X (np.array): features y (np.array): target labels """ pass def get_params(self, deep=False): """ Return parameters Returns: dict: dictionary of parameters """ return {} def set_params(self, **params): """ Set parameters Args: params (dict): dictionary of parameters """ for key, value in params.items(): setattr(self, key, value) return self class OverSampling(StatisticsMixin, ParameterCheckingMixin, ParameterCombinationsMixin, RandomStateMixin): """ Base class of oversampling methods """ categories = [] cat_noise_removal = 'NR' cat_dim_reduction = 'DR' cat_uses_classifier = 'Clas' cat_sample_componentwise = 'SCmp' cat_sample_ordinary = 'SO' cat_sample_copy = 'SCpy' cat_memetic = 'M' cat_density_estimation = 'DE' cat_density_based = 'DB' cat_extensive = 'Ex' cat_changes_majority = 'CM' cat_uses_clustering = 'Clus' cat_borderline = 'BL' cat_application = 'A' def __init__(self): pass def det_n_to_sample(self, strategy, n_maj, n_min): """ Determines the number of samples to generate Args: strategy (str/float): if float, the fraction of the difference of the minority and majority numbers to generate, like 0.1 means that 10% of the difference will be generated if str, like 'min2maj', the minority class will be upsampled to match the cardinality of the majority class """ if isinstance(strategy, float) or isinstance(strategy, int): return max([0, int((n_maj - n_min)*strategy)]) else: m = "Value %s for parameter strategy is not supported" % strategy raise ValueError(self.__class__.__name__ + ": " + m) def sample_between_points(self, x, y): """ Sample randomly along the line between two points. Args: x (np.array): point 1 y (np.array): point 2 Returns: np.array: the new sample """ return x + (y - x)*self.random_state.random_sample() def sample_between_points_componentwise(self, x, y, mask=None): """ Sample each dimension separately between the two points. Args: x (np.array): point 1 y (np.array): point 2 mask (np.array): array of 0,1s - specifies which dimensions to sample Returns: np.array: the new sample being generated """ if mask is None: return x + (y - x)*self.random_state.random_sample() else: return x + (y - x)*self.random_state.random_sample()*mask def sample_by_jittering(self, x, std): """ Sample by jittering. Args: x (np.array): base point std (float): standard deviation Returns: np.array: the new sample """ return x + (self.random_state.random_sample() - 0.5)*2.0*std def sample_by_jittering_componentwise(self, x, std): """ Sample by jittering componentwise. Args: x (np.array): base point std (np.array): standard deviation Returns: np.array: the new sample """ return x + (self.random_state.random_sample(len(x))-0.5)*2.0 * std def sample_by_gaussian_jittering(self, x, std): """ Sample by Gaussian jittering Args: x (np.array): base point std (np.array): standard deviation Returns: np.array: the new sample """ return self.random_state.normal(x, std) def sample(self, X, y): """ The samplig function reimplemented in child classes Args: X (np.matrix): features y (np.array): labels Returns: np.matrix, np.array: sampled X and y """ return X, y def fit_resample(self, X, y): """ Alias of the function "sample" for compatibility with imbalanced-learn pipelines """ return self.sample(X, y) def sample_with_timing(self, X, y): begin = time.time() X_samp, y_samp = self.sample(X, y) _logger.info(self.__class__.__name__ + ": " + ("runtime: %f" % (time.time() - begin))) return X_samp, y_samp def preprocessing_transform(self, X): """ Transforms new data according to the possible transformation implemented by the function "sample". Args: X (np.matrix): features Returns: np.matrix: transformed features """ return X def get_params(self, deep=False): """ Returns the parameters of the object as a dictionary. Returns: dict: the parameters of the object """ pass def set_params(self, **params): """ Set parameters Args: params (dict): dictionary of parameters """ for key, value in params.items(): setattr(self, key, value) return self def descriptor(self): """ Returns: str: JSON description of the current sampling object """ return str((self.__class__.__name__, str(self.get_params()))) def __str__(self): return self.descriptor() class FOS_1(OverSampling): #F4_SMOTE(OverSampling): categories = [OverSampling.cat_sample_ordinary, OverSampling.cat_extensive] def __init__(self, proportion=1.0, n_neighbors=5, n_jobs=1, random_state=None): super().__init__() self.check_greater_or_equal(proportion, "proportion", 0) self.check_greater_or_equal(n_neighbors, "n_neighbors", 1) self.check_n_jobs(n_jobs, 'n_jobs') self.proportion = proportion self.n_neighbors = n_neighbors self.n_jobs = n_jobs self.set_random_state(random_state) @classmethod def parameter_combinations(cls, raw=False): parameter_combinations = {'proportion': [0.1, 0.25, 0.5, 0.75, 1.0, 1.1,1.5, 2.0], 'n_neighbors': [3, 5, 7]} return cls.generate_parameter_combinations(parameter_combinations, raw) def sample(self, X, y,prot_idx, pv_mid_pt, prot_grp, maj_min, nsamp, pv_max,pv_min): _logger.info(self.__class__.__name__ + ": " + "Running sampling via %s" % self.descriptor()) self.class_label_statistics(X, y) if not self.check_enough_min_samples_for_sampling(): return X.copy(), y.copy() y = np.squeeze(y) n_to_sample = nsamp if maj_min == 0: X_min = X[y == self.min_label] y_min = y[y == self.min_label] prot = X_min[:,prot_idx] if prot_grp == 0: X_min = X_min[prot==prot_grp] y_min = y_min[prot==prot_grp] if prot_grp == 1: X_min = X_min[prot==prot_grp] y_min = y_min[prot==prot_grp] if maj_min == 1: X_min = X[y == self.maj_label] y_min = y[y == self.maj_label] prot = X_min[:,prot_idx] if prot_grp == 0: X_min = X_min[prot==prot_grp] y_min = y_min[prot==prot_grp] if prot_grp == 1: X_min = X_min[prot==prot_grp] y_min = y_min[prot==prot_grp] self.min_label = np.copy(self.maj_label) if n_to_sample == 0: return X.copy(), y.copy() # fitting the model n_neigh = min([len(X_min), self.n_neighbors+1]) nn = NearestNeighbors(n_neighbors=n_neigh, n_jobs=self.n_jobs) nn.fit(X_min) dist, ind = nn.kneighbors(X_min) if n_to_sample == 0: return X.copy(), y.copy() # generating samples #np.random.seed(seed=1) base_indices = self.random_state.choice(list(range(len(X_min))), n_to_sample) neighbor_indices = self.random_state.choice(list(range(1, n_neigh)), n_to_sample) X_base = X_min[base_indices] X_neighbor = X_min[ind[base_indices, neighbor_indices]] samples = X_base + np.multiply(self.random_state.rand(n_to_sample, 1), X_neighbor - X_base) return (np.vstack([X, samples]), np.hstack([y, np.hstack([self.min_label]*n_to_sample)])) def get_params(self, deep=False): return {'proportion': self.proportion, 'n_neighbors': self.n_neighbors, 'n_jobs': self.n_jobs, 'random_state': self._random_state_init} class FOS_2(OverSampling): #F3a_SMOTE(OverSampling): categories = [OverSampling.cat_sample_ordinary, OverSampling.cat_extensive] def __init__(self, proportion=1.0, n_neighbors=5, n_jobs=1, random_state=None): super().__init__() self.check_greater_or_equal(proportion, "proportion", 0) self.check_greater_or_equal(n_neighbors, "n_neighbors", 1) self.check_n_jobs(n_jobs, 'n_jobs') self.proportion = proportion self.n_neighbors = n_neighbors self.n_jobs = n_jobs self.set_random_state(random_state) @classmethod def parameter_combinations(cls, raw=False): parameter_combinations = {'proportion': [0.1, 0.25, 0.5, 0.75, 1.0, 1.1,1.5, 2.0], 'n_neighbors': [3, 5, 7]} return cls.generate_parameter_combinations(parameter_combinations, raw) def sample(self, X, y,prot_idx, pv_mid_pt, prot_grp, maj_min, nsamp): _logger.info(self.__class__.__name__ + ": " + "Running sampling via %s" % self.descriptor()) self.class_label_statistics(X, y) if not self.check_enough_min_samples_for_sampling(): return X.copy(), y.copy() n_to_sample = nsamp if maj_min == 0: X_min = X[y == self.min_label] y_min = y[y == self.min_label] prot = X_min[:,prot_idx] if prot_grp == 0: X_min1 = X_min[prot<pv_mid_pt] y_min1 = y_min[prot<pv_mid_pt] if prot_grp == 1: X_min1 = X_min[prot>pv_mid_pt] y_min1 = y_min[prot>pv_mid_pt] if maj_min == 1: X_min = X[y == self.maj_label] y_min = y[y == self.maj_label] prot = X_min[:,prot_idx] if prot_grp == 0: X_min1 = X_min[prot<pv_mid_pt] y_min1 = y_min[prot<pv_mid_pt] if prot_grp == 1: X_min1 = X_min[prot>pv_mid_pt] y_min1 = y_min[prot>pv_mid_pt] self.min_label = np.copy(self.maj_label) if n_to_sample == 0: return X.copy(), y.copy() # fitting the model n_neigh = min([len(X_min), self.n_neighbors+1]) nn = NearestNeighbors(n_neighbors=n_neigh, n_jobs=self.n_jobs) nn.fit(X_min) dist, ind = nn.kneighbors(X_min1) if n_to_sample == 0: return X.copy(), y.copy() # generating samples np.random.seed(seed=1) base_indices = self.random_state.choice(list(range(len(X_min1))), n_to_sample) neighbor_indices = self.random_state.choice(list(range(1, n_neigh)), n_to_sample) X_base = X_min1[base_indices] X_neighbor = X_min[ind[base_indices, neighbor_indices]] samples = X_base + np.multiply(self.random_state.rand(n_to_sample, 1), X_neighbor - X_base) return (np.vstack([X, samples]), np.hstack([y, np.hstack([self.min_label]*n_to_sample)])) def get_params(self, deep=False): return {'proportion': self.proportion, 'n_neighbors': self.n_neighbors, 'n_jobs': self.n_jobs, 'random_state': self._random_state_init}
[ "numpy.random.seed", "numpy.copy", "logging.StreamHandler", "logging.getLogger", "time.time", "logging.Formatter", "numpy.random.RandomState", "numpy.hstack", "sklearn.neighbors.NearestNeighbors", "itertools.product", "numpy.squeeze", "numpy.vstack", "numpy.unique" ]
[((260, 295), 'logging.getLogger', 'logging.getLogger', (['"""smote_variants"""'], {}), "('smote_variants')\n", (277, 295), False, 'import logging\n'), ((343, 366), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (364, 366), False, 'import logging\n'), ((392, 450), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s:%(levelname)s:%(message)s"""'], {}), "('%(asctime)s:%(levelname)s:%(message)s')\n", (409, 450), False, 'import logging\n'), ((539, 574), 'numpy.unique', 'np.unique', (['data'], {'return_counts': '(True)'}), '(data, return_counts=True)\n', (548, 574), True, 'import numpy as np\n'), ((1017, 1049), 'numpy.unique', 'np.unique', (['y'], {'return_counts': '(True)'}), '(y, return_counts=True)\n', (1026, 1049), True, 'import numpy as np\n'), ((16779, 16790), 'time.time', 'time.time', ([], {}), '()\n', (16788, 16790), False, 'import time\n'), ((19515, 19528), 'numpy.squeeze', 'np.squeeze', (['y'], {}), '(y)\n', (19525, 19528), True, 'import numpy as np\n'), ((20727, 20784), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': 'n_neigh', 'n_jobs': 'self.n_jobs'}), '(n_neighbors=n_neigh, n_jobs=self.n_jobs)\n', (20743, 20784), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((24637, 24694), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': 'n_neigh', 'n_jobs': 'self.n_jobs'}), '(n_neighbors=n_neigh, n_jobs=self.n_jobs)\n', (24653, 24694), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((24891, 24913), 'numpy.random.seed', 'np.random.seed', ([], {'seed': '(1)'}), '(seed=1)\n', (24905, 24913), True, 'import numpy as np\n'), ((20521, 20544), 'numpy.copy', 'np.copy', (['self.maj_label'], {}), '(self.maj_label)\n', (20528, 20544), True, 'import numpy as np\n'), ((21622, 21645), 'numpy.vstack', 'np.vstack', (['[X, samples]'], {}), '([X, samples])\n', (21631, 21645), True, 'import numpy as np\n'), ((24403, 24426), 'numpy.copy', 'np.copy', (['self.maj_label'], {}), '(self.maj_label)\n', (24410, 24426), True, 'import numpy as np\n'), ((25554, 25577), 'numpy.vstack', 'np.vstack', (['[X, samples]'], {}), '([X, samples])\n', (25563, 25577), True, 'import numpy as np\n'), ((2341, 2376), 'numpy.random.RandomState', 'np.random.RandomState', (['random_state'], {}), '(random_state)\n', (2362, 2376), True, 'import numpy as np\n'), ((11605, 11631), 'itertools.product', 'itertools.product', (['*values'], {}), '(*values)\n', (11622, 11631), False, 'import itertools\n'), ((21678, 21719), 'numpy.hstack', 'np.hstack', (['([self.min_label] * n_to_sample)'], {}), '([self.min_label] * n_to_sample)\n', (21687, 21719), True, 'import numpy as np\n'), ((25610, 25651), 'numpy.hstack', 'np.hstack', (['([self.min_label] * n_to_sample)'], {}), '([self.min_label] * n_to_sample)\n', (25619, 25651), True, 'import numpy as np\n'), ((16930, 16941), 'time.time', 'time.time', ([], {}), '()\n', (16939, 16941), False, 'import time\n')]
""" """ # IMPORT modules. Must have unittest, and probably coast. import coast from coast import general_utils import unittest import numpy as np import os.path as path import xarray as xr import matplotlib.pyplot as plt import unit_test_files as files class test_transect_methods(unittest.TestCase): def test_determine_extract_transect_indices(self): nemo_t = coast.Gridded(files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_t_grid) yt, xt, length_of_line = nemo_t.transect_indices([51, -5], [49, -9]) # Test transect indices yt_ref = [ 164, 163, 162, 162, 161, 160, 159, 158, 157, 156, 156, 155, 154, 153, 152, 152, 151, 150, 149, 148, 147, 146, 146, 145, 144, 143, 142, 142, 141, 140, 139, 138, 137, 136, 136, 135, 134, ] xt_ref = [ 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, ] length_ref = 37 check1 = xt == xt_ref check2 = yt == yt_ref check3 = length_of_line == length_ref self.assertTrue(check1, msg="check1") self.assertTrue(check2, msg="check2") self.assertTrue(check3, msg="check3") def test_calculate_transport_velocity_and_depth(self): with self.subTest("Calculate_transports and velocties and depth"): nemo_t = coast.Gridded( fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_t_grid ) nemo_u = coast.Gridded( fn_data=files.fn_nemo_grid_u_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_u_grid ) nemo_v = coast.Gridded( fn_data=files.fn_nemo_grid_v_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_v_grid ) nemo_f = coast.Gridded(fn_domain=files.fn_nemo_dom, config=files.fn_config_f_grid) tran_f = coast.TransectF(nemo_f, (54, -15), (56, -12)) tran_f.calc_flow_across_transect(nemo_u, nemo_v) cksum1 = tran_f.data_cross_tran_flow.normal_velocities.sum(dim=("t_dim", "z_dim", "r_dim")).item() cksum2 = tran_f.data_cross_tran_flow.normal_transports.sum(dim=("t_dim", "r_dim")).item() check1 = np.isclose(cksum1, -253.6484375) check2 = np.isclose(cksum2, -48.67562136873888) self.assertTrue(check1, msg="check1") self.assertTrue(check2, msg="check2") with self.subTest("plot_transect_on_map"): fig, ax = tran_f.plot_transect_on_map() ax.set_xlim([-20, 0]) # Problem: nice to make the land appear. ax.set_ylim([45, 65]) # But can not call plt.show() before adjustments are made... # fig.tight_layout() fig.savefig(files.dn_fig + "transect_map.png") plt.close("all") with self.subTest("plot_normal_velocity"): plot_dict = {"fig_size": (5, 3), "title": "Normal velocities"} fig, ax = tran_f.plot_normal_velocity(time=0, cmap="seismic", plot_info=plot_dict, smoothing_window=2) fig.tight_layout() fig.savefig(files.dn_fig + "transect_velocities.png") plt.close("all") with self.subTest("plot_depth_integrated_transport"): plot_dict = {"fig_size": (5, 3), "title": "Transport across AB"} fig, ax = tran_f.plot_depth_integrated_transport(time=0, plot_info=plot_dict, smoothing_window=2) fig.tight_layout() fig.savefig(files.dn_fig + "transect_transport.png") plt.close("all") def test_transect_density_and_pressure(self): nemo_t = coast.Gridded( fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_t_grid ) tran_t = coast.TransectT(nemo_t, (54, -15), (56, -12)) tran_t.construct_pressure() cksum1 = tran_t.data.density_zlevels.sum(dim=["t_dim", "r_dim", "depth_z_levels"]).compute().item() cksum2 = tran_t.data.pressure_h_zlevels.sum(dim=["t_dim", "r_dim", "depth_z_levels"]).compute().item() cksum3 = tran_t.data.pressure_s.sum(dim=["t_dim", "r_dim"]).compute().item() check1 = np.isclose(cksum1, 23800545.87457855) check2 = np.isclose(cksum2, 135536478.93335825) check3 = np.isclose(cksum3, -285918.5625) self.assertTrue(check1, msg="check1") self.assertTrue(check2, msg="check2") self.assertTrue(check3, msg="check3") def test_cross_transect_geostrophic_flow(self): nemo_f = coast.Gridded(fn_domain=files.fn_nemo_dom, config=files.fn_config_f_grid) tran_f = coast.TransectF(nemo_f, (54, -15), (56, -12)) nemo_t = coast.Gridded( fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom, config=files.fn_config_t_grid ) tran_f.calc_geostrophic_flow(nemo_t, config_u=files.fn_config_u_grid, config_v=files.fn_config_v_grid) cksum1 = tran_f.data_cross_tran_flow.normal_velocity_hpg.sum(dim=("t_dim", "depth_z_levels", "r_dim")).item() cksum2 = tran_f.data_cross_tran_flow.normal_velocity_spg.sum(dim=("t_dim", "r_dim")).item() cksum3 = tran_f.data_cross_tran_flow.normal_transport_hpg.sum(dim=("t_dim", "r_dim")).item() cksum4 = tran_f.data_cross_tran_flow.normal_transport_spg.sum(dim=("t_dim", "r_dim")).item() check1 = np.isclose(cksum1, 84.8632969783) check2 = np.isclose(cksum2, -5.09718418121) check3 = np.isclose(cksum3, 115.2587369660) check4 = np.isclose(cksum4, -106.7897376093) self.assertTrue(check1, msg="check1") self.assertTrue(check2, msg="check2") self.assertTrue(check3, msg="check3") self.assertTrue(check4, msg="check4")
[ "coast.TransectT", "matplotlib.pyplot.close", "coast.TransectF", "numpy.isclose", "coast.Gridded" ]
[((377, 481), 'coast.Gridded', 'coast.Gridded', (['files.fn_nemo_grid_t_dat'], {'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_t_grid'}), '(files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom, config\n =files.fn_config_t_grid)\n', (390, 481), False, 'import coast\n'), ((4641, 4752), 'coast.Gridded', 'coast.Gridded', ([], {'fn_data': 'files.fn_nemo_grid_t_dat', 'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_t_grid'}), '(fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom,\n config=files.fn_config_t_grid)\n', (4654, 4752), False, 'import coast\n'), ((4788, 4833), 'coast.TransectT', 'coast.TransectT', (['nemo_t', '(54, -15)', '(56, -12)'], {}), '(nemo_t, (54, -15), (56, -12))\n', (4803, 4833), False, 'import coast\n'), ((5191, 5228), 'numpy.isclose', 'np.isclose', (['cksum1', '(23800545.87457855)'], {}), '(cksum1, 23800545.87457855)\n', (5201, 5228), True, 'import numpy as np\n'), ((5246, 5284), 'numpy.isclose', 'np.isclose', (['cksum2', '(135536478.93335825)'], {}), '(cksum2, 135536478.93335825)\n', (5256, 5284), True, 'import numpy as np\n'), ((5302, 5334), 'numpy.isclose', 'np.isclose', (['cksum3', '(-285918.5625)'], {}), '(cksum3, -285918.5625)\n', (5312, 5334), True, 'import numpy as np\n'), ((5543, 5616), 'coast.Gridded', 'coast.Gridded', ([], {'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_f_grid'}), '(fn_domain=files.fn_nemo_dom, config=files.fn_config_f_grid)\n', (5556, 5616), False, 'import coast\n'), ((5634, 5679), 'coast.TransectF', 'coast.TransectF', (['nemo_f', '(54, -15)', '(56, -12)'], {}), '(nemo_f, (54, -15), (56, -12))\n', (5649, 5679), False, 'import coast\n'), ((5697, 5808), 'coast.Gridded', 'coast.Gridded', ([], {'fn_data': 'files.fn_nemo_grid_t_dat', 'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_t_grid'}), '(fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom,\n config=files.fn_config_t_grid)\n', (5710, 5808), False, 'import coast\n'), ((6376, 6409), 'numpy.isclose', 'np.isclose', (['cksum1', '(84.8632969783)'], {}), '(cksum1, 84.8632969783)\n', (6386, 6409), True, 'import numpy as np\n'), ((6427, 6461), 'numpy.isclose', 'np.isclose', (['cksum2', '(-5.09718418121)'], {}), '(cksum2, -5.09718418121)\n', (6437, 6461), True, 'import numpy as np\n'), ((6479, 6512), 'numpy.isclose', 'np.isclose', (['cksum3', '(115.258736966)'], {}), '(cksum3, 115.258736966)\n', (6489, 6512), True, 'import numpy as np\n'), ((6531, 6566), 'numpy.isclose', 'np.isclose', (['cksum4', '(-106.7897376093)'], {}), '(cksum4, -106.7897376093)\n', (6541, 6566), True, 'import numpy as np\n'), ((2326, 2437), 'coast.Gridded', 'coast.Gridded', ([], {'fn_data': 'files.fn_nemo_grid_t_dat', 'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_t_grid'}), '(fn_data=files.fn_nemo_grid_t_dat, fn_domain=files.fn_nemo_dom,\n config=files.fn_config_t_grid)\n', (2339, 2437), False, 'import coast\n'), ((2485, 2596), 'coast.Gridded', 'coast.Gridded', ([], {'fn_data': 'files.fn_nemo_grid_u_dat', 'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_u_grid'}), '(fn_data=files.fn_nemo_grid_u_dat, fn_domain=files.fn_nemo_dom,\n config=files.fn_config_u_grid)\n', (2498, 2596), False, 'import coast\n'), ((2644, 2755), 'coast.Gridded', 'coast.Gridded', ([], {'fn_data': 'files.fn_nemo_grid_v_dat', 'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_v_grid'}), '(fn_data=files.fn_nemo_grid_v_dat, fn_domain=files.fn_nemo_dom,\n config=files.fn_config_v_grid)\n', (2657, 2755), False, 'import coast\n'), ((2803, 2876), 'coast.Gridded', 'coast.Gridded', ([], {'fn_domain': 'files.fn_nemo_dom', 'config': 'files.fn_config_f_grid'}), '(fn_domain=files.fn_nemo_dom, config=files.fn_config_f_grid)\n', (2816, 2876), False, 'import coast\n'), ((2899, 2944), 'coast.TransectF', 'coast.TransectF', (['nemo_f', '(54, -15)', '(56, -12)'], {}), '(nemo_f, (54, -15), (56, -12))\n', (2914, 2944), False, 'import coast\n'), ((3240, 3272), 'numpy.isclose', 'np.isclose', (['cksum1', '(-253.6484375)'], {}), '(cksum1, -253.6484375)\n', (3250, 3272), True, 'import numpy as np\n'), ((3294, 3332), 'numpy.isclose', 'np.isclose', (['cksum2', '(-48.67562136873888)'], {}), '(cksum2, -48.67562136873888)\n', (3304, 3332), True, 'import numpy as np\n'), ((3813, 3829), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (3822, 3829), True, 'import matplotlib.pyplot as plt\n'), ((4181, 4197), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (4190, 4197), True, 'import matplotlib.pyplot as plt\n'), ((4556, 4572), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (4565, 4572), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np from csv import reader from decimal import * def SDM(datalist): """ ้€ๅทฎๆณ• :param datalist: :return: """ length = len(datalist) resultlist = [] halfLen = int(length/2) for i in range(0, halfLen): resultlist.append((Decimal(datalist[i+halfLen]) - Decimal(datalist[i])).to_eng_string()) return resultlist class DataReader: def __init__(self, filename): self.filename = filename with open(filename, 'rt', encoding='UTF-8') as raw_data: readers = reader(raw_data, delimiter=',') overx = list(readers) data = np.array(overx) self.data = data self.resultVar = data[0][1] self.resultUnit = data[0][3] self.function = data[1][1] self.P = float(data[0][5]) if data[1][3] == 'Y': self.flag = True elif data[1][3] == 'N': self.flag = False else: raise IOError('Y or N wanted, not ' + data[1][3]) experimentdata = data[4:len(data)] tempvarlist = [] tempunitlist = [] tempdatalist = [] tempUblist = [] tempSDMflag = [] tempUbFunclist = [] tempfunctionlist = [] for item in experimentdata: tempvarlist.append(item[0]) tempunitlist.append(item[1]) tempUbFunclist.append(item[2]) temptempdata = [] for j in range(3, len(item)): if j == 3: tempUblist.append(item[j]) elif j == 4: tempSDMflag.append(item[j]) elif j == 5: tempfunctionlist.append(item[j]) else: if not item[j] == '': temptempdata.append(item[j]) tempdatalist.append(temptempdata) self.varList = tempvarlist self.unitList = tempunitlist self.UbList = tempUblist self.UbFuncList = tempUbFunclist self.SDMflagList = tempSDMflag self.TempFunctionList = tempfunctionlist for i in range(0, len(tempSDMflag)): if tempSDMflag[i] == 'Y': tempdatalist[i] = SDM(tempdatalist[i]) self.dataList = tempdatalist
[ "numpy.array", "csv.reader" ]
[((566, 597), 'csv.reader', 'reader', (['raw_data'], {'delimiter': '""","""'}), "(raw_data, delimiter=',')\n", (572, 597), False, 'from csv import reader\n'), ((653, 668), 'numpy.array', 'np.array', (['overx'], {}), '(overx)\n', (661, 668), True, 'import numpy as np\n')]
import pretty_midi import numpy as np ''' Note class: represent note, including: 1. the note pitch 2. the note duration 3. downbeat 4. intensity of note sound ''' class Note: def __init__(self): self.pitch = 0 self.length = 0 self.downbeat = False self.force = 0 ''' Midi2Numpy: tool to convert midi file to numpy list of Note input_path: the path of the input midi file track_index: the index of the melody track of midi output_path: the path to save the numpy array ''' def Midi2Numpy(input_path, output_path, track_index): midi_data = pretty_midi.PrettyMIDI(input_path) notes = midi_data.instruments[track_index].notes downbeats = midi_data.get_downbeats() dataset = [] for n in notes: note = Note() for i in downbeats: ''' the downbeat locates in this note's duration we see the note as downbeat ''' if n.start <= i < n.end: note.downbeat = True note.pitch = n.pitch note.length = n.end - n.start note.force = n.velocity dataset.append(note) np.save(output_path, dataset) path = 'plag/23_ma este meg.mid' test = pretty_midi.PrettyMIDI() midi_data = pretty_midi.PrettyMIDI(path) # decide the track index track_index = 0 notes = midi_data.instruments[track_index] test.instruments.append(notes) test.write('test.mid') test.write("newdata" + path[4:])
[ "numpy.save", "pretty_midi.PrettyMIDI" ]
[((1240, 1264), 'pretty_midi.PrettyMIDI', 'pretty_midi.PrettyMIDI', ([], {}), '()\n', (1262, 1264), False, 'import pretty_midi\n'), ((1277, 1305), 'pretty_midi.PrettyMIDI', 'pretty_midi.PrettyMIDI', (['path'], {}), '(path)\n', (1299, 1305), False, 'import pretty_midi\n'), ((613, 647), 'pretty_midi.PrettyMIDI', 'pretty_midi.PrettyMIDI', (['input_path'], {}), '(input_path)\n', (635, 647), False, 'import pretty_midi\n'), ((1167, 1196), 'numpy.save', 'np.save', (['output_path', 'dataset'], {}), '(output_path, dataset)\n', (1174, 1196), True, 'import numpy as np\n')]
"""Utility functions and classes for visualization and logging.""" import os from datetime import datetime import cv2 import imageio import numpy as np from allenact_plugins.manipulathor_plugin.manipulathor_utils import initialize_arm from allenact_plugins.manipulathor_plugin.manipulathor_utils import ( reset_environment_and_additional_commands, transport_wrapper, ) class LoggerVisualizer: def __init__(self, exp_name="", log_dir=""): if log_dir == "": log_dir = self.__class__.__name__ if exp_name == "": exp_name = "NoNameExp" now = datetime.now() self.exp_name = exp_name log_dir = os.path.join( "experiment_output/visualizations", exp_name, log_dir + "_" + now.strftime("%m_%d_%Y_%H_%M_%S_%f"), ) self.log_dir = log_dir os.makedirs(self.log_dir, exist_ok=True) self.log_queue = [] self.action_queue = [] self.logger_index = 0 def log(self, environment, action_str): raise Exception("Not Implemented") def is_empty(self): return len(self.log_queue) == 0 def finish_episode_metrics(self, episode_info, task_info, metric_results): pass def finish_episode(self, environment, episode_info, task_info): pass class TestMetricLogger(LoggerVisualizer): def __init__(self, **kwargs): super().__init__(**kwargs) self.total_metric_dict = {} log_file_name = os.path.join( self.log_dir, "test_metric_{}.txt".format(self.exp_name) ) self.metric_log_file = open(log_file_name, "w") def average_dict(self): result = {} for (k, v) in self.total_metric_dict.items(): result[k] = sum(v) / len(v) return result def finish_episode_metrics(self, episode_info, task_info, metric_results=None): if metric_results is None: print("had to reset") self.log_queue = [] self.action_queue = [] return for k in metric_results.keys(): if "metric" in k or k in ["ep_length", "reward", "success"]: self.total_metric_dict.setdefault(k, []) self.total_metric_dict[k].append(metric_results[k]) print( "total", len(self.total_metric_dict["success"]), "average test metric", self.average_dict(), ) # save the task info and all the action queue and results log_dict = { "task_info_metrics": metric_results, "action_sequence": self.action_queue, "logger_number": self.logger_index, } self.logger_index += 1 self.metric_log_file.write(str(log_dict)) self.metric_log_file.write("\n") print("Logging to", self.metric_log_file.name) self.log_queue = [] self.action_queue = [] def log(self, environment, action_str): # We can add agent arm and state location if needed self.action_queue.append(action_str) self.log_queue.append(action_str) class BringObjImageVisualizer(LoggerVisualizer): def finish_episode(self, environment, episode_info, task_info): now = datetime.now() time_to_write = now.strftime("%m_%d_%Y_%H_%M_%S_%f") time_to_write += "log_ind_{}".format(self.logger_index) self.logger_index += 1 print("Loggigng", time_to_write, "len", len(self.log_queue)) source_object_id = task_info["source_object_id"] goal_object_id = task_info["goal_object_id"] pickup_success = episode_info.object_picked_up episode_success = episode_info._success # Put back if you want the images # for i, img in enumerate(self.log_queue): # image_dir = os.path.join(self.log_dir, time_to_write + '_seq{}.png'.format(str(i))) # cv2.imwrite(image_dir, img[:,:,[2,1,0]]) episode_success_offset = "succ" if episode_success else "fail" pickup_success_offset = "succ" if pickup_success else "fail" gif_name = ( time_to_write + "_from_" + source_object_id.split("|")[0] + "_to_" + goal_object_id.split("|")[0] + "_pickup_" + pickup_success_offset + "_episode_" + episode_success_offset + ".gif" ) concat_all_images = np.expand_dims(np.stack(self.log_queue, axis=0), axis=1) save_image_list_to_gif(concat_all_images, gif_name, self.log_dir) this_controller = environment.controller scene = this_controller.last_event.metadata["sceneName"] reset_environment_and_additional_commands(this_controller, scene) self.log_start_goal( environment, task_info["visualization_source"], tag="start", img_adr=os.path.join(self.log_dir, time_to_write), ) self.log_start_goal( environment, task_info["visualization_target"], tag="goal", img_adr=os.path.join(self.log_dir, time_to_write), ) self.log_queue = [] self.action_queue = [] def log(self, environment, action_str): image_tensor = environment.current_frame self.action_queue.append(action_str) self.log_queue.append(image_tensor) def log_start_goal(self, env, task_info, tag, img_adr): object_location = task_info["object_location"] object_id = task_info["object_id"] agent_state = task_info["agent_pose"] this_controller = env.controller # We should not reset here # for start arm from high up as a cheating, this block is very important. never remove event1, event2, event3 = initialize_arm(this_controller) if not ( event1.metadata["lastActionSuccess"] and event2.metadata["lastActionSuccess"] and event3.metadata["lastActionSuccess"] ): print("ERROR: ARM MOVEMENT FAILED in logging! SHOULD NEVER HAPPEN") event = transport_wrapper(this_controller, object_id, object_location) if event.metadata["lastActionSuccess"] == False: print("ERROR: oh no could not transport in logging") event = this_controller.step( dict( action="TeleportFull", standing=True, x=agent_state["position"]["x"], y=agent_state["position"]["y"], z=agent_state["position"]["z"], rotation=dict( x=agent_state["rotation"]["x"], y=agent_state["rotation"]["y"], z=agent_state["rotation"]["z"], ), horizon=agent_state["cameraHorizon"], ) ) if event.metadata["lastActionSuccess"] == False: print("ERROR: oh no could not teleport in logging") image_tensor = this_controller.last_event.frame image_dir = ( img_adr + "_obj_" + object_id.split("|")[0] + "_pickup_" + tag + ".png" ) cv2.imwrite(image_dir, image_tensor[:, :, [2, 1, 0]]) # Saving the mask target_object_id = task_info["object_id"] all_visible_masks = this_controller.last_event.instance_masks if target_object_id in all_visible_masks: mask_frame = all_visible_masks[target_object_id] else: mask_frame = np.zeros(env.controller.last_event.frame[:, :, 0].shape) mask_dir = ( img_adr + "_obj_" + object_id.split("|")[0] + "_pickup_" + tag + "_mask.png" ) cv2.imwrite(mask_dir, mask_frame.astype(float) * 255.0) class ImageVisualizer(LoggerVisualizer): def finish_episode(self, environment, episode_info, task_info): now = datetime.now() time_to_write = now.strftime("%m_%d_%Y_%H_%M_%S_%f") time_to_write += "log_ind_{}".format(self.logger_index) self.logger_index += 1 print("Loggigng", time_to_write, "len", len(self.log_queue)) object_id = task_info["objectId"] pickup_success = episode_info.object_picked_up episode_success = episode_info._success # Put back if you want the images # for i, img in enumerate(self.log_queue): # image_dir = os.path.join(self.log_dir, time_to_write + '_seq{}.png'.format(str(i))) # cv2.imwrite(image_dir, img[:,:,[2,1,0]]) episode_success_offset = "succ" if episode_success else "fail" pickup_success_offset = "succ" if pickup_success else "fail" gif_name = ( time_to_write + "_obj_" + object_id.split("|")[0] + "_pickup_" + pickup_success_offset + "_episode_" + episode_success_offset + ".gif" ) concat_all_images = np.expand_dims(np.stack(self.log_queue, axis=0), axis=1) save_image_list_to_gif(concat_all_images, gif_name, self.log_dir) self.log_start_goal( environment, task_info["visualization_source"], tag="start", img_adr=os.path.join(self.log_dir, time_to_write), ) self.log_start_goal( environment, task_info["visualization_target"], tag="goal", img_adr=os.path.join(self.log_dir, time_to_write), ) self.log_queue = [] self.action_queue = [] def log(self, environment, action_str): image_tensor = environment.current_frame self.action_queue.append(action_str) self.log_queue.append(image_tensor) def log_start_goal(self, env, task_info, tag, img_adr): object_location = task_info["object_location"] object_id = task_info["object_id"] agent_state = task_info["agent_pose"] this_controller = env.controller scene = this_controller.last_event.metadata[ "sceneName" ] # maybe we need to reset env actually] reset_environment_and_additional_commands(this_controller, scene) # for start arm from high up as a cheating, this block is very important. never remove event1, event2, event3 = initialize_arm(this_controller) if not ( event1.metadata["lastActionSuccess"] and event2.metadata["lastActionSuccess"] and event3.metadata["lastActionSuccess"] ): print("ERROR: ARM MOVEMENT FAILED in logging! SHOULD NEVER HAPPEN") event = transport_wrapper(this_controller, object_id, object_location) if event.metadata["lastActionSuccess"] == False: print("ERROR: oh no could not transport in logging") event = this_controller.step( dict( action="TeleportFull", standing=True, x=agent_state["position"]["x"], y=agent_state["position"]["y"], z=agent_state["position"]["z"], rotation=dict( x=agent_state["rotation"]["x"], y=agent_state["rotation"]["y"], z=agent_state["rotation"]["z"], ), horizon=agent_state["cameraHorizon"], ) ) if event.metadata["lastActionSuccess"] == False: print("ERROR: oh no could not teleport in logging") image_tensor = this_controller.last_event.frame image_dir = ( img_adr + "_obj_" + object_id.split("|")[0] + "_pickup_" + tag + ".png" ) cv2.imwrite(image_dir, image_tensor[:, :, [2, 1, 0]]) def save_image_list_to_gif(image_list, gif_name, gif_dir): gif_adr = os.path.join(gif_dir, gif_name) seq_len, cols, w, h, c = image_list.shape pallet = np.zeros((seq_len, w, h * cols, c)) for col_ind in range(cols): pallet[:, :, col_ind * h : (col_ind + 1) * h, :] = image_list[:, col_ind] if not os.path.exists(gif_dir): os.makedirs(gif_dir) imageio.mimsave(gif_adr, pallet.astype(np.uint8), format="GIF", duration=1 / 5) print("Saved result in ", gif_adr)
[ "numpy.stack", "allenact_plugins.manipulathor_plugin.manipulathor_utils.transport_wrapper", "os.makedirs", "cv2.imwrite", "numpy.zeros", "os.path.exists", "datetime.datetime.now", "allenact_plugins.manipulathor_plugin.manipulathor_utils.initialize_arm", "allenact_plugins.manipulathor_plugin.manipulathor_utils.reset_environment_and_additional_commands", "os.path.join" ]
[((11803, 11834), 'os.path.join', 'os.path.join', (['gif_dir', 'gif_name'], {}), '(gif_dir, gif_name)\n', (11815, 11834), False, 'import os\n'), ((11896, 11931), 'numpy.zeros', 'np.zeros', (['(seq_len, w, h * cols, c)'], {}), '((seq_len, w, h * cols, c))\n', (11904, 11931), True, 'import numpy as np\n'), ((602, 616), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (614, 616), False, 'from datetime import datetime\n'), ((867, 907), 'os.makedirs', 'os.makedirs', (['self.log_dir'], {'exist_ok': '(True)'}), '(self.log_dir, exist_ok=True)\n', (878, 907), False, 'import os\n'), ((3265, 3279), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3277, 3279), False, 'from datetime import datetime\n'), ((4723, 4788), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.reset_environment_and_additional_commands', 'reset_environment_and_additional_commands', (['this_controller', 'scene'], {}), '(this_controller, scene)\n', (4764, 4788), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import reset_environment_and_additional_commands, transport_wrapper\n'), ((5838, 5869), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.initialize_arm', 'initialize_arm', (['this_controller'], {}), '(this_controller)\n', (5852, 5869), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import initialize_arm\n'), ((6150, 6212), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.transport_wrapper', 'transport_wrapper', (['this_controller', 'object_id', 'object_location'], {}), '(this_controller, object_id, object_location)\n', (6167, 6212), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import reset_environment_and_additional_commands, transport_wrapper\n'), ((7192, 7245), 'cv2.imwrite', 'cv2.imwrite', (['image_dir', 'image_tensor[:, :, [2, 1, 0]]'], {}), '(image_dir, image_tensor[:, :, [2, 1, 0]])\n', (7203, 7245), False, 'import cv2\n'), ((7909, 7923), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7921, 7923), False, 'from datetime import datetime\n'), ((10126, 10191), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.reset_environment_and_additional_commands', 'reset_environment_and_additional_commands', (['this_controller', 'scene'], {}), '(this_controller, scene)\n', (10167, 10191), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import reset_environment_and_additional_commands, transport_wrapper\n'), ((10320, 10351), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.initialize_arm', 'initialize_arm', (['this_controller'], {}), '(this_controller)\n', (10334, 10351), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import initialize_arm\n'), ((10632, 10694), 'allenact_plugins.manipulathor_plugin.manipulathor_utils.transport_wrapper', 'transport_wrapper', (['this_controller', 'object_id', 'object_location'], {}), '(this_controller, object_id, object_location)\n', (10649, 10694), False, 'from allenact_plugins.manipulathor_plugin.manipulathor_utils import reset_environment_and_additional_commands, transport_wrapper\n'), ((11674, 11727), 'cv2.imwrite', 'cv2.imwrite', (['image_dir', 'image_tensor[:, :, [2, 1, 0]]'], {}), '(image_dir, image_tensor[:, :, [2, 1, 0]])\n', (11685, 11727), False, 'import cv2\n'), ((12059, 12082), 'os.path.exists', 'os.path.exists', (['gif_dir'], {}), '(gif_dir)\n', (12073, 12082), False, 'import os\n'), ((12092, 12112), 'os.makedirs', 'os.makedirs', (['gif_dir'], {}), '(gif_dir)\n', (12103, 12112), False, 'import os\n'), ((4485, 4517), 'numpy.stack', 'np.stack', (['self.log_queue'], {'axis': '(0)'}), '(self.log_queue, axis=0)\n', (4493, 4517), True, 'import numpy as np\n'), ((7543, 7599), 'numpy.zeros', 'np.zeros', (['env.controller.last_event.frame[:, :, 0].shape'], {}), '(env.controller.last_event.frame[:, :, 0].shape)\n', (7551, 7599), True, 'import numpy as np\n'), ((8988, 9020), 'numpy.stack', 'np.stack', (['self.log_queue'], {'axis': '(0)'}), '(self.log_queue, axis=0)\n', (8996, 9020), True, 'import numpy as np\n'), ((4935, 4976), 'os.path.join', 'os.path.join', (['self.log_dir', 'time_to_write'], {}), '(self.log_dir, time_to_write)\n', (4947, 4976), False, 'import os\n'), ((5133, 5174), 'os.path.join', 'os.path.join', (['self.log_dir', 'time_to_write'], {}), '(self.log_dir, time_to_write)\n', (5145, 5174), False, 'import os\n'), ((9251, 9292), 'os.path.join', 'os.path.join', (['self.log_dir', 'time_to_write'], {}), '(self.log_dir, time_to_write)\n', (9263, 9292), False, 'import os\n'), ((9449, 9490), 'os.path.join', 'os.path.join', (['self.log_dir', 'time_to_write'], {}), '(self.log_dir, time_to_write)\n', (9461, 9490), False, 'import os\n')]
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt plt.switch_backend('agg') from utils import read_ZINC_smiles, smiles_to_onehot, convert_to_graph from rdkit import Chem, DataStructs from rdkit.Chem import AllChem import sys import time # execution) python gcn_logP.py 3 64 256 0.001 gsc # Default option num_layer = 3 hidden_dim1 = 64 hidden_dim2 = 256 init_lr = 0.001 using_sc = 'gsc' # 'sc, 'gsc, 'no' if( len(sys.argv) == 6 ): # Note that sys.argv[0] is gcn_logP.py num_layer = int(sys.argv[1]) hidden_dim1 = int(sys.argv[2]) hidden_dim2 = int(sys.argv[3]) init_lr = float(sys.argv[4]) using_sc = sys.argv[5] # 'sc, 'gsc, 'no' model_name = 'gcn_logP_' + str(num_layer) + '_' + str(hidden_dim1) + '_' + str(hidden_dim2) + '_' + str(init_lr) + '_' + using_sc #1. Prepare data - X : fingerprint, Y : logP # and split to (training:validation:test) set smi_total, logP_total, tpsa_total = read_ZINC_smiles(50000) num_train = 30000 num_validation = 10000 num_test = 10000 smi_train = smi_total[0:num_train] logP_train = logP_total[0:num_train] smi_validation = smi_total[num_train:(num_train+num_validation)] logP_validation = logP_total[num_train:(num_train+num_validation)] smi_test = smi_total[(num_train+num_validation):] logP_test = logP_total[(num_train+num_validation):] #2. Construct a neural network def skip_connection(input_X, new_X, act): # Skip-connection, H^(l+1)_sc = H^(l) + H^(l+1) inp_dim = int(input_X.get_shape()[2]) out_dim = int(new_X.get_shape()[2]) if(inp_dim != out_dim): output_X = act(new_X + tf.layers.dense(input_X, units=out_dim, use_bias=False)) else: output_X = act(new_X + input_X) return output_X def gated_skip_connection(input_X, new_X, act): # Skip-connection, H^(l+1)_gsc = z*H^(l) + (1-z)*H^(l+1) inp_dim = int(input_X.get_shape()[2]) out_dim = int(new_X.get_shape()[2]) def get_gate_coefficient(input_X, new_X, out_dim): X1 = tf.layers.dense(input_X, units=out_dim, use_bias=True) X2 = tf.layers.dense(new_X, units=out_dim, use_bias=True) gate_coefficient = tf.nn.sigmoid(X1 + X2) return gate_coefficient if(inp_dim != out_dim): input_X = tf.layers.dense(input_X, units=out_dim, use_bias=False) gate_coefficient = get_gate_coefficient(input_X, new_X, out_dim) output_X = tf.multiply(new_X, gate_coefficient) + tf.multiply(input_X, 1.0-gate_coefficient) return output_X def graph_convolution(input_X, input_A, hidden_dim, act, using_sc): # Graph Convolution, H^(l+1) = A{H^(l)W^(l)+b^(l)) output_X = tf.layers.dense(input_X, units=hidden_dim, use_bias=True, activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer()) output_X = tf.matmul(input_A, output_X) if( using_sc == 'sc' ): output_X = skip_connection(input_X, output_X, act) elif( using_sc == 'gsc' ): output_X = gated_skip_connection(input_X, output_X, act) elif( using_sc == 'no' ): output_X = act(output_X) else: output_X = gated_skip_connection(input_X, output_X) return output_X # Readout def readout(input_X, hidden_dim, act): # Readout, Z = sum_{v in G} NN(H^(L)_v) output_Z = tf.layers.dense(input_X, units=hidden_dim, use_bias=True, activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer()) output_Z = tf.reduce_sum(output_Z, axis=1) output = act(output_Z) return output_Z num_atoms=50 num_features=58 X = tf.placeholder(tf.float64, shape=[None, num_atoms, num_features]) A = tf.placeholder(tf.float64, shape=[None, num_atoms, num_atoms]) Y = tf.placeholder(tf.float64, shape=[None, ]) is_training = tf.placeholder(tf.bool, shape=()) h = X # Graph convolution layers for i in range(num_layer): h = graph_convolution(h, A, hidden_dim1, tf.nn.relu, using_sc) # Readout layer h = readout(h, hidden_dim2, tf.nn.sigmoid) # Predictor composed of MLPs(multi-layer perceptron) h = tf.layers.dense(h, units=hidden_dim2, use_bias=True, activation=tf.nn.relu, kernel_initializer=tf.contrib.layers.xavier_initializer()) h = tf.layers.dense(h, units=hidden_dim2, use_bias=True, activation=tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer()) Y_pred = tf.layers.dense(h, units=1, use_bias=True, kernel_initializer=tf.contrib.layers.xavier_initializer()) #3. Set a loss function, in this case we will use a MSE-loss (l2-norm) Y_pred = tf.reshape(Y_pred, shape=[-1,]) Y_pred = tf.cast(Y_pred, tf.float64) Y = tf.cast(Y, tf.float64) loss = tf.reduce_mean( (Y_pred - Y)**2 ) #4. Set an optimizer lr = tf.Variable(0.0, trainable = False) # learning rate opt = tf.train.AdamOptimizer(lr).minimize(loss) # Note that we use the Adam optimizer in this practice. #opt = tf.train.GradientDescentOptimizer(lr).minimize(loss) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver() #5. Training & validation batch_size = 100 epoch_size = 100 decay_rate = 0.95 batch_train = int(num_train/batch_size) batch_validation = int(num_validation/batch_size) batch_test = int(num_test/batch_size) total_iter = 0 total_time = 0.0 for t in range(epoch_size): pred_train = [] sess.run(tf.assign( lr, init_lr*( decay_rate**t ) )) st = time.time() for i in range(batch_train): total_iter += 1 smi_batch = smi_train[i*batch_size:(i+1)*batch_size] X_batch, A_batch = convert_to_graph(smi_batch) Y_batch = logP_train[i*batch_size:(i+1)*batch_size] _opt, _Y, _loss = sess.run([opt, Y_pred, loss], feed_dict = {X : X_batch, A : A_batch, Y : Y_batch, is_training : True}) pred_train.append(_Y.flatten()) #print("Epoch :", t, "\t batch:", i, "Loss :", _loss, "\t Training") pred_train = np.concatenate(pred_train, axis=0) error = (logP_train-pred_train) mae = np.mean(np.abs(error)) rmse = np.sqrt(np.mean(error**2)) stdv = np.std(error) print ("MAE :", mae, "RMSE :", rmse, "Std :", stdv, "\t Training, \t Epoch :", t) pred_validation = [] for i in range(batch_validation): smi_batch = smi_validation[i*batch_size:(i+1)*batch_size] X_batch, A_batch = convert_to_graph(smi_batch) Y_batch = logP_validation[i*batch_size:(i+1)*batch_size] _Y, _loss = sess.run([Y_pred, loss], feed_dict = {X : X_batch, A : A_batch, Y : Y_batch, is_training : False}) #print("Epoch :", t, "\t batch:", i, "Loss :", _loss, "\t validation") pred_validation.append(_Y.flatten()) pred_validation = np.concatenate(pred_validation, axis=0) error = (logP_validation-pred_validation) mae = np.mean(np.abs(error)) rmse = np.sqrt(np.mean(error**2)) stdv = np.std(error) et = time.time() print ("MAE :", mae, "RMSE :", rmse, "Std :", stdv, "\t Validation, \t Epoch :", t, "\t Time per epoch", (et-st)) total_time += (et-st) ### save model ckpt_path = 'save/'+model_name+'.ckpt' saver.save(sess, ckpt_path, global_step=total_iter) #6. Test pred_test = [] for i in range(batch_test): smi_batch = smi_test[i*batch_size:(i+1)*batch_size] X_batch, A_batch = convert_to_graph(smi_batch) Y_batch = logP_test[i*batch_size:(i+1)*batch_size] _Y, _loss = sess.run([Y_pred, loss], feed_dict = {X : X_batch, A : A_batch, Y : Y_batch, is_training : False}) pred_test.append(_Y.flatten()) pred_test = np.concatenate(pred_test, axis=0) error = (logP_test-pred_test) mae = np.mean(np.abs(error)) rmse = np.sqrt(np.mean(error**2)) stdv = np.std(error) print ("MSE :", mae, "RMSE :", rmse, "Std :", stdv, "\t Test", "\t Total time :", total_time) plt.figure() plt.scatter(logP_test, pred_test, s=3) plt.xlabel('logP - Truth', fontsize=15) plt.ylabel('logP - Prediction', fontsize=15) x = np.arange(-4,6) plt.plot(x,x,c='black') plt.tight_layout() plt.savefig('./figures/'+model_name+'_results.png')
[ "tensorflow.contrib.layers.xavier_initializer", "tensorflow.reduce_sum", "utils.read_ZINC_smiles", "numpy.abs", "tensorflow.reshape", "tensorflow.train.AdamOptimizer", "tensorflow.matmul", "matplotlib.pyplot.figure", "tensorflow.Variable", "numpy.arange", "numpy.mean", "tensorflow.multiply", "tensorflow.assign", "matplotlib.pyplot.tight_layout", "numpy.std", "tensorflow.placeholder", "tensorflow.cast", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.reduce_mean", "tensorflow.Session", "matplotlib.pyplot.ylabel", "utils.convert_to_graph", "numpy.concatenate", "matplotlib.pyplot.switch_backend", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "tensorflow.layers.dense", "time.time", "tensorflow.nn.sigmoid", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((75, 100), 'matplotlib.pyplot.switch_backend', 'plt.switch_backend', (['"""agg"""'], {}), "('agg')\n", (93, 100), True, 'import matplotlib.pyplot as plt\n'), ((955, 978), 'utils.read_ZINC_smiles', 'read_ZINC_smiles', (['(50000)'], {}), '(50000)\n', (971, 978), False, 'from utils import read_ZINC_smiles, smiles_to_onehot, convert_to_graph\n'), ((3789, 3854), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float64'], {'shape': '[None, num_atoms, num_features]'}), '(tf.float64, shape=[None, num_atoms, num_features])\n', (3803, 3854), True, 'import tensorflow as tf\n'), ((3859, 3921), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float64'], {'shape': '[None, num_atoms, num_atoms]'}), '(tf.float64, shape=[None, num_atoms, num_atoms])\n', (3873, 3921), True, 'import tensorflow as tf\n'), ((3926, 3966), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float64'], {'shape': '[None]'}), '(tf.float64, shape=[None])\n', (3940, 3966), True, 'import tensorflow as tf\n'), ((3983, 4016), 'tensorflow.placeholder', 'tf.placeholder', (['tf.bool'], {'shape': '()'}), '(tf.bool, shape=())\n', (3997, 4016), True, 'import tensorflow as tf\n'), ((5081, 5111), 'tensorflow.reshape', 'tf.reshape', (['Y_pred'], {'shape': '[-1]'}), '(Y_pred, shape=[-1])\n', (5091, 5111), True, 'import tensorflow as tf\n'), ((5122, 5149), 'tensorflow.cast', 'tf.cast', (['Y_pred', 'tf.float64'], {}), '(Y_pred, tf.float64)\n', (5129, 5149), True, 'import tensorflow as tf\n'), ((5154, 5176), 'tensorflow.cast', 'tf.cast', (['Y', 'tf.float64'], {}), '(Y, tf.float64)\n', (5161, 5176), True, 'import tensorflow as tf\n'), ((5184, 5217), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['((Y_pred - Y) ** 2)'], {}), '((Y_pred - Y) ** 2)\n', (5198, 5217), True, 'import tensorflow as tf\n'), ((5245, 5278), 'tensorflow.Variable', 'tf.Variable', (['(0.0)'], {'trainable': '(False)'}), '(0.0, trainable=False)\n', (5256, 5278), True, 'import tensorflow as tf\n'), ((5469, 5481), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5479, 5481), True, 'import tensorflow as tf\n'), ((5489, 5522), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5520, 5522), True, 'import tensorflow as tf\n'), ((5546, 5562), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5560, 5562), True, 'import tensorflow as tf\n'), ((8042, 8075), 'numpy.concatenate', 'np.concatenate', (['pred_test'], {'axis': '(0)'}), '(pred_test, axis=0)\n', (8056, 8075), True, 'import numpy as np\n'), ((8176, 8189), 'numpy.std', 'np.std', (['error'], {}), '(error)\n', (8182, 8189), True, 'import numpy as np\n'), ((8286, 8298), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8296, 8298), True, 'import matplotlib.pyplot as plt\n'), ((8299, 8337), 'matplotlib.pyplot.scatter', 'plt.scatter', (['logP_test', 'pred_test'], {'s': '(3)'}), '(logP_test, pred_test, s=3)\n', (8310, 8337), True, 'import matplotlib.pyplot as plt\n'), ((8338, 8377), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""logP - Truth"""'], {'fontsize': '(15)'}), "('logP - Truth', fontsize=15)\n", (8348, 8377), True, 'import matplotlib.pyplot as plt\n'), ((8378, 8422), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""logP - Prediction"""'], {'fontsize': '(15)'}), "('logP - Prediction', fontsize=15)\n", (8388, 8422), True, 'import matplotlib.pyplot as plt\n'), ((8427, 8443), 'numpy.arange', 'np.arange', (['(-4)', '(6)'], {}), '(-4, 6)\n', (8436, 8443), True, 'import numpy as np\n'), ((8443, 8468), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'x'], {'c': '"""black"""'}), "(x, x, c='black')\n", (8451, 8468), True, 'import matplotlib.pyplot as plt\n'), ((8467, 8485), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8483, 8485), True, 'import matplotlib.pyplot as plt\n'), ((8486, 8541), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('./figures/' + model_name + '_results.png')"], {}), "('./figures/' + model_name + '_results.png')\n", (8497, 8541), True, 'import matplotlib.pyplot as plt\n'), ((2920, 2948), 'tensorflow.matmul', 'tf.matmul', (['input_A', 'output_X'], {}), '(input_A, output_X)\n', (2929, 2948), True, 'import tensorflow as tf\n'), ((3674, 3705), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['output_Z'], {'axis': '(1)'}), '(output_Z, axis=1)\n', (3687, 3705), True, 'import tensorflow as tf\n'), ((5918, 5929), 'time.time', 'time.time', ([], {}), '()\n', (5927, 5929), False, 'import time\n'), ((6426, 6460), 'numpy.concatenate', 'np.concatenate', (['pred_train'], {'axis': '(0)'}), '(pred_train, axis=0)\n', (6440, 6460), True, 'import numpy as np\n'), ((6579, 6592), 'numpy.std', 'np.std', (['error'], {}), '(error)\n', (6585, 6592), True, 'import numpy as np\n'), ((7195, 7234), 'numpy.concatenate', 'np.concatenate', (['pred_validation'], {'axis': '(0)'}), '(pred_validation, axis=0)\n', (7209, 7234), True, 'import numpy as np\n'), ((7363, 7376), 'numpy.std', 'np.std', (['error'], {}), '(error)\n', (7369, 7376), True, 'import numpy as np\n'), ((7387, 7398), 'time.time', 'time.time', ([], {}), '()\n', (7396, 7398), False, 'import time\n'), ((7796, 7823), 'utils.convert_to_graph', 'convert_to_graph', (['smi_batch'], {}), '(smi_batch)\n', (7812, 7823), False, 'from utils import read_ZINC_smiles, smiles_to_onehot, convert_to_graph\n'), ((8120, 8133), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (8126, 8133), True, 'import numpy as np\n'), ((8150, 8169), 'numpy.mean', 'np.mean', (['(error ** 2)'], {}), '(error ** 2)\n', (8157, 8169), True, 'import numpy as np\n'), ((2012, 2066), 'tensorflow.layers.dense', 'tf.layers.dense', (['input_X'], {'units': 'out_dim', 'use_bias': '(True)'}), '(input_X, units=out_dim, use_bias=True)\n', (2027, 2066), True, 'import tensorflow as tf\n'), ((2080, 2132), 'tensorflow.layers.dense', 'tf.layers.dense', (['new_X'], {'units': 'out_dim', 'use_bias': '(True)'}), '(new_X, units=out_dim, use_bias=True)\n', (2095, 2132), True, 'import tensorflow as tf\n'), ((2160, 2182), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['(X1 + X2)'], {}), '(X1 + X2)\n', (2173, 2182), True, 'import tensorflow as tf\n'), ((2263, 2318), 'tensorflow.layers.dense', 'tf.layers.dense', (['input_X'], {'units': 'out_dim', 'use_bias': '(False)'}), '(input_X, units=out_dim, use_bias=False)\n', (2278, 2318), True, 'import tensorflow as tf\n'), ((2404, 2440), 'tensorflow.multiply', 'tf.multiply', (['new_X', 'gate_coefficient'], {}), '(new_X, gate_coefficient)\n', (2415, 2440), True, 'import tensorflow as tf\n'), ((2443, 2487), 'tensorflow.multiply', 'tf.multiply', (['input_X', '(1.0 - gate_coefficient)'], {}), '(input_X, 1.0 - gate_coefficient)\n', (2454, 2487), True, 'import tensorflow as tf\n'), ((4548, 4586), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4584, 4586), True, 'import tensorflow as tf\n'), ((4771, 4809), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4807, 4809), True, 'import tensorflow as tf\n'), ((4960, 4998), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4996, 4998), True, 'import tensorflow as tf\n'), ((5304, 5330), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['lr'], {}), '(lr)\n', (5326, 5330), True, 'import tensorflow as tf\n'), ((5865, 5905), 'tensorflow.assign', 'tf.assign', (['lr', '(init_lr * decay_rate ** t)'], {}), '(lr, init_lr * decay_rate ** t)\n', (5874, 5905), True, 'import tensorflow as tf\n'), ((6075, 6102), 'utils.convert_to_graph', 'convert_to_graph', (['smi_batch'], {}), '(smi_batch)\n', (6091, 6102), False, 'from utils import read_ZINC_smiles, smiles_to_onehot, convert_to_graph\n'), ((6515, 6528), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (6521, 6528), True, 'import numpy as np\n'), ((6549, 6568), 'numpy.mean', 'np.mean', (['(error ** 2)'], {}), '(error ** 2)\n', (6556, 6568), True, 'import numpy as np\n'), ((6836, 6863), 'utils.convert_to_graph', 'convert_to_graph', (['smi_batch'], {}), '(smi_batch)\n', (6852, 6863), False, 'from utils import read_ZINC_smiles, smiles_to_onehot, convert_to_graph\n'), ((7299, 7312), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (7305, 7312), True, 'import numpy as np\n'), ((7333, 7352), 'numpy.mean', 'np.mean', (['(error ** 2)'], {}), '(error ** 2)\n', (7340, 7352), True, 'import numpy as np\n'), ((2865, 2903), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (2901, 2903), True, 'import tensorflow as tf\n'), ((3619, 3657), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (3655, 3657), True, 'import tensorflow as tf\n'), ((1614, 1669), 'tensorflow.layers.dense', 'tf.layers.dense', (['input_X'], {'units': 'out_dim', 'use_bias': '(False)'}), '(input_X, units=out_dim, use_bias=False)\n', (1629, 1669), True, 'import tensorflow as tf\n')]
import numpy as np from ROI_Arrival import ROI_Arrival,ROI_Location #prefined imports import sys,time,winsound import numpy as np from PyQt5.QtWidgets import (QApplication, QPushButton,QWidget,QGridLayout, QSizePolicy,QLineEdit, QMainWindow,QAction,QVBoxLayout ,QDockWidget,QListView, QAbstractItemView,QLabel,QFileDialog,QTextEdit, QInputDialog,QSlider,QMdiArea,QMdiSubWindow, QMessageBox) from PyQt5.QtGui import QFont from PyQt5.QtCore import Qt #import numpy as np from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import ( FigureCanvas, NavigationToolbar2QT as NavigationToolbar) class ROI_Viewer(QMainWindow): done=False def __init__(self,list_time,list_channel,sync_time,calibration): super().__init__() self.num_sync=sync_time.size self.num_pulses=list_time.size self.list_time,self.list_channel=list_time,list_channel self.sync_time,self.calibration=sync_time,calibration self.sync_delta=sync_time[2]-sync_time[1] self.lower,self.upper=9.5,10.9 self.font1=QFont() self.font1.setPointSize(12) self.size_policy=QSizePolicy.Expanding self.menu() self.showMaximized() self.setWindowTitle('ROI Timing Arrival') self.geometry() # self.process() self.show() def menu(self): self.menuFile=self.menuBar().addMenu('&File') self.save_file=QAction('&Save Spectrum') self.save_file.triggered.connect(self.save_spectrum) self.save_file.setShortcut('CTRL+S') self.save_file.setEnabled(False) # self.save_roi=QAction('&Save ROI') # self.save_roi.triggered.connect(self.save_roi_csv) # self.save_roi.setEnabled(True) self.menuFile.addActions([self.save_file]) def geometry(self): r1_label=QLabel(r'Region 1-2 divider: [us]') r1_label.setFont(self.font1) r2_label=QLabel(r'Region 2-3 divider: [us]') r2_label.setFont(self.font1) self.r_1_slider=QSlider(Qt.Horizontal) self.r_1_slider.setSizePolicy(self.size_policy,self.size_policy) self.r_1_slider.setMinimum(0) self.r_1_slider.setMaximum(self.sync_delta-1) self.r_1_slider.setSingleStep(1) self.r_1_slider.setTickInterval(50) self.r_1_slider.setValue(100) self.r_1_slider.setTickPosition(QSlider.TicksBelow) self.r_1_slider.valueChanged.connect(self.update_r_1) self.r_1_slider.setFont(self.font1) self.r_2_slider=QSlider(Qt.Horizontal) self.r_2_slider.setSizePolicy(self.size_policy,self.size_policy) self.r_2_slider.setMinimum(101) self.r_2_slider.setMaximum(self.sync_delta) self.r_2_slider.setSingleStep(1) self.r_2_slider.setTickInterval(50) self.r_2_slider.setValue(101) self.r_2_slider.setTickPosition(QSlider.TicksBelow) self.r_2_slider.valueChanged.connect(self.update_r_2) self.r_2_slider.setFont(self.font1) self.r_1_label=QLabel(self) self.r_1_label.setSizePolicy(self.size_policy,self.size_policy) self.r_1_label.setText(str(self.r_1_slider.value())) self.r_1_label.setFont(self.font1) self.r_2_label=QLabel(self) self.r_2_label.setSizePolicy(self.size_policy,self.size_policy) self.r_2_label.setText(str(self.r_2_slider.value())) self.r_2_label.setFont(self.font1) self.processer=QPushButton('Process',self) self.processer.clicked.connect(self.process) self.processer.setFont(self.font1) lower_label=QLabel('Lower ROI: [MeV]',self) lower_label.setFont(self.font1) upper_label=QLabel('Upper ROI: [MeV]',self) upper_label.setFont(self.font1) self.lower_text=QLineEdit(self) self.lower_text.setFont(self.font1) self.lower_text.setText(str(self.lower)) self.upper_text=QLineEdit(self) self.upper_text.setFont(self.font1) self.upper_text.setText(str(self.upper)) self.time_plot=QWidget() self.time_figure=Figure() self.time_canvas=FigureCanvas(self.time_figure) self.time_toolbar=NavigationToolbar(self.time_canvas,self) layout=QVBoxLayout() layout.addWidget(self.time_toolbar) layout.addWidget(self.time_canvas) self.time_plot.setLayout(layout) self.time_ax=self.time_canvas.figure.subplots() self.time_ax.set_title('Time') main_=QWidget() layout=QGridLayout(self) layout.addWidget(r1_label,0,0) layout.addWidget(self.r_1_slider,0,1) layout.addWidget(self.r_1_label,0,2) layout.addWidget(lower_label,0,3) layout.addWidget(self.lower_text,0,4) layout.addWidget(upper_label,1,3) layout.addWidget(self.upper_text,1,4) layout.addWidget(r2_label,1,0) layout.addWidget(self.r_2_slider,1,1) layout.addWidget(self.r_2_label,1,2) layout.addWidget(self.processer,2,0) layout.addWidget(self.time_plot,3,0,1,5) main_.setLayout(layout) self.setCentralWidget(main_) def update_r_1(self): self.r_2_slider.setMinimum(self.r_1_slider.value()+1) self.r_1_label.setText(str(self.r_1_slider.value())) def update_r_2(self): self.r_2_label.setText(str(self.r_2_slider.value())) def process(self): self.save_file.setEnabled(True) # self.save_roi.setEnabled(True) s1=time.time() delt=(self.sync_time[2]-self.sync_time[1]) self.lower=float(self.lower_text.text()) self.upper=float(self.upper_text.text()) self.arrival,self.height,self.raw=ROI_Arrival(self.sync_time,self.list_time, self.num_sync,self.list_channel, self.num_pulses,self.lower, self.upper,self.calibration) num_bins=int(delt/4) bins=np.linspace(0,delt,num_bins) self.bins=bins s=len(self.arrival) self.output=ROI_Location(self.arrival,bins,num_bins,s) r1,r2,r3=0,0,0 print('Process ROI Arrivals in {:.3f}s'.format(time.time()-s1)) for i in range(num_bins): if bins[i]<=self.r_1_slider.value(): r1+=self.output[i] elif bins[i]>self.r_1_slider.value() and bins[i]<=self.r_2_slider.value(): r2+=self.output[i] else: r3+=self.output[i] self.time_ax.clear() self.time_ax.plot(bins,self.output,'r*') self.time_ax.axvline(self.r_1_slider.value(),label='Region 1-2 divider at {:.2f}'.format(self.r_1_slider.value())) self.time_ax.axvline(self.r_2_slider.value(),label='Region 2-3 divider at {:.2f}'.format(self.r_2_slider.value())) # self.time_ax.set_yscale('log') self.time_ax.set_ylabel('Counts',fontsize=18) self.time_ax.set_xlabel(r'Arrival Time [$\mu s$]',fontsize=18) self.time_canvas.draw() self.done=True self.percentages=[r1/(r1+r2+r3)*100, r2/(r1+r2+r3)*100, r3/(r1+r2+r3)*100] QMessageBox.information(self, 'ROI Perecentages','''Region 1:{:.2f}%\nRegion 2:{:.2f}%\nRegion 3:{:.2f}%'''.format( r1/(r1+r2+r3)*100, r2/(r1+r2+r3)*100,r3/(r1+r2+r3)*100), QMessageBox.Ok) # print('Region 1 total ROI percentage: {:.2f}%'.format(r1/(r1+r2+r3)*100)) # print('Region 2 total ROI percentage: {:.2f}%'.format(r2/(r1+r2+r3)*100)) # print('Region 3 total ROI percentage: {:.2f}%'.format(r3/(r1+r2+r3)*100)) def save_spectrum(self): name=QFileDialog.getSaveFileName(self,'File Name','', 'Text File (*.txt);;Comma Seperated File (*.csv)') if name[0]!=' ': f=open(name[0],'w') f.write('%{:.2f},{:.2f},{:.2f}\n'.format(*self.percentages)) for i in range(len(self.bins)): f.write('{:.6f},{}\n'.format(self.bins[i],self.output[i])) f.close() # def save_roi_csv(self): # name,ok=QFileDialog.getSaveFileName(self,'Safe File Name','', # 'Comma Seperated File (*.csv)') # if ok: # f=open(name,'w') # f.write('Pulse_Height(MeV),Time(s)\n') # print(len(self.height)) # for i in range(len(self.height)): # f.write('{:.3f},{:.3f}\n'.format(self.height[i],self.raw[i]*1e-6)) # f.close() # print('All finished')
[ "PyQt5.QtWidgets.QLabel", "ROI_Arrival.ROI_Arrival", "ROI_Arrival.ROI_Location", "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QLineEdit", "PyQt5.QtGui.QFont", "time.time", "matplotlib.backends.backend_qt5agg.FigureCanvas", "matplotlib.figure.Figure", "PyQt5.QtWidgets.QVBoxLayout", "PyQt5.QtWidgets.QFileDialog.getSaveFileName", "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT", "PyQt5.QtWidgets.QSlider", "numpy.linspace", "PyQt5.QtWidgets.QAction" ]
[((1247, 1254), 'PyQt5.QtGui.QFont', 'QFont', ([], {}), '()\n', (1252, 1254), False, 'from PyQt5.QtGui import QFont\n'), ((1611, 1636), 'PyQt5.QtWidgets.QAction', 'QAction', (['"""&Save Spectrum"""'], {}), "('&Save Spectrum')\n", (1618, 1636), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((2041, 2075), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Region 1-2 divider: [us]"""'], {}), "('Region 1-2 divider: [us]')\n", (2047, 2075), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((2131, 2165), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Region 2-3 divider: [us]"""'], {}), "('Region 2-3 divider: [us]')\n", (2137, 2165), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((2237, 2259), 'PyQt5.QtWidgets.QSlider', 'QSlider', (['Qt.Horizontal'], {}), '(Qt.Horizontal)\n', (2244, 2259), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((2747, 2769), 'PyQt5.QtWidgets.QSlider', 'QSlider', (['Qt.Horizontal'], {}), '(Qt.Horizontal)\n', (2754, 2769), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((3256, 3268), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (3262, 3268), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((3468, 3480), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (3474, 3480), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((3697, 3725), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', (['"""Process"""', 'self'], {}), "('Process', self)\n", (3708, 3725), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((3850, 3882), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Lower ROI: [MeV]"""', 'self'], {}), "('Lower ROI: [MeV]', self)\n", (3856, 3882), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((3942, 3974), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Upper ROI: [MeV]"""', 'self'], {}), "('Upper ROI: [MeV]', self)\n", (3948, 3974), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4047, 4062), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4056, 4062), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4180, 4195), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', (['self'], {}), '(self)\n', (4189, 4195), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4321, 4330), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (4328, 4330), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4356, 4364), 'matplotlib.figure.Figure', 'Figure', ([], {}), '()\n', (4362, 4364), False, 'from matplotlib.figure import Figure\n'), ((4390, 4420), 'matplotlib.backends.backend_qt5agg.FigureCanvas', 'FigureCanvas', (['self.time_figure'], {}), '(self.time_figure)\n', (4402, 4420), False, 'from matplotlib.backends.backend_qt5agg import FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((4447, 4488), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['self.time_canvas', 'self'], {}), '(self.time_canvas, self)\n', (4464, 4488), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((4503, 4516), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (4514, 4516), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4763, 4772), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (4770, 4772), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((4788, 4805), 'PyQt5.QtWidgets.QGridLayout', 'QGridLayout', (['self'], {}), '(self)\n', (4799, 4805), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((5783, 5794), 'time.time', 'time.time', ([], {}), '()\n', (5792, 5794), False, 'import sys, time, winsound\n'), ((5986, 6127), 'ROI_Arrival.ROI_Arrival', 'ROI_Arrival', (['self.sync_time', 'self.list_time', 'self.num_sync', 'self.list_channel', 'self.num_pulses', 'self.lower', 'self.upper', 'self.calibration'], {}), '(self.sync_time, self.list_time, self.num_sync, self.\n list_channel, self.num_pulses, self.lower, self.upper, self.calibration)\n', (5997, 6127), False, 'from ROI_Arrival import ROI_Arrival, ROI_Location\n'), ((6296, 6326), 'numpy.linspace', 'np.linspace', (['(0)', 'delt', 'num_bins'], {}), '(0, delt, num_bins)\n', (6307, 6326), True, 'import numpy as np\n'), ((6396, 6441), 'ROI_Arrival.ROI_Location', 'ROI_Location', (['self.arrival', 'bins', 'num_bins', 's'], {}), '(self.arrival, bins, num_bins, s)\n', (6408, 6441), False, 'from ROI_Arrival import ROI_Arrival, ROI_Location\n'), ((8140, 8245), 'PyQt5.QtWidgets.QFileDialog.getSaveFileName', 'QFileDialog.getSaveFileName', (['self', '"""File Name"""', '""""""', '"""Text File (*.txt);;Comma Seperated File (*.csv)"""'], {}), "(self, 'File Name', '',\n 'Text File (*.txt);;Comma Seperated File (*.csv)')\n", (8167, 8245), False, 'from PyQt5.QtWidgets import QApplication, QPushButton, QWidget, QGridLayout, QSizePolicy, QLineEdit, QMainWindow, QAction, QVBoxLayout, QDockWidget, QListView, QAbstractItemView, QLabel, QFileDialog, QTextEdit, QInputDialog, QSlider, QMdiArea, QMdiSubWindow, QMessageBox\n'), ((6517, 6528), 'time.time', 'time.time', ([], {}), '()\n', (6526, 6528), False, 'import sys, time, winsound\n')]
from corner import corner import numpy as np CORNER_KWARGS = dict( smooth=0.9, label_kwargs=dict(fontsize=30), title_kwargs=dict(fontsize=16), color="tab:blue", truth_color="tab:orange", quantiles=[0.16, 0.84], levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9.0 / 2.0)), plot_density=False, plot_datapoints=False, fill_contours=True, max_n_ticks=3, verbose=False, use_math_text=True, ) LABELS = dict( q=r"$q$", xeff=r"$\chi_{\rm eff}$", a_1=r"$a_1$", a_2=r"$a_2$", cos_tilt_1=r"$\cos \theta_1$", cos_tilt_2=r"$\cos \theta_2$", ) def plot_corner(df, fname="corner.png"): labels = [LABELS.get(i, i.replace("_", "")) for i in df.columns.values] fig = corner(df, labels=labels, **CORNER_KWARGS) fig.savefig(fname)
[ "corner.corner", "numpy.exp" ]
[((742, 784), 'corner.corner', 'corner', (['df'], {'labels': 'labels'}), '(df, labels=labels, **CORNER_KWARGS)\n', (748, 784), False, 'from corner import corner\n'), ((252, 264), 'numpy.exp', 'np.exp', (['(-0.5)'], {}), '(-0.5)\n', (258, 264), True, 'import numpy as np\n'), ((270, 280), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (276, 280), True, 'import numpy as np\n'), ((286, 304), 'numpy.exp', 'np.exp', (['(-9.0 / 2.0)'], {}), '(-9.0 / 2.0)\n', (292, 304), True, 'import numpy as np\n')]
#Ref: <NAME> """ # TTA - Should be called prediction time augmentation #We can augment each input image, predict augmented images and average all predictions """ import os import cv2 from PIL import Image import numpy as np from matplotlib import pyplot as plt import tensorflow as tf import random model = tf.keras.models.load_model("mitochondria_load_from_disk_focal_dice_50epochs.hdf5", compile=False) image_directory = 'data2/test_images/test/' mask_directory = 'data2/test_masks/test/' SIZE = 256 image_dataset = [] mask_dataset = [] images = os.listdir(image_directory) for i, image_name in enumerate(images): #Remember enumerate method adds a counter and returns the enumerate object if (image_name.split('.')[1] == 'tif'): #print(image_directory+image_name) image = cv2.imread(image_directory+image_name) image = Image.fromarray(image) image = image.resize((SIZE, SIZE)) image_dataset.append(np.array(image)) #Iterate through all images in Uninfected folder, resize to 64 x 64 #Then save into the same numpy array 'dataset' but with label 1 masks = os.listdir(mask_directory) for i, image_name in enumerate(masks): if (image_name.split('.')[1] == 'tif'): image = cv2.imread(mask_directory+image_name, 0) image = Image.fromarray(image) image = image.resize((SIZE, SIZE)) mask_dataset.append(np.array(image)) # image_dataset = np.array(image_dataset) / 255. #D not normalize masks, just rescale to 0 to 1. mask_dataset = (np.array(mask_dataset)) /255. #Demonstrate TTP on single image n = random.randint(0, mask_dataset.shape[0]) temp_test_img = image_dataset[n,:,:,:] temp_test_img = image_dataset[n,:,:,:] temp_mask = mask_dataset[n,:,:] p0 = model.predict(np.expand_dims(temp_test_img, axis=0))[0][:, :, 0] p1 = model.predict(np.expand_dims(np.fliplr(temp_test_img), axis=0))[0][:, :, 0] p1 = np.fliplr(p1) p2 = model.predict(np.expand_dims(np.flipud(temp_test_img), axis=0))[0][:, :, 0] p2 = np.flipud(p2) p3 = model.predict(np.expand_dims(np.fliplr(np.flipud(temp_test_img)), axis=0))[0][:, :, 0] p3 = np.fliplr(np.flipud(p3)) thresh = 0.3 p = (((p0 + p1 + p2 + p3) / 4) > thresh).astype(np.uint8) plt.figure(figsize=(12, 12)) plt.subplot(231) plt.title('Original mask') plt.imshow(temp_mask, cmap='gray') plt.subplot(232) plt.title('Prediction No Aug') plt.imshow(p0>thresh, cmap='gray') plt.subplot(233) plt.title('Prediction LR') plt.imshow(p1>thresh, cmap='gray') plt.subplot(234) plt.title('Prediction UD') plt.imshow(p2>thresh, cmap='gray') plt.subplot(235) plt.title('Prediction LR and UD') plt.imshow(p3>thresh, cmap='gray') plt.subplot(236) plt.title('Average Prediction') plt.imshow(p>thresh, cmap='gray') plt.show() #Now that we know the transformations are working, let us extend to all predictions predictions = [] for image in image_dataset: pred_original = model.predict(np.expand_dims(image, axis=0))[0][:, :, 0] pred_lr = model.predict(np.expand_dims(np.fliplr(image), axis=0))[0][:, :, 0] pred_lr = np.fliplr(pred_lr) pred_ud = model.predict(np.expand_dims(np.flipud(image), axis=0))[0][:, :, 0] pred_ud = np.flipud(pred_ud) pred_lr_ud = model.predict(np.expand_dims(np.fliplr(np.flipud(image)), axis=0))[0][:, :, 0] pred_lr_ud = np.fliplr(np.flipud(pred_lr_ud)) preds = (pred_original + pred_lr + pred_ud + pred_lr_ud) / 4 predictions.append(preds) predictions = np.array(predictions) threshold = 0.5 predictions_th = predictions > threshold import random test_img_number = random.randint(0, mask_dataset.shape[0]-1) test_img = image_dataset[test_img_number] ground_truth=mask_dataset[test_img_number] #test_img_norm=test_img[:,:,0][:,:,None] test_img_input=np.expand_dims(test_img, 0) prediction = predictions_th[test_img_number] plt.figure(figsize=(16, 8)) plt.subplot(231) plt.title('Testing Image') plt.imshow(test_img, cmap='gray') plt.subplot(232) plt.title('Testing Label') plt.imshow(ground_truth, cmap='gray') plt.subplot(233) plt.title('Prediction on test image') plt.imshow(prediction, cmap='gray') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "tensorflow.keras.models.load_model", "random.randint", "matplotlib.pyplot.show", "matplotlib.pyplot.imshow", "numpy.flipud", "numpy.expand_dims", "numpy.fliplr", "matplotlib.pyplot.figure", "cv2.imread", "numpy.array", "PIL.Image.fromarray", "os.listdir" ]
[((314, 416), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['"""mitochondria_load_from_disk_focal_dice_50epochs.hdf5"""'], {'compile': '(False)'}), "(\n 'mitochondria_load_from_disk_focal_dice_50epochs.hdf5', compile=False)\n", (340, 416), True, 'import tensorflow as tf\n'), ((564, 591), 'os.listdir', 'os.listdir', (['image_directory'], {}), '(image_directory)\n', (574, 591), False, 'import os\n'), ((1122, 1148), 'os.listdir', 'os.listdir', (['mask_directory'], {}), '(mask_directory)\n', (1132, 1148), False, 'import os\n'), ((1602, 1642), 'random.randint', 'random.randint', (['(0)', 'mask_dataset.shape[0]'], {}), '(0, mask_dataset.shape[0])\n', (1616, 1642), False, 'import random\n'), ((1911, 1924), 'numpy.fliplr', 'np.fliplr', (['p1'], {}), '(p1)\n', (1920, 1924), True, 'import numpy as np\n'), ((2012, 2025), 'numpy.flipud', 'np.flipud', (['p2'], {}), '(p2)\n', (2021, 2025), True, 'import numpy as np\n'), ((2223, 2251), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 12)'}), '(figsize=(12, 12))\n', (2233, 2251), True, 'from matplotlib import pyplot as plt\n'), ((2252, 2268), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(231)'], {}), '(231)\n', (2263, 2268), True, 'from matplotlib import pyplot as plt\n'), ((2269, 2295), 'matplotlib.pyplot.title', 'plt.title', (['"""Original mask"""'], {}), "('Original mask')\n", (2278, 2295), True, 'from matplotlib import pyplot as plt\n'), ((2296, 2330), 'matplotlib.pyplot.imshow', 'plt.imshow', (['temp_mask'], {'cmap': '"""gray"""'}), "(temp_mask, cmap='gray')\n", (2306, 2330), True, 'from matplotlib import pyplot as plt\n'), ((2331, 2347), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(232)'], {}), '(232)\n', (2342, 2347), True, 'from matplotlib import pyplot as plt\n'), ((2348, 2378), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction No Aug"""'], {}), "('Prediction No Aug')\n", (2357, 2378), True, 'from matplotlib import pyplot as plt\n'), ((2379, 2415), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(p0 > thresh)'], {'cmap': '"""gray"""'}), "(p0 > thresh, cmap='gray')\n", (2389, 2415), True, 'from matplotlib import pyplot as plt\n'), ((2414, 2430), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(233)'], {}), '(233)\n', (2425, 2430), True, 'from matplotlib import pyplot as plt\n'), ((2431, 2457), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction LR"""'], {}), "('Prediction LR')\n", (2440, 2457), True, 'from matplotlib import pyplot as plt\n'), ((2458, 2494), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(p1 > thresh)'], {'cmap': '"""gray"""'}), "(p1 > thresh, cmap='gray')\n", (2468, 2494), True, 'from matplotlib import pyplot as plt\n'), ((2493, 2509), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(234)'], {}), '(234)\n', (2504, 2509), True, 'from matplotlib import pyplot as plt\n'), ((2510, 2536), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction UD"""'], {}), "('Prediction UD')\n", (2519, 2536), True, 'from matplotlib import pyplot as plt\n'), ((2537, 2573), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(p2 > thresh)'], {'cmap': '"""gray"""'}), "(p2 > thresh, cmap='gray')\n", (2547, 2573), True, 'from matplotlib import pyplot as plt\n'), ((2572, 2588), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(235)'], {}), '(235)\n', (2583, 2588), True, 'from matplotlib import pyplot as plt\n'), ((2589, 2622), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction LR and UD"""'], {}), "('Prediction LR and UD')\n", (2598, 2622), True, 'from matplotlib import pyplot as plt\n'), ((2623, 2659), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(p3 > thresh)'], {'cmap': '"""gray"""'}), "(p3 > thresh, cmap='gray')\n", (2633, 2659), True, 'from matplotlib import pyplot as plt\n'), ((2658, 2674), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(236)'], {}), '(236)\n', (2669, 2674), True, 'from matplotlib import pyplot as plt\n'), ((2675, 2706), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Prediction"""'], {}), "('Average Prediction')\n", (2684, 2706), True, 'from matplotlib import pyplot as plt\n'), ((2707, 2742), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(p > thresh)'], {'cmap': '"""gray"""'}), "(p > thresh, cmap='gray')\n", (2717, 2742), True, 'from matplotlib import pyplot as plt\n'), ((2741, 2751), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2749, 2751), True, 'from matplotlib import pyplot as plt\n'), ((3478, 3499), 'numpy.array', 'np.array', (['predictions'], {}), '(predictions)\n', (3486, 3499), True, 'import numpy as np\n'), ((3591, 3635), 'random.randint', 'random.randint', (['(0)', '(mask_dataset.shape[0] - 1)'], {}), '(0, mask_dataset.shape[0] - 1)\n', (3605, 3635), False, 'import random\n'), ((3775, 3802), 'numpy.expand_dims', 'np.expand_dims', (['test_img', '(0)'], {}), '(test_img, 0)\n', (3789, 3802), True, 'import numpy as np\n'), ((3849, 3876), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 8)'}), '(figsize=(16, 8))\n', (3859, 3876), True, 'from matplotlib import pyplot as plt\n'), ((3877, 3893), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(231)'], {}), '(231)\n', (3888, 3893), True, 'from matplotlib import pyplot as plt\n'), ((3894, 3920), 'matplotlib.pyplot.title', 'plt.title', (['"""Testing Image"""'], {}), "('Testing Image')\n", (3903, 3920), True, 'from matplotlib import pyplot as plt\n'), ((3921, 3954), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_img'], {'cmap': '"""gray"""'}), "(test_img, cmap='gray')\n", (3931, 3954), True, 'from matplotlib import pyplot as plt\n'), ((3955, 3971), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(232)'], {}), '(232)\n', (3966, 3971), True, 'from matplotlib import pyplot as plt\n'), ((3972, 3998), 'matplotlib.pyplot.title', 'plt.title', (['"""Testing Label"""'], {}), "('Testing Label')\n", (3981, 3998), True, 'from matplotlib import pyplot as plt\n'), ((3999, 4036), 'matplotlib.pyplot.imshow', 'plt.imshow', (['ground_truth'], {'cmap': '"""gray"""'}), "(ground_truth, cmap='gray')\n", (4009, 4036), True, 'from matplotlib import pyplot as plt\n'), ((4037, 4053), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(233)'], {}), '(233)\n', (4048, 4053), True, 'from matplotlib import pyplot as plt\n'), ((4054, 4091), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction on test image"""'], {}), "('Prediction on test image')\n", (4063, 4091), True, 'from matplotlib import pyplot as plt\n'), ((4092, 4127), 'matplotlib.pyplot.imshow', 'plt.imshow', (['prediction'], {'cmap': '"""gray"""'}), "(prediction, cmap='gray')\n", (4102, 4127), True, 'from matplotlib import pyplot as plt\n'), ((4129, 4139), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4137, 4139), True, 'from matplotlib import pyplot as plt\n'), ((1436, 1459), 'numpy.array', 'np.array', (['image_dataset'], {}), '(image_dataset)\n', (1444, 1459), True, 'import numpy as np\n'), ((1532, 1554), 'numpy.array', 'np.array', (['mask_dataset'], {}), '(mask_dataset)\n', (1540, 1554), True, 'import numpy as np\n'), ((2134, 2147), 'numpy.flipud', 'np.flipud', (['p3'], {}), '(p3)\n', (2143, 2147), True, 'import numpy as np\n'), ((3067, 3085), 'numpy.fliplr', 'np.fliplr', (['pred_lr'], {}), '(pred_lr)\n', (3076, 3085), True, 'import numpy as np\n'), ((3187, 3205), 'numpy.flipud', 'np.flipud', (['pred_ud'], {}), '(pred_ud)\n', (3196, 3205), True, 'import numpy as np\n'), ((813, 853), 'cv2.imread', 'cv2.imread', (['(image_directory + image_name)'], {}), '(image_directory + image_name)\n', (823, 853), False, 'import cv2\n'), ((868, 890), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (883, 890), False, 'from PIL import Image\n'), ((1248, 1290), 'cv2.imread', 'cv2.imread', (['(mask_directory + image_name)', '(0)'], {}), '(mask_directory + image_name, 0)\n', (1258, 1290), False, 'import cv2\n'), ((1305, 1327), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (1320, 1327), False, 'from PIL import Image\n'), ((3334, 3355), 'numpy.flipud', 'np.flipud', (['pred_lr_ud'], {}), '(pred_lr_ud)\n', (3343, 3355), True, 'import numpy as np\n'), ((963, 978), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (971, 978), True, 'import numpy as np\n'), ((1399, 1414), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (1407, 1414), True, 'import numpy as np\n'), ((1773, 1810), 'numpy.expand_dims', 'np.expand_dims', (['temp_test_img'], {'axis': '(0)'}), '(temp_test_img, axis=0)\n', (1787, 1810), True, 'import numpy as np\n'), ((1859, 1883), 'numpy.fliplr', 'np.fliplr', (['temp_test_img'], {}), '(temp_test_img)\n', (1868, 1883), True, 'import numpy as np\n'), ((1960, 1984), 'numpy.flipud', 'np.flipud', (['temp_test_img'], {}), '(temp_test_img)\n', (1969, 1984), True, 'import numpy as np\n'), ((2923, 2952), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (2937, 2952), True, 'import numpy as np\n'), ((2071, 2095), 'numpy.flipud', 'np.flipud', (['temp_test_img'], {}), '(temp_test_img)\n', (2080, 2095), True, 'import numpy as np\n'), ((3014, 3030), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (3023, 3030), True, 'import numpy as np\n'), ((3134, 3150), 'numpy.flipud', 'np.flipud', (['image'], {}), '(image)\n', (3143, 3150), True, 'import numpy as np\n'), ((3267, 3283), 'numpy.flipud', 'np.flipud', (['image'], {}), '(image)\n', (3276, 3283), True, 'import numpy as np\n')]
import pandas as pd import numpy as np dataset_name = "Caltech" relative = "../../../" df = pd.read_csv(relative + "datasets/" + dataset_name + '/'+ dataset_name + '.csv', sep=";", header=None) df = df.drop(0, 1) print(df.describe()) print(df.nunique()) print(df.head()) print(df.shape) df[11] = pd.Categorical(df[11]) df[11] = df[11].cat.codes num_cols = df.shape[1]-1 np.savetxt(relative + "datasets/" + dataset_name + '/' + dataset_name + "_prep_encoding2.csv", df.values[:,:num_cols], delimiter=",") np.savetxt(relative + "datasets/" + dataset_name + '/' + dataset_name + "_labels.csv", df.values[:,num_cols], delimiter=",") import umap X_embedded = umap.UMAP().fit_transform(df.values[:,:num_cols]) import matplotlib.pyplot as plt plt.scatter(X_embedded[:,0], X_embedded[:,1], c = df.values[:,num_cols]) plt.show()
[ "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.scatter", "numpy.savetxt", "umap.UMAP", "pandas.Categorical" ]
[((96, 202), 'pandas.read_csv', 'pd.read_csv', (["(relative + 'datasets/' + dataset_name + '/' + dataset_name + '.csv')"], {'sep': '""";"""', 'header': 'None'}), "(relative + 'datasets/' + dataset_name + '/' + dataset_name +\n '.csv', sep=';', header=None)\n", (107, 202), True, 'import pandas as pd\n'), ((306, 328), 'pandas.Categorical', 'pd.Categorical', (['df[11]'], {}), '(df[11])\n', (320, 328), True, 'import pandas as pd\n'), ((383, 521), 'numpy.savetxt', 'np.savetxt', (["(relative + 'datasets/' + dataset_name + '/' + dataset_name +\n '_prep_encoding2.csv')", 'df.values[:, :num_cols]'], {'delimiter': '""","""'}), "(relative + 'datasets/' + dataset_name + '/' + dataset_name +\n '_prep_encoding2.csv', df.values[:, :num_cols], delimiter=',')\n", (393, 521), True, 'import numpy as np\n'), ((517, 646), 'numpy.savetxt', 'np.savetxt', (["(relative + 'datasets/' + dataset_name + '/' + dataset_name + '_labels.csv')", 'df.values[:, num_cols]'], {'delimiter': '""","""'}), "(relative + 'datasets/' + dataset_name + '/' + dataset_name +\n '_labels.csv', df.values[:, num_cols], delimiter=',')\n", (527, 646), True, 'import numpy as np\n'), ((758, 831), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X_embedded[:, 0]', 'X_embedded[:, 1]'], {'c': 'df.values[:, num_cols]'}), '(X_embedded[:, 0], X_embedded[:, 1], c=df.values[:, num_cols])\n', (769, 831), True, 'import matplotlib.pyplot as plt\n'), ((831, 841), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (839, 841), True, 'import matplotlib.pyplot as plt\n'), ((672, 683), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (681, 683), False, 'import umap\n')]
import data import numpy as np # TODO: split tests 1 test per assert statement # TODO: move repeating constants out of functions class TestHAPT: def test_get_train_data(self): d = data.HAPT() assert d._train_attrs is None d.get_train_data() assert len(d._train_attrs) > 0 assert len(d.get_train_data()) > 0 def test_get_train_labels(self): d = data.HAPT() assert d._train_labels is None d.get_train_labels() assert len(d._train_labels) > 0 assert len(d.get_train_labels()) > 0 def test_get_test_data(self): d = data.HAPT() assert d._test_attrs is None d.get_test_data() assert len(d._test_attrs) > 0 assert len(d.get_test_data()) > 0 def test_get_test_labels(self): d = data.HAPT() assert d._test_labels is None d.get_test_labels() assert len(d._test_labels) > 0 assert len(d.get_test_labels()) > 0 def test_load_train_data(self): d = data.HAPT() assert d._train_attrs is None assert d._train_labels is None d.load_train_data() assert len(d._train_attrs) > 0 assert len(d._train_labels) > 0 assert len(d._train_attrs) == len(d._train_labels) assert len(d.get_train_data()) == len(d.get_train_labels()) def test_load_test_data(self): d = data.HAPT() assert d._test_attrs is None assert d._test_labels is None d.load_test_data() assert len(d._test_attrs) > 0 assert len(d._test_labels) > 0 assert len(d._test_attrs) == len(d._test_labels) assert len(d.get_test_data()) == len(d.get_test_labels()) def test_load_all_data(self): d = data.HAPT() assert d._train_attrs is None assert d._train_labels is None assert d._test_attrs is None assert d._test_labels is None d.load_all_data() assert len(d._train_attrs) > 0 assert len(d._train_labels) > 0 assert len(d._test_attrs) > 0 assert len(d._test_labels) > 0 assert len(d._train_attrs) == len(d._train_labels) assert len(d._test_attrs) == len(d._test_labels) assert len(d.get_train_data()) == len(d.get_train_labels()) assert len(d.get_test_data()) == len(d.get_test_labels()) def test_get_labels_map(self): orig_labels = { 1: "WALKING", 2: "WALKING_UPSTAIRS", 3: "WALKING_DOWNSTAIRS", 4: "SITTING", 5: "STANDING", 6: "LAYING", 7: "STAND_TO_SIT", 8: "SIT_TO_STAND", 9: "SIT_TO_LIE", 10: "LIE_TO_SIT", 11: "STAND_TO_LIE", 12: "LIE_TO_STAND" } d = data.HAPT() assert d._labels == {} d.get_labels_map() assert d._labels == orig_labels assert d.get_labels_map() == orig_labels def test_aggregate_groups(self): orig_labels = { 1: "WALKING", 2: "WALKING_UPSTAIRS", 3: "WALKING_DOWNSTAIRS", 4: "SITTING", 5: "STANDING", 6: "LAYING", 7: "STAND_TO_SIT", 8: "SIT_TO_STAND", 9: "SIT_TO_LIE", 10: "LIE_TO_SIT", 11: "STAND_TO_LIE", 12: "LIE_TO_STAND" } d = data.HAPT() d._labels = orig_labels d._test_labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] d._train_labels = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] d.aggregate_groups() assert np.array_equal(d._aggregated_test_labels, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2])) assert np.array_equal(d._aggregated_train_labels, np.array([2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0])) assert d._aggregated2initial_labels == {0: [1, 2, 3], 1: [4, 5, 6], 2: [7, 8, 9, 10, 11, 12]} def test_get_aggr2initial_labs_map(self): d = data.HAPT() d.load_all_data() d.aggregate_groups() assert d.get_aggr2initial_labs_map() == { 'WALKING': ['WALKING', 'WALKING_UPSTAIRS', 'WALKING_DOWNSTAIRS'], 'STATIC': ['SITTING', 'STANDING', 'LAYING'], 'TRANSITION': ['STAND_TO_SIT', 'SIT_TO_STAND', 'SIT_TO_LIE', 'LIE_TO_SIT', 'STAND_TO_LIE', 'LIE_TO_STAND'] } def test_get_aggregated_test_labels(self): orig_labels = { 1: "WALKING", 2: "WALKING_UPSTAIRS", 3: "WALKING_DOWNSTAIRS", 4: "SITTING", 5: "STANDING", 6: "LAYING", 7: "STAND_TO_SIT", 8: "SIT_TO_STAND", 9: "SIT_TO_LIE", 10: "LIE_TO_SIT", 11: "STAND_TO_LIE", 12: "LIE_TO_STAND" } d = data.HAPT() d._labels = orig_labels d._test_labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] d._train_labels = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] assert d.get_aggregated_test_labels() == d._test_labels d.aggregate_groups() print(d._aggregated_test_labels) assert np.array_equal(d.get_aggregated_test_labels(), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2])) def test_get_aggregated_train_labels(self): orig_labels = { 1: "WALKING", 2: "WALKING_UPSTAIRS", 3: "WALKING_DOWNSTAIRS", 4: "SITTING", 5: "STANDING", 6: "LAYING", 7: "STAND_TO_SIT", 8: "SIT_TO_STAND", 9: "SIT_TO_LIE", 10: "LIE_TO_SIT", 11: "STAND_TO_LIE", 12: "LIE_TO_STAND" } d = data.HAPT() d._labels = orig_labels d._test_labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] d._train_labels = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] assert d.get_aggregated_train_labels() == d._train_labels d.aggregate_groups() assert np.array_equal(d.get_aggregated_train_labels(), np.array([2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0])) def test_get_aggregated_labels_map(self): d = data.HAPT() assert d.get_aggregated_labels_map() == {0: "WALKING", 1: "STATIC", 2: "TRANSITION"}
[ "data.HAPT", "numpy.array" ]
[((195, 206), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (204, 206), False, 'import data\n'), ((404, 415), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (413, 415), False, 'import data\n'), ((616, 627), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (625, 627), False, 'import data\n'), ((820, 831), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (829, 831), False, 'import data\n'), ((1030, 1041), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (1039, 1041), False, 'import data\n'), ((1401, 1412), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (1410, 1412), False, 'import data\n'), ((1762, 1773), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (1771, 1773), False, 'import data\n'), ((2800, 2811), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (2809, 2811), False, 'import data\n'), ((3403, 3414), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (3412, 3414), False, 'import data\n'), ((3979, 3990), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (3988, 3990), False, 'import data\n'), ((4814, 4825), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (4823, 4825), False, 'import data\n'), ((5688, 5699), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (5697, 5699), False, 'import data\n'), ((6128, 6139), 'data.HAPT', 'data.HAPT', ([], {}), '()\n', (6137, 6139), False, 'import data\n'), ((3664, 3710), 'numpy.array', 'np.array', (['[0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2]'], {}), '([0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2])\n', (3672, 3710), True, 'import numpy as np\n'), ((3770, 3816), 'numpy.array', 'np.array', (['[2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0]'], {}), '([2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0])\n', (3778, 3816), True, 'import numpy as np\n'), ((5185, 5231), 'numpy.array', 'np.array', (['[0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2]'], {}), '([0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2])\n', (5193, 5231), True, 'import numpy as np\n'), ((6021, 6067), 'numpy.array', 'np.array', (['[2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0]'], {}), '([2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0])\n', (6029, 6067), True, 'import numpy as np\n')]
import numpy as np from collections import namedtuple from util import ( vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb, ) from radar_data_streamer import RadarData from data_pb2 import Image Extrinsic = namedtuple('Extrinsic', ['position', 'attitude']) class RadarImage(RadarData): """ This class is a Python representation of the protobuf Image object for convinent downstream operations """ def __init__(self, timestamp, frame_id, extrinsic, image_model, image): self.timestamp = timestamp self.frame_id = frame_id self.extrinsic = extrinsic self.image_model = image_model self.image = image @classmethod def from_proto(cls, image_pb): timestamp = image_pb.meta.timestamp frame_id = image_pb.meta.frame_id extrinsic = Extrinsic( position=vec3d_to_array(image_pb.meta.position), attitude=quat_to_array(image_pb.meta.attitude)) image_model = ImageModel( origin=vec3d_to_array(image_pb.cartesian.model.origin), di=vec3d_to_array(image_pb.cartesian.model.di), dj=vec3d_to_array(image_pb.cartesian.model.dj)) # create the image array image_shape = (image_pb.cartesian.data.cols, image_pb.cartesian.data.rows) image_data = np.frombuffer(image_pb.cartesian.data.data, dtype=np.uint32) # copy image_data because we do not own the memory image = np.reshape(image_data.copy(), image_shape) radar_image = cls(timestamp, frame_id, extrinsic, image_model, image) return radar_image def to_proto(self, timestamp, frame_id): image_pb = Image() image_pb.meta.timestamp = timestamp image_pb.meta.frame_id = frame_id # Setting the type to REAL_32U image_pb.cartesian.data.type = 5 array_to_vec3d_pb(image_pb.meta.position, self.extrinsic.position) array_to_quat_pb(image_pb.meta.attitude, self.extrinsic.attitude) array_to_vec3d_pb(image_pb.cartesian.model.origin, self.image_model.origin) array_to_vec3d_pb(image_pb.cartesian.model.di, self.image_model.di) array_to_vec3d_pb(image_pb.cartesian.model.dj, self.image_model.dj) image_pb.cartesian.data.cols, image_pb.cartesian.data.rows = \ self.image.shape return image_pb class ImageModel(object): """ ImageModel describing mapping from world coordinate to image model """ def __init__(self, origin, di, dj): self.di = di self.dj = dj self.origin = origin def global_to_image(self, ecef_point): radar_to_image = ecef_point - self.origin i_res = np.linalg.norm(self.di) j_res = np.linalg.norm(self.dj) i_dir = self.di/i_res j_dir = self.dj/j_res i_proj = int(round(radar_to_image.dot(i_dir)/i_res)) j_proj = int(round(radar_to_image.dot(j_dir)/j_res)) pixel_point = (i_proj, j_proj) return pixel_point def image_to_global(self, pixel_point): i_idx = pixel_point[0] j_idx = pixel_point[1] ecef_point = self.origin + (i_idx*self.di) + (j_idx*self.dj) return ecef_point
[ "util.array_to_quat_pb", "util.quat_to_array", "data_pb2.Image", "numpy.frombuffer", "util.vec3d_to_array", "numpy.linalg.norm", "collections.namedtuple", "util.array_to_vec3d_pb" ]
[((241, 290), 'collections.namedtuple', 'namedtuple', (['"""Extrinsic"""', "['position', 'attitude']"], {}), "('Extrinsic', ['position', 'attitude'])\n", (251, 290), False, 'from collections import namedtuple\n'), ((1371, 1431), 'numpy.frombuffer', 'np.frombuffer', (['image_pb.cartesian.data.data'], {'dtype': 'np.uint32'}), '(image_pb.cartesian.data.data, dtype=np.uint32)\n', (1384, 1431), True, 'import numpy as np\n'), ((1758, 1765), 'data_pb2.Image', 'Image', ([], {}), '()\n', (1763, 1765), False, 'from data_pb2 import Image\n'), ((1941, 2007), 'util.array_to_vec3d_pb', 'array_to_vec3d_pb', (['image_pb.meta.position', 'self.extrinsic.position'], {}), '(image_pb.meta.position, self.extrinsic.position)\n', (1958, 2007), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((2043, 2108), 'util.array_to_quat_pb', 'array_to_quat_pb', (['image_pb.meta.attitude', 'self.extrinsic.attitude'], {}), '(image_pb.meta.attitude, self.extrinsic.attitude)\n', (2059, 2108), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((2143, 2218), 'util.array_to_vec3d_pb', 'array_to_vec3d_pb', (['image_pb.cartesian.model.origin', 'self.image_model.origin'], {}), '(image_pb.cartesian.model.origin, self.image_model.origin)\n', (2160, 2218), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((2254, 2321), 'util.array_to_vec3d_pb', 'array_to_vec3d_pb', (['image_pb.cartesian.model.di', 'self.image_model.di'], {}), '(image_pb.cartesian.model.di, self.image_model.di)\n', (2271, 2321), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((2357, 2424), 'util.array_to_vec3d_pb', 'array_to_vec3d_pb', (['image_pb.cartesian.model.dj', 'self.image_model.dj'], {}), '(image_pb.cartesian.model.dj, self.image_model.dj)\n', (2374, 2424), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((2913, 2936), 'numpy.linalg.norm', 'np.linalg.norm', (['self.di'], {}), '(self.di)\n', (2927, 2936), True, 'import numpy as np\n'), ((2953, 2976), 'numpy.linalg.norm', 'np.linalg.norm', (['self.dj'], {}), '(self.dj)\n', (2967, 2976), True, 'import numpy as np\n'), ((886, 924), 'util.vec3d_to_array', 'vec3d_to_array', (['image_pb.meta.position'], {}), '(image_pb.meta.position)\n', (900, 924), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((947, 984), 'util.quat_to_array', 'quat_to_array', (['image_pb.meta.attitude'], {}), '(image_pb.meta.attitude)\n', (960, 984), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((1040, 1087), 'util.vec3d_to_array', 'vec3d_to_array', (['image_pb.cartesian.model.origin'], {}), '(image_pb.cartesian.model.origin)\n', (1054, 1087), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((1104, 1147), 'util.vec3d_to_array', 'vec3d_to_array', (['image_pb.cartesian.model.di'], {}), '(image_pb.cartesian.model.di)\n', (1118, 1147), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n'), ((1164, 1207), 'util.vec3d_to_array', 'vec3d_to_array', (['image_pb.cartesian.model.dj'], {}), '(image_pb.cartesian.model.dj)\n', (1178, 1207), False, 'from util import vec3d_to_array, quat_to_array, array_to_vec3d_pb, array_to_quat_pb\n')]
import csv import cv2 from datetime import datetime import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Convolution2D,Flatten,Dense,Lambda from keras import optimizers from keras import regularizers BATCH_SIZE=128 BINS=25 BIN_RANGE=[-1.0,1.0] EPOCHS=5 LEARNING_RATE = 0.001 LEARNING_RATE_DECAY = 0.0001 L2_REGULARIZATION = 0.001 ANGLE_CORRECTION_FACTOR = 0.20 def load_driving_log(csv_path): ''' Loads the driving data log(csv). Returns the line data as a string array. ''' samples = [] with open(csv_path) as csvfile: header_present = csv.Sniffer().has_header(csvfile.read(1024)) csvfile.seek(0) # back to first line reader = csv.reader(csvfile) if header_present: next(reader) # skip the header for line in reader: samples.append(line) return samples def cleanup_data(samples): ''' Removes any data with speed = 0. Returns cleansed data array. ''' cleansed_samples = [] for sample in samples: if (float(sample[6]) != 0.0):# don't add zero speed frames cleansed_samples.append(sample) return cleansed_samples def draw_angles_distribution(samples,bins,angle_range): ''' Draws a bar chart showing the histogram of the passed in data. Returns the left edge for each bin (apart form the last one for which right edge is returned) and the bin value. The no. of bin edges is 'bin' + 1. ''' angles = [] for sample in samples: angle = float(sample[3]) angles.append(angle) plt.figure(figsize=(14,7)) plt.ylabel('Count'); plt.xlabel('Angle'); bar_height_if_uniform_dist = len(samples)/bins plt.plot(angle_range,[bar_height_if_uniform_dist,bar_height_if_uniform_dist]) plt.text(angle_range[0],bar_height_if_uniform_dist+50,'Uniform Distribution') plt.title('Angle Histogram') bin_values,bin_edges,_=plt.hist(angles,bins=bins,range=angle_range) plt.show() return bin_edges,bin_values def balance_dataset(samples,bin_edges,bin_values,bins): ''' Removes data where: (i) angle is = +- 1.0 (ii) the bin size is greater than the average bin size Returns the balanced array of sample data. ''' balanced_samples = [] for sample in samples: angle = float(sample[3]) if (angle == 1.0 or angle == -1.0): # Remove extreme angles continue # Total bin edges are = no. of bins + 1 # Bin edges are the left most value of the bin range aprt from the last one which is the right most, # hence check if less than potential_bins = np.where(bin_edges < angle) # if no bin found if (len(potential_bins[0]) == 0): # For catching cases where the angle is exactly -1 or +1 potential_bins = np.where(bin_edges == angle) if (len(potential_bins[0]) == 0): raise Exception('No bin match found for angle:{}'.format(angle)) matched_bin_index = np.max(potential_bins) matched_bin_value = bin_values[matched_bin_index] avg_bin_size = len(samples)/bins # Higher the %, the more that bin gets penalized keep_probability = 1 - ((matched_bin_value + 10*avg_bin_size)/len(samples)) if (matched_bin_value > avg_bin_size): if (np.random.rand() < keep_probability): balanced_samples.append(sample) else: balanced_samples.append(sample) return balanced_samples def generator(samples,data_dir,batch_size=32): ''' Generates a batch of images and angles. Reads-in the sample data and for each record, adds center,left & right images + corresponding angles Keep in mind that the returned batch is 3 X the passed in batch_size because for each record, 3 images are added. The benefit of using a generator is that the entire dataset doesn't need to be processed at the same time, rather only a subset is processed and fed to the model, which greatly helps when working with constrained memory. ''' num_samples = len(samples) while 1: # Loop forever so the generator never terminates shuffle(samples) for offset in range(0,num_samples,batch_size): batch_samples = samples[offset:offset+batch_size] images = [] angles = [] for line in batch_samples: center_angle = float(line[3]) angles.append(center_angle) left_angle = center_angle + ANGLE_CORRECTION_FACTOR angles.append(left_angle) right_angle = center_angle - ANGLE_CORRECTION_FACTOR angles.append(right_angle) center_img_path = data_dir + line[0] center_img = cv2.cvtColor(cv2.imread(center_img_path),cv2.COLOR_BGR2RGB) # Crop 70 pixels from top and 24 pixels from bottom, output = 66 x 320 center_img = center_img[70:136,:] # Resize to 66 x 200 as required by nVidia architecture center_img = cv2.resize(center_img,(200,66),interpolation = cv2.INTER_AREA) images.append(center_img) left_img_path = data_dir + line[1] left_img = cv2.cvtColor(cv2.imread(left_img_path),cv2.COLOR_BGR2RGB) # Crop 70 pixels from top and 24 pixels from bottom, output = 66 x 320 left_img = left_img[70:136,:] # Resize to 66 x 200 as required by nVidia architecture left_img = cv2.resize(left_img,(200,66),interpolation = cv2.INTER_AREA) images.append(left_img) right_img_path = data_dir + line[2] right_img = cv2.cvtColor(cv2.imread(right_img_path),cv2.COLOR_BGR2RGB) # Crop 70 pixels from top and 24 pixels from bottom, output = 66 x 320 right_img = right_img[70:136,:] # Resize to 66 x 200 as required by nVidia architecture right_img = cv2.resize(right_img,(200,66),interpolation = cv2.INTER_AREA) images.append(right_img) X_train = np.array(images) y_train = np.array(angles) # Return processed images for this batch but remember the value of local variables for next iteration yield sklearn.utils.shuffle(X_train, y_train) def nVidiaNet(train_generator,validation_generator,steps_per_epoch,validation_steps,save_model_dir): ''' Impelments the nVidia CNN architecture (https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/). Returns the model history object + also saves the model as 'model.h5' in the current working directory. ''' nVidiaModel = Sequential() nVidiaModel.add(Lambda(lambda x:(x/255.0)-0.5,input_shape=(66,200,3))) print('Input shape:{}'.format(nVidiaModel.input_shape)) print('Output shape - after normalization:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Convolution2D(24,(5,5),strides=(2,2),kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after first convolution:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Convolution2D(36,(5,5),strides=(2,2),kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after second convolution:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Convolution2D(48,(5,5),strides=(2,2),kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after third convolution:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Convolution2D(64,(3,3),strides=(1,1),kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after fourth convolution:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Convolution2D(64,(3,3),strides=(1,1),kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after fifth convolution:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Flatten()) print('Output shape - after flattening:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Dense(100,kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after first dense:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Dense(50,kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after second dense:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Dense(10,kernel_initializer='normal',kernel_regularizer=regularizers.l2(L2_REGULARIZATION),activation='elu')) print('Output shape - after third dense:{}'.format(nVidiaModel.output_shape)) nVidiaModel.add(Dense(1)) print('Output shape - after fourth dense:{}'.format(nVidiaModel.output_shape)) adam_optzr = optimizers.Adam(lr=LEARNING_RATE,decay=LEARNING_RATE_DECAY) nVidiaModel.compile(optimizer=adam_optzr,loss='mse',metrics = ['accuracy']) nVidiaModel_history = nVidiaModel.fit_generator(train_generator, validation_data=validation_generator, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, epochs=EPOCHS) dt = datetime.now() model_name_prefix = dt.strftime("%y-%m-%d-%H-%M") nVidiaModel.save(save_model_dir + model_name_prefix + '-model.h5') # Write out the model params model_params_file = open(save_model_dir + model_name_prefix + '-model-params.txt', 'w') model_params_file.write('EPOCHS >>> {}\n'.format(EPOCHS)) model_params_file.write('BATCH SIZE >>> {}\n'.format(BATCH_SIZE)) model_params_file.write('LEARNING RATE >>> {}\n'.format(LEARNING_RATE)) model_params_file.write('LEARNING RATE DECAY >>> {}\n'.format(LEARNING_RATE_DECAY)) model_params_file.write('ANGLE CORRECTION FACTOR >>> {}\n'.format(ANGLE_CORRECTION_FACTOR)) model_params_file.write('BINS >>> {}\n'.format(BINS)) model_params_file.write('BIN RANGE >>> {}\n'.format(BIN_RANGE)) model_params_file.close() return nVidiaModel_history def main(): data_dir = 'C:/Users/Admin/Desktop/Behavioral Cloning/driving-data/' driving_log_filename = 'driving_log.csv' save_model_dir = './saved-models/' samples = load_driving_log(data_dir + driving_log_filename) print('Total samples:{}'.format(len(samples))) samples = cleanup_data(samples) print('Total samples after removing zero angles:{}'.format(len(samples))) bin_edges,bin_values = draw_angles_distribution(samples,BINS,BIN_RANGE) samples = balance_dataset(samples,bin_edges,bin_values,BINS) _,_ = draw_angles_distribution(samples,BINS,BIN_RANGE) train_samples,validation_samples = train_test_split(samples,test_size=0.2) # Set up the data generators train_generator = generator(train_samples,data_dir,batch_size=BATCH_SIZE) validation_generator = generator(validation_samples,data_dir,batch_size=BATCH_SIZE) # As we are adding the left & right images as well, so need x 3 times total_samples = len(samples) * 3 actual_batch_size = BATCH_SIZE * 3 len_train = len(train_samples) * 3 len_valid = len(validation_samples) * 3 steps_per_epoch = len_train/actual_batch_size validation_steps = len_valid/actual_batch_size print('Total number of images used for training & validation:{}'.format(total_samples)) nVidiaModel_history = nVidiaNet(train_generator,validation_generator,steps_per_epoch,validation_steps,save_model_dir) plt.plot(nVidiaModel_history.history['loss']) plt.plot(nVidiaModel_history.history['val_loss']) plt.title('model mean squared error loss') plt.ylabel('mean squared error loss') plt.xlabel('epoch') plt.legend(['training set', 'validation set'], loc='upper right') plt.show() if __name__ == '__main__': main()
[ "matplotlib.pyplot.title", "keras.regularizers.l2", "csv.reader", "sklearn.model_selection.train_test_split", "csv.Sniffer", "matplotlib.pyplot.figure", "keras.layers.Flatten", "numpy.max", "datetime.datetime.now", "cv2.resize", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "keras.optimizers.Adam", "matplotlib.pyplot.text", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.hist", "cv2.imread", "numpy.where", "keras.layers.Lambda", "keras.layers.Dense", "numpy.array", "numpy.random.rand", "keras.models.Sequential", "sklearn.utils.shuffle", "matplotlib.pyplot.xlabel" ]
[((1728, 1755), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 7)'}), '(figsize=(14, 7))\n', (1738, 1755), True, 'import matplotlib.pyplot as plt\n'), ((1759, 1778), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Count"""'], {}), "('Count')\n", (1769, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1784, 1803), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Angle"""'], {}), "('Angle')\n", (1794, 1803), True, 'import matplotlib.pyplot as plt\n'), ((1860, 1939), 'matplotlib.pyplot.plot', 'plt.plot', (['angle_range', '[bar_height_if_uniform_dist, bar_height_if_uniform_dist]'], {}), '(angle_range, [bar_height_if_uniform_dist, bar_height_if_uniform_dist])\n', (1868, 1939), True, 'import matplotlib.pyplot as plt\n'), ((1942, 2027), 'matplotlib.pyplot.text', 'plt.text', (['angle_range[0]', '(bar_height_if_uniform_dist + 50)', '"""Uniform Distribution"""'], {}), "(angle_range[0], bar_height_if_uniform_dist + 50,\n 'Uniform Distribution')\n", (1950, 2027), True, 'import matplotlib.pyplot as plt\n'), ((2024, 2052), 'matplotlib.pyplot.title', 'plt.title', (['"""Angle Histogram"""'], {}), "('Angle Histogram')\n", (2033, 2052), True, 'import matplotlib.pyplot as plt\n'), ((2080, 2126), 'matplotlib.pyplot.hist', 'plt.hist', (['angles'], {'bins': 'bins', 'range': 'angle_range'}), '(angles, bins=bins, range=angle_range)\n', (2088, 2126), True, 'import matplotlib.pyplot as plt\n'), ((2129, 2139), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2137, 2139), True, 'import matplotlib.pyplot as plt\n'), ((7079, 7091), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (7089, 7091), False, 'from keras.models import Sequential\n'), ((9482, 9542), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {'lr': 'LEARNING_RATE', 'decay': 'LEARNING_RATE_DECAY'}), '(lr=LEARNING_RATE, decay=LEARNING_RATE_DECAY)\n', (9497, 9542), False, 'from keras import optimizers\n'), ((10026, 10040), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (10038, 10040), False, 'from datetime import datetime\n'), ((11560, 11600), 'sklearn.model_selection.train_test_split', 'train_test_split', (['samples'], {'test_size': '(0.2)'}), '(samples, test_size=0.2)\n', (11576, 11600), False, 'from sklearn.model_selection import train_test_split\n'), ((12366, 12411), 'matplotlib.pyplot.plot', 'plt.plot', (["nVidiaModel_history.history['loss']"], {}), "(nVidiaModel_history.history['loss'])\n", (12374, 12411), True, 'import matplotlib.pyplot as plt\n'), ((12416, 12465), 'matplotlib.pyplot.plot', 'plt.plot', (["nVidiaModel_history.history['val_loss']"], {}), "(nVidiaModel_history.history['val_loss'])\n", (12424, 12465), True, 'import matplotlib.pyplot as plt\n'), ((12470, 12512), 'matplotlib.pyplot.title', 'plt.title', (['"""model mean squared error loss"""'], {}), "('model mean squared error loss')\n", (12479, 12512), True, 'import matplotlib.pyplot as plt\n'), ((12517, 12554), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""mean squared error loss"""'], {}), "('mean squared error loss')\n", (12527, 12554), True, 'import matplotlib.pyplot as plt\n'), ((12559, 12578), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (12569, 12578), True, 'import matplotlib.pyplot as plt\n'), ((12583, 12648), 'matplotlib.pyplot.legend', 'plt.legend', (["['training set', 'validation set']"], {'loc': '"""upper right"""'}), "(['training set', 'validation set'], loc='upper right')\n", (12593, 12648), True, 'import matplotlib.pyplot as plt\n'), ((12653, 12663), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12661, 12663), True, 'import matplotlib.pyplot as plt\n'), ((840, 859), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (850, 859), False, 'import csv\n'), ((2812, 2839), 'numpy.where', 'np.where', (['(bin_edges < angle)'], {}), '(bin_edges < angle)\n', (2820, 2839), True, 'import numpy as np\n'), ((3190, 3212), 'numpy.max', 'np.max', (['potential_bins'], {}), '(potential_bins)\n', (3196, 3212), True, 'import numpy as np\n'), ((4385, 4401), 'sklearn.utils.shuffle', 'shuffle', (['samples'], {}), '(samples)\n', (4392, 4401), False, 'from sklearn.utils import shuffle\n'), ((7117, 7176), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(66, 200, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(66, 200, 3))\n', (7123, 7176), False, 'from keras.layers import Convolution2D, Flatten, Dense, Lambda\n'), ((8617, 8626), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (8624, 8626), False, 'from keras.layers import Convolution2D, Flatten, Dense, Lambda\n'), ((9367, 9375), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (9372, 9375), False, 'from keras.layers import Convolution2D, Flatten, Dense, Lambda\n'), ((3006, 3034), 'numpy.where', 'np.where', (['(bin_edges == angle)'], {}), '(bin_edges == angle)\n', (3014, 3034), True, 'import numpy as np\n'), ((6475, 6491), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (6483, 6491), True, 'import numpy as np\n'), ((6514, 6530), 'numpy.array', 'np.array', (['angles'], {}), '(angles)\n', (6522, 6530), True, 'import numpy as np\n'), ((732, 745), 'csv.Sniffer', 'csv.Sniffer', ([], {}), '()\n', (743, 745), False, 'import csv\n'), ((3517, 3533), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3531, 3533), True, 'import numpy as np\n'), ((5367, 5430), 'cv2.resize', 'cv2.resize', (['center_img', '(200, 66)'], {'interpolation': 'cv2.INTER_AREA'}), '(center_img, (200, 66), interpolation=cv2.INTER_AREA)\n', (5377, 5430), False, 'import cv2\n'), ((5857, 5918), 'cv2.resize', 'cv2.resize', (['left_img', '(200, 66)'], {'interpolation': 'cv2.INTER_AREA'}), '(left_img, (200, 66), interpolation=cv2.INTER_AREA)\n', (5867, 5918), False, 'import cv2\n'), ((6349, 6411), 'cv2.resize', 'cv2.resize', (['right_img', '(200, 66)'], {'interpolation': 'cv2.INTER_AREA'}), '(right_img, (200, 66), interpolation=cv2.INTER_AREA)\n', (6359, 6411), False, 'import cv2\n'), ((6663, 6702), 'sklearn.utils.shuffle', 'sklearn.utils.shuffle', (['X_train', 'y_train'], {}), '(X_train, y_train)\n', (6684, 6702), False, 'import sklearn\n'), ((7425, 7459), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (7440, 7459), False, 'from keras import regularizers\n'), ((7679, 7713), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (7694, 7713), False, 'from keras import regularizers\n'), ((7935, 7969), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (7950, 7969), False, 'from keras import regularizers\n'), ((8190, 8224), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (8205, 8224), False, 'from keras import regularizers\n'), ((8446, 8480), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (8461, 8480), False, 'from keras import regularizers\n'), ((8786, 8820), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (8801, 8820), False, 'from keras import regularizers\n'), ((8998, 9032), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (9013, 9032), False, 'from keras import regularizers\n'), ((9211, 9245), 'keras.regularizers.l2', 'regularizers.l2', (['L2_REGULARIZATION'], {}), '(L2_REGULARIZATION)\n', (9226, 9245), False, 'from keras import regularizers\n'), ((5082, 5109), 'cv2.imread', 'cv2.imread', (['center_img_path'], {}), '(center_img_path)\n', (5092, 5109), False, 'import cv2\n'), ((5580, 5605), 'cv2.imread', 'cv2.imread', (['left_img_path'], {}), '(left_img_path)\n', (5590, 5605), False, 'import cv2\n'), ((6068, 6094), 'cv2.imread', 'cv2.imread', (['right_img_path'], {}), '(right_img_path)\n', (6078, 6094), False, 'import cv2\n')]
from keras.models import Sequential, load_model from keras.callbacks import History, EarlyStopping, Callback from keras.layers.recurrent import LSTM from keras.layers import Bidirectional from keras.losses import mse, binary_crossentropy,cosine from keras.layers.core import Dense, Activation, Dropout import numpy as np import os from matplotlib import pyplot as plt from tensorflow import keras import tensorflow as tf class LSTM_NETWORK(object): def __init__(self, input_dim,layers,batch_size=32,l_s=5,l_p=1): """input_dim_list must include the original data dimension""" assert len(layers) >= 2 self.l_s = l_s self.l_p = l_p self.batch_size = batch_size self.loss = 0#zero for mse, 1 for cosine similarity self.cbs = [History(),EarlyStopping(monitor='val_loss', patience=5, min_delta=0.0003, verbose=0)] model = Sequential() model.add((LSTM(layers[0], input_shape=(l_s, input_dim), return_sequences=True))) #return_sequences=True))) model.add(Dropout(0.3)) model.add(LSTM(layers[1], return_sequences=True))#return_sequences=True)) model.add(Dropout(0.3)) model.add(Dense(self.l_p*input_dim)) model.add(Activation("linear")) # model.add(Dense(activation='linear', units=y_train.shape[2])) if self.loss == 0: model.compile(loss='mse', optimizer='adam') else: loss_fn = keras.losses.CosineSimilarity() model.compile(loss=loss_fn, optimizer='adam') # print("here is model summary") #print(model.summary()) self.model = model return def create_one_layer_model(self,input_dim,layers,batch_size=32,l_s=5,l_p=1): assert len(layers) >= 2 self.l_s = l_s self.l_p = l_p self.batch_size = batch_size self.cbs = [History(),EarlyStopping(monitor='val_loss', patience=15, min_delta=0.0003, verbose=0)] model = Sequential() model.add((LSTM(layers[0], input_shape=(None, input_dim)))) model.add(Dropout(0.3)) model.add(Dense(self.l_p*input_dim)) model.add(Activation("linear")) # model.add(Dense(activation='linear', units=y_train.shape[2])) if self.loss == 0: model.compile(loss='mse', optimizer='adam') else: loss_fn = keras.losses.CosineSimilarity() model.compile(loss=loss_fn, optimizer='adam') #import tensorflow as tf #model.compile(loss=tf.keras.losses.CosineSimilarity(), optimizer='adam') # print("here is model summary") #print(model.summary()) #print("this is neww model") self.model = model return def fit(self, X,y, epochs=100,validation_split=0.15, verbose=False,model_num=-1): history = self.model.fit(X, y, batch_size=self.batch_size, epochs=epochs, validation_split=validation_split, verbose=verbose, callbacks=self.cbs) #print(history.history.keys()) # "Accuracy" ''' plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') plt.show() ''' # "Loss" ''' plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') plt.show() ''' if model_num!=-1: self.model.save("LSTM_v"+str(model_num)+".h5") return def load_model(self,num): self.model=load_model(os.path.join("", "LSTM_v"+ str(num)+ ".h5")) return self.model def predict(self, X_test): ''' Used trained LSTM model to predict test data arriving in batches Args: X_test (np array): numpy array of test inputs with dimensions [timesteps, l_s, input dimensions) Returns: y_hat (np array): predicted test values for each timestep in y_test ''' print("Predicting by Patch") y_hat = []#np.array([[[]]]) # print("y_hat intially",y_hat.shape) num_batches = int((X_test.shape[0] - self.l_s) / self.batch_size) print("number of batches",num_batches) if num_batches < 0: raise ValueError("l_s (%s) too large for stream with length %s." % (self.l_s, y_test.shape[0])) # simulate data arriving in batches for i in range(1, num_batches + 2): #print("Inside the loop") prior_idx = (i - 1) * self.batch_size idx = i * self.batch_size if i == num_batches + 1: idx = X_test.shape[0] # remaining values won't necessarily equal batch size X_test_period = X_test[prior_idx:idx] #print("Predict for batch") #print("X_test_period",type(X_test_period),len(X_test_period)) y_hat_period = self.model.predict(X_test_period) #print("y_hat_period out",y_hat_period.shape) #y_hat_period=np.array(y_hat_period) #print("y_hat_period after reshape",y_hat_period.shape) #print("y_hat now",y_hat_period.shape) if i ==1: y_hat =y_hat_period #y_hat_period=np.array(y_hat_period) #print("y_hat now",y_hat_period.shape) else: y_hat = np.append(y_hat, y_hat_period) #print("y_hat", y_hat.shape) print("Out of loop, final transformation") y_hat = y_hat.reshape(X_test.shape[0], X_test.shape[2]) print("y_hat final", y_hat.shape) # np.save(os.path.join("data", anom['run_id'], "y_hat", anom["chan_id"] + ".npy"), np.array(y_hat)) return y_hat def predict_all(self, X_test): ''' Used trained LSTM model to predict test data arriving in batches Args: y_test (np array): numpy array of test outputs corresponding to true values to be predicted at end of each sequence X_test (np array): numpy array of test inputs with dimensions [timesteps, l_s, input dimensions) Returns: y_hat (np array): predicted test values for each timestep in y_test ''' #print("Predicting All") y_hat = self.model.predict(X_test) #print("y_hat other",y_hat.shape) return y_hat
[ "keras.layers.core.Dense", "keras.callbacks.History", "keras.layers.core.Activation", "tensorflow.keras.losses.CosineSimilarity", "numpy.append", "keras.callbacks.EarlyStopping", "keras.layers.core.Dropout", "keras.layers.recurrent.LSTM", "keras.models.Sequential" ]
[((887, 899), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (897, 899), False, 'from keras.models import Sequential, load_model\n'), ((2012, 2024), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2022, 2024), False, 'from keras.models import Sequential, load_model\n'), ((784, 793), 'keras.callbacks.History', 'History', ([], {}), '()\n', (791, 793), False, 'from keras.callbacks import History, EarlyStopping, Callback\n'), ((794, 868), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': '(5)', 'min_delta': '(0.0003)', 'verbose': '(0)'}), "(monitor='val_loss', patience=5, min_delta=0.0003, verbose=0)\n", (807, 868), False, 'from keras.callbacks import History, EarlyStopping, Callback\n'), ((919, 987), 'keras.layers.recurrent.LSTM', 'LSTM', (['layers[0]'], {'input_shape': '(l_s, input_dim)', 'return_sequences': '(True)'}), '(layers[0], input_shape=(l_s, input_dim), return_sequences=True)\n', (923, 987), False, 'from keras.layers.recurrent import LSTM\n'), ((1082, 1094), 'keras.layers.core.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (1089, 1094), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((1114, 1152), 'keras.layers.recurrent.LSTM', 'LSTM', (['layers[1]'], {'return_sequences': '(True)'}), '(layers[1], return_sequences=True)\n', (1118, 1152), False, 'from keras.layers.recurrent import LSTM\n'), ((1196, 1208), 'keras.layers.core.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (1203, 1208), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((1228, 1255), 'keras.layers.core.Dense', 'Dense', (['(self.l_p * input_dim)'], {}), '(self.l_p * input_dim)\n', (1233, 1255), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((1273, 1293), 'keras.layers.core.Activation', 'Activation', (['"""linear"""'], {}), "('linear')\n", (1283, 1293), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((1487, 1518), 'tensorflow.keras.losses.CosineSimilarity', 'keras.losses.CosineSimilarity', ([], {}), '()\n', (1516, 1518), False, 'from tensorflow import keras\n'), ((1908, 1917), 'keras.callbacks.History', 'History', ([], {}), '()\n', (1915, 1917), False, 'from keras.callbacks import History, EarlyStopping, Callback\n'), ((1918, 1993), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': '(15)', 'min_delta': '(0.0003)', 'verbose': '(0)'}), "(monitor='val_loss', patience=15, min_delta=0.0003, verbose=0)\n", (1931, 1993), False, 'from keras.callbacks import History, EarlyStopping, Callback\n'), ((2044, 2090), 'keras.layers.recurrent.LSTM', 'LSTM', (['layers[0]'], {'input_shape': '(None, input_dim)'}), '(layers[0], input_shape=(None, input_dim))\n', (2048, 2090), False, 'from keras.layers.recurrent import LSTM\n'), ((2111, 2123), 'keras.layers.core.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (2118, 2123), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((2143, 2170), 'keras.layers.core.Dense', 'Dense', (['(self.l_p * input_dim)'], {}), '(self.l_p * input_dim)\n', (2148, 2170), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((2188, 2208), 'keras.layers.core.Activation', 'Activation', (['"""linear"""'], {}), "('linear')\n", (2198, 2208), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((2402, 2433), 'tensorflow.keras.losses.CosineSimilarity', 'keras.losses.CosineSimilarity', ([], {}), '()\n', (2431, 2433), False, 'from tensorflow import keras\n'), ((5620, 5650), 'numpy.append', 'np.append', (['y_hat', 'y_hat_period'], {}), '(y_hat, y_hat_period)\n', (5629, 5650), True, 'import numpy as np\n')]
"""Module containing the CLI programs for histoprint.""" import numpy as np import click from histoprint import * import histoprint.formatter as formatter @click.command() @click.argument("infile", type=click.Path(exists=True, dir_okay=False, allow_dash=True)) @click.option( "-b", "--bins", type=str, default="10", help="Number of bins or space-separated bin edges.", ) @click.option("-t", "--title", type=str, default="", help="Title of the histogram.") @click.option( "--stack/--nostack", type=bool, default=False, help="Stack the histograms." ) @click.option( "-s/-S", "--summary/--nosummary", type=bool, default=False, help="Print summary statistics.", ) @click.option( "-l", "--label", "labels", type=str, multiple=True, default=("",), help="Labels for the data, one for each column.", ) @click.option( "--symbols", type=str, default=formatter.DEFAULT_SYMBOLS, help="Symbol cycle for multiple histograms. Choices & default: '%s'" % (formatter.DEFAULT_SYMBOLS,), ) @click.option( "--fg-colors", type=str, default=formatter.DEFAULT_FG_COLORS, help="Colour cycle for foreground colours. Default: '%s', Choices: '0rgbcmykwRGBCMYKW'" % (formatter.DEFAULT_FG_COLORS,), ) @click.option( "--bg-colors", type=str, default=formatter.DEFAULT_BG_COLORS, help="Colour cycle for background colours. Default: '%s', Choices: '0rgbcmykwRGBCMYKW'" % (formatter.DEFAULT_BG_COLORS,), ) @click.option( "-f", "--field", "fields", type=str, multiple=True, help="Which fields to histogram. Interpretation of the fields depends on " "the file format. TXT files only support integers for column numbers " "starting at 0. For CSV files, the fields must be the names of the columns " "as specified in the first line of the file. When plotting from ROOT files, " "at least one field must be specified. This can either be the path to a " "single TH1, or one or more paths to TTree branches.", ) @click.version_option() def histoprint(infile, **kwargs): """Read INFILE and print a histogram of the contained columns. INFILE can be '-', in which case the data is read from STDIN. """ # Try to interpret file as textfile try: _histoprint_txt(infile, **kwargs) exit(0) except ValueError: pass # Try to interpret file as CSV file try: _histoprint_csv(infile, **kwargs) exit(0) except ImportError: click.echo("Cannot try CSV file format. Pandas module not found.", err=True) except UnicodeDecodeError: pass # Try to interpret file as ROOT file try: _histoprint_root(infile, **kwargs) exit(0) except ImportError: click.echo("Cannot try ROOT file format. Uproot module not found.", err=True) click.echo("Could not interpret file format.", err=True) exit(1) def _bin_edges(kwargs, data): """Get the desired bin edges.""" bins = kwargs.pop("bins", "10") bins = np.fromiter(bins.split(), dtype=float) if len(bins) == 1: bins = int(bins[0]) if isinstance(bins, int): minval = np.inf maxval = -np.inf for d in data: minval = min(minval, np.nanmin(d)) maxval = max(maxval, np.nanmax(d)) bins = np.linspace(minval, maxval, bins + 1) return bins def _histoprint_txt(infile, **kwargs): """Interpret file as as simple whitespace separated table.""" # Read the data data = np.loadtxt(click.open_file(infile), ndmin=2) data = data.T # Interpret field numbers fields = kwargs.pop("fields", []) if len(fields) > 0: try: fields = [int(f) for f in fields] except ValueError: click.echo("Fields for a TXT file must be integers.", err=True) exit(1) try: data = data[fields] except KeyError: click.echo("Field out of bounds.", err=True) exit(1) # Interpret bins bins = _bin_edges(kwargs, data) # Create the histogram(s) hist = [[], bins] for d in data: hist[0].append(np.histogram(d, bins=bins)[0]) # Print the histogram print_hist(hist, **kwargs) def _histoprint_csv(infile, **kwargs): """Interpret file as as CSV file.""" import pandas as pd # Read the data data = pd.read_csv(click.open_file(infile)) # Interpret field numbers/names fields = list(kwargs.pop("fields", [])) if len(fields) > 0: try: data = data[fields] except KeyError: click.echo("Unknown column name.", err=True) exit(1) # Get default columns labels if kwargs.get("labels", ("",)) == ("",): kwargs["labels"] = data.columns # Convert to array data = data.to_numpy().T # Interpret bins bins = _bin_edges(kwargs, data) # Create the histogram(s) hist = [[], bins] for d in data: hist[0].append(np.histogram(d, bins=bins)[0]) # Print the histogram print_hist(hist, **kwargs) def _histoprint_root(infile, **kwargs): """Interpret file as as ROOT file.""" import uproot as up # Open root file F = up.open(infile) # Interpret field names fields = list(kwargs.pop("fields", [])) if len(fields) == 0: click.echo("Must specify at least on field for ROOT files.", err=True) click.echo(F.keys()) exit(1) # Get default columns labels if kwargs.get("labels", ("",)) == ("",): kwargs["labels"] = [field.split("/")[-1] for field in fields] # Read the data if len(fields) == 1: # Possible a single histogram try: hist = F[fields[0]].numpy() except (AttributeError, KeyError): pass else: kwargs.pop("bins", None) # Get rid of useless parameter print_hist(hist, **kwargs) return data = [] for field in fields: branch = F for key in field.split("/"): try: branch = branch[key] except KeyError: click.echo( "Could not find key '%s'. Possible values: %s" % (key, branch.keys()) ) exit(1) try: d = np.array(branch.array().flatten()) except ValueError: click.echo( "Could not interpret root object '%s'. Possible child branches: %s" % (key, branch.keys()) ) exit(1) data.append(d) # Interpret bins bins = _bin_edges(kwargs, data) # Create the histogram(s) hist = [[], bins] for d in data: hist[0].append(np.histogram(d, bins=bins)[0]) # Print the histogram print_hist(hist, **kwargs)
[ "click.version_option", "click.option", "click.echo", "numpy.nanmin", "click.command", "click.open_file", "numpy.histogram", "numpy.linspace", "click.Path", "uproot.open", "numpy.nanmax" ]
[((159, 174), 'click.command', 'click.command', ([], {}), '()\n', (172, 174), False, 'import click\n'), ((265, 375), 'click.option', 'click.option', (['"""-b"""', '"""--bins"""'], {'type': 'str', 'default': '"""10"""', 'help': '"""Number of bins or space-separated bin edges."""'}), "('-b', '--bins', type=str, default='10', help=\n 'Number of bins or space-separated bin edges.')\n", (277, 375), False, 'import click\n'), ((395, 483), 'click.option', 'click.option', (['"""-t"""', '"""--title"""'], {'type': 'str', 'default': '""""""', 'help': '"""Title of the histogram."""'}), "('-t', '--title', type=str, default='', help=\n 'Title of the histogram.')\n", (407, 483), False, 'import click\n'), ((480, 574), 'click.option', 'click.option', (['"""--stack/--nostack"""'], {'type': 'bool', 'default': '(False)', 'help': '"""Stack the histograms."""'}), "('--stack/--nostack', type=bool, default=False, help=\n 'Stack the histograms.')\n", (492, 574), False, 'import click\n'), ((577, 687), 'click.option', 'click.option', (['"""-s/-S"""', '"""--summary/--nosummary"""'], {'type': 'bool', 'default': '(False)', 'help': '"""Print summary statistics."""'}), "('-s/-S', '--summary/--nosummary', type=bool, default=False,\n help='Print summary statistics.')\n", (589, 687), False, 'import click\n'), ((708, 842), 'click.option', 'click.option', (['"""-l"""', '"""--label"""', '"""labels"""'], {'type': 'str', 'multiple': '(True)', 'default': "('',)", 'help': '"""Labels for the data, one for each column."""'}), "('-l', '--label', 'labels', type=str, multiple=True, default=(\n '',), help='Labels for the data, one for each column.')\n", (720, 842), False, 'import click\n'), ((870, 1051), 'click.option', 'click.option', (['"""--symbols"""'], {'type': 'str', 'default': 'formatter.DEFAULT_SYMBOLS', 'help': '("Symbol cycle for multiple histograms. Choices & default: \'%s\'" % (\n formatter.DEFAULT_SYMBOLS,))'}), '(\'--symbols\', type=str, default=formatter.DEFAULT_SYMBOLS, help\n ="Symbol cycle for multiple histograms. Choices & default: \'%s\'" % (\n formatter.DEFAULT_SYMBOLS,))\n', (882, 1051), False, 'import click\n'), ((1066, 1276), 'click.option', 'click.option', (['"""--fg-colors"""'], {'type': 'str', 'default': 'formatter.DEFAULT_FG_COLORS', 'help': '("Colour cycle for foreground colours. Default: \'%s\', Choices: \'0rgbcmykwRGBCMYKW\'"\n % (formatter.DEFAULT_FG_COLORS,))'}), '(\'--fg-colors\', type=str, default=formatter.DEFAULT_FG_COLORS,\n help=\n "Colour cycle for foreground colours. Default: \'%s\', Choices: \'0rgbcmykwRGBCMYKW\'"\n % (formatter.DEFAULT_FG_COLORS,))\n', (1078, 1276), False, 'import click\n'), ((1287, 1497), 'click.option', 'click.option', (['"""--bg-colors"""'], {'type': 'str', 'default': 'formatter.DEFAULT_BG_COLORS', 'help': '("Colour cycle for background colours. Default: \'%s\', Choices: \'0rgbcmykwRGBCMYKW\'"\n % (formatter.DEFAULT_BG_COLORS,))'}), '(\'--bg-colors\', type=str, default=formatter.DEFAULT_BG_COLORS,\n help=\n "Colour cycle for background colours. Default: \'%s\', Choices: \'0rgbcmykwRGBCMYKW\'"\n % (formatter.DEFAULT_BG_COLORS,))\n', (1299, 1497), False, 'import click\n'), ((1508, 1997), 'click.option', 'click.option', (['"""-f"""', '"""--field"""', '"""fields"""'], {'type': 'str', 'multiple': '(True)', 'help': '"""Which fields to histogram. Interpretation of the fields depends on the file format. TXT files only support integers for column numbers starting at 0. For CSV files, the fields must be the names of the columns as specified in the first line of the file. When plotting from ROOT files, at least one field must be specified. This can either be the path to a single TH1, or one or more paths to TTree branches."""'}), "('-f', '--field', 'fields', type=str, multiple=True, help=\n 'Which fields to histogram. Interpretation of the fields depends on the file format. TXT files only support integers for column numbers starting at 0. For CSV files, the fields must be the names of the columns as specified in the first line of the file. When plotting from ROOT files, at least one field must be specified. This can either be the path to a single TH1, or one or more paths to TTree branches.'\n )\n", (1520, 1997), False, 'import click\n'), ((2051, 2073), 'click.version_option', 'click.version_option', ([], {}), '()\n', (2071, 2073), False, 'import click\n'), ((2880, 2936), 'click.echo', 'click.echo', (['"""Could not interpret file format."""'], {'err': '(True)'}), "('Could not interpret file format.', err=True)\n", (2890, 2936), False, 'import click\n'), ((5267, 5282), 'uproot.open', 'up.open', (['infile'], {}), '(infile)\n', (5274, 5282), True, 'import uproot as up\n'), ((206, 262), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'dir_okay': '(False)', 'allow_dash': '(True)'}), '(exists=True, dir_okay=False, allow_dash=True)\n', (216, 262), False, 'import click\n'), ((3366, 3403), 'numpy.linspace', 'np.linspace', (['minval', 'maxval', '(bins + 1)'], {}), '(minval, maxval, bins + 1)\n', (3377, 3403), True, 'import numpy as np\n'), ((3570, 3593), 'click.open_file', 'click.open_file', (['infile'], {}), '(infile)\n', (3585, 3593), False, 'import click\n'), ((4437, 4460), 'click.open_file', 'click.open_file', (['infile'], {}), '(infile)\n', (4452, 4460), False, 'import click\n'), ((5389, 5459), 'click.echo', 'click.echo', (['"""Must specify at least on field for ROOT files."""'], {'err': '(True)'}), "('Must specify at least on field for ROOT files.', err=True)\n", (5399, 5459), False, 'import click\n'), ((2534, 2610), 'click.echo', 'click.echo', (['"""Cannot try CSV file format. Pandas module not found."""'], {'err': '(True)'}), "('Cannot try CSV file format. Pandas module not found.', err=True)\n", (2544, 2610), False, 'import click\n'), ((2797, 2874), 'click.echo', 'click.echo', (['"""Cannot try ROOT file format. Uproot module not found."""'], {'err': '(True)'}), "('Cannot try ROOT file format. Uproot module not found.', err=True)\n", (2807, 2874), False, 'import click\n'), ((3290, 3302), 'numpy.nanmin', 'np.nanmin', (['d'], {}), '(d)\n', (3299, 3302), True, 'import numpy as np\n'), ((3337, 3349), 'numpy.nanmax', 'np.nanmax', (['d'], {}), '(d)\n', (3346, 3349), True, 'import numpy as np\n'), ((3813, 3876), 'click.echo', 'click.echo', (['"""Fields for a TXT file must be integers."""'], {'err': '(True)'}), "('Fields for a TXT file must be integers.', err=True)\n", (3823, 3876), False, 'import click\n'), ((3979, 4023), 'click.echo', 'click.echo', (['"""Field out of bounds."""'], {'err': '(True)'}), "('Field out of bounds.', err=True)\n", (3989, 4023), False, 'import click\n'), ((4197, 4223), 'numpy.histogram', 'np.histogram', (['d'], {'bins': 'bins'}), '(d, bins=bins)\n', (4209, 4223), True, 'import numpy as np\n'), ((4649, 4693), 'click.echo', 'click.echo', (['"""Unknown column name."""'], {'err': '(True)'}), "('Unknown column name.', err=True)\n", (4659, 4693), False, 'import click\n'), ((5039, 5065), 'numpy.histogram', 'np.histogram', (['d'], {'bins': 'bins'}), '(d, bins=bins)\n', (5051, 5065), True, 'import numpy as np\n'), ((6799, 6825), 'numpy.histogram', 'np.histogram', (['d'], {'bins': 'bins'}), '(d, bins=bins)\n', (6811, 6825), True, 'import numpy as np\n')]
import unittest import libpysal from libpysal.common import pandas, RTOL, ATOL from esda.geary_local_mv import Geary_Local_MV import numpy as np PANDAS_EXTINCT = pandas is None class Geary_Local_MV_Tester(unittest.TestCase): def setUp(self): np.random.seed(100) self.w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() f = libpysal.io.open(libpysal.examples.get_path("stl_hom.txt")) self.y1 = np.array(f.by_col['HR8893']) self.y2 = np.array(f.by_col['HC8488']) def test_local_geary_mv(self): lG_mv = Geary_Local_MV(connectivity=self.w).fit([self.y1, self.y2]) print(lG_mv.p_sim[0]) self.assertAlmostEqual(lG_mv.localG[0], 0.4096931479581422) self.assertAlmostEqual(lG_mv.p_sim[0], 0.211) suite = unittest.TestSuite() test_classes = [ Geary_Local_MV_Tester ] for i in test_classes: a = unittest.TestLoader().loadTestsFromTestCase(i) suite.addTest(a) if __name__ == "__main__": runner = unittest.TextTestRunner() runner.run(suite)
[ "numpy.random.seed", "unittest.TextTestRunner", "unittest.TestSuite", "esda.geary_local_mv.Geary_Local_MV", "numpy.array", "unittest.TestLoader", "libpysal.examples.get_path" ]
[((803, 823), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (821, 823), False, 'import unittest\n'), ((1009, 1034), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {}), '()\n', (1032, 1034), False, 'import unittest\n'), ((256, 275), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (270, 275), True, 'import numpy as np\n'), ((446, 474), 'numpy.array', 'np.array', (["f.by_col['HR8893']"], {}), "(f.by_col['HR8893'])\n", (454, 474), True, 'import numpy as np\n'), ((493, 521), 'numpy.array', 'np.array', (["f.by_col['HC8488']"], {}), "(f.by_col['HC8488'])\n", (501, 521), True, 'import numpy as np\n'), ((385, 426), 'libpysal.examples.get_path', 'libpysal.examples.get_path', (['"""stl_hom.txt"""'], {}), "('stl_hom.txt')\n", (411, 426), False, 'import libpysal\n'), ((900, 921), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (919, 921), False, 'import unittest\n'), ((574, 609), 'esda.geary_local_mv.Geary_Local_MV', 'Geary_Local_MV', ([], {'connectivity': 'self.w'}), '(connectivity=self.w)\n', (588, 609), False, 'from esda.geary_local_mv import Geary_Local_MV\n'), ((310, 347), 'libpysal.examples.get_path', 'libpysal.examples.get_path', (['"""stl.gal"""'], {}), "('stl.gal')\n", (336, 347), False, 'import libpysal\n')]
import pytorch_lightning as pl import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from typing import List, Tuple, Dict, Any, Union, Iterable try: import genomics_gans except: exec(open('__init__.py').read()) import genomics_gans from genomics_gans.prepare_data.data_modules import TabularDataset class LitFFNN(pl.LightningModule): # ---------------------------------- # Initialize constants and NN architecture # ---------------------------------- def __init__(self, network: nn.Module, train_set: TabularDataset, val_set: TabularDataset, test_set: TabularDataset): """ Feed-Forward Neural Network System Args: X (np.ndarray): Feature matrix """ super().__init__() # TODO: train-val-test splits self.network = network # Hard-coded constants self.loss_fn = nn.NLLLoss() self.lr = 1e-2 self.N_CLASSES = 3 self.epoch = 0 self.epoch_train_losses = [] self.epoch_val_losses = [] self.best_val_epoch = 0 def forward(self, x): logits = self.network(x) return logits def configure_optimizers(self): optimizer = torch.optim.Adam( params = self.parameters(), lr = self.lr) return optimizer # ---------------------------------- # Training, validation, and test steps # ---------------------------------- def training_step(self, batch, batch_idx): x, y = batch y = y.flatten().long() logits = self(x) loss = self.loss_fn(logits, y) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx, val=True): x, y = batch y = y.flatten().long() # compute loss logits = self(x) loss = self.loss_fn(logits, y) self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True) # self.log interacts with TensorBoard return loss def test_step(self, batch, batch_idx): x, y = batch y = y.flatten().long() # compute loss logits = self(x) loss = self.loss_fn(logits, y) self.log('test_loss', loss, on_step=True, on_epoch=True, prog_bar=False) return loss def training_epoch_end(self, outputs: List[Any]): outputs: List[torch.Tensor] = [list(d.values())[0] for d in outputs] sum = torch.zeros(1, dtype=float).to(self.device) for batch_idx, batch_loss in enumerate(outputs): sum += batch_loss.to(self.device) avg_batch_loss = (sum / batch_idx) self.epoch_train_losses.append({avg_batch_loss[0].item()}) def validation_epoch_end(self, outputs: List[Any]): sum = torch.zeros(1, dtype=float).to(self.device) for batch_idx, batch_loss in enumerate(outputs): sum += batch_loss.to(self.device) avg_batch_loss = (sum / batch_idx) self.epoch_val_losses.append({avg_batch_loss[0].item()}) # --------------------------------------------------------------- # Custom training for evolutionary algorithm # -------------------------------------------------------------- def custom_training_step(self, verbose=False): self.network.train() train_loader = self.train_dl train_loss: float = 0 for idx, batch in enumerate(train_loader): self.optimizer.zero_grad() # clears paramter gradient buffers inputs, targets = batch # transfer batch data to computation device inputs, targets = [ tensor.to(self.device) for tensor in [inputs, targets]] targets = targets.long() # converts dtype to Long output = self.network(inputs) loss = self.loss_fn(output, targets.flatten()) loss.backward() # back propagation self.optimizer.step() # update model weights train_loss += loss.data.item() if (idx % 10 == 0) and verbose: print(f"epoch {self.epoch+1}/{self.n_epochs}, " + f"batch {idx}.") train_loss = train_loss / len(train_loader) return train_loss def custom_validation_step(self): val_loader = self.test_dl val_loss = 0.0 self.network.eval() for batch in val_loader: inputs, targets = batch inputs, targets = [tensor.to(self.device) for tensor in batch] targets = targets.long() # converts dtype to Long output = self.network(inputs) loss = self.loss_fn(output, targets.flatten()) val_loss += loss.data.item() val_loss = val_loss / len(val_loader) return val_loss def custom_train(self, n_epochs, plot=True, verbose=False, plot_train=False): train_loader = self.train_dl val_loader = self.test_dl device=self.device self.network.to(self.device) train_losses, val_losses = [], [] best_val_loss = np.infty best_val_epoch = 0 early_stopping_buffer = 10 epoch = 0 best_params = None for epoch in range(n_epochs): # Training train_loss = self.custom_training_step() train_losses.append(train_loss) # Validation val_loss = self.custom_validation_step() val_losses.append(val_loss) if val_loss < best_val_loss: best_params = self.network.parameters() best_val_loss = val_loss best_val_epoch = epoch # If validation loss fails to decrease for some number of epochs # end training if np.abs(epoch - best_val_epoch) > early_stopping_buffer: break print(f"Epoch: {epoch}, Training Loss: {train_loss:.3f}, " +f"Validation loss: {val_loss:.3f}") #self.network.parameters = best_params self.best_val_loss = best_val_loss self.best_val_epoch = best_val_epoch if plot: skip_frames = 3 fig, ax = plt.subplots() fig.tight_layout() if plot_train: ax.plot(np.arange(epoch + 1)[skip_frames:], train_losses[skip_frames:], '-', label="training set") ax.plot(np.arange(epoch + 1)[skip_frames:], val_losses[skip_frames:], '-', label="test set") ax.set(xlabel="Epoch", ylabel="Loss") ax.legend() plt.show() # ---------------------------------- # Helper functions - Use post-training # ---------------------------------- def predict(self, x: torch.Tensor) -> torch.Tensor: self.eval() x.to(self.device) logits = self.network(x) preds = torch.argmax(input = logits, dim=1) return preds def accuracy(self, pred: torch.Tensor, target: torch.Tensor): self.eval() if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor): pred, target = [t.to(self.device) for t in [pred, target]] elif isinstance(pred, np.ndarray) and isinstance(target, np.ndarray): tensors = [torch.Tensor(t).to(self.device) for t in [pred, target]] pred, target = tensors else: raise ValueError("The types of `pred` and `target` must match. " + "These can be np.ndarrays or torch.Tensors.") accuracy = pl.metrics.functional.accuracy(pred, target) return accuracy def f1(self, pred: torch.Tensor, target: torch.Tensor): self.eval() pred, target = [t.flatten() for t in [pred, target]] if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor): pred, target = [t.to(self.device) for t in [pred, target]] elif isinstance(pred, np.ndarray) and isinstance(target, np.ndarray): tensors = [torch.Tensor(t).to(self.device) for t in [pred, target]] pred, target = tensors else: raise ValueError("The types of `pred` and `target` must match. " + "These can be np.ndarrays or torch.Tensors.") f1 = pl.metrics.functional.f1( preds = pred, target = target, num_classes = 3, multilabel = True) return f1 def multiclass_aucroc(self, pred: torch.Tensor, target: torch.Tensor): self.eval() if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor): pred, target = [t.to(self.device) for t in [pred, target]] elif isinstance(pred, np.ndarray) and isinstance(target, np.ndarray): tensors = [torch.Tensor(t).to(self.device) for t in [pred, target]] pred, target = tensors else: raise ValueError("The types of `pred` and `target` must match. " + "These can be np.ndarrays or torch.Tensors.") auc_roc = pl.metrics.functional.classification.multiclass_auroc( pred = pred, target = target) return auc_roc def plot_losses(self, plot_train=True): skip_frames = 1 fig, ax = plt.subplots() fig.tight_layout() n_epochs = len(self.epoch_val_losses) self.epoch_train_losses = [s.pop() for s in self.epoch_train_losses] self.epoch_val_losses = [s.pop() for s in self.epoch_val_losses] if plot_train: n_epochs = len(self.epoch_train_losses) ax.plot(np.arange(n_epochs)[skip_frames:], self.epoch_train_losses[skip_frames:], label="train") ax.plot(np.arange(n_epochs)[skip_frames:], self.epoch_val_losses[1:][skip_frames:], label="val") ax.set(xlabel="Epoch", ylabel="Loss") ax.legend() plt.show()
[ "pytorch_lightning.metrics.functional.classification.multiclass_auroc", "matplotlib.pyplot.show", "numpy.abs", "torch.argmax", "pytorch_lightning.metrics.functional.f1", "pytorch_lightning.metrics.functional.accuracy", "torch.nn.NLLLoss", "torch.Tensor", "numpy.arange", "torch.zeros", "matplotlib.pyplot.subplots" ]
[((917, 929), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (927, 929), True, 'import torch.nn as nn\n'), ((7044, 7077), 'torch.argmax', 'torch.argmax', ([], {'input': 'logits', 'dim': '(1)'}), '(input=logits, dim=1)\n', (7056, 7077), False, 'import torch\n'), ((7707, 7751), 'pytorch_lightning.metrics.functional.accuracy', 'pl.metrics.functional.accuracy', (['pred', 'target'], {}), '(pred, target)\n', (7737, 7751), True, 'import pytorch_lightning as pl\n'), ((8430, 8517), 'pytorch_lightning.metrics.functional.f1', 'pl.metrics.functional.f1', ([], {'preds': 'pred', 'target': 'target', 'num_classes': '(3)', 'multilabel': '(True)'}), '(preds=pred, target=target, num_classes=3,\n multilabel=True)\n', (8454, 8517), True, 'import pytorch_lightning as pl\n'), ((9174, 9253), 'pytorch_lightning.metrics.functional.classification.multiclass_auroc', 'pl.metrics.functional.classification.multiclass_auroc', ([], {'pred': 'pred', 'target': 'target'}), '(pred=pred, target=target)\n', (9227, 9253), True, 'import pytorch_lightning as pl\n'), ((9381, 9395), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9393, 9395), True, 'import matplotlib.pyplot as plt\n'), ((10021, 10031), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10029, 10031), True, 'import matplotlib.pyplot as plt\n'), ((6325, 6339), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6337, 6339), True, 'import matplotlib.pyplot as plt\n'), ((6746, 6756), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6754, 6756), True, 'import matplotlib.pyplot as plt\n'), ((2565, 2592), 'torch.zeros', 'torch.zeros', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (2576, 2592), False, 'import torch\n'), ((2893, 2920), 'torch.zeros', 'torch.zeros', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (2904, 2920), False, 'import torch\n'), ((5902, 5932), 'numpy.abs', 'np.abs', (['(epoch - best_val_epoch)'], {}), '(epoch - best_val_epoch)\n', (5908, 5932), True, 'import numpy as np\n'), ((9841, 9860), 'numpy.arange', 'np.arange', (['n_epochs'], {}), '(n_epochs)\n', (9850, 9860), True, 'import numpy as np\n'), ((6554, 6574), 'numpy.arange', 'np.arange', (['(epoch + 1)'], {}), '(epoch + 1)\n', (6563, 6574), True, 'import numpy as np\n'), ((9715, 9734), 'numpy.arange', 'np.arange', (['n_epochs'], {}), '(n_epochs)\n', (9724, 9734), True, 'import numpy as np\n'), ((6422, 6442), 'numpy.arange', 'np.arange', (['(epoch + 1)'], {}), '(epoch + 1)\n', (6431, 6442), True, 'import numpy as np\n'), ((7440, 7455), 'torch.Tensor', 'torch.Tensor', (['t'], {}), '(t)\n', (7452, 7455), False, 'import torch\n'), ((8170, 8185), 'torch.Tensor', 'torch.Tensor', (['t'], {}), '(t)\n', (8182, 8185), False, 'import torch\n'), ((8909, 8924), 'torch.Tensor', 'torch.Tensor', (['t'], {}), '(t)\n', (8921, 8924), False, 'import torch\n')]
import os import pickle from collections import defaultdict import matplotlib import matplotlib.pyplot as plt import numpy as np import scipy.stats def add_capitals(dico): return {**dico, **{key[0].capitalize() + key[1:]: item for key, item in dico.items()}} COLORS = { 'causal': 'blue', 'anti': 'red', 'joint': 'green', 'causal_average': 'darkblue', 'anti_average': 'darkred', 'joint_average': 'darkgreen', 'MAP_uniform': 'yellow', 'MAP_source': 'gold', # guess 'CausalGuessX': 'skyblue', 'CausalGuessY': 'darkcyan', 'AntiGuessX': 'salmon', 'AntiGuessY': 'chocolate', } MARKERS = {key: 'o' for key in COLORS} MARKERS['causal'] = '^' MARKERS['anti'] = 'v' COLORS = add_capitals(COLORS) MARKERS = add_capitals(MARKERS) def value_at_step(trajectory, nsteps=1000): """Return the KL and the integral KL up to nsteps.""" steps = trajectory['steps'] index = np.searchsorted(steps, nsteps) - 1 ans = {} # ans['end_step'] = steps[index] for key, item in trajectory.items(): if key.startswith('kl_'): ans[key[3:]] = item[index].mean() # ans['endkl_' + key[3:]] = item[index].mean() # ans['intkl_' + key[3:]] = item[:index].mean() return ans def get_best(results, nsteps): """Store per model each parameter and kl values then for each model return the argmax parameters and curves for kl and integral kl """ by_model = {} # dictionary where each key is a model, # and each value is a list of this model's hyperparameter # and outcome at step nsteps for exp in results: trajectory = exp['trajectory'] for model, metric in value_at_step(trajectory, nsteps).items(): if model not in by_model: by_model[model] = [] toadd = { 'hyperparameters': exp['hyperparameters'], **exp['hyperparameters'], 'value': metric, 'kl': trajectory['kl_' + model], 'steps': trajectory['steps'] } if 'scoredist_' + model in trajectory: toadd['scoredist'] = trajectory['scoredist_' + model] by_model[model] += [toadd] # select only the best hyperparameters for this model. for model, metrics in by_model.items(): dalist = sorted(metrics, key=lambda x: x['value']) # Ensure that the optimal configuration does not diverge as optimization goes on. for duh in dalist: if duh['kl'][0].mean() * 2 > duh['kl'][-1].mean(): break by_model[model] = duh # print the outcome for model, item in by_model.items(): if 'MAP' in model: print(model, ('\t n0={n0:.0f},' '\t kl={value:.3f}').format(**item)) else: print(model, ('\t alpha={scheduler_exponent},' '\t lr={lr:.1e},' '\t kl={value:.3f}').format(**item)) return by_model def curve_plot(bestof, nsteps, figsize, logscale=False, endstep=400, confidence=(5, 95)): """Draw mean trajectory plot with percentiles""" fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize) for model, item in sorted(bestof.items()): xx = item['steps'] values = item['kl'] # truncate plot for k-invariance end_id = np.searchsorted(xx, endstep) + 1 xx = xx[:end_id] values = values[:end_id] # plot mean and percentile statistics ax.plot(xx, values.mean(axis=1), label=model, marker=MARKERS[model], markevery=len(xx) // 6, markeredgewidth=0, color=COLORS[model], alpha=.9) ax.fill_between( xx, np.percentile(values, confidence[0], axis=1), np.percentile(values, confidence[1], axis=1), alpha=.4, color=COLORS[model] ) ax.axvline(nsteps, linestyle='--', color='black') ax.grid(True) if logscale: ax.set_yscale('log') ax.set_ylabel(r'$\mathrm{KL}(\mathbf{p}^*, \mathbf{p}^{(t)})$') ax.set_xlabel('number of samples t') ax.legend() return fig, ax def scatter_plot(bestof, nsteps, figsize, logscale=False): fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize) alldist = [] allkl = [] for model, item in sorted(bestof.items()): if 'scoredist' not in item: continue index = min(np.searchsorted(item['steps'], nsteps), len(item['steps']) - 1) initial_distances = item['scoredist'][0] end_kl = item['kl'][index] ax.scatter( initial_distances, end_kl, alpha=.3, color=COLORS[model], marker=MARKERS[model], linewidth=0, label=model if False else None ) alldist += list(initial_distances) allkl += list(end_kl) # linear regression slope, intercept, rval, pval, _ = scipy.stats.linregress(alldist, allkl) x_vals = np.array(ax.get_xlim()) y_vals = intercept + slope * x_vals ax.plot( x_vals, y_vals, '--', color='black', alpha=.8, label=f'y=ax+b, r2={rval ** 2:.2f}' f',\na={slope:.1e}, b={intercept:.2f}' ) # look ax.legend() ax.grid(True) if logscale: ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim(min(alldist), max(alldist)) else: ax.ticklabel_format(axis='both', style='sci', scilimits=(0, 0), useMathText=True) ax.set_ylabel(r'$\mathrm{KL}(\mathbf{p}^*, \mathbf{p}^{(t)}); T=$' + str(nsteps)) ax.set_xlabel(r'$||\theta^{(0)} - \theta^* ||^2$') return fig, ax def two_plots(results, nsteps, plotname, dirname, verbose=False, figsize=(6, 3)): print(dirname, plotname) bestof = get_best(results, nsteps) # remove the models I don't want to compare # eg remove SGD, MAP. Keep ASGD and rename them to remove average. selected = { key[0].capitalize() + key[1:-len('_average')].replace('A', 'X').replace('B', 'Y'): item for key, item in bestof.items() if key.endswith('_average')} for key in ['MAP_uniform', 'MAP_source']: # selected[key] = bestof[key] pass if dirname.startswith('guess'): selected.pop('Joint', None) curves, ax1 = curve_plot(selected, nsteps, figsize, logscale=False) # initstring = 'denseinit' if results[0]["is_init_dense"] else 'sparseinit' # curves.suptitle(f'Average KL tuned for {nsteps} samples with {confidence} percentiles, ' # f'{initstring}, k={results[0]["k"]}') scatter, ax2 = scatter_plot(selected, nsteps, figsize, logscale=(dirname == 'guess_sparseinit')) if verbose: for ax in [ax1, ax2]: info = str(next(iter(selected.values()))['hyperparameters']) txt = ax.text(0.5, 1, info, ha='center', va='top', wrap=True, transform=ax.transAxes, # bbox=dict(boxstyle='square') ) txt._get_wrap_line_width = lambda: 400. # wrap to 600 screen pixels # small adjustments for intervention guessing if dirname.startswith('guess'): curves.axes[0].set_ylim(0, 1.5) for fig in [curves, scatter]: fig.axes[0].set_xlabel('') fig.axes[0].set_ylabel('') for style, fig in {'curves': curves, 'scatter': scatter}.items(): for figpath in [ os.path.join('plots', dirname, f'{style}_{plotname}.pdf')]: print("Saving ", figpath) os.makedirs(os.path.dirname(figpath), exist_ok=True) # os.path.join('plots/sweep/png', f'{style}_{plotname}.png')]: fig.savefig(figpath, bbox_inches='tight') plt.close(curves) plt.close(scatter) print() def plot_marginal_likelihoods(results, intervention, k, dirname): exp = results[0] values = {} for whom in ['A', 'B']: values[whom] = exp['loglikelihood' + whom][:100].cumsum(0) xx = np.arange(1, values[whom].shape[0] + 1) values[whom] /= xx[:, np.newaxis] if intervention == 'cause': right, wrong = 'A', 'B' else: right, wrong = 'B', 'A' plt.plot(values[wrong] - values[right], alpha=.2) plt.hlines(0, 0, values['B'].shape[0]) plt.grid() plt.ylim(-1, 1) figpath = os.path.join('plots', dirname, 'guessing', f'guess_{intervention}_k={k}.pdf') os.makedirs(os.path.dirname(figpath), exist_ok=True) plt.savefig(figpath, bbox_inches='tight') plt.close() def merge_results(results1, results2, bs=5): """Combine results from intervention on cause and effect. Also report statistics about pooled results. Pooled records the average over 10 cause and 10 effect interventions the goal is to have tighter percentile curves which are representative of the algorithm's performance """ combined = [] pooled = [] for e1, e2 in zip(results1, results2): h1, h2 = e1['hyperparameters'], e2['hyperparameters'] assert h1['lr'] == h2['lr'] t1, t2 = e1['trajectory'], e2['trajectory'] combined_trajs = {'steps': t1['steps']} pooled_trajs = combined_trajs.copy() for key in t1.keys(): if key.startswith(('scoredist', 'kl')): combined_trajs[key] = np.concatenate((t1[key], t2[key]), axis=1) meantraj = (t1[key] + t2[key]) / 2 pooled_trajs[key] = np.array([ meantraj[:, bs * i:bs * (i + 1)].mean(axis=1) for i in range(meantraj.shape[1] // bs) ]).T combined += [{'hyperparameters': h1, 'trajectory': combined_trajs}] pooled += [{'hyperparameters': h2, 'trajectory': pooled_trajs}] return combined, pooled def all_plot(guess=False, dense=True, input_dir='categorical_results', output_dir='camera_ready', figsize=(3.6, 2.2)): basefile = '_'.join(['guess' if guess else 'sweep2', 'denseinit' if dense else 'sparseinit']) print(basefile, '\n---------------------') prior_string = 'dense' if dense else 'sparse' for k in [20]: # [10, 20, 50]: # Optimize hyperparameters for nsteps such that curves are k-invariant nsteps = k ** 2 // 4 allresults = defaultdict(list) for intervention in ['cause', 'effect']: # 'singlecond', 'gmechanism', 'independent', 'geometric', 'weightedgeo']: plotname = f'{prior_string}_{intervention}_k={k}' file = f'{basefile}_{intervention}_k={k}.pkl' filepath = os.path.join(input_dir, file) print(os.path.abspath(filepath)) if os.path.isfile(filepath): with open(filepath, 'rb') as fin: results = pickle.load(fin) print(1) two_plots(results, nsteps, plotname=plotname, dirname=output_dir, figsize=figsize) allresults[intervention] = results # if guess: # plot_marginal_likelihoods(results, intervention, k, basefile) # if not guess and 'cause' in allresults and 'effect' in allresults: # combined, pooled = merge_results(allresults['cause'], allresults['effect']) # if len(combined) > 0: # for key, item in {'combined': combined, 'pooled': pooled}.items(): # two_plots(item, nsteps, # plotname=f'{prior_string}_{key}_k={k}', # dirname=output_dir, # figsize=figsize) if __name__ == '__main__': np.set_printoptions(precision=2) matplotlib.use('pgf') matplotlib.rcParams['mathtext.fontset'] = 'cm' matplotlib.rcParams['pdf.fonttype'] = 42 # all_plot(guess=True, dense=True) # all_plot(guess=True, dense=False) all_plot(guess=False, dense=True) all_plot(guess=False, dense=False)
[ "collections.defaultdict", "os.path.isfile", "pickle.load", "numpy.arange", "os.path.join", "matplotlib.pyplot.hlines", "os.path.abspath", "numpy.set_printoptions", "matplotlib.pyplot.close", "os.path.dirname", "matplotlib.pyplot.subplots", "matplotlib.pyplot.ylim", "numpy.percentile", "matplotlib.use", "matplotlib.pyplot.grid", "numpy.concatenate", "matplotlib.pyplot.plot", "numpy.searchsorted", "matplotlib.pyplot.savefig" ]
[((3201, 3248), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(1)', 'figsize': 'figsize'}), '(nrows=1, ncols=1, figsize=figsize)\n', (3213, 3248), True, 'import matplotlib.pyplot as plt\n'), ((4291, 4338), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(1)', 'figsize': 'figsize'}), '(nrows=1, ncols=1, figsize=figsize)\n', (4303, 4338), True, 'import matplotlib.pyplot as plt\n'), ((7865, 7882), 'matplotlib.pyplot.close', 'plt.close', (['curves'], {}), '(curves)\n', (7874, 7882), True, 'import matplotlib.pyplot as plt\n'), ((7887, 7905), 'matplotlib.pyplot.close', 'plt.close', (['scatter'], {}), '(scatter)\n', (7896, 7905), True, 'import matplotlib.pyplot as plt\n'), ((8325, 8375), 'matplotlib.pyplot.plot', 'plt.plot', (['(values[wrong] - values[right])'], {'alpha': '(0.2)'}), '(values[wrong] - values[right], alpha=0.2)\n', (8333, 8375), True, 'import matplotlib.pyplot as plt\n'), ((8379, 8417), 'matplotlib.pyplot.hlines', 'plt.hlines', (['(0)', '(0)', "values['B'].shape[0]"], {}), "(0, 0, values['B'].shape[0])\n", (8389, 8417), True, 'import matplotlib.pyplot as plt\n'), ((8422, 8432), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (8430, 8432), True, 'import matplotlib.pyplot as plt\n'), ((8437, 8452), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1)', '(1)'], {}), '(-1, 1)\n', (8445, 8452), True, 'import matplotlib.pyplot as plt\n'), ((8467, 8544), 'os.path.join', 'os.path.join', (['"""plots"""', 'dirname', '"""guessing"""', 'f"""guess_{intervention}_k={k}.pdf"""'], {}), "('plots', dirname, 'guessing', f'guess_{intervention}_k={k}.pdf')\n", (8479, 8544), False, 'import os\n'), ((8606, 8647), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figpath'], {'bbox_inches': '"""tight"""'}), "(figpath, bbox_inches='tight')\n", (8617, 8647), True, 'import matplotlib.pyplot as plt\n'), ((8652, 8663), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8661, 8663), True, 'import matplotlib.pyplot as plt\n'), ((11899, 11931), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (11918, 11931), True, 'import numpy as np\n'), ((11936, 11957), 'matplotlib.use', 'matplotlib.use', (['"""pgf"""'], {}), "('pgf')\n", (11950, 11957), False, 'import matplotlib\n'), ((928, 958), 'numpy.searchsorted', 'np.searchsorted', (['steps', 'nsteps'], {}), '(steps, nsteps)\n', (943, 958), True, 'import numpy as np\n'), ((8131, 8170), 'numpy.arange', 'np.arange', (['(1)', '(values[whom].shape[0] + 1)'], {}), '(1, values[whom].shape[0] + 1)\n', (8140, 8170), True, 'import numpy as np\n'), ((8561, 8585), 'os.path.dirname', 'os.path.dirname', (['figpath'], {}), '(figpath)\n', (8576, 8585), False, 'import os\n'), ((10452, 10469), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (10463, 10469), False, 'from collections import defaultdict\n'), ((3410, 3438), 'numpy.searchsorted', 'np.searchsorted', (['xx', 'endstep'], {}), '(xx, endstep)\n', (3425, 3438), True, 'import numpy as np\n'), ((3784, 3828), 'numpy.percentile', 'np.percentile', (['values', 'confidence[0]'], {'axis': '(1)'}), '(values, confidence[0], axis=1)\n', (3797, 3828), True, 'import numpy as np\n'), ((3842, 3886), 'numpy.percentile', 'np.percentile', (['values', 'confidence[1]'], {'axis': '(1)'}), '(values, confidence[1], axis=1)\n', (3855, 3886), True, 'import numpy as np\n'), ((4495, 4533), 'numpy.searchsorted', 'np.searchsorted', (["item['steps']", 'nsteps'], {}), "(item['steps'], nsteps)\n", (4510, 4533), True, 'import numpy as np\n'), ((7569, 7626), 'os.path.join', 'os.path.join', (['"""plots"""', 'dirname', 'f"""{style}_{plotname}.pdf"""'], {}), "('plots', dirname, f'{style}_{plotname}.pdf')\n", (7581, 7626), False, 'import os\n'), ((10748, 10777), 'os.path.join', 'os.path.join', (['input_dir', 'file'], {}), '(input_dir, file)\n', (10760, 10777), False, 'import os\n'), ((10838, 10862), 'os.path.isfile', 'os.path.isfile', (['filepath'], {}), '(filepath)\n', (10852, 10862), False, 'import os\n'), ((7691, 7715), 'os.path.dirname', 'os.path.dirname', (['figpath'], {}), '(figpath)\n', (7706, 7715), False, 'import os\n'), ((9454, 9496), 'numpy.concatenate', 'np.concatenate', (['(t1[key], t2[key])'], {'axis': '(1)'}), '((t1[key], t2[key]), axis=1)\n', (9468, 9496), True, 'import numpy as np\n'), ((10796, 10821), 'os.path.abspath', 'os.path.abspath', (['filepath'], {}), '(filepath)\n', (10811, 10821), False, 'import os\n'), ((10944, 10960), 'pickle.load', 'pickle.load', (['fin'], {}), '(fin)\n', (10955, 10960), False, 'import pickle\n')]
# -*- coding: utf-8 -*- """ CW, FGSM, and IFGSM Attack CNN """ import torch._utils try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torch.optim as optim import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms from torch.autograd import Variable import copy import math import numpy as np import os import argparse import torch.utils.data as data #from utils import * import numpy.matlib import matplotlib.pyplot as plt import pickle # import cPickle from collections import OrderedDict import models.cifar as models model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='Fool EnResNet') ap = parser.add_argument ap('--method', help='Attack Method', type=str, default="ifgsm") # fgsm, ifgsm, cwl2 ap('--epsilon', help='Attack Strength', type=float, default=0.031) # May 2 ap('--num-ensembles', '--ne', default=2, type=int, metavar='N') ap('--noise-coef', '--nc', default=0.1, type=float, metavar='W', help='forward noise (default: 0.0)') ap('--noise-coef-eval', '--nce', default=0.0, type=float, metavar='W', help='forward noise (default: 0.)') ap('--arch', '-a', metavar='ARCH', default='resnet20', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') ap('--depth', type=int, default=29, help='Model depth.') ap('--block-name', type=str, default='BasicBlock', help='the building block for Resnet and Preresnet: BasicBlock, Bottleneck (default: Basicblock for cifar10/cifar100)') ap('--cardinality', type=int, default=8, help='Model cardinality (group).') ap('--widen-factor', type=int, default=4, help='Widen factor. 4 -> 64, 8 -> 128, ...') ap('--growthRate', type=int, default=12, help='Growth rate for DenseNet.') ap('--compressionRate', type=int, default=2, help='Compression Rate (theta) for DenseNet.') ap('--feature_vec', default='x', type=str) ap('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') ap('-d', '--dataset', default='cifar10', type=str) ap('--eta', default=1.0, type=float, help='eta in HOResNet') ap('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') opt = parser.parse_args() def conv3x3(in_planes, out_planes, stride=1): """ 3x3 convolution with padding """ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) if __name__ == '__main__': """ Load the trained DNN, and attack the DNN, finally save the adversarial images """ # Model if opt.dataset == 'cifar10': dataloader = dset.CIFAR10 num_classes = 10 else: dataloader = dset.CIFAR100 num_classes = 100 print("==> creating model '{}'".format(opt.arch)) if opt.arch.startswith('resnext'): net = models.__dict__[opt.arch]( cardinality=opt.cardinality, num_classes=num_classes, depth=opt.depth, widen_factor=opt.widen_factor, dropRate=opt.drop, ) elif opt.arch.startswith('densenet'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, growthRate=opt.growthRate, compressionRate=opt.compressionRate, dropRate=opt.drop, ) elif opt.arch.startswith('wrn'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, widen_factor=opt.widen_factor, dropRate=opt.drop, ) elif opt.arch.startswith('resnet'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, block_name=opt.block_name, ) elif opt.arch.startswith('preresnet'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, block_name=opt.block_name, ) elif opt.arch.startswith('horesnet'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, eta=opt.eta, block_name=opt.block_name, feature_vec=opt.feature_vec ) elif opt.arch.startswith('hopreresnet'): net = models.__dict__[opt.arch]( num_classes=num_classes, depth=opt.depth, eta=opt.eta, block_name=opt.block_name, feature_vec=opt.feature_vec ) else: net = models.__dict__[opt.arch](num_classes=num_classes) # Load the model print('==> Resuming from checkpoint..') assert os.path.isfile(opt.checkpoint), 'Error: no checkpoint directory found!' opt.checkpoint_dir = os.path.dirname(opt.checkpoint) checkpoint = torch.load(opt.checkpoint) best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] net.load_state_dict(checkpoint['state_dict']) net = net.cuda() epsilon = opt.epsilon attack_type = opt.method # Load the original test data print('==> Load the clean image') root = './data' download = False kwargs = {'num_workers':1, 'pin_memory':True} batchsize_test = 1000 if attack_type == 'cw': batchsize_test = 1 print('Batch size of the test set: ', batchsize_test) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) test_set = dataloader(root='./data', train=False, download=False, transform=transform_test) test_loader = data.DataLoader(test_set, batch_size=batchsize_test, shuffle=False, num_workers=1, pin_memory=True) criterion = nn.CrossEntropyLoss() #-------------------------------------------------------------------------- # Testing # images: the original images # labels: labels of the original images # images_adv: adversarial image # labels_pred: the predicted labels of the adversarial images # noise: the added noise #-------------------------------------------------------------------------- images, labels, images_adv, labels_pred, noise = [], [], [], [], [] total_fooled = 0; total_correct_classified = 0 if attack_type == 'fgsm': for batch_idx, (x1, y1_true) in enumerate(test_loader): #if batch_idx < 2: x_Test = x1.numpy() #print x_Test.min(), x_Test.max() #x_Test = ((x_Test - x_Test.min())/(x_Test.max() - x_Test.min()) - 0.5)*2 #x_Test = (x_Test - x_Test.min() )/(x_Test.max() - x_Test.min()) y_Test = y1_true.numpy() #x = Variable(torch.cuda.FloatTensor(x_Test.reshape(1, 1, 28, 28)), requires_grad=True) x = Variable(torch.cuda.FloatTensor(x_Test.reshape(batchsize_test, 3, 32, 32)), requires_grad=True) y = Variable(torch.cuda.LongTensor(y_Test), requires_grad=False) # Classification before perturbation pred_tmp = net(x) y_pred = np.argmax(pred_tmp.cpu().data.numpy()) loss = criterion(pred_tmp, y) # Attack net.zero_grad() if x.grad is not None: x.grad.data.fill_(0) loss.backward() x_val_min = 0.0 x_val_max = 1.0 x.grad.sign_() x_adversarial = x + epsilon*x.grad x_adversarial = torch.clamp(x_adversarial, x_val_min, x_val_max) x_adversarial = x_adversarial.data # Classify the perturbed data x_adversarial_tmp = Variable(x_adversarial) pred_tmp = net(x_adversarial_tmp) y_pred_adversarial = np.argmax(pred_tmp.cpu().data.numpy(), axis=1) for i in range(len(x_Test)): #print y_pred_adversarial if y_Test[i] == y_pred_adversarial[i]: #if y_Test == y_pred_adversarial: total_correct_classified += 1 for i in range(len(x_Test)): # Save the perturbed data images.append(x_Test[i, :, :, :]) # Original image images_adv.append(x_adversarial.cpu().numpy()[i, :, :, :]) # Perturbed image noise.append(x_adversarial.cpu().numpy()[i, :, :, :]-x_Test[i, :, :, :]) # Noise labels.append(y_Test[i]) labels_pred.append(y_pred_adversarial[i]) elif attack_type == 'ifgsm': for batch_idx, (x1, y1_true) in enumerate(test_loader): #if batch_idx < 100: #x_Test = (x_Test - x_Test.min())/(x_Test.max()-x_Test.min()) x_Test = ((x1 - x1.min())/(x1.max() - x1.min()) - 0.5)*2 x_Test = x_Test.numpy() y_Test = y1_true.numpy() x = Variable(torch.cuda.FloatTensor(x_Test.reshape(batchsize_test, 3, 32, 32)), requires_grad=True) y = Variable(torch.cuda.LongTensor(y_Test), requires_grad=False) # Classification before perturbation pred_tmp = net(x) y_pred = np.argmax(pred_tmp.cpu().data.numpy()) loss = criterion(pred_tmp, y) # Attack alpha = epsilon #iteration = 10 iteration = 20 x_val_min = 0.; x_val_max = 1. epsilon1 = 0.031 # Helper function def where(cond, x, y): """ code from : https://discuss.pytorch.org/t/how-can-i-do-the-operation-the-same-as-np-where/1329/8 """ cond = cond.float() return (cond*x) + ((1-cond)*y) # Random perturbation #x = x + torch.zeros_like(x).uniform_(-epsilon1, epsilon1) # May 2 x_adv = Variable(x.data, requires_grad=True) for i in range(iteration): h_adv = net(x_adv) loss = criterion(h_adv, y) net.zero_grad() if x_adv.grad is not None: x_adv.grad.data.fill_(0) loss.backward() x_adv.grad.sign_() x_adv = x_adv + alpha*x_adv.grad x_adv = where(x_adv > x+epsilon1, x+epsilon1, x_adv) x_adv = where(x_adv < x-epsilon1, x-epsilon1, x_adv) x_adv = torch.clamp(x_adv, x_val_min, x_val_max) x_adv = Variable(x_adv.data, requires_grad=True) x_adversarial = x_adv.data x_adversarial_tmp = Variable(x_adversarial) pred_tmp = net(x_adversarial_tmp) loss = criterion(pred_tmp, y) y_pred_adversarial = np.argmax(pred_tmp.cpu().data.numpy(), axis=1) #if y_Test == y_pred_adversarial: # total_correct_classified += 1 for i in range(len(x_Test)): #print y_pred_adversarial if y_Test[i] == y_pred_adversarial[i]: #if y_Test == y_pred_adversarial: total_correct_classified += 1 for i in range(len(x_Test)): # Save the perturbed data images.append(x_Test[i, :, :, :]) # Original image images_adv.append(x_adversarial.cpu().numpy()[i, :, :, :]) # Perturbed image noise.append(x_adversarial.cpu().numpy()[i, :, :, :]-x_Test[i, :, :, :]) # Noise labels.append(y_Test[i]) labels_pred.append(y_pred_adversarial[i]) elif attack_type == 'cw': for batch_idx, (x1, y1_true) in enumerate(test_loader): #if batch_idx < 10: if batch_idx - int(int(batch_idx/50.)*50) == 0: print(batch_idx) x_Test = x1.numpy() y_Test = y1_true.numpy() x = Variable(torch.cuda.FloatTensor(x_Test.reshape(batchsize_test, 3, 32, 32)), requires_grad=True) y = Variable(torch.cuda.LongTensor(y_Test), requires_grad=False) # Classification before perturbation pred_tmp = net(x) loss = criterion(pred_tmp, y) y_pred = np.argmax(pred_tmp.cpu().data.numpy()) # Attack cwl2_learning_rate = 0.0006#0.01 max_iter = 50 lambdaf = 10.0 kappa = 0.0 # The input image we will perturb input = torch.FloatTensor(x_Test.reshape(batchsize_test, 3, 32, 32)) input_var = Variable(input) # w is the variable we will optimize over. We will also save the best w and loss w = Variable(input, requires_grad=True) best_w = input.clone() best_loss = float('inf') # Use the Adam optimizer for the minimization optimizer = optim.Adam([w], lr=cwl2_learning_rate) # Get the top2 predictions of the model. Get the argmaxes for the objective function probs = net(input_var.cuda()) probs_data = probs.data.cpu() top1_idx = torch.max(probs_data, 1)[1] probs_data[0][top1_idx] = -1 # making the previous top1 the lowest so we get the top2 top2_idx = torch.max(probs_data, 1)[1] # Set the argmax (but maybe argmax will just equal top2_idx always?) argmax = top1_idx[0] if argmax == y_pred: argmax = top2_idx[0] # The iteration for i in range(0, max_iter): if i > 0: w.grad.data.fill_(0) # Zero grad (Only one line needed actually) net.zero_grad() optimizer.zero_grad() # Compute L2 Loss loss = torch.pow(w - input_var, 2).sum() # w variable w_data = w.data w_in = Variable(w_data, requires_grad=True) # Compute output output = net.forward(w_in.cuda()) #second argument is unneeded # Calculating the (hinge) loss loss += lambdaf * torch.clamp( output[0][y_pred] - output[0][argmax] + kappa, min=0).cpu() # Backprop the loss loss.backward() # Work on w (Don't think we need this) w.grad.data.add_(w_in.grad.data) # Optimizer step optimizer.step() # Save the best w and loss total_loss = loss.data.cpu()[0] if total_loss < best_loss: best_loss = total_loss ##best_w = torch.clamp(best_w, 0., 1.) # BW Added Aug 26 best_w = w.data.clone() # Set final adversarial image as the best-found w x_adversarial = best_w ##x_adversarial = torch.clamp(x_adversarial, 0., 1.) # BW Added Aug 26 #--------------- Add to introduce the noise noise_tmp = x_adversarial.cpu().numpy() - x_Test x_adversarial = x_Test + epsilon * noise_tmp #--------------- # Classify the perturbed data x_adversarial_tmp = Variable(torch.cuda.FloatTensor(x_adversarial), requires_grad=False) #Variable(x_adversarial).cuda() pred_tmp = net(x_adversarial_tmp) y_pred_adversarial = np.argmax(pred_tmp.cpu().data.numpy()) # axis=1 if y_Test == y_pred_adversarial: total_correct_classified += 1 # Save the perturbed data images.append(x_Test) # Original image images_adv.append(x_adversarial) # Perturbed image noise.append(x_adversarial-x_Test) # Noise labels.append(y_Test) labels_pred.append(y_pred_adversarial) elif attack_type == 'clean': for batch_idx, (x1, y1_true) in enumerate(test_loader): #if batch_idx < 2: x_Test = x1.numpy() #print x_Test.min(), x_Test.max() #x_Test = ((x_Test - x_Test.min())/(x_Test.max() - x_Test.min()) - 0.5)*2 #x_Test = (x_Test - x_Test.min() )/(x_Test.max() - x_Test.min()) y_Test = y1_true.numpy() #x = Variable(torch.cuda.FloatTensor(x_Test.reshape(1, 1, 28, 28)), requires_grad=True) #x, y = torch.autograd.Variable(torch.cuda.FloatTensor(x_Test), volatile=True), torch.autograd.Variable(torch.cuda.LongTensor(y_Test)) x = Variable(torch.cuda.FloatTensor(x_Test.reshape(batchsize_test, 3, 32, 32)), requires_grad=True) y = Variable(torch.cuda.LongTensor(y_Test), requires_grad=False) # Classification before perturbation pred_tmp = net(x) y_pred = np.argmax(pred_tmp.cpu().data.numpy(), axis=1) for i in range(len(x_Test)): #print y_pred_adversarial if y_Test[i] == y_pred[i]: #if y_Test == y_pred_adversarial: total_correct_classified += 1 else: ValueError('Unsupported Attack') print(opt.checkpoint) print('Number of correctly classified images: ', total_correct_classified) # Save data #with open("Adversarial" + attack_type + str(int(10*epsilon)) + ".pkl", "w") as f: #with open("Adversarial" + attack_type + str(int(100*epsilon)) + ".pkl", "w") as f: # adv_data_dict = {"images":images_adv, "labels":labels} # cPickle.dump(adv_data_dict, f) images = np.array(images).squeeze() images_adv = np.array(images_adv).squeeze() noise = np.array(noise).squeeze() labels = np.array(labels).squeeze() labels_pred = np.array(labels_pred).squeeze() print([images.shape, images_adv.shape, noise.shape, labels.shape, labels_pred.shape]) # with open("fooled_EnResNet5_20_PGD_10iters_" + attack_type + str(int(1000*epsilon)) + ".pkl", "w") as f: # #with open("fooled_EnResNet5_20_PGD_20iters_" + attack_type + str(int(1000*epsilon)) + ".pkl", "w") as f: # adv_data_dict = { # "images" : images, # "images_adversarial" : images_adv, # "y_trues" : labels, # "noises" : noise, # "y_preds_adversarial" : labels_pred # } # pickle.dump(adv_data_dict, f)
[ "argparse.ArgumentParser", "torch.utils.data.DataLoader", "torch.autograd.Variable", "torch.load", "torch.nn.Conv2d", "os.path.dirname", "torch.nn.CrossEntropyLoss", "torch._utils._rebuild_tensor", "torch.cuda.FloatTensor", "os.path.isfile", "torch.clamp", "numpy.array", "torch.optim.Adam", "torch.max", "torch.cuda.LongTensor", "torch.pow", "torchvision.transforms.Normalize", "torchvision.transforms.ToTensor" ]
[((1203, 1255), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Fool EnResNet"""'}), "(description='Fool EnResNet')\n", (1226, 1255), False, 'import argparse\n'), ((3100, 3189), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_planes', 'out_planes'], {'kernel_size': '(3)', 'stride': 'stride', 'padding': '(1)', 'bias': '(False)'}), '(in_planes, out_planes, kernel_size=3, stride=stride, padding=1,\n bias=False)\n', (3109, 3189), True, 'import torch.nn as nn\n'), ((5708, 5738), 'os.path.isfile', 'os.path.isfile', (['opt.checkpoint'], {}), '(opt.checkpoint)\n', (5722, 5738), False, 'import os\n'), ((5805, 5836), 'os.path.dirname', 'os.path.dirname', (['opt.checkpoint'], {}), '(opt.checkpoint)\n', (5820, 5836), False, 'import os\n'), ((5854, 5880), 'torch.load', 'torch.load', (['opt.checkpoint'], {}), '(opt.checkpoint)\n', (5864, 5880), False, 'import torch\n'), ((6681, 6784), 'torch.utils.data.DataLoader', 'data.DataLoader', (['test_set'], {'batch_size': 'batchsize_test', 'shuffle': '(False)', 'num_workers': '(1)', 'pin_memory': '(True)'}), '(test_set, batch_size=batchsize_test, shuffle=False,\n num_workers=1, pin_memory=True)\n', (6696, 6784), True, 'import torch.utils.data as data\n'), ((6802, 6823), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (6821, 6823), True, 'import torch.nn as nn\n'), ((262, 329), 'torch._utils._rebuild_tensor', 'torch._utils._rebuild_tensor', (['storage', 'storage_offset', 'size', 'stride'], {}), '(storage, storage_offset, size, stride)\n', (290, 329), False, 'import torch\n'), ((6450, 6471), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (6469, 6471), True, 'import torchvision.transforms as transforms\n'), ((6481, 6552), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.4914, 0.4822, 0.4465)', '(0.2023, 0.1994, 0.201)'], {}), '((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))\n', (6501, 6552), True, 'import torchvision.transforms as transforms\n'), ((8565, 8613), 'torch.clamp', 'torch.clamp', (['x_adversarial', 'x_val_min', 'x_val_max'], {}), '(x_adversarial, x_val_min, x_val_max)\n', (8576, 8613), False, 'import torch\n'), ((8748, 8771), 'torch.autograd.Variable', 'Variable', (['x_adversarial'], {}), '(x_adversarial)\n', (8756, 8771), False, 'from torch.autograd import Variable\n'), ((19211, 19227), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (19219, 19227), True, 'import numpy as np\n'), ((19255, 19275), 'numpy.array', 'np.array', (['images_adv'], {}), '(images_adv)\n', (19263, 19275), True, 'import numpy as np\n'), ((19298, 19313), 'numpy.array', 'np.array', (['noise'], {}), '(noise)\n', (19306, 19313), True, 'import numpy as np\n'), ((19337, 19353), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (19345, 19353), True, 'import numpy as np\n'), ((19382, 19403), 'numpy.array', 'np.array', (['labels_pred'], {}), '(labels_pred)\n', (19390, 19403), True, 'import numpy as np\n'), ((7986, 8015), 'torch.cuda.LongTensor', 'torch.cuda.LongTensor', (['y_Test'], {}), '(y_Test)\n', (8007, 8015), False, 'import torch\n'), ((11002, 11038), 'torch.autograd.Variable', 'Variable', (['x.data'], {'requires_grad': '(True)'}), '(x.data, requires_grad=True)\n', (11010, 11038), False, 'from torch.autograd import Variable\n'), ((11791, 11814), 'torch.autograd.Variable', 'Variable', (['x_adversarial'], {}), '(x_adversarial)\n', (11799, 11814), False, 'from torch.autograd import Variable\n'), ((10104, 10133), 'torch.cuda.LongTensor', 'torch.cuda.LongTensor', (['y_Test'], {}), '(y_Test)\n', (10125, 10133), False, 'import torch\n'), ((11584, 11624), 'torch.clamp', 'torch.clamp', (['x_adv', 'x_val_min', 'x_val_max'], {}), '(x_adv, x_val_min, x_val_max)\n', (11595, 11624), False, 'import torch\n'), ((11649, 11689), 'torch.autograd.Variable', 'Variable', (['x_adv.data'], {'requires_grad': '(True)'}), '(x_adv.data, requires_grad=True)\n', (11657, 11689), False, 'from torch.autograd import Variable\n'), ((13795, 13810), 'torch.autograd.Variable', 'Variable', (['input'], {}), '(input)\n', (13803, 13810), False, 'from torch.autograd import Variable\n'), ((13933, 13968), 'torch.autograd.Variable', 'Variable', (['input'], {'requires_grad': '(True)'}), '(input, requires_grad=True)\n', (13941, 13968), False, 'from torch.autograd import Variable\n'), ((14137, 14175), 'torch.optim.Adam', 'optim.Adam', (['[w]'], {'lr': 'cwl2_learning_rate'}), '([w], lr=cwl2_learning_rate)\n', (14147, 14175), True, 'import torch.optim as optim\n'), ((13228, 13257), 'torch.cuda.LongTensor', 'torch.cuda.LongTensor', (['y_Test'], {}), '(y_Test)\n', (13249, 13257), False, 'import torch\n'), ((14406, 14430), 'torch.max', 'torch.max', (['probs_data', '(1)'], {}), '(probs_data, 1)\n', (14415, 14430), False, 'import torch\n'), ((14555, 14579), 'torch.max', 'torch.max', (['probs_data', '(1)'], {}), '(probs_data, 1)\n', (14564, 14579), False, 'import torch\n'), ((15289, 15325), 'torch.autograd.Variable', 'Variable', (['w_data'], {'requires_grad': '(True)'}), '(w_data, requires_grad=True)\n', (15297, 15325), False, 'from torch.autograd import Variable\n'), ((16807, 16844), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['x_adversarial'], {}), '(x_adversarial)\n', (16829, 16844), False, 'import torch\n'), ((18261, 18290), 'torch.cuda.LongTensor', 'torch.cuda.LongTensor', (['y_Test'], {}), '(y_Test)\n', (18282, 18290), False, 'import torch\n'), ((15154, 15181), 'torch.pow', 'torch.pow', (['(w - input_var)', '(2)'], {}), '(w - input_var, 2)\n', (15163, 15181), False, 'import torch\n'), ((15553, 15618), 'torch.clamp', 'torch.clamp', (['(output[0][y_pred] - output[0][argmax] + kappa)'], {'min': '(0)'}), '(output[0][y_pred] - output[0][argmax] + kappa, min=0)\n', (15564, 15618), False, 'import torch\n')]
# encoding: utf-8 __author__ = "<NAME>" # Parts of the code have been taken from https://github.com/facebookresearch/fastMRI import numpy as np import pytest import torch from tests.collections.reconstruction.fastmri.create_temp_data import create_temp_data # these are really slow - skip by default SKIP_INTEGRATIONS = True def create_input(shape): """ Create a random input tensor of the given shape. Args: shape: The shape of the input tensor. Returns: A random input tensor. """ x = np.arange(np.product(shape)).reshape(shape) x = torch.from_numpy(x).float() return x @pytest.fixture(scope="session") def fastmri_mock_dataset(tmp_path_factory): """ Create a mock dataset for testing. Args: tmp_path_factory: A temporary path factory. Returns: A mock dataset. """ path = tmp_path_factory.mktemp("fastmri_data") return create_temp_data(path) @pytest.fixture def skip_integration_tests(): """ Skip integration tests if the environment variable is set. Returns: A boolean indicating whether to skip integration tests. """ return SKIP_INTEGRATIONS @pytest.fixture def knee_split_lens(): """ The split lengths for the knee dataset. Returns: A dictionary with the split lengths. """ return { "multicoil_train": 34742, "multicoil_val": 7135, "multicoil_test": 4092, "singlecoil_train": 34742, "singlecoil_val": 7135, "singlecoil_test": 3903, } @pytest.fixture def brain_split_lens(): """ The split lengths for the brain dataset. Returns: A dictionary with the split lengths. """ return { "multicoil_train": 70748, "multicoil_val": 21842, "multicoil_test": 8852, }
[ "numpy.product", "tests.collections.reconstruction.fastmri.create_temp_data.create_temp_data", "pytest.fixture", "torch.from_numpy" ]
[((632, 663), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (646, 663), False, 'import pytest\n'), ((927, 949), 'tests.collections.reconstruction.fastmri.create_temp_data.create_temp_data', 'create_temp_data', (['path'], {}), '(path)\n', (943, 949), False, 'from tests.collections.reconstruction.fastmri.create_temp_data import create_temp_data\n'), ((587, 606), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (603, 606), False, 'import torch\n'), ((545, 562), 'numpy.product', 'np.product', (['shape'], {}), '(shape)\n', (555, 562), True, 'import numpy as np\n')]
# TODOS #-------------------------------------- # imports import matplotlib.pyplot as plt from atalaia.atalaia import Atalaia import numpy as np import networkx as nx class Explore: """Explore is used for text exploratory tasks. """ def __init__(self, language:str): """ Parameters ---------- language : str The language of the corpus """ self.language = language self.atalaia = self.__start_atalaia() def __start_atalaia(self): """ Starts an instance of Atalaia""" return Atalaia(self.language) def describe(self, corpus:list): """ Gets the lengths of the sentences present in the corpus, based on the number of tokens. Returns the lengths, the shortest value and the longest value and the average sentence size.""" # tokenize sentences tokenized_sentences = [self.atalaia.tokenize(sentence) for sentence in corpus] # get the lengths lengths = [len(sentence) for sentence in tokenized_sentences] # get the percentiles a = np.array(lengths) percentiles = (np.percentile(a,0), np.percentile(a,25), np.percentile(a,50), np.percentile(a,75), np.percentile(a,100)) # get shortest, longest and average sentence size using the percentiles values shortest = percentiles[0] # 0% longest = percentiles[4] # 100% average = percentiles[2] # 50% return lengths, shortest, longest, average, percentiles def plot_sentences_size_histogram(self, corpus:list, bins = 30, xlabel = 'Number of tokens', ylabel = 'Frequency'): """ Plots the tokens distribution """ # get sentences sizes sentences_sizes, shortest, longest, average, percentiles = self.describe(corpus) # plot plt.hist(sentences_sizes, bins = bins) plt.xlabel(xlabel) plt.xlabel(ylabel) plt.show() # return sizes, shortest and longest values and average return sentences_sizes, shortest, longest, average, percentiles def plot_sentences_size_boxplot(self, corpus:list): # get sentences sizes sentences_sizes, shortest, longest, average, percentiles = self.describe(corpus) # plot boxplot plt.boxplot(sentences_sizes) plt.show() # return sizes, shortest and longest values and average return sentences_sizes, shortest, longest, average, percentiles def plot_representative_tokens(self, corpus:list, percentage=0.3): #create corpus corpus = self.atalaia.create_corpus(corpus) # let's lowercase everything first texts_lower = self.atalaia.lower_remove_white(corpus) # plot token_data = self.atalaia.representative_tokens(percentage, texts_lower, reverse=False) token_data = token_data.items() token_data = list(token_data)[:10] tokens, counts = zip(*token_data) # plot plt.figure(figsize=(20,10)) plt.bar(tokens, counts, color='b') plt.xlabel('Tokens'); plt.ylabel('Counts');
[ "matplotlib.pyplot.show", "matplotlib.pyplot.hist", "matplotlib.pyplot.boxplot", "matplotlib.pyplot.bar", "atalaia.atalaia.Atalaia", "numpy.percentile", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((585, 607), 'atalaia.atalaia.Atalaia', 'Atalaia', (['self.language'], {}), '(self.language)\n', (592, 607), False, 'from atalaia.atalaia import Atalaia\n'), ((1116, 1133), 'numpy.array', 'np.array', (['lengths'], {}), '(lengths)\n', (1124, 1133), True, 'import numpy as np\n'), ((1854, 1890), 'matplotlib.pyplot.hist', 'plt.hist', (['sentences_sizes'], {'bins': 'bins'}), '(sentences_sizes, bins=bins)\n', (1862, 1890), True, 'import matplotlib.pyplot as plt\n'), ((1901, 1919), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (1911, 1919), True, 'import matplotlib.pyplot as plt\n'), ((1928, 1946), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['ylabel'], {}), '(ylabel)\n', (1938, 1946), True, 'import matplotlib.pyplot as plt\n'), ((1955, 1965), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1963, 1965), True, 'import matplotlib.pyplot as plt\n'), ((2312, 2340), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['sentences_sizes'], {}), '(sentences_sizes)\n', (2323, 2340), True, 'import matplotlib.pyplot as plt\n'), ((2349, 2359), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2357, 2359), True, 'import matplotlib.pyplot as plt\n'), ((3145, 3173), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (3155, 3173), True, 'import matplotlib.pyplot as plt\n'), ((3181, 3215), 'matplotlib.pyplot.bar', 'plt.bar', (['tokens', 'counts'], {'color': '"""b"""'}), "(tokens, counts, color='b')\n", (3188, 3215), True, 'import matplotlib.pyplot as plt\n'), ((3258, 3278), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Tokens"""'], {}), "('Tokens')\n", (3268, 3278), True, 'import matplotlib.pyplot as plt\n'), ((3288, 3308), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Counts"""'], {}), "('Counts')\n", (3298, 3308), True, 'import matplotlib.pyplot as plt\n'), ((1157, 1176), 'numpy.percentile', 'np.percentile', (['a', '(0)'], {}), '(a, 0)\n', (1170, 1176), True, 'import numpy as np\n'), ((1177, 1197), 'numpy.percentile', 'np.percentile', (['a', '(25)'], {}), '(a, 25)\n', (1190, 1197), True, 'import numpy as np\n'), ((1198, 1218), 'numpy.percentile', 'np.percentile', (['a', '(50)'], {}), '(a, 50)\n', (1211, 1218), True, 'import numpy as np\n'), ((1219, 1239), 'numpy.percentile', 'np.percentile', (['a', '(75)'], {}), '(a, 75)\n', (1232, 1239), True, 'import numpy as np\n'), ((1240, 1261), 'numpy.percentile', 'np.percentile', (['a', '(100)'], {}), '(a, 100)\n', (1253, 1261), True, 'import numpy as np\n')]
''' gather redshift info across all observations for a given target type; for now from a single tile ''' #test #standard python import sys import os import shutil import unittest from datetime import datetime import json import numpy as np import fitsio import glob import argparse from astropy.table import Table,join,unique,vstack from matplotlib import pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("--type", help="tracer type to be selected") parser.add_argument("--tile", help="observed tile to use") #eventually remove this and just gather everything args = parser.parse_args() type = args.type tile = args.tile if type == 'LRG': tarbit = 0 #targeting bit if type == 'QSO': tarbit = 2 if type == 'ELG': tarbit = 1 print('gathering type,tile') print(type,tile) tp = 'SV1_DESI_TARGET' print('targeting bit, target program type; CHECK THEY ARE CORRECT!') print(tarbit,tp) #location of inputs coaddir = '/global/cfs/cdirs/desi/spectro/redux/blanc/tiles/'+tile subsets = [x[0][len(coaddir):].strip('/') for x in os.walk(coaddir)] #something must work better than this, but for now... #outputs svdir = '/project/projectdirs/desi/users/ajross/catalogs/SV/' version = 'test/' dirout = svdir+'redshift_comps/'+version outf = dirout +'/'+tile+'_'+type+'zinfo.fits' if not os.path.exists(svdir+'redshift_comps'): os.mkdir(svdir+'redshift_comps') print('made '+svdir+'redshift_comps random directory') if not os.path.exists(dirout): os.mkdir(dirout) print('made '+dirout) ss = 0 #use to switch from creating to concatenating for night in subsets: if len(night) > 0: print('going through subset '+night) specs = [] #find out which spectrograph have data for si in range(0,10): try: fl = coaddir+'/'+night+'/zbest-'+str(si)+'-'+str(tile)+'-'+night+'.fits' #print(fl) fitsio.read(fl) specs.append(si) except: print('no spectrograph '+str(si)+ ' on subset '+night) tspec = Table.read(coaddir+'/'+night+'/zbest-'+str(specs[0])+'-'+str(tile)+'-'+night+'.fits',hdu='ZBEST') tf = Table.read(coaddir+'/'+night+'/coadd-'+str(specs[0])+'-'+str(tile)+'-'+night+'.fits',hdu='FIBERMAP') for i in range(1,len(specs)): tn = Table.read(coaddir+'/'+night+'/zbest-'+str(specs[i])+'-'+str(tile)+'-'+night+'.fits',hdu='ZBEST') tnf = Table.read(coaddir+'/'+night+'/coadd-'+str(specs[i])+'-'+str(tile)+'-'+night+'.fits',hdu='FIBERMAP') tspec = vstack([tspec,tn]) tf = vstack([tf,tnf]) tspec = join(tspec,tf,keys=['TARGETID']) wtype = ((tspec[tp] & 2**tarbit) > 0) print(str(len(tspec))+' total entries '+str(len(tspec[wtype]))+' that are '+type) tspec = tspec[wtype] tspec['subset'] = night if ss == 0: tspect = tspec ss = 1 else: tspect = vstack([tspect,tspec]) print('there are now '+str(len(tspect)) +' entries with '+str(len(np.unique(tspect['TARGETID'])))+' unique target IDs') tspect.sort('TARGETID') tspect.write(outf,format='fits', overwrite=True)
[ "os.mkdir", "argparse.ArgumentParser", "os.walk", "os.path.exists", "astropy.table.join", "astropy.table.vstack", "fitsio.read", "numpy.unique" ]
[((383, 408), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (406, 408), False, 'import argparse\n'), ((1314, 1354), 'os.path.exists', 'os.path.exists', (["(svdir + 'redshift_comps')"], {}), "(svdir + 'redshift_comps')\n", (1328, 1354), False, 'import os\n'), ((1358, 1392), 'os.mkdir', 'os.mkdir', (["(svdir + 'redshift_comps')"], {}), "(svdir + 'redshift_comps')\n", (1366, 1392), False, 'import os\n'), ((1458, 1480), 'os.path.exists', 'os.path.exists', (['dirout'], {}), '(dirout)\n', (1472, 1480), False, 'import os\n'), ((1486, 1502), 'os.mkdir', 'os.mkdir', (['dirout'], {}), '(dirout)\n', (1494, 1502), False, 'import os\n'), ((1057, 1073), 'os.walk', 'os.walk', (['coaddir'], {}), '(coaddir)\n', (1064, 1073), False, 'import os\n'), ((2648, 2682), 'astropy.table.join', 'join', (['tspec', 'tf'], {'keys': "['TARGETID']"}), "(tspec, tf, keys=['TARGETID'])\n", (2652, 2682), False, 'from astropy.table import Table, join, unique, vstack\n'), ((2579, 2598), 'astropy.table.vstack', 'vstack', (['[tspec, tn]'], {}), '([tspec, tn])\n', (2585, 2598), False, 'from astropy.table import Table, join, unique, vstack\n'), ((2615, 2632), 'astropy.table.vstack', 'vstack', (['[tf, tnf]'], {}), '([tf, tnf])\n', (2621, 2632), False, 'from astropy.table import Table, join, unique, vstack\n'), ((2979, 3002), 'astropy.table.vstack', 'vstack', (['[tspect, tspec]'], {}), '([tspect, tspec])\n', (2985, 3002), False, 'from astropy.table import Table, join, unique, vstack\n'), ((1919, 1934), 'fitsio.read', 'fitsio.read', (['fl'], {}), '(fl)\n', (1930, 1934), False, 'import fitsio\n'), ((3076, 3105), 'numpy.unique', 'np.unique', (["tspect['TARGETID']"], {}), "(tspect['TARGETID'])\n", (3085, 3105), True, 'import numpy as np\n')]
""" This module constructs network of streets. """ import numpy as np import json # Adobe flat UI colour scheme DARK_BLUE = "#2C3E50" MEDIUM_BLUE = "#2980B9" LIGHT_BLUE = "#3498DB" RED = "#E74C3C" WHITE = "#ECF0F1" # Colour parameters STROKE_COLOUR = DARK_BLUE STREET_COLOUR = DARK_BLUE JUNCTION_COLOUR = MEDIUM_BLUE JUNCTION_TEXT = DARK_BLUE RESULTS_COLOUR = RED RESULTS_TEXT = DARK_BLUE # Dimensions OFFSET = 50 STREET_WIDTH = 8 STROKE_WIDTH = 2 JUNCTION_WIDTH = 20 MAX_RADIUS = 25 INITIAL_DECIBELS = 120 # Max absorption MAX_ABSORPTION = 0.1 # Don't plot absorption coefficients (option) ABSORPTION = False class Constructor(object): """ This class of methods initialises a network object of specified dimensions, modifies the network using modifying methods, outputs the adjacency matrix of the network and outputs the visualisation in the svg format. """ def __init__(self): self.__horizontals = None self.__verticals = None self.__nodes = None self.__adjacency = None self.__modified_adjacency = None self.__positions = None self.__stage = 0 def set_grid(self, horizontals, verticals, length): """ This setter method sets stage 1 (setting and moving) of the construction. """ try: horizontals = int(horizontals) verticals = int(verticals) except ValueError: raise ValueError("Horizontals and verticals must be integers.") try: length = float(length) except ValueError: raise ValueError("Length must be a floating point number.") for quantity in [horizontals, verticals, length]: if quantity < 0: raise ValueError( "Horizontals, verticals and length must be positive numbers.") self.__horizontals = horizontals self.__verticals = verticals self.__nodes = horizontals*verticals self.__adjacency = self.__create_adjacency() self.__modified_adjacency = None self.__positions = self.__create_positions(length) self.__stage = 1 def unset_grid(self): """ This method is used to set the network to the stage 0 (instantiation) of the construction. """ self.__horizontals = None self.__verticals = None self.__nodes = None self.__adjacency = None self.__modified_adjacency = None self.__positions = None self.__stage = 0 def __create_adjacency(self): """ This private method returns initial adjacency matrix. """ adjacency = np.zeros((self.__nodes, self.__nodes), dtype=np.int) # Normal adjacency matrix for grid network for i in range(self.__nodes): for j in range(self.__nodes): if (j == i+1 and j%self.__verticals != 0) or \ (j == i-1 and i%self.__verticals != 0) or \ j == i+self.__verticals or \ j == i-self.__verticals: adjacency[i][j] = 1 return adjacency def __create_positions(self, length): """ This private method returns initial positions matrix. """ positions = np.zeros((self.__nodes, 2)) for i in range(self.__nodes): positions[i][0] = i%self.__verticals*length positions[i][1] = i//self.__verticals*length return positions def move_horizontal_line(self, i, length): """ This method moves the horizontal line i. """ assert self.__stage == 1 if i not in range(self.__horizontals): raise ValueError("No such horizontal line.") for node in range(self.__nodes): if node//self.__verticals == i: self.__positions[node][1] += length def move_vertical_line(self, j, length): """ This method moves the vertical line j. """ assert self.__stage == 1 if j not in range(self.__verticals): raise ValueError("No such vertical line.") for node in range(self.__nodes): if node%self.__verticals == j: self.__positions[node][0] += length def delete_connection(self, i, j): """ This method deletes the street (i, j). """ if self.__stage == 1: self.__stage = 2 # set stage to 1 so lines cannot be moved assert self.__stage == 2 if i not in range(self.__nodes) or j not in range(self.__nodes): raise ValueError("Nodes out of range.") if self.__adjacency[i][j] == 0: raise ValueError("Junctions are not neighbours.") self.__adjacency[i][j] = 0 self.__adjacency[j][i] = 0 to_delete = [] if sum(self.__adjacency[i]) == 2: connections = [] for k in range(self.__nodes): if self.__adjacency[i][k] == 1: connections.append(k) if (self.__positions[i][0] == self.__positions[connections[0]][0] and \ self.__positions[i][0] == self.__positions[connections[1]][0]) or \ (self.__positions[i][1] == self.__positions[connections[0]][1] and \ self.__positions[i][1] == self.__positions[connections[1]][1]): self.__adjacency[connections[0]][connections[1]] = 1 self.__adjacency[connections[1]][connections[0]] = 1 to_delete.append(i) elif sum(self.__adjacency[i]) == 0: to_delete.append(i) if sum(self.__adjacency[j]) == 2: connections = [] for k in range(self.__nodes): if self.__adjacency[j][k] == 1: connections.append(k) if (self.__positions[j][0] == self.__positions[connections[0]][0] and \ self.__positions[j][0] == self.__positions[connections[1]][0]) or \ (self.__positions[j][1] == self.__positions[connections[0]][1] and \ self.__positions[j][1] == self.__positions[connections[1]][1]): self.__adjacency[connections[0]][connections[1]] = 1 self.__adjacency[connections[1]][connections[0]] = 1 to_delete.append(j) elif sum(self.__adjacency[j]) == 0: to_delete.append(j) if len(to_delete) != 0: self.__adjacency = np.delete(self.__adjacency, to_delete, axis=0) self.__adjacency = np.delete(self.__adjacency, to_delete, axis=1) self.__positions = np.delete(self.__positions, to_delete, axis=0) self.__nodes = int(self.__nodes - len(to_delete)) def modify_adjacency(self, width, alpha, beta): """ This method creates new adjacency matrix with dictionaries of keys (alpha, beta, street width, street length, orientation) instead of 1s. """ if self.__stage == 1 or self.__stage == 2: self.__stage = 3 assert self.__stage == 3 try: width = float(width) alpha = float(alpha) beta = float(beta) except ValueError: raise ValueError("Width and absorption must be floating point numbers.") if width <= 0: raise ValueError("Width must be a positive number.") if alpha < 0 or alpha > 1 or beta < 0 or beta > 1: raise ValueError("Absorption must be a number between 0 and 1.") self.__modified_adjacency = self.__adjacency.tolist() # To python structure positions = self.__positions for i in range(self.__nodes): for j in range(i): if self.__adjacency[i][j] == 1: if positions[i][1] == positions[j][1]: length = abs(positions[i][0] - positions[j][0]).tolist() if positions[i][0] < positions[j][0]: orientation = 0 elif positions[i][0] > positions[j][0]: orientation = 2 else: raise ValueError("Points are at the same position.") elif positions[i][0] == positions[j][0]: length = abs(positions[i][1] - positions[j][1]).tolist() if positions[i][1] < positions[j][1]: orientation = 1 elif positions[i][1] > positions[j][1]: orientation = 3 else: raise ValueError("Points are at the same position.") else: raise ValueError("Points are not colinear.") self.__modified_adjacency[i][j] = { "alpha": alpha, "beta": beta, "width": width, "length": length, "orientation": orientation} self.__modified_adjacency[j][i] = { "alpha": alpha, "beta": beta, "width": width, "length": length, "orientation": (orientation+2)%4} def unmodify_adjacency(self): """ This method is used to set the stage to stage 2 (deleting) of the construction. """ self.__stage = 2 self.__modified_adjacency = None def change_width(self, i, j, width): """ This method changes the street width of street (i, j). """ assert self.__stage == 3 try: width = float(width) except ValueError: raise ValueError("Width must be a floating point number.") if width <= 0: raise ValueError("Width must be a positive number.") if i not in range(self.__nodes) or j not in range(self.__nodes): raise ValueError("Nodes out of range") if self.__modified_adjacency[i][j] == 0: raise ValueError("Junctions are not neighbours.") self.__modified_adjacency[i][j]["width"] = width self.__modified_adjacency[j][i]["width"] = width def change_alpha(self, i, j, alpha): """ This method changes the wall absorption of street (i, j). """ assert self.__stage == 3 try: alpha = float(alpha) except ValueError: raise ValueError("Absorption must be a floating point number.") if alpha < 0 or alpha > 1: raise ValueError("Absorption must be a number between 0 and 1") if i not in range(self.__nodes) or j not in range(self.__nodes): raise ValueError("Nodes out of range.") if self.__modified_adjacency[i][j] == 0: raise ValueError("Junctions are not neighbours.") self.__modified_adjacency[i][j]["alpha"] = alpha self.__modified_adjacency[j][i]["alpha"] = alpha def change_beta(self, i, j, beta): """ This method changes the air absorption of street (i, j). """ assert self.__stage == 3 try: beta = float(beta) except ValueError: raise ValueError("Absorption must be a floating point number.") if beta < 0 or beta > 1: raise ValueError("Absorption must be a number between 0 and 1") if i not in range(self.__nodes) or j not in range(self.__nodes): raise ValueError("Nodes out of range.") if self.__modified_adjacency[i][j] == 0: raise ValueError("Junctions are not neighbours.") self.__modified_adjacency[i][j]["beta"] = beta self.__modified_adjacency[j][i]["beta"] = beta def get_horizontals(self): """ This getter method returns the number of horizontal streets. """ return self.__horizontals def get_verticals(self): """ This getter method returns the number of vertical streets. """ return self.__verticals def get_adjacency(self): """ This getter method returns the normal adjacency matrix. """ return self.__adjacency def get_modified_adjacency(self): """ This getter method returns the modified adjacency matrix. """ return self.__modified_adjacency def get_positions(self): """ This getter method returns the positions matrix. """ return self.__positions def get_stage(self): """ This getter method returns current stage index. """ return self.__stage def import_network(self, invalues): """ This method is used to import existing network from the invalues dictionary. """ self.__horizontals = invalues["horizontals"] self.__verticals = invalues["verticals"] self.__nodes = invalues["nodes"] self.__adjacency = np.array(invalues["adjacency"]) self.__modified_adjacency = invalues["modified_adjacency"] self.__positions = np.array(invalues["positions"]) self.__stage = invalues["stage"] def export_network(self, filename): """ This method is used to export currently constructed network to json format to some file. """ data = { "horizontals": self.__horizontals, "verticals": self.__verticals, "nodes": self.__nodes, "adjacency": self.__adjacency.tolist(), "modified_adjacency": self.__modified_adjacency, "positions": self.__positions.tolist(), "stage": self.__stage } with open(filename, "w") as file: json.dump(data, file) def draw_network(self, filename, results=False): """ This method outputs file "output.html" with svg drawing of network and optinally plots the results. """ def get_hex_fill(coefficient, max_absorption): red = hex(int(coefficient/max_absorption*255)) red = red[-2:] if len(red)==4 else "0{0}".format(red[-1]) blue = hex(int((1-coefficient/max_absorption)*255)) blue = blue[-2:] if len(blue)==4 else "0{0}".format(blue[-1]) fill = "#{0}00{1}".format(red, blue) return fill def svg_header(width, height): return "<svg width='{0}' height='{1}'>\n".format(width, height) def svg_line(x1, y1, x2, y2, fill=STREET_COLOUR, width=STREET_WIDTH): return "<line x1='{0}' y1='{1}' x2='{2}' y2='{3}' \ style='stroke: {4}; stroke-width: {5}'/>\n".format(x1+OFFSET, y1+OFFSET, x2+OFFSET, y2+OFFSET, fill, width) def svg_square(x, y): return "<rect x='{0}' y='{1}' width='{2}' height='{2}' \ style='stroke: {3}; stroke-width: {4}; fill: {5}'/>\n".format(x-JUNCTION_WIDTH/2+OFFSET, y-JUNCTION_WIDTH/2+OFFSET, JUNCTION_WIDTH, STROKE_COLOUR, STROKE_WIDTH, JUNCTION_COLOUR ) def svg_circle(x, y, r, fill): return "<circle cx='{0}' cy='{1}' r='{2}' style='stroke: {3}; \ stroke-width: {4}; fill: {5}'/>\n".format(x+OFFSET, y+OFFSET, r, STROKE_COLOUR, STROKE_WIDTH, fill ) def svg_text(x, y, colour, size, text): move = (size-15)/4 # adjust text position return "<text text-anchor='middle' x='{0}' y='{1}' \ style='fill: {2}; font-size: {3}'>{4}</text>\n".format(x+OFFSET, y+OFFSET+JUNCTION_WIDTH/4 + move, colour, size, text ) positions = self.__positions if self.__stage == 3: adjacency = self.__modified_adjacency modified = True else: adjacency = self.__adjacency modified = False with open(filename, "w") as file: width = positions[self.__nodes-1][0]+2*OFFSET height = positions[self.__nodes-1][1]+2*OFFSET file.write(svg_header(width, height)) # Draw walls if modified (with absorption) if modified and ABSORPTION: for i in range(self.__nodes): for j in range(i): if adjacency[i][j] != 0: [xi, yi] = positions[i] [xj, yj] = positions[j] alpha = adjacency[i][j]["alpha"] alpha_fill = get_hex_fill(alpha, MAX_ABSORPTION) width = adjacency[i][j]["width"] translation = width/2 if xi == xj: file.write(svg_line(xi-translation, yi, xj-translation, yj, alpha_fill, width )) file.write(svg_line(xi+translation, yi, xj+translation, yj, alpha_fill, width )) elif yi == yj: file.write(svg_line(xi, yi-translation, xj, yj-translation, alpha_fill, width )) file.write(svg_line(xi, yi+translation, xj, yj+translation, alpha_fill, width )) # Draw streets (with absorption if modified) for i in range(self.__nodes): for j in range(i): if adjacency[i][j] != 0: [xi, yi] = positions[i] [xj, yj] = positions[j] if not modified or not ABSORPTION: file.write(svg_line(xi, yi, xj, yj)) else: beta = adjacency[i][j]["beta"] beta_fill = get_hex_fill(beta, MAX_ABSORPTION) width = adjacency[i][j]["width"] file.write(svg_line(xi, yi, xj, yj, beta_fill, width )) # Draw junctions (rectangles with numbers) counter = 0 for position in positions: file.write(svg_square(position[0], position[1])) file.write(svg_text(position[0], position[1], JUNCTION_TEXT, 15, counter)) counter += 1 # Draw results if results: (X, Y, Z) = results for i in range(len(Z)): decibels = 20*np.log10(Z[i]*10**(INITIAL_DECIBELS/20)) if decibels < 0: continue # Radius radius = (decibels/INITIAL_DECIBELS)*MAX_RADIUS file.write(svg_circle(X[i], Y[i], radius, RESULTS_COLOUR)) if decibels > 30: file.write(svg_text(X[i], Y[i], RESULTS_TEXT, radius, int(round(decibels)))) file.write("</svg>")
[ "json.dump", "numpy.zeros", "numpy.array", "numpy.log10", "numpy.delete" ]
[((2673, 2725), 'numpy.zeros', 'np.zeros', (['(self.__nodes, self.__nodes)'], {'dtype': 'np.int'}), '((self.__nodes, self.__nodes), dtype=np.int)\n', (2681, 2725), True, 'import numpy as np\n'), ((3291, 3318), 'numpy.zeros', 'np.zeros', (['(self.__nodes, 2)'], {}), '((self.__nodes, 2))\n', (3299, 3318), True, 'import numpy as np\n'), ((13085, 13116), 'numpy.array', 'np.array', (["invalues['adjacency']"], {}), "(invalues['adjacency'])\n", (13093, 13116), True, 'import numpy as np\n'), ((13211, 13242), 'numpy.array', 'np.array', (["invalues['positions']"], {}), "(invalues['positions'])\n", (13219, 13242), True, 'import numpy as np\n'), ((6475, 6521), 'numpy.delete', 'np.delete', (['self.__adjacency', 'to_delete'], {'axis': '(0)'}), '(self.__adjacency, to_delete, axis=0)\n', (6484, 6521), True, 'import numpy as np\n'), ((6553, 6599), 'numpy.delete', 'np.delete', (['self.__adjacency', 'to_delete'], {'axis': '(1)'}), '(self.__adjacency, to_delete, axis=1)\n', (6562, 6599), True, 'import numpy as np\n'), ((6631, 6677), 'numpy.delete', 'np.delete', (['self.__positions', 'to_delete'], {'axis': '(0)'}), '(self.__positions, to_delete, axis=0)\n', (6640, 6677), True, 'import numpy as np\n'), ((13895, 13916), 'json.dump', 'json.dump', (['data', 'file'], {}), '(data, file)\n', (13904, 13916), False, 'import json\n'), ((19959, 20005), 'numpy.log10', 'np.log10', (['(Z[i] * 10 ** (INITIAL_DECIBELS / 20))'], {}), '(Z[i] * 10 ** (INITIAL_DECIBELS / 20))\n', (19967, 20005), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #This script scores results from each student #Drawn images are downloaded from a .csv file, converted from string base64 encoding, #and scored against machine learning models saved to disk import csv import os #import file import cv2 import re import base64 import numpy as np from keras.models import model_from_json from sklearn.metrics import cohen_kappa_score from tkinter import * import tkinter as tk from tkinter.filedialog import askopenfilename from tkinter.filedialog import askdirectory from tkinter import simpledialog import sys import os.path #Specify max size due to large size of Base64 images #**~MAC/LINUX~**# #csv.field_size_limit(sys.maxsize) #**~WINDOWS 64 BIT~**# csv.field_size_limit(2**30) #Specify which questions are drawn images. Their associated value is the #size of the image used in data preprocessing for the machine learning model. drawn_images ={ "Q1": 64, "Q2": 128, "Q3": 64, "Q4": 64, "Q7": 128, "Q8": 128, "Q9": 128, "Q17": 128, "Q18": 64 } #init variables filename = "" filedir = "" modeldir = "" prefix = "" ##Retrieve the CSV file to read image data def getCSVfile(): global filename global filedir filename = askopenfilename() filedir = os.path.abspath(os.path.join(filename, os.pardir)) filedir += "/" print(filedir) #Select the directory containing H5 and JSON model files. def getModelDir(): global modeldir modeldir = askdirectory() modeldir += "/" #Select a prefix to read only specific records starting with the prefix. def getPrefix(): global prefix prefix = simpledialog.askstring("input string", "Enter an ID prefix:") #Run program and create two response CSV files. def Start(): #for indexing drawn_images_list = list(drawn_images) #Load models: models = [] print("Loading models... This may take a moment") for key in drawn_images: json_file_path = modeldir + key + ".json" weight_file_path = modeldir + key + ".h5" json_file = open(json_file_path, 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights(weight_file_path) loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) models.append(loaded_model) print(f"Loaded model {key}...") print("Done loading models") #Function to process each individual image #Returns a prediction score of 1 or 0. def process_image(Qnum, uri, partid): print(f"Processing image: {Qnum}") #Ensure value exists if(uri == None): return 0 #Grab value to resize image size = drawn_images[Qnum] #create image file as temporary path = modeldir + "temp.png" img = open(path, "wb") img.write(base64.b64decode(uri)) img = cv2.imread(path, 0) #Test resizing image. If the URI is corrupted, return 'C'. try: img = cv2.resize(img, (size, size)) except: return 'c' img_reshape = np.array(img).reshape(-1,size,size,1) #Run image against model print("Acc: ") print (models[drawn_images_list.index(Qnum)].predict(img_reshape)) pred = models[drawn_images_list.index(Qnum)].predict_classes(img_reshape)[0] #This flips the class as the prediction score is on the opposite entry. pred = ("1", "0")[pred == 0] pred_array = models[drawn_images_list.index(Qnum)].predict(img_reshape) #Remove the image to make room for another os.remove(modeldir + "temp.png") eps = .15 #Min. acceptable criterion if(1-np.amax(pred_array) > eps): return 'f' return pred #Open two files, one for response scores and the other for written #question responses. Each file name is appended with a prefix if #a prefix is give. data = open(filename, 'r') responses = open(filedir + 'responses_pref' + prefix + '.csv', 'w') Wresponses = open(filedir + 'Wresponses_pref' + prefix + '.csv', 'w') read_data = csv.reader(data, delimiter=',') write_responses = csv.writer(responses, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) write_Wresponses = csv.writer(Wresponses, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) line_count = 0 for row in read_data: if row[0].startswith(prefix, 0, len(prefix)): print(row[0]) if line_count == 0: line_count += 1 write_responses.writerow(['Number','Participant', 'Q1_drawn', 'Q2_drawn', 'Q3_drawn', 'Q4_drawn', 'Q7_drawn', 'Q8_drawn', 'Q9_drawn', 'Q17_drawn', 'Q18_drawn', 'Q5_response', 'Q5_correct_response', 'Q5_accuracy','Q6_response', 'Q6_correct_response', 'Q6_accuracy','Q10_1_response', 'Q10_1_correct_response','Q10_1_accuracy', 'Q10_2_response', 'Q10_2_correct_response', 'Q10_2_accuracy', 'Q11_response', 'Q11_correct_response', 'Q11_accuracy', 'Q12_response', 'Q12_correct_response','Q12_accuracy', 'Q13_response', 'Q13_correct_response', 'Q13_accuracy', 'Q14_1_response', 'Q14_1_correct_response', 'Q14_1_accuracy', 'Q14_2_response', 'Q14_2_correct_response','Q14_2_accuracy', 'Q15_AB_response', 'Q15_AB_correct_response','Q15_AB_accuracy', 'Q15_AD_response', 'Q15_AD_correct_response','Q15_AD_accuracy', 'Q15_BC_response', 'Q15_BC_correct_response','Q15_BC_accuracy', 'Q15_CD_response', 'Q15_CD_correct_response','Q15_CD_accuracy','Q15_BD_response', 'Q15_BD_correct_response','Q15_BD_accuracy', 'Total', 'Date Submitted']) write_Wresponses.writerow(['Number','Participant','Q2_written', 'Q7_written', 'Q8_written', 'Q9_written', 'Q14_2_written', 'Q17_written', 'Q18_written', 'Date Submitted']) else: #Resp used for responses, respW for written reponses resp = [] respW = [] count = 0 ##logic here #append number and name resp.append(line_count) resp.append(row[0]) respW.append(line_count) respW.append(row[0]) #append drawn images for x in drawn_images: y = row[drawn_images_list.index(x) + 2].split(',') if(len(y) > 1): resp.append(process_image(x, y[1], row[0])) else: resp.append("N/A") #print(row[drawn_images_list.index(x) + 2]) ##Q5 resp.append(row[23]) resp.append("A") resp.append(("0", "1")[row[23] == "A"]) #Q6 resp.append(row[24]) resp.append("A") resp.append(("0", "1")[row[24] == "A"]) #Q10_1 resp.append(row[15]) resp.append("Josh") resp.append(("0", "1")["josh" in row[15].lower()]) #Q10_2 resp.append(row[18]) resp.append("josh") resp.append(("0", "1")["josh" in row[18].lower()]) #Q11 resp.append(row[25]) resp.append("B") resp.append(("0", "1")[row[25] == "B"]) #Q12 resp.append(row[26]) resp.append("B") resp.append(("0", "1")[row[26] == "B"]) #Q13 resp.append(row[17]) resp.append("40") resp.append(("0", "1")["40" in row[19]]) #Q14_1 resp.append(row[18]) resp.append("Josh") resp.append(("0", "1")["josh" in row[18].lower()]) #Q15 ##Refer to re library for digit extraction resp.append(row[20]) resp.append("7040-7080") val = re.findall("\d+", row[20]) if(len(val) > 0): resp.append(("0", "1")[int(val[0]) >= 7040 and int(val[0]) <= 7080]) else: resp.append("0") #Q16: resp.append(row[27]) resp.append("yes") resp.append(("0", "1")[row[27] == "yes"]) resp.append(row[28]) resp.append("yes") resp.append(("0", "1")[row[28] == "yes"]) resp.append(row[29]) resp.append("yes") resp.append(("0", "1")[row[29] == "yes"]) resp.append(row[30]) resp.append("no") resp.append(("0", "1")[row[30] == "no"]) resp.append(row[31]) resp.append("yes") resp.append(("0", "1")[row[31] == "yes"]) ##WRITE ALL THE WRITTEN RESPONSES HERE respW.append(row[11]) respW.append(row[12]) respW.append(row[13]) respW.append(row[14]) respW.append(row[16]) respW.append(row[19]) respW.append(row[21]) respW.append(row[22]) #Total sum = 0 for x in resp: if x == "1": sum += 1 resp.append(sum) #Dates resp.append(row[32]) respW.append(row[32]) #Write rows write_responses.writerow(resp) write_Wresponses.writerow(respW) line_count += 1 print(f"Finished, {line_count} rows read: ") data.close() responses.close() ##Run GUI root = tk.Tk() root.wm_title("Run Participant Data") selectCsv = tk.Button(root, text='Select CSV file', width=25, command=getCSVfile) selectCsv.pack() selectDirectory = tk.Button(root, text='Select model directory', width=25, command=getModelDir) selectDirectory.pack() selectPrefix = tk.Button(root, text='Select an ID prefix', width=25, command=getPrefix) selectPrefix.pack() startButton = tk.Button(root, text='Start', width=25, command=Start) startButton.pack() root.mainloop()
[ "os.remove", "csv.reader", "csv.writer", "tkinter.Button", "csv.field_size_limit", "tkinter.filedialog.askopenfilename", "base64.b64decode", "tkinter.filedialog.askdirectory", "tkinter.simpledialog.askstring", "cv2.imread", "keras.models.model_from_json", "numpy.array", "numpy.amax", "re.findall", "os.path.join", "tkinter.Tk", "cv2.resize" ]
[((741, 770), 'csv.field_size_limit', 'csv.field_size_limit', (['(2 ** 30)'], {}), '(2 ** 30)\n', (761, 770), False, 'import csv\n'), ((10354, 10361), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (10359, 10361), True, 'import tkinter as tk\n'), ((10412, 10481), 'tkinter.Button', 'tk.Button', (['root'], {'text': '"""Select CSV file"""', 'width': '(25)', 'command': 'getCSVfile'}), "(root, text='Select CSV file', width=25, command=getCSVfile)\n", (10421, 10481), True, 'import tkinter as tk\n'), ((10517, 10594), 'tkinter.Button', 'tk.Button', (['root'], {'text': '"""Select model directory"""', 'width': '(25)', 'command': 'getModelDir'}), "(root, text='Select model directory', width=25, command=getModelDir)\n", (10526, 10594), True, 'import tkinter as tk\n'), ((10633, 10705), 'tkinter.Button', 'tk.Button', (['root'], {'text': '"""Select an ID prefix"""', 'width': '(25)', 'command': 'getPrefix'}), "(root, text='Select an ID prefix', width=25, command=getPrefix)\n", (10642, 10705), True, 'import tkinter as tk\n'), ((10740, 10794), 'tkinter.Button', 'tk.Button', (['root'], {'text': '"""Start"""', 'width': '(25)', 'command': 'Start'}), "(root, text='Start', width=25, command=Start)\n", (10749, 10794), True, 'import tkinter as tk\n'), ((1246, 1263), 'tkinter.filedialog.askopenfilename', 'askopenfilename', ([], {}), '()\n', (1261, 1263), False, 'from tkinter.filedialog import askopenfilename\n'), ((1485, 1499), 'tkinter.filedialog.askdirectory', 'askdirectory', ([], {}), '()\n', (1497, 1499), False, 'from tkinter.filedialog import askdirectory\n'), ((1644, 1705), 'tkinter.simpledialog.askstring', 'simpledialog.askstring', (['"""input string"""', '"""Enter an ID prefix:"""'], {}), "('input string', 'Enter an ID prefix:')\n", (1666, 1705), False, 'from tkinter import simpledialog\n'), ((4218, 4249), 'csv.reader', 'csv.reader', (['data'], {'delimiter': '""","""'}), "(data, delimiter=',')\n", (4228, 4249), False, 'import csv\n'), ((4272, 4346), 'csv.writer', 'csv.writer', (['responses'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_ALL'}), '(responses, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_ALL)\n', (4282, 4346), False, 'import csv\n'), ((4402, 4477), 'csv.writer', 'csv.writer', (['Wresponses'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_ALL'}), '(Wresponses, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_ALL)\n', (4412, 4477), False, 'import csv\n'), ((1294, 1327), 'os.path.join', 'os.path.join', (['filename', 'os.pardir'], {}), '(filename, os.pardir)\n', (1306, 1327), False, 'import os\n'), ((2195, 2229), 'keras.models.model_from_json', 'model_from_json', (['loaded_model_json'], {}), '(loaded_model_json)\n', (2210, 2229), False, 'from keras.models import model_from_json\n'), ((2964, 2983), 'cv2.imread', 'cv2.imread', (['path', '(0)'], {}), '(path, 0)\n', (2974, 2983), False, 'import cv2\n'), ((3687, 3719), 'os.remove', 'os.remove', (["(modeldir + 'temp.png')"], {}), "(modeldir + 'temp.png')\n", (3696, 3719), False, 'import os\n'), ((2927, 2948), 'base64.b64decode', 'base64.b64decode', (['uri'], {}), '(uri)\n', (2943, 2948), False, 'import base64\n'), ((3083, 3112), 'cv2.resize', 'cv2.resize', (['img', '(size, size)'], {}), '(img, (size, size))\n', (3093, 3112), False, 'import cv2\n'), ((3175, 3188), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (3183, 3188), True, 'import numpy as np\n'), ((3778, 3797), 'numpy.amax', 'np.amax', (['pred_array'], {}), '(pred_array)\n', (3785, 3797), True, 'import numpy as np\n'), ((8594, 8621), 're.findall', 're.findall', (['"""\\\\d+"""', 'row[20]'], {}), "('\\\\d+', row[20])\n", (8604, 8621), False, 'import re\n')]
from glob import glob import os import os.path as op from shutil import copyfile from nose.tools import assert_raises import numpy as np from numpy.testing import assert_array_almost_equal import mne from mne.datasets import testing from mne.transforms import (Transform, apply_trans, rotation, translation, scaling) from mne.coreg import (fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials) from mne.io.constants import FIFF from mne.utils import _TempDir, run_tests_if_main from mne.source_space import write_source_spaces from functools import reduce def test_coregister_fiducials(): """Test coreg.coregister_fiducials()""" # prepare head and MRI fiducials trans = Transform('head', 'mri', rotation(.4, .1, 0).dot(translation(.1, -.1, .1))) coords_orig = np.array([[-0.08061612, -0.02908875, -0.04131077], [0.00146763, 0.08506715, -0.03483611], [0.08436285, -0.02850276, -0.04127743]]) coords_trans = apply_trans(trans, coords_orig) def make_dig(coords, cf): return ({'coord_frame': cf, 'ident': 1, 'kind': 1, 'r': coords[0]}, {'coord_frame': cf, 'ident': 2, 'kind': 1, 'r': coords[1]}, {'coord_frame': cf, 'ident': 3, 'kind': 1, 'r': coords[2]}) mri_fiducials = make_dig(coords_trans, FIFF.FIFFV_COORD_MRI) info = {'dig': make_dig(coords_orig, FIFF.FIFFV_COORD_HEAD)} # test coregister_fiducials() trans_est = coregister_fiducials(info, mri_fiducials) assert trans_est.from_str == trans.from_str assert trans_est.to_str == trans.to_str assert_array_almost_equal(trans_est['trans'], trans['trans']) @testing.requires_testing_data def test_scale_mri(): """Test creating fsaverage and scaling it.""" # create fsaverage using the testing "fsaverage" instead of the FreeSurfer # one tempdir = _TempDir() fake_home = testing.data_path() create_default_subject(subjects_dir=tempdir, fs_home=fake_home, verbose=True) assert _is_mri_subject('fsaverage', tempdir), "Creating fsaverage failed" fid_path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-fiducials.fif') os.remove(fid_path) create_default_subject(update=True, subjects_dir=tempdir, fs_home=fake_home) assert op.exists(fid_path), "Updating fsaverage" # copy MRI file from sample data (shouldn't matter that it's incorrect, # so here choose a small one) path_from = op.join(testing.data_path(), 'subjects', 'sample', 'mri', 'T1.mgz') path_to = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz') copyfile(path_from, path_to) # remove redundant label files label_temp = op.join(tempdir, 'fsaverage', 'label', '*.label') label_paths = glob(label_temp) for label_path in label_paths[1:]: os.remove(label_path) # create source space print('Creating surface source space') path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif') src = mne.setup_source_space('fsaverage', 'ico0', subjects_dir=tempdir, add_dist=False) write_source_spaces(path % 'ico-0', src) mri = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz') print('Creating volume source space') vsrc = mne.setup_volume_source_space( 'fsaverage', pos=50, mri=mri, subjects_dir=tempdir, add_interpolator=False) write_source_spaces(path % 'vol-50', vsrc) # scale fsaverage os.environ['_MNE_FEW_SURFACES'] = 'true' scale = np.array([1, .2, .8]) scale_mri('fsaverage', 'flachkopf', scale, True, subjects_dir=tempdir, verbose='debug') del os.environ['_MNE_FEW_SURFACES'] assert _is_mri_subject('flachkopf', tempdir), "Scaling fsaverage failed" spath = op.join(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif') assert op.exists(spath % 'ico-0'), "Source space ico-0 was not scaled" assert os.path.isfile(os.path.join(tempdir, 'flachkopf', 'surf', 'lh.sphere.reg')) vsrc_s = mne.read_source_spaces(spath % 'vol-50') pt = np.array([0.12, 0.41, -0.22]) assert_array_almost_equal(apply_trans(vsrc_s[0]['src_mri_t'], pt * scale), apply_trans(vsrc[0]['src_mri_t'], pt)) scale_labels('flachkopf', subjects_dir=tempdir) # add distances to source space mne.add_source_space_distances(src) src.save(path % 'ico-0', overwrite=True) # scale with distances os.remove(spath % 'ico-0') scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir) ssrc = mne.read_source_spaces(spath % 'ico-0') assert ssrc[0]['dist'] is not None def test_fit_matched_points(): """Test fit_matched_points: fitting two matching sets of points""" tgt_pts = np.random.RandomState(42).uniform(size=(6, 3)) # rotation only trans = rotation(2, 6, 3) src_pts = apply_trans(trans, tgt_pts) trans_est = fit_matched_points(src_pts, tgt_pts, translate=False, out='trans') est_pts = apply_trans(trans_est, src_pts) assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with " "rotation") # rotation & translation trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3)) src_pts = apply_trans(trans, tgt_pts) trans_est = fit_matched_points(src_pts, tgt_pts, out='trans') est_pts = apply_trans(trans_est, src_pts) assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with " "rotation and translation.") # rotation & translation & scaling trans = reduce(np.dot, (translation(2, -6, 3), rotation(1.5, .3, 1.4), scaling(.5, .5, .5))) src_pts = apply_trans(trans, tgt_pts) trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out='trans') est_pts = apply_trans(trans_est, src_pts) assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with " "rotation, translation and scaling.") # test exceeding tolerance tgt_pts[0, :] += 20 assert_raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10) run_tests_if_main()
[ "mne.coreg.fit_matched_points", "os.remove", "mne.utils._TempDir", "mne.utils.run_tests_if_main", "mne.setup_volume_source_space", "mne.coreg.coregister_fiducials", "glob.glob", "numpy.testing.assert_array_almost_equal", "os.path.join", "mne.read_source_spaces", "mne.source_space.write_source_spaces", "os.path.exists", "mne.coreg.scale_source_space", "numpy.random.RandomState", "mne.transforms.apply_trans", "mne.coreg.scale_mri", "nose.tools.assert_raises", "shutil.copyfile", "mne.coreg._is_mri_subject", "mne.setup_source_space", "mne.coreg.create_default_subject", "mne.transforms.scaling", "mne.datasets.testing.data_path", "mne.add_source_space_distances", "mne.transforms.translation", "numpy.array", "mne.transforms.rotation", "mne.coreg.scale_labels" ]
[((6417, 6436), 'mne.utils.run_tests_if_main', 'run_tests_if_main', ([], {}), '()\n', (6434, 6436), False, 'from mne.utils import _TempDir, run_tests_if_main\n'), ((950, 1084), 'numpy.array', 'np.array', (['[[-0.08061612, -0.02908875, -0.04131077], [0.00146763, 0.08506715, -\n 0.03483611], [0.08436285, -0.02850276, -0.04127743]]'], {}), '([[-0.08061612, -0.02908875, -0.04131077], [0.00146763, 0.08506715,\n -0.03483611], [0.08436285, -0.02850276, -0.04127743]])\n', (958, 1084), True, 'import numpy as np\n'), ((1156, 1187), 'mne.transforms.apply_trans', 'apply_trans', (['trans', 'coords_orig'], {}), '(trans, coords_orig)\n', (1167, 1187), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((1629, 1670), 'mne.coreg.coregister_fiducials', 'coregister_fiducials', (['info', 'mri_fiducials'], {}), '(info, mri_fiducials)\n', (1649, 1670), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((1767, 1828), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (["trans_est['trans']", "trans['trans']"], {}), "(trans_est['trans'], trans['trans'])\n", (1792, 1828), False, 'from numpy.testing import assert_array_almost_equal\n'), ((2037, 2047), 'mne.utils._TempDir', '_TempDir', ([], {}), '()\n', (2045, 2047), False, 'from mne.utils import _TempDir, run_tests_if_main\n'), ((2064, 2083), 'mne.datasets.testing.data_path', 'testing.data_path', ([], {}), '()\n', (2081, 2083), False, 'from mne.datasets import testing\n'), ((2088, 2165), 'mne.coreg.create_default_subject', 'create_default_subject', ([], {'subjects_dir': 'tempdir', 'fs_home': 'fake_home', 'verbose': '(True)'}), '(subjects_dir=tempdir, fs_home=fake_home, verbose=True)\n', (2110, 2165), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((2204, 2241), 'mne.coreg._is_mri_subject', '_is_mri_subject', (['"""fsaverage"""', 'tempdir'], {}), "('fsaverage', tempdir)\n", (2219, 2241), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((2287, 2350), 'os.path.join', 'op.join', (['tempdir', '"""fsaverage"""', '"""bem"""', '"""fsaverage-fiducials.fif"""'], {}), "(tempdir, 'fsaverage', 'bem', 'fsaverage-fiducials.fif')\n", (2294, 2350), True, 'import os.path as op\n'), ((2355, 2374), 'os.remove', 'os.remove', (['fid_path'], {}), '(fid_path)\n', (2364, 2374), False, 'import os\n'), ((2379, 2455), 'mne.coreg.create_default_subject', 'create_default_subject', ([], {'update': '(True)', 'subjects_dir': 'tempdir', 'fs_home': 'fake_home'}), '(update=True, subjects_dir=tempdir, fs_home=fake_home)\n', (2401, 2455), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((2494, 2513), 'os.path.exists', 'op.exists', (['fid_path'], {}), '(fid_path)\n', (2503, 2513), True, 'import os.path as op\n'), ((2769, 2817), 'os.path.join', 'op.join', (['tempdir', '"""fsaverage"""', '"""mri"""', '"""orig.mgz"""'], {}), "(tempdir, 'fsaverage', 'mri', 'orig.mgz')\n", (2776, 2817), True, 'import os.path as op\n'), ((2822, 2850), 'shutil.copyfile', 'copyfile', (['path_from', 'path_to'], {}), '(path_from, path_to)\n', (2830, 2850), False, 'from shutil import copyfile\n'), ((2904, 2953), 'os.path.join', 'op.join', (['tempdir', '"""fsaverage"""', '"""label"""', '"""*.label"""'], {}), "(tempdir, 'fsaverage', 'label', '*.label')\n", (2911, 2953), True, 'import os.path as op\n'), ((2972, 2988), 'glob.glob', 'glob', (['label_temp'], {}), '(label_temp)\n', (2976, 2988), False, 'from glob import glob\n'), ((3139, 3199), 'os.path.join', 'op.join', (['tempdir', '"""fsaverage"""', '"""bem"""', '"""fsaverage-%s-src.fif"""'], {}), "(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif')\n", (3146, 3199), True, 'import os.path as op\n'), ((3210, 3296), 'mne.setup_source_space', 'mne.setup_source_space', (['"""fsaverage"""', '"""ico0"""'], {'subjects_dir': 'tempdir', 'add_dist': '(False)'}), "('fsaverage', 'ico0', subjects_dir=tempdir, add_dist=\n False)\n", (3232, 3296), False, 'import mne\n'), ((3329, 3369), 'mne.source_space.write_source_spaces', 'write_source_spaces', (["(path % 'ico-0')", 'src'], {}), "(path % 'ico-0', src)\n", (3348, 3369), False, 'from mne.source_space import write_source_spaces\n'), ((3380, 3428), 'os.path.join', 'op.join', (['tempdir', '"""fsaverage"""', '"""mri"""', '"""orig.mgz"""'], {}), "(tempdir, 'fsaverage', 'mri', 'orig.mgz')\n", (3387, 3428), True, 'import os.path as op\n'), ((3482, 3592), 'mne.setup_volume_source_space', 'mne.setup_volume_source_space', (['"""fsaverage"""'], {'pos': '(50)', 'mri': 'mri', 'subjects_dir': 'tempdir', 'add_interpolator': '(False)'}), "('fsaverage', pos=50, mri=mri, subjects_dir=\n tempdir, add_interpolator=False)\n", (3511, 3592), False, 'import mne\n'), ((3609, 3651), 'mne.source_space.write_source_spaces', 'write_source_spaces', (["(path % 'vol-50')", 'vsrc'], {}), "(path % 'vol-50', vsrc)\n", (3628, 3651), False, 'from mne.source_space import write_source_spaces\n'), ((3732, 3755), 'numpy.array', 'np.array', (['[1, 0.2, 0.8]'], {}), '([1, 0.2, 0.8])\n', (3740, 3755), True, 'import numpy as np\n'), ((3758, 3849), 'mne.coreg.scale_mri', 'scale_mri', (['"""fsaverage"""', '"""flachkopf"""', 'scale', '(True)'], {'subjects_dir': 'tempdir', 'verbose': '"""debug"""'}), "('fsaverage', 'flachkopf', scale, True, subjects_dir=tempdir,\n verbose='debug')\n", (3767, 3849), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((3911, 3948), 'mne.coreg._is_mri_subject', '_is_mri_subject', (['"""flachkopf"""', 'tempdir'], {}), "('flachkopf', tempdir)\n", (3926, 3948), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((3989, 4049), 'os.path.join', 'op.join', (['tempdir', '"""flachkopf"""', '"""bem"""', '"""flachkopf-%s-src.fif"""'], {}), "(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif')\n", (3996, 4049), True, 'import os.path as op\n'), ((4062, 4088), 'os.path.exists', 'op.exists', (["(spath % 'ico-0')"], {}), "(spath % 'ico-0')\n", (4071, 4088), True, 'import os.path as op\n'), ((4265, 4305), 'mne.read_source_spaces', 'mne.read_source_spaces', (["(spath % 'vol-50')"], {}), "(spath % 'vol-50')\n", (4287, 4305), False, 'import mne\n'), ((4315, 4344), 'numpy.array', 'np.array', (['[0.12, 0.41, -0.22]'], {}), '([0.12, 0.41, -0.22])\n', (4323, 4344), True, 'import numpy as np\n'), ((4497, 4544), 'mne.coreg.scale_labels', 'scale_labels', (['"""flachkopf"""'], {'subjects_dir': 'tempdir'}), "('flachkopf', subjects_dir=tempdir)\n", (4509, 4544), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((4586, 4621), 'mne.add_source_space_distances', 'mne.add_source_space_distances', (['src'], {}), '(src)\n', (4616, 4621), False, 'import mne\n'), ((4699, 4725), 'os.remove', 'os.remove', (["(spath % 'ico-0')"], {}), "(spath % 'ico-0')\n", (4708, 4725), False, 'import os\n'), ((4730, 4792), 'mne.coreg.scale_source_space', 'scale_source_space', (['"""flachkopf"""', '"""ico-0"""'], {'subjects_dir': 'tempdir'}), "('flachkopf', 'ico-0', subjects_dir=tempdir)\n", (4748, 4792), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((4804, 4843), 'mne.read_source_spaces', 'mne.read_source_spaces', (["(spath % 'ico-0')"], {}), "(spath % 'ico-0')\n", (4826, 4843), False, 'import mne\n'), ((5081, 5098), 'mne.transforms.rotation', 'rotation', (['(2)', '(6)', '(3)'], {}), '(2, 6, 3)\n', (5089, 5098), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5113, 5140), 'mne.transforms.apply_trans', 'apply_trans', (['trans', 'tgt_pts'], {}), '(trans, tgt_pts)\n', (5124, 5140), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5157, 5223), 'mne.coreg.fit_matched_points', 'fit_matched_points', (['src_pts', 'tgt_pts'], {'translate': '(False)', 'out': '"""trans"""'}), "(src_pts, tgt_pts, translate=False, out='trans')\n", (5175, 5223), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((5273, 5304), 'mne.transforms.apply_trans', 'apply_trans', (['trans_est', 'src_pts'], {}), '(trans_est, src_pts)\n', (5284, 5304), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5309, 5395), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['tgt_pts', 'est_pts', '(2)', '"""fit_matched_points with rotation"""'], {}), "(tgt_pts, est_pts, 2,\n 'fit_matched_points with rotation')\n", (5334, 5395), False, 'from numpy.testing import assert_array_almost_equal\n'), ((5530, 5557), 'mne.transforms.apply_trans', 'apply_trans', (['trans', 'tgt_pts'], {}), '(trans, tgt_pts)\n', (5541, 5557), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5574, 5623), 'mne.coreg.fit_matched_points', 'fit_matched_points', (['src_pts', 'tgt_pts'], {'out': '"""trans"""'}), "(src_pts, tgt_pts, out='trans')\n", (5592, 5623), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((5638, 5669), 'mne.transforms.apply_trans', 'apply_trans', (['trans_est', 'src_pts'], {}), '(trans_est, src_pts)\n', (5649, 5669), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5674, 5777), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['tgt_pts', 'est_pts', '(2)', '"""fit_matched_points with rotation and translation."""'], {}), "(tgt_pts, est_pts, 2,\n 'fit_matched_points with rotation and translation.')\n", (5699, 5777), False, 'from numpy.testing import assert_array_almost_equal\n'), ((5986, 6013), 'mne.transforms.apply_trans', 'apply_trans', (['trans', 'tgt_pts'], {}), '(trans, tgt_pts)\n', (5997, 6013), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((6030, 6088), 'mne.coreg.fit_matched_points', 'fit_matched_points', (['src_pts', 'tgt_pts'], {'scale': '(1)', 'out': '"""trans"""'}), "(src_pts, tgt_pts, scale=1, out='trans')\n", (6048, 6088), False, 'from mne.coreg import fit_matched_points, create_default_subject, scale_mri, _is_mri_subject, scale_labels, scale_source_space, coregister_fiducials\n'), ((6103, 6134), 'mne.transforms.apply_trans', 'apply_trans', (['trans_est', 'src_pts'], {}), '(trans_est, src_pts)\n', (6114, 6134), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((6139, 6251), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['tgt_pts', 'est_pts', '(2)', '"""fit_matched_points with rotation, translation and scaling."""'], {}), "(tgt_pts, est_pts, 2,\n 'fit_matched_points with rotation, translation and scaling.')\n", (6164, 6251), False, 'from numpy.testing import assert_array_almost_equal\n'), ((6341, 6414), 'nose.tools.assert_raises', 'assert_raises', (['RuntimeError', 'fit_matched_points', 'tgt_pts', 'src_pts'], {'tol': '(10)'}), '(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)\n', (6354, 6414), False, 'from nose.tools import assert_raises\n'), ((2671, 2690), 'mne.datasets.testing.data_path', 'testing.data_path', ([], {}), '()\n', (2688, 2690), False, 'from mne.datasets import testing\n'), ((3036, 3057), 'os.remove', 'os.remove', (['label_path'], {}), '(label_path)\n', (3045, 3057), False, 'import os\n'), ((4152, 4211), 'os.path.join', 'os.path.join', (['tempdir', '"""flachkopf"""', '"""surf"""', '"""lh.sphere.reg"""'], {}), "(tempdir, 'flachkopf', 'surf', 'lh.sphere.reg')\n", (4164, 4211), False, 'import os\n'), ((4375, 4422), 'mne.transforms.apply_trans', 'apply_trans', (["vsrc_s[0]['src_mri_t']", '(pt * scale)'], {}), "(vsrc_s[0]['src_mri_t'], pt * scale)\n", (4386, 4422), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((4454, 4491), 'mne.transforms.apply_trans', 'apply_trans', (["vsrc[0]['src_mri_t']", 'pt'], {}), "(vsrc[0]['src_mri_t'], pt)\n", (4465, 4491), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5474, 5495), 'mne.transforms.translation', 'translation', (['(2)', '(-6)', '(3)'], {}), '(2, -6, 3)\n', (5485, 5495), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5497, 5514), 'mne.transforms.rotation', 'rotation', (['(2)', '(6)', '(3)'], {}), '(2, 6, 3)\n', (5505, 5514), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((905, 932), 'mne.transforms.translation', 'translation', (['(0.1)', '(-0.1)', '(0.1)'], {}), '(0.1, -0.1, 0.1)\n', (916, 932), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5001, 5026), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (5022, 5026), True, 'import numpy as np\n'), ((5875, 5896), 'mne.transforms.translation', 'translation', (['(2)', '(-6)', '(3)'], {}), '(2, -6, 3)\n', (5886, 5896), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5898, 5921), 'mne.transforms.rotation', 'rotation', (['(1.5)', '(0.3)', '(1.4)'], {}), '(1.5, 0.3, 1.4)\n', (5906, 5921), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((5950, 5972), 'mne.transforms.scaling', 'scaling', (['(0.5)', '(0.5)', '(0.5)'], {}), '(0.5, 0.5, 0.5)\n', (5957, 5972), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n'), ((881, 902), 'mne.transforms.rotation', 'rotation', (['(0.4)', '(0.1)', '(0)'], {}), '(0.4, 0.1, 0)\n', (889, 902), False, 'from mne.transforms import Transform, apply_trans, rotation, translation, scaling\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ######### Reporting ######### *Created on Thu Jun 8 14:40 2017 by <NAME>* Tools for creating HTML Reports.""" import time import base64 import os import gc import os.path as op from string import Template from io import BytesIO as IO import pandas as pd from rdkit.Chem import AllChem as Chem from rdkit.Chem import Draw import numpy as np from PIL import Image, ImageChops import matplotlib.pyplot as plt from cellpainting2 import tools as cpt from cellpainting2 import report_templ as cprt from cellpainting2 import processing as cpp cp_config = cpt.load_config("config") # cp_plates = cpt.load_config("plates") IPYTHON = cpt.is_interactive_ipython() if IPYTHON: from IPython.core.display import HTML ACT_PROF_PARAMETERS = cp_config["Parameters"] ACT_CUTOFF_PERC = cp_config["Cutoffs"]["ActCutoffPerc"] ACT_CUTOFF_PERC_H = cp_config["Cutoffs"]["ActCutoffPercH"] ACT_CUTOFF_PERC_REF = cp_config["Cutoffs"]["ActCutoffPercRef"] OVERACT_H = cp_config["Cutoffs"]["OverActH"] LIMIT_ACTIVITY_H = cp_config["Cutoffs"]["LimitActivityH"] LIMIT_ACTIVITY_L = cp_config["Cutoffs"]["LimitActivityL"] LIMIT_CELL_COUNT_H = cp_config["Cutoffs"]["LimitCellCountH"] LIMIT_CELL_COUNT_L = cp_config["Cutoffs"]["LimitCellCountL"] LIMIT_SIMILARITY_H = cp_config["Cutoffs"]["LimitSimilarityH"] LIMIT_SIMILARITY_L = cp_config["Cutoffs"]["LimitSimilarityL"] PARAMETER_HELP = cp_config["ParameterHelp"] # get positions of the compartments in the list of parameters x = 1 XTICKS = [x] for comp in ["Median_Cytoplasm", "Median_Nuclei"]: for idx, p in enumerate(ACT_PROF_PARAMETERS[x:], 1): if p.startswith(comp): XTICKS.append(idx + x) x += idx break XTICKS.append(len(ACT_PROF_PARAMETERS)) Draw.DrawingOptions.atomLabelFontFace = "DejaVu Sans" Draw.DrawingOptions.atomLabelFontSize = 18 try: from misc_tools import apl_tools AP_TOOLS = True # Library version VERSION = apl_tools.get_commit(__file__) # I use this to keep track of the library versions I use in my project notebooks print("{:45s} ({})".format(__name__, VERSION)) except ImportError: AP_TOOLS = False print("{:45s} ({})".format(__name__, time.strftime( "%y%m%d-%H:%M", time.localtime(op.getmtime(__file__))))) try: # Try to import Avalon so it can be used for generation of 2d coordinates. from rdkit.Avalon import pyAvalonTools as pyAv USE_AVALON_2D = True except ImportError: print(" * Avalon not available. Using RDKit for 2d coordinate generation.") USE_AVALON_2D = False try: import holoviews as hv hv.extension("bokeh") HOLOVIEWS = True except ImportError: HOLOVIEWS = False print("* holoviews could not be import. heat_hv is not available.") def check_2d_coords(mol, force=False): """Check if a mol has 2D coordinates and if not, calculate them.""" if not force: try: mol.GetConformer() except ValueError: force = True # no 2D coords... calculate them if force: if USE_AVALON_2D: pyAv.Generate2DCoords(mol) else: mol.Compute2DCoords() def mol_from_smiles(smi, calc_2d=True): mol = Chem.MolFromSmiles(smi) if not mol: mol = Chem.MolFromSmiles("*") else: if calc_2d: check_2d_coords(mol) return mol def autocrop(im, bgcolor="white"): if im.mode != "RGB": im = im.convert("RGB") bg = Image.new("RGB", im.size, bgcolor) diff = ImageChops.difference(im, bg) bbox = diff.getbbox() if bbox: return im.crop(bbox) return None # no contents def get_value(str_val): if not str_val: return "" try: val = float(str_val) if "." not in str_val: val = int(val) except ValueError: val = str_val return val def isnumber(x): """Returns True, if x is a number (i.e. can be converted to float).""" try: float(x) return True except ValueError: return False def convert_bool(dict, dkey, true="Yes", false="No", default="n.d."): if dkey in dict: if dict[dkey]: dict[dkey] = true else: dict[dkey] = false else: dict[dkey] = default def load_image(path, well, channel): image_fn = "{}/{}_w{}.jpg".format(path, well, channel) im = Image.open(image_fn) return im def b64_mol(mol, size=300): img_file = IO() try: img = autocrop(Draw.MolToImage(mol, size=(size, size))) except UnicodeEncodeError: print(Chem.MolToSmiles(mol)) mol = Chem.MolFromSmiles("C") img = autocrop(Draw.MolToImage(mol, size=(size, size))) img.save(img_file, format='PNG') b64 = base64.b64encode(img_file.getvalue()) b64 = b64.decode() img_file.close() return b64 def b64_img(im, format="JPEG"): if isinstance(im, IO): needs_close = False img_file = im else: needs_close = True img_file = IO() im.save(img_file, format=format) b64 = base64.b64encode(img_file.getvalue()) b64 = b64.decode() if needs_close: img_file.close() return b64 def mol_img_tag(mol, options=None): tag = """<img {} src="data:image/png;base64,{}" alt="Mol"/>""" if options is None: options = "" img_tag = tag.format(options, b64_mol(mol)) return img_tag def img_tag(im, format="jpeg", options=None): tag = """<img {} src="data:image/{};base64,{}" alt="Image"/>""" if options is None: options = "" b = b64_img(im, format=format) img_tag = tag.format(options, format.lower(), b) return img_tag def load_control_images(src_dir): image_dir = op.join(src_dir, "images") ctrl_images = {} for ch in range(1, 6): im = load_image(image_dir, "H11", ch) ctrl_images[ch] = img_tag(im, options='style="width: 250px;"') return ctrl_images def sanitize_filename(fn): result = fn.replace(":", "_").replace(",", "_").replace(".", "_") return result def write(text, fn): with open(fn, "w") as f: f.write(text) def write_page(page, title="Report", fn="index.html", templ=cprt.HTML_INTRO): t = Template(templ + page + cprt.HTML_EXTRO) result = t.substitute(title=title) write(result, fn=fn) def assign_colors(rec): act_cutoff_high = ACT_CUTOFF_PERC_H if "Toxic" in rec: if rec["Toxic"]: rec["Col_Toxic"] = cprt.COL_RED else: rec["Col_Toxic"] = cprt.COL_GREEN else: rec["Col_Toxic"] = cprt.COL_WHITE if "Pure_Flag" in rec: if rec["Pure_Flag"] == "Ok": rec["Col_Purity"] = cprt.COL_GREEN elif rec["Pure_Flag"] == "Warn": rec["Col_Purity"] = cprt.COL_YELLOW elif rec["Pure_Flag"] == "Fail": rec["Col_Purity"] = cprt.COL_RED else: rec["Col_Purity"] = cprt.COL_WHITE else: rec["Col_Purity"] = cprt.COL_WHITE if rec["Rel_Cell_Count"] >= LIMIT_CELL_COUNT_H: rec["Col_Cell_Count"] = cprt.COL_GREEN elif rec["Rel_Cell_Count"] >= LIMIT_CELL_COUNT_L: rec["Col_Cell_Count"] = cprt.COL_YELLOW else: rec["Col_Cell_Count"] = cprt.COL_RED if rec["Activity"] > act_cutoff_high: rec["Col_Act"] = cprt.COL_RED elif rec["Activity"] >= LIMIT_ACTIVITY_H: rec["Col_Act"] = cprt.COL_GREEN elif rec["Activity"] >= LIMIT_ACTIVITY_L: rec["Col_Act"] = cprt.COL_YELLOW else: rec["Col_Act"] = cprt.COL_RED if rec["Act_Flag"] == "active": rec["Col_Act_Flag"] = cprt.COL_GREEN else: rec["Col_Act_Flag"] = cprt.COL_RED def remove_colors(rec): for k in rec.keys(): if k.startswith("Col_"): rec[k] = cprt.COL_WHITE def overview_report(df, cutoff=LIMIT_SIMILARITY_L / 100, highlight=False, mode="cpd"): """mode `int` displays similarities not to references but to other internal compounds (just displays the `Similarity` column).""" cpp.load_resource("SIM_REFS") sim_refs = cpp.SIM_REFS detailed_cpds = [] if isinstance(df, cpp.DataSet): df = df.data t = Template(cprt.OVERVIEW_TABLE_HEADER) if "int" in mode: tbl_header = t.substitute(sim_entity="to another Test Compound") else: tbl_header = t.substitute(sim_entity="to a Reference") report = [cprt.OVERVIEW_TABLE_INTRO, tbl_header] row_templ = Template(cprt.OVERVIEW_TABLE_ROW) idx = 0 for _, rec in df.iterrows(): act_cutoff_low = ACT_CUTOFF_PERC act_cutoff_high = ACT_CUTOFF_PERC_H idx += 1 well_id = rec["Well_Id"] mol = mol_from_smiles(rec.get("Smiles", "*")) rec["mol_img"] = mol_img_tag(mol) rec["idx"] = idx if "Pure_Flag" not in rec: rec["Pure_Flag"] = "n.d." rec["Act_Flag"] = "active" rec["Max_Sim"] = "" rec["Link"] = "" rec["Col_Sim"] = cprt.COL_WHITE has_details = True if rec["Activity"] < act_cutoff_low: has_details = False rec["Act_Flag"] = "inactive" # print(rec) # similar references are searched for non-toxic compounds with an activity >= LIMIT_ACTIVITY_L if rec["Activity"] < LIMIT_ACTIVITY_L or rec["Activity"] > act_cutoff_high or rec["Toxic"] or rec["OverAct"] > OVERACT_H: similars_determined = False if rec["OverAct"] > OVERACT_H: rec["Max_Sim"] = "Overact." rec["Col_Sim"] = cprt.COL_RED else: similars_determined = True assign_colors(rec) convert_bool(rec, "Toxic") if has_details: detailed_cpds.append(well_id) details_fn = sanitize_filename(well_id) plate = rec["Plate"] rec["Link"] = '<a href="../{}/details/{}.html">Detailed<br>Report</a>'.format( plate, details_fn) if similars_determined: if "int" in mode: # similar = {"Similarity": [rec["Similarity"]]} similar = pd.DataFrame( {"Well_Id": [well_id], "Similarity": [rec["Similarity"]]}) else: similar = sim_refs[sim_refs["Well_Id"] == well_id].compute() similar = similar.sort_values("Similarity", ascending=False).reset_index() if len(similar) > 0: max_sim = round( similar["Similarity"][0] * 100, 1) # first in the list has the highest similarity rec["Max_Sim"] = max_sim if max_sim >= LIMIT_SIMILARITY_H: rec["Col_Sim"] = cprt.COL_GREEN elif max_sim >= LIMIT_SIMILARITY_L: rec["Col_Sim"] = cprt.COL_YELLOW else: rec["Col_Sim"] = cprt.COL_WHITE print("ERROR: This should not happen (Max_Sim).") else: rec["Max_Sim"] = "< {}".format(LIMIT_SIMILARITY_L) rec["Col_Sim"] = cprt.COL_RED if not highlight: # remove all coloring again: remove_colors(rec) report.append(row_templ.substitute(rec)) report.append(cprt.TABLE_EXTRO) return "\n".join(report), detailed_cpds def sim_ref_table(similar): cpp.load_resource("REFERENCES") df_refs = cpp.REFERENCES table = [cprt.TABLE_INTRO, cprt.REF_TABLE_HEADER] templ = Template(cprt.REF_TABLE_ROW) for idx, rec in similar.iterrows(): rec = rec.to_dict() ref_id = rec["Ref_Id"] ref_data = df_refs[df_refs["Well_Id"] == ref_id] if cpp.is_dask(ref_data): ref_data = ref_data.compute() if len(ref_data) == 0: print(rec) raise ValueError("BUG: ref_data should not be empty.") ref_data = ref_data.copy() ref_data = ref_data.fillna("&mdash;") rec.update(ref_data.to_dict("records")[0]) mol = mol_from_smiles(rec.get("Smiles", "*")) rec["Sim_Format"] = "{:.1f}".format(rec["Similarity"] * 100) rec["Tan_Format"] = "{:.1f}".format(rec["Tanimoto"] * 100) if rec["Tan_Format"] == np.nan: rec["Tan_Format"] = "&mdash;" rec["mol_img"] = mol_img_tag(mol) rec["idx"] = idx + 1 link = "../../{}/details/{}.html".format(rec["Plate"], sanitize_filename(rec["Well_Id"])) rec["link"] = link row = templ.substitute(rec) table.append(row) table.append(cprt.TABLE_EXTRO) return "\n".join(table) def changed_parameters_table(act_prof, val, parameters=ACT_PROF_PARAMETERS): changed = cpt.parameters_from_act_profile_by_val( act_prof, val, parameters=parameters) table = [] templ = Template(cprt.PARM_TABLE_ROW) for idx, p in enumerate(changed, 1): p_elmnts = p.split("_") p_module = p_elmnts[2] p_name = "_".join(p_elmnts[1:]) rec = { "idx": idx, "Parameter": p_name, "Help_Page": PARAMETER_HELP[p_module] } row = templ.substitute(rec) table.append(row) return "\n".join(table), changed def parm_stats(parameters): result = [] channels = ["_Mito", "_Ph_golgi", "_Syto", "_ER", "Hoechst"] for ch in channels: cnt = len([p for p in parameters if ch in p]) result.append(cnt) return result def parm_hist(increased, decreased, hist_cache): # try to load histogram from cache: if op.isfile(hist_cache): result = open(hist_cache).read() return result labels = [ "Mito", "Golgi / Membrane", "RNA / Nucleoli", "ER", "Nuclei" ] inc_max = max(increased) dec_max = max(decreased) max_total = max([inc_max, dec_max]) if max_total == 0: result = "No compartment-specific parameters were changed." return result inc_norm = [v / max_total for v in increased] dec_norm = [v / max_total for v in decreased] n_groups = 5 dpi = 96 # plt.rcParams['axes.titlesize'] = 25 plt.style.use("seaborn-white") plt.style.use("seaborn-pastel") plt.style.use("seaborn-talk") plt.rcParams['axes.labelsize'] = 25 plt.rcParams['xtick.labelsize'] = 20 plt.rcParams['ytick.labelsize'] = 20 plt.rcParams['legend.fontsize'] = 20 size = (1500, 1000) figsize = (size[0] / dpi, size[1] / dpi) fig, ax = plt.subplots(figsize=figsize) index = np.arange(n_groups) bar_width = 0.25 plt.bar(index, inc_norm, bar_width, color='#94caef', label='Inc') plt.bar(index + bar_width, dec_norm, bar_width, color='#ffdd1a', label='Dec') plt.xlabel('Cell Compartment') plt.ylabel('rel. Occurrence') plt.xticks(index + bar_width / 2, labels, rotation=45) plt.legend() plt.tight_layout() img_file = IO() plt.savefig(img_file, bbox_inches='tight', format="jpg") result = img_tag(img_file, format="jpg", options='style="width: 800px;"') img_file.close() # important, otherwise the plots will accumulate and fill up memory: plt.close() open(hist_cache, "w").write(result) # cache the histogram return result def heat_mpl(df, id_prop="Compound_Id", cmap="bwr", show=True, colorbar=True, biosim=False, chemsim=False, method="dist_corr", sort_parm=False, parm_dict=None, plot_cache=None): # try to load heatmap from cache: if plot_cache is not None and op.isfile(plot_cache): result = open(plot_cache).read() return result if "dist" in method.lower(): profile_sim = cpt.profile_sim_dist_corr else: profile_sim = cpt.profile_sim_tanimoto df_len = len(df) img_size = 15 if show else 17 plt.style.use("seaborn-white") plt.style.use("seaborn-pastel") plt.style.use("seaborn-talk") plt.rcParams['axes.labelsize'] = 25 # plt.rcParams['legend.fontsize'] = 20 plt.rcParams['figure.figsize'] = (img_size, 1.1 + 0.47 * (df_len - 1)) plt.rcParams['axes.labelsize'] = 25 plt.rcParams['ytick.labelsize'] = 20 plt.rcParams['xtick.labelsize'] = 15 fs_text = 18 y_labels = [] fp_list = [] max_val = 3 # using a fixed color range now min_val = -3 ylabel_templ = "{}{}{}" ylabel_cs = "" ylabel_bs = "" id_prop_list = [] for ctr, (_, rec) in enumerate(df.iterrows()): if sort_parm: if ctr == 0: compartments = ["Median_Cells", "Median_Cytoplasm", "Median_Nuclei"] parm_list = [] for comp in compartments: parm_comp = [x for x in ACT_PROF_PARAMETERS if x.startswith(comp)] val_list = [rec[x] for x in parm_comp] parm_sorted = [x for _, x in sorted(zip(val_list, parm_comp))] parm_list.extend(parm_sorted) else: parm_list = ACT_PROF_PARAMETERS fp = [rec[x] for x in ACT_PROF_PARAMETERS] fp_view = [rec[x] for x in parm_list] fp_list.append(fp_view) id_prop_list.append(rec[id_prop]) if chemsim: if ctr == 0: mol = mol_from_smiles(rec.get("Smiles", "*")) if len(mol.GetAtoms()) > 1: ylabel_cs = "Chem | " mol_fp = Chem.GetMorganFingerprint(mol, 2) # ECFC4 else: # no Smiles present in the DataFrame ylabel_cs = "" chemsim = False else: q = rec.get("Smiles", "*") if len(q) < 2: ylabel_cs = " | " else: sim = cpt.chem_sim(mol_fp, q) * 100 ylabel_cs = "{:3.0f}% | ".format(sim) if biosim: if ctr == 0: prof_ref = fp ylabel_bs = " Bio | " else: sim = profile_sim(prof_ref, fp) * 100 ylabel_bs = "{:3.0f}% | ".format(sim) ylabel = ylabel_templ.format(ylabel_cs, ylabel_bs, rec[id_prop]) y_labels.append(ylabel) # m_val = max(fp) # this was the calculation of the color range # if m_val > max_val: # max_val = m_val # m_val = min(fp) # if m_val < min_val: # min_val = m_val if isinstance(parm_dict, dict): parm_dict["Parameter"] = parm_list for i in range(len(id_prop_list)): parm_dict[str(id_prop_list[i])] = fp_list[i].copy() # calc the colorbar range max_val = max(abs(min_val), max_val) # invert y axis: y_labels = y_labels[::-1] fp_list = fp_list[::-1] Z = np.asarray(fp_list) plt.xticks(XTICKS) plt.yticks(np.arange(df_len) + 0.5, y_labels) plt.pcolor(Z, vmin=-max_val, vmax=max_val, cmap=cmap) plt.text(XTICKS[1] // 2, -1.1, "Cells", horizontalalignment='center', fontsize=fs_text) plt.text(XTICKS[1] + ((XTICKS[2] - XTICKS[1]) // 2), -1.1, "Cytoplasm", horizontalalignment='center', fontsize=fs_text) plt.text(XTICKS[2] + ((XTICKS[3] - XTICKS[2]) // 2), -1.1, "Nuclei", horizontalalignment='center', fontsize=fs_text) if colorbar and len(df) > 3: plt.colorbar() plt.tight_layout() if show: plt.show() else: img_file = IO() plt.savefig(img_file, bbox_inches='tight', format="jpg") result = img_tag(img_file, format="jpg", options='style="width: 900px;"') img_file.close() # important, otherwise the plots will accumulate and fill up memory: plt.clf() plt.close() gc.collect() if plot_cache is not None: # cache the plot open(plot_cache, "w").write(result) return result def heat_hv(df, id_prop="Compound_Id", cmap="bwr", invert_y=False): if not HOLOVIEWS: raise ImportError("# holoviews library could not be imported") df_parm = df[[id_prop] + ACT_PROF_PARAMETERS].copy() df_len = len(df_parm) col_bar = False if df_len < 3 else True values = list(df_parm.drop(id_prop, axis=1).values.flatten()) max_val = max(values) min_val = min(values) max_val = max(abs(min_val), max_val) hm_opts = dict(width=950, height=40 + 30 * df_len, tools=['hover'], invert_yaxis=invert_y, xrotation=90, labelled=[], toolbar='above', colorbar=col_bar, xaxis=None, colorbar_opts={"width": 10}) hm_style = {"cmap": cmap} opts = {'HeatMap': {'plot': hm_opts, "style": hm_style}} df_heat = cpt.melt(df_parm, id_prop=id_prop) heatmap = hv.HeatMap(df_heat).redim.range(Value=(-max_val, max_val)) return heatmap(opts) def show_images(plate_full_name, well): """For interactive viewing in the notebook.""" if not IPYTHON: return src_dir = op.join(cp_config["Paths"]["SrcPath"], plate_full_name) ctrl_images = load_control_images(src_dir) image_dir = op.join(src_dir, "images") templ_dict = {} for ch in range(1, 6): im = load_image(image_dir, well, ch) templ_dict["Img_{}_Cpd".format(ch)] = img_tag( im, options='style="width: 250px;"') templ_dict["Img_{}_Ctrl".format(ch)] = ctrl_images[ch] tbody_templ = Template(cprt.IMAGES_TABLE) table = cprt.TABLE_INTRO + \ tbody_templ.substitute(templ_dict) + cprt.HTML_EXTRO return HTML(table) def get_data_for_wells(well_ids): cpp.load_resource("DATASTORE") data = cpp.DATASTORE result = data[data["Well_Id"].isin(well_ids)] if cpp.is_dask(result): result = result.compute() result["_sort"] = pd.Categorical( result["Well_Id"], categories=well_ids, ordered=True) result = result.sort_values("_sort") result.drop("_sort", axis=1, inplace=False) return result def detailed_report(rec, src_dir, ctrl_images): # print(rec) cpp.load_resource("SIM_REFS") sim_refs = cpp.SIM_REFS date = time.strftime("%d-%m-%Y %H:%M", time.localtime()) image_dir = op.join(src_dir, "images") well_id = rec["Well_Id"] # act_prof = [rec[x] for x in ACT_PROF_PARAMETERS] mol = mol_from_smiles(rec.get("Smiles", "*")) if "Pure_Flag" not in rec: rec["Pure_Flag"] = "n.d." templ_dict = rec.copy() log2_vals = [(x, rec[x]) for x in ACT_PROF_PARAMETERS] parm_table = [] for idx, x in enumerate(log2_vals, 1): parm_table.extend(["<tr><td>", str(idx), "</td>", # omit the "Median_" head of each parameter "<td>", x[0][7:], "</td>", '<td align="right">', "{:.2f}".format(x[1]), "</td></tr>\n"]) templ_dict["Parm_Table"] = "".join(parm_table) df_heat = pd.DataFrame([rec]) templ_dict["Date"] = date templ_dict["mol_img"] = mol_img_tag(mol, options='class="cpd_image"') if templ_dict["Is_Ref"]: if not isinstance(templ_dict["Trivial_Name"], str) or templ_dict["Trivial_Name"] == "": templ_dict["Trivial_Name"] = "&mdash;" if not isinstance(templ_dict["Known_Act"], str) or templ_dict["Known_Act"] == "": templ_dict["Known_Act"] = "&mdash;" t = Template(cprt.DETAILS_REF_ROW) templ_dict["Reference"] = t.substitute(templ_dict) else: templ_dict["Reference"] = "" well = rec["Metadata_Well"] for ch in range(1, 6): im = load_image(image_dir, well, ch) templ_dict["Img_{}_Cpd".format(ch)] = img_tag( im, options='style="width: 250px;"') templ_dict["Img_{}_Ctrl".format(ch)] = ctrl_images[ch] act_cutoff_high = ACT_CUTOFF_PERC_H if rec["Rel_Cell_Count"] < LIMIT_CELL_COUNT_L: templ_dict["Ref_Table"] = "Because of compound toxicity, no similarity was determined." elif rec["Activity"] < LIMIT_ACTIVITY_L: templ_dict["Ref_Table"] = "Because of low induction (&lt; {}%), no similarity was determined.".format(LIMIT_ACTIVITY_L) elif rec["Activity"] > act_cutoff_high: templ_dict["Ref_Table"] = "Because of high induction (&gt; {}%), no similarity was determined.".format(act_cutoff_high) elif rec["OverAct"] > OVERACT_H: templ_dict["Ref_Table"] = "Because of high similarity to the overactivation profile (&gt; {}%), no similarity was determined.".format(OVERACT_H) else: similar = sim_refs[sim_refs["Well_Id"] == well_id].compute() if len(similar) > 0: similar = similar.sort_values("Similarity", ascending=False).reset_index().head(5) ref_tbl = sim_ref_table(similar) templ_dict["Ref_Table"] = ref_tbl sim_data = get_data_for_wells(similar["Ref_Id"].values) df_heat = pd.concat([df_heat, sim_data]) else: templ_dict["Ref_Table"] = "No similar references found." cache_path = op.join(cp_config["Dirs"]["DataDir"], "plots", rec["Plate"]) if not op.isdir(cache_path): os.makedirs(cache_path, exist_ok=True) hm_fn = sanitize_filename(rec["Well_Id"] + ".txt") hm_cache = op.join(cache_path, hm_fn) templ_dict["Heatmap"] = heat_mpl(df_heat, id_prop="Compound_Id", cmap="bwr", show=False, colorbar=True, plot_cache=hm_cache) t = Template(cprt.DETAILS_TEMPL) report = t.substitute(templ_dict) return report def full_report(df, src_dir, report_name="report", plate=None, cutoff=0.6, highlight=False): report_full_path = op.join(cp_config["Dirs"]["ReportDir"], report_name) overview_fn = op.join(report_full_path, "index.html") date = time.strftime("%d-%m-%Y %H:%M", time.localtime()) cpt.create_dirs(op.join(report_full_path, "details")) if isinstance(df, cpp.DataSet): df = df.data print("* creating overview...") header = "{}\n<h2>Cell Painting Overview Report</h2>\n".format(cprt.LOGO) title = "Overview" if plate is not None: title = plate header += "<h3>Plate {}</h3>\n".format(plate) header += "<p>({})</p>\n".format(date) if highlight: highlight_legend = cprt.HIGHLIGHT_LEGEND else: highlight_legend = "" overview, detailed_cpds = overview_report(df, cutoff=cutoff, highlight=highlight) overview = header + overview + highlight_legend write_page(overview, title=title, fn=overview_fn, templ=cprt.OVERVIEW_HTML_INTRO) # print(detailed_cpds) print("* creating detailed reports...") print(" * loading control images...") ctrl_images = load_control_images(src_dir) print(" * writing individual reports...") df_detailed = df[df["Well_Id"].isin(detailed_cpds)] ctr = 0 df_len = len(df_detailed) for _, rec in df_detailed.iterrows(): ctr += 1 if not IPYTHON and ctr % 10 == 0: print(" ({:3d}%)\r".format(int(100 * ctr / df_len)), end="") well_id = rec["Well_Id"] fn = op.join(report_full_path, "details", "{}.html".format(sanitize_filename(well_id))) title = "{} Details".format(well_id) # similar = detailed_cpds[well_id] details = detailed_report(rec, src_dir, ctrl_images) write_page(details, title=title, fn=fn, templ=cprt.DETAILS_HTML_INTRO) print("* done. ") if IPYTHON: return HTML('<a href="{}">{}</a>'.format(overview_fn, "Overview"))
[ "PIL.ImageChops.difference", "cellpainting2.tools.load_config", "PIL.Image.new", "matplotlib.pyplot.clf", "matplotlib.pyplot.bar", "IPython.core.display.HTML", "gc.collect", "os.path.isfile", "matplotlib.pyplot.style.use", "numpy.arange", "cellpainting2.tools.parameters_from_act_profile_by_val", "os.path.join", "matplotlib.pyplot.tight_layout", "rdkit.Chem.Draw.MolToImage", "pandas.DataFrame", "cellpainting2.tools.chem_sim", "cellpainting2.processing.load_resource", "rdkit.Chem.AllChem.GetMorganFingerprint", "matplotlib.pyplot.close", "holoviews.extension", "matplotlib.pyplot.colorbar", "holoviews.HeatMap", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "cellpainting2.processing.is_dask", "time.localtime", "pandas.concat", "matplotlib.pyplot.pcolor", "io.BytesIO", "matplotlib.pyplot.show", "cellpainting2.tools.melt", "matplotlib.pyplot.legend", "numpy.asarray", "cellpainting2.tools.is_interactive_ipython", "matplotlib.pyplot.text", "rdkit.Avalon.pyAvalonTools.Generate2DCoords", "matplotlib.pyplot.ylabel", "rdkit.Chem.AllChem.MolFromSmiles", "os.makedirs", "os.path.isdir", "misc_tools.apl_tools.get_commit", "rdkit.Chem.AllChem.MolToSmiles", "PIL.Image.open", "string.Template", "os.path.getmtime", "pandas.Categorical", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((607, 632), 'cellpainting2.tools.load_config', 'cpt.load_config', (['"""config"""'], {}), "('config')\n", (622, 632), True, 'from cellpainting2 import tools as cpt\n'), ((684, 712), 'cellpainting2.tools.is_interactive_ipython', 'cpt.is_interactive_ipython', ([], {}), '()\n', (710, 712), True, 'from cellpainting2 import tools as cpt\n'), ((1976, 2006), 'misc_tools.apl_tools.get_commit', 'apl_tools.get_commit', (['__file__'], {}), '(__file__)\n', (1996, 2006), False, 'from misc_tools import apl_tools\n'), ((2631, 2652), 'holoviews.extension', 'hv.extension', (['"""bokeh"""'], {}), "('bokeh')\n", (2643, 2652), True, 'import holoviews as hv\n'), ((3230, 3253), 'rdkit.Chem.AllChem.MolFromSmiles', 'Chem.MolFromSmiles', (['smi'], {}), '(smi)\n', (3248, 3253), True, 'from rdkit.Chem import AllChem as Chem\n'), ((3488, 3522), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'im.size', 'bgcolor'], {}), "('RGB', im.size, bgcolor)\n", (3497, 3522), False, 'from PIL import Image, ImageChops\n'), ((3534, 3563), 'PIL.ImageChops.difference', 'ImageChops.difference', (['im', 'bg'], {}), '(im, bg)\n', (3555, 3563), False, 'from PIL import Image, ImageChops\n'), ((4404, 4424), 'PIL.Image.open', 'Image.open', (['image_fn'], {}), '(image_fn)\n', (4414, 4424), False, 'from PIL import Image, ImageChops\n'), ((4484, 4488), 'io.BytesIO', 'IO', ([], {}), '()\n', (4486, 4488), True, 'from io import BytesIO as IO\n'), ((5757, 5783), 'os.path.join', 'op.join', (['src_dir', '"""images"""'], {}), "(src_dir, 'images')\n", (5764, 5783), True, 'import os.path as op\n'), ((6251, 6291), 'string.Template', 'Template', (['(templ + page + cprt.HTML_EXTRO)'], {}), '(templ + page + cprt.HTML_EXTRO)\n', (6259, 6291), False, 'from string import Template\n'), ((8092, 8121), 'cellpainting2.processing.load_resource', 'cpp.load_resource', (['"""SIM_REFS"""'], {}), "('SIM_REFS')\n", (8109, 8121), True, 'from cellpainting2 import processing as cpp\n'), ((8238, 8274), 'string.Template', 'Template', (['cprt.OVERVIEW_TABLE_HEADER'], {}), '(cprt.OVERVIEW_TABLE_HEADER)\n', (8246, 8274), False, 'from string import Template\n'), ((8512, 8545), 'string.Template', 'Template', (['cprt.OVERVIEW_TABLE_ROW'], {}), '(cprt.OVERVIEW_TABLE_ROW)\n', (8520, 8545), False, 'from string import Template\n'), ((11537, 11568), 'cellpainting2.processing.load_resource', 'cpp.load_resource', (['"""REFERENCES"""'], {}), "('REFERENCES')\n", (11554, 11568), True, 'from cellpainting2 import processing as cpp\n'), ((11664, 11692), 'string.Template', 'Template', (['cprt.REF_TABLE_ROW'], {}), '(cprt.REF_TABLE_ROW)\n', (11672, 11692), False, 'from string import Template\n'), ((12914, 12990), 'cellpainting2.tools.parameters_from_act_profile_by_val', 'cpt.parameters_from_act_profile_by_val', (['act_prof', 'val'], {'parameters': 'parameters'}), '(act_prof, val, parameters=parameters)\n', (12952, 12990), True, 'from cellpainting2 import tools as cpt\n'), ((13027, 13056), 'string.Template', 'Template', (['cprt.PARM_TABLE_ROW'], {}), '(cprt.PARM_TABLE_ROW)\n', (13035, 13056), False, 'from string import Template\n'), ((13765, 13786), 'os.path.isfile', 'op.isfile', (['hist_cache'], {}), '(hist_cache)\n', (13774, 13786), True, 'import os.path as op\n'), ((14363, 14393), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-white"""'], {}), "('seaborn-white')\n", (14376, 14393), True, 'import matplotlib.pyplot as plt\n'), ((14398, 14429), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-pastel"""'], {}), "('seaborn-pastel')\n", (14411, 14429), True, 'import matplotlib.pyplot as plt\n'), ((14434, 14463), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-talk"""'], {}), "('seaborn-talk')\n", (14447, 14463), True, 'import matplotlib.pyplot as plt\n'), ((14710, 14739), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (14722, 14739), True, 'import matplotlib.pyplot as plt\n'), ((14752, 14771), 'numpy.arange', 'np.arange', (['n_groups'], {}), '(n_groups)\n', (14761, 14771), True, 'import numpy as np\n'), ((14797, 14862), 'matplotlib.pyplot.bar', 'plt.bar', (['index', 'inc_norm', 'bar_width'], {'color': '"""#94caef"""', 'label': '"""Inc"""'}), "(index, inc_norm, bar_width, color='#94caef', label='Inc')\n", (14804, 14862), True, 'import matplotlib.pyplot as plt\n'), ((14891, 14968), 'matplotlib.pyplot.bar', 'plt.bar', (['(index + bar_width)', 'dec_norm', 'bar_width'], {'color': '"""#ffdd1a"""', 'label': '"""Dec"""'}), "(index + bar_width, dec_norm, bar_width, color='#ffdd1a', label='Dec')\n", (14898, 14968), True, 'import matplotlib.pyplot as plt\n'), ((14998, 15028), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Cell Compartment"""'], {}), "('Cell Compartment')\n", (15008, 15028), True, 'import matplotlib.pyplot as plt\n'), ((15033, 15062), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""rel. Occurrence"""'], {}), "('rel. Occurrence')\n", (15043, 15062), True, 'import matplotlib.pyplot as plt\n'), ((15067, 15121), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(index + bar_width / 2)', 'labels'], {'rotation': '(45)'}), '(index + bar_width / 2, labels, rotation=45)\n', (15077, 15121), True, 'import matplotlib.pyplot as plt\n'), ((15126, 15138), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (15136, 15138), True, 'import matplotlib.pyplot as plt\n'), ((15143, 15161), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (15159, 15161), True, 'import matplotlib.pyplot as plt\n'), ((15177, 15181), 'io.BytesIO', 'IO', ([], {}), '()\n', (15179, 15181), True, 'from io import BytesIO as IO\n'), ((15186, 15242), 'matplotlib.pyplot.savefig', 'plt.savefig', (['img_file'], {'bbox_inches': '"""tight"""', 'format': '"""jpg"""'}), "(img_file, bbox_inches='tight', format='jpg')\n", (15197, 15242), True, 'import matplotlib.pyplot as plt\n'), ((15419, 15430), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (15428, 15430), True, 'import matplotlib.pyplot as plt\n'), ((16086, 16116), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-white"""'], {}), "('seaborn-white')\n", (16099, 16116), True, 'import matplotlib.pyplot as plt\n'), ((16121, 16152), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-pastel"""'], {}), "('seaborn-pastel')\n", (16134, 16152), True, 'import matplotlib.pyplot as plt\n'), ((16157, 16186), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-talk"""'], {}), "('seaborn-talk')\n", (16170, 16186), True, 'import matplotlib.pyplot as plt\n'), ((19039, 19058), 'numpy.asarray', 'np.asarray', (['fp_list'], {}), '(fp_list)\n', (19049, 19058), True, 'import numpy as np\n'), ((19063, 19081), 'matplotlib.pyplot.xticks', 'plt.xticks', (['XTICKS'], {}), '(XTICKS)\n', (19073, 19081), True, 'import matplotlib.pyplot as plt\n'), ((19136, 19189), 'matplotlib.pyplot.pcolor', 'plt.pcolor', (['Z'], {'vmin': '(-max_val)', 'vmax': 'max_val', 'cmap': 'cmap'}), '(Z, vmin=-max_val, vmax=max_val, cmap=cmap)\n', (19146, 19189), True, 'import matplotlib.pyplot as plt\n'), ((19194, 19285), 'matplotlib.pyplot.text', 'plt.text', (['(XTICKS[1] // 2)', '(-1.1)', '"""Cells"""'], {'horizontalalignment': '"""center"""', 'fontsize': 'fs_text'}), "(XTICKS[1] // 2, -1.1, 'Cells', horizontalalignment='center',\n fontsize=fs_text)\n", (19202, 19285), True, 'import matplotlib.pyplot as plt\n'), ((19299, 19420), 'matplotlib.pyplot.text', 'plt.text', (['(XTICKS[1] + (XTICKS[2] - XTICKS[1]) // 2)', '(-1.1)', '"""Cytoplasm"""'], {'horizontalalignment': '"""center"""', 'fontsize': 'fs_text'}), "(XTICKS[1] + (XTICKS[2] - XTICKS[1]) // 2, -1.1, 'Cytoplasm',\n horizontalalignment='center', fontsize=fs_text)\n", (19307, 19420), True, 'import matplotlib.pyplot as plt\n'), ((19436, 19554), 'matplotlib.pyplot.text', 'plt.text', (['(XTICKS[2] + (XTICKS[3] - XTICKS[2]) // 2)', '(-1.1)', '"""Nuclei"""'], {'horizontalalignment': '"""center"""', 'fontsize': 'fs_text'}), "(XTICKS[2] + (XTICKS[3] - XTICKS[2]) // 2, -1.1, 'Nuclei',\n horizontalalignment='center', fontsize=fs_text)\n", (19444, 19554), True, 'import matplotlib.pyplot as plt\n'), ((19626, 19644), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (19642, 19644), True, 'import matplotlib.pyplot as plt\n'), ((20957, 20991), 'cellpainting2.tools.melt', 'cpt.melt', (['df_parm'], {'id_prop': 'id_prop'}), '(df_parm, id_prop=id_prop)\n', (20965, 20991), True, 'from cellpainting2 import tools as cpt\n'), ((21233, 21288), 'os.path.join', 'op.join', (["cp_config['Paths']['SrcPath']", 'plate_full_name'], {}), "(cp_config['Paths']['SrcPath'], plate_full_name)\n", (21240, 21288), True, 'import os.path as op\n'), ((21352, 21378), 'os.path.join', 'op.join', (['src_dir', '"""images"""'], {}), "(src_dir, 'images')\n", (21359, 21378), True, 'import os.path as op\n'), ((21656, 21683), 'string.Template', 'Template', (['cprt.IMAGES_TABLE'], {}), '(cprt.IMAGES_TABLE)\n', (21664, 21683), False, 'from string import Template\n'), ((21789, 21800), 'IPython.core.display.HTML', 'HTML', (['table'], {}), '(table)\n', (21793, 21800), False, 'from IPython.core.display import HTML\n'), ((21841, 21871), 'cellpainting2.processing.load_resource', 'cpp.load_resource', (['"""DATASTORE"""'], {}), "('DATASTORE')\n", (21858, 21871), True, 'from cellpainting2 import processing as cpp\n'), ((21954, 21973), 'cellpainting2.processing.is_dask', 'cpp.is_dask', (['result'], {}), '(result)\n', (21965, 21973), True, 'from cellpainting2 import processing as cpp\n'), ((22031, 22099), 'pandas.Categorical', 'pd.Categorical', (["result['Well_Id']"], {'categories': 'well_ids', 'ordered': '(True)'}), "(result['Well_Id'], categories=well_ids, ordered=True)\n", (22045, 22099), True, 'import pandas as pd\n'), ((22287, 22316), 'cellpainting2.processing.load_resource', 'cpp.load_resource', (['"""SIM_REFS"""'], {}), "('SIM_REFS')\n", (22304, 22316), True, 'from cellpainting2 import processing as cpp\n'), ((22422, 22448), 'os.path.join', 'op.join', (['src_dir', '"""images"""'], {}), "(src_dir, 'images')\n", (22429, 22448), True, 'import os.path as op\n'), ((23136, 23155), 'pandas.DataFrame', 'pd.DataFrame', (['[rec]'], {}), '([rec])\n', (23148, 23155), True, 'import pandas as pd\n'), ((25274, 25334), 'os.path.join', 'op.join', (["cp_config['Dirs']['DataDir']", '"""plots"""', "rec['Plate']"], {}), "(cp_config['Dirs']['DataDir'], 'plots', rec['Plate'])\n", (25281, 25334), True, 'import os.path as op\n'), ((25485, 25511), 'os.path.join', 'op.join', (['cache_path', 'hm_fn'], {}), '(cache_path, hm_fn)\n', (25492, 25511), True, 'import os.path as op\n'), ((25687, 25715), 'string.Template', 'Template', (['cprt.DETAILS_TEMPL'], {}), '(cprt.DETAILS_TEMPL)\n', (25695, 25715), False, 'from string import Template\n'), ((25906, 25958), 'os.path.join', 'op.join', (["cp_config['Dirs']['ReportDir']", 'report_name'], {}), "(cp_config['Dirs']['ReportDir'], report_name)\n", (25913, 25958), True, 'import os.path as op\n'), ((25977, 26016), 'os.path.join', 'op.join', (['report_full_path', '"""index.html"""'], {}), "(report_full_path, 'index.html')\n", (25984, 26016), True, 'import os.path as op\n'), ((3284, 3307), 'rdkit.Chem.AllChem.MolFromSmiles', 'Chem.MolFromSmiles', (['"""*"""'], {}), "('*')\n", (3302, 3307), True, 'from rdkit.Chem import AllChem as Chem\n'), ((5043, 5047), 'io.BytesIO', 'IO', ([], {}), '()\n', (5045, 5047), True, 'from io import BytesIO as IO\n'), ((11860, 11881), 'cellpainting2.processing.is_dask', 'cpp.is_dask', (['ref_data'], {}), '(ref_data)\n', (11871, 11881), True, 'from cellpainting2 import processing as cpp\n'), ((15803, 15824), 'os.path.isfile', 'op.isfile', (['plot_cache'], {}), '(plot_cache)\n', (15812, 15824), True, 'import os.path as op\n'), ((19607, 19621), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (19619, 19621), True, 'import matplotlib.pyplot as plt\n'), ((19666, 19676), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19674, 19676), True, 'import matplotlib.pyplot as plt\n'), ((19706, 19710), 'io.BytesIO', 'IO', ([], {}), '()\n', (19708, 19710), True, 'from io import BytesIO as IO\n'), ((19719, 19775), 'matplotlib.pyplot.savefig', 'plt.savefig', (['img_file'], {'bbox_inches': '"""tight"""', 'format': '"""jpg"""'}), "(img_file, bbox_inches='tight', format='jpg')\n", (19730, 19775), True, 'import matplotlib.pyplot as plt\n'), ((19993, 20002), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (20000, 20002), True, 'import matplotlib.pyplot as plt\n'), ((20011, 20022), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (20020, 20022), True, 'import matplotlib.pyplot as plt\n'), ((20031, 20043), 'gc.collect', 'gc.collect', ([], {}), '()\n', (20041, 20043), False, 'import gc\n'), ((22388, 22404), 'time.localtime', 'time.localtime', ([], {}), '()\n', (22402, 22404), False, 'import time\n'), ((23586, 23616), 'string.Template', 'Template', (['cprt.DETAILS_REF_ROW'], {}), '(cprt.DETAILS_REF_ROW)\n', (23594, 23616), False, 'from string import Template\n'), ((25346, 25366), 'os.path.isdir', 'op.isdir', (['cache_path'], {}), '(cache_path)\n', (25354, 25366), True, 'import os.path as op\n'), ((25376, 25414), 'os.makedirs', 'os.makedirs', (['cache_path'], {'exist_ok': '(True)'}), '(cache_path, exist_ok=True)\n', (25387, 25414), False, 'import os\n'), ((26060, 26076), 'time.localtime', 'time.localtime', ([], {}), '()\n', (26074, 26076), False, 'import time\n'), ((26098, 26134), 'os.path.join', 'op.join', (['report_full_path', '"""details"""'], {}), "(report_full_path, 'details')\n", (26105, 26134), True, 'import os.path as op\n'), ((3103, 3129), 'rdkit.Avalon.pyAvalonTools.Generate2DCoords', 'pyAv.Generate2DCoords', (['mol'], {}), '(mol)\n', (3124, 3129), True, 'from rdkit.Avalon import pyAvalonTools as pyAv\n'), ((4521, 4560), 'rdkit.Chem.Draw.MolToImage', 'Draw.MolToImage', (['mol'], {'size': '(size, size)'}), '(mol, size=(size, size))\n', (4536, 4560), False, 'from rdkit.Chem import Draw\n'), ((4644, 4667), 'rdkit.Chem.AllChem.MolFromSmiles', 'Chem.MolFromSmiles', (['"""C"""'], {}), "('C')\n", (4662, 4667), True, 'from rdkit.Chem import AllChem as Chem\n'), ((19097, 19114), 'numpy.arange', 'np.arange', (['df_len'], {}), '(df_len)\n', (19106, 19114), True, 'import numpy as np\n'), ((4607, 4628), 'rdkit.Chem.AllChem.MolToSmiles', 'Chem.MolToSmiles', (['mol'], {}), '(mol)\n', (4623, 4628), True, 'from rdkit.Chem import AllChem as Chem\n'), ((4691, 4730), 'rdkit.Chem.Draw.MolToImage', 'Draw.MolToImage', (['mol'], {'size': '(size, size)'}), '(mol, size=(size, size))\n', (4706, 4730), False, 'from rdkit.Chem import Draw\n'), ((21006, 21025), 'holoviews.HeatMap', 'hv.HeatMap', (['df_heat'], {}), '(df_heat)\n', (21016, 21025), True, 'import holoviews as hv\n'), ((10182, 10253), 'pandas.DataFrame', 'pd.DataFrame', (["{'Well_Id': [well_id], 'Similarity': [rec['Similarity']]}"], {}), "({'Well_Id': [well_id], 'Similarity': [rec['Similarity']]})\n", (10194, 10253), True, 'import pandas as pd\n'), ((17676, 17709), 'rdkit.Chem.AllChem.GetMorganFingerprint', 'Chem.GetMorganFingerprint', (['mol', '(2)'], {}), '(mol, 2)\n', (17701, 17709), True, 'from rdkit.Chem import AllChem as Chem\n'), ((2280, 2301), 'os.path.getmtime', 'op.getmtime', (['__file__'], {}), '(__file__)\n', (2291, 2301), True, 'import os.path as op\n'), ((18032, 18055), 'cellpainting2.tools.chem_sim', 'cpt.chem_sim', (['mol_fp', 'q'], {}), '(mol_fp, q)\n', (18044, 18055), True, 'from cellpainting2 import tools as cpt\n'), ((25142, 25172), 'pandas.concat', 'pd.concat', (['[df_heat, sim_data]'], {}), '([df_heat, sim_data])\n', (25151, 25172), True, 'import pandas as pd\n')]
import numpy as np import torch # https://github.com/sfujim/TD3/blob/ade6260da88864d1ab0ed592588e090d3d97d679/utils.py class ReplayBuffer(object): def __init__(self, state_dim, action_dim, max_size=int(1e6)): self.max_size = max_size self.ptr = 0 self.size = 0 self.state = np.zeros((max_size, state_dim)) self.action = np.zeros((max_size, action_dim)) self.next_state = np.zeros((max_size, state_dim)) self.reward = np.zeros((max_size, 1)) self.not_done = np.zeros((max_size, 1)) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def add(self, state, action, next_state, reward, done): self.state[self.ptr] = state self.action[self.ptr] = action self.next_state[self.ptr] = next_state self.reward[self.ptr] = reward self.not_done[self.ptr] = 1. - done self.ptr = (self.ptr + 1) % self.max_size self.size = min(self.size + 1, self.max_size) def sample(self, batch_size): ind = np.random.randint(0, self.size, size=batch_size) return ( torch.from_numpy(self.state[ind]).float().to(self.device), torch.from_numpy(self.action[ind]).float().to(self.device), torch.from_numpy(self.next_state[ind]).float().to(self.device), torch.from_numpy(self.reward[ind]).float().to(self.device), torch.from_numpy(self.not_done[ind]).float().to(self.device) ) def sample_np(self, batch_size): ind = np.random.randint(0, self.size, size=batch_size) return ( np.float32(self.state[ind]), np.float32(self.action[ind]), np.float32(self.next_state[ind]), np.float32(self.reward[ind]), np.float32(self.not_done[ind]) ) def save(self, fdir): np.save(fdir + '/sample-state', self.state[:self.size]) np.save(fdir + '/sample-action', self.action[:self.size]) np.save(fdir + '/sample-nstate', self.next_state[:self.size]) np.save(fdir + '/sample-reward', self.reward[:self.size]) np.save(fdir + '/sample-ndone', self.not_done[:self.size]) def load(self, fdir): state = np.load(fdir + '/sample-state.npy', allow_pickle=True) action = np.load(fdir + '/sample-action.npy', allow_pickle=True) nstate = np.load(fdir + '/sample-nstate.npy', allow_pickle=True) reward = np.load(fdir + '/sample-reward.npy', allow_pickle=True) ndone = np.load(fdir + '/sample-ndone.npy', allow_pickle=True) for s, a, ns, r, nd in zip(state, action, nstate, reward, ndone): self.add(s, a, ns, r, 1. - nd) def reset(self): self.ptr = 0 self.size = 0
[ "numpy.load", "numpy.save", "numpy.float32", "numpy.zeros", "numpy.random.randint", "torch.cuda.is_available", "torch.from_numpy" ]
[((313, 344), 'numpy.zeros', 'np.zeros', (['(max_size, state_dim)'], {}), '((max_size, state_dim))\n', (321, 344), True, 'import numpy as np\n'), ((367, 399), 'numpy.zeros', 'np.zeros', (['(max_size, action_dim)'], {}), '((max_size, action_dim))\n', (375, 399), True, 'import numpy as np\n'), ((426, 457), 'numpy.zeros', 'np.zeros', (['(max_size, state_dim)'], {}), '((max_size, state_dim))\n', (434, 457), True, 'import numpy as np\n'), ((480, 503), 'numpy.zeros', 'np.zeros', (['(max_size, 1)'], {}), '((max_size, 1))\n', (488, 503), True, 'import numpy as np\n'), ((528, 551), 'numpy.zeros', 'np.zeros', (['(max_size, 1)'], {}), '((max_size, 1))\n', (536, 551), True, 'import numpy as np\n'), ((1057, 1105), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.size'], {'size': 'batch_size'}), '(0, self.size, size=batch_size)\n', (1074, 1105), True, 'import numpy as np\n'), ((1549, 1597), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.size'], {'size': 'batch_size'}), '(0, self.size, size=batch_size)\n', (1566, 1597), True, 'import numpy as np\n'), ((1874, 1929), 'numpy.save', 'np.save', (["(fdir + '/sample-state')", 'self.state[:self.size]'], {}), "(fdir + '/sample-state', self.state[:self.size])\n", (1881, 1929), True, 'import numpy as np\n'), ((1938, 1995), 'numpy.save', 'np.save', (["(fdir + '/sample-action')", 'self.action[:self.size]'], {}), "(fdir + '/sample-action', self.action[:self.size])\n", (1945, 1995), True, 'import numpy as np\n'), ((2004, 2065), 'numpy.save', 'np.save', (["(fdir + '/sample-nstate')", 'self.next_state[:self.size]'], {}), "(fdir + '/sample-nstate', self.next_state[:self.size])\n", (2011, 2065), True, 'import numpy as np\n'), ((2074, 2131), 'numpy.save', 'np.save', (["(fdir + '/sample-reward')", 'self.reward[:self.size]'], {}), "(fdir + '/sample-reward', self.reward[:self.size])\n", (2081, 2131), True, 'import numpy as np\n'), ((2140, 2198), 'numpy.save', 'np.save', (["(fdir + '/sample-ndone')", 'self.not_done[:self.size]'], {}), "(fdir + '/sample-ndone', self.not_done[:self.size])\n", (2147, 2198), True, 'import numpy as np\n'), ((2242, 2296), 'numpy.load', 'np.load', (["(fdir + '/sample-state.npy')"], {'allow_pickle': '(True)'}), "(fdir + '/sample-state.npy', allow_pickle=True)\n", (2249, 2296), True, 'import numpy as np\n'), ((2314, 2369), 'numpy.load', 'np.load', (["(fdir + '/sample-action.npy')"], {'allow_pickle': '(True)'}), "(fdir + '/sample-action.npy', allow_pickle=True)\n", (2321, 2369), True, 'import numpy as np\n'), ((2387, 2442), 'numpy.load', 'np.load', (["(fdir + '/sample-nstate.npy')"], {'allow_pickle': '(True)'}), "(fdir + '/sample-nstate.npy', allow_pickle=True)\n", (2394, 2442), True, 'import numpy as np\n'), ((2460, 2515), 'numpy.load', 'np.load', (["(fdir + '/sample-reward.npy')"], {'allow_pickle': '(True)'}), "(fdir + '/sample-reward.npy', allow_pickle=True)\n", (2467, 2515), True, 'import numpy as np\n'), ((2532, 2586), 'numpy.load', 'np.load', (["(fdir + '/sample-ndone.npy')"], {'allow_pickle': '(True)'}), "(fdir + '/sample-ndone.npy', allow_pickle=True)\n", (2539, 2586), True, 'import numpy as np\n'), ((1627, 1654), 'numpy.float32', 'np.float32', (['self.state[ind]'], {}), '(self.state[ind])\n', (1637, 1654), True, 'import numpy as np\n'), ((1668, 1696), 'numpy.float32', 'np.float32', (['self.action[ind]'], {}), '(self.action[ind])\n', (1678, 1696), True, 'import numpy as np\n'), ((1710, 1742), 'numpy.float32', 'np.float32', (['self.next_state[ind]'], {}), '(self.next_state[ind])\n', (1720, 1742), True, 'import numpy as np\n'), ((1756, 1784), 'numpy.float32', 'np.float32', (['self.reward[ind]'], {}), '(self.reward[ind])\n', (1766, 1784), True, 'import numpy as np\n'), ((1798, 1828), 'numpy.float32', 'np.float32', (['self.not_done[ind]'], {}), '(self.not_done[ind])\n', (1808, 1828), True, 'import numpy as np\n'), ((598, 623), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (621, 623), False, 'import torch\n'), ((1135, 1168), 'torch.from_numpy', 'torch.from_numpy', (['self.state[ind]'], {}), '(self.state[ind])\n', (1151, 1168), False, 'import torch\n'), ((1206, 1240), 'torch.from_numpy', 'torch.from_numpy', (['self.action[ind]'], {}), '(self.action[ind])\n', (1222, 1240), False, 'import torch\n'), ((1278, 1316), 'torch.from_numpy', 'torch.from_numpy', (['self.next_state[ind]'], {}), '(self.next_state[ind])\n', (1294, 1316), False, 'import torch\n'), ((1354, 1388), 'torch.from_numpy', 'torch.from_numpy', (['self.reward[ind]'], {}), '(self.reward[ind])\n', (1370, 1388), False, 'import torch\n'), ((1426, 1462), 'torch.from_numpy', 'torch.from_numpy', (['self.not_done[ind]'], {}), '(self.not_done[ind])\n', (1442, 1462), False, 'import torch\n')]
# Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for iree.tf.support.tf_utils.""" from absl.testing import parameterized from iree.tf.support import tf_utils import numpy as np import tensorflow as tf class UtilsTests(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters([('int8_to_i8', np.int8, 'i8'), ('int32_to_i32', np.int32, 'i32'), ('float32_to_f32', np.float32, 'f32'), ('float64_to_f64', np.float64, 'f64')]) def test_to_mlir_type(self, numpy_type, mlir_type): self.assertEqual(tf_utils.to_mlir_type(numpy_type), mlir_type) @parameterized.named_parameters([ ('single_i32', [np.array([1, 2], dtype=np.int32)], '2xi32=1 2'), ('single_f32', [np.array([1, 2], dtype=np.float32)], '2xf32=1.0 2.0'), ]) def test_save_input_values(self, inputs, inputs_str): self.assertEqual(tf_utils.save_input_values(inputs), inputs_str) def test_apply_function(self): inputs = [1, [2, 3], (4, 5), {'6': 6, '78': [7, 8]}] expected = [0, [1, 2], (3, 4), {'6': 5, '78': [6, 7]}] result = tf_utils.apply_function(inputs, lambda x: x - 1) self.assertEqual(result, expected) self.assertNotEqual(inputs, expected) @parameterized.named_parameters([ { 'testcase_name': 'all the same', 'array_c': np.array([0, 1, 2]), 'array_d': np.array(['0', '1', '2']), 'array_e': np.array([0.0, 0.1, 0.2]), 'tar_same': True, }, { 'testcase_name': 'wrong int', 'array_c': np.array([1, 1, 2]), 'array_d': np.array(['0', '1', '2']), 'array_e': np.array([0.0, 0.1, 0.2]), 'tar_same': False, }, { 'testcase_name': 'wrong string', 'array_c': np.array([0, 1, 2]), 'array_d': np.array(['a', '1', '2']), 'array_e': np.array([0.0, 0.1, 0.2]), 'tar_same': False, }, { 'testcase_name': 'wrong float', 'array_c': np.array([0, 1, 2]), 'array_d': np.array(['0', '1', '2']), 'array_e': np.array([1.0, 0.1, 0.2]), 'tar_same': False, }, ]) def test_recursive_check_same(self, array_c, array_d, array_e, tar_same): # yapf: disable ref = { 'a': 1, 'b': [ {'c': np.array([0, 1, 2])}, {'d': np.array(['0', '1', '2'])}, {'e': np.array([0.0, 0.1, 0.2])} ], } tar = { 'a': 1, 'b': [ {'c': array_c}, {'d': array_d}, {'e': array_e} ], } # yapf: enable same, _ = tf_utils.check_same(ref, tar, rtol=1e-6, atol=1e-6) self.assertEqual(tar_same, same) if __name__ == '__main__': tf.test.main()
[ "tensorflow.test.main", "iree.tf.support.tf_utils.check_same", "iree.tf.support.tf_utils.to_mlir_type", "iree.tf.support.tf_utils.apply_function", "numpy.array", "absl.testing.parameterized.named_parameters", "iree.tf.support.tf_utils.save_input_values" ]
[((823, 1008), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["[('int8_to_i8', np.int8, 'i8'), ('int32_to_i32', np.int32, 'i32'), (\n 'float32_to_f32', np.float32, 'f32'), ('float64_to_f64', np.float64, 'f64')\n ]"], {}), "([('int8_to_i8', np.int8, 'i8'), (\n 'int32_to_i32', np.int32, 'i32'), ('float32_to_f32', np.float32, 'f32'),\n ('float64_to_f64', np.float64, 'f64')])\n", (853, 1008), False, 'from absl.testing import parameterized\n'), ((3363, 3377), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (3375, 3377), True, 'import tensorflow as tf\n'), ((1704, 1752), 'iree.tf.support.tf_utils.apply_function', 'tf_utils.apply_function', (['inputs', '(lambda x: x - 1)'], {}), '(inputs, lambda x: x - 1)\n', (1727, 1752), False, 'from iree.tf.support import tf_utils\n'), ((3243, 3296), 'iree.tf.support.tf_utils.check_same', 'tf_utils.check_same', (['ref', 'tar'], {'rtol': '(1e-06)', 'atol': '(1e-06)'}), '(ref, tar, rtol=1e-06, atol=1e-06)\n', (3262, 3296), False, 'from iree.tf.support import tf_utils\n'), ((1180, 1213), 'iree.tf.support.tf_utils.to_mlir_type', 'tf_utils.to_mlir_type', (['numpy_type'], {}), '(numpy_type)\n', (1201, 1213), False, 'from iree.tf.support import tf_utils\n'), ((1493, 1527), 'iree.tf.support.tf_utils.save_input_values', 'tf_utils.save_input_values', (['inputs'], {}), '(inputs)\n', (1519, 1527), False, 'from iree.tf.support import tf_utils\n'), ((1943, 1962), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (1951, 1962), True, 'import numpy as np\n'), ((1985, 2010), 'numpy.array', 'np.array', (["['0', '1', '2']"], {}), "(['0', '1', '2'])\n", (1993, 2010), True, 'import numpy as np\n'), ((2033, 2058), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.2]'], {}), '([0.0, 0.1, 0.2])\n', (2041, 2058), True, 'import numpy as np\n'), ((2166, 2185), 'numpy.array', 'np.array', (['[1, 1, 2]'], {}), '([1, 1, 2])\n', (2174, 2185), True, 'import numpy as np\n'), ((2208, 2233), 'numpy.array', 'np.array', (["['0', '1', '2']"], {}), "(['0', '1', '2'])\n", (2216, 2233), True, 'import numpy as np\n'), ((2256, 2281), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.2]'], {}), '([0.0, 0.1, 0.2])\n', (2264, 2281), True, 'import numpy as np\n'), ((2393, 2412), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (2401, 2412), True, 'import numpy as np\n'), ((2435, 2460), 'numpy.array', 'np.array', (["['a', '1', '2']"], {}), "(['a', '1', '2'])\n", (2443, 2460), True, 'import numpy as np\n'), ((2483, 2508), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.2]'], {}), '([0.0, 0.1, 0.2])\n', (2491, 2508), True, 'import numpy as np\n'), ((2619, 2638), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (2627, 2638), True, 'import numpy as np\n'), ((2661, 2686), 'numpy.array', 'np.array', (["['0', '1', '2']"], {}), "(['0', '1', '2'])\n", (2669, 2686), True, 'import numpy as np\n'), ((2709, 2734), 'numpy.array', 'np.array', (['[1.0, 0.1, 0.2]'], {}), '([1.0, 0.1, 0.2])\n', (2717, 2734), True, 'import numpy as np\n'), ((1285, 1317), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'np.int32'}), '([1, 2], dtype=np.int32)\n', (1293, 1317), True, 'import numpy as np\n'), ((1356, 1390), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'np.float32'}), '([1, 2], dtype=np.float32)\n', (1364, 1390), True, 'import numpy as np\n'), ((2937, 2956), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (2945, 2956), True, 'import numpy as np\n'), ((2977, 3002), 'numpy.array', 'np.array', (["['0', '1', '2']"], {}), "(['0', '1', '2'])\n", (2985, 3002), True, 'import numpy as np\n'), ((3023, 3048), 'numpy.array', 'np.array', (['[0.0, 0.1, 0.2]'], {}), '([0.0, 0.1, 0.2])\n', (3031, 3048), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Standard BOX 2D module with single joint """ import gym_rem2D.morph.module_utility as mu from gym_rem.utils import Rot from enum import Enum import numpy as np from Controller import m_controller import random import math from gym_rem2D.morph import abstract_module from gym_rem2D.morph import simple_module as sm import Box2D as B2D from Box2D.b2 import (edgeShape, fixtureDef, polygonShape, revoluteJointDef, contactListener) class Connection(Enum): """Available connections for standard 2D module""" left = (1.,0.,0.) right = (-1.,0.,0.) top = (0.,1.0,0.) class Circular2D(abstract_module.Module): """Standard 2D module""" def __init__(self, theta=0, size=(0.1,0.1, 0.0)): self.theta = theta % 2 # double check self.size = np.array(size) assert self.size.shape == (3,), "Size must be a 3 element vector! : this is a 2D module but takes in a three dimensional size vector for now. Third entry is ignored" self.connection_axis = np.array([0., 0., 1.]) self.orientation = Rot.from_axis(self.connection_axis, -self.theta * (np.pi / 2.)) # NOTE: The fudge factor is to avoid colliding with the plane once # spawned self.position = np.array([0., self.size[2] / 2. + 0.002, 0.]) # uses only x and y self._children = {} self.controller = m_controller.Controller() # relative scales self.radius = 0.25 self.angle = math.pi/2 self.type = "CIRCLE" self.MIN_RADIUS = 0.25 self.MAX_RADIUS = 0.5 self.MIN_ANGLE = math.pi/4 self.MAX_ANGLE = math.pi*2 self.torque = 50 #self.joint = None # needs joint def limitWH(self): """Limit morphology to bounds""" if self.radius > self.MAX_RADIUS: self.radius = self.MAX_RADIUS elif self.radius < self.MIN_RADIUS: self.radius = self.MIN_RADIUS if self.angle >self.MAX_ANGLE: self.angle = self.MAX_ANGLE elif self.angle < self.MIN_ANGLE: self.angle = self.MIN_ANGLE def mutate(self, MORPH_MUTATION_RATE,MUTATION_RATE,MUT_SIGMA): """ To mutate the shape and controller stored in the modules. """ #return if random.uniform(0,1) < MORPH_MUTATION_RATE: self.radius = random.gauss(self.radius, MUT_SIGMA) if random.uniform(0,1) < MORPH_MUTATION_RATE: self.angle = random.gauss(self.angle,MUT_SIGMA * math.pi) self.limitWH() if self.controller is not None: self.controller.mutate(MUTATION_RATE,MUT_SIGMA, self.angle) def setMorph(self,val1, val2, val3): # values are between -1 and 1 self.radius = val1 + 1.5 # val2 is not used since radius self.angle = self.MIN_ANGLE +(((val3 + 1.0)*0.5) * (self.MAX_ANGLE-self.MIN_ANGLE)) # limit values self.limitWH() def __setitem__(self, key, module): if not isinstance(key, Connection): raise TypeError("Key: '{}' is not a Connection type".format(key)) if key in self._children: raise ModuleAttached() if key not in self.available: raise ConnectionObstructed() # Add module as a child self._children[key] = module # Calculate connection point direction = self.orientation.rotate(np.array(key.value)) position = self.position + (direction * self.size) / 2. # Update parent pointer of module module.update(self, position, direction) def update(self, parent=None, pos=None, direction=None): # Update own orientation first in case we have been previously # connected self.orientation = Rot.from_axis(self.connection_axis, -self.theta * (np.pi / 2.)) # Update position in case parent is None self.position = np.array([0., 0., self.size[2] / 2. + 0.002]) # Reset connection in case parent is None self.connection = None # Call super to update orientation super().update(parent, pos, direction) # If parent is not None we need to update position and connection point if self.parent is not None: # Update center position for self # NOTE: We add a little fudge factor to avoid overlap self.position = pos + (direction * self.size * 1.01) / 2. # Calculate connection points for joint conn = np.array([0., 0., -self.size[2] / 2.]) parent_conn = parent.orientation.T.rotate(pos - parent.position) self.connection = (parent_conn, conn) # Update potential children self.update_children() def update_children(self): for conn in self._children: direction = self.orientation.rotate(np.array(conn.value)) position = self.position + (direction * self.size) / 2. self._children[conn].update(self, position, direction) def spawn(self): orient = self.orientation.as_quat() cuid = B2D.b2CircleShape cuid.m_p.Set(self.position) if (self.parent): self.joint = B2D.b2RevoluteJoint() return cuid def get_global_position_of_connection_site(self,con=None, parent_component = None): if con is None: con = Connection.left # get intersection of rectangle from width and height local_position = [] # 2d array local_angle = (con.value[0] * (self.angle)) # positive for left, negative for right # position relative to y directional vector if parent_component: local_angle+=parent_component.angle x = math.cos(local_angle+ math.pi/2)*self.radius y = math.sin(local_angle+ math.pi/2)*self.radius local_position.append(x) local_position.append(y) if parent_component is None: return local_position,local_angle global_position = [local_position[0]+parent_component.position[0], local_position[1]+parent_component.position[1]] return global_position, local_angle def create(self,world,TERRAIN_HEIGHT,module=None,node=None,connection_site=None, p_c=None, module_list=None, position = None): # get module height and width if p_c is not None and connection_site is None: raise("When you want to attach a new component to a parent component, you have to supply", "a connection_site object with it. This connection_site object defines where to anchor", "the joint in between to components") n_radius = self.radius angle = 0 pos = [7,10,0]; if position is not None: pos = position if (p_c is not None): local_pos_x =math.cos(connection_site.orientation.x+ math.pi/2) * n_radius local_pos_y =math.sin(connection_site.orientation.x+ math.pi/2) * n_radius pos[0] = (local_pos_x) + connection_site.position.x pos[1] = (local_pos_y) + connection_site.position.y # This module will create one component that will be temporarily stored in ncomponent new_component = None # This module will create one joint (if a parent component is present) that will be temporarily stored in njoint njoint = None components = [] joints = [] if connection_site: angle += connection_site.orientation.x if (pos[1] - n_radius < TERRAIN_HEIGHT): #TODO CHANGE TO TERRAIN_HEIGT OR DO CHECK ELSEWHERE if node is not None: node.component = None return components,joints else: fixture = fixtureDef( shape=B2D.b2CircleShape(radius =n_radius), density=1, friction=0.1, restitution=0.0, categoryBits=0x0020, maskBits=0x001 ) new_component = world.CreateDynamicBody( position=(pos[0],pos[1]), angle = angle, fixtures = fixture) color = [255,255,255] if node is not None and module_list is not None: color = world.cmap(node.type/len(module_list)) elif node is not None and module_list is None: print("Note: cannot assign a color to the module since the 'module_list' is not passed as an argument") # move to component creator new_component.color1 = (color[0],color[1],color[2]) new_component.color2 = (color[0],color[1],color[2]) components.append(new_component) if node is not None: node.component = [new_component] if connection_site is not None: joint = mu.create_joint(world, p_c,new_component,connection_site, angle, self.torque) joints.append(joint) return components, joints
[ "gym_rem.utils.Rot.from_axis", "gym_rem2D.morph.module_utility.create_joint", "random.uniform", "Box2D.b2RevoluteJoint", "math.sin", "numpy.array", "math.cos", "Box2D.b2CircleShape", "random.gauss", "Controller.m_controller.Controller" ]
[((770, 784), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (778, 784), True, 'import numpy as np\n'), ((981, 1006), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (989, 1006), True, 'import numpy as np\n'), ((1025, 1089), 'gym_rem.utils.Rot.from_axis', 'Rot.from_axis', (['self.connection_axis', '(-self.theta * (np.pi / 2.0))'], {}), '(self.connection_axis, -self.theta * (np.pi / 2.0))\n', (1038, 1089), False, 'from gym_rem.utils import Rot\n'), ((1201, 1249), 'numpy.array', 'np.array', (['[0.0, self.size[2] / 2.0 + 0.002, 0.0]'], {}), '([0.0, self.size[2] / 2.0 + 0.002, 0.0])\n', (1209, 1249), True, 'import numpy as np\n'), ((1309, 1334), 'Controller.m_controller.Controller', 'm_controller.Controller', ([], {}), '()\n', (1332, 1334), False, 'from Controller import m_controller\n'), ((3344, 3408), 'gym_rem.utils.Rot.from_axis', 'Rot.from_axis', (['self.connection_axis', '(-self.theta * (np.pi / 2.0))'], {}), '(self.connection_axis, -self.theta * (np.pi / 2.0))\n', (3357, 3408), False, 'from gym_rem.utils import Rot\n'), ((3480, 3528), 'numpy.array', 'np.array', (['[0.0, 0.0, self.size[2] / 2.0 + 0.002]'], {}), '([0.0, 0.0, self.size[2] / 2.0 + 0.002])\n', (3488, 3528), True, 'import numpy as np\n'), ((2065, 2085), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (2079, 2085), False, 'import random\n'), ((2125, 2161), 'random.gauss', 'random.gauss', (['self.radius', 'MUT_SIGMA'], {}), '(self.radius, MUT_SIGMA)\n', (2137, 2161), False, 'import random\n'), ((2167, 2187), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (2181, 2187), False, 'import random\n'), ((2226, 2271), 'random.gauss', 'random.gauss', (['self.angle', '(MUT_SIGMA * math.pi)'], {}), '(self.angle, MUT_SIGMA * math.pi)\n', (2238, 2271), False, 'import random\n'), ((3027, 3046), 'numpy.array', 'np.array', (['key.value'], {}), '(key.value)\n', (3035, 3046), True, 'import numpy as np\n'), ((3985, 4026), 'numpy.array', 'np.array', (['[0.0, 0.0, -self.size[2] / 2.0]'], {}), '([0.0, 0.0, -self.size[2] / 2.0])\n', (3993, 4026), True, 'import numpy as np\n'), ((4576, 4597), 'Box2D.b2RevoluteJoint', 'B2D.b2RevoluteJoint', ([], {}), '()\n', (4595, 4597), True, 'import Box2D as B2D\n'), ((5029, 5064), 'math.cos', 'math.cos', (['(local_angle + math.pi / 2)'], {}), '(local_angle + math.pi / 2)\n', (5037, 5064), False, 'import math\n'), ((5080, 5115), 'math.sin', 'math.sin', (['(local_angle + math.pi / 2)'], {}), '(local_angle + math.pi / 2)\n', (5088, 5115), False, 'import math\n'), ((7637, 7716), 'gym_rem2D.morph.module_utility.create_joint', 'mu.create_joint', (['world', 'p_c', 'new_component', 'connection_site', 'angle', 'self.torque'], {}), '(world, p_c, new_component, connection_site, angle, self.torque)\n', (7652, 7716), True, 'import gym_rem2D.morph.module_utility as mu\n'), ((4286, 4306), 'numpy.array', 'np.array', (['conn.value'], {}), '(conn.value)\n', (4294, 4306), True, 'import numpy as np\n'), ((5990, 6043), 'math.cos', 'math.cos', (['(connection_site.orientation.x + math.pi / 2)'], {}), '(connection_site.orientation.x + math.pi / 2)\n', (5998, 6043), False, 'import math\n'), ((6069, 6122), 'math.sin', 'math.sin', (['(connection_site.orientation.x + math.pi / 2)'], {}), '(connection_site.orientation.x + math.pi / 2)\n', (6077, 6122), False, 'import math\n'), ((6803, 6837), 'Box2D.b2CircleShape', 'B2D.b2CircleShape', ([], {'radius': 'n_radius'}), '(radius=n_radius)\n', (6820, 6837), True, 'import Box2D as B2D\n')]
import numpy as np from multiprocessing import Pool from ..bbox import bbox_overlaps # https://zhuanlan.zhihu.com/p/34655990 def calc_PR_curve(pred, label): pos = label[label == 1] # ๆญฃๆ ทๆœฌ threshold = np.sort(pred)[::-1] # predๆ˜ฏๆฏไธชๆ ทๆœฌ็š„ๆญฃไพ‹้ข„ๆต‹ๆฆ‚็އๅ€ผ,้€†ๅบ label = label[pred.argsort()[::-1]] precision = [] recall = [] tp = 0 fp = 0 ap = 0 # ๅนณๅ‡็ฒพๅบฆ for i in range(len(threshold)): if label[i] == 1: tp += 1 recall.append(tp / len(pos)) precision.append(tp / (tp + fp)) # ่ฟ‘ไผผๆ›ฒ็บฟไธ‹้ข็งฏ ap += (recall[i] - recall[i - 1]) * precision[i] else: fp += 1 recall.append(tp / len(pos)) precision.append(tp / (tp + fp)) return precision, recall, ap def tpfp_voc(det_bboxes, gt_bboxes, iou_thr=0.5): num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] # tpๅ’Œfp้ƒฝๆ˜ฏ้’ˆๅฏน้ข„ๆต‹ไธชๆ•ฐ่€Œ่จ€๏ผŒไธๆ˜ฏgtไธชๆ•ฐ tp = np.zeros(num_dets, dtype=np.float32) fp = np.zeros(num_dets, dtype=np.float32) # ๅฆ‚ๆžœgt=0๏ผŒ้‚ฃไนˆๆ‰€ๆœ‰้ข„ๆต‹ๆก†้ƒฝ็ฎ—่ฏฏๆŠฅ๏ผŒๆ‰€ๆœ‰้ข„ๆต‹bboxไฝ็ฝฎ็š„fp้ƒฝ่ฎพ็ฝฎไธบ1 if gt_bboxes.shape[0] == 0: fp[...] = 1 return tp, fp if num_dets == 0: return tp, fp ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes).numpy() # print(ious) # ๅฏนไบŽๆฏไธช้ข„ๆต‹ๆก†๏ผŒๆ‰พๅˆฐๆœ€ๅŒน้…็š„gt iou ious_max = ious.max(axis=1) # ๅฏนไบŽๆฏไธช้ข„ๆต‹ๆก†๏ผŒๆ‰พๅˆฐๆœ€ๅŒน้…gt็š„็ดขๅผ• ious_argmax = ious.argmax(axis=1) # ๆŒ‰็…ง้ข„ๆต‹ๆฆ‚็އๅˆ†ๆ”ฏ้™ๅบๆŽ’ๅˆ— sort_inds = np.argsort(-det_bboxes[:, -1]) gt_covered = np.zeros(num_gts, dtype=bool) # ๅคšๅฏนไธ€ๆƒ…ๅ†ตไธ‹๏ผŒ้™คไบ†ๆฆ‚็އๅˆ†ๅ€ผๆœ€ๅคงไธ”ๅคงไบŽ้˜ˆๅ€ผ็š„้ข„ๆต‹ๆก†็ฎ—tpๅค–๏ผŒๅ…ถไป–ๆก†ๅ…จ้ƒจ็ฎ—fp for i in sort_inds: # ๅฆ‚ๆžœๅคงไบŽiou๏ผŒๅˆ™่กจ็คบๅŒน้… if ious_max[i] >= iou_thr: matched_gt = ious_argmax[i] # ๆฏไธชgt bboxๅชๅŒน้…ไธ€ๆฌก๏ผŒไธ”ๆ˜ฏๅ’Œ้ข„ๆต‹ๆฆ‚็އๆœ€ๅคง็š„ๅŒน้…๏ผŒไธๆ˜ฏๆŒ‰็…งiou if not gt_covered[matched_gt]: gt_covered[matched_gt] = True tp[i] = 1 else: fp[i] = 1 else: fp[i] = 1 return tp, fp def _average_precision(recalls, precisions, mode='voc2007'): recalls = recalls[np.newaxis, :] precisions = precisions[np.newaxis, :] assert recalls.shape == precisions.shape and recalls.ndim == 2 num_scales = recalls.shape[0] ap = np.zeros(num_scales, dtype=np.float32) if mode == 'voc2012': # ๅนณๆป‘ๅŽๅฐฑๆ˜ฏๆ ‡ๅ‡†็š„PRๆ›ฒ็บฟ็ฎ—ๆณ• zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) ones = np.ones((num_scales, 1), dtype=recalls.dtype) mrec = np.hstack((zeros, recalls, ones)) mpre = np.hstack((zeros, precisions, zeros)) # ๅ†™ๆณ•ๆฏ”่พƒ้ซ˜็บง๏ผŒ้ซ˜ๆ•ˆ for i in range(mpre.shape[1] - 1, 0, -1): mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) # ๆฏๆฎตๅŒบ้—ดๅ†…๏ผŒ็ฒพๅบฆ้ƒฝๆ˜ฏๅ–ๆœ€ๅคงๅ€ผ๏ผŒไนŸๅฐฑๆ˜ฏๆฐดๅนณ็บฟ for i in range(num_scales): ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] # ๆ‰พๅˆฐๅฌๅ›ž็އ่ฝฌๆŠ˜็‚น๏ผŒ่กจ็คบx่ฝด็งปๅŠจๅŒบ้—ด็ดขๅผ• ap[i] = np.sum( (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) # ๆฏๆฎต้ข็งฏๅ’Œ elif mode == 'voc2007': # 11็‚นๆณ•๏ผŒ้œ€่ฆๅนณๅนณๆป‘ๅค„็† for i in range(num_scales): for thr in np.arange(0, 1 + 1e-3, 0.1): precs = precisions[i, recalls[i, :] >= thr] prec = precs.max() if precs.size > 0 else 0 ap[i] += prec ap /= 11 else: raise ValueError( 'Unrecognized mode, only "area" and "11points" are supported') return ap # code ref from mmdetection def voc_eval_map(results, annotations, iou_thr=0.5, name='voc2007', nproc=4): """ :param results: list[list],ๅค–ๅฑ‚listๆ˜ฏๆŒ‡ไปฃๅ›พ็‰‡็ผ–ๅท๏ผŒๅ†…ๅฑ‚listๆ˜ฏๆŒ‡ไปฃ็ฑปๅˆซ็ผ–ๅท๏ผŒ ๅ‡่ฎพไธ€ๅ…ฑ20ไธช็ฑป๏ผŒๅˆ™ๅ†…ๅฑ‚list้•ฟๅบฆไธบ20๏ผŒๆฏไธชListๅ†…้ƒจๆ˜ฏnumpy็Ÿฉ้˜ต๏ผŒnx5่กจ็คบๆฏๅผ ๅ›พ็‰‡ๅฏนๅบ”็š„ๆฏไธช็ฑปๅˆซ็š„ๆฃ€ๆต‹bbox๏ผŒxyxyconfๆ ผๅผ :param annotations:ๅ’Œresultsไธ€ๆ ท :param iou_thr: ๆ˜ฏๅฆ็ฎ—TP็š„้˜ˆๅ€ผ๏ผŒvoc้ป˜่ฎคๆ˜ฏ0.5 :param name: ้‡‡็”จๅ“ชไธ€็ง่ฏ„ไผฐๆŒ‡ๆ ‡๏ผŒvoc2007ๆ˜ฏ11็‚น๏ผŒvoc2012ๆ˜ฏๆ ‡ๅ‡†prๆ›ฒ็บฟ่ฎก็ฎ— :return: """ assert len(results) == len(annotations) num_imgs = len(results) # ๅ›พ็‰‡ไธชๆ•ฐ num_classes = len(results[0]) # positive class num pool = Pool(nproc) eval_results = [] for i in range(num_classes): cls_dets = [img_res[i] for img_res in results] cls_gts = [img_res[i] for img_res in annotations] tpfp = pool.starmap( tpfp_voc, zip(cls_dets, cls_gts, [iou_thr for _ in range(num_imgs)])) # ๅพ—ๅˆฐๆฏไธช้ข„ๆต‹bbox็š„tpๅ’Œfpๆƒ…ๅ†ต tp, fp = tuple(zip(*tpfp)) # ็ปŸ่ฎกgt bboxๆ•ฐ็›ฎ num_gts = 0 for j, bbox in enumerate(cls_gts): num_gts += bbox.shape[0] # ๅˆๅนถๆ‰€ๆœ‰ๅ›พ็‰‡ๆ‰€ๆœ‰้ข„ๆต‹bbox cls_dets = np.vstack(cls_dets) num_dets = cls_dets.shape[0] # ๆฃ€ๆต‹bboxไธชๆ•ฐ # ไปฅไธŠ่ฎก็ฎ—ๅ‡บไบ†ๆฏไธช้ข„ๆต‹bbox็š„tpๅ’Œfpๆƒ…ๅ†ต # ๆญคๅค„่ฎก็ฎ—็ฒพๅบฆๅ’Œๅฌๅ›ž็އ๏ผŒๅ†™็š„ๆฏ”่พƒ้ซ˜็บง sort_inds = np.argsort(-cls_dets[:, -1]) # ๆŒ‰็…ง้ข„ๆต‹ๆฆ‚็އๅˆ†ๅ€ผ้™ๅบๆŽ’ๅˆ— # ไป”็ป†ๆ€่€ƒ่ฟ™็งๅ†™ๆณ•๏ผŒๅ…ถๅฎžๆ˜ฏc3_pr_roc.py้‡Œ้ขcalc_PR_curve็š„้ซ˜็บงๅฟซ้€Ÿๅ†™ๆณ• tp = np.hstack(tp)[sort_inds][None] fp = np.hstack(fp)[sort_inds][None] tp = np.cumsum(tp, axis=1) fp = np.cumsum(fp, axis=1) eps = np.finfo(np.float32).eps recalls = tp / np.maximum(num_gts, eps) precisions = tp / np.maximum((tp + fp), eps) recalls = recalls[0, :] precisions = precisions[0, :] # print('recalls', recalls, 'precisions', precisions) ap = _average_precision(recalls, precisions, name)[0] eval_results.append({ 'num_gts': num_gts, 'num_dets': num_dets, 'recall': recalls, 'precision': precisions, 'ap': ap }) pool.close() aps = [] for cls_result in eval_results: if cls_result['num_gts'] > 0: aps.append(cls_result['ap']) mean_ap = np.array(aps).mean().item() if aps else 0.0 return mean_ap
[ "numpy.maximum", "numpy.sum", "numpy.zeros", "numpy.ones", "numpy.hstack", "numpy.argsort", "numpy.sort", "numpy.cumsum", "numpy.finfo", "numpy.where", "numpy.arange", "numpy.array", "multiprocessing.Pool", "numpy.vstack" ]
[((934, 970), 'numpy.zeros', 'np.zeros', (['num_dets'], {'dtype': 'np.float32'}), '(num_dets, dtype=np.float32)\n', (942, 970), True, 'import numpy as np\n'), ((980, 1016), 'numpy.zeros', 'np.zeros', (['num_dets'], {'dtype': 'np.float32'}), '(num_dets, dtype=np.float32)\n', (988, 1016), True, 'import numpy as np\n'), ((1421, 1451), 'numpy.argsort', 'np.argsort', (['(-det_bboxes[:, -1])'], {}), '(-det_bboxes[:, -1])\n', (1431, 1451), True, 'import numpy as np\n'), ((1469, 1498), 'numpy.zeros', 'np.zeros', (['num_gts'], {'dtype': 'bool'}), '(num_gts, dtype=bool)\n', (1477, 1498), True, 'import numpy as np\n'), ((2182, 2220), 'numpy.zeros', 'np.zeros', (['num_scales'], {'dtype': 'np.float32'}), '(num_scales, dtype=np.float32)\n', (2190, 2220), True, 'import numpy as np\n'), ((3858, 3869), 'multiprocessing.Pool', 'Pool', (['nproc'], {}), '(nproc)\n', (3862, 3869), False, 'from multiprocessing import Pool\n'), ((210, 223), 'numpy.sort', 'np.sort', (['pred'], {}), '(pred)\n', (217, 223), True, 'import numpy as np\n'), ((2281, 2327), 'numpy.zeros', 'np.zeros', (['(num_scales, 1)'], {'dtype': 'recalls.dtype'}), '((num_scales, 1), dtype=recalls.dtype)\n', (2289, 2327), True, 'import numpy as np\n'), ((2343, 2388), 'numpy.ones', 'np.ones', (['(num_scales, 1)'], {'dtype': 'recalls.dtype'}), '((num_scales, 1), dtype=recalls.dtype)\n', (2350, 2388), True, 'import numpy as np\n'), ((2404, 2437), 'numpy.hstack', 'np.hstack', (['(zeros, recalls, ones)'], {}), '((zeros, recalls, ones))\n', (2413, 2437), True, 'import numpy as np\n'), ((2453, 2490), 'numpy.hstack', 'np.hstack', (['(zeros, precisions, zeros)'], {}), '((zeros, precisions, zeros))\n', (2462, 2490), True, 'import numpy as np\n'), ((4392, 4411), 'numpy.vstack', 'np.vstack', (['cls_dets'], {}), '(cls_dets)\n', (4401, 4411), True, 'import numpy as np\n'), ((4543, 4571), 'numpy.argsort', 'np.argsort', (['(-cls_dets[:, -1])'], {}), '(-cls_dets[:, -1])\n', (4553, 4571), True, 'import numpy as np\n'), ((4746, 4767), 'numpy.cumsum', 'np.cumsum', (['tp'], {'axis': '(1)'}), '(tp, axis=1)\n', (4755, 4767), True, 'import numpy as np\n'), ((4781, 4802), 'numpy.cumsum', 'np.cumsum', (['fp'], {'axis': '(1)'}), '(fp, axis=1)\n', (4790, 4802), True, 'import numpy as np\n'), ((2590, 2628), 'numpy.maximum', 'np.maximum', (['mpre[:, i - 1]', 'mpre[:, i]'], {}), '(mpre[:, i - 1], mpre[:, i])\n', (2600, 2628), True, 'import numpy as np\n'), ((2792, 2852), 'numpy.sum', 'np.sum', (['((mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])'], {}), '((mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])\n', (2798, 2852), True, 'import numpy as np\n'), ((4817, 4837), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (4825, 4837), True, 'import numpy as np\n'), ((4865, 4889), 'numpy.maximum', 'np.maximum', (['num_gts', 'eps'], {}), '(num_gts, eps)\n', (4875, 4889), True, 'import numpy as np\n'), ((4916, 4940), 'numpy.maximum', 'np.maximum', (['(tp + fp)', 'eps'], {}), '(tp + fp, eps)\n', (4926, 4940), True, 'import numpy as np\n'), ((2708, 2745), 'numpy.where', 'np.where', (['(mrec[i, 1:] != mrec[i, :-1])'], {}), '(mrec[i, 1:] != mrec[i, :-1])\n', (2716, 2745), True, 'import numpy as np\n'), ((2982, 3010), 'numpy.arange', 'np.arange', (['(0)', '(1 + 0.001)', '(0.1)'], {}), '(0, 1 + 0.001, 0.1)\n', (2991, 3010), True, 'import numpy as np\n'), ((4658, 4671), 'numpy.hstack', 'np.hstack', (['tp'], {}), '(tp)\n', (4667, 4671), True, 'import numpy as np\n'), ((4702, 4715), 'numpy.hstack', 'np.hstack', (['fp'], {}), '(fp)\n', (4711, 4715), True, 'import numpy as np\n'), ((5492, 5505), 'numpy.array', 'np.array', (['aps'], {}), '(aps)\n', (5500, 5505), True, 'import numpy as np\n')]
""" B-Complement Input: part point clouds: B x P x N x 3 Output: R and T: B x P x(3 + 4) Losses: Center L2 Loss, Rotation L2 Loss, Rotation Chamder-Distance Loss """ import torch from torch import nn import torch.nn.functional as F import sys, os import numpy as np BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '../utils')) from cd.chamfer import chamfer_distance from quaternion import qrot import ipdb from scipy.optimize import linear_sum_assignment # PointNet Front-end class PartPointNet(nn.Module): def __init__(self, feat_len): super(PartPointNet, self).__init__() self.conv1 = nn.Conv1d(3, 64, 1) self.conv2 = nn.Conv1d(64, 64, 1) self.conv3 = nn.Conv1d(64, 64, 1) self.conv4 = nn.Conv1d(64, 128, 1) #self.conv5 = nn.Conv1d(128, 1024, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(64) self.bn3 = nn.BatchNorm1d(64) self.bn4 = nn.BatchNorm1d(128) #self.bn5 = nn.BatchNorm1d(1024) self.mlp1 = nn.Linear(128, feat_len) self.bn6 = nn.BatchNorm1d(feat_len) """ Input: B x N x 3 Output: B x F """ def forward(self, x): x = x.permute(0, 2, 1) x = torch.relu(self.bn1(self.conv1(x))) x = torch.relu(self.bn2(self.conv2(x))) x = torch.relu(self.bn3(self.conv3(x))) x = torch.relu(self.bn4(self.conv4(x))) #x = torch.relu(self.bn5(self.conv5(x))) x = x.max(dim=-1)[0] x = torch.relu(self.bn6(self.mlp1(x))) return x # PointNet Back-end class PoseDecoder(nn.Module): def __init__(self, feat_len): super(PoseDecoder, self).__init__() self.mlp1 = nn.Linear(feat_len, 512) self.mlp2 = nn.Linear(512, 256) self.trans = nn.Linear(256, 3) self.quat = nn.Linear(256, 4) self.quat.bias.data.zero_() """ Input: B x (2F + P + 16) Output: B x 7 """ def forward(self, feat): feat = torch.relu(self.mlp1(feat)) feat = torch.relu(self.mlp2(feat)) trans = torch.tanh(self.trans(feat)) # consider to remove torch.tanh if not using PartNet normalization quat_bias = feat.new_tensor([[[1.0, 0.0, 0.0, 0.0]]]) quat = self.quat(feat).add(quat_bias) quat = quat / (1e-12 + quat.pow(2).sum(dim=-1, keepdim=True)).sqrt() out = torch.cat([trans, quat.squeeze(0)], dim=-1) return out class Network(nn.Module): def __init__(self, conf): super(Network, self).__init__() self.conf = conf self.part_pointnet = PartPointNet(conf.feat_len) self.pose_decoder = PoseDecoder(2 * conf.feat_len + conf.max_num_part + 16) """ Input: B x P x N x 3, B x P, B x P x P, B x 7 Output: B x P x (3 + 4) """ def forward(self,seq, part_pcs, part_valids, instance_label, gt_part_pose): batch_size = part_pcs.shape[0] num_part = part_pcs.shape[1] num_point = part_pcs.shape[2] pred_part_poses = np.zeros((batch_size, num_part, 7)) pred_part_poses = torch.tensor(pred_part_poses).to(self.conf.device) # generate random_noise random_noise = np.random.normal(loc=0.0, scale=1.0, size=[batch_size, num_part, 16]).astype( np.float32) # B x P x 16 random_noise = torch.tensor(random_noise).to(self.conf.device) for iter in range(num_part): select_ind = seq[:,iter].int().tolist() batch_ind = [i for i in range(len(select_ind))] if iter == 0: cur_pred_pose = gt_part_pose # B x 7 pred_part_poses= pred_part_poses.float() pred_part_poses[batch_ind,select_ind,:] = cur_pred_pose cur_pred_center = cur_pred_pose[:, :3].unsqueeze(1).repeat(1, num_point, 1) # B x N x 3 cur_pred_qrot = cur_pred_pose[:, 3:].unsqueeze(1).repeat(1, num_point, 1) # B x N x 4 cur_part = cur_pred_center + qrot(cur_pred_qrot, part_pcs[batch_ind,select_ind, :, :])# B x N x 3 cur_part = cur_part.unsqueeze(1) # B x 1 x N x 3 cur_shape = cur_part # B x batch_ind,select_ind x N x 3 else: cur_shape_feat = self.part_pointnet(cur_shape.view(batch_size, -1, 3)) # B x F cur_part_feat = self.part_pointnet(part_pcs[batch_ind,select_ind, :, :])# B x F cat_feat = torch.cat([cur_shape_feat, cur_part_feat, instance_label[batch_ind,select_ind, :].contiguous(), random_noise[batch_ind,select_ind, :].contiguous()], dim=-1) # B x (2F + P + 16) cur_pred_pose = self.pose_decoder(cat_feat) # B x 7 pred_part_poses[batch_ind,select_ind, :] = cur_pred_pose cur_pred_center = cur_pred_pose[:, :3].unsqueeze(1).repeat(1, num_point, 1) # B x N x 3 cur_pred_qrot = cur_pred_pose[:, 3:].unsqueeze(1).repeat(1, num_point, 1) # B x N x 4 cur_part = cur_pred_center + qrot(cur_pred_qrot, part_pcs[batch_ind,select_ind, :, :]) # B x N x 3 cur_part = cur_part.unsqueeze(1) # B x 1 x N x 3 cur_shape = torch.cat([cur_shape, cur_part], dim=1) # B x select_ind x N x 3 pred_part_poses = pred_part_poses.double() * part_valids.unsqueeze(2).double() return pred_part_poses.float() """ Input: * x N x 3, * x 3, * x 4, * x 3, * x 4, Output: *, * (two lists) """ def linear_assignment(self, pts, centers1, quats1, centers2, quats2): cur_part_cnt = pts.shape[0] num_point = pts.shape[1] with torch.no_grad(): cur_quats1 = quats1.unsqueeze(1).repeat(1, num_point, 1) cur_centers1 = centers1.unsqueeze(1).repeat(1, num_point, 1) cur_pts1 = qrot(cur_quats1, pts) + cur_centers1 cur_quats2 = quats2.unsqueeze(1).repeat(1, num_point, 1) cur_centers2 = centers2.unsqueeze(1).repeat(1, num_point, 1) cur_pts2 = qrot(cur_quats2, pts) + cur_centers2 cur_pts1 = cur_pts1.unsqueeze(1).repeat(1, cur_part_cnt, 1, 1).view(-1, num_point, 3) cur_pts2 = cur_pts2.unsqueeze(0).repeat(cur_part_cnt, 1, 1, 1).view(-1, num_point, 3) dist1, dist2 = chamfer_distance(cur_pts1, cur_pts2, transpose=False) dist_mat = (dist1.mean(1) + dist2.mean(1)).view(cur_part_cnt, cur_part_cnt) rind, cind = linear_sum_assignment(dist_mat.cpu().numpy()) return rind, cind """ Input: B x P x 3, B x P x 3, B x P Output: B """ def get_trans_l2_loss(self, trans1, trans2, valids): loss_per_data = (trans1 - trans2).pow(2).sum(dim=-1) loss_per_data = (loss_per_data * valids).sum(1) / valids.sum(1) return loss_per_data """ Input: B x P x N x 3, B x P x 4, B x P x 4, B x P Output: B """ def get_rot_l2_loss(self, pts, quat1, quat2, valids): batch_size = pts.shape[0] num_point = pts.shape[2] pts1 = qrot(quat1.unsqueeze(2).repeat(1, 1, num_point, 1), pts) pts2 = qrot(quat2.unsqueeze(2).repeat(1, 1, num_point, 1), pts) loss_per_data = (pts1 - pts2).pow(2).sum(-1).mean(-1) loss_per_data = (loss_per_data * valids).sum(1) / valids.sum(1) return loss_per_data """ Input: B x P x N x 3, B x P x 4, B x P x 4, B x P Output: B """ def get_rot_cd_loss(self, pts, quat1, quat2, valids, device): batch_size = pts.shape[0] num_point = pts.shape[2] pts1 = qrot(quat1.unsqueeze(2).repeat(1, 1, num_point, 1), pts) pts2 = qrot(quat2.unsqueeze(2).repeat(1, 1, num_point, 1), pts) dist1, dist2 = chamfer_distance(pts1.view(-1, num_point, 3), pts2.view(-1, num_point, 3), transpose=False) loss_per_data = torch.mean(dist1, dim=1) + torch.mean(dist2, dim=1) loss_per_data = loss_per_data.view(batch_size, -1) loss_per_data = loss_per_data.to(device) loss_per_data = (loss_per_data * valids).sum(1) / valids.sum(1) return loss_per_data # def get_total_cd_loss(self, pts, quat1, quat2, valids, center1, center2, device): batch_size = pts.shape[0] num_part = pts.shape[1] num_point = pts.shape[2] center1 = center1.unsqueeze(2).repeat(1,1,num_point,1) center2 = center2.unsqueeze(2).repeat(1,1,num_point,1) pts1 = qrot(quat1.unsqueeze(2).repeat(1, 1, num_point, 1), pts) + center1 pts2 = qrot(quat2.unsqueeze(2).repeat(1, 1, num_point, 1), pts) + center2 dist1, dist2 = chamfer_distance(pts1.view(-1, num_point, 3), pts2.view(-1, num_point, 3), transpose=False) loss_per_data = torch.mean(dist1, dim=1) + torch.mean(dist2, dim=1) loss_per_data = loss_per_data.view(batch_size, -1) thre = 0.01 loss_per_data = loss_per_data.to(device) acc = [[0 for i in range(num_part)]for j in range(batch_size)] for i in range(batch_size): for j in range(num_part): if loss_per_data[i,j] < thre and valids[i,j]: acc[i][j] = 1 loss_per_data = (loss_per_data * valids).sum(1) / valids.sum(1) return loss_per_data , acc def get_shape_cd_loss(self, pts, quat1, quat2, valids, center1, center2, device): batch_size = pts.shape[0] num_part = pts.shape[1] num_point = pts.shape[2] center1 = center1.unsqueeze(2).repeat(1,1,num_point,1) center2 = center2.unsqueeze(2).repeat(1,1,num_point,1) pts1 = qrot(quat1.unsqueeze(2).repeat(1, 1, num_point, 1), pts) + center1 pts2 = qrot(quat2.unsqueeze(2).repeat(1, 1, num_point, 1), pts) + center2 pts1 = pts1.view(batch_size,num_part*num_point,3) pts2 = pts2.view(batch_size,num_part*num_point,3) dist1, dist2 = chamfer_distance(pts1, pts2, transpose=False) valids = valids.unsqueeze(2).repeat(1,1,1000).view(batch_size,-1) dist1 = dist1 * valids dist2 = dist2 * valids loss_per_data = torch.mean(dist1, dim=1) + torch.mean(dist2, dim=1) loss_per_data = loss_per_data.to(device) return loss_per_data def get_sym_point(self, point, x, y, z): if x: point[0] = - point[0] if y: point[1] = - point[1] if z: point[2] = - point[2] return point.tolist() def get_possible_point_list(self, point, sym): sym = torch.tensor([1.0, 1.0, 1.0]) point_list = [] if sym.equal(torch.tensor([0.0, 0.0, 0.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) elif sym.equal(torch.tensor([1.0, 0.0, 0.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 1, 0, 0)) elif sym.equal(torch.tensor([0.0, 1.0, 0.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 0, 1, 0)) elif sym.equal(torch.tensor([0.0, 0.0, 1.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 0, 0, 1)) elif sym.equal(torch.tensor([1.0, 1.0, 0.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 1, 0, 0)) point_list.append(self.get_sym_point(point, 0, 1, 0)) point_list.append(self.get_sym_point(point, 1, 1, 0)) elif sym.equal(torch.tensor([1.0, 0.0, 1.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 1, 0, 0)) point_list.append(self.get_sym_point(point, 0, 0, 1)) point_list.append(self.get_sym_point(point, 1, 0, 1)) elif sym.equal(torch.tensor([0.0, 1.0, 1.0])): point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 0, 1, 0)) point_list.append(self.get_sym_point(point, 0, 0, 1)) point_list.append(self.get_sym_point(point, 0, 1, 1)) else: point_list.append(self.get_sym_point(point, 0, 0, 0)) point_list.append(self.get_sym_point(point, 1, 0, 0)) point_list.append(self.get_sym_point(point, 0, 1, 0)) point_list.append(self.get_sym_point(point, 0, 0, 1)) point_list.append(self.get_sym_point(point, 1, 1, 0)) point_list.append(self.get_sym_point(point, 1, 0, 1)) point_list.append(self.get_sym_point(point, 0, 1, 1)) point_list.append(self.get_sym_point(point, 1, 1, 1)) return point_list def get_min_l2_dist(self, list1, list2, center1, center2, quat1, quat2): list1 = torch.tensor(list1) # m x 3 list2 = torch.tensor(list2) # n x 3 len1 = list1.shape[0] len2 = list2.shape[0] center1 = center1.unsqueeze(0).repeat(len1, 1) center2 = center2.unsqueeze(0).repeat(len2, 1) quat1 = quat1.unsqueeze(0).repeat(len1, 1) quat2 = quat2.unsqueeze(0).repeat(len2, 1) list1 = list1.to(self.conf.device) list2 = list2.to(self.conf.device) list1 = center1 + qrot(quat1, list1) list2 = center2 + qrot(quat2, list2) mat1 = list1.unsqueeze(1).repeat(1, len2, 1) mat2 = list2.unsqueeze(0).repeat(len1, 1, 1) mat = (mat1 - mat2) * (mat1 - mat2) mat = mat.sum(dim=-1) return mat.min() """ Contact point loss metric Date: 2020/5/22 Input B x P x 3, B x P x 4, B x P x P x 4, B x P x 3 Ouput B """ def get_contact_point_loss(self, center, quat, contact_points, sym_info): batch_size = center.shape[0] num_part = center.shape[1] contact_point_loss = torch.zeros(batch_size) total_num = 0 count = 0 for b in range(batch_size): sum_loss = 0 for i in range(num_part): for j in range(num_part): if contact_points[b, i, j, 0]: contact_point_1 = contact_points[b, i, j, 1:] contact_point_2 = contact_points[b, j, i, 1:] sym1 = sym_info[b, i] sym2 = sym_info[b, j] point_list_1 = self.get_possible_point_list(contact_point_1, sym1) point_list_2 = self.get_possible_point_list(contact_point_2, sym2) dist = self.get_min_l2_dist(point_list_1, point_list_2, center[b, i, :], center[b, j, :], quat[b, i, :], quat[b, j, :]) # 1 if dist < 0.01: count += 1 total_num += 1 sum_loss += dist contact_point_loss[b] = sum_loss return contact_point_loss, count, total_num
[ "torch.mean", "os.path.abspath", "cd.chamfer.chamfer_distance", "torch.nn.BatchNorm1d", "torch.nn.Conv1d", "numpy.zeros", "quaternion.qrot", "torch.cat", "numpy.random.normal", "torch.nn.Linear", "torch.zeros", "torch.no_grad", "os.path.join", "torch.tensor" ]
[((355, 380), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (370, 380), False, 'import sys, os\n'), ((398, 432), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""../utils"""'], {}), "(BASE_DIR, '../utils')\n", (410, 432), False, 'import sys, os\n'), ((718, 737), 'torch.nn.Conv1d', 'nn.Conv1d', (['(3)', '(64)', '(1)'], {}), '(3, 64, 1)\n', (727, 737), False, 'from torch import nn\n'), ((759, 779), 'torch.nn.Conv1d', 'nn.Conv1d', (['(64)', '(64)', '(1)'], {}), '(64, 64, 1)\n', (768, 779), False, 'from torch import nn\n'), ((801, 821), 'torch.nn.Conv1d', 'nn.Conv1d', (['(64)', '(64)', '(1)'], {}), '(64, 64, 1)\n', (810, 821), False, 'from torch import nn\n'), ((843, 864), 'torch.nn.Conv1d', 'nn.Conv1d', (['(64)', '(128)', '(1)'], {}), '(64, 128, 1)\n', (852, 864), False, 'from torch import nn\n'), ((931, 949), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(64)'], {}), '(64)\n', (945, 949), False, 'from torch import nn\n'), ((969, 987), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(64)'], {}), '(64)\n', (983, 987), False, 'from torch import nn\n'), ((1007, 1025), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(64)'], {}), '(64)\n', (1021, 1025), False, 'from torch import nn\n'), ((1045, 1064), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {}), '(128)\n', (1059, 1064), False, 'from torch import nn\n'), ((1127, 1151), 'torch.nn.Linear', 'nn.Linear', (['(128)', 'feat_len'], {}), '(128, feat_len)\n', (1136, 1151), False, 'from torch import nn\n'), ((1171, 1195), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['feat_len'], {}), '(feat_len)\n', (1185, 1195), False, 'from torch import nn\n'), ((1808, 1832), 'torch.nn.Linear', 'nn.Linear', (['feat_len', '(512)'], {}), '(feat_len, 512)\n', (1817, 1832), False, 'from torch import nn\n'), ((1853, 1872), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(256)'], {}), '(512, 256)\n', (1862, 1872), False, 'from torch import nn\n'), ((1895, 1912), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(3)'], {}), '(256, 3)\n', (1904, 1912), False, 'from torch import nn\n'), ((1934, 1951), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(4)'], {}), '(256, 4)\n', (1943, 1951), False, 'from torch import nn\n'), ((3152, 3187), 'numpy.zeros', 'np.zeros', (['(batch_size, num_part, 7)'], {}), '((batch_size, num_part, 7))\n', (3160, 3187), True, 'import numpy as np\n'), ((10047, 10092), 'cd.chamfer.chamfer_distance', 'chamfer_distance', (['pts1', 'pts2'], {'transpose': '(False)'}), '(pts1, pts2, transpose=False)\n', (10063, 10092), False, 'from cd.chamfer import chamfer_distance\n'), ((10680, 10709), 'torch.tensor', 'torch.tensor', (['[1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0])\n', (10692, 10709), False, 'import torch\n'), ((13035, 13054), 'torch.tensor', 'torch.tensor', (['list1'], {}), '(list1)\n', (13047, 13054), False, 'import torch\n'), ((13080, 13099), 'torch.tensor', 'torch.tensor', (['list2'], {}), '(list2)\n', (13092, 13099), False, 'import torch\n'), ((14099, 14122), 'torch.zeros', 'torch.zeros', (['batch_size'], {}), '(batch_size)\n', (14110, 14122), False, 'import torch\n'), ((5777, 5792), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5790, 5792), False, 'import torch\n'), ((6424, 6477), 'cd.chamfer.chamfer_distance', 'chamfer_distance', (['cur_pts1', 'cur_pts2'], {'transpose': '(False)'}), '(cur_pts1, cur_pts2, transpose=False)\n', (6440, 6477), False, 'from cd.chamfer import chamfer_distance\n'), ((8005, 8029), 'torch.mean', 'torch.mean', (['dist1'], {'dim': '(1)'}), '(dist1, dim=1)\n', (8015, 8029), False, 'import torch\n'), ((8032, 8056), 'torch.mean', 'torch.mean', (['dist2'], {'dim': '(1)'}), '(dist2, dim=1)\n', (8042, 8056), False, 'import torch\n'), ((8894, 8918), 'torch.mean', 'torch.mean', (['dist1'], {'dim': '(1)'}), '(dist1, dim=1)\n', (8904, 8918), False, 'import torch\n'), ((8921, 8945), 'torch.mean', 'torch.mean', (['dist2'], {'dim': '(1)'}), '(dist2, dim=1)\n', (8931, 8945), False, 'import torch\n'), ((10253, 10277), 'torch.mean', 'torch.mean', (['dist1'], {'dim': '(1)'}), '(dist1, dim=1)\n', (10263, 10277), False, 'import torch\n'), ((10280, 10304), 'torch.mean', 'torch.mean', (['dist2'], {'dim': '(1)'}), '(dist2, dim=1)\n', (10290, 10304), False, 'import torch\n'), ((10755, 10784), 'torch.tensor', 'torch.tensor', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (10767, 10784), False, 'import torch\n'), ((13493, 13511), 'quaternion.qrot', 'qrot', (['quat1', 'list1'], {}), '(quat1, list1)\n', (13497, 13511), False, 'from quaternion import qrot\n'), ((13538, 13556), 'quaternion.qrot', 'qrot', (['quat2', 'list2'], {}), '(quat2, list2)\n', (13542, 13556), False, 'from quaternion import qrot\n'), ((3214, 3243), 'torch.tensor', 'torch.tensor', (['pred_part_poses'], {}), '(pred_part_poses)\n', (3226, 3243), False, 'import torch\n'), ((3320, 3389), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0.0)', 'scale': '(1.0)', 'size': '[batch_size, num_part, 16]'}), '(loc=0.0, scale=1.0, size=[batch_size, num_part, 16])\n', (3336, 3389), True, 'import numpy as np\n'), ((3459, 3485), 'torch.tensor', 'torch.tensor', (['random_noise'], {}), '(random_noise)\n', (3471, 3485), False, 'import torch\n'), ((5308, 5347), 'torch.cat', 'torch.cat', (['[cur_shape, cur_part]'], {'dim': '(1)'}), '([cur_shape, cur_part], dim=1)\n', (5317, 5347), False, 'import torch\n'), ((5960, 5981), 'quaternion.qrot', 'qrot', (['cur_quats1', 'pts'], {}), '(cur_quats1, pts)\n', (5964, 5981), False, 'from quaternion import qrot\n'), ((6163, 6184), 'quaternion.qrot', 'qrot', (['cur_quats2', 'pts'], {}), '(cur_quats2, pts)\n', (6167, 6184), False, 'from quaternion import qrot\n'), ((10876, 10905), 'torch.tensor', 'torch.tensor', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (10888, 10905), False, 'import torch\n'), ((4121, 4179), 'quaternion.qrot', 'qrot', (['cur_pred_qrot', 'part_pcs[batch_ind, select_ind, :, :]'], {}), '(cur_pred_qrot, part_pcs[batch_ind, select_ind, :, :])\n', (4125, 4179), False, 'from quaternion import qrot\n'), ((5143, 5201), 'quaternion.qrot', 'qrot', (['cur_pred_qrot', 'part_pcs[batch_ind, select_ind, :, :]'], {}), '(cur_pred_qrot, part_pcs[batch_ind, select_ind, :, :])\n', (5147, 5201), False, 'from quaternion import qrot\n'), ((11063, 11092), 'torch.tensor', 'torch.tensor', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (11075, 11092), False, 'import torch\n'), ((11250, 11279), 'torch.tensor', 'torch.tensor', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (11262, 11279), False, 'import torch\n'), ((11437, 11466), 'torch.tensor', 'torch.tensor', (['[1.0, 1.0, 0.0]'], {}), '([1.0, 1.0, 0.0])\n', (11449, 11466), False, 'import torch\n'), ((11756, 11785), 'torch.tensor', 'torch.tensor', (['[1.0, 0.0, 1.0]'], {}), '([1.0, 0.0, 1.0])\n', (11768, 11785), False, 'import torch\n'), ((12075, 12104), 'torch.tensor', 'torch.tensor', (['[0.0, 1.0, 1.0]'], {}), '([0.0, 1.0, 1.0])\n', (12087, 12104), False, 'import torch\n')]
import unittest import os import matplotlib.pyplot as plt import numpy as np from lorenz.lorenz import make_dataset, plot_3d import lorenz.dataset class TestDataset(unittest.TestCase): def setUp(self): self.path = os.path.join(os.path.split(os.path.split(os.path.dirname(__file__))[0])[0], 'data', 'lorenz.h5') def test_random_iterator_1d(self): rng = np.random.RandomState(1729) dataset = lorenz.dataset.Dataset(self.path, view='1d') for b in dataset.random_iterator(4, 100): plt.plot(np.linspace(0,1,b.shape[1]), b[:,:,0].T) plt.show() #plot_3d(b) def test_random_iterator_3d(self): rng = np.random.RandomState(1729) dataset = lorenz.dataset.Dataset(self.path, view='3d') for b in dataset.random_iterator(4, 100): plot_3d(b)
[ "matplotlib.pyplot.show", "lorenz.lorenz.plot_3d", "os.path.dirname", "numpy.random.RandomState", "numpy.linspace" ]
[((380, 407), 'numpy.random.RandomState', 'np.random.RandomState', (['(1729)'], {}), '(1729)\n', (401, 407), True, 'import numpy as np\n'), ((684, 711), 'numpy.random.RandomState', 'np.random.RandomState', (['(1729)'], {}), '(1729)\n', (705, 711), True, 'import numpy as np\n'), ((595, 605), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (603, 605), True, 'import matplotlib.pyplot as plt\n'), ((837, 847), 'lorenz.lorenz.plot_3d', 'plot_3d', (['b'], {}), '(b)\n', (844, 847), False, 'from lorenz.lorenz import make_dataset, plot_3d\n'), ((542, 571), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'b.shape[1]'], {}), '(0, 1, b.shape[1])\n', (553, 571), True, 'import numpy as np\n'), ((270, 295), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (285, 295), False, 'import os\n')]
from utilities import load_stf import numpy as np from scipy.spatial.distance import cosine import time #vsm = load_stf('glove.840B.300d.sample.txt',300) #csm = np.load('centroids').item() #distrib = np.zeros((100000,10)) #oFile = open('f_distrib','w+') def dot_product(v1,v2): total = 0 if len(v1) != len(v2): throw for i in range(len(v1)): total += float(v1[i])*float(v2[i]) return total def centroid(vsm,w,k): total = np.zeros(len(vsm.word_vectors[vsm.dictionary[w]])) for v in vsm.most_similar(w,k+1): total += vsm.word_vectors[vsm.dictionary[v[0]]] total /= k return total def lcent_similarity(w1,w2,vsm,gamma,k,c): v1 = vsm.word_vectors[vsm.dictionary[w1]] v2 = vsm.word_vectors[vsm.dictionary[w2]] v1v2 = dot_product(v1,v2) v1c = dot_product(v1,c) v1cg = np.power(v1c,gamma) return v1v2 - v1cg def insert(v,sims,vec,val): nv = np.zeros(len(v)) nsims = np.zeros((len(sims),300)) swap = 0 for i in range(len(v)): if v[i]<val: swap = 1 break if swap == 0: return (v,sims) nv[:i] = v[:i] nsims[:i] = sims[:i] nv[i] = val nsims[i] = vec nv[i+1:] = v[i:len(v)-1] nsims[i+1:] = sims[i:len(sims)-1] return (nv,nsims) def most_similar_lcent(vsm,csm,word,k,gamma): sims = np.zeros(10) vecs = np.zeros(10) c = csm[word] for i,d_word in enumerate(vsm.dictionary): sim = lcent_similarity(word,d_word,vsm,gamma,k,c) (sims,vecs) = insert(vecs,sims,vsm.dictionary[d_word],sim) ret = [] for i in range(10): ret.append((sims[i],vecs[i])) return ret ''' centroids = {} for i,j in enumerate(vsm.dictionary): if i%100 == 0: print i centroids[j] = centroid(vsm,j,11) ''' #c = time.time() #for j,w in enumerate(vsm.dictionary): # print j # print time.time() - c # c = time.time() # ms = most_similar_lcent(vsm,csm,w,11,2) # for k,s in enumerate(ms): # print s # i = vsm.dictionary[s] # distrib[i,k] += 1 #for c in centroids: # oFile.write(str(c) + u' ') # for i in centroids[c]: # oFile.write(str(i) + u' ') # oFile.write(u'\n') #np.save(oFile,distrib) #oFile.close()
[ "numpy.power", "numpy.zeros" ]
[((788, 808), 'numpy.power', 'np.power', (['v1c', 'gamma'], {}), '(v1c, gamma)\n', (796, 808), True, 'import numpy as np\n'), ((1221, 1233), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (1229, 1233), True, 'import numpy as np\n'), ((1242, 1254), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (1250, 1254), True, 'import numpy as np\n')]
from data_collection.read_sentinel import pair_imagenames from utils.set_user_input import set_arguments_pipeline from utils.raster_helper import read_url_image, read_input_geometry, array2raster import numpy as np import rasterio def compute_ndvi(band_inf, bands=["red", "nir"]): """ This function computes the ndvi (normalized difference vegetation index) from the image resulting of the data catalog search. """ input_geometry = read_input_geometry(set_arguments_pipeline()["input_geometry"]) post_fix = "_band_info" red_band = band_inf[bands[0] + post_fix] nir_band = band_inf[bands[1] + post_fix] imagepairs_url_list = pair_imagenames(red_band, nir_band) ndvi_results = {} progress_counter = 0 for image_pair in imagepairs_url_list: band_red_url = [ red_url for red_url in imagepairs_url_list[image_pair] if "B04" in red_url ][0] band_nir_url = [ nir_url for nir_url in imagepairs_url_list[image_pair] if "B08" in nir_url ][0] band_red_image = read_url_image(band_red_url, input_geometry).astype(float) band_nir_image = read_url_image(band_nir_url, input_geometry).astype(float) ndvi_result = np.empty(band_red_image.shape, dtype=rasterio.float32) check = np.logical_or(band_red_image > 0, band_nir_image > 0) ndvi_result = np.where( check, (band_nir_image - band_red_image) / (band_nir_image + band_red_image), -999, ) array2raster(ndvi_result, input_geometry, band_red_url) ndvi_results[image_pair] = [ndvi_result] progress_counter += 1 print( "{0} of {1} images processed".format( progress_counter, len(imagepairs_url_list) ) ) return ndvi_results
[ "data_collection.read_sentinel.pair_imagenames", "utils.raster_helper.array2raster", "numpy.empty", "utils.set_user_input.set_arguments_pipeline", "numpy.where", "utils.raster_helper.read_url_image", "numpy.logical_or" ]
[((663, 698), 'data_collection.read_sentinel.pair_imagenames', 'pair_imagenames', (['red_band', 'nir_band'], {}), '(red_band, nir_band)\n', (678, 698), False, 'from data_collection.read_sentinel import pair_imagenames\n'), ((1229, 1283), 'numpy.empty', 'np.empty', (['band_red_image.shape'], {'dtype': 'rasterio.float32'}), '(band_red_image.shape, dtype=rasterio.float32)\n', (1237, 1283), True, 'import numpy as np\n'), ((1300, 1353), 'numpy.logical_or', 'np.logical_or', (['(band_red_image > 0)', '(band_nir_image > 0)'], {}), '(band_red_image > 0, band_nir_image > 0)\n', (1313, 1353), True, 'import numpy as np\n'), ((1376, 1472), 'numpy.where', 'np.where', (['check', '((band_nir_image - band_red_image) / (band_nir_image + band_red_image))', '(-999)'], {}), '(check, (band_nir_image - band_red_image) / (band_nir_image +\n band_red_image), -999)\n', (1384, 1472), True, 'import numpy as np\n'), ((1524, 1579), 'utils.raster_helper.array2raster', 'array2raster', (['ndvi_result', 'input_geometry', 'band_red_url'], {}), '(ndvi_result, input_geometry, band_red_url)\n', (1536, 1579), False, 'from utils.raster_helper import read_url_image, read_input_geometry, array2raster\n'), ((475, 499), 'utils.set_user_input.set_arguments_pipeline', 'set_arguments_pipeline', ([], {}), '()\n', (497, 499), False, 'from utils.set_user_input import set_arguments_pipeline\n'), ((1064, 1108), 'utils.raster_helper.read_url_image', 'read_url_image', (['band_red_url', 'input_geometry'], {}), '(band_red_url, input_geometry)\n', (1078, 1108), False, 'from utils.raster_helper import read_url_image, read_input_geometry, array2raster\n'), ((1148, 1192), 'utils.raster_helper.read_url_image', 'read_url_image', (['band_nir_url', 'input_geometry'], {}), '(band_nir_url, input_geometry)\n', (1162, 1192), False, 'from utils.raster_helper import read_url_image, read_input_geometry, array2raster\n')]
# -*- coding: utf-8 -*- """ Created on January 24, 2018 @author: neerbek """ # -*- coding: utf-8 -*- import os os.chdir("../../taboo-core") from numpy.random import RandomState # type: ignore from sklearn.cluster import KMeans # type: ignore import ai_util import confusion_matrix import kmeans_cluster_util as kutil import similarity.load_trees as load_trees # import pylab # type: ignore import matplotlib.pyplot as plt import importlib # importlib.reload(kutil) importlib.reload(confusion_matrix) # for information type 203 # # # run rnn on data (very low emb size) # OMP_NUM_THREADS=3 ipython3 functionality/train_model.py -- -traintrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$test.txt -validtrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$dev.txt -testtrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$test.txt -nx 50 -nh 20 -lr 0.5 -L1_reg 0 -L2_reg 0 -n_epochs -1 -retain_probability 1 -batch_size 90 -valid_batch_size 300 -glove_path ../code/glove/ -train_report_frequency 445/5 -validation_frequency 445 -file_prefix save_exp164 # Epoch 114. On validation set: Best (110, 1.065507, 77.4675%) # OMP_NUM_THREADS=2 ipython3 functionality/run_model_verbose.py -- -inputtrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$train.txt -nx 50 -nh 20 -L1_reg 0 -L2_reg 0 -retain_probability 1 -batch_size 90 -glove_path ../code/glove/ -inputmodel ../taboo-jan/functionality/logs/exp164_epoch480.zip\$save_exp164_best.txt -output_embeddings -max_tree_count 100 -max_count 100 -max_embedding_count 10000 # # for realz # OMP_NUM_THREADS=2 ipython3 functionality/run_model_verbose.py -- -inputtrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$train.txt -nx 50 -nh 20 -L1_reg 0 -L2_reg 0 -retain_probability 1 -batch_size 90 -glove_path ../code/glove/ -inputmodel ../taboo-jan/functionality/logs/exp164_epoch480.zip\$save_exp164_best.txt -output_embeddings > train.txt # OMP_NUM_THREADS=2 ipython3 functionality/run_model_verbose.py -- -inputtrees ../taboo-jan/functionality/203/data_full_random_cleaned.zip\$dev.txt -nx 50 -nh 20 -L1_reg 0 -L2_reg 0 -retain_probability 1 -batch_size 90 -glove_path ../code/glove/ -inputmodel ../taboo-jan/functionality/logs/exp164_epoch480.zip\$save_exp164_best.txt -output_embeddings > dev.txt # # zip output_embeddings_exp164_e480.zip train.txt dev.txt # rm train.txt dev.txt # mv output_embeddings_exp164_e480.zip output # don't add to git (for now), we should make a backup totaltimer = ai_util.Timer("Total time: ") traintimer = ai_util.Timer("Train time: ") totaltimer.begin() inputfileTrain = "output/output_embeddings_exp164_e120.zip$train.txt" inputfileTrain = "output/output_embeddings_exp164_e480.zip$train.txt" linesTrainFull = confusion_matrix.read_embeddings(inputfileTrain, max_line_count=-1) linesTrain = [linesTrainFull[i] for i in range(60000)] inputfileDev = "output/output_embeddings_exp164_e120.zip$dev.txt" inputfileDev = "output/output_embeddings_exp164_e480.zip$dev.txt" linesDev = confusion_matrix.read_embeddings(inputfileDev, max_line_count=-1) numberOfClusters = 35 randomSeed = 7485 doShow = True low = 3 # 03 high = 22 # 16 not good rng = RandomState(randomSeed) aTrain = confusion_matrix.get_embedding_matrix(linesTrain, normalize=True) aTrainFull = confusion_matrix.get_embedding_matrix(linesTrainFull, normalize=True) aDev = confusion_matrix.get_embedding_matrix(linesDev, normalize=True) kmeans = KMeans(n_clusters=numberOfClusters, random_state=rng).fit(aTrain) # kmeans = KMeans(n_clusters=numberOfClusters, random_state=rng).fit(aTrainFull) # kmeans = KMeans(n_clusters=numberOfClusters, random_state=rng).fit(aDev) # sort_order = kutil.get_cluster_sen_ratios_sort_order(aTrainFull, linesTrainFull, kmeans) sort_order = kutil.get_cluster_sen_ratios_sort_order(aTrain, linesTrain, kmeans) show = kutil.SHOW_ALL if doShow: # plot y1 = kutil.get_cluster_sen_ratios(aTrain, linesTrain, kmeans, sort_order) y2 = kutil.getScaledSizes(aTrain, kmeans, sort_order) # y1 = kutil.get_cluster_sen_ratios(aTrainFull, linesTrainFull, kmeans, sort_order) # y2 = getScaledSizes(aTrainFull, kmeans, sort_order) # y3 = kutil.get_cluster_sen_ratios(aDev, linesDev, kmeans, sort_order) # y4 = getScaledSizes(aDev, kmeans, sort_order) x = kutil.getXRange(show, low, high, numberOfClusters) y1 = [y1[i] for i in x] y2 = [y2[i] for i in x] # y3 = [y3[i] for i in x] # y4 = [y4[i] for i in x] confusion_matrix.new_graph('Clusters', 'Ratio') plt.plot(x, y1, 'k-', label='Sensitivity') plt.plot(x, y2, 'k+', label='Accumulate size') # plt.plot(x, y3, 'b-', label='Sensitivity Dev') # plt.plot(x, y4, 'b+', label='Accumulate size Dev') if show == kutil.SHOW_ALL: # plt.plot((low, low), (0, 1), 'k-') plt.plot((high, high), (0, 1), 'k:') plt.legend() plt.savefig('ijcai18_plot_sensitive_sorted_203.eps') # plt.savefig('tmp.eps') # plt.show() don't call show from an interactive prompt :( # https://github.com/matplotlib/matplotlib/issues/8505/ clusterIds = sort_order # clusterIds == sort_order, it's just syntaxtic sugar (linesC1, aC1) = kutil.get_sentences_from_clusters(clusterIds[:high], linesTrainFull, aTrainFull, kmeans) (linesC2, aC2) = kutil.get_sentences_from_clusters(clusterIds[high:], linesTrainFull, aTrainFull, kmeans) (lines2C1, a2C1) = kutil.get_sentences_from_clusters(clusterIds[:high], linesDev, aDev, kmeans) (lines2C2, a2C2) = kutil.get_sentences_from_clusters(clusterIds[high:], linesDev, aDev, kmeans) print(len(linesC1), len(linesC2)) print(len(lines2C1), len(lines2C2)) # after some iterations (unknown random seed) # 78442 45824 # 17034 9966 (27000) kutil.get_base_accuracy(linesC1, "train C1").report() kutil.get_base_accuracy(linesC2, "train C2").report() # if we want to validation score kutil.get_base_accuracy(lines2C1, "dev C1").report() kutil.get_base_accuracy(lines2C2, "dev C2").report() # don't know if these values are updated! # Accuracy (train C1): 0.9432 (0.6436), f1=0.9179 (24901 1398 49089 3054) # Accuracy (train C2): 0.9871 (0.0128), f1=0.9935 (45224 579 8 13) # Accuracy (dev C1): 0.9304 (0.6318), f1=0.9023 (5470 383 10379 802) # Accuracy (dev C2): 0.9832 (0.0167), f1=0.9915 (9796 163 3 4)
[ "confusion_matrix.read_embeddings", "ai_util.Timer", "matplotlib.pyplot.plot", "sklearn.cluster.KMeans", "matplotlib.pyplot.legend", "kmeans_cluster_util.get_base_accuracy", "numpy.random.RandomState", "kmeans_cluster_util.get_cluster_sen_ratios", "importlib.reload", "confusion_matrix.new_graph", "kmeans_cluster_util.get_cluster_sen_ratios_sort_order", "kmeans_cluster_util.getScaledSizes", "kmeans_cluster_util.get_sentences_from_clusters", "kmeans_cluster_util.getXRange", "confusion_matrix.get_embedding_matrix", "os.chdir", "matplotlib.pyplot.savefig" ]
[((114, 142), 'os.chdir', 'os.chdir', (['"""../../taboo-core"""'], {}), "('../../taboo-core')\n", (122, 142), False, 'import os\n'), ((473, 507), 'importlib.reload', 'importlib.reload', (['confusion_matrix'], {}), '(confusion_matrix)\n', (489, 507), False, 'import importlib\n'), ((2524, 2553), 'ai_util.Timer', 'ai_util.Timer', (['"""Total time: """'], {}), "('Total time: ')\n", (2537, 2553), False, 'import ai_util\n'), ((2567, 2596), 'ai_util.Timer', 'ai_util.Timer', (['"""Train time: """'], {}), "('Train time: ')\n", (2580, 2596), False, 'import ai_util\n'), ((2774, 2841), 'confusion_matrix.read_embeddings', 'confusion_matrix.read_embeddings', (['inputfileTrain'], {'max_line_count': '(-1)'}), '(inputfileTrain, max_line_count=-1)\n', (2806, 2841), False, 'import confusion_matrix\n'), ((3040, 3105), 'confusion_matrix.read_embeddings', 'confusion_matrix.read_embeddings', (['inputfileDev'], {'max_line_count': '(-1)'}), '(inputfileDev, max_line_count=-1)\n', (3072, 3105), False, 'import confusion_matrix\n'), ((3210, 3233), 'numpy.random.RandomState', 'RandomState', (['randomSeed'], {}), '(randomSeed)\n', (3221, 3233), False, 'from numpy.random import RandomState\n'), ((3243, 3308), 'confusion_matrix.get_embedding_matrix', 'confusion_matrix.get_embedding_matrix', (['linesTrain'], {'normalize': '(True)'}), '(linesTrain, normalize=True)\n', (3280, 3308), False, 'import confusion_matrix\n'), ((3322, 3391), 'confusion_matrix.get_embedding_matrix', 'confusion_matrix.get_embedding_matrix', (['linesTrainFull'], {'normalize': '(True)'}), '(linesTrainFull, normalize=True)\n', (3359, 3391), False, 'import confusion_matrix\n'), ((3399, 3462), 'confusion_matrix.get_embedding_matrix', 'confusion_matrix.get_embedding_matrix', (['linesDev'], {'normalize': '(True)'}), '(linesDev, normalize=True)\n', (3436, 3462), False, 'import confusion_matrix\n'), ((3799, 3866), 'kmeans_cluster_util.get_cluster_sen_ratios_sort_order', 'kutil.get_cluster_sen_ratios_sort_order', (['aTrain', 'linesTrain', 'kmeans'], {}), '(aTrain, linesTrain, kmeans)\n', (3838, 3866), True, 'import kmeans_cluster_util as kutil\n'), ((5202, 5294), 'kmeans_cluster_util.get_sentences_from_clusters', 'kutil.get_sentences_from_clusters', (['clusterIds[:high]', 'linesTrainFull', 'aTrainFull', 'kmeans'], {}), '(clusterIds[:high], linesTrainFull,\n aTrainFull, kmeans)\n', (5235, 5294), True, 'import kmeans_cluster_util as kutil\n'), ((5308, 5400), 'kmeans_cluster_util.get_sentences_from_clusters', 'kutil.get_sentences_from_clusters', (['clusterIds[high:]', 'linesTrainFull', 'aTrainFull', 'kmeans'], {}), '(clusterIds[high:], linesTrainFull,\n aTrainFull, kmeans)\n', (5341, 5400), True, 'import kmeans_cluster_util as kutil\n'), ((5416, 5492), 'kmeans_cluster_util.get_sentences_from_clusters', 'kutil.get_sentences_from_clusters', (['clusterIds[:high]', 'linesDev', 'aDev', 'kmeans'], {}), '(clusterIds[:high], linesDev, aDev, kmeans)\n', (5449, 5492), True, 'import kmeans_cluster_util as kutil\n'), ((5512, 5588), 'kmeans_cluster_util.get_sentences_from_clusters', 'kutil.get_sentences_from_clusters', (['clusterIds[high:]', 'linesDev', 'aDev', 'kmeans'], {}), '(clusterIds[high:], linesDev, aDev, kmeans)\n', (5545, 5588), True, 'import kmeans_cluster_util as kutil\n'), ((3922, 3990), 'kmeans_cluster_util.get_cluster_sen_ratios', 'kutil.get_cluster_sen_ratios', (['aTrain', 'linesTrain', 'kmeans', 'sort_order'], {}), '(aTrain, linesTrain, kmeans, sort_order)\n', (3950, 3990), True, 'import kmeans_cluster_util as kutil\n'), ((4000, 4048), 'kmeans_cluster_util.getScaledSizes', 'kutil.getScaledSizes', (['aTrain', 'kmeans', 'sort_order'], {}), '(aTrain, kmeans, sort_order)\n', (4020, 4048), True, 'import kmeans_cluster_util as kutil\n'), ((4331, 4381), 'kmeans_cluster_util.getXRange', 'kutil.getXRange', (['show', 'low', 'high', 'numberOfClusters'], {}), '(show, low, high, numberOfClusters)\n', (4346, 4381), True, 'import kmeans_cluster_util as kutil\n'), ((4502, 4549), 'confusion_matrix.new_graph', 'confusion_matrix.new_graph', (['"""Clusters"""', '"""Ratio"""'], {}), "('Clusters', 'Ratio')\n", (4528, 4549), False, 'import confusion_matrix\n'), ((4554, 4596), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y1', '"""k-"""'], {'label': '"""Sensitivity"""'}), "(x, y1, 'k-', label='Sensitivity')\n", (4562, 4596), True, 'import matplotlib.pyplot as plt\n'), ((4601, 4647), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y2', '"""k+"""'], {'label': '"""Accumulate size"""'}), "(x, y2, 'k+', label='Accumulate size')\n", (4609, 4647), True, 'import matplotlib.pyplot as plt\n'), ((4883, 4895), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4893, 4895), True, 'import matplotlib.pyplot as plt\n'), ((4900, 4952), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""ijcai18_plot_sensitive_sorted_203.eps"""'], {}), "('ijcai18_plot_sensitive_sorted_203.eps')\n", (4911, 4952), True, 'import matplotlib.pyplot as plt\n'), ((3473, 3526), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'numberOfClusters', 'random_state': 'rng'}), '(n_clusters=numberOfClusters, random_state=rng)\n', (3479, 3526), False, 'from sklearn.cluster import KMeans\n'), ((4842, 4878), 'matplotlib.pyplot.plot', 'plt.plot', (['(high, high)', '(0, 1)', '"""k:"""'], {}), "((high, high), (0, 1), 'k:')\n", (4850, 4878), True, 'import matplotlib.pyplot as plt\n'), ((5742, 5786), 'kmeans_cluster_util.get_base_accuracy', 'kutil.get_base_accuracy', (['linesC1', '"""train C1"""'], {}), "(linesC1, 'train C1')\n", (5765, 5786), True, 'import kmeans_cluster_util as kutil\n'), ((5796, 5840), 'kmeans_cluster_util.get_base_accuracy', 'kutil.get_base_accuracy', (['linesC2', '"""train C2"""'], {}), "(linesC2, 'train C2')\n", (5819, 5840), True, 'import kmeans_cluster_util as kutil\n'), ((5883, 5926), 'kmeans_cluster_util.get_base_accuracy', 'kutil.get_base_accuracy', (['lines2C1', '"""dev C1"""'], {}), "(lines2C1, 'dev C1')\n", (5906, 5926), True, 'import kmeans_cluster_util as kutil\n'), ((5936, 5979), 'kmeans_cluster_util.get_base_accuracy', 'kutil.get_base_accuracy', (['lines2C2', '"""dev C2"""'], {}), "(lines2C2, 'dev C2')\n", (5959, 5979), True, 'import kmeans_cluster_util as kutil\n')]
""" Tests for package pytools.viz.dendrogram """ # noinspection PyPackageRequirements import hashlib import logging from io import StringIO import numpy as np # noinspection PyPackageRequirements import pytest # noinspection PyPackageRequirements import scipy.cluster.hierarchy as hc from pytools.viz.dendrogram import DendrogramDrawer, DendrogramReportStyle, LinkageTree log = logging.getLogger(__name__) @pytest.fixture def linkage_matrix() -> np.ndarray: """Create a linkage matrix.""" x = np.array([[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]) return hc.linkage(x) @pytest.fixture def linkage_tree(linkage_matrix: np.ndarray) -> LinkageTree: """Create a linkage tree for drawing tests.""" return LinkageTree( scipy_linkage_matrix=linkage_matrix, leaf_names=list("ABCDEFGH"), leaf_weights=[(w + 1) / 36 for w in range(8)], ) def test_dendrogram_drawer_text(linkage_matrix: np.ndarray) -> None: checksum_dendrogram_report = "32427095857f0589f68210ad4b2e8210" leaf_names = list("ABCDEFGH") leaf_weights = [(w + 1) / 36 for w in range(8)] with pytest.raises(ValueError) as value_error: LinkageTree( scipy_linkage_matrix=linkage_matrix, leaf_names=leaf_names, leaf_weights=leaf_weights, max_distance=1, ) assert value_error.value.args == ( "arg max_distance=1 must be equal to or greater than the maximum distance " "(= 4.0) in the linkage tree", ) linkage_tree = LinkageTree( scipy_linkage_matrix=linkage_matrix, leaf_names=leaf_names, leaf_weights=[(w + 1) / 36 for w in range(8)], distance_label="distance", leaf_label="label", weight_label="weight", ) with StringIO() as out: dd = DendrogramDrawer(style=DendrogramReportStyle(out=out)) dd.draw(data=linkage_tree, title="Test") report_str = str(out.getvalue()) log.debug(f"\n{report_str}") assert ( hashlib.md5(str(report_str).encode("utf-8")).hexdigest() ) == checksum_dendrogram_report
[ "io.StringIO", "pytools.viz.dendrogram.DendrogramReportStyle", "scipy.cluster.hierarchy.linkage", "pytest.raises", "numpy.array", "pytools.viz.dendrogram.LinkageTree", "logging.getLogger" ]
[((384, 411), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (401, 411), False, 'import logging\n'), ((509, 558), 'numpy.array', 'np.array', (['[[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]'], {}), '([[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]])\n', (517, 558), True, 'import numpy as np\n'), ((570, 583), 'scipy.cluster.hierarchy.linkage', 'hc.linkage', (['x'], {}), '(x)\n', (580, 583), True, 'import scipy.cluster.hierarchy as hc\n'), ((1116, 1141), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1129, 1141), False, 'import pytest\n'), ((1166, 1284), 'pytools.viz.dendrogram.LinkageTree', 'LinkageTree', ([], {'scipy_linkage_matrix': 'linkage_matrix', 'leaf_names': 'leaf_names', 'leaf_weights': 'leaf_weights', 'max_distance': '(1)'}), '(scipy_linkage_matrix=linkage_matrix, leaf_names=leaf_names,\n leaf_weights=leaf_weights, max_distance=1)\n', (1177, 1284), False, 'from pytools.viz.dendrogram import DendrogramDrawer, DendrogramReportStyle, LinkageTree\n'), ((1782, 1792), 'io.StringIO', 'StringIO', ([], {}), '()\n', (1790, 1792), False, 'from io import StringIO\n'), ((1837, 1867), 'pytools.viz.dendrogram.DendrogramReportStyle', 'DendrogramReportStyle', ([], {'out': 'out'}), '(out=out)\n', (1858, 1867), False, 'from pytools.viz.dendrogram import DendrogramDrawer, DendrogramReportStyle, LinkageTree\n')]
#!/usr/bin/python3 import sys #sys.path.insert(0, "/usr/local/opencv3/lib/python2.7/site-packages/") import argparse #import commands import cv2 import fnmatch import numpy as np import os.path import random import navpy sys.path.append('../lib') import AC3D import Pose import ProjectMgr import SRTM import transformations # for all the images in the project image_dir, compute the camera # poses from the aircraft pose (and camera mounting transform). # Project the image plane onto an SRTM (DEM) surface for our best # layout guess (at this point before we do any matching/bundle # adjustment work.) parser = argparse.ArgumentParser(description='Set the initial camera poses.') parser.add_argument('--project', required=True, help='project directory') parser.add_argument('--texture-resolution', type=int, default=512, help='texture resolution (should be 2**n, so numbers like 256, 512, 1024, etc.') parser.add_argument('--ground', type=float, help='ground elevation in meters') parser.add_argument('--sba', action='store_true', help='use sba pose') args = parser.parse_args() proj = ProjectMgr.ProjectMgr(args.project) proj.load_image_info() ref = proj.ned_reference_lla # setup SRTM ground interpolator sss = SRTM.NEDGround( ref, 6000, 6000, 30 ) ac3d_steps = 8 # compute the uv grid for each image and project each point out into # ned space, then intersect each vector with the srtm ground. # build our local image list for placing print(args.sba) if not args.sba: image_list = proj.image_list else: image_list = [] for image in proj.image_list: if image.camera_pose_sba != None: #print image.camera_pose_sba image_list.append(image) depth = 0.0 camw, camh = proj.cam.get_image_params() for image in image_list: print(image.name) # scale the K matrix if we have scaled the images scale = float(image.width) / float(camw) K = proj.cam.get_K(scale) IK = np.linalg.inv(K) grid_list = [] u_list = np.linspace(0, image.width, ac3d_steps + 1) v_list = np.linspace(0, image.height, ac3d_steps + 1) #print "u_list:", u_list #print "v_list:", v_list for v in v_list: for u in u_list: grid_list.append( [u, v] ) print('grid_list:', grid_list) if not args.sba: proj_list = proj.projectVectors( IK, image.get_body2ned(), image.get_cam2body(), grid_list ) else: print(image.get_body2ned_sba()) proj_list = proj.projectVectors( IK, image.get_body2ned_sba(), image.get_cam2body(), grid_list ) print('proj_list:', proj_list) if not args.sba: ned = image.camera_pose['ned'] else: ned = image.camera_pose_sba['ned'] print('ned', image.camera_pose['ned'], ned) if args.ground: pts_ned = proj.intersectVectorsWithGroundPlane(ned, args.ground, proj_list) else: pts_ned = sss.interpolate_vectors(ned, proj_list) print("pts_3d (ned):\n", pts_ned) # convert ned to xyz and stash the result for each image image.grid_list = [] ground_sum = 0 for p in pts_ned: image.grid_list.append( [p[1], p[0], -(p[2]+depth)] ) ground_sum += -p[2] depth -= 0.01 # favor last pictures above earlier ones # call the ac3d generator AC3D.generate(image_list, src_dir=proj.source_dir, project_dir=args.project, base_name='direct', version=1.0, trans=0.1, resolution=args.texture_resolution) if not args.ground: print('Avg ground elevation (SRTM):', ground_sum / len(pts_ned))
[ "sys.path.append", "argparse.ArgumentParser", "numpy.linalg.inv", "numpy.linspace", "SRTM.NEDGround", "AC3D.generate", "ProjectMgr.ProjectMgr" ]
[((224, 249), 'sys.path.append', 'sys.path.append', (['"""../lib"""'], {}), "('../lib')\n", (239, 249), False, 'import sys\n'), ((617, 685), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Set the initial camera poses."""'}), "(description='Set the initial camera poses.')\n", (640, 685), False, 'import argparse\n'), ((1094, 1129), 'ProjectMgr.ProjectMgr', 'ProjectMgr.ProjectMgr', (['args.project'], {}), '(args.project)\n', (1115, 1129), False, 'import ProjectMgr\n'), ((1223, 1258), 'SRTM.NEDGround', 'SRTM.NEDGround', (['ref', '(6000)', '(6000)', '(30)'], {}), '(ref, 6000, 6000, 30)\n', (1237, 1258), False, 'import SRTM\n'), ((3435, 3600), 'AC3D.generate', 'AC3D.generate', (['image_list'], {'src_dir': 'proj.source_dir', 'project_dir': 'args.project', 'base_name': '"""direct"""', 'version': '(1.0)', 'trans': '(0.1)', 'resolution': 'args.texture_resolution'}), "(image_list, src_dir=proj.source_dir, project_dir=args.project,\n base_name='direct', version=1.0, trans=0.1, resolution=args.\n texture_resolution)\n", (3448, 3600), False, 'import AC3D\n'), ((1948, 1964), 'numpy.linalg.inv', 'np.linalg.inv', (['K'], {}), '(K)\n', (1961, 1964), True, 'import numpy as np\n'), ((1998, 2041), 'numpy.linspace', 'np.linspace', (['(0)', 'image.width', '(ac3d_steps + 1)'], {}), '(0, image.width, ac3d_steps + 1)\n', (2009, 2041), True, 'import numpy as np\n'), ((2055, 2099), 'numpy.linspace', 'np.linspace', (['(0)', 'image.height', '(ac3d_steps + 1)'], {}), '(0, image.height, ac3d_steps + 1)\n', (2066, 2099), True, 'import numpy as np\n')]
import gc import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import torch import torch.nn as nn import torchvision import sys # To view tensorboard metrics # tensorboard --logdir=logs --port=6006 --bind_all from torch.utils.tensorboard import SummaryWriter from functools import partial from evolver import CrossoverType, MutationType, InitType, MatrixEvolver, VectorEvolver from unet import UNet from dataset_utils import PartitionType from cuda_utils import maybe_get_cuda_device, clear_cuda from landcover_dataloader import get_landcover_dataloaders, get_landcover_dataloader from ignite.contrib.handlers.tensorboard_logger import * from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator from ignite.metrics import Accuracy, Loss, ConfusionMatrix, mIoU from ignite.handlers import ModelCheckpoint from ignite.utils import setup_logger from ignite.engine import Engine # Define directories for data, logging and model saving. base_dir = os.getcwd() dataset_name = "landcover_large" dataset_dir = os.path.join(base_dir, "data/" + dataset_name) experiment_name = "dropout_single_point_finetuning_100_children" model_name = "best_model_9_validation_accuracy=0.8940.pt" model_path = os.path.join(base_dir, "logs/" + dataset_name + "/" + model_name) log_dir = os.path.join(base_dir, "logs/" + dataset_name + "_" + experiment_name) # Create DataLoaders for each partition of Landcover data. dataloader_params = { 'batch_size': 8, 'shuffle': True, 'num_workers': 6, 'pin_memory': True} partition_types = [PartitionType.TRAIN, PartitionType.VALIDATION, PartitionType.FINETUNING, PartitionType.TEST] data_loaders = get_landcover_dataloaders(dataset_dir, partition_types, dataloader_params, force_create_dataset=False) train_loader = data_loaders[0] finetuning_loader = data_loaders[2] dataloader_params['shuffle'] = False test_loader = get_landcover_dataloader(dataset_dir, PartitionType.TEST, dataloader_params) # Get GPU device if available. device = maybe_get_cuda_device() # Determine model and training params. params = { 'max_epochs': 10, 'n_classes': 4, 'in_channels': 4, 'depth': 5, 'learning_rate': 0.001, 'log_steps': 1, 'save_top_n_models': 4, 'num_children': 100 } clear_cuda() model = UNet(in_channels = params['in_channels'], n_classes = params['n_classes'], depth = params['depth']) model.load_state_dict(torch.load(model_path)) # Create Trainer or Evaluators criterion = nn.NLLLoss() optimizer = torch.optim.Adam(model.parameters(), lr=params['learning_rate']) # Determine metrics for evaluation. metrics = { "accuracy": Accuracy(), "loss": Loss(criterion), "mean_iou": mIoU(ConfusionMatrix(num_classes = params['n_classes'])), } for batch in train_loader: batch_x = batch[0] _ = model(batch_x) break drop_out_layers = model.get_dropout_layers() del model, batch_x clear_cuda() for layer in drop_out_layers: layer_name = layer.name size = layer.x_size[1:] sizes = [size] clear_cuda() model = UNet(in_channels = params['in_channels'], n_classes = params['n_classes'], depth = params['depth']) model.load_state_dict(torch.load(model_path)) model.to(device) criterion = nn.NLLLoss() optimizer = torch.optim.Adam(model.parameters(), lr=params['learning_rate']) num_channels = size[0] evolver = VectorEvolver(num_channels, CrossoverType.UNIFORM, MutationType.FLIP_BIT, InitType.RANDOM, flip_bit_prob=0.25, flip_bit_decay=0.5) log_dir_test = log_dir + "_" + layer_name def mask_from_vec(vec, matrix_size): mask = np.ones(matrix_size) for i in range(len(vec)): if vec[i] == 0: mask[i, :, :] = 0 elif vec[i] == 1: mask[i, :, :] = 1 return mask def dropout_finetune_step(engine, batch): model.eval() with torch.no_grad(): batch_x, batch_y = batch batch_x = batch_x.to(device) batch_y = batch_y.to(device) loss = sys.float_info.max for i in range(params['num_children']): model.zero_grad() child_vec = evolver.spawn_child() child_mask = mask_from_vec(child_vec, size) model.set_dropout_masks({layer_name: torch.tensor(child_mask, dtype=torch.float32).to(device)}) outputs = model(batch_x) current_loss = criterion(outputs[:, :, 127:128,127:128], batch_y[:,127:128,127:128]).item() loss = min(loss, current_loss) if current_loss == 0.0: current_loss = sys.float_info.max else: current_loss = 1.0 / current_loss evolver.add_child(child_vec, current_loss) priority, best_child = evolver.get_best_child() best_mask = mask_from_vec(best_child, size) model.set_dropout_masks({layer_name: torch.tensor(best_mask, dtype=torch.float32).to(device)}) return loss # Create Trainer or Evaluators trainer = Engine(dropout_finetune_step) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) trainer.logger = setup_logger("Trainer") train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator.logger = setup_logger("Validation Evaluator") @trainer.on(Events.ITERATION_COMPLETED(every=1)) def report_evolver_stats(engine): priorities = np.array(evolver.get_generation_priorities()) # Take reciprocal since we needed to store priorities in min heap. priorities = 1.0 / priorities tb_logger.writer.add_scalar("training/evolver_count", priorities.shape[0], engine.state.iteration) tb_logger.writer.add_scalar("training/evolver_mean", np.mean(priorities), engine.state.iteration) tb_logger.writer.add_scalar("training/evolver_std", np.std(priorities), engine.state.iteration) evolver.update_parents() @trainer.on(Events.EPOCH_COMPLETED) def visualize_validation_predictions(engine): for i, batch in enumerate(test_loader): batch_x, batch_y = batch batch_x = batch_x.to(device) batch_y = batch_y.to(device) outputs = model(batch_x) num_images = batch_x.shape[0] batch_y_detach = batch_y.detach().cpu().numpy() batch_x_detach = batch_x.detach().cpu().numpy() outputs_detach = outputs.detach().cpu().numpy() for j in range(num_images): f, ax = plt.subplots(1, 3, figsize=(10, 4)) ax[0].imshow(np.moveaxis(batch_x_detach[j, :, :, :], [0], [2]) / 255.0) ax[1].imshow((np.array(batch_y_detach[j, :, :]))) ax[2].imshow(np.argmax(np.moveaxis(np.array(outputs_detach[j, :, :, :]), [0],[ 2]), axis=2)) ax[0].set_title("X") ax[1].set_title("Y") ax[2].set_title("Predict") f.suptitle("Layer: " + layer_name + " Itteration: " + str(engine.state.iteration) + " Image: " + str(j)) plt.show() if i > 5: break break # Tensorboard Logger setup below based on pytorch ignite example # https://github.com/pytorch/ignite/blob/master/examples/contrib/mnist/mnist_with_tensorboard_logger.py @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): """Callback to compute metrics on the train and validation data.""" train_evaluator.run(finetuning_loader) validation_evaluator.run(test_loader) def score_function(engine): """Function to determine the metric upon which to compare model.""" return engine.state.metrics["accuracy"] # Setup Tensor Board Logging tb_logger = TensorboardLogger(log_dir=log_dir_test) tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=params['log_steps']), tag="training", output_transform=lambda loss: {"batchloss": loss}, metric_names="all", ) for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]: tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names="all", global_step_transform=global_step_from_engine(trainer), ) tb_logger.attach_opt_params_handler(trainer, event_name=Events.ITERATION_COMPLETED(every=params['log_steps']), optimizer=optimizer) model_checkpoint = ModelCheckpoint( log_dir_test, n_saved=params['save_top_n_models'], filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {"model": model}) trainer.run(finetuning_loader, max_epochs=params['max_epochs']) tb_logger.close()
[ "numpy.moveaxis", "numpy.ones", "ignite.engine.create_supervised_evaluator", "torch.nn.NLLLoss", "numpy.mean", "landcover_dataloader.get_landcover_dataloaders", "cuda_utils.maybe_get_cuda_device", "torch.no_grad", "cuda_utils.clear_cuda", "os.path.join", "numpy.std", "torch.load", "evolver.VectorEvolver", "matplotlib.pyplot.subplots", "ignite.metrics.ConfusionMatrix", "matplotlib.pyplot.show", "ignite.metrics.Accuracy", "ignite.engine.Events.ITERATION_COMPLETED", "unet.UNet", "os.getcwd", "ignite.engine.Engine", "ignite.utils.setup_logger", "numpy.array", "landcover_dataloader.get_landcover_dataloader", "ignite.metrics.Loss", "torch.tensor" ]
[((1006, 1017), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1015, 1017), False, 'import os\n'), ((1065, 1111), 'os.path.join', 'os.path.join', (['base_dir', "('data/' + dataset_name)"], {}), "(base_dir, 'data/' + dataset_name)\n", (1077, 1111), False, 'import os\n'), ((1249, 1314), 'os.path.join', 'os.path.join', (['base_dir', "('logs/' + dataset_name + '/' + model_name)"], {}), "(base_dir, 'logs/' + dataset_name + '/' + model_name)\n", (1261, 1314), False, 'import os\n'), ((1325, 1395), 'os.path.join', 'os.path.join', (['base_dir', "('logs/' + dataset_name + '_' + experiment_name)"], {}), "(base_dir, 'logs/' + dataset_name + '_' + experiment_name)\n", (1337, 1395), False, 'import os\n'), ((1714, 1820), 'landcover_dataloader.get_landcover_dataloaders', 'get_landcover_dataloaders', (['dataset_dir', 'partition_types', 'dataloader_params'], {'force_create_dataset': '(False)'}), '(dataset_dir, partition_types, dataloader_params,\n force_create_dataset=False)\n', (1739, 1820), False, 'from landcover_dataloader import get_landcover_dataloaders, get_landcover_dataloader\n'), ((2062, 2138), 'landcover_dataloader.get_landcover_dataloader', 'get_landcover_dataloader', (['dataset_dir', 'PartitionType.TEST', 'dataloader_params'], {}), '(dataset_dir, PartitionType.TEST, dataloader_params)\n', (2086, 2138), False, 'from landcover_dataloader import get_landcover_dataloaders, get_landcover_dataloader\n'), ((2181, 2204), 'cuda_utils.maybe_get_cuda_device', 'maybe_get_cuda_device', ([], {}), '()\n', (2202, 2204), False, 'from cuda_utils import maybe_get_cuda_device, clear_cuda\n'), ((2439, 2451), 'cuda_utils.clear_cuda', 'clear_cuda', ([], {}), '()\n', (2449, 2451), False, 'from cuda_utils import maybe_get_cuda_device, clear_cuda\n'), ((2464, 2561), 'unet.UNet', 'UNet', ([], {'in_channels': "params['in_channels']", 'n_classes': "params['n_classes']", 'depth': "params['depth']"}), "(in_channels=params['in_channels'], n_classes=params['n_classes'],\n depth=params['depth'])\n", (2468, 2561), False, 'from unet import UNet\n'), ((2679, 2691), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (2689, 2691), True, 'import torch.nn as nn\n'), ((3147, 3159), 'cuda_utils.clear_cuda', 'clear_cuda', ([], {}), '()\n', (3157, 3159), False, 'from cuda_utils import maybe_get_cuda_device, clear_cuda\n'), ((2612, 2634), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (2622, 2634), False, 'import torch\n'), ((2868, 2878), 'ignite.metrics.Accuracy', 'Accuracy', ([], {}), '()\n', (2876, 2878), False, 'from ignite.metrics import Accuracy, Loss, ConfusionMatrix, mIoU\n'), ((2897, 2912), 'ignite.metrics.Loss', 'Loss', (['criterion'], {}), '(criterion)\n', (2901, 2912), False, 'from ignite.metrics import Accuracy, Loss, ConfusionMatrix, mIoU\n'), ((3270, 3282), 'cuda_utils.clear_cuda', 'clear_cuda', ([], {}), '()\n', (3280, 3282), False, 'from cuda_utils import maybe_get_cuda_device, clear_cuda\n'), ((3299, 3396), 'unet.UNet', 'UNet', ([], {'in_channels': "params['in_channels']", 'n_classes': "params['n_classes']", 'depth': "params['depth']"}), "(in_channels=params['in_channels'], n_classes=params['n_classes'],\n depth=params['depth'])\n", (3303, 3396), False, 'from unet import UNet\n'), ((3521, 3533), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (3531, 3533), True, 'import torch.nn as nn\n'), ((3695, 3829), 'evolver.VectorEvolver', 'VectorEvolver', (['num_channels', 'CrossoverType.UNIFORM', 'MutationType.FLIP_BIT', 'InitType.RANDOM'], {'flip_bit_prob': '(0.25)', 'flip_bit_decay': '(0.5)'}), '(num_channels, CrossoverType.UNIFORM, MutationType.FLIP_BIT,\n InitType.RANDOM, flip_bit_prob=0.25, flip_bit_decay=0.5)\n', (3708, 3829), False, 'from evolver import CrossoverType, MutationType, InitType, MatrixEvolver, VectorEvolver\n'), ((5618, 5647), 'ignite.engine.Engine', 'Engine', (['dropout_finetune_step'], {}), '(dropout_finetune_step)\n', (5624, 5647), False, 'from ignite.engine import Engine\n'), ((5670, 5736), 'ignite.engine.create_supervised_evaluator', 'create_supervised_evaluator', (['model'], {'metrics': 'metrics', 'device': 'device'}), '(model, metrics=metrics, device=device)\n', (5697, 5736), False, 'from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n'), ((5764, 5830), 'ignite.engine.create_supervised_evaluator', 'create_supervised_evaluator', (['model'], {'metrics': 'metrics', 'device': 'device'}), '(model, metrics=metrics, device=device)\n', (5791, 5830), False, 'from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n'), ((5852, 5875), 'ignite.utils.setup_logger', 'setup_logger', (['"""Trainer"""'], {}), "('Trainer')\n", (5864, 5875), False, 'from ignite.utils import setup_logger\n'), ((5905, 5936), 'ignite.utils.setup_logger', 'setup_logger', (['"""Train Evaluator"""'], {}), "('Train Evaluator')\n", (5917, 5936), False, 'from ignite.utils import setup_logger\n'), ((5971, 6007), 'ignite.utils.setup_logger', 'setup_logger', (['"""Validation Evaluator"""'], {}), "('Validation Evaluator')\n", (5983, 6007), False, 'from ignite.utils import setup_logger\n'), ((2939, 2987), 'ignite.metrics.ConfusionMatrix', 'ConfusionMatrix', ([], {'num_classes': "params['n_classes']"}), "(num_classes=params['n_classes'])\n", (2954, 2987), False, 'from ignite.metrics import Accuracy, Loss, ConfusionMatrix, mIoU\n'), ((3459, 3481), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (3469, 3481), False, 'import torch\n'), ((4078, 4098), 'numpy.ones', 'np.ones', (['matrix_size'], {}), '(matrix_size)\n', (4085, 4098), True, 'import numpy as np\n'), ((6025, 6060), 'ignite.engine.Events.ITERATION_COMPLETED', 'Events.ITERATION_COMPLETED', ([], {'every': '(1)'}), '(every=1)\n', (6051, 6060), False, 'from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n'), ((4366, 4381), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4379, 4381), False, 'import torch\n'), ((6520, 6539), 'numpy.mean', 'np.mean', (['priorities'], {}), '(priorities)\n', (6527, 6539), True, 'import numpy as np\n'), ((6661, 6679), 'numpy.std', 'np.std', (['priorities'], {}), '(priorities)\n', (6667, 6679), True, 'import numpy as np\n'), ((8732, 8785), 'ignite.engine.Events.ITERATION_COMPLETED', 'Events.ITERATION_COMPLETED', ([], {'every': "params['log_steps']"}), "(every=params['log_steps'])\n", (8758, 8785), False, 'from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n'), ((9346, 9399), 'ignite.engine.Events.ITERATION_COMPLETED', 'Events.ITERATION_COMPLETED', ([], {'every': "params['log_steps']"}), "(every=params['log_steps'])\n", (9372, 9399), False, 'from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n'), ((7349, 7384), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(10, 4)'}), '(1, 3, figsize=(10, 4))\n', (7361, 7384), True, 'import matplotlib.pyplot as plt\n'), ((7906, 7916), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7914, 7916), True, 'import matplotlib.pyplot as plt\n'), ((7503, 7536), 'numpy.array', 'np.array', (['batch_y_detach[j, :, :]'], {}), '(batch_y_detach[j, :, :])\n', (7511, 7536), True, 'import numpy as np\n'), ((7414, 7463), 'numpy.moveaxis', 'np.moveaxis', (['batch_x_detach[j, :, :, :]', '[0]', '[2]'], {}), '(batch_x_detach[j, :, :, :], [0], [2])\n', (7425, 7463), True, 'import numpy as np\n'), ((5486, 5530), 'torch.tensor', 'torch.tensor', (['best_mask'], {'dtype': 'torch.float32'}), '(best_mask, dtype=torch.float32)\n', (5498, 5530), False, 'import torch\n'), ((7590, 7626), 'numpy.array', 'np.array', (['outputs_detach[j, :, :, :]'], {}), '(outputs_detach[j, :, :, :])\n', (7598, 7626), True, 'import numpy as np\n'), ((4789, 4834), 'torch.tensor', 'torch.tensor', (['child_mask'], {'dtype': 'torch.float32'}), '(child_mask, dtype=torch.float32)\n', (4801, 4834), False, 'import torch\n')]
"""original source: https://github.com/chainer/chainerrl/pull/480 MIT License Copyright (c) Preferred Networks, Inc. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import * from future import standard_library standard_library.install_aliases() import argparse from inspect import getsourcefile import os import sys import numpy as np import chainer import minerl # noqa: register MineRL envs as Gym envs. import gym import chainerrl from chainerrl import experiments, explorers from chainerrl.experiments.evaluator import Evaluator from dqfd import DQfD, PrioritizedDemoReplayBuffer from q_functions import CNNBranchingQFunction from env_wrappers import ( BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper) from expert_converter import choose_top_experts, fill_buffer class ScaleGradHook(object): name = 'ScaleGrad' call_for_each_param = True timing = 'pre' def __init__(self, scale): self.scale = scale def __call__(self, rule, param): if getattr(param, 'scale_param', False): param.grad *= self.scale def main(): """Parses arguments and runs the example """ parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='MineRLTreechop-v0', choices=[ 'MineRLTreechop-v0', 'MineRLNavigate-v0', 'MineRLNavigateDense-v0', 'MineRLNavigateExtreme-v0', 'MineRLNavigateExtremeDense-v0', 'MineRLObtainIronPickaxe-v0', 'MineRLObtainIronPickaxeDense-v0', 'MineRLObtainDiamond-v0', 'MineRLObtainDiamondDense-v0', 'MineRLNavigateDenseFixed-v0' # for debug use ], help='MineRL environment identifier') parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 31)') parser.add_argument('--gpu', type=int, default=-1, help='GPU to use, set to -1 if no GPU.') parser.add_argument('--final-exploration-frames', type=int, default=10**6, help='Timesteps after which we stop ' + 'annealing exploration rate') parser.add_argument('--final-epsilon', type=float, default=0.01, help='Final value of epsilon during training.') parser.add_argument('--eval-epsilon', type=float, default=0.001, help='Exploration epsilon used during eval episodes.') parser.add_argument('--replay-start-size', type=int, default=1000, help='Minimum replay buffer size before ' + 'performing gradient updates.') parser.add_argument('--target-update-interval', type=int, default=10**4, help='Frequency (in timesteps) at which ' + 'the target network is updated.') parser.add_argument('--update-interval', type=int, default=4, help='Frequency (in timesteps) of network updates.') parser.add_argument('--eval-n-runs', type=int, default=10) parser.add_argument('--no-clip-delta', dest='clip_delta', action='store_false') parser.add_argument('--error-max', type=float, default=1.0) parser.add_argument('--num-step-return', type=int, default=10) parser.set_defaults(clip_delta=True) parser.add_argument('--logging-level', type=int, default=20, help='Logging level. 10:DEBUG, 20:INFO etc.') parser.add_argument('--logging-filename', type=str, default=None) parser.add_argument('--monitor', action='store_true', default=False, help='Monitor env. Videos and additional information are saved as output files when evaluation') # parser.add_argument('--render', action='store_true', default=False, # help='Render env states in a GUI window.') parser.add_argument('--optimizer', type=str, default='rmsprop', choices=['rmsprop', 'adam']) parser.add_argument('--lr', type=float, default=2.5e-4, help='Learning rate') parser.add_argument("--replay-buffer-size", type=int, default=10**6, help="Size of replay buffer (Excluding demonstrations)") parser.add_argument("--minibatch-size", type=int, default=32) parser.add_argument('--batch-accumulator', type=str, default="sum") parser.add_argument('--demo', action='store_true', default=False) parser.add_argument('--load', type=str, default=None) parser.add_argument("--save-demo-trajectories", action="store_true", default=False) # DQfD specific parameters for loading and pretraining. parser.add_argument('--n-experts', type=int, default=10) parser.add_argument('--expert-demo-path', type=str, default=None) parser.add_argument('--n-pretrain-steps', type=int, default=750000) parser.add_argument('--demo-supervised-margin', type=float, default=0.8) parser.add_argument('--loss-coeff-l2', type=float, default=1e-5) parser.add_argument('--loss-coeff-nstep', type=float, default=1.0) parser.add_argument('--loss-coeff-supervised', type=float, default=1.0) parser.add_argument('--bonus-priority-agent', type=float, default=0.001) parser.add_argument('--bonus-priority-demo', type=float, default=1.0) # Action branching architecture parser.add_argument('--gradient-clipping', action='store_true', default=False) parser.add_argument('--gradient-rescaling', action='store_true', default=False) # NoisyNet parameters parser.add_argument('--use-noisy-net', type=str, default=None, choices=['before-pretraining', 'after-pretraining']) parser.add_argument('--noisy-net-sigma', type=float, default=0.5) # Parameters for state/action handling parser.add_argument('--frame-stack', type=int, default=None, help='Number of frames stacked (None for disable).') parser.add_argument('--frame-skip', type=int, default=None, help='Number of frames skipped (None for disable).') parser.add_argument('--camera-atomic-actions', type=int, default=10) parser.add_argument('--max-range-of-camera', type=float, default=10.) parser.add_argument('--use-full-observation', action='store_true', default=False) args = parser.parse_args() assert args.expert_demo_path is not None,"DQfD needs collected \ expert demonstrations" import logging if args.logging_filename is not None: logging.basicConfig(filename=args.logging_filename, filemode='w', level=args.logging_level) else: logging.basicConfig(level=args.logging_level) logger = logging.getLogger(__name__) train_seed = args.seed test_seed = 2 ** 31 - 1 - args.seed chainerrl.misc.set_random_seed(args.seed, gpus=(args.gpu,)) args.outdir = experiments.prepare_output_dir(args, args.outdir) logger.info('Output files are saved in {}'.format(args.outdir)) if args.env == 'MineRLTreechop-v0': branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions] elif args.env in ['MineRLNavigate-v0', 'MineRLNavigateDense-v0', 'MineRLNavigateExtreme-v0', 'MineRLNavigateExtremeDense-v0']: branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions, 2] elif args.env in ['MineRLObtainIronPickaxe-v0', 'MineRLObtainIronPickaxeDense-v0', 'MineRLObtainDiamond-v0', 'MineRLObtainDiamondDense-v0']: branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions, 32] else: raise Exception("Unknown environment") def make_env(env, test): # wrap env: observation... # NOTE: wrapping order matters! if args.use_full_observation: env = FullObservationSpaceWrapper(env) elif args.env.startswith('MineRLNavigate'): env = PoVWithCompassAngleWrapper(env) else: env = ObtainPoVWrapper(env) if test and args.monitor: env = gym.wrappers.Monitor( env, os.path.join(args.outdir, 'monitor'), mode='evaluation' if test else 'training', video_callable=lambda episode_id: True) if args.frame_skip is not None: env = FrameSkip(env, skip=args.frame_skip) # convert hwc -> chw as Chainer requires env = MoveAxisWrapper(env, source=-1, destination=0, use_tuple=args.use_full_observation) #env = ScaledFloatFrame(env) if args.frame_stack is not None: env = FrameStack(env, args.frame_stack, channel_order='chw', use_tuple=args.use_full_observation) # wrap env: action... env = BranchedActionWrapper(env, branch_sizes, args.camera_atomic_actions, args.max_range_of_camera) if test: env = BranchedRandomizedAction(env, branch_sizes, args.eval_epsilon) env_seed = test_seed if test else train_seed env.seed(int(env_seed)) return env core_env = gym.make(args.env) env = make_env(core_env, test=False) eval_env = make_env(core_env, test=True) # Q function if args.env.startswith('MineRLNavigate'): if args.use_full_observation: base_channels = 3 # RGB else: base_channels = 4 # RGB + compass elif args.env.startswith('MineRLObtain'): base_channels = 3 # RGB else: base_channels = 3 # RGB if args.frame_stack is None: n_input_channels = base_channels else: n_input_channels = base_channels * args.frame_stack q_func = CNNBranchingQFunction(branch_sizes, n_input_channels=n_input_channels, gradient_rescaling=args.gradient_rescaling, use_tuple=args.use_full_observation) def phi(x): # observation -> NN input if args.use_full_observation: pov = np.asarray(x[0], dtype=np.float32) others = np.asarray(x[1], dtype=np.float32) return (pov / 255, others) else: return np.asarray(x, dtype=np.float32) / 255 explorer = explorers.LinearDecayEpsilonGreedy( 1.0, args.final_epsilon, args.final_exploration_frames, lambda: np.array([np.random.randint(n) for n in branch_sizes])) # Draw the computational graph and save it in the output directory. if args.use_full_observation: sample_obs = tuple([x[None] for x in env.observation_space.sample()]) else: sample_obs = env.observation_space.sample()[None] chainerrl.misc.draw_computational_graph( [q_func(phi(sample_obs))], os.path.join(args.outdir, 'model')) if args.optimizer == 'rmsprop': opt = chainer.optimizers.RMSpropGraves(args.lr, alpha=0.95, momentum=0.0, eps=1e-2) elif args.optimizer == 'adam': opt = chainer.optimizers.Adam(args.lr) if args.use_noisy_net is None: opt.setup(q_func) if args.gradient_rescaling: opt.add_hook(ScaleGradHook(1 / (1 + len(q_func.branch_sizes)))) if args.gradient_clipping: opt.add_hook(chainer.optimizer_hooks.GradientClipping(10.0)) # calculate corresponding `steps` and `eval_interval` according to frameskip maximum_frames = 8640000 # = 1440 episodes if we count an episode as 6000 frames. if args.frame_skip is None: steps = maximum_frames eval_interval = 6000 * 100 # (approx.) every 100 episode (counts "1 episode = 6000 steps") else: steps = maximum_frames // args.frame_skip eval_interval = 6000 * 100 // args.frame_skip # (approx.) every 100 episode (counts "1 episode = 6000 steps") # Anneal beta from beta0 to 1 throughout training betasteps = steps / args.update_interval replay_buffer = PrioritizedDemoReplayBuffer( args.replay_buffer_size, alpha=0.4, beta0=0.6, betasteps=betasteps, error_max=args.error_max, num_steps=args.num_step_return) # Fill the demo buffer with expert transitions if not args.demo: chosen_dirs = choose_top_experts(args.expert_demo_path, args.n_experts, logger=logger) fill_buffer(args.env, chosen_dirs, replay_buffer, args.frame_skip, args.frame_stack, args.camera_atomic_actions, args.max_range_of_camera, args.use_full_observation, logger=logger) logger.info("Demo buffer loaded with {} transitions".format( len(replay_buffer))) def reward_transform(x): return np.sign(x) * np.log(1 + np.abs(x)) if args.use_noisy_net is not None and args.use_noisy_net == 'before-pretraining': chainerrl.links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) explorer = explorers.Greedy() opt.setup(q_func) agent = DQfD(q_func, opt, replay_buffer, gamma=0.99, explorer=explorer, n_pretrain_steps=args.n_pretrain_steps, demo_supervised_margin=args.demo_supervised_margin, bonus_priority_agent=args.bonus_priority_agent, bonus_priority_demo=args.bonus_priority_demo, loss_coeff_nstep=args.loss_coeff_nstep, loss_coeff_supervised=args.loss_coeff_supervised, loss_coeff_l2=args.loss_coeff_l2, gpu=args.gpu, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, clip_delta=args.clip_delta, update_interval=args.update_interval, batch_accumulator=args.batch_accumulator, phi=phi, reward_transform=reward_transform, minibatch_size=args.minibatch_size) if args.use_noisy_net is not None and args.use_noisy_net == 'after-pretraining': chainerrl.links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) explorer = explorers.Greedy() if args.optimizer == 'rmsprop': opt = chainer.optimizers.RMSpropGraves(args.lr, alpha=0.95, momentum=0.0, eps=1e-2) elif args.optimizer == 'adam': opt = chainer.optimizers.Adam(args.lr) opt.setup(q_func) opt.add_hook( chainer.optimizer_hooks.WeightDecay(args.loss_coeff_l2)) agent.optimizer = opt agent.target_model = None agent.sync_target_network() if args.load: agent.load(args.load) if args.demo: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs) logger.info('n_runs: {} mean: {} median: {} stdev: {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: agent.pretrain() evaluator = Evaluator(agent=agent, n_steps=None, n_episodes=args.eval_n_runs, eval_interval=eval_interval, outdir=args.outdir, max_episode_len=None, env=eval_env, step_offset=0, save_best_so_far_agent=True, logger=logger) # Evaluate the agent BEFORE training begins evaluator.evaluate_and_update_max_score(t=0, episodes=0) experiments.train_agent(agent=agent, env=env, steps=steps, outdir=args.outdir, max_episode_len=None, step_offset=0, evaluator=evaluator, successful_score=None, step_hooks=[]) env.close() if __name__ == "__main__": main()
[ "numpy.abs", "argparse.ArgumentParser", "chainerrl.explorers.Greedy", "future.standard_library.install_aliases", "q_functions.CNNBranchingQFunction", "numpy.random.randint", "expert_converter.choose_top_experts", "expert_converter.fill_buffer", "os.path.join", "chainerrl.links.to_factorized_noisy", "env_wrappers.FullObservationSpaceWrapper", "chainerrl.misc.set_random_seed", "env_wrappers.BranchedActionWrapper", "chainerrl.experiments.prepare_output_dir", "chainer.optimizer_hooks.WeightDecay", "env_wrappers.BranchedRandomizedAction", "env_wrappers.FrameStack", "dqfd.DQfD", "chainerrl.experiments.train_agent", "chainerrl.experiments.evaluator.Evaluator", "chainer.optimizers.RMSpropGraves", "chainerrl.experiments.eval_performance", "env_wrappers.PoVWithCompassAngleWrapper", "numpy.asarray", "env_wrappers.MoveAxisWrapper", "env_wrappers.FrameSkip", "chainer.optimizers.Adam", "gym.make", "logging.basicConfig", "chainer.optimizer_hooks.GradientClipping", "numpy.sign", "env_wrappers.ObtainPoVWrapper", "dqfd.PrioritizedDemoReplayBuffer", "logging.getLogger" ]
[((332, 366), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ([], {}), '()\n', (364, 366), False, 'from future import standard_library\n'), ((1390, 1415), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1413, 1415), False, 'import argparse\n'), ((7221, 7248), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (7238, 7248), False, 'import logging\n'), ((7322, 7381), 'chainerrl.misc.set_random_seed', 'chainerrl.misc.set_random_seed', (['args.seed'], {'gpus': '(args.gpu,)'}), '(args.seed, gpus=(args.gpu,))\n', (7352, 7381), False, 'import chainerrl\n'), ((7401, 7450), 'chainerrl.experiments.prepare_output_dir', 'experiments.prepare_output_dir', (['args', 'args.outdir'], {}), '(args, args.outdir)\n', (7431, 7450), False, 'from chainerrl import experiments, explorers\n'), ((9636, 9654), 'gym.make', 'gym.make', (['args.env'], {}), '(args.env)\n', (9644, 9654), False, 'import gym\n'), ((10222, 10382), 'q_functions.CNNBranchingQFunction', 'CNNBranchingQFunction', (['branch_sizes'], {'n_input_channels': 'n_input_channels', 'gradient_rescaling': 'args.gradient_rescaling', 'use_tuple': 'args.use_full_observation'}), '(branch_sizes, n_input_channels=n_input_channels,\n gradient_rescaling=args.gradient_rescaling, use_tuple=args.\n use_full_observation)\n', (10243, 10382), False, 'from q_functions import CNNBranchingQFunction\n'), ((12435, 12597), 'dqfd.PrioritizedDemoReplayBuffer', 'PrioritizedDemoReplayBuffer', (['args.replay_buffer_size'], {'alpha': '(0.4)', 'beta0': '(0.6)', 'betasteps': 'betasteps', 'error_max': 'args.error_max', 'num_steps': 'args.num_step_return'}), '(args.replay_buffer_size, alpha=0.4, beta0=0.6,\n betasteps=betasteps, error_max=args.error_max, num_steps=args.\n num_step_return)\n', (12462, 12597), False, 'from dqfd import DQfD, PrioritizedDemoReplayBuffer\n'), ((13516, 14225), 'dqfd.DQfD', 'DQfD', (['q_func', 'opt', 'replay_buffer'], {'gamma': '(0.99)', 'explorer': 'explorer', 'n_pretrain_steps': 'args.n_pretrain_steps', 'demo_supervised_margin': 'args.demo_supervised_margin', 'bonus_priority_agent': 'args.bonus_priority_agent', 'bonus_priority_demo': 'args.bonus_priority_demo', 'loss_coeff_nstep': 'args.loss_coeff_nstep', 'loss_coeff_supervised': 'args.loss_coeff_supervised', 'loss_coeff_l2': 'args.loss_coeff_l2', 'gpu': 'args.gpu', 'replay_start_size': 'args.replay_start_size', 'target_update_interval': 'args.target_update_interval', 'clip_delta': 'args.clip_delta', 'update_interval': 'args.update_interval', 'batch_accumulator': 'args.batch_accumulator', 'phi': 'phi', 'reward_transform': 'reward_transform', 'minibatch_size': 'args.minibatch_size'}), '(q_func, opt, replay_buffer, gamma=0.99, explorer=explorer,\n n_pretrain_steps=args.n_pretrain_steps, demo_supervised_margin=args.\n demo_supervised_margin, bonus_priority_agent=args.bonus_priority_agent,\n bonus_priority_demo=args.bonus_priority_demo, loss_coeff_nstep=args.\n loss_coeff_nstep, loss_coeff_supervised=args.loss_coeff_supervised,\n loss_coeff_l2=args.loss_coeff_l2, gpu=args.gpu, replay_start_size=args.\n replay_start_size, target_update_interval=args.target_update_interval,\n clip_delta=args.clip_delta, update_interval=args.update_interval,\n batch_accumulator=args.batch_accumulator, phi=phi, reward_transform=\n reward_transform, minibatch_size=args.minibatch_size)\n', (13520, 14225), False, 'from dqfd import DQfD, PrioritizedDemoReplayBuffer\n'), ((7023, 7119), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'args.logging_filename', 'filemode': '"""w"""', 'level': 'args.logging_level'}), "(filename=args.logging_filename, filemode='w', level=\n args.logging_level)\n", (7042, 7119), False, 'import logging\n'), ((7161, 7206), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'args.logging_level'}), '(level=args.logging_level)\n', (7180, 7206), False, 'import logging\n'), ((8945, 9033), 'env_wrappers.MoveAxisWrapper', 'MoveAxisWrapper', (['env'], {'source': '(-1)', 'destination': '(0)', 'use_tuple': 'args.use_full_observation'}), '(env, source=-1, destination=0, use_tuple=args.\n use_full_observation)\n', (8960, 9033), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((9321, 9420), 'env_wrappers.BranchedActionWrapper', 'BranchedActionWrapper', (['env', 'branch_sizes', 'args.camera_atomic_actions', 'args.max_range_of_camera'], {}), '(env, branch_sizes, args.camera_atomic_actions, args.\n max_range_of_camera)\n', (9342, 9420), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((11290, 11324), 'os.path.join', 'os.path.join', (['args.outdir', '"""model"""'], {}), "(args.outdir, 'model')\n", (11302, 11324), False, 'import os\n'), ((11377, 11454), 'chainer.optimizers.RMSpropGraves', 'chainer.optimizers.RMSpropGraves', (['args.lr'], {'alpha': '(0.95)', 'momentum': '(0.0)', 'eps': '(0.01)'}), '(args.lr, alpha=0.95, momentum=0.0, eps=0.01)\n', (11409, 11454), False, 'import chainer\n'), ((12718, 12790), 'expert_converter.choose_top_experts', 'choose_top_experts', (['args.expert_demo_path', 'args.n_experts'], {'logger': 'logger'}), '(args.expert_demo_path, args.n_experts, logger=logger)\n', (12736, 12790), False, 'from expert_converter import choose_top_experts, fill_buffer\n'), ((12841, 13031), 'expert_converter.fill_buffer', 'fill_buffer', (['args.env', 'chosen_dirs', 'replay_buffer', 'args.frame_skip', 'args.frame_stack', 'args.camera_atomic_actions', 'args.max_range_of_camera', 'args.use_full_observation'], {'logger': 'logger'}), '(args.env, chosen_dirs, replay_buffer, args.frame_skip, args.\n frame_stack, args.camera_atomic_actions, args.max_range_of_camera, args\n .use_full_observation, logger=logger)\n', (12852, 13031), False, 'from expert_converter import choose_top_experts, fill_buffer\n'), ((13360, 13437), 'chainerrl.links.to_factorized_noisy', 'chainerrl.links.to_factorized_noisy', (['q_func'], {'sigma_scale': 'args.noisy_net_sigma'}), '(q_func, sigma_scale=args.noisy_net_sigma)\n', (13395, 13437), False, 'import chainerrl\n'), ((13457, 13475), 'chainerrl.explorers.Greedy', 'explorers.Greedy', ([], {}), '()\n', (13473, 13475), False, 'from chainerrl import experiments, explorers\n'), ((14569, 14646), 'chainerrl.links.to_factorized_noisy', 'chainerrl.links.to_factorized_noisy', (['q_func'], {'sigma_scale': 'args.noisy_net_sigma'}), '(q_func, sigma_scale=args.noisy_net_sigma)\n', (14604, 14646), False, 'import chainerrl\n'), ((14666, 14684), 'chainerrl.explorers.Greedy', 'explorers.Greedy', ([], {}), '()\n', (14682, 14684), False, 'from chainerrl import experiments, explorers\n'), ((15219, 15321), 'chainerrl.experiments.eval_performance', 'experiments.eval_performance', ([], {'env': 'eval_env', 'agent': 'agent', 'n_steps': 'None', 'n_episodes': 'args.eval_n_runs'}), '(env=eval_env, agent=agent, n_steps=None,\n n_episodes=args.eval_n_runs)\n', (15247, 15321), False, 'from chainerrl import experiments, explorers\n'), ((15552, 15769), 'chainerrl.experiments.evaluator.Evaluator', 'Evaluator', ([], {'agent': 'agent', 'n_steps': 'None', 'n_episodes': 'args.eval_n_runs', 'eval_interval': 'eval_interval', 'outdir': 'args.outdir', 'max_episode_len': 'None', 'env': 'eval_env', 'step_offset': '(0)', 'save_best_so_far_agent': '(True)', 'logger': 'logger'}), '(agent=agent, n_steps=None, n_episodes=args.eval_n_runs,\n eval_interval=eval_interval, outdir=args.outdir, max_episode_len=None,\n env=eval_env, step_offset=0, save_best_so_far_agent=True, logger=logger)\n', (15561, 15769), False, 'from chainerrl.experiments.evaluator import Evaluator\n'), ((16159, 16342), 'chainerrl.experiments.train_agent', 'experiments.train_agent', ([], {'agent': 'agent', 'env': 'env', 'steps': 'steps', 'outdir': 'args.outdir', 'max_episode_len': 'None', 'step_offset': '(0)', 'evaluator': 'evaluator', 'successful_score': 'None', 'step_hooks': '[]'}), '(agent=agent, env=env, steps=steps, outdir=args.\n outdir, max_episode_len=None, step_offset=0, evaluator=evaluator,\n successful_score=None, step_hooks=[])\n', (16182, 16342), False, 'from chainerrl import experiments, explorers\n'), ((8365, 8397), 'env_wrappers.FullObservationSpaceWrapper', 'FullObservationSpaceWrapper', (['env'], {}), '(env)\n', (8392, 8397), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((8844, 8880), 'env_wrappers.FrameSkip', 'FrameSkip', (['env'], {'skip': 'args.frame_skip'}), '(env, skip=args.frame_skip)\n', (8853, 8880), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((9155, 9251), 'env_wrappers.FrameStack', 'FrameStack', (['env', 'args.frame_stack'], {'channel_order': '"""chw"""', 'use_tuple': 'args.use_full_observation'}), "(env, args.frame_stack, channel_order='chw', use_tuple=args.\n use_full_observation)\n", (9165, 9251), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((9452, 9514), 'env_wrappers.BranchedRandomizedAction', 'BranchedRandomizedAction', (['env', 'branch_sizes', 'args.eval_epsilon'], {}), '(env, branch_sizes, args.eval_epsilon)\n', (9476, 9514), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((10559, 10593), 'numpy.asarray', 'np.asarray', (['x[0]'], {'dtype': 'np.float32'}), '(x[0], dtype=np.float32)\n', (10569, 10593), True, 'import numpy as np\n'), ((10615, 10649), 'numpy.asarray', 'np.asarray', (['x[1]'], {'dtype': 'np.float32'}), '(x[1], dtype=np.float32)\n', (10625, 10649), True, 'import numpy as np\n'), ((11504, 11536), 'chainer.optimizers.Adam', 'chainer.optimizers.Adam', (['args.lr'], {}), '(args.lr)\n', (11527, 11536), False, 'import chainer\n'), ((11756, 11802), 'chainer.optimizer_hooks.GradientClipping', 'chainer.optimizer_hooks.GradientClipping', (['(10.0)'], {}), '(10.0)\n', (11796, 11802), False, 'import chainer\n'), ((13230, 13240), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (13237, 13240), True, 'import numpy as np\n'), ((14744, 14821), 'chainer.optimizers.RMSpropGraves', 'chainer.optimizers.RMSpropGraves', (['args.lr'], {'alpha': '(0.95)', 'momentum': '(0.0)', 'eps': '(0.01)'}), '(args.lr, alpha=0.95, momentum=0.0, eps=0.01)\n', (14776, 14821), False, 'import chainer\n'), ((14972, 15027), 'chainer.optimizer_hooks.WeightDecay', 'chainer.optimizer_hooks.WeightDecay', (['args.loss_coeff_l2'], {}), '(args.loss_coeff_l2)\n', (15007, 15027), False, 'import chainer\n'), ((8468, 8499), 'env_wrappers.PoVWithCompassAngleWrapper', 'PoVWithCompassAngleWrapper', (['env'], {}), '(env)\n', (8494, 8499), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((8532, 8553), 'env_wrappers.ObtainPoVWrapper', 'ObtainPoVWrapper', (['env'], {}), '(env)\n', (8548, 8553), False, 'from env_wrappers import BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper\n'), ((8649, 8685), 'os.path.join', 'os.path.join', (['args.outdir', '"""monitor"""'], {}), "(args.outdir, 'monitor')\n", (8661, 8685), False, 'import os\n'), ((10722, 10753), 'numpy.asarray', 'np.asarray', (['x'], {'dtype': 'np.float32'}), '(x, dtype=np.float32)\n', (10732, 10753), True, 'import numpy as np\n'), ((14879, 14911), 'chainer.optimizers.Adam', 'chainer.optimizers.Adam', (['args.lr'], {}), '(args.lr)\n', (14902, 14911), False, 'import chainer\n'), ((10910, 10930), 'numpy.random.randint', 'np.random.randint', (['n'], {}), '(n)\n', (10927, 10930), True, 'import numpy as np\n'), ((13254, 13263), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (13260, 13263), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import numpy as np import matching.cr_search_validation_matcher import utils.data_format_keys as dfk import sys from evaluation.link_metrics import LinkMetricsResults from multiprocessing import Pool from utils.utils import read_json, save_json def modify_simple_threshold(dataset, threshold): for item in dataset: if item[dfk.DATASET_SCORE] is not None and \ item[dfk.DATASET_SCORE] < threshold: item[dfk.DATASET_TARGET_TEST][dfk.CR_ITEM_DOI] = None return dataset def find_best(results): overall = [r[1].get(dfk.EVAL_F1) for r in results] index = len(overall) - overall[::-1].index(max(overall)) - 1 return index, results[index][0], results[index][1].get(dfk.EVAL_PREC), \ results[index][1].get(dfk.EVAL_REC), results[index][1].get(dfk.EVAL_F1) dataset = read_json(sys.argv[1])['dataset'] matcher = matching.cr_search_validation_matcher.Matcher(0.4, 0, []) with Pool(10) as p: results = p.map(matcher.match, [item.get('ref_string') for item in dataset]) for item, target in zip(dataset, results): item['target_test']['DOI'] = target[0] item['score'] = target[1] save_json(dataset, sys.argv[2]) results_valid_threshold = \ [(t, LinkMetricsResults(modify_simple_threshold(dataset, t))) for t in np.arange(0.0, 1.0, 0.01)] print(','.join([str(i) for i in find_best(results_valid_threshold)[1:]]))
[ "utils.utils.read_json", "numpy.arange", "utils.utils.save_json", "multiprocessing.Pool" ]
[((1193, 1224), 'utils.utils.save_json', 'save_json', (['dataset', 'sys.argv[2]'], {}), '(dataset, sys.argv[2])\n', (1202, 1224), False, 'from utils.utils import read_json, save_json\n'), ((852, 874), 'utils.utils.read_json', 'read_json', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (861, 874), False, 'from utils.utils import read_json, save_json\n'), ((960, 968), 'multiprocessing.Pool', 'Pool', (['(10)'], {}), '(10)\n', (964, 968), False, 'from multiprocessing import Pool\n'), ((1334, 1359), 'numpy.arange', 'np.arange', (['(0.0)', '(1.0)', '(0.01)'], {}), '(0.0, 1.0, 0.01)\n', (1343, 1359), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # # visualize_contingency_tables.py: Visualizes all contingency tables # obtained by our method in the form of a diagram in the plane. # # Input: JSON file with shapelets # # Output: A set of points in the plane, each representing one table, # such that the distance to the origin refers to preferences # in splitting behaviour. # # The output will be written to `stdout`. import argparse import json import sys import numpy as np def transform_table(table): """ Transforms a contingency table into a point on a two-dimensional plane, in which the distance to the origin shows the suitability of a contingency table for separating cases and controls. """ # Yes, this ordering is correct. Please refer to our paper for # more details. a, b, d, c = table n1 = a+b n0 = c+d return (a-b) / n1, (c-d) / n0 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Contingency Table Visualization") parser.add_argument("input", metavar = "INPUT", help = "Input file" ) parser.add_argument("-f", "--flip", required = False, action = "store_true", help = "If set, flips values in the visualization to ensure that quadrant 3 is not used" ) parser.add_argument("-p", "--prune", required = False, action = "store_true", help = "If set, prunes duplicates points" ) arguments = parser.parse_args() input_file = arguments.input flip = arguments.flip prune = arguments.prune with open(input_file) as f: data = json.load(f) shapelets = data["shapelets"] tables = [] for shapelet in shapelets: tables.append( shapelet["table"] ) points = [] for table in tables: x,y = transform_table(table) if flip and ( (x < 0 and y < 0) or (np.sign(x) != np.sign(y) and -x > y) ): x,y = -y,-x points.append( (x,y) ) if prune: points = set(points) for x,y in points: print("{}\t{}".format(x,y))
[ "json.load", "argparse.ArgumentParser", "numpy.sign" ]
[((909, 979), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Contingency Table Visualization"""'}), "(description='Contingency Table Visualization')\n", (932, 979), False, 'import argparse\n'), ((1572, 1584), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1581, 1584), False, 'import json\n'), ((1816, 1826), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (1823, 1826), True, 'import numpy as np\n'), ((1830, 1840), 'numpy.sign', 'np.sign', (['y'], {}), '(y)\n', (1837, 1840), True, 'import numpy as np\n')]
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This is a data-parallelized Neural Network # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ############################################################################################################ ########################################### IMPORT PACKAGES ################################################ ############################################################################################################ # General import os import functools import time import numpy as np import pandas as pd import random import math import warnings # Parallelization from mpi4py import MPI ############################################################################################################## ########################################## HELPER FUNCTIONS ################################################## ############################################################################################################## def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_der(x): return sigmoid(x) *(1-sigmoid (x)) def train_network(wh,wo,epochs,train_X,train_Y): for epoch in range(epochs): # slice data sliced_inputs = np.asarray(np.split(train_X, comm.size)) sliced_labels = np.asarray(np.split(train_Y, comm.size)) size = int(len(train_X)/comm.size) inputs_buf = np.zeros((size,hidden_layer_size)) labels_buf = np.zeros(len(train_Y),dtype='i') # send data to each process comm.Scatter(sliced_inputs, inputs_buf, root=0) comm.Scatter(sliced_labels, labels_buf, root=0) ### neural network iterations ### ## feedforward ## # hidden layer zh = np.dot(train_X, wh) ah = sigmoid(zh) # output layer zo = np.dot(ah, wo) ao = sigmoid(zo) # error calculation error_out = ((1 / (2*len(train_X))) * (np.power((ao - train_Y), 2))) ## backpropogation ## # backpropogation from output layer to hidden layer dcost_dao = ao - train_Y dao_dzo = sigmoid_der(zo) dzo_dwo = ah dcost_wo = np.dot(dzo_dwo.T, (dcost_dao * dao_dzo)) # backpropogate from hidden layer to input layer dcost_dzo = dcost_dao * dao_dzo dzo_dah = wo dcost_dah = np.dot(dcost_dzo , dzo_dah.T) dah_dzh = sigmoid_der(zh) dzh_dwh = train_X dcost_wh = np.dot(dzh_dwh.T, dah_dzh * dcost_dah) comm.Barrier() # average error for all processes error_buf = [0] * comm.size try: error_buf = comm.gather(error_out) error_out = sum(error_buf) / len(error_buf) except TypeError as e: pass # if comm.rank == 0: # print(f'error at iteration {epoch}: {error_out.sum()}') # gather gradients of weights for hidden layer from all processes dcost_wh_buf = np.asarray([np.zeros_like(dcost_wh)] * comm.size) comm.Gather(dcost_wh, dcost_wh_buf) comm.Barrier() dcost_wh = functools.reduce(np.add, dcost_wh_buf) / comm.size # average gradients across all processes # gather gradients of weights for output layer dcost_wo_buf = np.asarray([np.zeros_like(dcost_wo)] * comm.size) comm.Gather(dcost_wo, dcost_wo_buf) comm.Barrier() dcost_wo = functools.reduce(np.add, dcost_wo_buf) / comm.size # average gradients across all processes # update weights wh -= lr * dcost_wh wo -= lr * dcost_wo # send updated weights to processes comm.Bcast([wh, MPI.DOUBLE]) comm.Bcast([wo, MPI.DOUBLE]) return wh,wo def predict(theta1,theta2, inputs): a2 = np.dot(inputs, theta1) a2 = sigmoid(a2) a3 = np.dot(a2, theta2) a3 = pd.Series(sigmoid(a3).reshape(-1)) predictions = np.where(a3 >= 0.5,1,-1) return pd.Series(predictions) def accuracy_measures(predictions,actual): df = pd.concat([predictions,actual],axis = 1) # concatenate predicitons & actual labels into single dataframe df.columns = ['predictions','actual'] df['correct'] = np.where(df.predictions == df.actual,1,0) # true positives positives = df.loc[df.actual == 1] true_positives = positives.correct.sum() # false negatives false_negatives = (positives.predictions == -1).sum() # tru negatives negatives = df.loc[df.actual == -1] true_negatives = negatives.correct.sum() # false Positives false_positives = (negatives.predictions == -1).sum() # overall accuracy accuracy = (true_positives + true_negatives)/(true_positives + true_negatives + false_positives + false_negatives) # precision precision = true_positives/(true_positives + false_positives) # recall (sensitivity) sensitivity = true_positives/(true_positives+false_negatives) # specificity specificity = true_negatives/(true_negatives + false_positives) return accuracy,precision, sensitivity, specificity ############################################################################################################ ######################################## EXECUTION & PERFORMANCE ########################################### ############################################################################################################ if __name__ == '__main__': #suppress warnings warnings.filterwarnings('ignore') #################################################### ############ DATA IMPORT & FORMATTING ############## #################################################### model_df = pd.read_csv('blackjack.csv') X = np.array(model_df[[i for i in model_df.columns if i not in {'correct_action','outcome'}]]) train_X = np.array(model_df[['player_initial_total', 'has_ace', 'dealer_card','count']]) train_Y = np.array(model_df['correct_action']).reshape(-1,1) #################################################### ############### MPI INITIALIZATION ################# #################################################### # Init MPI comm = MPI.COMM_WORLD # structure of the 3-layer neural network hidden_layer_size = 10 output_layer_size = 1 lr = 1 # learning rate epochs = 50 # iterations # randomly initialize weights if comm.rank == 0: wh = np.random.rand(train_X.shape[1],hidden_layer_size) # weights for hidden layer wo = np.random.rand(hidden_layer_size, 1) # weights for output layer else: wh = np.random.rand(train_X.shape[1],hidden_layer_size) wo = np.random.rand(hidden_layer_size, 1) comm.Barrier() # communicate weight vectors comm.Bcast([wh, MPI.DOUBLE]) comm.Bcast([wo, MPI.DOUBLE]) ################################################# ############ NEURAL NETWORK TRAINING ############ ################################################# if comm.rank == 0: start = time.time() wh,wo = train_network(wh,wo,epochs,train_X,train_Y) if comm.rank == 0: end = time.time() train_time = round(end-start,2) print(f'\nEND OF TRAINING, took {train_time} seconds\n') # write training time to file for plotting out_filename = f'nn_train_{comm.size}.txt' outfile = open(out_filename, "w") outfile.write(str(train_time)) ################################################ ############ PREDICTIONS & RESULTS ############# ################################################ # generate predictions predictions = predict(wh,wo,train_X) actual = pd.Series(train_Y.reshape(-1)) # compute & display results accuracy,precision, sensitivity, specificity = accuracy_measures(predictions,actual) print('PERFORMANCE RESULTS:') print(f'accuracy: {100*round(accuracy,2)}%') print(f'precision: {100*round(precision,2)}%') print(f'sensitivity: {100*round(sensitivity,2)}%') print(f'specificity: {100*round(specificity,2)}%\n')
[ "numpy.zeros_like", "warnings.filterwarnings", "pandas.read_csv", "numpy.power", "numpy.zeros", "functools.reduce", "time.time", "numpy.split", "numpy.where", "numpy.array", "pandas.Series", "numpy.exp", "numpy.random.rand", "numpy.dot", "pandas.concat" ]
[((3562, 3584), 'numpy.dot', 'np.dot', (['inputs', 'theta1'], {}), '(inputs, theta1)\n', (3568, 3584), True, 'import numpy as np\n'), ((3617, 3635), 'numpy.dot', 'np.dot', (['a2', 'theta2'], {}), '(a2, theta2)\n', (3623, 3635), True, 'import numpy as np\n'), ((3702, 3728), 'numpy.where', 'np.where', (['(a3 >= 0.5)', '(1)', '(-1)'], {}), '(a3 >= 0.5, 1, -1)\n', (3710, 3728), True, 'import numpy as np\n'), ((3738, 3760), 'pandas.Series', 'pd.Series', (['predictions'], {}), '(predictions)\n', (3747, 3760), True, 'import pandas as pd\n'), ((3812, 3852), 'pandas.concat', 'pd.concat', (['[predictions, actual]'], {'axis': '(1)'}), '([predictions, actual], axis=1)\n', (3821, 3852), True, 'import pandas as pd\n'), ((3975, 4018), 'numpy.where', 'np.where', (['(df.predictions == df.actual)', '(1)', '(0)'], {}), '(df.predictions == df.actual, 1, 0)\n', (3983, 4018), True, 'import numpy as np\n'), ((5192, 5225), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (5215, 5225), False, 'import warnings\n'), ((5400, 5428), 'pandas.read_csv', 'pd.read_csv', (['"""blackjack.csv"""'], {}), "('blackjack.csv')\n", (5411, 5428), True, 'import pandas as pd\n'), ((5435, 5531), 'numpy.array', 'np.array', (["model_df[[i for i in model_df.columns if i not in {'correct_action',\n 'outcome'}]]"], {}), "(model_df[[i for i in model_df.columns if i not in {\n 'correct_action', 'outcome'}]])\n", (5443, 5531), True, 'import numpy as np\n'), ((5538, 5617), 'numpy.array', 'np.array', (["model_df[['player_initial_total', 'has_ace', 'dealer_card', 'count']]"], {}), "(model_df[['player_initial_total', 'has_ace', 'dealer_card', 'count']])\n", (5546, 5617), True, 'import numpy as np\n'), ((1403, 1438), 'numpy.zeros', 'np.zeros', (['(size, hidden_layer_size)'], {}), '((size, hidden_layer_size))\n', (1411, 1438), True, 'import numpy as np\n'), ((1716, 1735), 'numpy.dot', 'np.dot', (['train_X', 'wh'], {}), '(train_X, wh)\n', (1722, 1735), True, 'import numpy as np\n'), ((1786, 1800), 'numpy.dot', 'np.dot', (['ah', 'wo'], {}), '(ah, wo)\n', (1792, 1800), True, 'import numpy as np\n'), ((2102, 2140), 'numpy.dot', 'np.dot', (['dzo_dwo.T', '(dcost_dao * dao_dzo)'], {}), '(dzo_dwo.T, dcost_dao * dao_dzo)\n', (2108, 2140), True, 'import numpy as np\n'), ((2266, 2294), 'numpy.dot', 'np.dot', (['dcost_dzo', 'dzo_dah.T'], {}), '(dcost_dzo, dzo_dah.T)\n', (2272, 2294), True, 'import numpy as np\n'), ((2364, 2402), 'numpy.dot', 'np.dot', (['dzh_dwh.T', '(dah_dzh * dcost_dah)'], {}), '(dzh_dwh.T, dah_dzh * dcost_dah)\n', (2370, 2402), True, 'import numpy as np\n'), ((6088, 6139), 'numpy.random.rand', 'np.random.rand', (['train_X.shape[1]', 'hidden_layer_size'], {}), '(train_X.shape[1], hidden_layer_size)\n', (6102, 6139), True, 'import numpy as np\n'), ((6175, 6211), 'numpy.random.rand', 'np.random.rand', (['hidden_layer_size', '(1)'], {}), '(hidden_layer_size, 1)\n', (6189, 6211), True, 'import numpy as np\n'), ((6256, 6307), 'numpy.random.rand', 'np.random.rand', (['train_X.shape[1]', 'hidden_layer_size'], {}), '(train_X.shape[1], hidden_layer_size)\n', (6270, 6307), True, 'import numpy as np\n'), ((6316, 6352), 'numpy.random.rand', 'np.random.rand', (['hidden_layer_size', '(1)'], {}), '(hidden_layer_size, 1)\n', (6330, 6352), True, 'import numpy as np\n'), ((6656, 6667), 'time.time', 'time.time', ([], {}), '()\n', (6665, 6667), False, 'import time\n'), ((6755, 6766), 'time.time', 'time.time', ([], {}), '()\n', (6764, 6766), False, 'import time\n'), ((1050, 1060), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (1056, 1060), True, 'import numpy as np\n'), ((1256, 1284), 'numpy.split', 'np.split', (['train_X', 'comm.size'], {}), '(train_X, comm.size)\n', (1264, 1284), True, 'import numpy as np\n'), ((1317, 1345), 'numpy.split', 'np.split', (['train_Y', 'comm.size'], {}), '(train_Y, comm.size)\n', (1325, 1345), True, 'import numpy as np\n'), ((1890, 1915), 'numpy.power', 'np.power', (['(ao - train_Y)', '(2)'], {}), '(ao - train_Y, 2)\n', (1898, 1915), True, 'import numpy as np\n'), ((2944, 2982), 'functools.reduce', 'functools.reduce', (['np.add', 'dcost_wh_buf'], {}), '(np.add, dcost_wh_buf)\n', (2960, 2982), False, 'import functools\n'), ((3231, 3269), 'functools.reduce', 'functools.reduce', (['np.add', 'dcost_wo_buf'], {}), '(np.add, dcost_wo_buf)\n', (3247, 3269), False, 'import functools\n'), ((5629, 5665), 'numpy.array', 'np.array', (["model_df['correct_action']"], {}), "(model_df['correct_action'])\n", (5637, 5665), True, 'import numpy as np\n'), ((2832, 2855), 'numpy.zeros_like', 'np.zeros_like', (['dcost_wh'], {}), '(dcost_wh)\n', (2845, 2855), True, 'import numpy as np\n'), ((3119, 3142), 'numpy.zeros_like', 'np.zeros_like', (['dcost_wo'], {}), '(dcost_wo)\n', (3132, 3142), True, 'import numpy as np\n')]
from cgbind.log import logger from copy import deepcopy import numpy as np from cgbind.constants import Constants from rdkit.Chem import AllChem from scipy.optimize import minimize, Bounds from scipy.spatial import distance_matrix from cgbind import geom from cgbind.atoms import get_vdw_radii from cgbind.geom import rotation_matrix from cgbind.geom import calc_com from cgbind.utils import copy_func def cage_subst_repulsion_func(cage, substrate, cage_coords, subst_coords, with_attraction=True): """ Determine the energy using two-body atom-atom repulsion derived from noble gas dimers where V_rep(r) = exp(- r/b + a) where a and b are parameters determined by the atom pairs. Parameters are suitable to generate V_rep in kcal mol-1 :param cage: (Cage object) :param substrate: (Substrate object) :param cage_coords: (list(np.ndarray)) Cage coordinates :param subst_coords: (list(np.ndarray)) Substrate coordinates :param with_attraction: (bool) do or don't return the energy with a constant attractive term based on the number of substrate atoms in the structure :return: energy: (float) Potential energy (V_rep) in kcal mol-1 """ dist_mat = distance_matrix(cage_coords, subst_coords) # Matrix with the pairwise additions of the vdW radii sum_vdw_radii = np.add.outer(np.array(cage.vdw_radii), np.array(substrate.vdw_radii)) # Magic numbers derived from fitting potentials to noble gas dimers and # plotting against the sum of vdw radii b_mat = 0.083214 * sum_vdw_radii - 0.003768 a_mat = 11.576415 * (0.175541 * sum_vdw_radii + 0.316642) exponent_mat = -(dist_mat / b_mat) + a_mat energy_mat = np.exp(exponent_mat) energy = np.sum(energy_mat) # E is negative for favourable binding but this is a purely repulsive # function so subtract a number.. which is determined from the best # classifier for 102 binding affinities (see cgbind paper) 0.4 kcal mol-1 if with_attraction: return energy - 0.4 * substrate.n_atoms return energy def cage_subst_repulsion_and_electrostatic_func(cage, substrate, cage_coords, subst_coords): """ Determine the energy of adding a substrate to a cage based on V_rep + V_att where the attractive term is electrostatic and uses the sum of q_i q_j / r_ij interaction energies where q_i is the partial atomic charge on atom i. :param cage: (Cage object) :param substrate: (Substrate object) :param cage_coords: (list(np.ndarray)) Cage coordinates :param subst_coords: (list(np.ndarray)) Substrate coordinates :return: """ # Calculate the distance matrix in Bohr (a0) so the energies are in au dist_mat = Constants.ang2a0 * distance_matrix(cage_coords, subst_coords) # Charges are already in units of e prod_charge_mat = np.outer(cage.charges, substrate.charges) # Compute the pairwise iteration energies as V = q1 q2 / r in atomic units energy_mat = prod_charge_mat / dist_mat electrostatic_energy = Constants.ha2kcalmol * np.sum(energy_mat) repulsive_energy = cage_subst_repulsion_func(cage, substrate, cage_coords, subst_coords) return electrostatic_energy + repulsive_energy def add_substrate_com(cagesubt): """ Add a substrate the centre of a cage defined by its centre of mass (com) will minimise the energy with respect to rotation of the substrate and the substrate conformer using cagesubt.energy_func. Will rotate cagesubt.n_init_geom times and use cagesubt.n_subst_confs number of substrate conformers :param cagesubt: (CageSubstrateComplex object) :return: xyzs: (list(list)) """ logger.info(f'Adding substrate to the cage COM and minimising the energy ' f'with {cagesubt.energy_func.__name__}') # Minimum energy initialisation and the x parameter array (angles to # rotate about the x, y, z axes) min_energy, curr_x = 9999999999.9, np.zeros(3) # Optimum (minimum energy) conformer best_coords = None c, s = cagesubt.cage, cagesubt.substrate cage_coords = get_centered_cage_coords(c) c.vdw_radii = [get_vdw_radii(atom) for atom in c.atoms] if cagesubt.n_subst_confs > 1: try: s.gen_confs(n_confs=cagesubt.n_subst_confs) except (ValueError, RuntimeError): logger.error('Could not generate substrate conformers') return None for i, substrate in enumerate(s.conformers): subst_coords = get_centered_substrate_coords(substrate) s.vdw_radii = [get_vdw_radii(atom) for atom in s.atoms] if s.mol_obj is not None: s.volume = AllChem.ComputeMolVolume(s.mol_obj, confId=i) for _ in range(cagesubt.n_init_geom): rot_angles = 2.0 * np.pi * np.random.rand(3) # rand generates in [0, 1] so multiply with # Minimise the energy with a BFGS minimiser supporting bounds on # the values (rotation is periodic) result = minimize(get_energy, x0=np.array(rot_angles), args=(c, s, cagesubt.energy_func, cage_coords, subst_coords), method='L-BFGS-B', bounds=Bounds(lb=0.0, ub=2*np.pi), tol=0.01) energy = result.fun logger.info(f'Energy = {energy:.4f}') if energy < min_energy: min_energy = energy best_coords = get_rotated_subst_coords(result.x, subst_coords) logger.info(f'Min energy = {min_energy:.4f} kcal mol-1') cagesubt.binding_energy_kcal = min_energy if best_coords is not None: s.set_atoms(coords=best_coords) c.set_atoms(coords=cage_coords) return c.atoms + s.atoms else: return None def get_centered_cage_coords(cage): """Get the cage coordinates that had been translated to the cage centroid""" cage_coords = cage.get_coords() centroid = cage.get_centroid() return np.array([coord - centroid for coord in cage_coords]) def get_centered_substrate_coords(substrate): """Get the substrate coordinates that have been translated to its center of mass""" substrate.centre() return substrate.get_coords() def cat_cage_subst_coords(cage, substrate, cage_coords, substrate_coords): """ Concatenate some coordinates into a set of xyzs by adding back the atom labels from the original xyzs :param cage: :param substrate: :param cage_coords: :param substrate_coords: :return: """ logger.info('Appending substrate coordinates to cage coordinates') xyzs = [[cage.xyzs[n][0]] + cage_coords[n].tolist() for n in range(len(cage.xyzs))] cage.substrate_atom_ids = list(range(len(xyzs), len(xyzs) + len(substrate.xyzs))) xyzs += [[substrate.xyzs[n][0]] + substrate_coords[n].tolist() for n in range(len(substrate.xyzs))] return xyzs def get_rotated_subst_coords(x, subst_coords): """Get substrate coordinates that have been rotated by x[0] radians in the x axis etc.""" x_rot, y_rot, z_rot = x rot_matrix = np.identity(3) rot_matrix = np.matmul(rot_matrix, rotation_matrix(axis=geom.i, theta=x_rot)) rot_matrix = np.matmul(rot_matrix, rotation_matrix(axis=geom.j, theta=y_rot)) rot_matrix = np.matmul(rot_matrix, rotation_matrix(axis=geom.k, theta=z_rot)) return np.array([np.matmul(rot_matrix, coord) for coord in deepcopy(subst_coords)]) def get_energy(x, cage, substrate, energy_func, cage_coords, subst_coords): """ Calculate the energy in kcal mol-1 for a particular x, which contains the rotations in x, y, z cartesian directions """ rot_substrate_coords = get_rotated_subst_coords(x, subst_coords) energy = energy_func(cage, substrate, cage_coords, rot_substrate_coords) return energy cage_subst_repulsion_func.__name__ = 'repulsion' cage_subst_repulsion_and_electrostatic_func.__name__ = 'electrostatic' cage_subst_repulsion_and_electrostatic_func_est = copy_func(cage_subst_repulsion_and_electrostatic_func) cage_subst_repulsion_and_electrostatic_func_est.__name__ = 'electrostatic_fast' energy_funcs = [cage_subst_repulsion_func, cage_subst_repulsion_and_electrostatic_func, cage_subst_repulsion_and_electrostatic_func_est]
[ "copy.deepcopy", "numpy.outer", "numpy.sum", "cgbind.log.logger.info", "cgbind.geom.rotation_matrix", "rdkit.Chem.AllChem.ComputeMolVolume", "cgbind.utils.copy_func", "numpy.identity", "numpy.zeros", "scipy.spatial.distance_matrix", "scipy.optimize.Bounds", "numpy.array", "numpy.exp", "numpy.matmul", "numpy.random.rand", "cgbind.atoms.get_vdw_radii", "cgbind.log.logger.error" ]
[((8114, 8168), 'cgbind.utils.copy_func', 'copy_func', (['cage_subst_repulsion_and_electrostatic_func'], {}), '(cage_subst_repulsion_and_electrostatic_func)\n', (8123, 8168), False, 'from cgbind.utils import copy_func\n'), ((1265, 1307), 'scipy.spatial.distance_matrix', 'distance_matrix', (['cage_coords', 'subst_coords'], {}), '(cage_coords, subst_coords)\n', (1280, 1307), False, 'from scipy.spatial import distance_matrix\n'), ((1787, 1807), 'numpy.exp', 'np.exp', (['exponent_mat'], {}), '(exponent_mat)\n', (1793, 1807), True, 'import numpy as np\n'), ((1821, 1839), 'numpy.sum', 'np.sum', (['energy_mat'], {}), '(energy_mat)\n', (1827, 1839), True, 'import numpy as np\n'), ((2936, 2977), 'numpy.outer', 'np.outer', (['cage.charges', 'substrate.charges'], {}), '(cage.charges, substrate.charges)\n', (2944, 2977), True, 'import numpy as np\n'), ((3770, 3891), 'cgbind.log.logger.info', 'logger.info', (['f"""Adding substrate to the cage COM and minimising the energy with {cagesubt.energy_func.__name__}"""'], {}), "(\n f'Adding substrate to the cage COM and minimising the energy with {cagesubt.energy_func.__name__}'\n )\n", (3781, 3891), False, 'from cgbind.log import logger\n'), ((5606, 5662), 'cgbind.log.logger.info', 'logger.info', (['f"""Min energy = {min_energy:.4f} kcal mol-1"""'], {}), "(f'Min energy = {min_energy:.4f} kcal mol-1')\n", (5617, 5662), False, 'from cgbind.log import logger\n'), ((6090, 6145), 'numpy.array', 'np.array', (['[(coord - centroid) for coord in cage_coords]'], {}), '([(coord - centroid) for coord in cage_coords])\n', (6098, 6145), True, 'import numpy as np\n'), ((6651, 6717), 'cgbind.log.logger.info', 'logger.info', (['"""Appending substrate coordinates to cage coordinates"""'], {}), "('Appending substrate coordinates to cage coordinates')\n", (6662, 6717), False, 'from cgbind.log import logger\n'), ((7209, 7223), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (7220, 7223), True, 'import numpy as np\n'), ((1400, 1424), 'numpy.array', 'np.array', (['cage.vdw_radii'], {}), '(cage.vdw_radii)\n', (1408, 1424), True, 'import numpy as np\n'), ((1459, 1488), 'numpy.array', 'np.array', (['substrate.vdw_radii'], {}), '(substrate.vdw_radii)\n', (1467, 1488), True, 'import numpy as np\n'), ((2830, 2872), 'scipy.spatial.distance_matrix', 'distance_matrix', (['cage_coords', 'subst_coords'], {}), '(cage_coords, subst_coords)\n', (2845, 2872), False, 'from scipy.spatial import distance_matrix\n'), ((3152, 3170), 'numpy.sum', 'np.sum', (['energy_mat'], {}), '(energy_mat)\n', (3158, 3170), True, 'import numpy as np\n'), ((4052, 4063), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (4060, 4063), True, 'import numpy as np\n'), ((4240, 4259), 'cgbind.atoms.get_vdw_radii', 'get_vdw_radii', (['atom'], {}), '(atom)\n', (4253, 4259), False, 'from cgbind.atoms import get_vdw_radii\n'), ((7263, 7304), 'cgbind.geom.rotation_matrix', 'rotation_matrix', ([], {'axis': 'geom.i', 'theta': 'x_rot'}), '(axis=geom.i, theta=x_rot)\n', (7278, 7304), False, 'from cgbind.geom import rotation_matrix\n'), ((7345, 7386), 'cgbind.geom.rotation_matrix', 'rotation_matrix', ([], {'axis': 'geom.j', 'theta': 'y_rot'}), '(axis=geom.j, theta=y_rot)\n', (7360, 7386), False, 'from cgbind.geom import rotation_matrix\n'), ((7427, 7468), 'cgbind.geom.rotation_matrix', 'rotation_matrix', ([], {'axis': 'geom.k', 'theta': 'z_rot'}), '(axis=geom.k, theta=z_rot)\n', (7442, 7468), False, 'from cgbind.geom import rotation_matrix\n'), ((4658, 4677), 'cgbind.atoms.get_vdw_radii', 'get_vdw_radii', (['atom'], {}), '(atom)\n', (4671, 4677), False, 'from cgbind.atoms import get_vdw_radii\n'), ((4756, 4801), 'rdkit.Chem.AllChem.ComputeMolVolume', 'AllChem.ComputeMolVolume', (['s.mol_obj'], {'confId': 'i'}), '(s.mol_obj, confId=i)\n', (4780, 4801), False, 'from rdkit.Chem import AllChem\n'), ((5411, 5448), 'cgbind.log.logger.info', 'logger.info', (['f"""Energy = {energy:.4f}"""'], {}), "(f'Energy = {energy:.4f}')\n", (5422, 5448), False, 'from cgbind.log import logger\n'), ((7492, 7520), 'numpy.matmul', 'np.matmul', (['rot_matrix', 'coord'], {}), '(rot_matrix, coord)\n', (7501, 7520), True, 'import numpy as np\n'), ((4441, 4496), 'cgbind.log.logger.error', 'logger.error', (['"""Could not generate substrate conformers"""'], {}), "('Could not generate substrate conformers')\n", (4453, 4496), False, 'from cgbind.log import logger\n'), ((4888, 4905), 'numpy.random.rand', 'np.random.rand', (['(3)'], {}), '(3)\n', (4902, 4905), True, 'import numpy as np\n'), ((7534, 7556), 'copy.deepcopy', 'deepcopy', (['subst_coords'], {}), '(subst_coords)\n', (7542, 7556), False, 'from copy import deepcopy\n'), ((5128, 5148), 'numpy.array', 'np.array', (['rot_angles'], {}), '(rot_angles)\n', (5136, 5148), True, 'import numpy as np\n'), ((5328, 5356), 'scipy.optimize.Bounds', 'Bounds', ([], {'lb': '(0.0)', 'ub': '(2 * np.pi)'}), '(lb=0.0, ub=2 * np.pi)\n', (5334, 5356), False, 'from scipy.optimize import minimize, Bounds\n')]
from rdkit import Chem import pandas as pd import numpy as np from tqdm import tqdm from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler tqdm.pandas() GLOBAL_SCALE = ['partial_charge', 'fukui_neu', 'fukui_elec'] ATOM_SCALE = ['NMR'] def check_chemprop_out(df): invalid = [] for _,r in df.iterrows(): for c in ['partial_charge', 'fukui_neu', 'fukui_elec', 'NMR', 'bond_order', 'bond_length']: if np.any(pd.isna(r[c])): invalid.append(r['smiles']) break return invalid def modify_scaled_df(df, scalers): for index in df.index: if "H-" in df.loc[index, "smiles"]: df.loc[index, "partial_charge"] = np.array([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])]) df.loc[index, "NMR"] = np.array([(27.7189 - scalers['NMR']["H"].data_min_[0]) / (scalers['NMR']["H"].data_max_[0] - scalers['NMR']["H"].data_min_[0])]) elif "F-" in df.loc[index, "smiles"]: df.loc[index, "partial_charge"] = np.array([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])]) df.loc[index, "NMR"] = np.array([(481.6514 - scalers['NMR']["F"].data_min_[0]) / (scalers['NMR']["F"].data_max_[0] - scalers['NMR']["F"].data_min_[0])]) elif "Cl-" in df.loc[index, "smiles"]: df.loc[index, "partial_charge"] = np.array([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])]) df.loc[index, "NMR"] = np.array([(1150.4265 - scalers['NMR']["Cl"].data_min_[0]) / (scalers['NMR']["Cl"].data_max_[0] - scalers['NMR']["Cl"].data_min_[0])]) elif "Br-" in df.loc[index, "smiles"]: df.loc[index, "partial_charge"] = np.array([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])]) df.loc[index, "NMR"] = np.array([(3126.8978 - scalers['NMR']["Br"].data_min_[0]) / (scalers['NMR']["Br"].data_max_[0] - scalers['NMR']["Br"].data_min_[0])]) return df def min_max_normalize(df, scalers=None, train_smiles=None): if train_smiles is not None: ref_df = df[df.smiles.isin(train_smiles)] else: ref_df = df.copy() if scalers is None: scalers = get_scaler(ref_df) for column in GLOBAL_SCALE: scaler = scalers[column] df[column] = df[column].apply(lambda x: scaler.transform(x.reshape(-1, 1)).reshape(-1)) def min_max_by_atom(atoms, data, scaler): data = [scaler[a].transform(np.array([[d]]))[0][0] for a, d in zip(atoms, data)] return np.array(data) if ATOM_SCALE: print('postprocessing atom-wise scaling') df['atoms'] = df.smiles.apply(lambda x: get_atoms(x)) for column in ATOM_SCALE: df[column] = df.progress_apply(lambda x: min_max_by_atom(x['atoms'], x[column], scalers[column]), axis=1) df['bond_order_matrix'] = df.apply(lambda x: bond_to_matrix(x['smiles'], x['bond_order']), axis=1) df['distance_matrix'] = df.apply(lambda x: bond_to_matrix(x['smiles'], x['bond_length']), axis=1) df = modify_scaled_df(df, scalers) df = df[['smiles', 'partial_charge', 'fukui_neu', 'fukui_elec', 'NMR', 'bond_order_matrix', 'distance_matrix']] df = df.set_index('smiles') return df, scalers def get_scaler(df): scalers = {} for column in GLOBAL_SCALE: scaler = MinMaxScaler() data = np.concatenate(df[column].tolist()).reshape(-1, 1) scaler.fit(data) scalers[column] = scaler if ATOM_SCALE: atoms = df.smiles.apply(lambda x: get_atoms(x)) atoms = np.concatenate(atoms.tolist()) for column in ATOM_SCALE: data = np.concatenate(df[column].tolist()) data = pd.DataFrame({'atoms': atoms, 'data': data}) data = data.groupby('atoms').agg({'data': lambda x: list(x)})['data'].apply(lambda x: np.array(x)).to_dict() scalers[column] = {} for k, d in data.items(): scaler = MinMaxScaler() scalers[column][k] = scaler.fit(d.reshape(-1, 1)) return scalers def bond_to_matrix(smiles, bond_vector): m = Chem.MolFromSmiles(smiles) m = Chem.AddHs(m) bond_matrix = np.zeros([len(m.GetAtoms()), len(m.GetAtoms())]) for i, bp in enumerate(bond_vector): b = m.GetBondWithIdx(i) bond_matrix[b.GetBeginAtomIdx(), b.GetEndAtomIdx()] = bond_matrix[b.GetEndAtomIdx(), b.GetBeginAtomIdx()] = bp return bond_matrix def get_atoms(smiles): m = Chem.MolFromSmiles(smiles) m = Chem.AddHs(m) atoms = [x.GetSymbol() for x in m.GetAtoms()] return atoms def minmax_by_element(r, minmax, target): target = r[target] elements = r['atoms'] for i, a in enumerate(elements): target[i] = (target[i] - minmax[a][0]) / (minmax[a][1] - minmax[a][0] + np.finfo(float).eps) return target
[ "pandas.DataFrame", "sklearn.preprocessing.MinMaxScaler", "tqdm.tqdm.pandas", "numpy.finfo", "numpy.array", "rdkit.Chem.AddHs", "pandas.isna", "rdkit.Chem.MolFromSmiles" ]
[((179, 192), 'tqdm.tqdm.pandas', 'tqdm.pandas', ([], {}), '()\n', (190, 192), False, 'from tqdm import tqdm\n'), ((4407, 4433), 'rdkit.Chem.MolFromSmiles', 'Chem.MolFromSmiles', (['smiles'], {}), '(smiles)\n', (4425, 4433), False, 'from rdkit import Chem\n'), ((4443, 4456), 'rdkit.Chem.AddHs', 'Chem.AddHs', (['m'], {}), '(m)\n', (4453, 4456), False, 'from rdkit import Chem\n'), ((4774, 4800), 'rdkit.Chem.MolFromSmiles', 'Chem.MolFromSmiles', (['smiles'], {}), '(smiles)\n', (4792, 4800), False, 'from rdkit import Chem\n'), ((4810, 4823), 'rdkit.Chem.AddHs', 'Chem.AddHs', (['m'], {}), '(m)\n', (4820, 4823), False, 'from rdkit import Chem\n'), ((2815, 2829), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2823, 2829), True, 'import numpy as np\n'), ((3620, 3634), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (3632, 3634), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((730, 876), 'numpy.array', 'np.array', (["[(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge']\n .data_max_[0] - scalers['partial_charge'].data_min_[0])]"], {}), "([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers[\n 'partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])])\n", (738, 876), True, 'import numpy as np\n'), ((907, 1040), 'numpy.array', 'np.array', (["[(27.7189 - scalers['NMR']['H'].data_min_[0]) / (scalers['NMR']['H'].\n data_max_[0] - scalers['NMR']['H'].data_min_[0])]"], {}), "([(27.7189 - scalers['NMR']['H'].data_min_[0]) / (scalers['NMR'][\n 'H'].data_max_[0] - scalers['NMR']['H'].data_min_[0])])\n", (915, 1040), True, 'import numpy as np\n'), ((3992, 4036), 'pandas.DataFrame', 'pd.DataFrame', (["{'atoms': atoms, 'data': data}"], {}), "({'atoms': atoms, 'data': data})\n", (4004, 4036), True, 'import pandas as pd\n'), ((475, 488), 'pandas.isna', 'pd.isna', (['r[c]'], {}), '(r[c])\n', (482, 488), True, 'import pandas as pd\n'), ((1128, 1274), 'numpy.array', 'np.array', (["[(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge']\n .data_max_[0] - scalers['partial_charge'].data_min_[0])]"], {}), "([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers[\n 'partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])])\n", (1136, 1274), True, 'import numpy as np\n'), ((1305, 1439), 'numpy.array', 'np.array', (["[(481.6514 - scalers['NMR']['F'].data_min_[0]) / (scalers['NMR']['F'].\n data_max_[0] - scalers['NMR']['F'].data_min_[0])]"], {}), "([(481.6514 - scalers['NMR']['F'].data_min_[0]) / (scalers['NMR'][\n 'F'].data_max_[0] - scalers['NMR']['F'].data_min_[0])])\n", (1313, 1439), True, 'import numpy as np\n'), ((4255, 4269), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (4267, 4269), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((1528, 1674), 'numpy.array', 'np.array', (["[(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge']\n .data_max_[0] - scalers['partial_charge'].data_min_[0])]"], {}), "([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers[\n 'partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])])\n", (1536, 1674), True, 'import numpy as np\n'), ((1705, 1843), 'numpy.array', 'np.array', (["[(1150.4265 - scalers['NMR']['Cl'].data_min_[0]) / (scalers['NMR']['Cl'].\n data_max_[0] - scalers['NMR']['Cl'].data_min_[0])]"], {}), "([(1150.4265 - scalers['NMR']['Cl'].data_min_[0]) / (scalers['NMR']\n ['Cl'].data_max_[0] - scalers['NMR']['Cl'].data_min_[0])])\n", (1713, 1843), True, 'import numpy as np\n'), ((5103, 5118), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (5111, 5118), True, 'import numpy as np\n'), ((1932, 2078), 'numpy.array', 'np.array', (["[(-1 - scalers['partial_charge'].data_min_[0]) / (scalers['partial_charge']\n .data_max_[0] - scalers['partial_charge'].data_min_[0])]"], {}), "([(-1 - scalers['partial_charge'].data_min_[0]) / (scalers[\n 'partial_charge'].data_max_[0] - scalers['partial_charge'].data_min_[0])])\n", (1940, 2078), True, 'import numpy as np\n'), ((2109, 2247), 'numpy.array', 'np.array', (["[(3126.8978 - scalers['NMR']['Br'].data_min_[0]) / (scalers['NMR']['Br'].\n data_max_[0] - scalers['NMR']['Br'].data_min_[0])]"], {}), "([(3126.8978 - scalers['NMR']['Br'].data_min_[0]) / (scalers['NMR']\n ['Br'].data_max_[0] - scalers['NMR']['Br'].data_min_[0])])\n", (2117, 2247), True, 'import numpy as np\n'), ((2747, 2762), 'numpy.array', 'np.array', (['[[d]]'], {}), '([[d]])\n', (2755, 2762), True, 'import numpy as np\n'), ((4135, 4146), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (4143, 4146), True, 'import numpy as np\n')]
import pickle import numpy as np import pandas as pd from numpy import linalg as LA from scipy import stats import sys def compute_rmse(target, prediction): """Compute rmse between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: rmse between the ground truth and forecasts """ return np.sqrt(mean_squared_error(target, prediction)) def compute_cosine(target, prediction): """Compute cosine simialrity between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: cosine simialrity between the ground truth and forecasts """ result = np.dot(target, prediction) / (LA.norm(target) * LA.norm(prediction)) return result def r_squared(y_true, y_pred, y_mean=None): """Compute relative R^2 between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: relative R^2 between the ground truth and forecasts """ if y_mean is None: y_mean = np.zeros(y_true.shape[0]) * np.mean(y_true) rss = np.sum((y_true - y_pred)**2) tss = np.sum((y_true - y_mean)**2) rsq = 1 - rss / tss return rsq def print_eval_stats(eval_result): """Print the mean(se), median(se), 0.25 quantile(se), and 0.75 quantile (se) of the array, where se represents standard deviation Args: eval_result: a numpy array with evluation results """ print('mean: {:.4f} ({:.4f}) median {:.4f} ({:.4f})'.format(np.mean(eval_result), stats.sem(eval_result), np.median(eval_result), quantile_se(eval_result, p=50))) print('0.25 quantile: {:.4f} ({:.4f}) 0.75 quantile: {:.4f} ({:.4f})'.format(np.quantile(eval_result, 0.25), quantile_se(eval_result, p=25), np.quantile(eval_result, 0.75), quantile_se(eval_result, p=75))) def quantile_se(x, p=50): # compute the standard error for different quantiles # Source: <NAME>, "Mathematical Statistics". Springer Texts in Statistics, 1999. Page 306: Theorem 5.10 # p: quantile: int between 0-100 # x: data sequence n = len(x) # number of samples q = np.percentile(x, p) density = stats.gaussian_kde(x) # density estimate of x Fp = density(q).item() p = p / 100. sF = np.sqrt(p * (1 - p)) / Fp se = sF / np.sqrt(n) return se def eval_forecast(model_name, rootpath, test_years, month_range, rep=False, num_rep=10): """Evalute the forecasts on training and test sets Args: model_name: a string indicating the name of a model rootpath: the path where the forecasts are saved test_years: a list of years in the test set month_range: a list of months in the test set rep: True or False, indicating if the reults include repeated runs num_rep: the number of repetition Returns: result_train: the forecasting performance (temporal/spatial cosine/r2) on training set result_test: the forecasting performance (temporal/spatial cosine/r2) on test set """ target_train = [] target_test = [] prediction_train = [] prediction_test = [] for year in test_years: if year == 2020: month_range = range(1, 7) elif year == 2017: month_range = range(7, 13) else: month_range = range(1, 13) for month_id in month_range: result_temp = load_results(rootpath + 'forecast_results/results_{}_{}_{}.pkl'.format(model_name, year, month_id)) target_train.append(result_temp['target_train']) target_test.append(result_temp['target_test']) if rep is True: prediction_train_temp = np.zeros(result_temp['target_train'].shape) prediction_test_temp = np.zeros(result_temp['target_test'].shape) for i in range(num_rep): prediction_train_temp += result_temp['prediction_train'][i] prediction_test_temp += result_temp['prediction_test'][i] prediction_train.append(prediction_train_temp / float(num_rep)) prediction_test.append(prediction_test_temp / float(num_rep)) else: prediction_train.append(result_temp['prediction_train']) prediction_test.append(result_temp['prediction_test']) # test set evaluation prediction_test = np.concatenate(prediction_test, axis=0) target_test = np.concatenate(target_test, axis=0) temporal_cos = np.zeros(prediction_test.shape[0]) spatial_cos = np.zeros(prediction_test.shape[1]) temporal_r2 = np.zeros(prediction_test.shape[0]) spatial_r2 = np.zeros(prediction_test.shape[1]) for i in range(prediction_test.shape[0]): temporal_cos[i] = compute_cosine(target_test[i, :], prediction_test[i, :]) temporal_r2[i] = r_squared(target_test[i, :], prediction_test[i, :]) for i in range(prediction_test.shape[1]): spatial_cos[i] = compute_cosine(target_test[:, i], prediction_test[:, i]) spatial_r2[i] = r_squared(target_test[:, i], prediction_test[:, i]) result_test = {} result_test['temporal_cos'] = temporal_cos result_test['spatial_cos'] = spatial_cos result_test['temporal_r2'] = temporal_r2 result_test['spatial_r2'] = spatial_r2 # training set evaluation prediction_train = np.concatenate(prediction_train, axis=0) target_train = np.concatenate(target_train, axis=0) temporal_cos_train = np.zeros(prediction_train.shape[0]) spatial_cos_train = np.zeros(prediction_train.shape[1]) temporal_r2_train = np.zeros(prediction_train.shape[0]) spatial_r2_train = np.zeros(prediction_train.shape[1]) for i in range(prediction_train.shape[0]): temporal_cos_train[i] = compute_cosine(target_train[i, :], prediction_train[i, :]) temporal_r2_train[i] = r_squared(target_train[i, :], prediction_train[i, :]) for i in range(prediction_train.shape[1]): spatial_cos_train[i] = compute_cosine(target_train[:, i], prediction_train[:, i]) spatial_r2_train[i] = r_squared(target_train[:, i], prediction_train[:, i]) result_train = {} result_train['temporal_cos'] = temporal_cos_train result_train['spatial_cos'] = spatial_cos_train result_train['temporal_r2'] = temporal_r2_train result_train['spatial_r2'] = spatial_r2_train return result_train, result_test
[ "numpy.quantile", "numpy.sum", "numpy.median", "numpy.zeros", "scipy.stats.gaussian_kde", "numpy.percentile", "numpy.mean", "numpy.linalg.norm", "scipy.stats.sem", "numpy.dot", "numpy.concatenate", "numpy.sqrt" ]
[((1232, 1262), 'numpy.sum', 'np.sum', (['((y_true - y_pred) ** 2)'], {}), '((y_true - y_pred) ** 2)\n', (1238, 1262), True, 'import numpy as np\n'), ((1271, 1301), 'numpy.sum', 'np.sum', (['((y_true - y_mean) ** 2)'], {}), '((y_true - y_mean) ** 2)\n', (1277, 1301), True, 'import numpy as np\n'), ((2691, 2710), 'numpy.percentile', 'np.percentile', (['x', 'p'], {}), '(x, p)\n', (2704, 2710), True, 'import numpy as np\n'), ((2725, 2746), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['x'], {}), '(x)\n', (2743, 2746), False, 'from scipy import stats\n'), ((4908, 4947), 'numpy.concatenate', 'np.concatenate', (['prediction_test'], {'axis': '(0)'}), '(prediction_test, axis=0)\n', (4922, 4947), True, 'import numpy as np\n'), ((4966, 5001), 'numpy.concatenate', 'np.concatenate', (['target_test'], {'axis': '(0)'}), '(target_test, axis=0)\n', (4980, 5001), True, 'import numpy as np\n'), ((5021, 5055), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[0]'], {}), '(prediction_test.shape[0])\n', (5029, 5055), True, 'import numpy as np\n'), ((5074, 5108), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[1]'], {}), '(prediction_test.shape[1])\n', (5082, 5108), True, 'import numpy as np\n'), ((5127, 5161), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[0]'], {}), '(prediction_test.shape[0])\n', (5135, 5161), True, 'import numpy as np\n'), ((5179, 5213), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[1]'], {}), '(prediction_test.shape[1])\n', (5187, 5213), True, 'import numpy as np\n'), ((5878, 5918), 'numpy.concatenate', 'np.concatenate', (['prediction_train'], {'axis': '(0)'}), '(prediction_train, axis=0)\n', (5892, 5918), True, 'import numpy as np\n'), ((5938, 5974), 'numpy.concatenate', 'np.concatenate', (['target_train'], {'axis': '(0)'}), '(target_train, axis=0)\n', (5952, 5974), True, 'import numpy as np\n'), ((6000, 6035), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[0]'], {}), '(prediction_train.shape[0])\n', (6008, 6035), True, 'import numpy as np\n'), ((6060, 6095), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[1]'], {}), '(prediction_train.shape[1])\n', (6068, 6095), True, 'import numpy as np\n'), ((6120, 6155), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[0]'], {}), '(prediction_train.shape[0])\n', (6128, 6155), True, 'import numpy as np\n'), ((6179, 6214), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[1]'], {}), '(prediction_train.shape[1])\n', (6187, 6214), True, 'import numpy as np\n'), ((759, 785), 'numpy.dot', 'np.dot', (['target', 'prediction'], {}), '(target, prediction)\n', (765, 785), True, 'import numpy as np\n'), ((2825, 2845), 'numpy.sqrt', 'np.sqrt', (['(p * (1 - p))'], {}), '(p * (1 - p))\n', (2832, 2845), True, 'import numpy as np\n'), ((2865, 2875), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (2872, 2875), True, 'import numpy as np\n'), ((789, 804), 'numpy.linalg.norm', 'LA.norm', (['target'], {}), '(target)\n', (796, 804), True, 'from numpy import linalg as LA\n'), ((807, 826), 'numpy.linalg.norm', 'LA.norm', (['prediction'], {}), '(prediction)\n', (814, 826), True, 'from numpy import linalg as LA\n'), ((1178, 1203), 'numpy.zeros', 'np.zeros', (['y_true.shape[0]'], {}), '(y_true.shape[0])\n', (1186, 1203), True, 'import numpy as np\n'), ((1206, 1221), 'numpy.mean', 'np.mean', (['y_true'], {}), '(y_true)\n', (1213, 1221), True, 'import numpy as np\n'), ((1646, 1666), 'numpy.mean', 'np.mean', (['eval_result'], {}), '(eval_result)\n', (1653, 1666), True, 'import numpy as np\n'), ((1732, 1754), 'scipy.stats.sem', 'stats.sem', (['eval_result'], {}), '(eval_result)\n', (1741, 1754), False, 'from scipy import stats\n'), ((1820, 1842), 'numpy.median', 'np.median', (['eval_result'], {}), '(eval_result)\n', (1829, 1842), True, 'import numpy as np\n'), ((2022, 2052), 'numpy.quantile', 'np.quantile', (['eval_result', '(0.25)'], {}), '(eval_result, 0.25)\n', (2033, 2052), True, 'import numpy as np\n'), ((2248, 2278), 'numpy.quantile', 'np.quantile', (['eval_result', '(0.75)'], {}), '(eval_result, 0.75)\n', (2259, 2278), True, 'import numpy as np\n'), ((4215, 4258), 'numpy.zeros', 'np.zeros', (["result_temp['target_train'].shape"], {}), "(result_temp['target_train'].shape)\n", (4223, 4258), True, 'import numpy as np\n'), ((4298, 4340), 'numpy.zeros', 'np.zeros', (["result_temp['target_test'].shape"], {}), "(result_temp['target_test'].shape)\n", (4306, 4340), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 11:19:57 2018 @author: rwilson """ import pygmsh import meshio import numpy as np import pickle class utilities(): '''A collection of functions for interacting with the mesh object ''' def meshOjfromDisk(meshObjectPath='cly.Mesh'): '''Read the entire mesh object from disk. Parameters ---------- meshObjectPath : str (default='cly.Mesh') ''' with open(meshObjectPath, 'rb') as clyMesh_file: return pickle.load(clyMesh_file) class mesher(): '''Mesh generator class using pygmsh to gmsh code. Parameters ---------- mesh_param : dict Expected parameters defining the mesh, char_len, height, radius cell_data : dict Contains line, tetra, triangle, vertex 'gmsh:physical' and 'gmsh:geometrical'. cells : dict Contains line, tetra, triangle, vertex of the point indicies as defined in ``points``. points : array(float) Matrix of xyz coords for each point in the mesh domain Notes ----- Understanding the mesh structure Points are a list of each point or verticies in x,y,z positions. cell_data['tetra']['gmsh:physical'] : the physical values of each tetra * cell['tetra'] : list of lists of each tetrahedral verticies index referencing to the coords inside the points. [points[i1], points[i2], points[i3], points[i4]] ''' def __init__(self, mesh_param): self.mesh_param = mesh_param self.cell_data = None self.points = None self.cells = None self.cell_cent = None def meshIt(self): '''Produces the mesh. ''' self._cylinderMesh() self._cellCent() def _cylinderMesh(self): ''' Produce a cylindrical mesh ''' # The geometry object geom = pygmsh.opencascade.Geometry() # Positions btm_face = [0.0, 0.0, 0.0] axis = [0.0, 0.0, self.mesh_param['height']] # create the cylinder with open cascade geom.add_cylinder(btm_face, axis, self.mesh_param['radius'], char_length=self.mesh_param['char_len'] ) # Make the mesh self.points, self.cells, _, self.cell_data, _ = pygmsh.generate_mesh(geom) def _cellCent(self): ''' Calculate the centre of each tetra. ''' # The verticies in cart coords tetra_verts = [ np.array([self.points[vert[0]], self.points[vert[1]], self.points[vert[2]], self.points[vert[3]]]) for vert in self.cells['tetra']] # The centre of tetra in cart coords self.cell_cent = [np.array([vert[:,0].sum()/4, vert[:,1].sum()/4, vert[:,2].sum()/4]) for vert in tetra_verts] def saveMesh(self, name): '''Save the mesh to file. Parameters ---------- name : str Name of the mesh file saved to the current directory. ''' mesh = meshio.Mesh(self.points, self.cells, cell_data=self.cell_data) meshio.write('%s.vtu' % name, mesh) # meshio.write('%s.vtu' % name, self.points, self.cells, cell_data=self.cell_data) # meshio.write('%s.msh4' % name, self.points, self.cells, cell_data=self.cell_data) # meshio.gmsh_io.write('%s.msh' % name, self.points, self.cells, cell_data=self.cell_data) def setCellsVal(self, cell_values): '''Set each cell physical value. Parameters ---------- cell_values : array/list physical values of each tetra cell within the mesh domain in order corresponding to ``points``. ''' self.cell_data['tetra']['gmsh:physical'] = cell_values def meshOjtoDisk(self): '''Save the entire mesh object to disk ''' with open('cly.Mesh', 'wb') as clyMesh_file: pickle.dump(self, clyMesh_file) def meshOjfromDisk(self): '''Save the entire mesh object to disk TODO ---- Should likely depreciate this function and simply use that stored in the utility class ''' with open('cly.Mesh', 'rb') as clyMesh_file: return pickle.load(clyMesh_file)
[ "pickle.dump", "pygmsh.generate_mesh", "meshio.write", "pickle.load", "numpy.array", "pygmsh.opencascade.Geometry", "meshio.Mesh" ]
[((2184, 2213), 'pygmsh.opencascade.Geometry', 'pygmsh.opencascade.Geometry', ([], {}), '()\n', (2211, 2213), False, 'import pygmsh\n'), ((2589, 2615), 'pygmsh.generate_mesh', 'pygmsh.generate_mesh', (['geom'], {}), '(geom)\n', (2609, 2615), False, 'import pygmsh\n'), ((3385, 3447), 'meshio.Mesh', 'meshio.Mesh', (['self.points', 'self.cells'], {'cell_data': 'self.cell_data'}), '(self.points, self.cells, cell_data=self.cell_data)\n', (3396, 3447), False, 'import meshio\n'), ((3457, 3492), 'meshio.write', 'meshio.write', (["('%s.vtu' % name)", 'mesh'], {}), "('%s.vtu' % name, mesh)\n", (3469, 3492), False, 'import meshio\n'), ((549, 574), 'pickle.load', 'pickle.load', (['clyMesh_file'], {}), '(clyMesh_file)\n', (560, 574), False, 'import pickle\n'), ((2768, 2870), 'numpy.array', 'np.array', (['[self.points[vert[0]], self.points[vert[1]], self.points[vert[2]], self.\n points[vert[3]]]'], {}), '([self.points[vert[0]], self.points[vert[1]], self.points[vert[2]],\n self.points[vert[3]]])\n', (2776, 2870), True, 'import numpy as np\n'), ((4276, 4307), 'pickle.dump', 'pickle.dump', (['self', 'clyMesh_file'], {}), '(self, clyMesh_file)\n', (4287, 4307), False, 'import pickle\n'), ((4595, 4620), 'pickle.load', 'pickle.load', (['clyMesh_file'], {}), '(clyMesh_file)\n', (4606, 4620), False, 'import pickle\n')]
import itertools from typing import List, DefaultDict, Tuple import numpy as np import pandas as pd from sklearn.base import clone from sklearn.metrics import roc_auc_score # from sklearn.metrics import recall_score, accuracy_score, confusion_matrix from sklearn.model_selection import KFold from .categorical_encoders import LeaveOneOutEncoder class LOOGridSearchCV: """ Specially prepared class to do grid search with cross-validation on our loo encoded DataFrame. Scores should be approximately ok, although i have no proof for that :) """ def __init__(self, train_df: pd.DataFrame, model, params_grid: DefaultDict, columns_to_encode: List, columns_to_drop_from_training: List, Xs_train: List[pd.DataFrame] = None, ys_train: List[pd.DataFrame] = None, Xs_val: List[pd.DataFrame] = None, ys_val: List[pd.DataFrame] = None, ohe_emails: bool = True, mean: int = 1, std: int = 0.05, n_folds: int = 5, encoded_df: pd.DataFrame = pd.DataFrame(), ) -> None: """ :param train_df: train_df (will be splitted then to train/and_val n_folds times) :param model: model to train :param params_grid: param_grid to search :param columns_to_encode: categorical columns, which you want to encode using loo :param columns_to_drop_from_training: columns to drop from training phase :param ohe_emails: if set to True, performs OHE on emails column :param Xs_train: :param mean: mean to regularization part of the encoding :param std: std to regularization part of the encoding :param n_folds: n_folds to validate :param encoded_df: if task was done before, just pass here already encoded_df " """ self.processed_train_df = (train_df.copy(deep=True) .reset_index() .drop(columns='name')) self.model = model self.params_grid = params_grid self.columns_to_encode = columns_to_encode self.columns_to_drop_from_training = columns_to_drop_from_training self.ohe_emails = ohe_emails self.mean = mean self.std = std self.n_folds = n_folds if not Xs_train: self.Xs_train, self.ys_train, self.Xs_val, self.ys_val = ([] for i in range(4)) else: self.Xs_train = Xs_train self.ys_train = ys_train self.Xs_val = Xs_val self.ys_val = ys_val self.encoded_df_ = encoded_df # self.best_accuracy_estimator = None # self.best_recall_estimator = None self.best_roc_auc_estimator = None def _ohe_emails(self) -> pd.DataFrame: """ internal method for one hot encoding emails column """ email_ohe_names = {0: '0_emails', 1: '1_email', 2: '2_emails', 3: '3_emails', 4: '4_emails', 5: '5_emails'} self.processed_train_df = (pd.concat([self.processed_train_df, pd.get_dummies( self.processed_train_df['emails'])], axis=1) .rename(columns=email_ohe_names)) self.columns_to_drop_from_training.append('emails') return self.processed_train_df def _prepare_train_val_dfs(self): """ Internal method bunch of code to prepare train and validation dataframes for given n_folds, to make grid search and cross validation processes much faster: for each n_folds you will need to compute encoded_df only once, same for validation and train DataFrames """ if self.ohe_emails: X = self._ohe_emails() else: X = self.processed_train_df if 'emails' in X.columns: X['emails'] = X['emails'].astype(int) y = self.processed_train_df[['target']] X.drop(columns=self.columns_to_drop_from_training, inplace=True) """ to have each sample exactly once in validation set """ kf = KFold(n_splits=self.n_folds, shuffle=False, random_state=None) splits = kf.split(X) dfs_to_mean = [] for train_index, val_index in splits: X_train, y_train = X.iloc[train_index], y.iloc[train_index] X_val, y_val = X.iloc[val_index], y.iloc[val_index] X_val.drop(columns=['target'], inplace=True) enc = LeaveOneOutEncoder(train_df=X_train, test_df=X_val, columns_to_encode=self.columns_to_encode, target_column='target', random_state=42, mean=self.mean, std=self.std) X_train, X_val = enc.fit() encoded_cols = [col for col in X_train.columns if 'encoded_' in col] dfs_to_mean.append(X_train[encoded_cols]) train_to_drop = self.columns_to_encode.copy() train_to_drop.extend(['target']) X_train.drop(columns=train_to_drop, inplace=True) test_to_drop = self.columns_to_encode.copy() X_val.drop(columns=test_to_drop, inplace=True) self.Xs_train.append(X_train) self.ys_train.append(y_train) self.Xs_val.append(X_val) self.ys_val.append(y_val) """ we are computing here the mean of the folds with excluding the 'i am now validation not the training set' part, as I see it as the most proper thing to do, to use cross-validation approach """ for df in dfs_to_mean: zeros = [0 for col in df.columns] for index in range(len(self.processed_train_df)): if index not in df.index: df.loc[index, :] = zeros df.sort_index(inplace=True) mean_df = dfs_to_mean[0].copy(deep=True) mean_df = mean_df * 0 for num in range(self.n_folds): mean_df = mean_df + dfs_to_mean[num] self.encoded_df_ = mean_df.divide(self.n_folds - 1) def best_roc_auc_estimator_(self, best_roc_auc_estimator): self.best_roc_auc_estimator = best_roc_auc_estimator """ def best_accuracy_estimator_(self, best_accuracy_estimator): self.best_accuracy_estimator = best_accuracy_estimator def best_recall_estimator_(self, best_recall_estimator): self.best_recall_estimator = best_recall_estimator """ def grid_search(self) -> Tuple[List, List, List, List]: """ performs GridSearchCV :return: list with each of the models: accuracies, parameters, recalls and confusion matrices """ if self.encoded_df_.empty: self._prepare_train_val_dfs() models_roc_auc_scores = [] # models_accuracies, models_recalls, models_parameters, models_cms = ([] for i in range(4)) for p in itertools.product(*self.params_grid.values()): model_params = self.params_grid.copy() for counter, key in enumerate(model_params.keys()): model_params[key] = p[counter] # models_parameters.append(model_params.items()) clf = clone(self.model) clf = clf.set_params(**model_params) cv_roc_auc_scores = [] # cv_accuracies, cv_recalls, cv_cms = ([] for i in range(3)) """ fitting and predicting for all folds, then scoring them by: accuracy, recall and confusion matrix """ for index in range(self.n_folds): clf.fit(self.Xs_train[index], self.ys_train[index]) predictions = clf.predict(self.Xs_val[index]) cv_roc_auc_scores.append(roc_auc_score(self.ys_val[index], predictions)) # cv_accuracies.append(accuracy_score(self.ys_val[index], predictions)) # cv_recalls.append(recall_score(self.ys_val[index], predictions)) # cv_cms.append(confusion_matrix(self.ys_val[index], predictions)) """ final evaluation of scores (means of all folds scores for confusion matrix we can get not integer values, please treat this more informative than strict - but anyway, as a source of information which model should we choose """ models_roc_auc_scores.append(np.mean(cv_roc_auc_scores)) # models_accuracies.append(np.mean(cv_accuracies)) # models_recalls.append(np.mean(cv_recalls)) # models_cms.append(np.mean(cv_cms, axis=0)) # if max(models_accuracies) == np.mean(cv_accuracies): # self.best_accuracy_estimator_(clf) # if max(models_recalls) == np.mean(cv_recalls): # self.best_recall_estimator_(clf) if max(models_roc_auc_scores) == np.mean(cv_roc_auc_scores): self.best_roc_auc_estimator_(clf) return models_roc_auc_scores # return models_accuracies, models_parameters, models_recalls, models_cms def processed_train(self): """ :return: processed train DataFrame with added encoded columns """ train = self.processed_train_df.copy(deep=True) encoded = self.encoded_df_.copy(deep=True) train = train.drop(columns=self.columns_to_encode+['target']) processed_train = pd.concat([train, encoded], axis=1) return processed_train
[ "pandas.DataFrame", "pandas.get_dummies", "sklearn.model_selection.KFold", "sklearn.metrics.roc_auc_score", "numpy.mean", "pandas.concat", "sklearn.base.clone" ]
[((1195, 1209), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1207, 1209), True, 'import pandas as pd\n'), ((4373, 4435), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'self.n_folds', 'shuffle': '(False)', 'random_state': 'None'}), '(n_splits=self.n_folds, shuffle=False, random_state=None)\n', (4378, 4435), False, 'from sklearn.model_selection import KFold\n'), ((9819, 9854), 'pandas.concat', 'pd.concat', (['[train, encoded]'], {'axis': '(1)'}), '([train, encoded], axis=1)\n', (9828, 9854), True, 'import pandas as pd\n'), ((7623, 7640), 'sklearn.base.clone', 'clone', (['self.model'], {}), '(self.model)\n', (7628, 7640), False, 'from sklearn.base import clone\n'), ((8807, 8833), 'numpy.mean', 'np.mean', (['cv_roc_auc_scores'], {}), '(cv_roc_auc_scores)\n', (8814, 8833), True, 'import numpy as np\n'), ((9291, 9317), 'numpy.mean', 'np.mean', (['cv_roc_auc_scores'], {}), '(cv_roc_auc_scores)\n', (9298, 9317), True, 'import numpy as np\n'), ((8172, 8218), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['self.ys_val[index]', 'predictions'], {}), '(self.ys_val[index], predictions)\n', (8185, 8218), False, 'from sklearn.metrics import roc_auc_score\n'), ((3345, 3394), 'pandas.get_dummies', 'pd.get_dummies', (["self.processed_train_df['emails']"], {}), "(self.processed_train_df['emails'])\n", (3359, 3394), True, 'import pandas as pd\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jan 8 22:09:19 2017 @author: LinZhang """ # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range import numpy as np def reformat(dataset, labels): dataset = dataset.reshape( (-1, image_size, image_size, num_channels)).astype(np.float32) labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32) return dataset, labels def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # def initial variables: def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # def basic operation in cnn: def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') image_size = 28 num_labels = 10 num_channels = 1 # grayscale batch_size = 16 #patch_size = 5 # not really used, finetune your network for fun! #depth = 16 # not really used, finetune your network for fun! num_hidden = 1024 pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # a small network with two convolutional layers, followed by one fully connected layer graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) keep_prob = tf.placeholder(tf.float32) # Variables. layer1_weights = weight_variable([3, 3, num_channels, 8]) # conv kernel layer1_biases = bias_variable([8]) layer2_weights = weight_variable([3, 3, 8, 16]) # conv kernel layer2_biases = bias_variable([16]) layer3_weights = weight_variable([image_size // 4 * image_size // 4 * 16, num_hidden]) layer3_biases = bias_variable([num_hidden]) layer4_weights = weight_variable([num_hidden, num_labels]) layer4_biases = bias_variable([num_labels]) # Model. def model(data,use_dropout = False): # convolution layer 1 conv1 = conv2d(data, layer1_weights) hidden1 = tf.nn.relu(conv1 + layer1_biases) hidden1_pool = max_pool_2x2(hidden1) # convolution layer 2 conv2 = conv2d(hidden1_pool, layer2_weights) hidden2 = tf.nn.relu(conv2 + layer2_biases) hidden2_pool = max_pool_2x2(hidden2) # full connection layer shape = hidden2_pool.get_shape().as_list() reshape = tf.reshape(hidden2_pool, [shape[0], shape[1] * shape[2] * shape[3]]) hidden3 = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) # dropout if (use_dropout): return tf.matmul(tf.nn.dropout(hidden3,keep_prob), layer4_weights) + layer4_biases else: return tf.matmul(hidden3, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset,use_dropout = True) # only training uses dropout loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # learning rate decay global_step = tf.Variable(0, trainable=False) starter_learning_rate = 0.1 learning_rate = tf.train.exponential_decay(0.05, global_step, 100, 0.95, staircase=True) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) num_steps = 1001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset: batch_data, tf_train_labels: batch_labels, keep_prob:0.5} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 100 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
[ "numpy.argmax", "tensorflow.reshape", "tensorflow.matmul", "tensorflow.Variable", "numpy.arange", "tensorflow.nn.conv2d", "tensorflow.truncated_normal", "tensorflow.nn.softmax", "tensorflow.nn.relu", "six.moves.range", "tensorflow.nn.softmax_cross_entropy_with_logits", "tensorflow.placeholder", "tensorflow.initialize_all_variables", "tensorflow.Session", "tensorflow.constant", "tensorflow.nn.max_pool", "tensorflow.Graph", "six.moves.cPickle.load", "tensorflow.train.GradientDescentOptimizer", "tensorflow.train.exponential_decay", "tensorflow.nn.dropout" ]
[((2536, 2546), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2544, 2546), True, 'import tensorflow as tf\n'), ((844, 882), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.1)'}), '(shape, stddev=0.1)\n', (863, 882), True, 'import tensorflow as tf\n'), ((894, 914), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (905, 914), True, 'import tensorflow as tf\n'), ((957, 986), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': 'shape'}), '(0.1, shape=shape)\n', (968, 986), True, 'import tensorflow as tf\n'), ((998, 1018), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (1009, 1018), True, 'import tensorflow as tf\n'), ((1079, 1135), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x', 'W'], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(x, W, strides=[1, 1, 1, 1], padding='SAME')\n", (1091, 1135), True, 'import tensorflow as tf\n'), ((1170, 1245), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['x'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (1184, 1245), True, 'import tensorflow as tf\n'), ((1553, 1567), 'six.moves.cPickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1564, 1567), True, 'from six.moves import cPickle as pickle\n'), ((2614, 2702), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(batch_size, image_size, image_size, num_channels)'}), '(tf.float32, shape=(batch_size, image_size, image_size,\n num_channels))\n', (2628, 2702), True, 'import tensorflow as tf\n'), ((2730, 2788), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(batch_size, num_labels)'}), '(tf.float32, shape=(batch_size, num_labels))\n', (2744, 2788), True, 'import tensorflow as tf\n'), ((2812, 2838), 'tensorflow.constant', 'tf.constant', (['valid_dataset'], {}), '(valid_dataset)\n', (2823, 2838), True, 'import tensorflow as tf\n'), ((2861, 2886), 'tensorflow.constant', 'tf.constant', (['test_dataset'], {}), '(test_dataset)\n', (2872, 2886), True, 'import tensorflow as tf\n'), ((2903, 2929), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (2917, 2929), True, 'import tensorflow as tf\n'), ((4616, 4647), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)'}), '(0, trainable=False)\n', (4627, 4647), True, 'import tensorflow as tf\n'), ((4700, 4772), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['(0.05)', 'global_step', '(100)', '(0.95)'], {'staircase': '(True)'}), '(0.05, global_step, 100, 0.95, staircase=True)\n', (4726, 4772), True, 'import tensorflow as tf\n'), ((5005, 5026), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (5018, 5026), True, 'import tensorflow as tf\n'), ((5177, 5200), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (5187, 5200), True, 'import tensorflow as tf\n'), ((5294, 5310), 'six.moves.range', 'range', (['num_steps'], {}), '(num_steps)\n', (5299, 5310), False, 'from six.moves import range\n'), ((3591, 3624), 'tensorflow.nn.relu', 'tf.nn.relu', (['(conv1 + layer1_biases)'], {}), '(conv1 + layer1_biases)\n', (3601, 3624), True, 'import tensorflow as tf\n'), ((3780, 3813), 'tensorflow.nn.relu', 'tf.nn.relu', (['(conv2 + layer2_biases)'], {}), '(conv2 + layer2_biases)\n', (3790, 3813), True, 'import tensorflow as tf\n'), ((3969, 4037), 'tensorflow.reshape', 'tf.reshape', (['hidden2_pool', '[shape[0], shape[1] * shape[2] * shape[3]]'], {}), '(hidden2_pool, [shape[0], shape[1] * shape[2] * shape[3]])\n', (3979, 4037), True, 'import tensorflow as tf\n'), ((4492, 4570), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'labels': 'tf_train_labels', 'logits': 'logits'}), '(labels=tf_train_labels, logits=logits)\n', (4531, 4570), True, 'import tensorflow as tf\n'), ((4854, 4902), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (4887, 4902), True, 'import tensorflow as tf\n'), ((5217, 5246), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (5244, 5246), True, 'import tensorflow as tf\n'), ((537, 558), 'numpy.arange', 'np.arange', (['num_labels'], {}), '(num_labels)\n', (546, 558), True, 'import numpy as np\n'), ((4067, 4101), 'tensorflow.matmul', 'tf.matmul', (['reshape', 'layer3_weights'], {}), '(reshape, layer3_weights)\n', (4076, 4101), True, 'import tensorflow as tf\n'), ((4291, 4325), 'tensorflow.matmul', 'tf.matmul', (['hidden3', 'layer4_weights'], {}), '(hidden3, layer4_weights)\n', (4300, 4325), True, 'import tensorflow as tf\n'), ((689, 714), 'numpy.argmax', 'np.argmax', (['predictions', '(1)'], {}), '(predictions, 1)\n', (698, 714), True, 'import numpy as np\n'), ((718, 738), 'numpy.argmax', 'np.argmax', (['labels', '(1)'], {}), '(labels, 1)\n', (727, 738), True, 'import numpy as np\n'), ((4192, 4225), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['hidden3', 'keep_prob'], {}), '(hidden3, keep_prob)\n', (4205, 4225), True, 'import tensorflow as tf\n')]
import os import random from contextlib import contextmanager from typing import Generator import numpy as np import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import config, ops DIGITS = frozenset(str(i) for i in range(10)) @contextmanager def tensorflow_random_state(seed: int) -> Generator[None, None, None]: # Save values origin_gpu_det = os.environ.get("TF_DETERMINISTIC_OPS", None) orig_random_state = random.getstate() orig_np_random_state = np.random.get_state() if context.executing_eagerly(): tf_random_seed = context.global_seed() else: tf_random_seed = ops.get_default_graph().seed determism_enabled = config.is_op_determinism_enabled() config.enable_op_determinism() # Set values os.environ["TF_DETERMINISTIC_OPS"] = "1" random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) yield # Reset values if origin_gpu_det is not None: os.environ["TF_DETERMINISTIC_OPS"] = origin_gpu_det else: os.environ.pop("TF_DETERMINISTIC_OPS") random.setstate(orig_random_state) np.random.set_state(orig_np_random_state) tf.random.set_seed(tf_random_seed) if not determism_enabled: config.disable_op_determinism()
[ "tensorflow.random.set_seed", "tensorflow.python.framework.config.is_op_determinism_enabled", "numpy.random.seed", "numpy.random.get_state", "tensorflow.python.framework.config.enable_op_determinism", "tensorflow.python.eager.context.global_seed", "tensorflow.python.framework.ops.get_default_graph", "numpy.random.set_state", "os.environ.get", "tensorflow.python.eager.context.executing_eagerly", "random.seed", "random.setstate", "os.environ.pop", "tensorflow.python.framework.config.disable_op_determinism", "random.getstate" ]
[((409, 453), 'os.environ.get', 'os.environ.get', (['"""TF_DETERMINISTIC_OPS"""', 'None'], {}), "('TF_DETERMINISTIC_OPS', None)\n", (423, 453), False, 'import os\n'), ((478, 495), 'random.getstate', 'random.getstate', ([], {}), '()\n', (493, 495), False, 'import random\n'), ((523, 544), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (542, 544), True, 'import numpy as np\n'), ((552, 579), 'tensorflow.python.eager.context.executing_eagerly', 'context.executing_eagerly', ([], {}), '()\n', (577, 579), False, 'from tensorflow.python.eager import context\n'), ((717, 751), 'tensorflow.python.framework.config.is_op_determinism_enabled', 'config.is_op_determinism_enabled', ([], {}), '()\n', (749, 751), False, 'from tensorflow.python.framework import config, ops\n'), ((756, 786), 'tensorflow.python.framework.config.enable_op_determinism', 'config.enable_op_determinism', ([], {}), '()\n', (784, 786), False, 'from tensorflow.python.framework import config, ops\n'), ((854, 871), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (865, 871), False, 'import random\n'), ((876, 896), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (890, 896), True, 'import numpy as np\n'), ((901, 925), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (919, 925), True, 'import tensorflow as tf\n'), ((1113, 1147), 'random.setstate', 'random.setstate', (['orig_random_state'], {}), '(orig_random_state)\n', (1128, 1147), False, 'import random\n'), ((1152, 1193), 'numpy.random.set_state', 'np.random.set_state', (['orig_np_random_state'], {}), '(orig_np_random_state)\n', (1171, 1193), True, 'import numpy as np\n'), ((1198, 1232), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['tf_random_seed'], {}), '(tf_random_seed)\n', (1216, 1232), True, 'import tensorflow as tf\n'), ((606, 627), 'tensorflow.python.eager.context.global_seed', 'context.global_seed', ([], {}), '()\n', (625, 627), False, 'from tensorflow.python.eager import context\n'), ((1070, 1108), 'os.environ.pop', 'os.environ.pop', (['"""TF_DETERMINISTIC_OPS"""'], {}), "('TF_DETERMINISTIC_OPS')\n", (1084, 1108), False, 'import os\n'), ((1271, 1302), 'tensorflow.python.framework.config.disable_op_determinism', 'config.disable_op_determinism', ([], {}), '()\n', (1300, 1302), False, 'from tensorflow.python.framework import config, ops\n'), ((663, 686), 'tensorflow.python.framework.ops.get_default_graph', 'ops.get_default_graph', ([], {}), '()\n', (684, 686), False, 'from tensorflow.python.framework import config, ops\n')]
""" Search using NASA CMR """ from __future__ import division, unicode_literals, print_function, absolute_import import json import logging import requests import numpy as np _logger = logging.getLogger(__name__) from podpac.core.utils import _get_from_url CMR_URL = r"https://cmr.earthdata.nasa.gov/search/" def get_collection_entries(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve metadata about a collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list: A list of collection metadata dictionaries Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ base_url = CMR_URL + "collections.json?" if short_name is not None: kwargs["short_name"] = short_name if keyword is not None: kwargs["keyword"] = keyword query_string = "&".join([k + "=" + v for k, v in kwargs.items()]) # use generic requests session if `session` is not defined if session is None: session = requests pydict = _get_from_url(base_url + query_string, session).json() entries = pydict["feed"]["entry"] return entries def get_collection_id(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve collection id Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list A list of collection id's (ideally only one) Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ entries = get_collection_entries(session=session, short_name=short_name, keyword=keyword, **kwargs) if len(entries) > 1: _logger.warning("Found more than 1 entry for collection_id search") collection_id = [e["id"] for e in entries] return collection_id def search_granule_json(session=None, entry_map=None, **kwargs): """Search for specific files from NASA CMR for a particular collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session entry_map: function A function applied to each individual entry. Could be used to filter out certain data in an entry **kwargs: dict Additional query string parameters. At minimum the provider, provider_id, concept_id, collection_concept_id, short_name, version, or entry_title need to be provided for a granule search. Returns --------- list Entries for each granule in the collection based on the search terms """ base_url = CMR_URL + "granules.json?" if not np.any( [ m not in kwargs for m in [ "provider", "provider_id", "concept_id", "collection_concept_id", "short_name", "version", "entry_title", ] ] ): raise ValueError( "Need to provide either" " provider, provider_id, concept_id, collection_concept_id, short_name, version or entry_title" " for granule search." ) if "page_size" not in kwargs: kwargs["page_size"] = "2000" if entry_map is None: entry_map = lambda x: x query_string = "&".join([k + "=" + str(v) for k, v in kwargs.items()]) if session is None: session = requests url = base_url + query_string if "page_num" not in kwargs: entries = _get_all_granule_pages(session, url, entry_map) else: pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) return entries def _get_all_granule_pages(session, url, entry_map, max_paging_depth=1000000): """Helper function for searching through all pages for a collection. Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session url: str URL to website entry_map: function Function for mapping the entries to a desired format max_paging_depth """ page_size = int([q for q in url.split("?")[1].split("&") if "page_size" in q][0].split("=")[1]) max_pages = int(max_paging_depth / page_size) pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) for i in range(1, max_pages): page_url = url + "&page_num=%d" % (i + 1) page_entries = _get_from_url(page_url, session).json()["feed"]["entry"] if not page_entries: break entries.extend(list(map(entry_map, page_entries))) return entries
[ "numpy.any", "podpac.core.utils._get_from_url", "logging.getLogger" ]
[((188, 215), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (205, 215), False, 'import logging\n'), ((3485, 3632), 'numpy.any', 'np.any', (["[(m not in kwargs) for m in ['provider', 'provider_id', 'concept_id',\n 'collection_concept_id', 'short_name', 'version', 'entry_title']]"], {}), "([(m not in kwargs) for m in ['provider', 'provider_id', 'concept_id',\n 'collection_concept_id', 'short_name', 'version', 'entry_title']])\n", (3491, 3632), True, 'import numpy as np\n'), ((1500, 1547), 'podpac.core.utils._get_from_url', '_get_from_url', (['(base_url + query_string)', 'session'], {}), '(base_url + query_string, session)\n', (1513, 1547), False, 'from podpac.core.utils import _get_from_url\n'), ((5155, 5182), 'podpac.core.utils._get_from_url', '_get_from_url', (['url', 'session'], {}), '(url, session)\n', (5168, 5182), False, 'from podpac.core.utils import _get_from_url\n'), ((4439, 4466), 'podpac.core.utils._get_from_url', '_get_from_url', (['url', 'session'], {}), '(url, session)\n', (4452, 4466), False, 'from podpac.core.utils import _get_from_url\n'), ((5358, 5390), 'podpac.core.utils._get_from_url', '_get_from_url', (['page_url', 'session'], {}), '(page_url, session)\n', (5371, 5390), False, 'from podpac.core.utils import _get_from_url\n')]
#!/usr/bin/env # -*- coding: utf-8 -*- # Copyright (C) <NAME> - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by <NAME> <<EMAIL>>, January 2017 import os import numpy as np import pandas as pd import scipy.io as sio import utils.datasets as utils # --------------------------------------------------------------- # data set paths __data_path = "{}/data/NMR_40wines.mat".format(os.path.split(__file__)[0]) __pickle_path = "{}/cache/nmr_wine.pickle".format(os.path.split(__file__)[0]) # --------------------------------------------------------------- # TODO: Add docstring with usage examples (see 'uv_fuel' data set) @utils.load_data_from_pickle(__pickle_path) def load_nmr_wines(): """Loads the NMR Wines data set. Returns: A Pandas DataFrame with all the data set info. Examples: >>> ds = load_nmr_wines() >>> ds['wine_data'].shape (40, 8729) >>> ds['wine_ints'].shape (22, 1) """ # loading matlab data set object raw_data = sio.loadmat(__data_path) # validating loaded data if raw_data is None: raise Exception('Error while loading 1H-NMR Wines data.') # getting features labels features_labels = raw_data['ppm'][0].tolist() # getting properties labels props_labels = list(map(lambda x: x[0], raw_data['Label'][0])) # getting samples data data = raw_data['X'] # getting properties data props_data = raw_data['Y'] # creating the wine data set all_data = np.hstack([data, props_data]) all_labels = range(all_data.shape[0]) all_features = features_labels + props_labels wine_ds = utils.build_data_set(all_data.tolist(), all_labels, all_features) # ---------------------- wine_ints_data = raw_data['wine_ints'][0] wine_ints_ds = pd.DataFrame(wine_ints_data) # ---------------------- # the final data set ds = { 'wine_data': wine_ds, 'wine_ints': wine_ints_ds, } # returning the final data set return ds
[ "pandas.DataFrame", "scipy.io.loadmat", "numpy.hstack", "utils.datasets.load_data_from_pickle", "os.path.split" ]
[((717, 759), 'utils.datasets.load_data_from_pickle', 'utils.load_data_from_pickle', (['__pickle_path'], {}), '(__pickle_path)\n', (744, 759), True, 'import utils.datasets as utils\n'), ((1102, 1126), 'scipy.io.loadmat', 'sio.loadmat', (['__data_path'], {}), '(__data_path)\n', (1113, 1126), True, 'import scipy.io as sio\n'), ((1593, 1622), 'numpy.hstack', 'np.hstack', (['[data, props_data]'], {}), '([data, props_data])\n', (1602, 1622), True, 'import numpy as np\n'), ((1891, 1919), 'pandas.DataFrame', 'pd.DataFrame', (['wine_ints_data'], {}), '(wine_ints_data)\n', (1903, 1919), True, 'import pandas as pd\n'), ((472, 495), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (485, 495), False, 'import os\n'), ((551, 574), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (564, 574), False, 'import os\n')]
#!/usr/bin/env python3 import numpy as np import pickle from PIL import Image w = pickle.load(open("weights1000.pkl", "rb")) def Classify(example): return w.dot(example) #Seems to get 2, 3, 4 correct... for i in range(0, 5): image = Image.open("test_images/{}.jpg".format(i)).convert("L") x = np.asarray(image.getdata()) x = (255 - x)/255 x = np.r_[x, 1] y = Classify(x) print(y) print("Actual: {} Classification: {}".format(i, np.argmax(y)))
[ "numpy.argmax" ]
[((464, 476), 'numpy.argmax', 'np.argmax', (['y'], {}), '(y)\n', (473, 476), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # # Tests for ``sim.py`` # These tests were hand calculated by <NAME>: <EMAIL> # from clusim.clustering import Clustering import clusim.sim as sim from clusim.dag import DAG import clusim.clusimelement as clusimelement from numpy.testing import assert_approx_equal from numpy import mean def test_comparison_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [1]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [2]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) N11, N10, N01, N00 = sim.count_pairwise_cooccurence(c1, c2) assert N11 == 2, "Element Co-occurance counts for N11 does not match. %s != %s" % (N11, 2) assert N10 == 2, "Element Co-occurance counts for N10 does not match. %s != %s" % (N10, 2) assert N01 == 1, "Element Co-occurance counts for N01 does not match. %s != %s" % (N01, 1) assert N00 == 10, "Element Co-occurance counts for N00 does not match. %s != %s" % (N00, 10) known_sim_values = {'jaccard_index': 0.4, 'rand_index': 0.8, 'fowlkes_mallows_index': 0.5773502691896258, 'rogers_tanimoto_index': 2./3., 'southwood_index': 2./3., 'czekanowski_index': 0.5714285714285714, 'dice_index': 0.5714285714285714, 'sorensen_index': 0.5714285714285714, 'pearson_correlation': 0.011363636363636364, 'classification_error': 0.16666666666666674, 'purity_index': 0.8333333333333333, 'fmeasure': 0.5714285714285714, 'nmi': 0.7396673768007593, 'vi': 0.792481250360578, 'geometric_accuracy': 0.8333333333333334, 'overlap_quality': 0.0, 'onmi': 0.7449589906475155, 'omega_index': 0.44444444444444453 } for simfunc in sim.available_similarity_measures: simvalue = eval('sim.' + simfunc+'(c1, c2)') assert simvalue == known_sim_values[simfunc], "Similarity Measure %s does not match. %s != %s" % (simfunc, simvalue, known_sim_values[simfunc]) def test_model_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [1]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) known_rand_values = {'perm': 0.5, 'perm1': 0.5, 'num': 0.510204081632653, 'num1': 0.5, 'all': 0.555555555555556, 'all1': 0.5 } known_mi_values = {'perm': 0.311278124459133, 'perm1': 0.311278124459133, 'num': 0.309927805548467, 'num1': 0.301825892084476, 'all': 0.611635721962606, 'all1': 0.419448541053684 } for rdm in sim.available_random_models: exp_rand_value = sim.expected_rand_index(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm ) assert_approx_equal(exp_rand_value, known_rand_values[rdm], 10**(-10), "Expected Rand Index with %s Random Model does not match. %s != %s" % (rdm, exp_rand_value, known_rand_values[rdm])) exp_mi_value = sim.expected_mi(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm, logbase=2.) assert_approx_equal(exp_mi_value, known_mi_values[rdm], 10**(-10), "Expected MI with %s Random Model does not match. %s != %s" % (rdm, exp_mi_value, known_mi_values[rdm]) ) def test_elementsim_example(): # taken from Fig 3 of Gates et al (2018) Scientific Reports # overlapping clustering c1_elm2clu_dict = {0: [0], 1: [0], 2: [0], 3: [1], 4: [1], 5: [1, 2], 6: [2]} # hierarchical clustering c2_elm2clu_dict = {0: [1], 1: [1], 2: [2], 3: [5], 4: [5], 5: [6, 8], 6: [9]} c2_dag = DAG() c2_dag.add_edges_from([(0, 1), (0, 2), (3, 4), (4, 5), (4, 6), (3, 7), (7, 8), (7, 9)]) c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict, hier_graph=c2_dag) known_elsim = [0.92875658, 0.92875658, 0.85751315, 0.25717544, 0.74282456, 0.82083876, 0.80767074] elsim, ellabels = clusimelement.element_sim_elscore(c1, c2, alpha=0.9, r=1., r2=None, rescale_path_type='max') for i in range(7): assert_approx_equal(elsim[i], known_elsim[i], 10**(-10), "Element-centric similarity for element %s does not match. %s != %s" % (i, elsim[i], known_elsim[i]) ) if __name__ == "__main__": test_comparison_example() test_model_example() test_elementsim_example()
[ "clusim.sim.expected_mi", "clusim.sim.expected_rand_index", "clusim.clusimelement.element_sim_elscore", "clusim.dag.DAG", "clusim.clustering.Clustering", "numpy.testing.assert_approx_equal", "clusim.sim.count_pairwise_cooccurence" ]
[((499, 539), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (509, 539), False, 'from clusim.clustering import Clustering\n'), ((549, 589), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict'}), '(elm2clu_dict=c2_elm2clu_dict)\n', (559, 589), False, 'from clusim.clustering import Clustering\n'), ((616, 654), 'clusim.sim.count_pairwise_cooccurence', 'sim.count_pairwise_cooccurence', (['c1', 'c2'], {}), '(c1, c2)\n', (646, 654), True, 'import clusim.sim as sim\n'), ((2501, 2541), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (2511, 2541), False, 'from clusim.clustering import Clustering\n'), ((2551, 2591), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict'}), '(elm2clu_dict=c2_elm2clu_dict)\n', (2561, 2591), False, 'from clusim.clustering import Clustering\n'), ((4906, 4911), 'clusim.dag.DAG', 'DAG', ([], {}), '()\n', (4909, 4911), False, 'from clusim.dag import DAG\n'), ((5014, 5054), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (5024, 5054), False, 'from clusim.clustering import Clustering\n'), ((5064, 5123), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict', 'hier_graph': 'c2_dag'}), '(elm2clu_dict=c2_elm2clu_dict, hier_graph=c2_dag)\n', (5074, 5123), False, 'from clusim.clustering import Clustering\n'), ((5251, 5348), 'clusim.clusimelement.element_sim_elscore', 'clusimelement.element_sim_elscore', (['c1', 'c2'], {'alpha': '(0.9)', 'r': '(1.0)', 'r2': 'None', 'rescale_path_type': '"""max"""'}), "(c1, c2, alpha=0.9, r=1.0, r2=None,\n rescale_path_type='max')\n", (5284, 5348), True, 'import clusim.clusimelement as clusimelement\n'), ((3268, 3460), 'clusim.sim.expected_rand_index', 'sim.expected_rand_index', ([], {'n_elements': 'c1.n_elements', 'n_clusters1': 'c1.n_clusters', 'n_clusters2': 'c2.n_clusters', 'clu_size_seq1': 'c1.clu_size_seq', 'clu_size_seq2': 'c2.clu_size_seq', 'random_model': 'rdm'}), '(n_elements=c1.n_elements, n_clusters1=c1.n_clusters,\n n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2\n =c2.clu_size_seq, random_model=rdm)\n', (3291, 3460), True, 'import clusim.sim as sim\n'), ((3755, 3952), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['exp_rand_value', 'known_rand_values[rdm]', '(10 ** -10)', "('Expected Rand Index with %s Random Model does not match. %s != %s' % (rdm,\n exp_rand_value, known_rand_values[rdm]))"], {}), "(exp_rand_value, known_rand_values[rdm], 10 ** -10, \n 'Expected Rand Index with %s Random Model does not match. %s != %s' % (\n rdm, exp_rand_value, known_rand_values[rdm]))\n", (3774, 3952), False, 'from numpy.testing import assert_approx_equal\n'), ((3967, 4164), 'clusim.sim.expected_mi', 'sim.expected_mi', ([], {'n_elements': 'c1.n_elements', 'n_clusters1': 'c1.n_clusters', 'n_clusters2': 'c2.n_clusters', 'clu_size_seq1': 'c1.clu_size_seq', 'clu_size_seq2': 'c2.clu_size_seq', 'random_model': 'rdm', 'logbase': '(2.0)'}), '(n_elements=c1.n_elements, n_clusters1=c1.n_clusters,\n n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2\n =c2.clu_size_seq, random_model=rdm, logbase=2.0)\n', (3982, 4164), True, 'import clusim.sim as sim\n'), ((4397, 4577), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['exp_mi_value', 'known_mi_values[rdm]', '(10 ** -10)', "('Expected MI with %s Random Model does not match. %s != %s' % (rdm,\n exp_mi_value, known_mi_values[rdm]))"], {}), "(exp_mi_value, known_mi_values[rdm], 10 ** -10, \n 'Expected MI with %s Random Model does not match. %s != %s' % (rdm,\n exp_mi_value, known_mi_values[rdm]))\n", (4416, 4577), False, 'from numpy.testing import assert_approx_equal\n'), ((5376, 5543), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['elsim[i]', 'known_elsim[i]', '(10 ** -10)', "('Element-centric similarity for element %s does not match. %s != %s' % (i,\n elsim[i], known_elsim[i]))"], {}), "(elsim[i], known_elsim[i], 10 ** -10, \n 'Element-centric similarity for element %s does not match. %s != %s' %\n (i, elsim[i], known_elsim[i]))\n", (5395, 5543), False, 'from numpy.testing import assert_approx_equal\n')]
import numpy as np import scipy as sp import scipy.spatial import matplotlib as mpl import matplotlib.path from ..kernels.high_level.cauchy import Cauchy_Layer_Apply from ..point_set import PointSet def find_interior_points(source, target, boundary_acceptable=False): """ quick finding of which points in target are outside vs. inside """ # first exclude things outside of bounding box xmin = source.x.min() xmax = source.x.max() ymin = source.y.min() ymax = source.y.max() in_bounding_box = np.logical_and.reduce([ target.x > xmin, target.x < xmax, target.y > ymin, target.y < ymax]) out_bounding_box = np.logical_not(in_bounding_box) small_targ = PointSet(c=target.c[in_bounding_box]) small_targ.compute_tree() wn = np.zeros(target.N, dtype=complex) wn[out_bounding_box] = 0.0 # compute winding number via cauchy sums wn[in_bounding_box] = Cauchy_Layer_Apply(source, small_targ, \ dipstr=np.ones(source.N)).real wn = np.abs(wn) bad = np.logical_or(np.isnan(wn), np.isinf(wn)) good = np.logical_not(bad) big = np.zeros_like(wn) big[good] = wn[good] > 1e5 bad = np.logical_or(big, bad) wn[bad] = 1.0 # get region where that sum was not accurate enough dist = source.tolerance_to_distance(1e-2) q = target.find_near_points(source, dist).ravel() # phys array, good except in near boundary region wn[q] = 0.0 phys = wn > 0.5 # brute force search poly = mpl.path.Path(source.get_stacked_boundary(T=False)) xq = target.x[q] yq = target.y[q] tq = np.column_stack([xq, yq]) interior = poly.contains_points(tq) phys[q] = interior phys[bad] = boundary_acceptable ext = np.logical_not(phys) return phys, ext
[ "numpy.zeros_like", "numpy.abs", "numpy.logical_not", "numpy.zeros", "numpy.logical_and.reduce", "numpy.isnan", "numpy.isinf", "numpy.ones", "numpy.logical_or", "numpy.column_stack" ]
[((530, 626), 'numpy.logical_and.reduce', 'np.logical_and.reduce', (['[target.x > xmin, target.x < xmax, target.y > ymin, target.y < ymax]'], {}), '([target.x > xmin, target.x < xmax, target.y > ymin, \n target.y < ymax])\n', (551, 626), True, 'import numpy as np\n'), ((692, 723), 'numpy.logical_not', 'np.logical_not', (['in_bounding_box'], {}), '(in_bounding_box)\n', (706, 723), True, 'import numpy as np\n'), ((818, 851), 'numpy.zeros', 'np.zeros', (['target.N'], {'dtype': 'complex'}), '(target.N, dtype=complex)\n', (826, 851), True, 'import numpy as np\n'), ((1083, 1093), 'numpy.abs', 'np.abs', (['wn'], {}), '(wn)\n', (1089, 1093), True, 'import numpy as np\n'), ((1157, 1176), 'numpy.logical_not', 'np.logical_not', (['bad'], {}), '(bad)\n', (1171, 1176), True, 'import numpy as np\n'), ((1187, 1204), 'numpy.zeros_like', 'np.zeros_like', (['wn'], {}), '(wn)\n', (1200, 1204), True, 'import numpy as np\n'), ((1246, 1269), 'numpy.logical_or', 'np.logical_or', (['big', 'bad'], {}), '(big, bad)\n', (1259, 1269), True, 'import numpy as np\n'), ((1673, 1698), 'numpy.column_stack', 'np.column_stack', (['[xq, yq]'], {}), '([xq, yq])\n', (1688, 1698), True, 'import numpy as np\n'), ((1808, 1828), 'numpy.logical_not', 'np.logical_not', (['phys'], {}), '(phys)\n', (1822, 1828), True, 'import numpy as np\n'), ((1118, 1130), 'numpy.isnan', 'np.isnan', (['wn'], {}), '(wn)\n', (1126, 1130), True, 'import numpy as np\n'), ((1132, 1144), 'numpy.isinf', 'np.isinf', (['wn'], {}), '(wn)\n', (1140, 1144), True, 'import numpy as np\n'), ((1050, 1067), 'numpy.ones', 'np.ones', (['source.N'], {}), '(source.N)\n', (1057, 1067), True, 'import numpy as np\n')]
import os.path as osp import os import time from collections import defaultdict import numpy as np import tensorflow as tf import moviepy.editor as mpy import tqdm from contextlib import contextmanager from mpi4py import MPI import imageio from baselines import logger import baselines.common.tf_util as U from baselines.common import colorize from baselines.common.mpi_adam import MpiAdam import dataset def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_] class GlobalTrainer(object): def __init__(self, name, env, runner, policy, config): self._name = name self._env = env.unwrapped self._runner = runner self._config = config self._policy = policy self._is_chef = (MPI.COMM_WORLD.Get_rank() == 0) # global step self.global_step = tf.Variable(0, name='global_step', dtype=tf.int64, trainable=False) self._update_global_step = tf.assign(self.global_step, self.global_step + 1) # tensorboard summary self.summary_name = ['global/length', 'global/reward', 'global/success'] # build loss/optimizers self._build_distillation() def _build_distillation(self): config = self._config pi = self._policy self._global_norm = U.function( [], tf.global_norm([tf.cast(var, tf.float32) for var in pi.get_variables()])) # policy update ac = pi.pdtype.sample_placeholder([None]) pol_var_list = [v for v in pi.get_trainable_variables() if 'pol' in v.name] self._pol_adam = MpiAdam(pol_var_list) pol_loss = tf.reduce_mean(pi.pd.neglogp(ac)) #pol_loss = tf.reduce_mean(tf.square(pi.pd.sample() - ac)) fetch_dict = { 'loss': pol_loss, 'g': U.flatgrad(pol_loss, pol_var_list, clip_norm=config.global_max_grad_norm) } self._pol_loss = U.function([ac] + pi.ob, fetch_dict) self.summary_name += ['global/loss', 'global/grad_norm', 'global/global_norm'] # value update if config.global_vf: ret = tf.placeholder(dtype=tf.float32, shape=[None], name='return') vf_var_list = [v for v in pi.get_trainable_variables() if 'vf' in v.name] self._vf_adam = MpiAdam(vf_var_list) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) fetch_dict = { 'vf_loss': vf_loss, 'vf_g': U.flatgrad(vf_loss, vf_var_list, clip_norm=config.global_max_grad_norm) } self._vf_loss = U.function([ret] + pi.ob, fetch_dict) self.summary_name += ['global/vf_loss', 'global/vf_grad_norm'] # initialize and sync U.initialize() self._pol_adam.sync() if config.global_vf: self._vf_adam.sync() if config.debug: logger.log("[worker: {} global] Init param sum".format(MPI.COMM_WORLD.Get_rank()), self._adam.getflat().sum()) @contextmanager def timed(self, msg): if self._is_chef: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def update(self, step, ob, ac, ret=None): info = defaultdict(list) config = self._config sess = U.get_session() global_step = sess.run(self.global_step) sess.run(self._update_global_step) pi = self._policy ob_dict = self._env.get_ob_dict(ob) if self._config.obs_norm == 'learn': for ob_name in pi.ob_type: pi.ob_rms[ob_name].update(ob_dict[ob_name]) with self.timed("update global network"): for _ in range(self._config.global_iters): # policy network for (mb_ob, mb_ac) in dataset.iterbatches( (ob, ac), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._pol_loss(mb_ac, *ob_list) loss, g = fetched['loss'], fetched['g'] self._pol_adam.update(g, self._config.global_stepsize) info['global/loss'].append(np.mean(loss)) info['global/grad_norm'].append(np.linalg.norm(g)) if config.global_vf: # value network for (mb_ob, mb_ret) in dataset.iterbatches( (ob, ret), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._vf_loss(mb_ret, *ob_list) vf_loss, vf_g = fetched['vf_loss'], fetched['vf_g'] self._vf_adam.update(vf_g, self._config.global_stepsize) info['global/vf_loss'].append(np.mean(vf_loss)) info['global/vf_grad_norm'].append(np.linalg.norm(vf_g)) for key, value in info.items(): info[key] = np.mean(value) info['global/global_norm'] = self._global_norm() return info def summary(self, it): info = self.evaluate(it, record=self._config.training_video_record) # save checkpoint if it % self._config.ckpt_save_step == 0: fname = osp.join(self._config.log_dir, '%.5d' % it) U.save_state(fname) return info def evaluate(self, ckpt_num=None, record=False): config = self._config ep_lens = [] ep_rets = [] ep_success = [] if record: record_dir = osp.join(config.log_dir, 'video') os.makedirs(record_dir, exist_ok=True) for _ in tqdm.trange(10): ep_traj = self._runner.rollout(True, True) ep_lens.append(ep_traj["ep_length"][0]) ep_rets.append(ep_traj["ep_reward"][0]) ep_success.append(ep_traj["ep_success"][0]) logger.log('[{}] Trial #{}: lengths {}, returns {}'.format( self._name, _, ep_traj["ep_length"][0], ep_traj["ep_reward"][0])) # Video recording if record: visual_obs = ep_traj["visual_ob"] video_name = '{}{}_{}{}.{}'.format(config.video_prefix or '', self._name, '' if ckpt_num is None else 'ckpt_{}_'.format(ckpt_num), _, config.video_format) video_path = osp.join(record_dir, video_name) if config.video_format == 'mp4': fps = 60. def f(t): frame_length = len(visual_obs) new_fps = 1./(1./fps + 1./frame_length) idx = min(int(t*new_fps), frame_length-1) return visual_obs[idx] video = mpy.VideoClip(f, duration=len(visual_obs)/fps+2) video.write_videofile(video_path, fps, verbose=False) elif config.video_format == 'gif': imageio.mimsave(video_path, visual_obs, fps=100) logger.log('[{}] Episode Length: {}'.format(self._name, np.mean(ep_lens))) logger.log('[{}] Episode Rewards: {}'.format(self._name, np.mean(ep_rets))) return {'global/length': np.mean(ep_lens), 'global/reward': np.mean(ep_rets), 'global/success': np.mean(ep_success)}
[ "baselines.common.mpi_adam.MpiAdam", "baselines.common.tf_util.get_session", "baselines.common.tf_util.initialize", "collections.defaultdict", "tensorflow.assign", "tensorflow.Variable", "numpy.mean", "numpy.linalg.norm", "os.path.join", "imageio.mimsave", "baselines.common.tf_util.function", "dataset.iterbatches", "tensorflow.placeholder", "tensorflow.cast", "baselines.common.tf_util.flatgrad", "baselines.common.tf_util.save_state", "tqdm.trange", "mpi4py.MPI.COMM_WORLD.Get_rank", "baselines.common.colorize", "os.makedirs", "time.time", "tensorflow.square" ]
[((847, 914), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'dtype': 'tf.int64', 'trainable': '(False)'}), "(0, name='global_step', dtype=tf.int64, trainable=False)\n", (858, 914), True, 'import tensorflow as tf\n'), ((950, 999), 'tensorflow.assign', 'tf.assign', (['self.global_step', '(self.global_step + 1)'], {}), '(self.global_step, self.global_step + 1)\n', (959, 999), True, 'import tensorflow as tf\n'), ((1587, 1608), 'baselines.common.mpi_adam.MpiAdam', 'MpiAdam', (['pol_var_list'], {}), '(pol_var_list)\n', (1594, 1608), False, 'from baselines.common.mpi_adam import MpiAdam\n'), ((1936, 1972), 'baselines.common.tf_util.function', 'U.function', (['([ac] + pi.ob)', 'fetch_dict'], {}), '([ac] + pi.ob, fetch_dict)\n', (1946, 1972), True, 'import baselines.common.tf_util as U\n'), ((2780, 2794), 'baselines.common.tf_util.initialize', 'U.initialize', ([], {}), '()\n', (2792, 2794), True, 'import baselines.common.tf_util as U\n'), ((3395, 3412), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3406, 3412), False, 'from collections import defaultdict\n'), ((3458, 3473), 'baselines.common.tf_util.get_session', 'U.get_session', ([], {}), '()\n', (3471, 3473), True, 'import baselines.common.tf_util as U\n'), ((5968, 5983), 'tqdm.trange', 'tqdm.trange', (['(10)'], {}), '(10)\n', (5979, 5983), False, 'import tqdm\n'), ((765, 790), 'mpi4py.MPI.COMM_WORLD.Get_rank', 'MPI.COMM_WORLD.Get_rank', ([], {}), '()\n', (788, 790), False, 'from mpi4py import MPI\n'), ((1799, 1872), 'baselines.common.tf_util.flatgrad', 'U.flatgrad', (['pol_loss', 'pol_var_list'], {'clip_norm': 'config.global_max_grad_norm'}), '(pol_loss, pol_var_list, clip_norm=config.global_max_grad_norm)\n', (1809, 1872), True, 'import baselines.common.tf_util as U\n'), ((2131, 2192), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None]', 'name': '"""return"""'}), "(dtype=tf.float32, shape=[None], name='return')\n", (2145, 2192), True, 'import tensorflow as tf\n'), ((2307, 2327), 'baselines.common.mpi_adam.MpiAdam', 'MpiAdam', (['vf_var_list'], {}), '(vf_var_list)\n', (2314, 2327), False, 'from baselines.common.mpi_adam import MpiAdam\n'), ((2628, 2665), 'baselines.common.tf_util.function', 'U.function', (['([ret] + pi.ob)', 'fetch_dict'], {}), '([ret] + pi.ob, fetch_dict)\n', (2638, 2665), True, 'import baselines.common.tf_util as U\n'), ((3179, 3190), 'time.time', 'time.time', ([], {}), '()\n', (3188, 3190), False, 'import time\n'), ((5279, 5293), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (5286, 5293), True, 'import numpy as np\n'), ((5572, 5615), 'os.path.join', 'osp.join', (['self._config.log_dir', "('%.5d' % it)"], {}), "(self._config.log_dir, '%.5d' % it)\n", (5580, 5615), True, 'import os.path as osp\n'), ((5628, 5647), 'baselines.common.tf_util.save_state', 'U.save_state', (['fname'], {}), '(fname)\n', (5640, 5647), True, 'import baselines.common.tf_util as U\n'), ((5865, 5898), 'os.path.join', 'osp.join', (['config.log_dir', '"""video"""'], {}), "(config.log_dir, 'video')\n", (5873, 5898), True, 'import os.path as osp\n'), ((5911, 5949), 'os.makedirs', 'os.makedirs', (['record_dir'], {'exist_ok': '(True)'}), '(record_dir, exist_ok=True)\n', (5922, 5949), False, 'import os\n'), ((7526, 7542), 'numpy.mean', 'np.mean', (['ep_lens'], {}), '(ep_lens)\n', (7533, 7542), True, 'import numpy as np\n'), ((7577, 7593), 'numpy.mean', 'np.mean', (['ep_rets'], {}), '(ep_rets)\n', (7584, 7593), True, 'import numpy as np\n'), ((7629, 7648), 'numpy.mean', 'np.mean', (['ep_success'], {}), '(ep_success)\n', (7636, 7648), True, 'import numpy as np\n'), ((2365, 2390), 'tensorflow.square', 'tf.square', (['(pi.vpred - ret)'], {}), '(pi.vpred - ret)\n', (2374, 2390), True, 'import tensorflow as tf\n'), ((2479, 2550), 'baselines.common.tf_util.flatgrad', 'U.flatgrad', (['vf_loss', 'vf_var_list'], {'clip_norm': 'config.global_max_grad_norm'}), '(vf_loss, vf_var_list, clip_norm=config.global_max_grad_norm)\n', (2489, 2550), True, 'import baselines.common.tf_util as U\n'), ((3126, 3156), 'baselines.common.colorize', 'colorize', (['msg'], {'color': '"""magenta"""'}), "(msg, color='magenta')\n", (3134, 3156), False, 'from baselines.common import colorize\n'), ((3959, 4071), 'dataset.iterbatches', 'dataset.iterbatches', (['(ob, ac)'], {'include_final_partial_batch': '(False)', 'batch_size': 'self._config.global_batch_size'}), '((ob, ac), include_final_partial_batch=False, batch_size\n =self._config.global_batch_size)\n', (3978, 4071), False, 'import dataset\n'), ((6678, 6710), 'os.path.join', 'osp.join', (['record_dir', 'video_name'], {}), '(record_dir, video_name)\n', (6686, 6710), True, 'import os.path as osp\n'), ((7390, 7406), 'numpy.mean', 'np.mean', (['ep_lens'], {}), '(ep_lens)\n', (7397, 7406), True, 'import numpy as np\n'), ((7474, 7490), 'numpy.mean', 'np.mean', (['ep_rets'], {}), '(ep_rets)\n', (7481, 7490), True, 'import numpy as np\n'), ((1345, 1369), 'tensorflow.cast', 'tf.cast', (['var', 'tf.float32'], {}), '(var, tf.float32)\n', (1352, 1369), True, 'import tensorflow as tf\n'), ((2979, 3004), 'mpi4py.MPI.COMM_WORLD.Get_rank', 'MPI.COMM_WORLD.Get_rank', ([], {}), '()\n', (3002, 3004), False, 'from mpi4py import MPI\n'), ((4616, 4728), 'dataset.iterbatches', 'dataset.iterbatches', (['(ob, ret)'], {'include_final_partial_batch': '(False)', 'batch_size': 'self._config.global_batch_size'}), '((ob, ret), include_final_partial_batch=False,\n batch_size=self._config.global_batch_size)\n', (4635, 4728), False, 'import dataset\n'), ((4413, 4426), 'numpy.mean', 'np.mean', (['loss'], {}), '(loss)\n', (4420, 4426), True, 'import numpy as np\n'), ((4480, 4497), 'numpy.linalg.norm', 'np.linalg.norm', (['g'], {}), '(g)\n', (4494, 4497), True, 'import numpy as np\n'), ((7276, 7324), 'imageio.mimsave', 'imageio.mimsave', (['video_path', 'visual_obs'], {'fps': '(100)'}), '(video_path, visual_obs, fps=100)\n', (7291, 7324), False, 'import imageio\n'), ((3260, 3271), 'time.time', 'time.time', ([], {}), '()\n', (3269, 3271), False, 'import time\n'), ((5116, 5132), 'numpy.mean', 'np.mean', (['vf_loss'], {}), '(vf_loss)\n', (5123, 5132), True, 'import numpy as np\n'), ((5193, 5213), 'numpy.linalg.norm', 'np.linalg.norm', (['vf_g'], {}), '(vf_g)\n', (5207, 5213), True, 'import numpy as np\n')]
import pymc as pm import matplotlib.pyplot as plt import numpy as np plt.rc('font', family='Malgun Gothic') lambda_ = pm.Exponential("poisson_param", 1) data_generator = pm.Poisson("data_generater", lambda_) data_plus_one = data_generator + 1 print(lambda_.children) print(data_generator.parents) # value print(lambda_.value) betas = pm.Uniform("betas", 0, 1, size=5) betas.value ## random ld1 = pm.Exponential("lambda_1", 1) # first ํ–‰๋™์˜ prior ld2 = pm.Exponential("lambda_2", 1) # second ํ–‰๋™์˜ prior tau = pm.DiscreteUniform("tau", lower=0, upper=10) # ํ–‰๋™ ๋ณ€ํ™”์— ๋Œ€ํ•œ prior print("init") print(ld1.value) print(ld2.value) print(tau.value) print(ld1.random(), ld2.random(), tau.random()) print("random call") print(ld1.value) print(ld2.value) print(tau.value) n_data_points = 5 @pm.deterministic def labmda_(tau=tau, lambda_1=ld1, lambda_2=ld2): out = np.zeros(n_data_points) out[:tau] = lambda_1 out[tau:] = lambda_2 return out #################################################### #### ๋ชจ๋ธ์— ๊ด€์ธก ํฌํ•จ #### figsize = (12.5, 4) plt.figure(figsize=figsize) plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 300 samples = [ld1.random() for i in range(20000)] plt.hist(samples, bins=70, normed=True, histtype="stepfilled") plt.xlim(0, 8) plt.show() # ๊ณ ์ • ๋ฐธ๋ฅ˜ data = np.array([10, 25, 15, 20, 35]) obs = pm.Poisson("obs", lambda_, value=data, observed=True) obs.value ################## ##### ๋ชจ๋ธ๋ง ##### tau = pm.rdiscrete_uniform(0, 80) alpha = 1./20. lambda_1, lambda_2 = pm.rexponential(alpha, 2) lambda_ = np.r_[lambda_1*np.ones(tau), lambda_2*np.ones(80-tau)] data = pm.rpoisson(lambda_) plt.bar(np.arange(80), data, color="#348ABD") plt.bar(tau-1, data[tau-1], color='r', label='ํ–‰๋™๋ณ€ํ™”') plt.xlable("time") plt.ylabel("message") plt.xlim(0, 80) plt.legend()
[ "pymc.Poisson", "matplotlib.pyplot.bar", "numpy.ones", "matplotlib.pyplot.figure", "numpy.arange", "pymc.rexponential", "pymc.rpoisson", "matplotlib.pyplot.rc", "pymc.DiscreteUniform", "pymc.Exponential", "matplotlib.pyplot.show", "pymc.Uniform", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlable", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "pymc.rdiscrete_uniform", "matplotlib.pyplot.hist", "numpy.zeros", "numpy.array" ]
[((70, 108), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""Malgun Gothic"""'}), "('font', family='Malgun Gothic')\n", (76, 108), True, 'import matplotlib.pyplot as plt\n'), ((119, 153), 'pymc.Exponential', 'pm.Exponential', (['"""poisson_param"""', '(1)'], {}), "('poisson_param', 1)\n", (133, 153), True, 'import pymc as pm\n'), ((171, 208), 'pymc.Poisson', 'pm.Poisson', (['"""data_generater"""', 'lambda_'], {}), "('data_generater', lambda_)\n", (181, 208), True, 'import pymc as pm\n'), ((338, 371), 'pymc.Uniform', 'pm.Uniform', (['"""betas"""', '(0)', '(1)'], {'size': '(5)'}), "('betas', 0, 1, size=5)\n", (348, 371), True, 'import pymc as pm\n'), ((401, 430), 'pymc.Exponential', 'pm.Exponential', (['"""lambda_1"""', '(1)'], {}), "('lambda_1', 1)\n", (415, 430), True, 'import pymc as pm\n'), ((455, 484), 'pymc.Exponential', 'pm.Exponential', (['"""lambda_2"""', '(1)'], {}), "('lambda_2', 1)\n", (469, 484), True, 'import pymc as pm\n'), ((510, 554), 'pymc.DiscreteUniform', 'pm.DiscreteUniform', (['"""tau"""'], {'lower': '(0)', 'upper': '(10)'}), "('tau', lower=0, upper=10)\n", (528, 554), True, 'import pymc as pm\n'), ((1041, 1068), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (1051, 1068), True, 'import matplotlib.pyplot as plt\n'), ((1183, 1245), 'matplotlib.pyplot.hist', 'plt.hist', (['samples'], {'bins': '(70)', 'normed': '(True)', 'histtype': '"""stepfilled"""'}), "(samples, bins=70, normed=True, histtype='stepfilled')\n", (1191, 1245), True, 'import matplotlib.pyplot as plt\n'), ((1246, 1260), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(8)'], {}), '(0, 8)\n', (1254, 1260), True, 'import matplotlib.pyplot as plt\n'), ((1261, 1271), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1269, 1271), True, 'import matplotlib.pyplot as plt\n'), ((1289, 1319), 'numpy.array', 'np.array', (['[10, 25, 15, 20, 35]'], {}), '([10, 25, 15, 20, 35])\n', (1297, 1319), True, 'import numpy as np\n'), ((1326, 1379), 'pymc.Poisson', 'pm.Poisson', (['"""obs"""', 'lambda_'], {'value': 'data', 'observed': '(True)'}), "('obs', lambda_, value=data, observed=True)\n", (1336, 1379), True, 'import pymc as pm\n'), ((1433, 1460), 'pymc.rdiscrete_uniform', 'pm.rdiscrete_uniform', (['(0)', '(80)'], {}), '(0, 80)\n', (1453, 1460), True, 'import pymc as pm\n'), ((1497, 1522), 'pymc.rexponential', 'pm.rexponential', (['alpha', '(2)'], {}), '(alpha, 2)\n', (1512, 1522), True, 'import pymc as pm\n'), ((1595, 1615), 'pymc.rpoisson', 'pm.rpoisson', (['lambda_'], {}), '(lambda_)\n', (1606, 1615), True, 'import pymc as pm\n'), ((1662, 1718), 'matplotlib.pyplot.bar', 'plt.bar', (['(tau - 1)', 'data[tau - 1]'], {'color': '"""r"""', 'label': '"""ํ–‰๋™๋ณ€ํ™”"""'}), "(tau - 1, data[tau - 1], color='r', label='ํ–‰๋™๋ณ€ํ™”')\n", (1669, 1718), True, 'import matplotlib.pyplot as plt\n'), ((1715, 1733), 'matplotlib.pyplot.xlable', 'plt.xlable', (['"""time"""'], {}), "('time')\n", (1725, 1733), True, 'import matplotlib.pyplot as plt\n'), ((1734, 1755), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""message"""'], {}), "('message')\n", (1744, 1755), True, 'import matplotlib.pyplot as plt\n'), ((1756, 1771), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(80)'], {}), '(0, 80)\n', (1764, 1771), True, 'import matplotlib.pyplot as plt\n'), ((1772, 1784), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1782, 1784), True, 'import matplotlib.pyplot as plt\n'), ((858, 881), 'numpy.zeros', 'np.zeros', (['n_data_points'], {}), '(n_data_points)\n', (866, 881), True, 'import numpy as np\n'), ((1624, 1637), 'numpy.arange', 'np.arange', (['(80)'], {}), '(80)\n', (1633, 1637), True, 'import numpy as np\n'), ((1548, 1560), 'numpy.ones', 'np.ones', (['tau'], {}), '(tau)\n', (1555, 1560), True, 'import numpy as np\n'), ((1571, 1588), 'numpy.ones', 'np.ones', (['(80 - tau)'], {}), '(80 - tau)\n', (1578, 1588), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib2tikz.save as tikz_save import math def derivative(y, h, n: int=1): if n == 1: return lambda x: (y(x + h) - y(x - h)) / (2 * h) else: return derivative(derivative(y, h, n - 1), h, 1) def integral(y, h, a, b): ret = 0 sgn = 1 if a > b: sgn = -1 a, b = b, a if abs(b - a) < h: h *= abs(b - a) for i in np.arange(a, b, h): ret += y(i) * h return ret * sgn def fourier(y, h, n, a, b): L = (b - a) / 2 a_0 = integral(y, h, a, b) / (2 * L) a_n = [0] * n b_n = [0] * n for i in range(1, n + 1): a_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.cos(i * np.pi * x / L), h, a, b) b_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.sin(i * np.pi * x / L), h, a, b) return lambda x: fouriereval(x, a_0, a_n, b_n, L) def fouriereval(x, a_0, a_n, b_n, l): ret = a_0 for i in range(1, len(a_n) + 1): ret += a_n[i - 1] * np.cos(i * np.pi * x / l) ret += b_n[i - 1] * np.sin(i * np.pi * x / l) return ret # def f(x): # if x > 2: # return f(x - 4) # if x < -2: # return f(x + 4) # return ((x**3) - 4 * x) / 4 # def f(x): # if x < -1: # return f(x + 2) # if x > 1: # return f(x - 2) # return -1 if x < 0 else 1 def fx(x, n): if n == 1: return np.sin(x) return fx(np.sin(x) * np.pi / 2, n - 1) # def f(x): # return np.cos(np.tan(np.sin(x))) def sirc(x): return np.sqrt(1 - x**2) def f(x): if x < -2: return f(x + 4) if x > 2: return f(x - 4) if x < 0: return -sirc(x + 1) else: return sirc(x - 1) h = 0.001 x = np.arange(-4, 4, 0.01) # kr = lambda x: derivative(f, h, 2)(x) / ((1 + derivative(f, h)(x)**2)**(3 / 2)) # dkr = derivative(kr, h) # dy = derivative(f, h) fr = fourier(f, h, 101, -2, 2) plt.plot(x, np.vectorize(f)(x)) # plt.plot(x, np.vectorize(kr)(x)) # plt.plot(x, np.vectorize(dkr)(x)) # plt.plot(x, np.vectorize(dy)(x)) plt.plot(x, np.vectorize(fr)(x)) plt.axis([-4, 4, -5, 5]) plt.title("$f(x)$") plt.grid(True) tikz_save("PyPlotTesting/Figurer/" + "f" + str(1) + ".tikz", figureheight='\\figureheight', figurewidth='\\figurewidth')
[ "matplotlib.pyplot.title", "numpy.vectorize", "matplotlib.pyplot.axis", "numpy.sin", "numpy.arange", "numpy.cos", "matplotlib.pyplot.grid", "numpy.sqrt" ]
[((1563, 1585), 'numpy.arange', 'np.arange', (['(-4)', '(4)', '(0.01)'], {}), '(-4, 4, 0.01)\n', (1572, 1585), True, 'import numpy as np\n'), ((1926, 1950), 'matplotlib.pyplot.axis', 'plt.axis', (['[-4, 4, -5, 5]'], {}), '([-4, 4, -5, 5])\n', (1934, 1950), True, 'import matplotlib.pyplot as plt\n'), ((1952, 1971), 'matplotlib.pyplot.title', 'plt.title', (['"""$f(x)$"""'], {}), "('$f(x)$')\n", (1961, 1971), True, 'import matplotlib.pyplot as plt\n'), ((1973, 1987), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1981, 1987), True, 'import matplotlib.pyplot as plt\n'), ((394, 412), 'numpy.arange', 'np.arange', (['a', 'b', 'h'], {}), '(a, b, h)\n', (403, 412), True, 'import numpy as np\n'), ((1396, 1415), 'numpy.sqrt', 'np.sqrt', (['(1 - x ** 2)'], {}), '(1 - x ** 2)\n', (1403, 1415), True, 'import numpy as np\n'), ((1273, 1282), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1279, 1282), True, 'import numpy as np\n'), ((1766, 1781), 'numpy.vectorize', 'np.vectorize', (['f'], {}), '(f)\n', (1778, 1781), True, 'import numpy as np\n'), ((1904, 1920), 'numpy.vectorize', 'np.vectorize', (['fr'], {}), '(fr)\n', (1916, 1920), True, 'import numpy as np\n'), ((927, 952), 'numpy.cos', 'np.cos', (['(i * np.pi * x / l)'], {}), '(i * np.pi * x / l)\n', (933, 952), True, 'import numpy as np\n'), ((975, 1000), 'numpy.sin', 'np.sin', (['(i * np.pi * x / l)'], {}), '(i * np.pi * x / l)\n', (981, 1000), True, 'import numpy as np\n'), ((1294, 1303), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1300, 1303), True, 'import numpy as np\n'), ((644, 669), 'numpy.cos', 'np.cos', (['(i * np.pi * x / L)'], {}), '(i * np.pi * x / L)\n', (650, 669), True, 'import numpy as np\n'), ((731, 756), 'numpy.sin', 'np.sin', (['(i * np.pi * x / L)'], {}), '(i * np.pi * x / L)\n', (737, 756), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- ''' Custom theano class to query the search engine. ''' import numpy as np import theano from theano import gof from theano import tensor import parameters as prm import utils import average_precision import random class Search(theano.Op): __props__ = () def __init__(self,options): self.options = options self.options['reformulated_queries'] = {} def make_node(self, x1, x2, x3, x4): assert hasattr(self, '_props'), "Your version of theano is too old to support __props__." x1 = tensor.as_tensor_variable(x1) x2 = tensor.as_tensor_variable(x2) x3 = tensor.as_tensor_variable(x3) x4 = tensor.as_tensor_variable(x4) out = [tensor.fmatrix().type(), tensor.itensor3().type(), tensor.imatrix().type(), tensor.fmatrix().type()] return theano.Apply(self, [x1, x2, x3, x4], out) def perform(self, node, inputs, output_storage): q_m = inputs[0] D_truth = inputs[1] n_iter = int(inputs[2]) is_train = int(inputs[3]) #outputs metrics = np.zeros((len(q_m), len(prm.metrics_map)), np.float32) if is_train: max_feedback_docs = prm.max_feedback_docs_train else: max_feedback_docs = prm.max_feedback_docs D_i = -2 * np.ones((len(q_m), max_feedback_docs, prm.max_words_input), np.int32) D_gt_m = np.zeros((len(q_m), prm.max_candidates), np.float32) D_id = np.zeros((len(q_m), prm.max_candidates), np.int32) # no need to retrieve extra terms in the last iteration if n_iter == prm.n_iterations - 1: extra_terms = False else: extra_terms = True # allow the search engine to cache queries only in the first iteration. if n_iter == 0: save_cache = prm.use_cache else: save_cache = False max_cand = prm.max_candidates qs = [] for i, q_lst in enumerate(self.options['current_queries']): q = [] for j, word in enumerate(q_lst): if q_m[i,j] == 1: q.append(str(word)) q = ' '.join(q) if len(q) == 0: q = 'dummy' qs.append(q) # only used to print the reformulated queries. self.options['reformulated_queries'][n_iter] = qs # always return one more candidate because one of them might be the input doc. candss = self.options['engine'].get_candidates(qs, max_cand, prm.max_feedback_docs, save_cache, extra_terms) for i, cands in enumerate(candss): D_truth_dic = {} for d_truth in D_truth[i]: if d_truth > -1: D_truth_dic[d_truth] = 0 D_id[i,:len(cands.keys())] = cands.keys() j = 0 m = 0 cand_ids = [] selected_docs = np.arange(prm.max_feedback_docs) if is_train: selected_docs = np.random.choice(selected_docs, size=prm.max_feedback_docs_train, replace=False) for k, (cand_id, (words_idx, words)) in enumerate(cands.items()): cand_ids.append(cand_id) # no need to add candidate words in the last iteration. if n_iter < prm.n_iterations - 1: # only add docs selected by sampling (if training). if k in selected_docs: words = words[:prm.max_terms_per_doc] words_idx = words_idx[:prm.max_terms_per_doc] D_i[i,m,:len(words_idx)] = words_idx # append empty strings, so the list size becomes <dim>. words = words + max(0, prm.max_words_input - len(words)) * [''] # append new words to the list of current queries. self.options['current_queries'][i] += words m += 1 if cand_id in D_truth_dic: D_gt_m[i,j] = 1. j += 1 cands_set = set(cands.keys()) if qs[i].lower() in self.options['engine'].title_id_map: input_doc_id = self.options['engine'].title_id_map[qs[i].lower()] # Remove input doc from returned docs. # This operation does not raise an error if the element is not there. cands_set.discard(input_doc_id) intersec = len(set(D_truth_dic.keys()) & cands_set) recall = intersec / max(1., float(len(D_truth_dic))) precision = intersec / max(1., float(prm.max_candidates)) metrics[i,prm.metrics_map['RECALL']] = recall metrics[i,prm.metrics_map['PRECISION']] = precision metrics[i,prm.metrics_map['F1']] = 2 * recall * precision / max(0.01, recall + precision) avg_precision = average_precision.compute(D_truth_dic.keys(), cand_ids) metrics[i,prm.metrics_map['MAP']] = avg_precision metrics[i,prm.metrics_map['LOG-GMAP']] = np.log(avg_precision + 1e-5) output_storage[0][0] = metrics output_storage[1][0] = D_i output_storage[2][0] = D_id output_storage[3][0] = D_gt_m def grad(self, inputs, output_grads): return [tensor.zeros_like(ii, dtype=theano.config.floatX) for ii in inputs]
[ "theano.tensor.as_tensor_variable", "numpy.log", "theano.tensor.itensor3", "theano.Apply", "theano.tensor.imatrix", "theano.tensor.zeros_like", "numpy.arange", "theano.tensor.fmatrix", "numpy.random.choice" ]
[((554, 583), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x1'], {}), '(x1)\n', (579, 583), False, 'from theano import tensor\n'), ((597, 626), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x2'], {}), '(x2)\n', (622, 626), False, 'from theano import tensor\n'), ((640, 669), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x3'], {}), '(x3)\n', (665, 669), False, 'from theano import tensor\n'), ((683, 712), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x4'], {}), '(x4)\n', (708, 712), False, 'from theano import tensor\n'), ((845, 886), 'theano.Apply', 'theano.Apply', (['self', '[x1, x2, x3, x4]', 'out'], {}), '(self, [x1, x2, x3, x4], out)\n', (857, 886), False, 'import theano\n'), ((2934, 2966), 'numpy.arange', 'np.arange', (['prm.max_feedback_docs'], {}), '(prm.max_feedback_docs)\n', (2943, 2966), True, 'import numpy as np\n'), ((5171, 5200), 'numpy.log', 'np.log', (['(avg_precision + 1e-05)'], {}), '(avg_precision + 1e-05)\n', (5177, 5200), True, 'import numpy as np\n'), ((5408, 5457), 'theano.tensor.zeros_like', 'tensor.zeros_like', (['ii'], {'dtype': 'theano.config.floatX'}), '(ii, dtype=theano.config.floatX)\n', (5425, 5457), False, 'from theano import tensor\n'), ((3025, 3110), 'numpy.random.choice', 'np.random.choice', (['selected_docs'], {'size': 'prm.max_feedback_docs_train', 'replace': '(False)'}), '(selected_docs, size=prm.max_feedback_docs_train, replace=False\n )\n', (3041, 3110), True, 'import numpy as np\n'), ((728, 744), 'theano.tensor.fmatrix', 'tensor.fmatrix', ([], {}), '()\n', (742, 744), False, 'from theano import tensor\n'), ((753, 770), 'theano.tensor.itensor3', 'tensor.itensor3', ([], {}), '()\n', (768, 770), False, 'from theano import tensor\n'), ((779, 795), 'theano.tensor.imatrix', 'tensor.imatrix', ([], {}), '()\n', (793, 795), False, 'from theano import tensor\n'), ((804, 820), 'theano.tensor.fmatrix', 'tensor.fmatrix', ([], {}), '()\n', (818, 820), False, 'from theano import tensor\n')]
"""Helper methods for Module 2.""" import errno import glob import os.path import pickle import time import calendar import numpy import pandas import matplotlib.colors import matplotlib.pyplot as pyplot import sklearn.metrics import sklearn.linear_model import sklearn.tree import sklearn.ensemble from module_4 import roc_curves from module_4 import performance_diagrams as perf_diagrams from module_4 import attributes_diagrams as attr_diagrams # Directories. MODULE2_DIR_NAME = '.' SHORT_COURSE_DIR_NAME = '..' DEFAULT_FEATURE_DIR_NAME = ( '{0:s}/data/track_data_ncar_ams_3km_csv_small' ).format(SHORT_COURSE_DIR_NAME) # Variable names. METADATA_COLUMNS = [ 'Step_ID', 'Track_ID', 'Ensemble_Name', 'Ensemble_Member', 'Run_Date', 'Valid_Date', 'Forecast_Hour', 'Valid_Hour_UTC' ] EXTRANEOUS_COLUMNS = [ 'Duration', 'Centroid_Lon', 'Centroid_Lat', 'Centroid_X', 'Centroid_Y', 'Storm_Motion_U', 'Storm_Motion_V', 'Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape', 'Location', 'Scale' ] TARGET_NAME = 'RVORT1_MAX-future_max' BINARIZED_TARGET_NAME = 'strong_future_rotation_flag' NUM_VALUES_KEY = 'num_values' MEAN_VALUE_KEY = 'mean_value' MEAN_OF_SQUARES_KEY = 'mean_of_squares' MAE_KEY = 'mean_absolute_error' MSE_KEY = 'mean_squared_error' MEAN_BIAS_KEY = 'mean_bias' MAE_SKILL_SCORE_KEY = 'mae_skill_score' MSE_SKILL_SCORE_KEY = 'mse_skill_score' MAX_PEIRCE_SCORE_KEY = 'max_peirce_score' AUC_KEY = 'area_under_roc_curve' MAX_CSI_KEY = 'max_csi' BRIER_SCORE_KEY = 'brier_score' BRIER_SKILL_SCORE_KEY = 'brier_skill_score' # Plotting constants. DEFAULT_FIG_WIDTH_INCHES = 10 DEFAULT_FIG_HEIGHT_INCHES = 10 SMALL_FIG_WIDTH_INCHES = 10 SMALL_FIG_HEIGHT_INCHES = 10 FIGURE_RESOLUTION_DPI = 300 BAR_GRAPH_COLOUR = numpy.array([27, 158, 119], dtype=float) / 255 BAR_GRAPH_EDGE_WIDTH = 2 BAR_GRAPH_FONT_SIZE = 14 BAR_GRAPH_FONT_COLOUR = numpy.array([217, 95, 2], dtype=float) / 255 FONT_SIZE = 20 pyplot.rc('font', size=FONT_SIZE) pyplot.rc('axes', titlesize=FONT_SIZE) pyplot.rc('axes', labelsize=FONT_SIZE) pyplot.rc('xtick', labelsize=FONT_SIZE) pyplot.rc('ytick', labelsize=FONT_SIZE) pyplot.rc('legend', fontsize=FONT_SIZE) pyplot.rc('figure', titlesize=FONT_SIZE) # Misc constants. DATE_FORMAT = '%Y%m%d' DATE_FORMAT_REGEX = '[0-9][0-9][0-9][0-9][0-1][0-9][0-3][0-9]' RANDOM_SEED = 6695 LAMBDA_TOLERANCE = 1e-10 def time_string_to_unix(time_string, time_format): """Converts time from string to Unix format. Unix format = seconds since 0000 UTC 1 Jan 1970. :param time_string: Time string. :param time_format: Format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: unix_time_sec: Time in Unix format. """ return calendar.timegm(time.strptime(time_string, time_format)) def time_unix_to_string(unix_time_sec, time_format): """Converts time from Unix format to string. Unix format = seconds since 0000 UTC 1 Jan 1970. :param unix_time_sec: Time in Unix format. :param time_format: Desired format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: time_string: Time string. """ return time.strftime(time_format, time.gmtime(unix_time_sec)) def _remove_future_data(predictor_table): """Removes future data from predictors. :param predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: predictor_table: Same but with fewer columns. """ predictor_names = list(predictor_table) columns_to_remove = [p for p in predictor_names if 'future' in p] return predictor_table.drop(columns_to_remove, axis=1, inplace=False) def _feature_file_name_to_date(csv_file_name): """Parses date from name of feature (CSV) file. :param csv_file_name: Path to input file. :return: date_string: Date (format "yyyymmdd"). """ pathless_file_name = os.path.split(csv_file_name)[-1] date_string = pathless_file_name.replace( 'track_step_NCARSTORM_d01_', '' ).replace('-0000.csv', '') # Verify. time_string_to_unix(time_string=date_string, time_format=DATE_FORMAT) return date_string def find_many_feature_files(first_date_string, last_date_string, feature_dir_name=DEFAULT_FEATURE_DIR_NAME): """Finds feature files in the given date range. :param first_date_string: First date ("yyyymmdd") in range. :param last_date_string: Last date ("yyyymmdd") in range. :param feature_dir_name: Name of directory with feature (CSV) files. :return: csv_file_names: 1-D list of paths to feature files. """ first_time_unix_sec = time_string_to_unix( time_string=first_date_string, time_format=DATE_FORMAT) last_time_unix_sec = time_string_to_unix( time_string=last_date_string, time_format=DATE_FORMAT) csv_file_pattern = '{0:s}/track_step_NCARSTORM_d01_{1:s}-0000.csv'.format( feature_dir_name, DATE_FORMAT_REGEX) csv_file_names = glob.glob(csv_file_pattern) csv_file_names.sort() file_date_strings = [_feature_file_name_to_date(f) for f in csv_file_names] file_times_unix_sec = numpy.array([ time_string_to_unix(time_string=d, time_format=DATE_FORMAT) for d in file_date_strings ], dtype=int) good_indices = numpy.where(numpy.logical_and( file_times_unix_sec >= first_time_unix_sec, file_times_unix_sec <= last_time_unix_sec ))[0] return [csv_file_names[k] for k in good_indices] def read_feature_file(csv_file_name): """Reads features from CSV file. :param csv_file_name: Path to input file. :return: metadata_table: pandas DataFrame with metadata. Each row is one storm object. :return: predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: target_table: pandas DataFrame with target values. Each row is one storm object. """ predictor_table = pandas.read_csv(csv_file_name, header=0, sep=',') predictor_table.drop(EXTRANEOUS_COLUMNS, axis=1, inplace=True) metadata_table = predictor_table[METADATA_COLUMNS] predictor_table.drop(METADATA_COLUMNS, axis=1, inplace=True) target_table = predictor_table[[TARGET_NAME]] predictor_table.drop([TARGET_NAME], axis=1, inplace=True) predictor_table = _remove_future_data(predictor_table) return metadata_table, predictor_table, target_table def read_many_feature_files(csv_file_names): """Reads features from many CSV files. :param csv_file_names: 1-D list of paths to input files. :return: metadata_table: See doc for `read_feature_file`. :return: predictor_table: Same. :return: target_table: Same. """ num_files = len(csv_file_names) list_of_metadata_tables = [pandas.DataFrame()] * num_files list_of_predictor_tables = [pandas.DataFrame()] * num_files list_of_target_tables = [pandas.DataFrame()] * num_files for i in range(num_files): print('Reading data from: "{0:s}"...'.format(csv_file_names[i])) (list_of_metadata_tables[i], list_of_predictor_tables[i], list_of_target_tables[i] ) = read_feature_file(csv_file_names[i]) if i == 0: continue list_of_metadata_tables[i] = list_of_metadata_tables[i].align( list_of_metadata_tables[0], axis=1 )[0] list_of_predictor_tables[i] = list_of_predictor_tables[i].align( list_of_predictor_tables[0], axis=1 )[0] list_of_target_tables[i] = list_of_target_tables[i].align( list_of_target_tables[0], axis=1 )[0] metadata_table = pandas.concat( list_of_metadata_tables, axis=0, ignore_index=True) predictor_table = pandas.concat( list_of_predictor_tables, axis=0, ignore_index=True) target_table = pandas.concat( list_of_target_tables, axis=0, ignore_index=True) return metadata_table, predictor_table, target_table def _update_normalization_params(intermediate_normalization_dict, new_values): """Updates normalization params for one predictor. :param intermediate_normalization_dict: Dictionary with the following keys. intermediate_normalization_dict['num_values']: Number of values on which current estimates are based. intermediate_normalization_dict['mean_value']: Current estimate for mean. intermediate_normalization_dict['mean_of_squares']: Current mean of squared values. :param new_values: numpy array of new values (will be used to update `intermediate_normalization_dict`). :return: intermediate_normalization_dict: Same as input but with updated values. """ if MEAN_VALUE_KEY not in intermediate_normalization_dict: intermediate_normalization_dict = { NUM_VALUES_KEY: 0, MEAN_VALUE_KEY: 0., MEAN_OF_SQUARES_KEY: 0. } these_means = numpy.array([ intermediate_normalization_dict[MEAN_VALUE_KEY], numpy.mean(new_values) ]) these_weights = numpy.array([ intermediate_normalization_dict[NUM_VALUES_KEY], new_values.size ]) intermediate_normalization_dict[MEAN_VALUE_KEY] = numpy.average( these_means, weights=these_weights) these_means = numpy.array([ intermediate_normalization_dict[MEAN_OF_SQUARES_KEY], numpy.mean(new_values ** 2) ]) intermediate_normalization_dict[MEAN_OF_SQUARES_KEY] = numpy.average( these_means, weights=these_weights) intermediate_normalization_dict[NUM_VALUES_KEY] += new_values.size return intermediate_normalization_dict def _get_standard_deviation(intermediate_normalization_dict): """Computes stdev from intermediate normalization params. :param intermediate_normalization_dict: See doc for `_update_normalization_params`. :return: standard_deviation: Standard deviation. """ num_values = float(intermediate_normalization_dict[NUM_VALUES_KEY]) multiplier = num_values / (num_values - 1) return numpy.sqrt(multiplier * ( intermediate_normalization_dict[MEAN_OF_SQUARES_KEY] - intermediate_normalization_dict[MEAN_VALUE_KEY] ** 2 )) def get_normalization_params(csv_file_names): """Computes normalization params (mean and stdev) for each predictor. :param csv_file_names: 1-D list of paths to input files. :return: normalization_dict: See input doc for `normalize_images`. """ predictor_names = None norm_dict_by_predictor = None for this_file_name in csv_file_names: print('Reading data from: "{0:s}"...'.format(this_file_name)) this_predictor_table = read_feature_file(this_file_name)[1] if predictor_names is None: predictor_names = list(this_predictor_table) norm_dict_by_predictor = [{}] * len(predictor_names) for m in range(len(predictor_names)): norm_dict_by_predictor[m] = _update_normalization_params( intermediate_normalization_dict=norm_dict_by_predictor[m], new_values=this_predictor_table[predictor_names[m]].values ) print('\n') normalization_dict = {} for m in range(len(predictor_names)): this_mean = norm_dict_by_predictor[m][MEAN_VALUE_KEY] this_stdev = _get_standard_deviation(norm_dict_by_predictor[m]) normalization_dict[predictor_names[m]] = numpy.array( [this_mean, this_stdev] ) message_string = ( 'Mean and standard deviation for "{0:s}" = {1:.4f}, {2:.4f}' ).format(predictor_names[m], this_mean, this_stdev) print(message_string) return normalization_dict def normalize_predictors(predictor_table, normalization_dict=None): """Normalizes predictors to z-scores. :param predictor_table: See doc for `read_feature_file`. :param normalization_dict: Dictionary. Each key is the name of a predictor value, and the corresponding value is a length-2 numpy array with [mean, standard deviation]. If `normalization_dict is None`, mean and standard deviation will be computed for each predictor. :return: predictor_table: Normalized version of input. :return: normalization_dict: See doc for input variable. If input was None, this will be a newly created dictionary. Otherwise, this will be the same dictionary passed as input. """ predictor_names = list(predictor_table) num_predictors = len(predictor_names) if normalization_dict is None: normalization_dict = {} for m in range(num_predictors): this_mean = numpy.mean(predictor_table[predictor_names[m]].values) this_stdev = numpy.std( predictor_table[predictor_names[m]].values, ddof=1 ) normalization_dict[predictor_names[m]] = numpy.array( [this_mean, this_stdev] ) for m in range(num_predictors): this_mean = normalization_dict[predictor_names[m]][0] this_stdev = normalization_dict[predictor_names[m]][1] these_norm_values = ( predictor_table[predictor_names[m]].values - this_mean ) / this_stdev predictor_table = predictor_table.assign(**{ predictor_names[m]: these_norm_values }) return predictor_table, normalization_dict def denormalize_predictors(predictor_table, normalization_dict): """Denormalizes predictors from z-scores back to original scales. :param predictor_table: See doc for `normalize_predictors`. :param normalization_dict: Same. :return: predictor_table: Denormalized version of input. """ predictor_names = list(predictor_table) num_predictors = len(predictor_names) for m in range(num_predictors): this_mean = normalization_dict[predictor_names[m]][0] this_stdev = normalization_dict[predictor_names[m]][1] these_denorm_values = ( this_mean + this_stdev * predictor_table[predictor_names[m]].values ) predictor_table = predictor_table.assign(**{ predictor_names[m]: these_denorm_values }) return predictor_table def get_binarization_threshold(csv_file_names, percentile_level): """Computes binarization threshold for target variable. Binarization threshold will be [q]th percentile of all target values, where q = `percentile_level`. :param csv_file_names: 1-D list of paths to input files. :param percentile_level: q in the above discussion. :return: binarization_threshold: Binarization threshold (used to turn each target value into a yes-or-no label). """ max_target_values = numpy.array([]) for this_file_name in csv_file_names: print('Reading data from: "{0:s}"...'.format(this_file_name)) this_target_table = read_feature_file(this_file_name)[-1] max_target_values = numpy.concatenate(( max_target_values, this_target_table[TARGET_NAME].values )) binarization_threshold = numpy.percentile( max_target_values, percentile_level) print('\nBinarization threshold for "{0:s}" = {1:.4e}'.format( TARGET_NAME, binarization_threshold )) return binarization_threshold def binarize_target_values(target_values, binarization_threshold): """Binarizes target values. E = number of examples (storm objects) :param target_values: length-E numpy array of real-number target values. :param binarization_threshold: Binarization threshold. :return: target_values: length-E numpy array of binarized target values (integers in 0...1). """ return (target_values >= binarization_threshold).astype(int) def _lambdas_to_sklearn_inputs(lambda1, lambda2): """Converts lambdas to input arguments for scikit-learn. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: alpha: Input arg for scikit-learn model. :return: l1_ratio: Input arg for scikit-learn model. """ return lambda1 + lambda2, lambda1 / (lambda1 + lambda2) def setup_linear_regression(lambda1=0., lambda2=0.): """Sets up (but does not train) linear-regression model. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: model_object: Instance of `sklearn.linear_model`. """ assert lambda1 >= 0 assert lambda2 >= 0 if lambda1 < LAMBDA_TOLERANCE and lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.LinearRegression( fit_intercept=True, normalize=False) if lambda1 < LAMBDA_TOLERANCE: return sklearn.linear_model.Ridge( alpha=lambda2, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) if lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.Lasso( alpha=lambda1, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) alpha, l1_ratio = _lambdas_to_sklearn_inputs( lambda1=lambda1, lambda2=lambda2) return sklearn.linear_model.ElasticNet( alpha=alpha, l1_ratio=l1_ratio, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) def train_linear_regression(model_object, training_predictor_table, training_target_table): """Trains linear-regression model. :param model_object: Untrained model created by `setup_linear_regression`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[TARGET_NAME].values ) return model_object def _create_directory(directory_name=None, file_name=None): """Creates directory (along with parents if necessary). This method creates directories only when necessary, so you don't have to worry about it overwriting anything. :param directory_name: Name of desired directory. :param file_name: [used only if `directory_name is None`] Path to desired file. All directories in path will be created. """ if directory_name is None: directory_name = os.path.split(file_name)[0] try: os.makedirs(directory_name) except OSError as this_error: if this_error.errno == errno.EEXIST and os.path.isdir(directory_name): pass else: raise def write_model(model_object, pickle_file_name): """Writes model to Pickle file. :param model_object: Trained model (instance of `sklearn.linear_model`, for example). :param pickle_file_name: Path to output file. """ print('Writing model to: "{0:s}"...'.format(pickle_file_name)) _create_directory(file_name=pickle_file_name) file_handle = open(pickle_file_name, 'wb') pickle.dump(model_object, file_handle) file_handle.close() def evaluate_regression( target_values, predicted_target_values, mean_training_target_value, verbose=True, create_plots=True, dataset_name=None): """Evaluates regression model. E = number of examples :param target_values: length-E numpy array of actual target values. :param predicted_target_values: length-E numpy array of predictions. :param mean_training_target_value: Mean target value in training data. :param verbose: Boolean flag. If True, will print results to command window. :param create_plots: Boolean flag. If True, will create plots. :param dataset_name: Dataset name (e.g., "validation"). Used only if `create_plots == True or verbose == True`. :return: evaluation_dict: Dictionary with the following keys. evaluation_dict['mean_absolute_error']: Mean absolute error (MAE). evaluation_dict['mean_squared_error']: Mean squared error (MSE). evaluation_dict['mean_bias']: Mean bias (signed error). evaluation_dict['mae_skill_score']: MAE skill score (fractional improvement over climatology, in range -1...1). evaluation_dict['mse_skill_score']: MSE skill score (fractional improvement over climatology, in range -1...1). """ signed_errors = predicted_target_values - target_values mean_bias = numpy.mean(signed_errors) mean_absolute_error = numpy.mean(numpy.absolute(signed_errors)) mean_squared_error = numpy.mean(signed_errors ** 2) climo_signed_errors = mean_training_target_value - target_values climo_mae = numpy.mean(numpy.absolute(climo_signed_errors)) climo_mse = numpy.mean(climo_signed_errors ** 2) mae_skill_score = (climo_mae - mean_absolute_error) / climo_mae mse_skill_score = (climo_mse - mean_squared_error) / climo_mse evaluation_dict = { MAE_KEY: mean_absolute_error, MSE_KEY: mean_squared_error, MEAN_BIAS_KEY: mean_bias, MAE_SKILL_SCORE_KEY: mae_skill_score, MSE_SKILL_SCORE_KEY: mse_skill_score } if verbose or create_plots: dataset_name = dataset_name[0].upper() + dataset_name[1:] if verbose: print('{0:s} MAE (mean absolute error) = {1:.3e} s^-1'.format( dataset_name, evaluation_dict[MAE_KEY] )) print('{0:s} MSE (mean squared error) = {1:.3e} s^-2'.format( dataset_name, evaluation_dict[MSE_KEY] )) print('{0:s} bias (mean signed error) = {1:.3e} s^-1'.format( dataset_name, evaluation_dict[MEAN_BIAS_KEY] )) message_string = ( '{0:s} MAE skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[MAE_SKILL_SCORE_KEY]) print(message_string) message_string = ( '{0:s} MSE skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[MSE_SKILL_SCORE_KEY]) print(message_string) if not create_plots: return evaluation_dict figure_object, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) attr_diagrams.plot_regression_relia_curve( observed_values=target_values, forecast_values=predicted_target_values, num_bins=20, figure_object=figure_object, axes_object=axes_object) axes_object.set_xlabel(r'Forecast value (s$^{-1}$)') axes_object.set_ylabel(r'Conditional mean observation (s$^{-1}$)') title_string = '{0:s} reliability curve for max future vorticity'.format( dataset_name) axes_object.set_title(title_string) pyplot.show() return evaluation_dict def plot_model_coefficients(model_object, predictor_names): """Plots coefficients for linear- or logistic-regression model. :param model_object: Trained instance of `sklearn.linear_model`. :param predictor_names: 1-D list of predictor names, in the same order used to train the model. """ coefficients = model_object.coef_ num_dimensions = len(coefficients.shape) if num_dimensions > 1: coefficients = coefficients[0, ...] num_predictors = len(predictor_names) y_coords = numpy.linspace( 0, num_predictors - 1, num=num_predictors, dtype=float) _, axes_object = pyplot.subplots( 1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES) ) axes_object.barh( y_coords, coefficients, color=BAR_GRAPH_COLOUR, edgecolor=BAR_GRAPH_COLOUR, linewidth=BAR_GRAPH_EDGE_WIDTH) pyplot.xlabel('Coefficient') pyplot.ylabel('Predictor variable') pyplot.yticks([], []) x_tick_values, _ = pyplot.xticks() pyplot.xticks(x_tick_values, rotation=90) x_min = numpy.percentile(coefficients, 1.) x_max = numpy.percentile(coefficients, 99.) pyplot.xlim([x_min, x_max]) for j in range(num_predictors): axes_object.text( 0, y_coords[j], predictor_names[j], color=BAR_GRAPH_FONT_COLOUR, horizontalalignment='center', verticalalignment='center', fontsize=BAR_GRAPH_FONT_SIZE) def _add_colour_bar( axes_object, colour_map_object, values_to_colour, min_colour_value, max_colour_value, colour_norm_object=None, orientation_string='vertical', extend_min=True, extend_max=True): """Adds colour bar to existing axes. :param axes_object: Existing axes (instance of `matplotlib.axes._subplots.AxesSubplot`). :param colour_map_object: Colour scheme (instance of `matplotlib.pyplot.cm`). :param values_to_colour: numpy array of values to colour. :param min_colour_value: Minimum value in colour scheme. :param max_colour_value: Max value in colour scheme. :param colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`, defining the scale of the colour map. If `colour_norm_object is None`, will assume that scale is linear. :param orientation_string: Orientation of colour bar ("vertical" or "horizontal"). :param extend_min: Boolean flag. If True, the bottom of the colour bar will have an arrow. If False, it will be a flat line, suggesting that lower values are not possible. :param extend_max: Same but for top of colour bar. :return: colour_bar_object: Colour bar (instance of `matplotlib.pyplot.colorbar`) created by this method. """ if colour_norm_object is None: colour_norm_object = matplotlib.colors.Normalize( vmin=min_colour_value, vmax=max_colour_value, clip=False) scalar_mappable_object = pyplot.cm.ScalarMappable( cmap=colour_map_object, norm=colour_norm_object) scalar_mappable_object.set_array(values_to_colour) if extend_min and extend_max: extend_string = 'both' elif extend_min: extend_string = 'min' elif extend_max: extend_string = 'max' else: extend_string = 'neither' if orientation_string == 'horizontal': padding = 0.075 else: padding = 0.05 colour_bar_object = pyplot.colorbar( ax=axes_object, mappable=scalar_mappable_object, orientation=orientation_string, pad=padding, extend=extend_string, shrink=0.8) colour_bar_object.ax.tick_params(labelsize=FONT_SIZE) return colour_bar_object def plot_scores_2d( score_matrix, min_colour_value, max_colour_value, x_tick_labels, y_tick_labels, colour_map_object=pyplot.cm.plasma): """Plots scores on 2-D grid. M = number of rows in grid N = number of columns in grid :param score_matrix: M-by-N numpy array of scores. :param min_colour_value: Minimum value in colour scheme. :param max_colour_value: Max value in colour scheme. :param x_tick_labels: length-N numpy array of tick values. :param y_tick_labels: length-M numpy array of tick values. :param colour_map_object: Colour scheme (instance of `matplotlib.pyplot.cm`). """ _, axes_object = pyplot.subplots( 1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES) ) pyplot.imshow( score_matrix, cmap=colour_map_object, origin='lower', vmin=min_colour_value, vmax=max_colour_value) x_tick_values = numpy.linspace( 0, score_matrix.shape[1] - 1, num=score_matrix.shape[1], dtype=float ) y_tick_values = numpy.linspace( 0, score_matrix.shape[0] - 1, num=score_matrix.shape[0], dtype=float ) pyplot.xticks(x_tick_values, x_tick_labels) pyplot.yticks(y_tick_values, y_tick_labels) _add_colour_bar( axes_object=axes_object, colour_map_object=colour_map_object, values_to_colour=score_matrix, min_colour_value=min_colour_value, max_colour_value=max_colour_value) def setup_logistic_regression(lambda1=0., lambda2=0.): """Sets up (but does not train) logistic-regression model. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: model_object: Instance of `sklearn.linear_model.SGDClassifier`. """ assert lambda1 >= 0 assert lambda2 >= 0 if lambda1 < LAMBDA_TOLERANCE and lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='none', fit_intercept=True, verbose=0, random_state=RANDOM_SEED) if lambda1 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='l2', alpha=lambda2, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) if lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='l1', alpha=lambda1, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) alpha, l1_ratio = _lambdas_to_sklearn_inputs( lambda1=lambda1, lambda2=lambda2) return sklearn.linear_model.SGDClassifier( loss='log', penalty='elasticnet', alpha=alpha, l1_ratio=l1_ratio, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) def train_logistic_regression(model_object, training_predictor_table, training_target_table): """Trains logistic-regression model. :param model_object: Untrained model created by `setup_logistic_regression`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def eval_binary_classifn( observed_labels, forecast_probabilities, training_event_frequency, verbose=True, create_plots=True, dataset_name=None): """Evaluates binary-classification model. E = number of examples :param observed_labels: length-E numpy array of observed labels (integers in 0...1, where 1 means that event occurred). :param forecast_probabilities: length-E numpy array with forecast probabilities of event (positive class). :param training_event_frequency: Frequency of event in training data. :param verbose: Boolean flag. If True, will print results to command window. :param create_plots: Boolean flag. If True, will create plots. :param dataset_name: Dataset name (e.g., "validation"). Used only if `create_plots == True or verbose == True`. """ pofd_by_threshold, pod_by_threshold = roc_curves.get_points_in_roc_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities) max_peirce_score = numpy.nanmax(pod_by_threshold - pofd_by_threshold) area_under_roc_curve = sklearn.metrics.auc( x=pofd_by_threshold, y=pod_by_threshold) pod_by_threshold, success_ratio_by_threshold = ( perf_diagrams.get_points_in_perf_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities) ) csi_by_threshold = ( (pod_by_threshold ** -1 + success_ratio_by_threshold ** -1 - 1) ** -1 ) max_csi = numpy.nanmax(csi_by_threshold) mean_forecast_by_bin, event_freq_by_bin, num_examples_by_bin = ( attr_diagrams.get_points_in_relia_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, num_bins=20) ) uncertainty = training_event_frequency * (1. - training_event_frequency) this_numerator = numpy.nansum( num_examples_by_bin * (mean_forecast_by_bin - event_freq_by_bin) ** 2 ) reliability = this_numerator / numpy.sum(num_examples_by_bin) this_numerator = numpy.nansum( num_examples_by_bin * (event_freq_by_bin - training_event_frequency) ** 2 ) resolution = this_numerator / numpy.sum(num_examples_by_bin) brier_score = uncertainty + reliability - resolution brier_skill_score = (resolution - reliability) / uncertainty evaluation_dict = { MAX_PEIRCE_SCORE_KEY: max_peirce_score, AUC_KEY: area_under_roc_curve, MAX_CSI_KEY: max_csi, BRIER_SCORE_KEY: brier_score, BRIER_SKILL_SCORE_KEY: brier_skill_score } if verbose or create_plots: dataset_name = dataset_name[0].upper() + dataset_name[1:] if verbose: print('{0:s} Max Peirce score (POD - POFD) = {1:.3f}'.format( dataset_name, evaluation_dict[MAX_PEIRCE_SCORE_KEY] )) print('{0:s} AUC (area under ROC curve) = {1:.3f}'.format( dataset_name, evaluation_dict[AUC_KEY] )) print('{0:s} Max CSI (critical success index) = {1:.3f}'.format( dataset_name, evaluation_dict[MAX_CSI_KEY] )) print('{0:s} Brier score = {1:.3f}'.format( dataset_name, evaluation_dict[BRIER_SCORE_KEY] )) message_string = ( '{0:s} Brier skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[BRIER_SKILL_SCORE_KEY]) print(message_string) if not create_plots: return evaluation_dict _, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) roc_curves.plot_roc_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, axes_object=axes_object) title_string = '{0:s} ROC curve (AUC = {1:.3f})'.format( dataset_name, evaluation_dict[AUC_KEY] ) pyplot.title(title_string) pyplot.show() _, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) perf_diagrams.plot_performance_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, axes_object=axes_object) title_string = '{0:s} performance diagram (max CSI = {1:.3f})'.format( dataset_name, evaluation_dict[MAX_CSI_KEY] ) pyplot.title(title_string) pyplot.show() figure_object, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) attr_diagrams.plot_attributes_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, num_bins=20, figure_object=figure_object, axes_object=axes_object) title_string = ( '{0:s} attributes diagram (Brier skill score = {1:.3f})' ).format(dataset_name, evaluation_dict[BRIER_SKILL_SCORE_KEY]) axes_object.set_title(title_string) pyplot.show() return evaluation_dict def setup_classification_tree(min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) decision tree for classification. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.tree.DecisionTreeClassifier`. """ return sklearn.tree.DecisionTreeClassifier( criterion='entropy', min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, random_state=RANDOM_SEED) def train_classification_tree(model_object, training_predictor_table, training_target_table): """Trains decision tree for classification. :param model_object: Untrained model created by `setup_classification_tree`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def setup_classification_forest( max_predictors_per_split, num_trees=100, min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) random forest for classification. :param max_predictors_per_split: Max number of predictors to try at each split. :param num_trees: Number of trees. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.ensemble.RandomForestClassifier`. """ return sklearn.ensemble.RandomForestClassifier( n_estimators=num_trees, min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, max_features=max_predictors_per_split, bootstrap=True, random_state=RANDOM_SEED, verbose=2) def train_classification_forest(model_object, training_predictor_table, training_target_table): """Trains random forest for classification. :param model_object: Untrained model created by `setup_classification_forest`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def setup_classification_gbt( max_predictors_per_split, num_trees=100, learning_rate=0.1, min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) gradient-boosted trees for classification. :param max_predictors_per_split: Max number of predictors to try at each split. :param num_trees: Number of trees. :param learning_rate: Learning rate. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.ensemble.GradientBoostingClassifier`. """ return sklearn.ensemble.GradientBoostingClassifier( loss='exponential', learning_rate=learning_rate, n_estimators=num_trees, min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, max_features=max_predictors_per_split, random_state=RANDOM_SEED, verbose=2) def train_classification_gbt(model_object, training_predictor_table, training_target_table): """Trains gradient-boosted trees for classification. :param model_object: Untrained model created by `setup_classification_gbt`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object
[ "matplotlib.pyplot.title", "numpy.absolute", "pickle.dump", "numpy.sum", "pandas.read_csv", "module_4.attributes_diagrams.plot_attributes_diagram", "numpy.mean", "module_4.roc_curves.plot_roc_curve", "glob.glob", "pandas.DataFrame", "numpy.std", "matplotlib.pyplot.imshow", "matplotlib.pyplot.yticks", "matplotlib.pyplot.cm.ScalarMappable", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.rc", "numpy.linspace", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "pandas.concat", "numpy.nansum", "numpy.average", "matplotlib.pyplot.show", "module_4.attributes_diagrams.get_points_in_relia_curve", "module_4.roc_curves.get_points_in_roc_curve", "numpy.percentile", "matplotlib.pyplot.ylabel", "numpy.nanmax", "numpy.concatenate", "matplotlib.pyplot.xlim", "numpy.logical_and", "time.gmtime", "numpy.array", "module_4.performance_diagrams.plot_performance_diagram", "module_4.attributes_diagrams.plot_regression_relia_curve", "module_4.performance_diagrams.get_points_in_perf_diagram", "matplotlib.pyplot.xlabel", "time.strptime", "numpy.sqrt" ]
[((1929, 1962), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""font"""'], {'size': 'FONT_SIZE'}), "('font', size=FONT_SIZE)\n", (1938, 1962), True, 'import matplotlib.pyplot as pyplot\n'), ((1963, 2001), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""axes"""'], {'titlesize': 'FONT_SIZE'}), "('axes', titlesize=FONT_SIZE)\n", (1972, 2001), True, 'import matplotlib.pyplot as pyplot\n'), ((2002, 2040), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""axes"""'], {'labelsize': 'FONT_SIZE'}), "('axes', labelsize=FONT_SIZE)\n", (2011, 2040), True, 'import matplotlib.pyplot as pyplot\n'), ((2041, 2080), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""xtick"""'], {'labelsize': 'FONT_SIZE'}), "('xtick', labelsize=FONT_SIZE)\n", (2050, 2080), True, 'import matplotlib.pyplot as pyplot\n'), ((2081, 2120), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""ytick"""'], {'labelsize': 'FONT_SIZE'}), "('ytick', labelsize=FONT_SIZE)\n", (2090, 2120), True, 'import matplotlib.pyplot as pyplot\n'), ((2121, 2160), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""legend"""'], {'fontsize': 'FONT_SIZE'}), "('legend', fontsize=FONT_SIZE)\n", (2130, 2160), True, 'import matplotlib.pyplot as pyplot\n'), ((2161, 2201), 'matplotlib.pyplot.rc', 'pyplot.rc', (['"""figure"""'], {'titlesize': 'FONT_SIZE'}), "('figure', titlesize=FONT_SIZE)\n", (2170, 2201), True, 'import matplotlib.pyplot as pyplot\n'), ((1747, 1787), 'numpy.array', 'numpy.array', (['[27, 158, 119]'], {'dtype': 'float'}), '([27, 158, 119], dtype=float)\n', (1758, 1787), False, 'import numpy\n'), ((1868, 1906), 'numpy.array', 'numpy.array', (['[217, 95, 2]'], {'dtype': 'float'}), '([217, 95, 2], dtype=float)\n', (1879, 1906), False, 'import numpy\n'), ((4972, 4999), 'glob.glob', 'glob.glob', (['csv_file_pattern'], {}), '(csv_file_pattern)\n', (4981, 4999), False, 'import glob\n'), ((5953, 6002), 'pandas.read_csv', 'pandas.read_csv', (['csv_file_name'], {'header': '(0)', 'sep': '""","""'}), "(csv_file_name, header=0, sep=',')\n", (5968, 6002), False, 'import pandas\n'), ((7648, 7713), 'pandas.concat', 'pandas.concat', (['list_of_metadata_tables'], {'axis': '(0)', 'ignore_index': '(True)'}), '(list_of_metadata_tables, axis=0, ignore_index=True)\n', (7661, 7713), False, 'import pandas\n'), ((7745, 7811), 'pandas.concat', 'pandas.concat', (['list_of_predictor_tables'], {'axis': '(0)', 'ignore_index': '(True)'}), '(list_of_predictor_tables, axis=0, ignore_index=True)\n', (7758, 7811), False, 'import pandas\n'), ((7840, 7903), 'pandas.concat', 'pandas.concat', (['list_of_target_tables'], {'axis': '(0)', 'ignore_index': '(True)'}), '(list_of_target_tables, axis=0, ignore_index=True)\n', (7853, 7903), False, 'import pandas\n'), ((9051, 9130), 'numpy.array', 'numpy.array', (['[intermediate_normalization_dict[NUM_VALUES_KEY], new_values.size]'], {}), '([intermediate_normalization_dict[NUM_VALUES_KEY], new_values.size])\n', (9062, 9130), False, 'import numpy\n'), ((9200, 9249), 'numpy.average', 'numpy.average', (['these_means'], {'weights': 'these_weights'}), '(these_means, weights=these_weights)\n', (9213, 9249), False, 'import numpy\n'), ((9457, 9506), 'numpy.average', 'numpy.average', (['these_means'], {'weights': 'these_weights'}), '(these_means, weights=these_weights)\n', (9470, 9506), False, 'import numpy\n'), ((10047, 10190), 'numpy.sqrt', 'numpy.sqrt', (['(multiplier * (intermediate_normalization_dict[MEAN_OF_SQUARES_KEY] - \n intermediate_normalization_dict[MEAN_VALUE_KEY] ** 2))'], {}), '(multiplier * (intermediate_normalization_dict[\n MEAN_OF_SQUARES_KEY] - intermediate_normalization_dict[MEAN_VALUE_KEY] **\n 2))\n', (10057, 10190), False, 'import numpy\n'), ((14736, 14751), 'numpy.array', 'numpy.array', (['[]'], {}), '([])\n', (14747, 14751), False, 'import numpy\n'), ((15090, 15143), 'numpy.percentile', 'numpy.percentile', (['max_target_values', 'percentile_level'], {}), '(max_target_values, percentile_level)\n', (15106, 15143), False, 'import numpy\n'), ((18976, 19014), 'pickle.dump', 'pickle.dump', (['model_object', 'file_handle'], {}), '(model_object, file_handle)\n', (18987, 19014), False, 'import pickle\n'), ((20369, 20394), 'numpy.mean', 'numpy.mean', (['signed_errors'], {}), '(signed_errors)\n', (20379, 20394), False, 'import numpy\n'), ((20488, 20518), 'numpy.mean', 'numpy.mean', (['(signed_errors ** 2)'], {}), '(signed_errors ** 2)\n', (20498, 20518), False, 'import numpy\n'), ((20669, 20705), 'numpy.mean', 'numpy.mean', (['(climo_signed_errors ** 2)'], {}), '(climo_signed_errors ** 2)\n', (20679, 20705), False, 'import numpy\n'), ((22091, 22176), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)\n )\n', (22106, 22176), True, 'import matplotlib.pyplot as pyplot\n'), ((22191, 22380), 'module_4.attributes_diagrams.plot_regression_relia_curve', 'attr_diagrams.plot_regression_relia_curve', ([], {'observed_values': 'target_values', 'forecast_values': 'predicted_target_values', 'num_bins': '(20)', 'figure_object': 'figure_object', 'axes_object': 'axes_object'}), '(observed_values=target_values,\n forecast_values=predicted_target_values, num_bins=20, figure_object=\n figure_object, axes_object=axes_object)\n', (22232, 22380), True, 'from module_4 import attributes_diagrams as attr_diagrams\n'), ((22663, 22676), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (22674, 22676), True, 'import matplotlib.pyplot as pyplot\n'), ((23234, 23304), 'numpy.linspace', 'numpy.linspace', (['(0)', '(num_predictors - 1)'], {'num': 'num_predictors', 'dtype': 'float'}), '(0, num_predictors - 1, num=num_predictors, dtype=float)\n', (23248, 23304), False, 'import numpy\n'), ((23336, 23424), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES,\n DEFAULT_FIG_HEIGHT_INCHES))\n', (23351, 23424), True, 'import matplotlib.pyplot as pyplot\n'), ((23587, 23615), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Coefficient"""'], {}), "('Coefficient')\n", (23600, 23615), True, 'import matplotlib.pyplot as pyplot\n'), ((23620, 23655), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Predictor variable"""'], {}), "('Predictor variable')\n", (23633, 23655), True, 'import matplotlib.pyplot as pyplot\n'), ((23661, 23682), 'matplotlib.pyplot.yticks', 'pyplot.yticks', (['[]', '[]'], {}), '([], [])\n', (23674, 23682), True, 'import matplotlib.pyplot as pyplot\n'), ((23706, 23721), 'matplotlib.pyplot.xticks', 'pyplot.xticks', ([], {}), '()\n', (23719, 23721), True, 'import matplotlib.pyplot as pyplot\n'), ((23726, 23767), 'matplotlib.pyplot.xticks', 'pyplot.xticks', (['x_tick_values'], {'rotation': '(90)'}), '(x_tick_values, rotation=90)\n', (23739, 23767), True, 'import matplotlib.pyplot as pyplot\n'), ((23781, 23816), 'numpy.percentile', 'numpy.percentile', (['coefficients', '(1.0)'], {}), '(coefficients, 1.0)\n', (23797, 23816), False, 'import numpy\n'), ((23828, 23864), 'numpy.percentile', 'numpy.percentile', (['coefficients', '(99.0)'], {}), '(coefficients, 99.0)\n', (23844, 23864), False, 'import numpy\n'), ((23868, 23895), 'matplotlib.pyplot.xlim', 'pyplot.xlim', (['[x_min, x_max]'], {}), '([x_min, x_max])\n', (23879, 23895), True, 'import matplotlib.pyplot as pyplot\n'), ((25648, 25721), 'matplotlib.pyplot.cm.ScalarMappable', 'pyplot.cm.ScalarMappable', ([], {'cmap': 'colour_map_object', 'norm': 'colour_norm_object'}), '(cmap=colour_map_object, norm=colour_norm_object)\n', (25672, 25721), True, 'import matplotlib.pyplot as pyplot\n'), ((26124, 26275), 'matplotlib.pyplot.colorbar', 'pyplot.colorbar', ([], {'ax': 'axes_object', 'mappable': 'scalar_mappable_object', 'orientation': 'orientation_string', 'pad': 'padding', 'extend': 'extend_string', 'shrink': '(0.8)'}), '(ax=axes_object, mappable=scalar_mappable_object,\n orientation=orientation_string, pad=padding, extend=extend_string,\n shrink=0.8)\n', (26139, 26275), True, 'import matplotlib.pyplot as pyplot\n'), ((27055, 27143), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES,\n DEFAULT_FIG_HEIGHT_INCHES))\n', (27070, 27143), True, 'import matplotlib.pyplot as pyplot\n'), ((27159, 27277), 'matplotlib.pyplot.imshow', 'pyplot.imshow', (['score_matrix'], {'cmap': 'colour_map_object', 'origin': '"""lower"""', 'vmin': 'min_colour_value', 'vmax': 'max_colour_value'}), "(score_matrix, cmap=colour_map_object, origin='lower', vmin=\n min_colour_value, vmax=max_colour_value)\n", (27172, 27277), True, 'import matplotlib.pyplot as pyplot\n'), ((27311, 27399), 'numpy.linspace', 'numpy.linspace', (['(0)', '(score_matrix.shape[1] - 1)'], {'num': 'score_matrix.shape[1]', 'dtype': 'float'}), '(0, score_matrix.shape[1] - 1, num=score_matrix.shape[1],\n dtype=float)\n', (27325, 27399), False, 'import numpy\n'), ((27430, 27518), 'numpy.linspace', 'numpy.linspace', (['(0)', '(score_matrix.shape[0] - 1)'], {'num': 'score_matrix.shape[0]', 'dtype': 'float'}), '(0, score_matrix.shape[0] - 1, num=score_matrix.shape[0],\n dtype=float)\n', (27444, 27518), False, 'import numpy\n'), ((27534, 27577), 'matplotlib.pyplot.xticks', 'pyplot.xticks', (['x_tick_values', 'x_tick_labels'], {}), '(x_tick_values, x_tick_labels)\n', (27547, 27577), True, 'import matplotlib.pyplot as pyplot\n'), ((27582, 27625), 'matplotlib.pyplot.yticks', 'pyplot.yticks', (['y_tick_values', 'y_tick_labels'], {}), '(y_tick_values, y_tick_labels)\n', (27595, 27625), True, 'import matplotlib.pyplot as pyplot\n'), ((30589, 30707), 'module_4.roc_curves.get_points_in_roc_curve', 'roc_curves.get_points_in_roc_curve', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities)\n', (30623, 30707), False, 'from module_4 import roc_curves\n'), ((30745, 30795), 'numpy.nanmax', 'numpy.nanmax', (['(pod_by_threshold - pofd_by_threshold)'], {}), '(pod_by_threshold - pofd_by_threshold)\n', (30757, 30795), False, 'import numpy\n'), ((30955, 31079), 'module_4.performance_diagrams.get_points_in_perf_diagram', 'perf_diagrams.get_points_in_perf_diagram', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities)\n', (30995, 31079), True, 'from module_4 import performance_diagrams as perf_diagrams\n'), ((31231, 31261), 'numpy.nanmax', 'numpy.nanmax', (['csi_by_threshold'], {}), '(csi_by_threshold)\n', (31243, 31261), False, 'import numpy\n'), ((31340, 31476), 'module_4.attributes_diagrams.get_points_in_relia_curve', 'attr_diagrams.get_points_in_relia_curve', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities', 'num_bins': '(20)'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities, num_bins=20)\n', (31379, 31476), True, 'from module_4 import attributes_diagrams as attr_diagrams\n'), ((31604, 31691), 'numpy.nansum', 'numpy.nansum', (['(num_examples_by_bin * (mean_forecast_by_bin - event_freq_by_bin) ** 2)'], {}), '(num_examples_by_bin * (mean_forecast_by_bin -\n event_freq_by_bin) ** 2)\n', (31616, 31691), False, 'import numpy\n'), ((31798, 31889), 'numpy.nansum', 'numpy.nansum', (['(num_examples_by_bin * (event_freq_by_bin - training_event_frequency) ** 2)'], {}), '(num_examples_by_bin * (event_freq_by_bin -\n training_event_frequency) ** 2)\n', (31810, 31889), False, 'import numpy\n'), ((33269, 33354), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)\n )\n', (33284, 33354), True, 'import matplotlib.pyplot as pyplot\n'), ((33369, 33503), 'module_4.roc_curves.plot_roc_curve', 'roc_curves.plot_roc_curve', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities', 'axes_object': 'axes_object'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities, axes_object=axes_object)\n', (33394, 33503), False, 'from module_4 import roc_curves\n'), ((33645, 33671), 'matplotlib.pyplot.title', 'pyplot.title', (['title_string'], {}), '(title_string)\n', (33657, 33671), True, 'import matplotlib.pyplot as pyplot\n'), ((33676, 33689), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (33687, 33689), True, 'import matplotlib.pyplot as pyplot\n'), ((33712, 33797), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)\n )\n', (33727, 33797), True, 'import matplotlib.pyplot as pyplot\n'), ((33812, 33959), 'module_4.performance_diagrams.plot_performance_diagram', 'perf_diagrams.plot_performance_diagram', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities', 'axes_object': 'axes_object'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities, axes_object=axes_object)\n', (33850, 33959), True, 'from module_4 import performance_diagrams as perf_diagrams\n'), ((34119, 34145), 'matplotlib.pyplot.title', 'pyplot.title', (['title_string'], {}), '(title_string)\n', (34131, 34145), True, 'import matplotlib.pyplot as pyplot\n'), ((34150, 34163), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (34161, 34163), True, 'import matplotlib.pyplot as pyplot\n'), ((34198, 34283), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['(1)', '(1)'], {'figsize': '(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)'}), '(1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES)\n )\n', (34213, 34283), True, 'import matplotlib.pyplot as pyplot\n'), ((34298, 34490), 'module_4.attributes_diagrams.plot_attributes_diagram', 'attr_diagrams.plot_attributes_diagram', ([], {'observed_labels': 'observed_labels', 'forecast_probabilities': 'forecast_probabilities', 'num_bins': '(20)', 'figure_object': 'figure_object', 'axes_object': 'axes_object'}), '(observed_labels=observed_labels,\n forecast_probabilities=forecast_probabilities, num_bins=20,\n figure_object=figure_object, axes_object=axes_object)\n', (34335, 34490), True, 'from module_4 import attributes_diagrams as attr_diagrams\n'), ((34707, 34720), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (34718, 34720), True, 'import matplotlib.pyplot as pyplot\n'), ((2727, 2766), 'time.strptime', 'time.strptime', (['time_string', 'time_format'], {}), '(time_string, time_format)\n', (2740, 2766), False, 'import time\n'), ((3164, 3190), 'time.gmtime', 'time.gmtime', (['unix_time_sec'], {}), '(unix_time_sec)\n', (3175, 3190), False, 'import time\n'), ((11422, 11458), 'numpy.array', 'numpy.array', (['[this_mean, this_stdev]'], {}), '([this_mean, this_stdev])\n', (11433, 11458), False, 'import numpy\n'), ((14960, 15037), 'numpy.concatenate', 'numpy.concatenate', (['(max_target_values, this_target_table[TARGET_NAME].values)'], {}), '((max_target_values, this_target_table[TARGET_NAME].values))\n', (14977, 15037), False, 'import numpy\n'), ((20432, 20461), 'numpy.absolute', 'numpy.absolute', (['signed_errors'], {}), '(signed_errors)\n', (20446, 20461), False, 'import numpy\n'), ((20616, 20651), 'numpy.absolute', 'numpy.absolute', (['climo_signed_errors'], {}), '(climo_signed_errors)\n', (20630, 20651), False, 'import numpy\n'), ((31745, 31775), 'numpy.sum', 'numpy.sum', (['num_examples_by_bin'], {}), '(num_examples_by_bin)\n', (31754, 31775), False, 'import numpy\n'), ((31942, 31972), 'numpy.sum', 'numpy.sum', (['num_examples_by_bin'], {}), '(num_examples_by_bin)\n', (31951, 31972), False, 'import numpy\n'), ((5301, 5410), 'numpy.logical_and', 'numpy.logical_and', (['(file_times_unix_sec >= first_time_unix_sec)', '(file_times_unix_sec <= last_time_unix_sec)'], {}), '(file_times_unix_sec >= first_time_unix_sec, \n file_times_unix_sec <= last_time_unix_sec)\n', (5318, 5410), False, 'import numpy\n'), ((6780, 6798), 'pandas.DataFrame', 'pandas.DataFrame', ([], {}), '()\n', (6796, 6798), False, 'import pandas\n'), ((6844, 6862), 'pandas.DataFrame', 'pandas.DataFrame', ([], {}), '()\n', (6860, 6862), False, 'import pandas\n'), ((6905, 6923), 'pandas.DataFrame', 'pandas.DataFrame', ([], {}), '()\n', (6921, 6923), False, 'import pandas\n'), ((9001, 9023), 'numpy.mean', 'numpy.mean', (['new_values'], {}), '(new_values)\n', (9011, 9023), False, 'import numpy\n'), ((9362, 9389), 'numpy.mean', 'numpy.mean', (['(new_values ** 2)'], {}), '(new_values ** 2)\n', (9372, 9389), False, 'import numpy\n'), ((12661, 12715), 'numpy.mean', 'numpy.mean', (['predictor_table[predictor_names[m]].values'], {}), '(predictor_table[predictor_names[m]].values)\n', (12671, 12715), False, 'import numpy\n'), ((12741, 12802), 'numpy.std', 'numpy.std', (['predictor_table[predictor_names[m]].values'], {'ddof': '(1)'}), '(predictor_table[predictor_names[m]].values, ddof=1)\n', (12750, 12802), False, 'import numpy\n'), ((12887, 12923), 'numpy.array', 'numpy.array', (['[this_mean, this_stdev]'], {}), '([this_mean, this_stdev])\n', (12898, 12923), False, 'import numpy\n')]
import cv2 import numpy as np from pyzbar.pyzbar import decode #This is the barcode testing phase. This allowed me to create the validation of the accounts. img = cv2.imread('/home/pi/Resources12/frame (1).png') cap = cv2.VideoCapture(0) cap.set(3, 640) cap.set(4, 480) with open('/home.pi/Resources12\myDataFile.text') as f: myDataList = f.read().splitlines() while True: success, img = cap.read() for barcode in decode(img): myData = barcode.data.decode('utf-8') print(myData) if myData in myDataList: myOutput = 'Authorized' myColor = (0, 255, 0) else: myOutput = 'Un-Authorized' myColor = (0, 0, 255) pts = np.array([barcode.polygon], np.int32) pts = pts.reshape((-1, 1, 2)) cv2.polylines(img, [pts], True, myColor, 5) pts2 = barcode.rect cv2.putText(img, myOutput, (pts2[0], pts2[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.9, myColor, 2) cv2.imshow('Result', img) cv2.waitKey(1)
[ "cv2.putText", "cv2.polylines", "cv2.waitKey", "pyzbar.pyzbar.decode", "cv2.VideoCapture", "cv2.imread", "numpy.array", "cv2.imshow" ]
[((165, 213), 'cv2.imread', 'cv2.imread', (['"""/home/pi/Resources12/frame (1).png"""'], {}), "('/home/pi/Resources12/frame (1).png')\n", (175, 213), False, 'import cv2\n'), ((220, 239), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (236, 239), False, 'import cv2\n'), ((432, 443), 'pyzbar.pyzbar.decode', 'decode', (['img'], {}), '(img)\n', (438, 443), False, 'from pyzbar.pyzbar import decode\n'), ((998, 1023), 'cv2.imshow', 'cv2.imshow', (['"""Result"""', 'img'], {}), "('Result', img)\n", (1008, 1023), False, 'import cv2\n'), ((1028, 1042), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1039, 1042), False, 'import cv2\n'), ((719, 756), 'numpy.array', 'np.array', (['[barcode.polygon]', 'np.int32'], {}), '([barcode.polygon], np.int32)\n', (727, 756), True, 'import numpy as np\n'), ((803, 846), 'cv2.polylines', 'cv2.polylines', (['img', '[pts]', '(True)', 'myColor', '(5)'], {}), '(img, [pts], True, myColor, 5)\n', (816, 846), False, 'import cv2\n'), ((883, 977), 'cv2.putText', 'cv2.putText', (['img', 'myOutput', '(pts2[0], pts2[1])', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.9)', 'myColor', '(2)'], {}), '(img, myOutput, (pts2[0], pts2[1]), cv2.FONT_HERSHEY_SIMPLEX, \n 0.9, myColor, 2)\n', (894, 977), False, 'import cv2\n')]
import requests, json, os, pickle import networkx as nx import GOSTnets as gn import matplotlib.pyplot as plt from matplotlib import gridspec from time import sleep import pandas as pd import geopandas as gpd import rasterio from rasterio.windows import Window from rasterio.plot import * from rasterio.mask import * import numpy as np from shapely.geometry import Point from shapely.geometry import box import contextily as ctx import osmnx as ox from fiona.crs import from_epsg import pycrs import geoviews as gv import hvplot.pandas import random from utility import * from raster_ops import * from mapbox import * def get_origins(places, population_file, window_size = 50, use_pickle = False, do_pickle_result = True, pickle_region_name = ""): """ Function extracts origins points from raster population map-based origin data places - string of region of interest, or a dataframe of administrate boundary polygon population_file - raster file window_size - final size of each population grid that is wanted """ # Immediately return pickled data if requested if use_pickle == True: with open (f"../data/interim/origins_{pickle_region_name}.pickle", "rb") as handle: origins = pickle.load(handle) print(f"Origins:{origins.shape};") return origins #Scan the raster map with big windows origins=pd.DataFrame() window=window_size * 2 with rasterio.open(population_file) as src: for left_x in np.arange(0,src.width,window): for top_y in np.arange(0,src.height,window): out=get_pop(population_file,left_x,top_y,window,plot=False) if out != {}: origins=origins.append([out]) print("%i/%i\r"%(left_x,src.width),end="") #Do a splitting pass. Run this cell several times (we run four times), # until you have a balance of small window and not too big rois #run this cell as many times as you want to split the windows #for i in range(0,4): #for pass_num in range(0,split_passes): # Split pass start regions_need_splitting = origins[origins['split'] == True] print(f"{len(regions_need_splitting)} regions need splitting") olen=len(origins) for i in np.arange(olen): print("%i/%i\r"%(i+1,olen),end="") if origins.iloc[i,origins.columns.get_loc('split')] == True: origins.iloc[i,origins.columns.get_loc('split')]='done' s = split(population_file,origins.iloc[i]) origins=origins.append(s,sort=False) print("done.") print("We now have %i regions of min size %i, %i will be split in next round"%\ (len(origins),origins['window'].min(),len(origins[origins['split']==True]))) origins=origins[origins['tot_pop']>0] origins=origins[origins['split']!='done'] print("We have %i regions of size %i, %i with population >0"% (len(origins),min(origins['window']),len(origins[origins['tot_pop']>0]))) # Split pass end # Set the geometry of the generated polygons as points - that are grid centroids. origins=gpd.GeoDataFrame(origins, crs='epsg:4326', geometry=[Point(xy) for xy in zip(origins['center_lon'], origins['center_lat'])] ) # Create a separate geometry column that contains the grid geometry origins['geo_grid']=origins.apply( lambda r: box(r.left_lon, r.bottom_lat, r.right_lon, r.top_lat, ccw=False), axis=1 ) col_to_keep = origins.columns # Filter Origins with administrative boundary if (isinstance(places,pd.DataFrame)==True): bounds = places else: bounds = ox.boundaries.gdf_from_places(places) # Don't clip to full bounds, just bbox. That's why this is commented tr_origins = gpd.sjoin(origins, bounds, how="inner", op="intersects") tr_origins = tr_origins[col_to_keep].reset_index(drop=True) #Outputting Origins print(f"All origins:{origins.shape}; Relevant Origins:{tr_origins.shape}") # Pickle generated origins if requested if do_pickle_result == True: with open ("../data/interim/origins_{pickle_region_name}.pickle", "wb") as handle: pickle.dump(tr_origins, handle, protocol=pickle.HIGHEST_PROTOCOL) print("Pickled origins") return(tr_origins) def origins_snap_osm(origins, net_pickle_path): """ Function snaps origins to nearest road based on road network origins - dataframe of population origin points net_pickle_path - road network """ print("Reading pickle") G = nx.read_gpickle(net_pickle_path) print("Snapping Origins") origins = gn.pandana_snap_c(G, point_gdf = origins, source_crs = 'epsg:4326', target_crs = 'epsg:4326', add_dist_to_node_col = True, time_it = True) origins = origins.drop(['x', 'y'], axis=1) print("Converting NNs to Points") def get_geo_from_node(NN): node = G.nodes[NN] return gpd.points_from_xy([node['x']], [node['y']])[0] origins['center_geom'] = origins['geometry'].copy() origins['geometry'] = origins['NN'].apply(get_geo_from_node) origins['geometry'] = origins['geometry'].set_crs('epsg:4326') return origins def get_destinations(places, tags): """ Function extract POI data from OSM places - string of region of interest, or a dataframe of administrate boundary polygon tags - amenity tags for destinations, must be queryable in OSM """ #For places innputs tht are a data frame if isinstance(places, pd.DataFrame)==True : bounds = places.reset_index(drop=True) boundaries=bounds.loc[0]['geometry'] df = ox.pois_from_polygon(boundaries, tags) #For places inputs that are a string else: destinations_list = [] for p in places: destinations_list.append(ox.pois_from_place(p, tags)) df = pd.concat(destinations_list) #Formatting dataframe df = gpd.GeoDataFrame(df[["osmid", "amenity", "name", "source"]], geometry=df['geometry']) df = df.set_crs("EPSG:4326") # Convert Polygons to centroid df.loc[df.geometry.geom_type != 'Point', "geometry"] = df.loc[df.geometry.geom_type != 'Point', "geometry"].centroid #Making sure we have no Amenitities of None Type df = df.loc[df.amenity.isin(tags['amenity']), :].reset_index(drop=True).copy() return df def n_closest_geodetic(origins, destinations, n_keep): """ Function takes in origins and destinations and outputs a new destination list with n_keep amount of closest destinations to each origin. This helps make fewer calls from Mapbox origins - data frane destinations - data frane n_keep = int number of nearby destinations you would like to keep """ destinations = destinations.to_crs("EPSG:4326") origins = origins.to_crs("EPSG:4326") dest_list = [] for i in origins.index: origin = origins.loc[i, :] dest_o = destinations.copy() dest_o['distance_to_or'] = dest_o.distance(origin.geometry) dest_o['o_index'] = i dest_o = dest_o.sort_values(by='distance_to_or', axis=0, ascending=True).head(n_keep) dest_list.append(dest_o) return pd.concat(dest_list).reset_index(drop=True) def biplot(origins,destinations, mode, t_max,xlim=False): """ Function plos a map and an histogram for the places beyong t_max hours from closest hospital. oorigins - data frame with travel time and distance data and population data destinations - data frame mode - string of travel mode t_max - travel time threshold in hours x_lim - x axis limit for histogram """ o = origins.copy() h = destinations.copy() #o_above = o[(o['t_'+o_type]>t_max) & (o['so_'+o_type]<so_max)] o_above = o[(o['hrs_to_hosp_or_clinic']>t_max)] variable="tot_pop" vmin,vmax=0,10000 fig = plt.figure(figsize=(12, 6)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) ax1=plt.subplot(gs[0]) ax1.axis("off") sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm.set_array([]) fig.colorbar(sm) o_above['geometry'] = o_above['geo_grid'] o_above.to_crs('epsg:3857').plot(column=variable, cmap='Reds', linewidth=0.8, ax=ax1,edgecolor='0.8') h.to_crs('epsg:3857').plot( alpha=0.8,color='blue',marker=".",markersize=8,ax=ax1) ctx.add_basemap(ax1) ax1.set_title("(Red) population beyond %i h from hospital (Blue)"%t_max) ax1.set_axis_off() ax2=plt.subplot(gs[1]) o['hrs_to_hosp_or_clinic'].plot.hist(alpha=0.5,bins=1000,cumulative=True,density=False,log=False,logx=False,weights=o['tot_pop']) if len(xlim)>0: plt.xlim(xlim) ax2.ticklabel_format(style='sci') ax2.axvline(t_max,color="red") ax2.set_ylabel('People [10s Million]') ax2.set_xlabel('Distance to closest hospital or clinic:'+' [h]') modestring="%i people (%.2f%%) > %i h "+ mode+ " hospital" ax2.set_title(modestring%\ (o_above['tot_pop'].sum(),o_above['tot_pop'].sum()/o['tot_pop'].sum()*100,t_max)) #plt.tight_layout() plt.show();
[ "pickle.dump", "osmnx.pois_from_polygon", "geopandas.sjoin", "matplotlib.pyplot.figure", "pickle.load", "numpy.arange", "osmnx.pois_from_place", "matplotlib.pyplot.Normalize", "shapely.geometry.box", "pandas.DataFrame", "shapely.geometry.Point", "contextily.add_basemap", "GOSTnets.pandana_snap_c", "geopandas.GeoDataFrame", "osmnx.boundaries.gdf_from_places", "pandas.concat", "matplotlib.pyplot.show", "matplotlib.pyplot.subplot", "rasterio.open", "matplotlib.pyplot.xlim", "geopandas.points_from_xy", "networkx.read_gpickle", "matplotlib.gridspec.GridSpec" ]
[((1396, 1410), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1408, 1410), True, 'import pandas as pd\n'), ((2279, 2294), 'numpy.arange', 'np.arange', (['olen'], {}), '(olen)\n', (2288, 2294), True, 'import numpy as np\n'), ((3901, 3957), 'geopandas.sjoin', 'gpd.sjoin', (['origins', 'bounds'], {'how': '"""inner"""', 'op': '"""intersects"""'}), "(origins, bounds, how='inner', op='intersects')\n", (3910, 3957), True, 'import geopandas as gpd\n'), ((4712, 4744), 'networkx.read_gpickle', 'nx.read_gpickle', (['net_pickle_path'], {}), '(net_pickle_path)\n', (4727, 4744), True, 'import networkx as nx\n'), ((4790, 4923), 'GOSTnets.pandana_snap_c', 'gn.pandana_snap_c', (['G'], {'point_gdf': 'origins', 'source_crs': '"""epsg:4326"""', 'target_crs': '"""epsg:4326"""', 'add_dist_to_node_col': '(True)', 'time_it': '(True)'}), "(G, point_gdf=origins, source_crs='epsg:4326', target_crs=\n 'epsg:4326', add_dist_to_node_col=True, time_it=True)\n", (4807, 4923), True, 'import GOSTnets as gn\n'), ((6261, 6351), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (["df[['osmid', 'amenity', 'name', 'source']]"], {'geometry': "df['geometry']"}), "(df[['osmid', 'amenity', 'name', 'source']], geometry=df[\n 'geometry'])\n", (6277, 6351), True, 'import geopandas as gpd\n'), ((8241, 8268), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (8251, 8268), True, 'import matplotlib.pyplot as plt\n'), ((8279, 8323), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(2)'], {'width_ratios': '[3, 1]'}), '(1, 2, width_ratios=[3, 1])\n', (8296, 8323), False, 'from matplotlib import gridspec\n'), ((8334, 8352), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[0]'], {}), '(gs[0])\n', (8345, 8352), True, 'import matplotlib.pyplot as plt\n'), ((8783, 8803), 'contextily.add_basemap', 'ctx.add_basemap', (['ax1'], {}), '(ax1)\n', (8798, 8803), True, 'import contextily as ctx\n'), ((8913, 8931), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[1]'], {}), '(gs[1])\n', (8924, 8931), True, 'import matplotlib.pyplot as plt\n'), ((9503, 9513), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9511, 9513), True, 'import matplotlib.pyplot as plt\n'), ((1447, 1477), 'rasterio.open', 'rasterio.open', (['population_file'], {}), '(population_file)\n', (1460, 1477), False, 'import rasterio\n'), ((1508, 1539), 'numpy.arange', 'np.arange', (['(0)', 'src.width', 'window'], {}), '(0, src.width, window)\n', (1517, 1539), True, 'import numpy as np\n'), ((3768, 3805), 'osmnx.boundaries.gdf_from_places', 'ox.boundaries.gdf_from_places', (['places'], {}), '(places)\n', (3797, 3805), True, 'import osmnx as ox\n'), ((5960, 5998), 'osmnx.pois_from_polygon', 'ox.pois_from_polygon', (['boundaries', 'tags'], {}), '(boundaries, tags)\n', (5980, 5998), True, 'import osmnx as ox\n'), ((6192, 6220), 'pandas.concat', 'pd.concat', (['destinations_list'], {}), '(destinations_list)\n', (6201, 6220), True, 'import pandas as pd\n'), ((9094, 9108), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xlim'], {}), '(xlim)\n', (9102, 9108), True, 'import matplotlib.pyplot as plt\n'), ((1255, 1274), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1266, 1274), False, 'import requests, json, os, pickle\n'), ((1564, 1596), 'numpy.arange', 'np.arange', (['(0)', 'src.height', 'window'], {}), '(0, src.height, window)\n', (1573, 1596), True, 'import numpy as np\n'), ((3472, 3536), 'shapely.geometry.box', 'box', (['r.left_lon', 'r.bottom_lat', 'r.right_lon', 'r.top_lat'], {'ccw': '(False)'}), '(r.left_lon, r.bottom_lat, r.right_lon, r.top_lat, ccw=False)\n', (3475, 3536), False, 'from shapely.geometry import box\n'), ((4317, 4382), 'pickle.dump', 'pickle.dump', (['tr_origins', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(tr_origins, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (4328, 4382), False, 'import requests, json, os, pickle\n'), ((5251, 5295), 'geopandas.points_from_xy', 'gpd.points_from_xy', (["[node['x']]", "[node['y']]"], {}), "([node['x']], [node['y']])\n", (5269, 5295), True, 'import geopandas as gpd\n'), ((7553, 7573), 'pandas.concat', 'pd.concat', (['dest_list'], {}), '(dest_list)\n', (7562, 7573), True, 'import pandas as pd\n'), ((8427, 8462), 'matplotlib.pyplot.Normalize', 'plt.Normalize', ([], {'vmin': 'vmin', 'vmax': 'vmax'}), '(vmin=vmin, vmax=vmax)\n', (8440, 8462), True, 'import matplotlib.pyplot as plt\n'), ((3241, 3250), 'shapely.geometry.Point', 'Point', (['xy'], {}), '(xy)\n', (3246, 3250), False, 'from shapely.geometry import Point\n'), ((6150, 6177), 'osmnx.pois_from_place', 'ox.pois_from_place', (['p', 'tags'], {}), '(p, tags)\n', (6168, 6177), True, 'import osmnx as ox\n')]
# -*- coding: utf-8 -*- """ Created on Thu Aug 31 09:24:17 2017 @author: gao ๅพ—ๅˆฐ่ฏญ้Ÿณๅ’Œๅ™ชๅฃฐ็š„ๆททๅˆๆ•ฐๆฎ ไปฅ.pkl็š„ๅฝขๅผๅญ˜ๆ”พๅœจmix_dataไธญ """ import librosa as lr import numpy as np import os import pickle import matplotlib.pyplot as plt from ams_extract import ams_extractor resample_rate=16000 nfft = 512 offset = int(nfft/2) def genAndSave_trainData(speech_fileName):#็ป™็บฏๅ‡€่ฏญ้Ÿณๆ‰“ๆ ‡็ญพ s, fs = lr.load(speech_fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k s = np.array(s) s_tf = lr.core.stft(s, n_fft=nfft, hop_length=offset) s_db = lr.core.amplitude_to_db(np.abs(s_tf)) #s_angle = np.angle(s_tf) x_label = np.ones(s_db.shape[1]) # initialize x_label to all one xmean = s_db.mean(axis=0) for i in range(s_db.shape[1]): if xmean[i] < -40: x_label[i] = 0 #xstd = np.std(s_db, axis =0) #x_data = (s_db-xmean)/(xstd+1e-10) # normalize train data to zero mean and unit std return x_label#,x_data,s_angle,xmean,xstd ''' #label&dataๅ›พๅฝขๆ˜พ็คบ plt.subplot(211) plt.plot(xmean) plt.subplot(212) plt.plot(x_label) plt.show() ''' def gen_vadWav(x_data,x_label,s_angle,xmean,xstd):#ๆ ‡่ฎฐๅค„็†ๅŽ็š„ๆณขๅฝขๆ˜พ็คบๅ‡ฝๆ•ฐ for i in range(x_data.shape[1]): x_data[:,i] = x_data[:,i] * xstd[i] + xmean[i] # ้€†ๅฝ’ไธ€ๅŒ–ๅค„็† speech_amp = lr.core.db_to_amplitude(x_data) for i in range(len(x_label)): if x_label[i]==0: speech_amp[:,i]=1#ๆ˜ฏdata็š„ๅœฐๆ–นๅฐฑ้ƒฝไฟ็•™ ไธๆ˜ฏ็š„ๅœฐๆ–นๅ…จ้ƒฝ็ฝฎๆˆ0 speech_tf = speech_amp * np.exp(s_angle*1j) speech = lr.core.istft(speech_tf, hop_length = offset)#ๅŠ ๅ…ฅ่ง’ๅบฆไฟกๆฏๅ‚…้‡Œๅถๅๅ˜ๆขๅพ—ๅˆฐๅ›พ่ฐฑ return speech def Read_wav(fileName):#ๅฎšไน‰็š„ไธๅฅฝ ๆœชไฝฟ็”จ s, fs = lr.load(fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k s = np.array(s) s_tf = lr.core.stft(s, n_fft=nfft, hop_length=offset)#ๅฏนๆ•ฐๆฎ่ฟ›่กŒๅฟซ้€Ÿๅ‚…้‡Œๅถๅ˜ๅŒ– s_db = lr.core.amplitude_to_db(np.abs(s_tf))#ๅน…ๅ€ผ่ฝฌๅŒ–ไธบdB s_angle = np.angle(s_tf)#่ฎฐๅฝ•ๅ‚…้‡Œๅถๅ˜ๆขๅŽ็š„่ง’ๅบฆ xmean = s_db.mean(axis=0)#ๆฑ‚ๅ‚…้‡Œๅถๅ˜ๅŒ–ๅŽ็š„ๅ‡ๅ€ผ xstd = np.std(s_db, axis =0) #ๆ ‡ๅ‡†ๅทฎ x_data = (s_db-xmean)/(xstd+1e-10) # normalize train data to zero mean and unit std return x_data,s_angle def MFCC(y,sr):#ๆๅ–20D็š„MFCC return lr.feature.mfcc(y=y,n_fft=nfft,hop_length=offset,n_mfcc=20) def Pitch(y,sr): pitches, magnitudes = lr.core.pitch.piptrack(y=y,n_fft=nfft,hop_length=offset) # Select out pitches with high energy pitches = pitches[magnitudes > np.median(magnitudes)] return lr.core.pitch_tuning(pitches) def Mix_wav(speechName,noiseName,mix_snr=5,train=True):#ๅฏนๆ•ฐๆฎๅŠ ไธ€ไธช5db็š„ๅ™ชๅฃฐ s,fs=lr.load(speechName,sr=None) n,fsn=lr.load(noiseName,sr=None) s=lr.resample(s,fs,resample_rate) n=lr.resample(n,fsn,resample_rate) s=np.array(s) n=np.array(n) len_s=len(s) len_n=len(n) if len_s<=len_n: n=n[0:len_s] else: n_extend_num=int(len_s/len_n)+1 n=n.repeat(n_extend_num) n=n[0:len_s] alpha=np.sqrt((s**2).sum()/((n**2).sum()*10**(mix_snr/10))) mix=s+alpha*n mix_tf=lr.core.stft(mix,n_fft=nfft,hop_length=offset) mix_db=lr.core.amplitude_to_db(np.abs(mix_tf)) mfcc=MFCC(mix,sr=fs) pitch=Pitch(mix,sr=fs) ams=ams_extractor(mix,sr=fs,win_len=nfft,shift_len=offset,order=1) if train==True: return mix_db, mfcc, pitch,ams#mix_db else: mix_angle=np.angle(mix_tf) return mix_db,mix_angle def I_Mix_wav(mix_db,mix_angle):# ๅŠ ๆ€งๅ™ชๅฃฐ่ฏญ้Ÿณๆณขๅฝข้€†ๅ˜ๆข mix_amp=lr.core.db_to_amplitude(mix_db) mix_tf=mix_amp*np.exp(mix_angle*1j) mix=lr.core.istft(mix_tf,hop_length=offset) return mix def label_save(mix_data,mix_label,fn):#fnไธบๆ–‡ไปถ่ฆๅญ˜ๅ‚จ็š„ไฝ็ฝฎ dic_data={'mix_data':mix_data, 'mix_label':mix_label} #ๅฐ†ๆ•ฐๆฎๅญ˜ๅ…ฅๅญ—ๅ…ธไธญ with open(fn,'wb') as f: pickle.dump(dic_data,f) def _create_zero_indexes(speech_fileName):#่ฟ‡้›ถ็އ s, fs = lr.load(speech_fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k zero_indexes=[] zero_crossings=lr.zero_crossings(s) zero_index=np.nonzero(zero_crossings)[0] zero_indexes.append(zero_index) #ๅพ—ๅˆฐๅŠ ๅ™ช็š„่ฏญ้Ÿณไฟกๅท filepath="C:/Users/gao/vad/863_IBM_test/"#ๆทปๅŠ ่ทฏๅพ„1 #filepath="D:/863่ฏญ้Ÿณๆ•ฐๆฎ/863_data/863_IBM_train1/"#ๆทปๅŠ ่ทฏๅพ„2 dirname=os.listdir(filepath)#่Žทๅ–ๅ…จ้ƒจๆ–‡ไปถ filepath1="C:/Users/gao/vad/noise/" dirnoise=os.listdir(filepath1) for i in range(0,len(dirname)): for j in range(0,len(dirnoise)): noise_fileName=filepath1+dirnoise[j] #print(noise_fileName)#่ฏปๅ–ๅ™ชๅฃฐ้Ÿณ้ข‘ speech_fileName=filepath+dirname[i] #print(speech_fileName)#่ฏปๅ–ๅŽŸๅง‹ๆ•ฐๆฎ mix_label=genAndSave_trainData(speech_fileName)#็”จๅŽŸๅง‹้Ÿณ้ข‘ๅพ—ๅˆฐๆ•ฐๆฎ็š„ๆ ‡็ญพ #plt.plot(mix_label) #plt.show() #ๅพ—ๅˆฐ5dBไธ‹็š„ๆททๅˆ้Ÿณ้ข‘ #mix_db,mix_angle=Mix_wav(speech_fileName,noise_fileName,mix_snr=5,train=False) mix_db, mfcc, pitch,ams=Mix_wav(speech_fileName,noise_fileName,mix_snr=0,train=True) #print(mix_tf.shape,mfcc.shape,pitch.shape,ams.shape) mix=np.row_stack((mix_db,mfcc,ams)) #print(mix.shape) #mixdata็š„ๅฝ’ไธ€ๅŒ– mixmean= mix.mean(axis=0)#ๆฑ‚ๅ‡บๅ‡ๅ€ผ mixstd = np.std(mix, axis =0) #ๆฑ‚ๅ‡บๆ ‡ๅ‡†ๅทฎ mix_data= (mix-mixmean)/(mixstd+1e-10) #ๅฝ’ไธ€ๅŒ–ๅŽ็š„ๆ•ฐๆฎ print(mix_data.shape) print(mix_label) #a=label_save(mix_data,mix_label,'C:/Users/gao/vad/test_data/0dB/factory_test/'+dirname[i].strip('.WAV')+dirnoise[j].strip('.wav')+'0'+'.pkl') """ x=I_Mix_wav(mix_db,mix_angle) lr.output.write_wav('C:/Users/gao/vad/test_data/'+dirname[i].strip('.WAV')+'__5'+dirnoise[j], x, resample_rate) #ๆ˜พ็คบๅŠ ๆ€งๅ™ชๅฃฐ่ฏญ้Ÿณ plt.plot(x) plt.show() """
[ "librosa.zero_crossings", "pickle.dump", "numpy.abs", "numpy.angle", "numpy.ones", "librosa.resample", "numpy.exp", "librosa.feature.mfcc", "numpy.std", "librosa.core.db_to_amplitude", "librosa.core.pitch_tuning", "numpy.median", "librosa.core.pitch.piptrack", "librosa.load", "librosa.core.stft", "os.listdir", "numpy.nonzero", "numpy.array", "numpy.row_stack", "ams_extract.ams_extractor", "librosa.core.istft" ]
[((4283, 4303), 'os.listdir', 'os.listdir', (['filepath'], {}), '(filepath)\n', (4293, 4303), False, 'import os\n'), ((4356, 4377), 'os.listdir', 'os.listdir', (['filepath1'], {}), '(filepath1)\n', (4366, 4377), False, 'import os\n'), ((375, 408), 'librosa.load', 'lr.load', (['speech_fileName'], {'sr': 'None'}), '(speech_fileName, sr=None)\n', (382, 408), True, 'import librosa as lr\n'), ((421, 454), 'librosa.resample', 'lr.resample', (['s', 'fs', 'resample_rate'], {}), '(s, fs, resample_rate)\n', (432, 454), True, 'import librosa as lr\n'), ((485, 496), 'numpy.array', 'np.array', (['s'], {}), '(s)\n', (493, 496), True, 'import numpy as np\n'), ((513, 559), 'librosa.core.stft', 'lr.core.stft', (['s'], {'n_fft': 'nfft', 'hop_length': 'offset'}), '(s, n_fft=nfft, hop_length=offset)\n', (525, 559), True, 'import librosa as lr\n'), ((658, 680), 'numpy.ones', 'np.ones', (['s_db.shape[1]'], {}), '(s_db.shape[1])\n', (665, 680), True, 'import numpy as np\n'), ((1335, 1366), 'librosa.core.db_to_amplitude', 'lr.core.db_to_amplitude', (['x_data'], {}), '(x_data)\n', (1358, 1366), True, 'import librosa as lr\n'), ((1548, 1591), 'librosa.core.istft', 'lr.core.istft', (['speech_tf'], {'hop_length': 'offset'}), '(speech_tf, hop_length=offset)\n', (1561, 1591), True, 'import librosa as lr\n'), ((1684, 1710), 'librosa.load', 'lr.load', (['fileName'], {'sr': 'None'}), '(fileName, sr=None)\n', (1691, 1710), True, 'import librosa as lr\n'), ((1723, 1756), 'librosa.resample', 'lr.resample', (['s', 'fs', 'resample_rate'], {}), '(s, fs, resample_rate)\n', (1734, 1756), True, 'import librosa as lr\n'), ((1787, 1798), 'numpy.array', 'np.array', (['s'], {}), '(s)\n', (1795, 1798), True, 'import numpy as np\n'), ((1815, 1861), 'librosa.core.stft', 'lr.core.stft', (['s'], {'n_fft': 'nfft', 'hop_length': 'offset'}), '(s, n_fft=nfft, hop_length=offset)\n', (1827, 1861), True, 'import librosa as lr\n'), ((1946, 1960), 'numpy.angle', 'np.angle', (['s_tf'], {}), '(s_tf)\n', (1954, 1960), True, 'import numpy as np\n'), ((2031, 2051), 'numpy.std', 'np.std', (['s_db'], {'axis': '(0)'}), '(s_db, axis=0)\n', (2037, 2051), True, 'import numpy as np\n'), ((2218, 2280), 'librosa.feature.mfcc', 'lr.feature.mfcc', ([], {'y': 'y', 'n_fft': 'nfft', 'hop_length': 'offset', 'n_mfcc': '(20)'}), '(y=y, n_fft=nfft, hop_length=offset, n_mfcc=20)\n', (2233, 2280), True, 'import librosa as lr\n'), ((2322, 2380), 'librosa.core.pitch.piptrack', 'lr.core.pitch.piptrack', ([], {'y': 'y', 'n_fft': 'nfft', 'hop_length': 'offset'}), '(y=y, n_fft=nfft, hop_length=offset)\n', (2344, 2380), True, 'import librosa as lr\n'), ((2490, 2519), 'librosa.core.pitch_tuning', 'lr.core.pitch_tuning', (['pitches'], {}), '(pitches)\n', (2510, 2519), True, 'import librosa as lr\n'), ((2603, 2631), 'librosa.load', 'lr.load', (['speechName'], {'sr': 'None'}), '(speechName, sr=None)\n', (2610, 2631), True, 'import librosa as lr\n'), ((2641, 2668), 'librosa.load', 'lr.load', (['noiseName'], {'sr': 'None'}), '(noiseName, sr=None)\n', (2648, 2668), True, 'import librosa as lr\n'), ((2674, 2707), 'librosa.resample', 'lr.resample', (['s', 'fs', 'resample_rate'], {}), '(s, fs, resample_rate)\n', (2685, 2707), True, 'import librosa as lr\n'), ((2712, 2746), 'librosa.resample', 'lr.resample', (['n', 'fsn', 'resample_rate'], {}), '(n, fsn, resample_rate)\n', (2723, 2746), True, 'import librosa as lr\n'), ((2751, 2762), 'numpy.array', 'np.array', (['s'], {}), '(s)\n', (2759, 2762), True, 'import numpy as np\n'), ((2769, 2780), 'numpy.array', 'np.array', (['n'], {}), '(n)\n', (2777, 2780), True, 'import numpy as np\n'), ((3056, 3104), 'librosa.core.stft', 'lr.core.stft', (['mix'], {'n_fft': 'nfft', 'hop_length': 'offset'}), '(mix, n_fft=nfft, hop_length=offset)\n', (3068, 3104), True, 'import librosa as lr\n'), ((3230, 3296), 'ams_extract.ams_extractor', 'ams_extractor', (['mix'], {'sr': 'fs', 'win_len': 'nfft', 'shift_len': 'offset', 'order': '(1)'}), '(mix, sr=fs, win_len=nfft, shift_len=offset, order=1)\n', (3243, 3296), False, 'from ams_extract import ams_extractor\n'), ((3516, 3547), 'librosa.core.db_to_amplitude', 'lr.core.db_to_amplitude', (['mix_db'], {}), '(mix_db)\n', (3539, 3547), True, 'import librosa as lr\n'), ((3596, 3636), 'librosa.core.istft', 'lr.core.istft', (['mix_tf'], {'hop_length': 'offset'}), '(mix_tf, hop_length=offset)\n', (3609, 3636), True, 'import librosa as lr\n'), ((3914, 3947), 'librosa.load', 'lr.load', (['speech_fileName'], {'sr': 'None'}), '(speech_fileName, sr=None)\n', (3921, 3947), True, 'import librosa as lr\n'), ((3960, 3993), 'librosa.resample', 'lr.resample', (['s', 'fs', 'resample_rate'], {}), '(s, fs, resample_rate)\n', (3971, 3993), True, 'import librosa as lr\n'), ((4055, 4075), 'librosa.zero_crossings', 'lr.zero_crossings', (['s'], {}), '(s)\n', (4072, 4075), True, 'import librosa as lr\n'), ((595, 607), 'numpy.abs', 'np.abs', (['s_tf'], {}), '(s_tf)\n', (601, 607), True, 'import numpy as np\n'), ((1516, 1538), 'numpy.exp', 'np.exp', (['(s_angle * 1.0j)'], {}), '(s_angle * 1.0j)\n', (1522, 1538), True, 'import numpy as np\n'), ((1910, 1922), 'numpy.abs', 'np.abs', (['s_tf'], {}), '(s_tf)\n', (1916, 1922), True, 'import numpy as np\n'), ((3139, 3153), 'numpy.abs', 'np.abs', (['mix_tf'], {}), '(mix_tf)\n', (3145, 3153), True, 'import numpy as np\n'), ((3392, 3408), 'numpy.angle', 'np.angle', (['mix_tf'], {}), '(mix_tf)\n', (3400, 3408), True, 'import numpy as np\n'), ((3567, 3591), 'numpy.exp', 'np.exp', (['(mix_angle * 1.0j)'], {}), '(mix_angle * 1.0j)\n', (3573, 3591), True, 'import numpy as np\n'), ((3823, 3847), 'pickle.dump', 'pickle.dump', (['dic_data', 'f'], {}), '(dic_data, f)\n', (3834, 3847), False, 'import pickle\n'), ((4091, 4117), 'numpy.nonzero', 'np.nonzero', (['zero_crossings'], {}), '(zero_crossings)\n', (4101, 4117), True, 'import numpy as np\n'), ((5134, 5167), 'numpy.row_stack', 'np.row_stack', (['(mix_db, mfcc, ams)'], {}), '((mix_db, mfcc, ams))\n', (5146, 5167), True, 'import numpy as np\n'), ((5344, 5363), 'numpy.std', 'np.std', (['mix'], {'axis': '(0)'}), '(mix, axis=0)\n', (5350, 5363), True, 'import numpy as np\n'), ((2456, 2477), 'numpy.median', 'np.median', (['magnitudes'], {}), '(magnitudes)\n', (2465, 2477), True, 'import numpy as np\n')]
"""Compute stats on the results.""" import arviz as az from datetime import datetime import numpy as np import pandas as pd from pathlib import Path from pystan.misc import _summary from scipy.stats import nbinom from tqdm.auto import tqdm from warnings import warn from .io import extract_samples def get_rhat(fit) -> float: """Get `rhat` for the log-probability of a fit. This is a measure of the convergence across sampling chains. Good convergence is indicated by a value near 1.0. """ x = _summary(fit, ['lp__'], []) summary = pd.DataFrame(x['summary'], columns=x['summary_colnames'], index=x['summary_rownames']) return summary.loc['lp__', 'Rhat'] def get_waic(samples: pd.DataFrame) -> dict: """Get the Widely-Used Information Criterion (WAIC) for a fit. Only use if you don't have arviz (`get_waic_and_loo` is preferred). Args: samples (pd.DataFrame): Samples extracted from a fit. Returns: dict: WAIC and se of WAIC for these samples """ from numpy import log, exp, sum, mean, var, sqrt # I named the Stan array 'llx' ll = samples[[c for c in samples if 'llx' in c]] n_samples, n_obs = ll.shape # Convert to likelihoods (pray for no numeric precision issues) like = exp(ll) # log of the mean (across samples) of the likelihood for each observation lml = log(mean(like, axis=0)) # Sum (across observations) of lml lppd = sum(lml) # Variance (across samples) of the log-likelihood for each observation vll = var(ll, axis=0) # Sum (across observations) of the vll pwaic = sum(vll) elpdi = lml - vll waic = 2*(-lppd + pwaic) # Standar error of the measure se = 2*sqrt(n_obs*var(elpdi)) return {'waic': waic, 'se': se} def get_waic_and_loo(fit) -> dict: warn("`get_waic_and_loo` is deprecated, use `get_fit_quality` instead.", DeprecationWarning) return get_fit_quality(fit) def get_fit_quality(fit) -> dict: """Compute Widely-Available Information Criterion (WAIC) and Leave One Out (LOO) from a fit instance using Arviz. Args: fit: A PyStan4model instance (i.e. a PyStan fit). Returns: dict: WAIC and LOO statistics (and se's) for this fit. """ result = {} try: idata = az.from_pystan(fit, log_likelihood="llx") except KeyError as e: warn("'%s' not found; waic and loo will not be computed" % str(e), stacklevel=2) result.update({'waic': 0, 'loo': 0}) else: result.update(dict(az.loo(idata, scale='deviance'))) result.update(dict(az.waic(idata, scale='deviance'))) result.update({'lp__rhat': get_rhat(fit)}) return result def getllxtensor_singleroi(roi: str, data_path: str, fits_path: str, models_path: str, model_name: str, fit_format: int) -> np.array: """Recompute a single log-likelihood tensor (n_samples x n_datapoints). Args: roi (str): A single ROI, e.g. "US_MI" or "Greece". data_path (str): Full path to the data directory. fits_path (str): Full path to the fits directory. models_path (str): Full path to the models directory. model_name (str): The model name (without the '.stan' suffix). fit_format (int): The .csv (0) or .pkl (1) fit format. Returns: np.array: The log-likelihood tensor. """ csv_path = Path(data_path) / ("covidtimeseries_%s_.csv" % roi) df = pd.read_csv(csv_path) t0 = np.where(df["new_cases"].values > 1)[0][0] y = df[['new_cases', 'new_recover', 'new_deaths']].to_numpy()\ .astype(int)[t0:, :] # load samples samples = extract_samples(fits_path, models_path, model_name, roi, fit_format) S = np.shape(samples['lambda[0,0]'])[0] # print(S) # get number of observations, check against data above for i in range(1000, 0, -1): # Search for it from latest to earliest candidate = '%s[%d,0]' % ('lambda', i) if candidate in samples: N = i+1 # N observations, add 1 since index starts at 0 break # And move on print(N) # run using old data print(len(y)) llx = np.zeros((S, N, 3)) # # conversion from Stan neg_binom2(n_stan | mu,phi) # to scipy.stats.nbinom(k,n_scipy,p) # # n_scipy = phi, p = phi/mu, k = n_stan # t0 = time.time() for i in range(S): phi = samples['phi'][i] for j in range(N): mu = max(samples['lambda['+str(j)+',0]'][i], 1) llx[i, j, 0] = np.log(nbinom.pmf(max(y[j, 0], 0), phi, phi/mu)) mu = max(samples['lambda['+str(j)+',1]'][i], 1) llx[i, j, 1] = np.log(nbinom.pmf(max(y[j, 1], 0), phi, phi/mu)) mu = max(samples['lambda['+str(j)+',2]'][i], 1) llx[i, j, 2] = np.log(nbinom.pmf(max(y[j, 2], 0), phi, phi/mu)) print(np.sum(llx[i, :, :])) print(samples['ll_'][i]) print('--') return llx def reweighted_stat(stat_vals: np.array, loo_vals: np.array, loo_se_vals: np.array = None) -> float: """Get weighted means of a stat (across models), where the weights are related to the LOO's of model/ Args: stat_vals (np.array): Values (across models) of some statistic. loo_vals (np.array): Values (across models) of LOO. loo_se_vals (np.array, optional): Values (across models) of se of LOO. Defaults to None. Returns: float: A new average value for the statistic, weighted across models. """ # Assume that loo is on a deviance scale (lower is better) min_loo = min(loo_vals) weights = np.exp(-0.5*(loo_vals-min_loo)) if loo_se_vals is not None: weights *= np.exp(-0.5*loo_se_vals) weights = weights/np.sum(weights) return np.sum(stat_vals * weights) def reweighted_stats(raw_table_path: str, save: bool = True, roi_weight='n_data_pts', extra=None, first=None, dates=None) -> pd.DataFrame: """Reweight all statistics (across models) according to the LOO of each of the models. Args: raw_table_path (str): Path to the .csv file containing the statistics for each model. save (bool, optional): Whether to save the results. Defaults to True. Returns: pd.DataFrame: The reweighted statistics (i.e. a weighted average across models). """ df = pd.read_csv(raw_table_path, index_col=['model', 'roi', 'quantile']) df = df[~df.index.duplicated(keep='last')] df.columns.name = 'param' df = df.stack('param').unstack(['roi', 'quantile', 'param']).T rois = df.index.get_level_values('roi').unique() result = pd.Series(index=df.index) if first is not None: rois = rois[:first] for roi in tqdm(rois): loo = df.loc[(roi, 'mean', 'loo')] loo_se = df.loc[(roi, 'std', 'loo')] # An indexer for this ROI chunk = df.index.get_level_values('roi') == roi result[chunk] = df[chunk].apply(lambda x: reweighted_stat(x, loo, loo_se), axis=1) result = result.unstack(['param']) result = result[~result.index.get_level_values('quantile') .isin(['min', 'max'])] # Remove min and max if extra is not None: extra.columns.name = 'param' result = result.join(extra) # Add stats for a fixed date if dates: if isinstance(dates, str): dates = [dates] for date in dates: result = add_fixed_date(result, date, ['Rt', 'car', 'ifr']) # Compute global stats means = result.unstack('roi').loc['mean'].unstack('param') means = means.drop('AA_Global', errors='ignore') means = means[sorted(means.columns)] if roi_weight == 'var': inv_var = 1/result.unstack('roi').loc['std']**2 weights = inv_var.fillna(0).unstack('param') global_mean = (means*weights).sum() / weights.sum() global_var = ((weights*((means - global_mean)**2)).sum()/weights.sum()) elif roi_weight == 'waic': waic = means['waic'] n_data = means['n_data_pts'] # Assume that waic is on a deviance scale (lower is better) weights = np.exp(-0.5*waic/n_data) global_mean = means.mul(weights, axis=0).sum() / weights.sum() global_var = (((means - global_mean)**2).mul(weights, axis=0)).sum()/weights.sum() elif roi_weight == 'n_data_pts': n_data = means['n_data_pts'] # Assume that waic is on a deviance scale (lower is better) weights = n_data global_mean = means.mul(weights, axis=0).sum() / weights.sum() global_var = (((means - global_mean)**2).mul(weights, axis=0)).sum()/weights.sum() global_sd = global_var**(1/2) result.loc[('AA_Global', 'mean'), :] = global_mean result.loc[('AA_Global', 'std'), :] = global_sd result = result.sort_index() if save: path = Path(raw_table_path).parent / 'fit_table_reweighted.csv' result.to_csv(path) return result def days_into_2020(date_str): date = datetime.strptime(date_str, '%Y-%m-%d') one_one = datetime.strptime('2020-01-01', '%Y-%m-%d') return (date - one_one).days def get_roi_week(date_str, roi_day_one): days = days_into_2020(date_str) roi_days = days - roi_day_one try: roi_week = int(roi_days/7) except: roi_week = 9999 return roi_week def add_fixed_date(df, date_str, stats): for roi in df.index: week = get_roi_week(date_str, df.loc[roi, 't0']) for stat in stats: col = '%s (week %d)' % (stat, week) new_col = '%s (%s)' % (stat, date_str) if col in df: df.loc[roi, new_col] = df.loc[roi, col] else: df.loc[roi, new_col] = None return df
[ "pandas.DataFrame", "arviz.from_pystan", "numpy.sum", "pandas.read_csv", "numpy.zeros", "tqdm.auto.tqdm", "numpy.shape", "datetime.datetime.strptime", "numpy.mean", "pathlib.Path", "numpy.exp", "pandas.Series", "numpy.where", "arviz.waic", "warnings.warn", "arviz.loo", "numpy.var", "pystan.misc._summary" ]
[((523, 550), 'pystan.misc._summary', '_summary', (['fit', "['lp__']", '[]'], {}), "(fit, ['lp__'], [])\n", (531, 550), False, 'from pystan.misc import _summary\n'), ((565, 656), 'pandas.DataFrame', 'pd.DataFrame', (["x['summary']"], {'columns': "x['summary_colnames']", 'index': "x['summary_rownames']"}), "(x['summary'], columns=x['summary_colnames'], index=x[\n 'summary_rownames'])\n", (577, 656), True, 'import pandas as pd\n'), ((1281, 1288), 'numpy.exp', 'exp', (['ll'], {}), '(ll)\n', (1284, 1288), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((1451, 1459), 'numpy.sum', 'sum', (['lml'], {}), '(lml)\n', (1454, 1459), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((1545, 1560), 'numpy.var', 'var', (['ll'], {'axis': '(0)'}), '(ll, axis=0)\n', (1548, 1560), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((1616, 1624), 'numpy.sum', 'sum', (['vll'], {}), '(vll)\n', (1619, 1624), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((1822, 1918), 'warnings.warn', 'warn', (['"""`get_waic_and_loo` is deprecated, use `get_fit_quality` instead."""', 'DeprecationWarning'], {}), "('`get_waic_and_loo` is deprecated, use `get_fit_quality` instead.',\n DeprecationWarning)\n", (1826, 1918), False, 'from warnings import warn\n'), ((3513, 3534), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {}), '(csv_path)\n', (3524, 3534), True, 'import pandas as pd\n'), ((4252, 4271), 'numpy.zeros', 'np.zeros', (['(S, N, 3)'], {}), '((S, N, 3))\n', (4260, 4271), True, 'import numpy as np\n'), ((5735, 5770), 'numpy.exp', 'np.exp', (['(-0.5 * (loo_vals - min_loo))'], {}), '(-0.5 * (loo_vals - min_loo))\n', (5741, 5770), True, 'import numpy as np\n'), ((5892, 5919), 'numpy.sum', 'np.sum', (['(stat_vals * weights)'], {}), '(stat_vals * weights)\n', (5898, 5919), True, 'import numpy as np\n'), ((6532, 6599), 'pandas.read_csv', 'pd.read_csv', (['raw_table_path'], {'index_col': "['model', 'roi', 'quantile']"}), "(raw_table_path, index_col=['model', 'roi', 'quantile'])\n", (6543, 6599), True, 'import pandas as pd\n'), ((6810, 6835), 'pandas.Series', 'pd.Series', ([], {'index': 'df.index'}), '(index=df.index)\n', (6819, 6835), True, 'import pandas as pd\n'), ((6905, 6915), 'tqdm.auto.tqdm', 'tqdm', (['rois'], {}), '(rois)\n', (6909, 6915), False, 'from tqdm.auto import tqdm\n'), ((9285, 9324), 'datetime.datetime.strptime', 'datetime.strptime', (['date_str', '"""%Y-%m-%d"""'], {}), "(date_str, '%Y-%m-%d')\n", (9302, 9324), False, 'from datetime import datetime\n'), ((9339, 9382), 'datetime.datetime.strptime', 'datetime.strptime', (['"""2020-01-01"""', '"""%Y-%m-%d"""'], {}), "('2020-01-01', '%Y-%m-%d')\n", (9356, 9382), False, 'from datetime import datetime\n'), ((1381, 1399), 'numpy.mean', 'mean', (['like'], {'axis': '(0)'}), '(like, axis=0)\n', (1385, 1399), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((2309, 2350), 'arviz.from_pystan', 'az.from_pystan', (['fit'], {'log_likelihood': '"""llx"""'}), "(fit, log_likelihood='llx')\n", (2323, 2350), True, 'import arviz as az\n'), ((3452, 3467), 'pathlib.Path', 'Path', (['data_path'], {}), '(data_path)\n', (3456, 3467), False, 'from pathlib import Path\n'), ((3823, 3855), 'numpy.shape', 'np.shape', (["samples['lambda[0,0]']"], {}), "(samples['lambda[0,0]'])\n", (3831, 3855), True, 'import numpy as np\n'), ((5818, 5844), 'numpy.exp', 'np.exp', (['(-0.5 * loo_se_vals)'], {}), '(-0.5 * loo_se_vals)\n', (5824, 5844), True, 'import numpy as np\n'), ((5865, 5880), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (5871, 5880), True, 'import numpy as np\n'), ((3544, 3580), 'numpy.where', 'np.where', (["(df['new_cases'].values > 1)"], {}), "(df['new_cases'].values > 1)\n", (3552, 3580), True, 'import numpy as np\n'), ((4950, 4970), 'numpy.sum', 'np.sum', (['llx[i, :, :]'], {}), '(llx[i, :, :])\n', (4956, 4970), True, 'import numpy as np\n'), ((8420, 8448), 'numpy.exp', 'np.exp', (['(-0.5 * waic / n_data)'], {}), '(-0.5 * waic / n_data)\n', (8426, 8448), True, 'import numpy as np\n'), ((1733, 1743), 'numpy.var', 'var', (['elpdi'], {}), '(elpdi)\n', (1736, 1743), False, 'from numpy import log, exp, sum, mean, var, sqrt\n'), ((2561, 2592), 'arviz.loo', 'az.loo', (['idata'], {'scale': '"""deviance"""'}), "(idata, scale='deviance')\n", (2567, 2592), True, 'import arviz as az\n'), ((2622, 2654), 'arviz.waic', 'az.waic', (['idata'], {'scale': '"""deviance"""'}), "(idata, scale='deviance')\n", (2629, 2654), True, 'import arviz as az\n'), ((9139, 9159), 'pathlib.Path', 'Path', (['raw_table_path'], {}), '(raw_table_path)\n', (9143, 9159), False, 'from pathlib import Path\n')]
import os import sys import numpy as np import qcdb from ..utils import * @using("nwchem") def test_grad(): h2o = qcdb.set_molecule( """ O 0.00000000 0.00000000 0.00000000 H 0.00000000 1.93042809 -1.10715266 H 0.00000000 -1.93042809 -1.10715266 units au""" ) qcdb.set_options( { "basis": "sto-3g", "scf__e_convergence": 1e-6, #'nwchem_driver__tight': True } ) val = qcdb.gradient("nwc-scf") scf = -74.888142460799 grads = np.array( [[0.000000, 0.000000, 0.058550], [0.000000, 0.140065, -0.029275], [0.000000, -0.140065, -0.029275]] ) assert compare_values(scf, qcdb.variable("HF TOTAL ENERGY"), 5, "scf") assert compare_arrays(grads, qcdb.variable("CURRENT GRADIENT"), 5, "scf grad")
[ "qcdb.variable", "qcdb.set_options", "numpy.array", "qcdb.gradient", "qcdb.set_molecule" ]
[((123, 337), 'qcdb.set_molecule', 'qcdb.set_molecule', (['"""\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.93042809 -1.10715266\n H 0.00000000 -1.93042809 -1.10715266\n units au"""'], {}), '(\n """\n O 0.00000000 0.00000000 0.00000000\n H 0.00000000 1.93042809 -1.10715266\n H 0.00000000 -1.93042809 -1.10715266\n units au"""\n )\n', (140, 337), False, 'import qcdb\n'), ((347, 413), 'qcdb.set_options', 'qcdb.set_options', (["{'basis': 'sto-3g', 'scf__e_convergence': 1e-06}"], {}), "({'basis': 'sto-3g', 'scf__e_convergence': 1e-06})\n", (363, 413), False, 'import qcdb\n'), ((514, 538), 'qcdb.gradient', 'qcdb.gradient', (['"""nwc-scf"""'], {}), "('nwc-scf')\n", (527, 538), False, 'import qcdb\n'), ((579, 671), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.05855], [0.0, 0.140065, -0.029275], [0.0, -0.140065, -0.029275]]'], {}), '([[0.0, 0.0, 0.05855], [0.0, 0.140065, -0.029275], [0.0, -0.140065,\n -0.029275]])\n', (587, 671), True, 'import numpy as np\n'), ((735, 767), 'qcdb.variable', 'qcdb.variable', (['"""HF TOTAL ENERGY"""'], {}), "('HF TOTAL ENERGY')\n", (748, 767), False, 'import qcdb\n'), ((812, 845), 'qcdb.variable', 'qcdb.variable', (['"""CURRENT GRADIENT"""'], {}), "('CURRENT GRADIENT')\n", (825, 845), False, 'import qcdb\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: fnels """ import numpy as np import maze import random import cv2 class EnvCleaner(object): def __init__(self, N_agent, map_size, seed): self.map_size = map_size self.seed = seed self.occupancy = self.generate_maze(seed) self.N_agent = N_agent self.agt_pos_list = [] for i in range(self.N_agent): self.agt_pos_list.append([1, 1]) def generate_maze(self, seed): symbols = { # default symbols 'start': 'S', 'end': 'X', 'wall_v': '|', 'wall_h': '-', 'wall_c': '+', 'head': '#', 'tail': 'o', 'empty': ' ' } maze_obj = maze.Maze(int((self.map_size - 1) / 2), int((self.map_size - 1) / 2), seed, symbols, 1) grid_map = maze_obj.to_np() for i in range(self.map_size): for j in range(self.map_size): if grid_map[i][j] == 0: grid_map[i][j] = 2 return grid_map def step(self, action_list): reward = 0 #print(self.occupancy) for i in range(len(action_list)): if action_list[i] == 0: # up if self.occupancy[self.agt_pos_list[i][0] - 1][self.agt_pos_list[i][1]] != 1: # if can move self.agt_pos_list[i][0] = self.agt_pos_list[i][0] - 1 else: #can't move return -1 if action_list[i] == 2: # down if self.occupancy[self.agt_pos_list[i][0] + 1][self.agt_pos_list[i][1]] != 1: # if can move self.agt_pos_list[i][0] = self.agt_pos_list[i][0] + 1 else: #can't move return -1 if action_list[i] == 3: # left if self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1] - 1] != 1: # if can move self.agt_pos_list[i][1] = self.agt_pos_list[i][1] - 1 else: #can't move return -1 if action_list[i] == 1: # right if self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1] + 1] != 1: # if can move self.agt_pos_list[i][1] = self.agt_pos_list[i][1] + 1 else: #can't move return -1 if self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1]] == 2: # if the spot is dirty self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1]] = 0 reward = reward + 1 else: return -.05 #spot not dirty return reward def can_move(self, action_list): for i in range(len(action_list)): if action_list[i] == 0: # up if self.occupancy[self.agt_pos_list[i][0] - 1][self.agt_pos_list[i][1]] != 1: # if can move return True else: return False if action_list[i] == 2: # down if self.occupancy[self.agt_pos_list[i][0] + 1][self.agt_pos_list[i][1]] != 1: # if can move return True else: return False if action_list[i] == 3: # left if self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1] - 1] != 1: # if can move return True else: return False if action_list[i] == 1: # right if self.occupancy[self.agt_pos_list[i][0]][self.agt_pos_list[i][1] + 1] != 1: # if can move return True else: return False def is_room_clean(self): for row in self.occupancy: #go through all the tiles in room for column in row: if column == 2: #tile is dirty return False return True def get_global_obs(self): obs = np.zeros((self.map_size, self.map_size, 3)) for i in range(self.map_size): for j in range(self.map_size): if self.occupancy[i, j] == 0: obs[i, j, 0] = 1.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 1.0 if self.occupancy[i, j] == 2: obs[i, j, 0] = 0.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 0.0 for i in range(self.N_agent): obs[self.agt_pos_list[i][0], self.agt_pos_list[i][1], 0] = 1.0 obs[self.agt_pos_list[i][0], self.agt_pos_list[i][1], 1] = 0.0 obs[self.agt_pos_list[i][0], self.agt_pos_list[i][1], 2] = 0.0 return obs def reset(self): self.occupancy = self.generate_maze(self.seed) self.agt_pos_list = [] for i in range(self.N_agent): self.agt_pos_list.append([1, 1]) return self.occupancy def render(self): obs = self.get_global_obs() enlarge = 5 new_obs = np.ones((self.map_size*enlarge, self.map_size*enlarge, 3)) for i in range(self.map_size): for j in range(self.map_size): if obs[i][j][0] == 0.0 and obs[i][j][1] == 0.0 and obs[i][j][2] == 0.0: cv2.rectangle(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, j * enlarge + enlarge), (0, 0, 0), -1) if obs[i][j][0] == 1.0 and obs[i][j][1] == 0.0 and obs[i][j][2] == 0.0: cv2.rectangle(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, j * enlarge + enlarge), (0, 0, 255), -1) if obs[i][j][0] == 0.0 and obs[i][j][1] == 1.0 and obs[i][j][2] == 0.0: cv2.rectangle(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, j * enlarge + enlarge), (0, 255, 0), -1) cv2.imshow('image', new_obs) cv2.waitKey(10) def random_action_list(self): action_list = [] for i in range(1000): action_list.append(random.randint(0,3)) return action_list
[ "random.randint", "cv2.waitKey", "numpy.zeros", "numpy.ones", "cv2.rectangle", "cv2.imshow" ]
[((4161, 4204), 'numpy.zeros', 'np.zeros', (['(self.map_size, self.map_size, 3)'], {}), '((self.map_size, self.map_size, 3))\n', (4169, 4204), True, 'import numpy as np\n'), ((5213, 5275), 'numpy.ones', 'np.ones', (['(self.map_size * enlarge, self.map_size * enlarge, 3)'], {}), '((self.map_size * enlarge, self.map_size * enlarge, 3))\n', (5220, 5275), True, 'import numpy as np\n'), ((6032, 6060), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'new_obs'], {}), "('image', new_obs)\n", (6042, 6060), False, 'import cv2\n'), ((6069, 6084), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (6080, 6084), False, 'import cv2\n'), ((6214, 6234), 'random.randint', 'random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (6228, 6234), False, 'import random\n'), ((5462, 5580), 'cv2.rectangle', 'cv2.rectangle', (['new_obs', '(i * enlarge, j * enlarge)', '(i * enlarge + enlarge, j * enlarge + enlarge)', '(0, 0, 0)', '(-1)'], {}), '(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, \n j * enlarge + enlarge), (0, 0, 0), -1)\n', (5475, 5580), False, 'import cv2\n'), ((5684, 5804), 'cv2.rectangle', 'cv2.rectangle', (['new_obs', '(i * enlarge, j * enlarge)', '(i * enlarge + enlarge, j * enlarge + enlarge)', '(0, 0, 255)', '(-1)'], {}), '(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, \n j * enlarge + enlarge), (0, 0, 255), -1)\n', (5697, 5804), False, 'import cv2\n'), ((5908, 6028), 'cv2.rectangle', 'cv2.rectangle', (['new_obs', '(i * enlarge, j * enlarge)', '(i * enlarge + enlarge, j * enlarge + enlarge)', '(0, 255, 0)', '(-1)'], {}), '(new_obs, (i * enlarge, j * enlarge), (i * enlarge + enlarge, \n j * enlarge + enlarge), (0, 255, 0), -1)\n', (5921, 6028), False, 'import cv2\n')]
from collections import deque import random import numpy as np import gym from gym.wrappers import AtariPreprocessing class Game(): def __init__(self, game_name, start_noop=2, last_n_frames=4, frameskip=4, grayscale_obs=True, scale_obs=False): self.start_noop = start_noop self.last_n_frames = last_n_frames self.frameskip = frameskip self.buffer = deque([], self.last_n_frames) self.env = gym.make(game_name) # Hacks to make environment deterministic and compatible with Atari Preprocessing self.env.unwrapped.frameskip = 1 if 'NoFrameskip' not in self.env.spec.id: print('Environment is not Frameskip version.') self.env.spec.id += '-NoFrameskip' self.envWrapped = AtariPreprocessing(self.env, frame_skip=self.frameskip, grayscale_obs=grayscale_obs, scale_obs=scale_obs) self.envWrapped.reset() self.n_actions = self.env.action_space.n init_screen = self.get_screen() # Screen dimension is represented as (CHW) for PyTorch self.scr_dims = tuple([self.last_n_frames] + list(init_screen.shape)) for _ in range(self.frameskip): self.buffer.append(init_screen.copy()) #self.start_game() def start_game(self): self.buffer.clear() # Random starting operations to simulate human conditions noop_action = 0 # In breakout, nothing happens unless first 'Fired'. if 'Breakout' in self.env.spec.id: noop_action = 1 for _ in range(random.randint(1, self.start_noop)): # 0 corresponds to No-Op action # 1 corresponds to Fire self.step(noop_action) # Fill remaining buffer by most recent frame to send a valid input to model if len(self.buffer) > 0: last_screen = self.buffer[-1] else: last_screen = self.get_screen() while len(self.buffer) < self.buffer.maxlen: self.buffer.append(last_screen.copy()) def get_screen(self): screen = self.envWrapped._get_obs() return screen def get_input(self): # Each element in buffer is a tensor of 84x84 dimensions. # This function returns tensor of 4x84x84 dimensions. return np.stack(tuple(self.buffer), axis=0) def get_n_actions(self): # return number of actions return self.n_actions def reset_env(self): # reset the gym environment self.env.reset() self.start_game() def get_screen_dims(self): # return the screen dimensions return self.scr_dims def step(self, action): screen, reward, done, _ = self.envWrapped.step(action) # # DEBUG # import matplotlib.pyplot as plt # plt.imshow(screen) # plt.plot() # plt.savefig('tmp_img.png') # print(action, '\t', reward) # input() # # DEBUG # ALE takes care of the max pooling of the last 2 frames # Refer: "https://danieltakeshi.github.io/2016/11/25/ # frame-skipping-and-preprocessing-for-deep-q-networks-on-atari-2600-games/" self.buffer.append(screen) # reward is clipped between -1 and 1 reward = np.clip(reward, -1.0, 1.0) return reward, done """ Actions in OpenAI Gym ALE ------------------------- ACTION_MEANING = { 0: "NOOP", 1: "FIRE", 2: "UP", 3: "RIGHT", 4: "LEFT", 5: "DOWN", 6: "UPRIGHT", 7: "UPLEFT", 8: "DOWNRIGHT", 9: "DOWNLEFT", 10: "UPFIRE", 11: "RIGHTFIRE", 12: "LEFTFIRE", 13: "DOWNFIRE", 14: "UPRIGHTFIRE", 15: "UPLEFTFIRE", 16: "DOWNRIGHTFIRE", 17: "DOWNLEFTFIRE", } """
[ "random.randint", "gym.make", "gym.wrappers.AtariPreprocessing", "numpy.clip", "collections.deque" ]
[((392, 421), 'collections.deque', 'deque', (['[]', 'self.last_n_frames'], {}), '([], self.last_n_frames)\n', (397, 421), False, 'from collections import deque\n'), ((442, 461), 'gym.make', 'gym.make', (['game_name'], {}), '(game_name)\n', (450, 461), False, 'import gym\n'), ((778, 888), 'gym.wrappers.AtariPreprocessing', 'AtariPreprocessing', (['self.env'], {'frame_skip': 'self.frameskip', 'grayscale_obs': 'grayscale_obs', 'scale_obs': 'scale_obs'}), '(self.env, frame_skip=self.frameskip, grayscale_obs=\n grayscale_obs, scale_obs=scale_obs)\n', (796, 888), False, 'from gym.wrappers import AtariPreprocessing\n'), ((3283, 3309), 'numpy.clip', 'np.clip', (['reward', '(-1.0)', '(1.0)'], {}), '(reward, -1.0, 1.0)\n', (3290, 3309), True, 'import numpy as np\n'), ((1568, 1602), 'random.randint', 'random.randint', (['(1)', 'self.start_noop'], {}), '(1, self.start_noop)\n', (1582, 1602), False, 'import random\n')]
""" Build ensemble models from ensemble of RandomForestRegressor models """ import sys import numpy as np import pandas as pd import xarray as xr import datetime as datetime import sklearn as sk from sklearn.ensemble import RandomForestRegressor import glob # import AC_tools (https://github.com/tsherwen/AC_tools.git) import AC_tools as AC # s2s imports import sparse2spatial.utils as utils import sparse2spatial.RFRanalysis as RFRanalysis from sparse2spatial.RFRanalysis import get_core_stats_on_current_models def build_or_get_models(df=None, testset='Test set (strat. 20%)', save_model_to_disk=False, read_model_from_disk=True, target='Iodide', model_names=None, delete_existing_model_files=False, rm_outliers=True, model_sub_dir='/TEMP_MODELS/', random_state=42, rm_LOD_filled_data=False, model_feature_dict=None, debug=False): """ Build (or read from disc) various models (diff. features) to test comparisons Parameters ------- df (pd.DataFrame): DataFrame of target and features values for point locations testset (str): Testset to use, e.g. stratified sampling over quartiles for 20%:80% save_model_to_disk (bool): Save the models to disc as pickled binaries? read_model_from_disk (bool): read the models from disc if they are already built? target (str): Name of the target variable (e.g. iodide) model_names (list): List of model names to build/read random_state (int), the seed used by the random number generator delete_existing_model_files (bool): delete the existing model binaries in folder? rm_outliers (bool): remove the outliers from the observational dataset rm_LOD_filled_data (bool): remove the limit of detection (LOD) filled values? rm_Skagerrak_data (bool): Remove specific data (above argument is a iodide specific option - remove this) model_feature_dict (dict): dictionary of features used in each model model_sub_dir (str): the sub directory in which the models are to be saved/read debug (bool): run and debug function/output Returns ------- (dict) """ from sklearn.ensemble import RandomForestRegressor from sklearn.externals import joblib import gc # - Get processed data if isinstance(df, type(None)): print('Dictionary of model names and features must be provided!') sys.exit() # - Get local variables # Location to save models data_root = utils.get_file_locations('data_root') folder = '{}/{}/models/LIVE/{}/'.format(data_root, target, model_sub_dir) if debug: print('Using models from {}'.format(folder)) # Get details on model setups to use if isinstance(model_feature_dict, type(None)): print('Dictionary of model names and features must be provided!') sys.exit() if isinstance(model_names, type(None)): model_names = list(sorted(model_feature_dict.keys())) # Set a hyperparameter settings hyperparam_dict = utils.get_hyperparameter_dict() # Setup dictionaries to save model detail into N_features_used = {} features_used_dict = {} oob_scores = {} models_dict = {} # Loop model input variable options and build models if not read_model_from_disk: for n_model_name, model_name in enumerate(model_names): print(n_model_name, model_name) # Get testing features and hyperparameters to build model features_used = model_feature_dict[model_name] n_estimators = hyperparam_dict['n_estimators'] oob_score = hyperparam_dict['oob_score'] # Select and split variables in the training and test dataset train_set_tr = df.loc[df[testset] != True, features_used] train_set_tr_labels = df.loc[df[testset] != True, target] #ย Build model (Setup and fit) model = RandomForestRegressor(random_state=random_state, n_estimators=n_estimators, oob_score=oob_score, criterion='mse') # Provide the model with the features (features_used) and # The labels ( target, train_set_tr_labels) model.fit(train_set_tr, train_set_tr_labels) # Save model in temporary folder? if save_model_to_disk: # Check if there are any existing files... pkls_in_dir = glob.glob(folder+'*.pkl') Npkls = len(pkls_in_dir) if delete_existing_model_files and (n_model_name == 0): import os [os.remove(i) for i in pkls_in_dir] print('WARNING: deleted existing ({}) pkls'.format(Npkls)) elif(not delete_existing_model_files) and (n_model_name == 0): assert Npkls == 0, 'WARNING: model files exist!' else: pass # Save models as pickles model_savename = "my_model_{:0>4}.pkl".format(n_model_name) try: joblib.dump(model, folder+model_savename) except FileNotFoundError: prt_str = "WARNING: Failed to save file - @ '{}' with name '{}'" print( prt_str.format(folder+model_savename)) utils.check_or_mk_directory_struture() # Also keep models online in dictionary models_dict[model_name] = model # force local tidy of garbage gc.collect() # Loop model and predict for all values # If time to make models too great, then read-in here and 'rm' from above for n_model_name, model_name in enumerate(model_names): # Get testing features and hyperparameters to build model features_used = model_feature_dict[model_name] print(n_model_name, model_name, features_used) # Read models from disk? if (not save_model_to_disk) and (read_model_from_disk): model_savename = "my_model_{:0>4}.pkl".format(n_model_name) model = joblib.load(folder+model_savename) models_dict[model_name] = model else: model = models_dict[model_name] # Predict target for all observation locations df[model_name] = model.predict(df[features_used].values) # Save number of features used too N_features_used[model_name] = len(features_used) features_used_dict[model_name] = '+'.join(features_used) try: oob_scores[model_name] = model.oob_score_ except: oob_scores[model_name] = np.NaN models_dict[model_name] = model # Return models and predictions in a dictionary structure RFR_dict = {} RFR_dict['models_dict'] = models_dict RFR_dict['model_names'] = model_names RFR_dict['df'] = df RFR_dict['features_used_dict'] = features_used_dict RFR_dict['N_features_used'] = N_features_used RFR_dict['oob_scores'] = oob_scores return RFR_dict def get_features_used_by_model(models_list=None, RFR_dict=None): """ Get the (set of) features used by a list of models Parameters ------- RFR_dict (dict): dictionary of core variables and data models_list (list): list of model names to get features for Returns ------- (list) """ # Get dictionary of shared data if not provided if isinstance(RFR_dict, type(None)): RFR_dict = build_or_get_models() # Get models to use (assume top models, if not provided) if isinstance(models_list, type(None)): models_list = get_top_models(RFR_dict=RFR_dict, vars2exclude=['DOC', 'Prod']) # Now plot up in input variables features_used_dict = RFR_dict['features_used_dict'] vars2use = [] for model_name in models_list: vars2use += [features_used_dict[model_name].split('+')] # Remove double ups vars2use = [j for i in vars2use for j in i] return list(set(vars2use)) def get_top_models(n=10, stats=None, RFR_dict=None, vars2exclude=None, exclude_ensemble=True, verbose=True): """ retrieve the names of the top models (default=top 10) Parameters ------- n (int), the number of top ranked models to return vars2exclude (list): list of variables to exclude (e.g. DEPTH) RFR_dict (dict): dictionary of core variables and data exclude_ensemble (bool): exclude the ensemble prediction from the list verbose (bool): print out verbose output? Returns ------- (list) """ # Get stats on models in RFR_dict if isinstance(RFR_dict, type(None)): RFR_dict = build_or_get_models() if isinstance(stats, type(None)): stats = get_core_stats_on_current_models( RFR_dict=RFR_dict, verbose=False) # Don't count the Ensemble in the top ranking models if exclude_ensemble: var_ = 'RFR(Ensemble)' try: stats = stats.T[[i for i in stats.T.columns if var_ not in i]].T if verbose: print('removed {} from list'.format(var_)) except: if verbose: print('failed to remove {} from list'.format(var_)) # Return the top model's names params2inc = stats.T.columns # Exclude any variables in provided list if not isinstance(vars2exclude, type(None)): for var_ in vars2exclude: params2inc = [i for i in params2inc if var_ not in i] # Return the updated dataframe's index (model names that are top models) return list(stats.T[params2inc].T.head(n).index) def Hyperparameter_Tune4choosen_models(RFR_dict=None, target='Iodide', cv=7, testset='Test set (strat. 20%)'): """ Driver to tune mutiple RFR models Parameters ------- testset (str): Testset to use, e.g. stratified sampling over quartiles for 20%:80% cv (int), number of folds of cross-validation to use target (str): Name of the target variable (e.g. iodide) RFR_dict (dict): dictionary of models, data and shared variables Returns ------- (None) """ from sklearn.externals import joblib # Get the data for the models if isinstance(RFR_dict, type(None)): RFR_dict = build_or_get_models() # Set models to optimise models2compare = get_top_models(RFR_dict=RFR_dict, vars2exclude=['DOC', 'Prod']) # Get variables needed from core dictionary features_used_dict = RFR_dict['features_used_dict'] models_dict = RFR_dict['models_dict'] # Set folder to use for optimised models data_root = utils.get_file_locations('data_root') folder = '{}/{}/models/LIVE/OPTIMISED_MODELS/'.format(data_root, target) # Loop and save optimised model # NOTE: this could be speed up by using more cores for model_name in models2compare: print('Optimising model: {}'.format(model_name)) # Get model model = models_dict[model_name] # get testing features features_used = features_used_dict[model_name].split('+') # Tune parameters BE = Hyperparameter_Tune_model(model=model, use_choosen_model=False, save_best_estimator=True, model_name=model_name, RFR_dict=RFR_dict, features_used=features_used, cv=cv) # - Test the tuned models against the test set test_the_tuned_models = False if test_the_tuned_models: # Get the core data df = RFR_dict['df'] # Get the data test_set = df.loc[df[testset] == True, :] train_set = df.loc[df[testset] == False, :] # Test the improvements in the optimised models? for model_name in models2compare: # - Get existing model model = models_dict[model_name] # Get testing features features_used = features_used_dict[model_name].split('+') # - Get the data # ( Make sure to remove the target ) # train_features = df[features_used].loc[ train_set.index ] # train_labels = df[[target]].loc[ train_set.index ] test_features = df[features_used].loc[test_set.index] test_labels = df[[target]].loc[test_set.index] # - test the existing model print(' ---------------- '*3) print(' ---------------- {}: '.format(model_name)) print(' - Base values: ') quick_model_evaluation(model, test_features, test_labels) # - Get optimised model try: model_savename = "my_model_{}.pkl".format(model_name) OPmodel = joblib.load(folder + model_savename) # print(' - Optimised values: ') quick_model_evaluation(OPmodel, test_features, test_labels) except: pass # - Test the tuned models against the training set # Get the core data df = RFR_dict['df'] # get the data test_set = df.loc[df[testset] == True, :] train_set = df.loc[df[testset] == False, :] # Test the improvements in the optimised models? for model_name in models2compare: # - Get existing model model = models_dict[model_name] # get testing features features_used = features_used_dict[model_name].split('+') # - Get the data # ( Making sure to remove the target!!! ) train_features = df[features_used].loc[train_set.index] train_labels = df[[target]].loc[train_set.index] # test_features = df[features_used].loc[ test_set.index ] # test_labels = df[[target]].loc[ test_set.index ] # - test the existing model print(' ---------------- '*3) print(' ---------------- {}: '.format(model_name)) print(' - Base values: ') quick_model_evaluation(model, train_features, train_labels) # - Get optimised model try: model_savename = "my_model_{}.pkl".format(model_name) OPmodel = joblib.load(folder + model_savename) # print(' - Optimised values: ') quick_model_evaluation(OPmodel, train_features, train_labels) except: pass def Hyperparameter_Tune_model(use_choosen_model=True, model=None, RFR_dict=None, df=None, cv=3, testset='Test set (strat. 20%)', target='Iodide', features_used=None, model_name=None, save_best_estimator=True): """ Driver to tune hyperparmeters of model Parameters ------- testset (str): Testset to use, e.g. stratified sampling over quartiles for 20%:80% target (str): Name of the target variable (e.g. iodide) RFR_dict (dict): dictionary of core variables and data model_name (str): name of model to tune performance of features_used (list): list of the features within the model_name model save_best_estimator (bool): save the best performing model offline model (RandomForestRegressor), Random Forest Regressor model to tune cv (int), number of folds of cross-validation to use Returns ------- (RandomForestRegressor) """ from sklearn.externals import joblib from sklearn.ensemble import RandomForestRegressor # Get data to test if isinstance(df, type(None)): # df = get_dataset_processed4ML() df = RFR_dict['df'] # Use the model selected from the feature testing if use_choosen_model: assert_str = "model name not needed as use_choosen_model selected!" assert isinstance(model, type(None)), assert_str # select a single chosen model mdict = get_choosen_model_from_features_selection() features_used = mdict['features_used'] model = mdict['model'] model_name = mdict['name'] # - extract training dataset test_set = df.loc[df[testset] == True, :] train_set = df.loc[df[testset] == False, :] # also sub select all vectors for input data # ( Making sure to remove the target!!! ) train_features = df[features_used].loc[train_set.index] train_labels = df[[target]].loc[train_set.index] test_features = df[features_used].loc[test_set.index] test_labels = df[[target]].loc[test_set.index] # - Make the base model for comparisons base_model = RandomForestRegressor(n_estimators=10, random_state=42, criterion='mse') base_model.fit(train_features, train_labels) quick_model_evaluation(base_model, test_features, test_labels) # - First make an intial explore of the parameter space rf_random = Use_RS_CV_to_explore_hyperparams(cv=cv, train_features=train_features, train_labels=train_labels, features_used=features_used ) # Check the performance by Random searching (RandomizedSearchCV) best_random = rf_random.best_estimator_ best_params_ = rf_random.best_params_ print(rf_random.best_params_) quick_model_evaluation(best_random, test_features, test_labels) # - Now do a more focused optimisation # get the parameters based on the RandomizedSearchCV output param_grid = define_hyperparameter_options2test( features_used=features_used, best_params_=best_params_, param_grid_RandomizedSearchCV=True) # Use GridSearchCV grid_search = use_GS_CV_to_tune_Hyperparams(cv=cv, train_features=train_features, param_grid=param_grid, train_labels=train_labels, features_used=features_used, ) print(grid_search.best_params_) # Check the performance of grid seraching searching BEST_ESTIMATOR = grid_search.best_estimator_ quick_model_evaluation(BEST_ESTIMATOR, test_features, test_labels) # Save the best estimator now for future use if save_best_estimator: data_root = utils.get_file_locations('data_root') folder = '{}/{}/models/LIVE/OPTIMISED_MODELS/'.format(data_root, target) model_savename = "my_model_{}.pkl".format(model_name) joblib.dump(BEST_ESTIMATOR, folder + model_savename) else: return BEST_ESTIMATOR def Use_RS_CV_to_explore_hyperparams(train_features=None, train_labels=None, features_used=None, test_features=None, test_labels=None, scoring='neg_mean_squared_error', cv=3): """ Intial test of parameter space using RandomizedSearchCV Parameters ------- features_used (list): list of the features used by the model train_features (list): list of the training features train_labels (list): list of the training labels test_features (list): list of the testing features test_labels (list): list of the testing labels cv (int), number of folds of cross-validation to use scoring (str): scoring method to use """ from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestRegressor # Number of trees in random forest n_estimators = [int(x) for x in np.linspace(start=10, stop=1000, num=10)] # Number of features to consider at every split # max_features = ['auto', 'sqrt'] max_features = range(1, 30) if not isinstance(features_used, type(None)): max_features = [i for i in max_features if i <= len(features_used)] # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) # Minimum number of samples required to split a node min_samples_split = [2, 5, 10] # Minimum number of samples required at each leaf node min_samples_leaf = [1, 2, 4] # Method of selecting samples for training each tree # bootstrap = [True, False] bootstrap = [True] # Force use of bootstrapping # Create the random grid random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} # Use the random grid to search for best hyperparameters # First create the base model to tune rf = RandomForestRegressor(random_state=42, criterion='mse') # Random search of parameters, using 3 fold cross validation, # search across 100 different combinations, and use all available cores rf_random = RandomizedSearchCV(estimator=rf, param_distributions=random_grid, n_iter=100, cv=cv, verbose=2, random_state=42, n_jobs=-1, scoring=scoring) # Fit the random search model rf_random.fit(train_features, train_labels) return rf_random def use_GS_CV_to_tune_Hyperparams(param_grid=None, train_features=None, train_labels=None, features_used=None, \ scoring='neg_mean_squared_error', cv=3, ): """ Refine hyperparameters using (GridSearchCV) Parameters ------- features_used (list): list of the features used by the model train_features (list): list of the training features train_labels (list): list of the training labels cv (int), number of folds of cross-validation to use scoring (str): scoring method to use """ from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor # Create a based model rf = RandomForestRegressor(random_state=42, criterion='mse') # Instantiate the grid search model grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=cv, n_jobs=-1, verbose=2, scoring=scoring) # Fit the grid search to the data grid_search.fit(train_features, train_labels) return grid_search def quick_model_evaluation(model, test_features, test_labels): """ Perform a quick model evaluation """ from sklearn.metrics import mean_squared_error predictions = model.predict(test_features) MSE = mean_squared_error(test_labels, predictions) RMSE = np.sqrt(MSE) ME = np.mean(abs(predictions - test_labels.values)) print('Model Performance') print('Mean squared error (MAE): {:0.4f} nM'.format(MSE)) print('Mean absolute error (MAE): {:0.4f} nM'.format(ME)) print('RMSE = {:0.2f}'.format(RMSE)) return RMSE def define_hyperparameter_options2test(features_used=None, param_grid_RandomizedSearchCV=True, best_params_=None, param_grid_intial_guess=True, ): """ Define a selction of test groups Parameters ------- param_grid_intial_guess (bool): use the parameter grid of guesses param_grid_RandomizedSearchCV (bool): use the parameter grid obtained by randomly searching best_params_ (param_grid), parameter grid of best parameters to use features_used (list): list of the features used by the model """ # - Shared variables in grid vals2test = { 'n_estimators': [10, 50, 75, 100, 125, 200, 300, 500], 'max_features': [1, 2, 3, 4, 5], 'max_depth': [3, 10, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 3, 10], 'oob_score': [True], 'bootstrap': [True], } if param_grid_RandomizedSearchCV: if not isinstance(best_params_, type(None)): vals2test_ASSUMED = vals2test.copy() vals2test = {} for key in best_params_: value = best_params_[key] # 'n_estimators' / trees if (key == 'n_estimators'): values = [value+(i*10) for i in range(0, 4)] values += [value+(i*10) for i in range(-4, 0)] # only allow values greater than zero values = [i for i in values if i > 0] # add sorted values vals2test[key] = sorted(values) # max depth elif (key == 'max_depth'): # value is either a number of "None". if utils.is_number(value): values = [value+(i*5) for i in range(0, 2)] values += [value+(i*5) for i in range(-2, 0)] # only allow values greater than zero values = [i for i in values if i > 0] # add sorted values vals2test[key] = sorted(values) else: # If None, just use None. vals2test[key] = [value] # 'min_samples_split' elif (key == 'min_samples_leaf'): if value == 1: values = range(value, value+3) else: values = [value, value+1, value+2] # add sorted values vals2test[key] = list(sorted(values)) # 'min_samples_split' elif (key == 'min_samples_split'): values = [value, value+1, value+2] # add sorted values vals2test[key] = list(sorted(values)) # Add bootstrap and 'max_features' as recived elif (key == 'bootstrap') or (key == 'max_features'): vals2test[key] = [value] # Check the key has settings intialised for else: print('No settings setup for {}'.format(key)) sys.exit() # check all the values in best_params_ are in dict new_keys = best_params_.keys() old_keys = vals2test_ASSUMED.keys() extra_keys = [i for i in old_keys if i not in new_keys] print('WARNING: adding standard keys for: ', extra_keys) for key in extra_keys: vals2test[key] = vals2test_ASSUMED[key] # check all values in all_in_dict = any([i not in vals2test.keys() for i in new_keys]) assert (not all_in_dict), 'Missing keys from provided best_params_' else: vals2test = { 'n_estimators': [80+(i*10) for i in range(8)], 'max_features': [1, 2, 3, 4, 5], 'max_depth': [90+(i*5) for i in range(5)], 'min_samples_split': [4, 5, 6], 'min_samples_leaf': [1, 2, 3], 'oob_score': [True], 'bootstrap': [True], } # Check the number of variations being tested def prod(iterable): import operator return reduce(operator.mul, iterable, 1) len_of_values = [len(vals2test[i]) for i in vals2test.keys()] print('WARNING: # of variations undertest = {}'.format(prod(len_of_values))) # Make sure the max features isn't set to more features_used that known if not isinstance(features_used, type(None)): max_features = vals2test['max_features'] max_features = [i for i in max_features if i <= len(features_used)] vals2test['max_features'] = max_features # --- Setup a parameter grid for testings param_grid = [ # - # of trees (โ€œn_estimatorsโ€, test=10, 25, 50, 100, 250, 500) # { # 'bootstrap': [True], # 'n_estimators': vals2test['n_estimators'], # 'oob_score': [True], # }, # # - # of features/โ€variablesโ€ (โ€œmax_featuresโ€, test= 2,3,4, None) # { # 'bootstrap': [True], # 'max_features': vals2test['max_features2test'], # 'oob_score': [True], # }, # # - both of the above # { # 'bootstrap': [True], # 'n_estimators': vals2test['n_estimators'], # 'max_features': vals2test['max_features'], # 'oob_score': [True], # }, # # - Minimum samples per leaf # { # 'bootstrap': [True], # "min_samples_leaf": vals2test['min_samples_leaf'], # 'oob_score': [True], # }, # # - Depth # { # 'bootstrap': [True], # "max_depth": max_depth2test, # 'oob_score': [True], # }, # # - Split? # { # 'bootstrap': [True], # "min_samples_split": vals2test['min_samples_split'], # 'oob_score': [True], # }, # - all of the above { 'bootstrap': vals2test['bootstrap'], 'n_estimators': vals2test['n_estimators'], 'max_features': vals2test['max_features'], "min_samples_split": vals2test['min_samples_split'], "min_samples_leaf": vals2test['min_samples_leaf'], "max_depth": vals2test['max_depth'], 'oob_score': vals2test['oob_score'], }, ] if param_grid_intial_guess: return param_grid elif return_random_informed_grid: return param_grid_RandomizedSearchCV def mk_predictions_NetCDF_4_many_builds(model2use, res='4x5', models_dict=None, features_used_dict=None, RFR_dict=None, target='Iodide', stats=None, plot2check=False, rm_Skagerrak_data=False, debug=False): """ Make a NetCDF file of predicted variables for a given resolution Parameters ------- model2use (str): name of the model to use target (str): Name of the target variable (e.g. iodide) RFR_dict (dict): dictionary of core variables and data res (str): horizontal resolution of dataset (e.g. 4x5) features_used_dict (dict): dictionary of feature variables in models plot2check (bool): make a quick plot to check the prediction models_dict (dict): dictionary of RFR models and there names stats (pd.DataFrame): dataframe of statistics on models in models_dict rm_Skagerrak_data (bool): Remove specific data (above argument is a iodide specific option - remove this) debug (bool): print out debugging output? Returns ------- (None) """ from sklearn.externals import joblib import gc import glob # - local variables # extract the models... if isinstance(RFR_dict, type(None)): RFR_dict = build_or_get_models( rm_Skagerrak_data=rm_Skagerrak_data ) # Get the variables required here if isinstance(features_used_dict, type(None)): features_used_dict = RFR_dict['features_used_dict'] # Set the extr_str if rm_Skagerrak_data set to True if rm_Skagerrak_data: extr_str = '_No_Skagerrak' else: extr_str = '' # Get location to save file and set filename folder = utils.get_file_locations('data_root') + '/data/' filename = 'Oi_prj_feature_variables_{}.nc'.format(res) dsA = xr.open_dataset(folder + filename) # Get location to save ensemble builds of models folder_str = '{}/{}/models/LIVE/ENSEMBLE_REPEAT_BUILD{}/' folder = folder_str.format(folder, target, extr_str) # - Make a dataset for each model ds_l = [] # Get list of twenty models built models_str = folder + '*{}*.pkl'.format(model2use) builds4model = glob.glob(models_str) print(builds4model, models_str) # Print a string to debug the output db_str = "Found {} saved models for '{} - glob str:{}'" print(db_str.format(len(builds4model), model2use, models_str)) # Get the numbers for the models in directory b_modelnames = [i.split('my_model_')[-1][:-3] for i in builds4model] # Check the number of models selected ast_str = "There aren't models for {} in {}" assert len(b_modelnames) > 1, ast_str.format(model2use, folder) # Now loop by model built for ensemble member and predict values for n_modelname, b_modelname in enumerate(b_modelnames): # Load the model model = joblib.load(builds4model[n_modelname]) # Get testinng features features_used = features_used_dict[model2use].split('+') # Make a DataSet of predicted values ds_l += [mk_da_of_predicted_values(model=model, res=res, dsA=dsA, modelname=b_modelname, features_used=features_used)] # Force local tidy of garbage gc.collect() # Combine datasets ds = xr.merge(ds_l) # - Also get values for existing parameterisations if target == 'Iodide': # Chance et al (2013) param = u'Chance2014_STTxx2_I' arr = utils.calc_I_Chance2014_STTxx2_I(dsA['WOA_TEMP'].values) ds[param] = ds[b_modelname] # use existing array as dummy to fill ds[param].values = arr # MacDonald et al (2013) param = 'MacDonald2014_iodide' arr = utils.calc_I_MacDonald2014(dsA['WOA_TEMP'].values) ds[param] = ds[b_modelname] # use existing array as dummy to fill ds[param].values = arr # Do a test diagnostic plot? if plot2check: for var_ in ds.data_vars: # Do a quick plot to check arr = ds[var_].mean(dim='time') AC.map_plot(arr, res=res) plt.title(var_) plt.show() # Save to NetCDF save_name = 'Oi_prj_predicted_{}_{}_ENSEMBLE_BUILDS_{}_{}.nc' ds.to_netcdf(save_name.format(target, res, model2use, extr_str)) def get_model_predictions4obs_point(df=None, model_name='TEMP+DEPTH+SAL', model=None, features_used=None): """ Get model predictions for all observed points Parameters ------- df (pd.DataFrame): dataframe containing of target and features features_used_dict (dict): dictionary of feature variables in models model (RandomForestRegressor), Random Forest Regressor model to user model_name (str): name of the model to use Returns ------- (np.array) """ # Model name? if isinstance(model, type(None)): print('Model now must be provided get_model_predictions4obs_point') sys.exit() # Testing features to use if isinstance(features_used, type(None)): func_name = 'get_model_predictions4obs_point' print("The model's features must be provided to {}".format(func_name)) # Now predict for the given testing features target_predictions = model.predict(df[features_used]) return target_predictions def mk_test_train_sets(df=None, target='Iodide', rand_strat=True, features_used=None, random_state=42, rand_20_80=False, nsplits=4, verbose=True, debug=False): """ Make a test and training dataset for ML algorithms Parameters ------- target (str): Name of the target variable (e.g. iodide) random_state (int), seed value to use as random seed for reproducible analysis nsplits (int), number of ways to split the data rand_strat (bool): split the data in a random way using stratified sampling rand_20_80 (bool): split the data in a random way df (pd.DataFrame): dataframe containing of target and features debug (bool): print out debugging output? verbose (bool): print out verbose output? Returns ------- (list) """ # - make Test and training set # to make this approach's output identical at every run np.random.seed(42) # - Standard random selection: if rand_20_80: from sklearn.model_selection import train_test_split # Use a standard 20% test set. train_set, test_set = train_test_split(df, test_size=0.2, random_state=random_state) # also sub select all vectors for input data # ( Making sure to remove the target!!! ) train_set = df[features_used].loc[train_set.index] test_set = df[features_used].loc[test_set.index] test_set_targets = df[[target]].loc[test_set.index] # - Use a random split if rand_strat: from sklearn.model_selection import StratifiedShuffleSplit # Add in "SPLIT_GROUP" metric SPLITvar = 'SPLIT_GROUP' use_ceil_of_log = False # This approach was only used if use_ceil_of_log: # Original approach taken for AGU work etc ceil_ln_limited = np.ceil(np.log(df[target])) # push bottom end values into lower bin ceil_ln_limited[ceil_ln_limited <= 2] = 2 # push top end values in higher bin ceil_ln_limited[ceil_ln_limited >= 5] = 5 df[SPLITvar] = ceil_ln_limited else: # Use decals and put the bins with high values to together # NOTE: use quartile cut (pd.qcut, not pd.cut) # df[SPLITvar] = pd.cut(df[target].values,10).codes.astype(int) # Combine the lesser populated higher 5 bins into the 5th bin # df.loc[ df[SPLITvar] >= 4, SPLITvar ] = 4 # qcut will split the data into N ("nsplits") bins (e.g. quintiles) # pd.qcut(df[target].values,5).value_counts() df[SPLITvar] = pd.qcut(df[target].values, nsplits).codes if verbose: print(df[SPLITvar].value_counts()) # setup the split split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=random_state) # Now split for train_index, test_index in split.split(df, df[SPLITvar]): train_set = df.loc[train_index] test_set = df.loc[test_index] test_set_targets = df[[target]].loc[test_index] # Gotcha for changes in array index Na = df[~df.index.isin(train_index.tolist() + test_index.tolist())] if (Na.shape[0] < 0): print('WARNING'*20) print(Na) # Print out the split of the bins... if verbose: dfs = { 'ALL data': df, 'test data': test_set, 'train data': train_set } for key_ in dfs.keys(): print('data split in: {}'.format(key_)) print(dfs[key_][SPLITvar].value_counts() / dfs[key_].shape[0]) # Now remove the SPLIT group for set_ in train_set, test_set: set_.drop(SPLITvar, axis=1, inplace=True) return train_set, test_set, test_set_targets def mk_predictions_for_3D_features(dsA=None, RFR_dict=None, res='4x5', models_dict=None, features_used_dict=None, stats=None, folder=None, target='Iodide', use_updated_predictor_NetCDF=False, save2NetCDF=False, plot2check=False, models2compare=[], topmodels=None, xsave_str='', add_ensemble2ds=False, verbose=True, debug=False): """ Make a NetCDF file of predicted target from feature variables for a given resolution Parameters ---------- dsA (xr.Dataset): dataset object with variables to interpolate RFR_dict (dict): dictionary of core variables and data res (str): horizontal resolution (e.g. 4x5) of Dataset save2NetCDF (bool): save interpolated Dataset to as a NetCDF? features_used_dict (dict): dictionary of feature variables in models models_dict (dict): dictionary of RFR models and there names stats (pd.DataFrame): dataframe of statistics on models in models_dict folder (str): location of NetCDF file of feature variables target (str): name of the species being predicted models2compare (list): list of models to make spatial predictions for (rm: double up?) topmodels (list): list of models to make spatial predictions for xsave_str (str): string to include as suffix in filename used for saved NetCDF add_ensemble2ds (bool): calculate std. dev. and mean for list of topmodels verbose (bool): print out verbose output? debug (bool): print out debugging output? Returns ------- (xr.Dataset) """ # Make sure the core dictionary is provided assert (type(RFR_dict) == dict), 'Core variables must be provided as dict (RFR_dict)' # Make sure a full list of models was provided assert (len(models2compare) > 0), 'List of models to must be provided!' # Inc. all the topmodels in the list of models to compare if they have been provided. if isinstance(topmodels, type(list)): models2compare += topmodels # Remove any double ups in list of of models to predict models2compare = list(set(models2compare)) # Get the variables required here if isinstance(models_dict, type(None)): models_dict = RFR_dict['models_dict'] if isinstance(features_used_dict, type(None)): features_used_dict = RFR_dict['features_used_dict'] # Get location to save file and set filename if isinstance(folder, type(None)): folder = utils.get_file_locations('data_root') + '/data/' if isinstance(dsA, type(None)): filename = 'Oi_prj_feature_variables_{}.nc'.format(res) dsA = xr.open_dataset(folder + filename) # - Make a dataset of predictions for each model ds_l = [] for modelname in models2compare: # get model model = models_dict[modelname] # get testinng features features_used = utils.get_model_features_used_dict(modelname) # Make a DataSet of predicted values ds_tmp = utils.mk_da_of_predicted_values(dsA=dsA, model=model, res=res, modelname=modelname, features_used=features_used) # Add attributes to the prediction ds_tmp = utils.add_attrs2target_ds(ds_tmp, add_global_attrs=False, varname=modelname) # Save to list ds_l += [ds_tmp] # Combine datasets ds = xr.merge(ds_l) # - Also get values for parameterisations # if target == 'Iodide': # # Chance et al (2013) # param = u'Chance2014_STTxx2_I' # arr = utils.calc_I_Chance2014_STTxx2_I(dsA['WOA_TEMP'].values) # ds[param] = ds[modelname] # use existing array as dummy to fill # ds[param].values = arr # # MacDonald et al (2013) # param = 'MacDonald2014_iodide' # arr = utils.calc_I_MacDonald2014(dsA['WOA_TEMP'].values) # ds[param] = ds[modelname] # use existing array as dummy to fill # ds[param].values = arr # Add ensemble to ds too if add_ensemble2ds: print('WARNING: Using topmodels for ensemble as calculated here') var2template = list(ds.data_vars)[0] ds = RFRanalysis.add_ensemble_avg_std_to_dataset(ds=ds, res=res, target=target, RFR_dict=RFR_dict, topmodels=topmodels, var2template=var2template, save2NetCDF=False) # Add global attributes ds = utils.add_attrs2target_ds(ds, add_varname_attrs=False) # Save to NetCDF if save2NetCDF: filename = 'Oi_prj_predicted_{}_{}{}.nc'.format(target, res, xsave_str) ds.to_netcdf(filename) else: return ds
[ "sklearn.model_selection.GridSearchCV", "sklearn.externals.joblib.dump", "os.remove", "numpy.random.seed", "sparse2spatial.RFRanalysis.add_ensemble_avg_std_to_dataset", "sklearn.model_selection.train_test_split", "gc.collect", "sparse2spatial.utils.mk_da_of_predicted_values", "glob.glob", "AC_tools.map_plot", "sparse2spatial.utils.is_number", "sparse2spatial.utils.calc_I_Chance2014_STTxx2_I", "sparse2spatial.utils.calc_I_MacDonald2014", "sklearn.model_selection.RandomizedSearchCV", "xarray.merge", "sparse2spatial.RFRanalysis.get_core_stats_on_current_models", "numpy.linspace", "sparse2spatial.utils.check_or_mk_directory_struture", "pandas.qcut", "sparse2spatial.utils.add_attrs2target_ds", "sklearn.metrics.mean_squared_error", "sklearn.ensemble.RandomForestRegressor", "sparse2spatial.utils.get_file_locations", "sklearn.externals.joblib.load", "sparse2spatial.utils.get_model_features_used_dict", "sys.exit", "sparse2spatial.utils.get_hyperparameter_dict", "numpy.log", "xarray.open_dataset", "sklearn.model_selection.StratifiedShuffleSplit", "numpy.sqrt" ]
[((2564, 2601), 'sparse2spatial.utils.get_file_locations', 'utils.get_file_locations', (['"""data_root"""'], {}), "('data_root')\n", (2588, 2601), True, 'import sparse2spatial.utils as utils\n'), ((3096, 3127), 'sparse2spatial.utils.get_hyperparameter_dict', 'utils.get_hyperparameter_dict', ([], {}), '()\n', (3125, 3127), True, 'import sparse2spatial.utils as utils\n'), ((10782, 10819), 'sparse2spatial.utils.get_file_locations', 'utils.get_file_locations', (['"""data_root"""'], {}), "('data_root')\n", (10806, 10819), True, 'import sparse2spatial.utils as utils\n'), ((16775, 16847), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'n_estimators': '(10)', 'random_state': '(42)', 'criterion': '"""mse"""'}), "(n_estimators=10, random_state=42, criterion='mse')\n", (16796, 16847), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((21233, 21288), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'random_state': '(42)', 'criterion': '"""mse"""'}), "(random_state=42, criterion='mse')\n", (21254, 21288), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((21447, 21592), 'sklearn.model_selection.RandomizedSearchCV', 'RandomizedSearchCV', ([], {'estimator': 'rf', 'param_distributions': 'random_grid', 'n_iter': '(100)', 'cv': 'cv', 'verbose': '(2)', 'random_state': '(42)', 'n_jobs': '(-1)', 'scoring': 'scoring'}), '(estimator=rf, param_distributions=random_grid, n_iter=\n 100, cv=cv, verbose=2, random_state=42, n_jobs=-1, scoring=scoring)\n', (21465, 21592), False, 'from sklearn.model_selection import RandomizedSearchCV\n'), ((22600, 22655), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'random_state': '(42)', 'criterion': '"""mse"""'}), "(random_state=42, criterion='mse')\n", (22621, 22655), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((22714, 22814), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', ([], {'estimator': 'rf', 'param_grid': 'param_grid', 'cv': 'cv', 'n_jobs': '(-1)', 'verbose': '(2)', 'scoring': 'scoring'}), '(estimator=rf, param_grid=param_grid, cv=cv, n_jobs=-1, verbose\n =2, scoring=scoring)\n', (22726, 22814), False, 'from sklearn.model_selection import GridSearchCV\n'), ((23178, 23222), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['test_labels', 'predictions'], {}), '(test_labels, predictions)\n', (23196, 23222), False, 'from sklearn.metrics import mean_squared_error\n'), ((23234, 23246), 'numpy.sqrt', 'np.sqrt', (['MSE'], {}), '(MSE)\n', (23241, 23246), True, 'import numpy as np\n'), ((32363, 32397), 'xarray.open_dataset', 'xr.open_dataset', (['(folder + filename)'], {}), '(folder + filename)\n', (32378, 32397), True, 'import xarray as xr\n'), ((32734, 32755), 'glob.glob', 'glob.glob', (['models_str'], {}), '(models_str)\n', (32743, 32755), False, 'import glob\n'), ((33898, 33912), 'xarray.merge', 'xr.merge', (['ds_l'], {}), '(ds_l)\n', (33906, 33912), True, 'import xarray as xr\n'), ((36887, 36905), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (36901, 36905), True, 'import numpy as np\n'), ((43589, 43603), 'xarray.merge', 'xr.merge', (['ds_l'], {}), '(ds_l)\n', (43597, 43603), True, 'import xarray as xr\n'), ((44852, 44906), 'sparse2spatial.utils.add_attrs2target_ds', 'utils.add_attrs2target_ds', (['ds'], {'add_varname_attrs': '(False)'}), '(ds, add_varname_attrs=False)\n', (44877, 44906), True, 'import sparse2spatial.utils as utils\n'), ((2478, 2488), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2486, 2488), False, 'import sys\n'), ((2921, 2931), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2929, 2931), False, 'import sys\n'), ((8895, 8961), 'sparse2spatial.RFRanalysis.get_core_stats_on_current_models', 'get_core_stats_on_current_models', ([], {'RFR_dict': 'RFR_dict', 'verbose': '(False)'}), '(RFR_dict=RFR_dict, verbose=False)\n', (8927, 8961), False, 'from sparse2spatial.RFRanalysis import get_core_stats_on_current_models\n'), ((18670, 18707), 'sparse2spatial.utils.get_file_locations', 'utils.get_file_locations', (['"""data_root"""'], {}), "('data_root')\n", (18694, 18707), True, 'import sparse2spatial.utils as utils\n'), ((18859, 18911), 'sklearn.externals.joblib.dump', 'joblib.dump', (['BEST_ESTIMATOR', '(folder + model_savename)'], {}), '(BEST_ESTIMATOR, folder + model_savename)\n', (18870, 18911), False, 'from sklearn.externals import joblib\n'), ((32244, 32281), 'sparse2spatial.utils.get_file_locations', 'utils.get_file_locations', (['"""data_root"""'], {}), "('data_root')\n", (32268, 32281), True, 'import sparse2spatial.utils as utils\n'), ((33413, 33451), 'sklearn.externals.joblib.load', 'joblib.load', (['builds4model[n_modelname]'], {}), '(builds4model[n_modelname])\n', (33424, 33451), False, 'from sklearn.externals import joblib\n'), ((33853, 33865), 'gc.collect', 'gc.collect', ([], {}), '()\n', (33863, 33865), False, 'import gc\n'), ((34078, 34134), 'sparse2spatial.utils.calc_I_Chance2014_STTxx2_I', 'utils.calc_I_Chance2014_STTxx2_I', (["dsA['WOA_TEMP'].values"], {}), "(dsA['WOA_TEMP'].values)\n", (34110, 34134), True, 'import sparse2spatial.utils as utils\n'), ((34327, 34377), 'sparse2spatial.utils.calc_I_MacDonald2014', 'utils.calc_I_MacDonald2014', (["dsA['WOA_TEMP'].values"], {}), "(dsA['WOA_TEMP'].values)\n", (34353, 34377), True, 'import sparse2spatial.utils as utils\n'), ((35577, 35587), 'sys.exit', 'sys.exit', ([], {}), '()\n', (35585, 35587), False, 'import sys\n'), ((37090, 37152), 'sklearn.model_selection.train_test_split', 'train_test_split', (['df'], {'test_size': '(0.2)', 'random_state': 'random_state'}), '(df, test_size=0.2, random_state=random_state)\n', (37106, 37152), False, 'from sklearn.model_selection import train_test_split\n'), ((38826, 38902), 'sklearn.model_selection.StratifiedShuffleSplit', 'StratifiedShuffleSplit', ([], {'n_splits': '(1)', 'test_size': '(0.2)', 'random_state': 'random_state'}), '(n_splits=1, test_size=0.2, random_state=random_state)\n', (38848, 38902), False, 'from sklearn.model_selection import StratifiedShuffleSplit\n'), ((42755, 42789), 'xarray.open_dataset', 'xr.open_dataset', (['(folder + filename)'], {}), '(folder + filename)\n', (42770, 42789), True, 'import xarray as xr\n'), ((43009, 43054), 'sparse2spatial.utils.get_model_features_used_dict', 'utils.get_model_features_used_dict', (['modelname'], {}), '(modelname)\n', (43043, 43054), True, 'import sparse2spatial.utils as utils\n'), ((43117, 43234), 'sparse2spatial.utils.mk_da_of_predicted_values', 'utils.mk_da_of_predicted_values', ([], {'dsA': 'dsA', 'model': 'model', 'res': 'res', 'modelname': 'modelname', 'features_used': 'features_used'}), '(dsA=dsA, model=model, res=res, modelname=\n modelname, features_used=features_used)\n', (43148, 43234), True, 'import sparse2spatial.utils as utils\n'), ((43389, 43465), 'sparse2spatial.utils.add_attrs2target_ds', 'utils.add_attrs2target_ds', (['ds_tmp'], {'add_global_attrs': '(False)', 'varname': 'modelname'}), '(ds_tmp, add_global_attrs=False, varname=modelname)\n', (43414, 43465), True, 'import sparse2spatial.utils as utils\n'), ((44369, 44537), 'sparse2spatial.RFRanalysis.add_ensemble_avg_std_to_dataset', 'RFRanalysis.add_ensemble_avg_std_to_dataset', ([], {'ds': 'ds', 'res': 'res', 'target': 'target', 'RFR_dict': 'RFR_dict', 'topmodels': 'topmodels', 'var2template': 'var2template', 'save2NetCDF': '(False)'}), '(ds=ds, res=res, target=target,\n RFR_dict=RFR_dict, topmodels=topmodels, var2template=var2template,\n save2NetCDF=False)\n', (44412, 44537), True, 'import sparse2spatial.RFRanalysis as RFRanalysis\n'), ((3989, 4106), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'random_state': 'random_state', 'n_estimators': 'n_estimators', 'oob_score': 'oob_score', 'criterion': '"""mse"""'}), "(random_state=random_state, n_estimators=n_estimators,\n oob_score=oob_score, criterion='mse')\n", (4010, 4106), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((5683, 5695), 'gc.collect', 'gc.collect', ([], {}), '()\n', (5693, 5695), False, 'import gc\n'), ((6244, 6280), 'sklearn.externals.joblib.load', 'joblib.load', (['(folder + model_savename)'], {}), '(folder + model_savename)\n', (6255, 6280), False, 'from sklearn.externals import joblib\n'), ((20025, 20065), 'numpy.linspace', 'np.linspace', ([], {'start': '(10)', 'stop': '(1000)', 'num': '(10)'}), '(start=10, stop=1000, num=10)\n', (20036, 20065), True, 'import numpy as np\n'), ((20410, 20438), 'numpy.linspace', 'np.linspace', (['(10)', '(110)'], {'num': '(11)'}), '(10, 110, num=11)\n', (20421, 20438), True, 'import numpy as np\n'), ((34665, 34690), 'AC_tools.map_plot', 'AC.map_plot', (['arr'], {'res': 'res'}), '(arr, res=res)\n', (34676, 34690), True, 'import AC_tools as AC\n'), ((42592, 42629), 'sparse2spatial.utils.get_file_locations', 'utils.get_file_locations', (['"""data_root"""'], {}), "('data_root')\n", (42616, 42629), True, 'import sparse2spatial.utils as utils\n'), ((4582, 4609), 'glob.glob', 'glob.glob', (["(folder + '*.pkl')"], {}), "(folder + '*.pkl')\n", (4591, 4609), False, 'import glob\n'), ((12887, 12923), 'sklearn.externals.joblib.load', 'joblib.load', (['(folder + model_savename)'], {}), '(folder + model_savename)\n', (12898, 12923), False, 'from sklearn.externals import joblib\n'), ((14377, 14413), 'sklearn.externals.joblib.load', 'joblib.load', (['(folder + model_savename)'], {}), '(folder + model_savename)\n', (14388, 14413), False, 'from sklearn.externals import joblib\n'), ((37848, 37866), 'numpy.log', 'np.log', (['df[target]'], {}), '(df[target])\n', (37854, 37866), True, 'import numpy as np\n'), ((38667, 38702), 'pandas.qcut', 'pd.qcut', (['df[target].values', 'nsplits'], {}), '(df[target].values, nsplits)\n', (38674, 38702), True, 'import pandas as pd\n'), ((5239, 5282), 'sklearn.externals.joblib.dump', 'joblib.dump', (['model', '(folder + model_savename)'], {}), '(model, folder + model_savename)\n', (5250, 5282), False, 'from sklearn.externals import joblib\n'), ((4772, 4784), 'os.remove', 'os.remove', (['i'], {}), '(i)\n', (4781, 4784), False, 'import os\n'), ((5494, 5532), 'sparse2spatial.utils.check_or_mk_directory_struture', 'utils.check_or_mk_directory_struture', ([], {}), '()\n', (5530, 5532), True, 'import sparse2spatial.utils as utils\n'), ((25415, 25437), 'sparse2spatial.utils.is_number', 'utils.is_number', (['value'], {}), '(value)\n', (25430, 25437), True, 'import sparse2spatial.utils as utils\n'), ((26851, 26861), 'sys.exit', 'sys.exit', ([], {}), '()\n', (26859, 26861), False, 'import sys\n')]
# coding: utf-8 # import numpy as np import json from socket import * import select import pygame from pygame.locals import * import sys HOST = gethostname() PORT = 1113 BUFSIZE = 1024 ADDR = ("127.0.0.1", PORT) USER = 'Server' INTERVAL=0.01 VEROCITY=100 LIFETIME=1000 #Window.fullscreen=True class DataReceiver: def init(self): self.label_data={} self.t={} self.udpServSock = socket(AF_INET, SOCK_DGRAM) #IPv4/UDP self.udpServSock.bind(ADDR) self.udpServSock.setblocking(0) enabled_labels = [0,1,2] labels = {"0":"aaa","1":"bbb","2":"ccc"} def update(self): data=None draw_data={} try: while True: data, addr = self.udpServSock.recvfrom(BUFSIZE) if data is not None and len(data)>0: print('...received from and returned to:', addr) print(len(data)) while len(data)>=6: idx=int.from_bytes(data[0:1],byteorder='little') l=int.from_bytes(data[1:2],byteorder='little') arr=np.frombuffer(data[2:6],dtype=np.float32) data=data[6:] y=arr[0] draw_data[l]=y print(idx,l,y) except: pass if len(draw_data)>0: for l,y in draw_data.items(): # set label color label=int(l) if label not in self.label_data: self.label_data[label]=np.zeros((100,)) self.label_data[label][:]=np.nan self.t[label]=0 self.label_data[label][self.t[l]]=y for l,v in self.label_data.items(): self.t[l]+=1 self.t[l]=self.t[l]%100 self.label_data[l][self.t[l]]=np.nan def stop(self): self.udpServSock.close() color_list=[(255,0,0),(0,255,0),(0,0,255),] def main(): dr=DataReceiver() pygame.init() # ๅˆๆœŸๅŒ– screen = pygame.display.set_mode((600, 400)) pygame.display.set_caption("Pygame Test") dr.init() t=0 dt=10 while(True): cnt=0 for event in pygame.event.get(): # ็ต‚ไบ†ๅ‡ฆ็† if event.type == QUIT: pygame.quit() sys.exit() dr.update() screen.fill((0,0,0,)) # ่ƒŒๆ™ฏ่‰ฒใฎๆŒ‡ๅฎšใ€‚RGBใ ใจๆ€ใ† for k,v in dr.label_data.items(): cur=dr.t[k] prev=np.nan for i in range(len(v)): y=v[(cur-i)%len(v)] #if (not np.isnan(y)) and (not np.isnan(prev)): # pygame.draw.line(screen, (255,255,255), (i*dt,prev), ((i+1)*dt,y),5) if (not np.isnan(y)): pygame.draw.circle(screen, color_list[k], (i*dt,int(y)), 3) cnt+=1 prev=y pygame.display.update() # ็”ป้ขๆ›ดๆ–ฐ pygame.time.wait(30) # ๆ›ดๆ–ฐ้–“้š”ใ€‚ๅคšๅˆ†ใƒŸใƒช็ง’ t+=1 if __name__ == "__main__": main()
[ "pygame.quit", "pygame.event.get", "pygame.display.set_mode", "numpy.frombuffer", "numpy.zeros", "pygame.init", "numpy.isnan", "pygame.time.wait", "pygame.display.update", "pygame.display.set_caption", "sys.exit" ]
[((1600, 1613), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1611, 1613), False, 'import pygame\n'), ((1630, 1665), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(600, 400)'], {}), '((600, 400))\n', (1653, 1665), False, 'import pygame\n'), ((1667, 1708), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Pygame Test"""'], {}), "('Pygame Test')\n", (1693, 1708), False, 'import pygame\n'), ((1769, 1787), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1785, 1787), False, 'import pygame\n'), ((2274, 2297), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (2295, 2297), False, 'import pygame\n'), ((2307, 2327), 'pygame.time.wait', 'pygame.time.wait', (['(30)'], {}), '(30)\n', (2323, 2327), False, 'import pygame\n'), ((1829, 1842), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (1840, 1842), False, 'import pygame\n'), ((1848, 1858), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1856, 1858), False, 'import sys\n'), ((1242, 1258), 'numpy.zeros', 'np.zeros', (['(100,)'], {}), '((100,))\n', (1250, 1258), True, 'import numpy as np\n'), ((2170, 2181), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (2178, 2181), True, 'import numpy as np\n'), ((944, 986), 'numpy.frombuffer', 'np.frombuffer', (['data[2:6]'], {'dtype': 'np.float32'}), '(data[2:6], dtype=np.float32)\n', (957, 986), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import os,sys sys.path.append(os.path.join(os.path.dirname(__file__), '../../utility')) sys.path.append(os.path.join(os.path.dirname(__file__), '../../network')) import numpy as np import tensorflow as tf from agent import Agent from eager_nn import ActorNet, CriticNet from optimizer import * from OU_noise import OrnsteinUhlenbeckProcess class DDPG(Agent): def __init__(self, *args, **kwargs): self.max_action = kwargs.pop('max_action') super().__init__(*args, **kwargs) self.noise = OrnsteinUhlenbeckProcess(num_actions=self.n_actions) self.tau = 0.01 if self.is_categorical: self.Vmax, self.Vmin = 10.0, -10.0 self.delta_z = tf.lin_space(self.Vmin, self.Vmax, self.critic.N_atoms) """ self.delta_z = (self.Vmax - self.Vmin) / (self.q_eval.N_atoms - 1) self.z_list = tf.constant([self.Vmin + i * self.delta_z for i in range(self.critic.N_atoms)],dtype=tf.float32) self.z_list_broadcasted = tf.tile(tf.reshape(self.z_list,[1,self.q_eval.N_atoms]), tf.constant([self.n_actions,1])) """ def _build_net(self): self.actor = ActorNet(model=self.model[0], out_dim=self.n_actions, name='ActorNet', opt=self._optimizer, lr=self.lr, trainable=self.trainable, max_action=self.max_action) self.actor_target = ActorNet(model=self.model[0], out_dim=self.n_actions, name='ActorNet_target', trainable=False, max_action=self.max_action) self.critic = CriticNet(model=self.model[1], out_dim=1, name='CriticNet', opt=self._optimizer, lr=self.lr, trainable=self.trainable) self.critic_target = CriticNet(model=self.model[1], out_dim=1, name='CriticNet_target',trainable=False) @tf.contrib.eager.defun def inference(self, state): return self.actor.inference(state) def choose_action(self, observation): observation = observation[np.newaxis, :] action = self.inference(observation) + np.expand_dims(self.noise.generate(),axis=0) return np.array(action[0]) def test_choose_action(self, observation): observation = observation[np.newaxis, :] action = self.inference(observation) return np.array(action[0]) def update_q_net(self, replay_data, weights): bs, ba, done, bs_, br, p_idx = replay_data self.bs = np.array(bs, dtype=np.float32) bs_ = np.array(bs_, dtype=np.float32) eval_act_index = np.reshape(ba,(self.batch_size, self.n_actions)) reward = np.reshape(np.array(br, dtype=np.float32),(self.batch_size,1)) done = np.reshape(np.array(done, dtype=np.float32),(self.batch_size,1)) p_idx = np.reshape(p_idx,(self.batch_size,1)) return self._train_body(self.bs, eval_act_index, done, bs_, reward, p_idx, weights) @tf.contrib.eager.defun def _train_body(self, bs, eval_act_index, done, bs_, reward, p_idx, weights): global_step = tf.train.get_or_create_global_step() # update critic_net with tf.device(self.device): with tf.GradientTape() as tape: if self.is_categorical: pass else: critic_next, critic_eval = self.critic_target.inference([bs_, self.actor_target.inference(bs_)]), self.critic.inference([bs, eval_act_index]) target_Q = reward + self.discount ** tf.cast(p_idx, tf.float32) * critic_next * (1. - done) target_Q = tf.stop_gradient(target_Q) # โ†“critic_loss error = tf.losses.huber_loss(labels=target_Q, predictions=critic_eval) td_error = tf.abs(tf.reduce_mean(target_Q - critic_eval, axis=1)) critic_loss = tf.reduce_mean(error * weights, keepdims=True) self.critic.optimize(critic_loss, global_step, tape) # update actor_net with tf.GradientTape() as tape: actor_eval = tf.cast(self.actor.inference(bs), tf.float32) actor_loss = -tf.reduce_mean(self.critic.inference([bs, actor_eval])) self.actor.optimize(actor_loss, global_step, tape) # check to replace target parameters self.update_target_net() return [critic_loss, actor_loss], td_error def update_target_net(self): # update critic_target_net for param, target_param in zip(self.critic.weights, self.critic_target.weights): target_param.assign(self.tau * param + (1 - self.tau) * target_param) # update actor_target_net for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(self.tau * param + (1 - self.tau) * target_param) return class TD3(Agent): def __init__(self, *args, **kwargs): self.max_action = kwargs.pop('max_action') super().__init__(*args, **kwargs) self.noise = OrnsteinUhlenbeckProcess(num_actions=self.n_actions) self.tau = 0.01 self.policy_freq = 2 def _build_net(self): self.actor = ActorNet(model=self.model[0], out_dim=self.n_actions, name='ActorNet', opt=self._optimizer, lr=self.lr, trainable=True, max_action=self.max_action) self.actor_target = ActorNet(model=self.model[0], out_dim=self.n_actions, name='ActorNet_target', trainable=False, max_action=self.max_action) self.critic1 = CriticNet(model=self.model[1], out_dim=1, name='CriticNet1', opt=self._optimizer, lr=self.lr, trainable=True) self.critic2 = CriticNet(model=self.model[1], out_dim=1, name='CriticNet2', opt=self._optimizer, lr=self.lr, trainable=True) self.critic_target1 = CriticNet(model=self.model[1], out_dim=1, name='CriticNet_target1',trainable=False) self.critic_target2 = CriticNet(model=self.model[1], out_dim=1, name='CriticNet_target2',trainable=False) @tf.contrib.eager.defun def inference(self, state): return self.actor.inference(state) def choose_action(self, observation): observation = observation[np.newaxis, :] action = self.inference(observation) + np.expand_dims(self.noise.generate(),axis=0) return np.array(action[0]) def test_choose_action(self, observation): observation = observation[np.newaxis, :] action = self.inference(observation) return np.array(action[0]) def update_q_net(self, replay_data, weights): bs, ba, done, bs_, br, p_idx = replay_data self.bs = np.array(bs, dtype=np.float32) bs_ = np.array(bs_, dtype=np.float32) eval_act_index = np.reshape(ba,(self.batch_size, self.n_actions)) reward = np.reshape(np.array(br, dtype=np.float32),(self.batch_size,1)) done = np.reshape(np.array(done, dtype=np.float32),(self.batch_size,1)) p_idx = np.reshape(p_idx,(self.batch_size,1)) critic_loss1, critic_loss2, td_error = self._train_critic(self.bs, eval_act_index, done, bs_, reward, p_idx, weights) if self._iteration % self.policy_freq == 0: self.actor_loss = self._train_actor(self.bs) self._iteration += 1 return [critic_loss1, critic_loss2, self.actor_loss], td_error @tf.contrib.eager.defun def _train_critic(self, bs, eval_act_index, done, bs_, reward, p_idx, weights, noise_clip=0.5): with tf.device(self.device): global_step = tf.train.get_or_create_global_step() noise = tf.clip_by_value(tf.random.normal(shape=[self.batch_size,1],mean=0.0, stddev=0.2) , -noise_clip, noise_clip) next_action = tf.clip_by_value(self.actor_target.inference(bs_) + noise, -self.max_action, self.max_action) critic_next1, critic_next2 = self.critic_target1.inference([bs_, next_action]), self.critic_target2.inference([bs_, next_action]) critic_next = tf.minimum(critic_next1, critic_next2) target_Q = reward + self.discount ** tf.cast(p_idx, tf.float32) * critic_next * (1. - done) target_Q = tf.stop_gradient(target_Q) # update critic_net1 with tf.GradientTape() as tape: critic_eval1 = self.critic1.inference([bs, eval_act_index]) error = tf.losses.huber_loss(labels=target_Q, predictions=critic_eval1) td_error = tf.abs(tf.reduce_mean(target_Q - critic_eval1, axis=1)) critic_loss1 = tf.reduce_mean(error * weights, keepdims=True) self.critic1.optimize(critic_loss1, global_step, tape) with tf.GradientTape() as tape: critic_eval2 = self.critic2.inference([bs, eval_act_index]) critic_loss2 = tf.reduce_mean(tf.losses.huber_loss(labels=target_Q, predictions=critic_eval2) * weights, keepdims=True) self.critic2.optimize(critic_loss2, global_step, tape) return critic_loss1, critic_loss2, td_error @tf.contrib.eager.defun def _train_actor(self, bs): with tf.device(self.device): global_step = tf.train.get_or_create_global_step() # update actor_net with tf.GradientTape() as tape: actor_eval = tf.cast(self.actor.inference(bs), tf.float32) self.actor_loss = -tf.reduce_mean(self.critic1.inference([bs, actor_eval])) self.actor.optimize(self.actor_loss, global_step, tape) # check to replace target parameters self.update_target_net() return self.actor_loss def update_target_net(self): # update critic_target_net1 for param, target_param in zip(self.critic1.weights, self.critic_target1.weights): target_param.assign(self.tau * param + (1 - self.tau) * target_param) # update critic_target_net2 for param, target_param in zip(self.critic2.weights, self.critic_target2.weights): target_param.assign(self.tau * param + (1 - self.tau) * target_param) # update actor_target_net for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(self.tau * param + (1 - self.tau) * target_param) return
[ "tensorflow.random.normal", "eager_nn.ActorNet", "eager_nn.CriticNet", "os.path.dirname", "OU_noise.OrnsteinUhlenbeckProcess", "tensorflow.train.get_or_create_global_step", "tensorflow.device", "tensorflow.stop_gradient", "tensorflow.minimum", "tensorflow.reduce_mean", "tensorflow.cast", "tensorflow.losses.huber_loss", "numpy.array", "numpy.reshape", "tensorflow.lin_space", "tensorflow.GradientTape" ]
[((67, 92), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (82, 92), False, 'import os, sys\n'), ((141, 166), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (156, 166), False, 'import os, sys\n'), ((539, 591), 'OU_noise.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'num_actions': 'self.n_actions'}), '(num_actions=self.n_actions)\n', (563, 591), False, 'from OU_noise import OrnsteinUhlenbeckProcess\n'), ((1188, 1355), 'eager_nn.ActorNet', 'ActorNet', ([], {'model': 'self.model[0]', 'out_dim': 'self.n_actions', 'name': '"""ActorNet"""', 'opt': 'self._optimizer', 'lr': 'self.lr', 'trainable': 'self.trainable', 'max_action': 'self.max_action'}), "(model=self.model[0], out_dim=self.n_actions, name='ActorNet', opt=\n self._optimizer, lr=self.lr, trainable=self.trainable, max_action=self.\n max_action)\n", (1196, 1355), False, 'from eager_nn import ActorNet, CriticNet\n'), ((1374, 1501), 'eager_nn.ActorNet', 'ActorNet', ([], {'model': 'self.model[0]', 'out_dim': 'self.n_actions', 'name': '"""ActorNet_target"""', 'trainable': '(False)', 'max_action': 'self.max_action'}), "(model=self.model[0], out_dim=self.n_actions, name=\n 'ActorNet_target', trainable=False, max_action=self.max_action)\n", (1382, 1501), False, 'from eager_nn import ActorNet, CriticNet\n'), ((1520, 1643), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet"""', 'opt': 'self._optimizer', 'lr': 'self.lr', 'trainable': 'self.trainable'}), "(model=self.model[1], out_dim=1, name='CriticNet', opt=self.\n _optimizer, lr=self.lr, trainable=self.trainable)\n", (1529, 1643), False, 'from eager_nn import ActorNet, CriticNet\n'), ((1668, 1755), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet_target"""', 'trainable': '(False)'}), "(model=self.model[1], out_dim=1, name='CriticNet_target',\n trainable=False)\n", (1677, 1755), False, 'from eager_nn import ActorNet, CriticNet\n'), ((2054, 2073), 'numpy.array', 'np.array', (['action[0]'], {}), '(action[0])\n', (2062, 2073), True, 'import numpy as np\n'), ((2235, 2254), 'numpy.array', 'np.array', (['action[0]'], {}), '(action[0])\n', (2243, 2254), True, 'import numpy as np\n'), ((2376, 2406), 'numpy.array', 'np.array', (['bs'], {'dtype': 'np.float32'}), '(bs, dtype=np.float32)\n', (2384, 2406), True, 'import numpy as np\n'), ((2421, 2452), 'numpy.array', 'np.array', (['bs_'], {'dtype': 'np.float32'}), '(bs_, dtype=np.float32)\n', (2429, 2452), True, 'import numpy as np\n'), ((2478, 2527), 'numpy.reshape', 'np.reshape', (['ba', '(self.batch_size, self.n_actions)'], {}), '(ba, (self.batch_size, self.n_actions))\n', (2488, 2527), True, 'import numpy as np\n'), ((2703, 2742), 'numpy.reshape', 'np.reshape', (['p_idx', '(self.batch_size, 1)'], {}), '(p_idx, (self.batch_size, 1))\n', (2713, 2742), True, 'import numpy as np\n'), ((2966, 3002), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (3000, 3002), True, 'import tensorflow as tf\n'), ((4976, 5028), 'OU_noise.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'num_actions': 'self.n_actions'}), '(num_actions=self.n_actions)\n', (5000, 5028), False, 'from OU_noise import OrnsteinUhlenbeckProcess\n'), ((5130, 5282), 'eager_nn.ActorNet', 'ActorNet', ([], {'model': 'self.model[0]', 'out_dim': 'self.n_actions', 'name': '"""ActorNet"""', 'opt': 'self._optimizer', 'lr': 'self.lr', 'trainable': '(True)', 'max_action': 'self.max_action'}), "(model=self.model[0], out_dim=self.n_actions, name='ActorNet', opt=\n self._optimizer, lr=self.lr, trainable=True, max_action=self.max_action)\n", (5138, 5282), False, 'from eager_nn import ActorNet, CriticNet\n'), ((5306, 5433), 'eager_nn.ActorNet', 'ActorNet', ([], {'model': 'self.model[0]', 'out_dim': 'self.n_actions', 'name': '"""ActorNet_target"""', 'trainable': '(False)', 'max_action': 'self.max_action'}), "(model=self.model[0], out_dim=self.n_actions, name=\n 'ActorNet_target', trainable=False, max_action=self.max_action)\n", (5314, 5433), False, 'from eager_nn import ActorNet, CriticNet\n'), ((5453, 5567), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet1"""', 'opt': 'self._optimizer', 'lr': 'self.lr', 'trainable': '(True)'}), "(model=self.model[1], out_dim=1, name='CriticNet1', opt=self.\n _optimizer, lr=self.lr, trainable=True)\n", (5462, 5567), False, 'from eager_nn import ActorNet, CriticNet\n'), ((5586, 5700), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet2"""', 'opt': 'self._optimizer', 'lr': 'self.lr', 'trainable': '(True)'}), "(model=self.model[1], out_dim=1, name='CriticNet2', opt=self.\n _optimizer, lr=self.lr, trainable=True)\n", (5595, 5700), False, 'from eager_nn import ActorNet, CriticNet\n'), ((5726, 5814), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet_target1"""', 'trainable': '(False)'}), "(model=self.model[1], out_dim=1, name='CriticNet_target1',\n trainable=False)\n", (5735, 5814), False, 'from eager_nn import ActorNet, CriticNet\n'), ((5840, 5928), 'eager_nn.CriticNet', 'CriticNet', ([], {'model': 'self.model[1]', 'out_dim': '(1)', 'name': '"""CriticNet_target2"""', 'trainable': '(False)'}), "(model=self.model[1], out_dim=1, name='CriticNet_target2',\n trainable=False)\n", (5849, 5928), False, 'from eager_nn import ActorNet, CriticNet\n'), ((6232, 6251), 'numpy.array', 'np.array', (['action[0]'], {}), '(action[0])\n', (6240, 6251), True, 'import numpy as np\n'), ((6409, 6428), 'numpy.array', 'np.array', (['action[0]'], {}), '(action[0])\n', (6417, 6428), True, 'import numpy as np\n'), ((6550, 6580), 'numpy.array', 'np.array', (['bs'], {'dtype': 'np.float32'}), '(bs, dtype=np.float32)\n', (6558, 6580), True, 'import numpy as np\n'), ((6595, 6626), 'numpy.array', 'np.array', (['bs_'], {'dtype': 'np.float32'}), '(bs_, dtype=np.float32)\n', (6603, 6626), True, 'import numpy as np\n'), ((6652, 6701), 'numpy.reshape', 'np.reshape', (['ba', '(self.batch_size, self.n_actions)'], {}), '(ba, (self.batch_size, self.n_actions))\n', (6662, 6701), True, 'import numpy as np\n'), ((6877, 6916), 'numpy.reshape', 'np.reshape', (['p_idx', '(self.batch_size, 1)'], {}), '(p_idx, (self.batch_size, 1))\n', (6887, 6916), True, 'import numpy as np\n'), ((722, 777), 'tensorflow.lin_space', 'tf.lin_space', (['self.Vmin', 'self.Vmax', 'self.critic.N_atoms'], {}), '(self.Vmin, self.Vmax, self.critic.N_atoms)\n', (734, 777), True, 'import tensorflow as tf\n'), ((2555, 2585), 'numpy.array', 'np.array', (['br'], {'dtype': 'np.float32'}), '(br, dtype=np.float32)\n', (2563, 2585), True, 'import numpy as np\n'), ((2633, 2665), 'numpy.array', 'np.array', (['done'], {'dtype': 'np.float32'}), '(done, dtype=np.float32)\n', (2641, 2665), True, 'import numpy as np\n'), ((3045, 3067), 'tensorflow.device', 'tf.device', (['self.device'], {}), '(self.device)\n', (3054, 3067), True, 'import tensorflow as tf\n'), ((6729, 6759), 'numpy.array', 'np.array', (['br'], {'dtype': 'np.float32'}), '(br, dtype=np.float32)\n', (6737, 6759), True, 'import numpy as np\n'), ((6807, 6839), 'numpy.array', 'np.array', (['done'], {'dtype': 'np.float32'}), '(done, dtype=np.float32)\n', (6815, 6839), True, 'import numpy as np\n'), ((7393, 7415), 'tensorflow.device', 'tf.device', (['self.device'], {}), '(self.device)\n', (7402, 7415), True, 'import tensorflow as tf\n'), ((7443, 7479), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (7477, 7479), True, 'import tensorflow as tf\n'), ((7898, 7936), 'tensorflow.minimum', 'tf.minimum', (['critic_next1', 'critic_next2'], {}), '(critic_next1, critic_next2)\n', (7908, 7936), True, 'import tensorflow as tf\n'), ((8064, 8090), 'tensorflow.stop_gradient', 'tf.stop_gradient', (['target_Q'], {}), '(target_Q)\n', (8080, 8090), True, 'import tensorflow as tf\n'), ((9024, 9046), 'tensorflow.device', 'tf.device', (['self.device'], {}), '(self.device)\n', (9033, 9046), True, 'import tensorflow as tf\n'), ((9074, 9110), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (9108, 9110), True, 'import tensorflow as tf\n'), ((3086, 3103), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (3101, 3103), True, 'import tensorflow as tf\n'), ((3939, 3956), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (3954, 3956), True, 'import tensorflow as tf\n'), ((7518, 7584), 'tensorflow.random.normal', 'tf.random.normal', ([], {'shape': '[self.batch_size, 1]', 'mean': '(0.0)', 'stddev': '(0.2)'}), '(shape=[self.batch_size, 1], mean=0.0, stddev=0.2)\n', (7534, 7584), True, 'import tensorflow as tf\n'), ((8142, 8159), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (8157, 8159), True, 'import tensorflow as tf\n'), ((8269, 8332), 'tensorflow.losses.huber_loss', 'tf.losses.huber_loss', ([], {'labels': 'target_Q', 'predictions': 'critic_eval1'}), '(labels=target_Q, predictions=critic_eval1)\n', (8289, 8332), True, 'import tensorflow as tf\n'), ((8447, 8493), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(error * weights)'], {'keepdims': '(True)'}), '(error * weights, keepdims=True)\n', (8461, 8493), True, 'import tensorflow as tf\n'), ((8579, 8596), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (8594, 8596), True, 'import tensorflow as tf\n'), ((9159, 9176), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (9174, 9176), True, 'import tensorflow as tf\n'), ((3505, 3531), 'tensorflow.stop_gradient', 'tf.stop_gradient', (['target_Q'], {}), '(target_Q)\n', (3521, 3531), True, 'import tensorflow as tf\n'), ((3595, 3657), 'tensorflow.losses.huber_loss', 'tf.losses.huber_loss', ([], {'labels': 'target_Q', 'predictions': 'critic_eval'}), '(labels=target_Q, predictions=critic_eval)\n', (3615, 3657), True, 'import tensorflow as tf\n'), ((3778, 3824), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(error * weights)'], {'keepdims': '(True)'}), '(error * weights, keepdims=True)\n', (3792, 3824), True, 'import tensorflow as tf\n'), ((8367, 8414), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(target_Q - critic_eval1)'], {'axis': '(1)'}), '(target_Q - critic_eval1, axis=1)\n', (8381, 8414), True, 'import tensorflow as tf\n'), ((3696, 3742), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(target_Q - critic_eval)'], {'axis': '(1)'}), '(target_Q - critic_eval, axis=1)\n', (3710, 3742), True, 'import tensorflow as tf\n'), ((8728, 8791), 'tensorflow.losses.huber_loss', 'tf.losses.huber_loss', ([], {'labels': 'target_Q', 'predictions': 'critic_eval2'}), '(labels=target_Q, predictions=critic_eval2)\n', (8748, 8791), True, 'import tensorflow as tf\n'), ((7986, 8012), 'tensorflow.cast', 'tf.cast', (['p_idx', 'tf.float32'], {}), '(p_idx, tf.float32)\n', (7993, 8012), True, 'import tensorflow as tf\n'), ((3419, 3445), 'tensorflow.cast', 'tf.cast', (['p_idx', 'tf.float32'], {}), '(p_idx, tf.float32)\n', (3426, 3445), True, 'import tensorflow as tf\n')]
# Author by CRS-club and wizard from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import numpy as np import datetime import logging logger = logging.getLogger(__name__) class MetricsCalculator(): def __init__(self, name, mode): self.name = name self.mode = mode # 'train', 'val', 'test' self.reset() def reset(self): logger.info('Resetting {} metrics...'.format(self.mode)) self.aggr_acc1 = 0.0 self.aggr_acc5 = 0.0 self.aggr_loss = 0.0 self.aggr_batch_size = 0 def finalize_metrics(self): self.avg_acc1 = self.aggr_acc1 / self.aggr_batch_size self.avg_acc5 = self.aggr_acc5 / self.aggr_batch_size self.avg_loss = self.aggr_loss / self.aggr_batch_size def get_computed_metrics(self): json_stats = {} json_stats['avg_loss'] = self.avg_loss json_stats['avg_acc1'] = self.avg_acc1 json_stats['avg_acc5'] = self.avg_acc5 return json_stats def calculate_metrics(self, loss, softmax, labels): accuracy1 = compute_topk_accuracy(softmax, labels, top_k=1) * 100. accuracy5 = compute_topk_accuracy(softmax, labels, top_k=5) * 100. return accuracy1, accuracy5 def accumulate(self, loss, softmax, labels): cur_batch_size = softmax.shape[0] # if returned loss is None for e.g. test, just set loss to be 0. if loss is None: cur_loss = 0. else: cur_loss = np.mean(np.array(loss)) # self.aggr_batch_size += cur_batch_size self.aggr_loss += cur_loss * cur_batch_size accuracy1 = compute_topk_accuracy(softmax, labels, top_k=1) * 100. accuracy5 = compute_topk_accuracy(softmax, labels, top_k=5) * 100. self.aggr_acc1 += accuracy1 * cur_batch_size self.aggr_acc5 += accuracy5 * cur_batch_size return # ---------------------------------------------- # other utils # ---------------------------------------------- def compute_topk_correct_hits(top_k, preds, labels): '''Compute the number of corret hits''' batch_size = preds.shape[0] top_k_preds = np.zeros((batch_size, top_k), dtype=np.float32) for i in range(batch_size): top_k_preds[i, :] = np.argsort(-preds[i, :])[:top_k] correctness = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): if labels[i] in top_k_preds[i, :].astype(np.int32).tolist(): correctness[i] = 1 correct_hits = sum(correctness) return correct_hits def compute_topk_accuracy(softmax, labels, top_k): computed_metrics = {} assert labels.shape[0] == softmax.shape[0], "Batch size mismatch." aggr_batch_size = labels.shape[0] aggr_top_k_correct_hits = compute_topk_correct_hits(top_k, softmax, labels) # normalize results computed_metrics = \ float(aggr_top_k_correct_hits) / aggr_batch_size return computed_metrics
[ "numpy.argsort", "numpy.zeros", "numpy.array", "logging.getLogger" ]
[((243, 270), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (260, 270), False, 'import logging\n'), ((2244, 2291), 'numpy.zeros', 'np.zeros', (['(batch_size, top_k)'], {'dtype': 'np.float32'}), '((batch_size, top_k), dtype=np.float32)\n', (2252, 2291), True, 'import numpy as np\n'), ((2404, 2440), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': 'np.int32'}), '(batch_size, dtype=np.int32)\n', (2412, 2440), True, 'import numpy as np\n'), ((2352, 2376), 'numpy.argsort', 'np.argsort', (['(-preds[i, :])'], {}), '(-preds[i, :])\n', (2362, 2376), True, 'import numpy as np\n'), ((1591, 1605), 'numpy.array', 'np.array', (['loss'], {}), '(loss)\n', (1599, 1605), True, 'import numpy as np\n')]
import numpy as np from scipy.stats.mstats import theilslopes from scipy.interpolate import CubicSpline import matplotlib.pyplot as plt # define constants _c = 299792.458 # speed of light in km s^-1 class SpecAnalysis: '''Analyse astronomy spectra. ''' def __init__(self, wavelength, flux, flux_err=None): ''' Parameters ---------- wavelength : List[Real] or 1darray Input wavelengths. Needs to be monotonically increasing. flux : List[Real] or 1darray Input flux profile. flux_err : List[Real] or 1darray, optional Input flux error. If None, then set to array of 0. ''' # if no error, then set error to 0 if flux_err is None: flux_err = np.full(len(flux), 0) # change to numpy array try: self.wl = np.array(wavelength, dtype=float) self.flux = np.array(flux, dtype=float) self.flux_err = np.array(flux_err, dtype=float) except: raise ValueError('Could not turn input into numpy arrays.') # check monotonic increasing wavelength if not ((self.wl[1:] - self.wl[:-1]) > 0).all(): raise ValueError('Wavelength needs to be strictly increasing') # check length of all input equal if not len(self.wl) == len(self.flux) == len(self.flux_err): raise ValueError( 'wavelength, flux, flux_err are not the same length') def save(self, wavelength, flux, flux_err=None): '''Save the values given into the class. Parameters ---------- wavelength : List[Real] or 1darray Input wavelengths. Needs to be monotonically increasing. flux : List[Real] or 1darray Input flux profile. flux_err : List[Real] or 1darray, optional Input flux error. If None, then set to array 0. ''' # if no error, then set error to 0 if flux_err is None: flux_err = np.full(len(flux), 0) self.wl = wavelength self.flux = flux self.flux_err = flux_err def mask_region(self, masks, rm='out'): '''Mask (remove) a region of the spectrum. Parameters ---------- masks : list of lists[float] The regions which you want to mask. rm : str, optional To remove the region in the mask or out. Accepted values: 'in' and 'out'. Returns ------- wl, flux, flux_err : 3darray Masked wavelength, flux, and flux error. ''' # make mask mask_full = np.zeros(len(self.wl), dtype=bool) for lower, upper in masks: mask = (lower <= self.wl) & (self.wl <= upper) mask_full = mask_full | mask # flip if masking inside if rm == 'in': mask_full = ~mask_full # apply mask self.save( self.wl[mask_full], self.flux[mask_full], self.flux_err[mask_full] ) return self.wl, self.flux, self.flux_err def cut(self, center, upper=10, lower=10, domain='wl'): '''Cuts the wavelength, flux, and flux error and returns the values between center - lower and center + upper. Parameters ---------- center : Real The center of the wavelengths where the cut should be taken, in the same units as the wavelength. upper : Positive Real, optional The amount to go above the center when taking the cut, in the same units of nm if rtype=wl, or in km/s if rtype=vr. lower : Positive Real, optional The amount to go below the center when taking the cut, in the same units of nm if rtype=wl, or in km/s if rtype=vr. domain : str, optional The domain upper and lower is in. Either wl or vr (wavelength, radial velocity respectively). Returns ------- wl, flux, flux_err : 3darray Cut wavelength, flux, and flux error. ''' # convert to wavelength if domain == 'vr': lower = vr_to_wl(lower, center=center) upper = vr_to_wl(upper, center=center) # cut low = center - lower high = center + upper self.mask_region([[low, high]]) return self.wl, self.flux, self.flux_err def sigma_clip(self, func, args=(), sigma_cut=3, iterations=1): '''Clip outliers based on a sigma cut. Parameters ---------- func : callable ``func(self.wl, self.flux, self.flux_err, *args)``. The function to fit the spectrum to. args : tuple, optional Extra arguments passed to func, i.e., ``func(self.wl, self.flux, self.flux_err, *args)``. sigma_cut : float The tolerance on sigma clip. iterations : int The number of times to iterate the sigma clip. Returns ------- wl, flux, flux_err : 3darray Clipped wavelength, flux, and flux error. ''' for _ in range(iterations): flux_fit = func(self.wl, self.flux, self.flux_err, *args) diff = self.flux - flux_fit sigma = np.std(diff) mask = np.abs(diff) < sigma*sigma_cut self.save(self.wl[mask], self.flux[mask], self.flux_err[mask]) return self.wl, self.flux, self.flux_err def cont_norm(self, center, mask_step=0.01, sigma_cut=3, iterations=3): '''Normalise the continuum. Assumes you're normalising a line profile. 1. Do basic normalisation. 2. Sigma clip lines and outliers. 3. Fit theilslope on the clipped spectrum. 4. Remove fit from line. Only works for a small region with linear continuum. Parameters ---------- center : float The center of the line. mask_step : float Width/2 of the line. sigma_cut : float The tolerance on sigma clip. iterations : int The number of times to iterate the sigma clip. Returns ------- wl, flux, flux_err : 3darray Normalised wavelength, flux, and flux error. ''' # save original values wl = self.wl flux = self.flux flux_err = self.flux_err # first do a shitty normalisation with the main line removed masks = [[center - mask_step, center + mask_step]] self.mask_region(masks, rm='in') med = np.median(self.flux) flux = flux/med flux_err = flux_err/med # sigma clip self.save(wl, flux, flux_err) median = lambda x,y,z:np.median(y) self.sigma_clip(median, sigma_cut=sigma_cut, iterations=iterations) # fit fit = theilslopes(self.flux, self.wl) grad = fit[0] intercept = fit[1] # remove linear slope fit = wl*grad + intercept flux = flux/fit flux_err = flux_err/fit self.save(wl, flux, flux_err) return self.wl, self.flux, self.flux_err def gaussian_broaden(center, sigma=0, num=None): '''Only works for synthetic spectra because it uses cubicspline. Might be unpredictable for synthetic spectra with more than 1 line or gaps. TODO: investigate behaviour on harder to deal with synthetic spectra. ''' # convert to velocity space vr = wl_to_v(self.wl, center=center) cs = CubicSpline(vr, self.flux) # set steps if num is None: num = int((vr[-1] - vr[0]) / np.min(vr[1:] - vr[:-1])) + 1 num *= 2 # set kernel g_gen = scipy.stats.norm(0, sigma/2.35482) # convert FWHM to sigma # convolve tau = np.linspace(vr[0], vr[-1], num) convolver = np.array([g_gen.pdf(t) for t in tau]) convolver /= np.sum(convolver) integrand = [cs(vr - t)*convolver[i] for i, t in enumerate(tau)] flux_conv = np.sum(integrand, axis = 0) self.flux = flux_conv return self.wl, self.flux def polyfit(x, y, x_out=None, deg=1): '''Fits a polynomial to input data after shifting data to 0. Parameters ---------- x : List[Real] or 1darray x values to fit over. y : List[Real] or 1darray y values to fit over. x_out : List[Real] or None Output x values. If None, then return the fit. deg : Int, optional Degree of fitted polynomial. 1 by default. Returns ------- y_out or center, fit: 1darray or tuple(float) Output y values at the input x_out values or x mean, grad, intercept. ''' # convert to numpy arrays x = np.array(x) y = np.array(y) # fit center_x = np.mean(x) fit = np.polyfit(x - center_x, y, deg=deg) # return fit and center if x_out is None: return center_x, fit[0], fit[1] # return y evaluated at x_out y_out = np.polyval(fit, x_out - center_x) return y_out def cut_wavelength(wavelength, center=670.9659, upper=10, lower=10): """Cuts the wavelength returns the values between center - lower and center + upper. Useful for plotting mostly because many functions return a cut line profile but not cut wavelength. Parameters ---------- wavelength : List[Real] or 1darray Input wavelengths. Needs to be monotonically increasing. center : Real, optional The center of the wavelengths where the cut should be taken, in the same units as the wavelength. upper : Positive Real, optional The amount to go above the center when taking the cut, in the same units as the wavelength. lower : Positive Real, optional The amount to go below the center when taking the cut, in the same units as the wavelength. Returns ------- wl_cut : 2darray Cut wavelengths. """ wavelength = np.array(wavelength) low = center - lower high = center + upper wl_cut = wavelength[(low <= wavelength) & (high >= wavelength)] return wl_cut def wl_to_vr(wl, center=670.9659): '''Converts wavelengths to radial velocity, works for errors too. Parameters ---------- wl : float or ndarray Wavelength to be converted, in nm. center : float The wavelength that vr=0 is at. Returns ------- vr : float or ndarray Radial velocity in km/s. ''' if isinstance(wl, float): return wl*_c/center else: return np.array(wl)*_c/center def vr_to_wl(vr, center=670.9659): '''Converts wavelengths to radial velocity, works for errors too. Parameters ---------- vr : float or ndarray Radial velocity to be converted, in km/s. center : float The wavelength that vr=0 is at. Returns ------- wl : float or ndarray Wavelengths in nm. ''' if isinstance(vr, float): return vr*center/_c else: return np.array(vr)*center/_c def vac_to_air(lam): '''Convert from vacuum to air wavelengths. From https://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion Parameters ---------- lam : float or ndarray Wavelengths in vacuum in angstroms. Returns ------- air : float or ndarray Wavelengths in air in angstroms. ''' s = 1e4/lam n = 1 + 0.0000834254 + 0.02406147 / (130 - s**2) + 0.00015998 / (38.9 - s**2) return lam/n def air_to_vac(lam): '''Convert from air to vacuum wavelengths. From https://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion Parameters ---------- lam : float or ndarray Wavelengths in air in angstroms. Returns ------- vac : float or ndarray Wavelengths in vacuum in angstroms. ''' s = 1e4/lam n = 1 + 0.00008336624212083 + 0.02408926869968 / (130.1065924522 - s**2) + 0.0001599740894897 / (38.92568793293 - s**2) return lam*n def convolve(f, g, n, m): '''Compute the discrete convolution. Parameters ---------- f : Function Function 1. g : Function Function 2. n : 1darray Shift applied to g. m : 1darray Discrete values at which the function is evaluated. Returns ------- conv : float Discrete convolution at n f*g(n). ''' m_shift = m + n.reshape(n.shape[0], -1) # m+n return np.sum(f(m)*g(m_shift), axis=1) def common_range(x_range, shifts): '''Compute the common range shared after the shifts are applied. Parameters ---------- x_range : Tuple(Float) The range over which the functions are defined. shifts : List[Float] The shifts to apply to the functions. Returns ------- left, right : Float, Float The shared range (left, right). ''' min_shift = np.min(shifts) max_shift = np.max(shifts) left = max(x_range[0], x_range[0] - min_shift) right = min(x_range[1], x_range[1] - max_shift) if left == right: raise ValueError('Shifts are too extreme given the x_range, there is no overlap.') return left, right def cross_correlate(f, g, x_range, shifts, num=10000, plot=False): '''Compute the cross correlation between two functions. Truncates edges, no extrapolation. Parameters ---------- f : Function Function 1. g : Function Function 2. x_range : tuple(Float) The common range that f and g are defined over. i.e. f : [-2, 2] -> R g : [-1, 3] -> R Then x_range = (-1, 2) shifts : 1darray The shifts to apply to the function g. num : int The number of points to sample the function f and g. plot : bool Display plots for debugging. Returns ------- cc : List[Float] The cross correlations of the given shifts. ''' #TODO: x_range could be improved to take into account differences in range # of f and g, this doesn't happen a lot in practice though left, right = common_range(x_range, shifts) m = np.linspace(left, right, num=num) if plot: # original functions x = np.linspace(x_range[0], x_range[1], 1000) plt.scatter(x, f(x), label='f', s=4, alpha=0.5) plt.scatter(x, g(x), label='g', s=4, alpha=0.5) # shift g plt.scatter(m, g(m+np.max(shifts)), s=4, alpha=0.5, label=f'g min={np.min(shifts):.2f} shift') plt.scatter(m, g(m+np.min(shifts)), s=4, alpha=0.5, label=f'g max={np.max(shifts):.2f} shift') # common region for line in [left, right]: plt.axvline(line, color='black', linestyle='--') plt.legend() plt.show() return convolve(f, g, shifts, m) def radial_velocity(f, g, x_range, shifts, num=10000, plot=False): '''Compute the radial velocity from the max cross correlation. f and g must have continuum centered at 0. f(n) = g(n-rv) Parameters ---------- f : Function Function 1. g : Function Function 2. x_range : tuple(Float) The common range that f and g are defined over. i.e. f : [-2, 2] -> R g : [-1, 3] -> R Then x_range = (-1, 2) shifts : 1darray The shifts to apply to the function g. num : int The number of points to sample the function f and g. plot : bool Display plots for debugging. Returns ------- rv : Float The radial velocity of g with respect to f. ''' # cast to numpy array shifts = np.array(shifts) cc = cross_correlate(f, g, x_range, shifts, num=num, plot=plot) return shifts[np.argmax(cc)]
[ "matplotlib.pyplot.axvline", "numpy.sum", "matplotlib.pyplot.show", "numpy.abs", "numpy.polyfit", "numpy.polyval", "numpy.median", "scipy.interpolate.CubicSpline", "matplotlib.pyplot.legend", "numpy.argmax", "numpy.std", "numpy.min", "numpy.mean", "numpy.array", "numpy.max", "numpy.linspace", "scipy.stats.mstats.theilslopes" ]
[((8851, 8862), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (8859, 8862), True, 'import numpy as np\n'), ((8871, 8882), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (8879, 8882), True, 'import numpy as np\n'), ((8909, 8919), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (8916, 8919), True, 'import numpy as np\n'), ((8930, 8966), 'numpy.polyfit', 'np.polyfit', (['(x - center_x)', 'y'], {'deg': 'deg'}), '(x - center_x, y, deg=deg)\n', (8940, 8966), True, 'import numpy as np\n'), ((9109, 9142), 'numpy.polyval', 'np.polyval', (['fit', '(x_out - center_x)'], {}), '(fit, x_out - center_x)\n', (9119, 9142), True, 'import numpy as np\n'), ((10057, 10077), 'numpy.array', 'np.array', (['wavelength'], {}), '(wavelength)\n', (10065, 10077), True, 'import numpy as np\n'), ((13016, 13030), 'numpy.min', 'np.min', (['shifts'], {}), '(shifts)\n', (13022, 13030), True, 'import numpy as np\n'), ((13047, 13061), 'numpy.max', 'np.max', (['shifts'], {}), '(shifts)\n', (13053, 13061), True, 'import numpy as np\n'), ((14252, 14285), 'numpy.linspace', 'np.linspace', (['left', 'right'], {'num': 'num'}), '(left, right, num=num)\n', (14263, 14285), True, 'import numpy as np\n'), ((15769, 15785), 'numpy.array', 'np.array', (['shifts'], {}), '(shifts)\n', (15777, 15785), True, 'import numpy as np\n'), ((6653, 6673), 'numpy.median', 'np.median', (['self.flux'], {}), '(self.flux)\n', (6662, 6673), True, 'import numpy as np\n'), ((6939, 6970), 'scipy.stats.mstats.theilslopes', 'theilslopes', (['self.flux', 'self.wl'], {}), '(self.flux, self.wl)\n', (6950, 6970), False, 'from scipy.stats.mstats import theilslopes\n'), ((7626, 7652), 'scipy.interpolate.CubicSpline', 'CubicSpline', (['vr', 'self.flux'], {}), '(vr, self.flux)\n', (7637, 7652), False, 'from scipy.interpolate import CubicSpline\n'), ((7916, 7947), 'numpy.linspace', 'np.linspace', (['vr[0]', 'vr[-1]', 'num'], {}), '(vr[0], vr[-1], num)\n', (7927, 7947), True, 'import numpy as np\n'), ((8027, 8044), 'numpy.sum', 'np.sum', (['convolver'], {}), '(convolver)\n', (8033, 8044), True, 'import numpy as np\n'), ((8138, 8163), 'numpy.sum', 'np.sum', (['integrand'], {'axis': '(0)'}), '(integrand, axis=0)\n', (8144, 8163), True, 'import numpy as np\n'), ((14341, 14382), 'numpy.linspace', 'np.linspace', (['x_range[0]', 'x_range[1]', '(1000)'], {}), '(x_range[0], x_range[1], 1000)\n', (14352, 14382), True, 'import numpy as np\n'), ((14887, 14899), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (14897, 14899), True, 'import matplotlib.pyplot as plt\n'), ((14908, 14918), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (14916, 14918), True, 'import matplotlib.pyplot as plt\n'), ((15873, 15886), 'numpy.argmax', 'np.argmax', (['cc'], {}), '(cc)\n', (15882, 15886), True, 'import numpy as np\n'), ((875, 908), 'numpy.array', 'np.array', (['wavelength'], {'dtype': 'float'}), '(wavelength, dtype=float)\n', (883, 908), True, 'import numpy as np\n'), ((933, 960), 'numpy.array', 'np.array', (['flux'], {'dtype': 'float'}), '(flux, dtype=float)\n', (941, 960), True, 'import numpy as np\n'), ((989, 1020), 'numpy.array', 'np.array', (['flux_err'], {'dtype': 'float'}), '(flux_err, dtype=float)\n', (997, 1020), True, 'import numpy as np\n'), ((5340, 5352), 'numpy.std', 'np.std', (['diff'], {}), '(diff)\n', (5346, 5352), True, 'import numpy as np\n'), ((6821, 6833), 'numpy.median', 'np.median', (['y'], {}), '(y)\n', (6830, 6833), True, 'import numpy as np\n'), ((14830, 14878), 'matplotlib.pyplot.axvline', 'plt.axvline', (['line'], {'color': '"""black"""', 'linestyle': '"""--"""'}), "(line, color='black', linestyle='--')\n", (14841, 14878), True, 'import matplotlib.pyplot as plt\n'), ((5372, 5384), 'numpy.abs', 'np.abs', (['diff'], {}), '(diff)\n', (5378, 5384), True, 'import numpy as np\n'), ((10658, 10670), 'numpy.array', 'np.array', (['wl'], {}), '(wl)\n', (10666, 10670), True, 'import numpy as np\n'), ((11129, 11141), 'numpy.array', 'np.array', (['vr'], {}), '(vr)\n', (11137, 11141), True, 'import numpy as np\n'), ((14540, 14554), 'numpy.max', 'np.max', (['shifts'], {}), '(shifts)\n', (14546, 14554), True, 'import numpy as np\n'), ((14663, 14677), 'numpy.min', 'np.min', (['shifts'], {}), '(shifts)\n', (14669, 14677), True, 'import numpy as np\n'), ((7739, 7763), 'numpy.min', 'np.min', (['(vr[1:] - vr[:-1])'], {}), '(vr[1:] - vr[:-1])\n', (7745, 7763), True, 'import numpy as np\n'), ((14608, 14622), 'numpy.min', 'np.min', (['shifts'], {}), '(shifts)\n', (14614, 14622), True, 'import numpy as np\n'), ((14731, 14745), 'numpy.max', 'np.max', (['shifts'], {}), '(shifts)\n', (14737, 14745), True, 'import numpy as np\n')]
import numpy as np # class Rollout: def __init__(self): self.dict_obs = [] self.dict_next_obs = [] self.actions = [] self.rewards = [] self.terminals = [] self.agent_infos = [] self.env_infos = {} self.path_length = 0 def __len__(self): return self.path_length def add_transition(self, obs, action, next_obs, reward, done, env_info, agent_info): self.dict_obs.append(obs) self.dict_next_obs.append(next_obs) self.actions.append(action) self.rewards.append(reward) self.terminals.append(done) if not self.env_infos: for k, v in env_info.items(): self.env_infos[k] = [v] else: for k, v in env_info.items(): self.env_infos[k].append(v) self.path_length += 1 def to_dict(self): self.actions = np.array(self.actions) if len(self.actions.shape) == 1: self.actions = np.expand_dims(self.actions, 1) for k, v in self.env_infos.items(): self.env_infos[k] = np.array(v) self.rewards = np.array(self.rewards) self.terminals = np.array(self.terminals).reshape(-1, 1) return dict( observations=self.dict_obs, actions=self.actions, rewards=self.rewards, next_observations=self.dict_next_obs, terminals=self.terminals, agent_infos=self.agent_infos, env_infos=self.env_infos, )
[ "numpy.array", "numpy.expand_dims" ]
[((909, 931), 'numpy.array', 'np.array', (['self.actions'], {}), '(self.actions)\n', (917, 931), True, 'import numpy as np\n'), ((1143, 1165), 'numpy.array', 'np.array', (['self.rewards'], {}), '(self.rewards)\n', (1151, 1165), True, 'import numpy as np\n'), ((1000, 1031), 'numpy.expand_dims', 'np.expand_dims', (['self.actions', '(1)'], {}), '(self.actions, 1)\n', (1014, 1031), True, 'import numpy as np\n'), ((1108, 1119), 'numpy.array', 'np.array', (['v'], {}), '(v)\n', (1116, 1119), True, 'import numpy as np\n'), ((1191, 1215), 'numpy.array', 'np.array', (['self.terminals'], {}), '(self.terminals)\n', (1199, 1215), True, 'import numpy as np\n')]
print('importing packages...') import numpy as np import cv2 import math import random import time import rotate_brush as rb import gradient from thready import amap import os import threading canvaslock = threading.Lock() canvaslock.acquire() canvaslock.release() def lockgen(canvas,ym,yp,xm,xp): # given roi, know which lock. # # if left: # return leftcanvaslock: # if right: # return rightcanvaslock: # if riding: # reutrn canvaslock: pass def load(filename='flower.jpg'): print('loading',filename,'...') global imname,flower,canvas,hist global rescale,xs_small,ys_small,smallerflower imname = filename.split('.')[0] # original image flower = cv2.imread(filename) xshape = flower.shape[1] yshape = flower.shape[0] rescale = xshape/640 # display rescaling: you'll know when it's larger than your screen if rescale<1: rescale=1 xs_small = int(xshape/rescale) ys_small = int(yshape/rescale) smallerflower = cv2.resize(flower,dsize=(xs_small,ys_small)).astype('float32')/255 # for preview purpose, # if image too large # convert to float32 flower = flower.astype('float32')/255 # canvas initialized canvas = flower.copy() canvas[:,:] = 0.8 #clear hist hist=[] print(filename,'loaded.') load() def rn(): return random.random() def showimg(): if rescale==1: smallercanvas = canvas else: smallercanvas = cv2.resize(canvas,dsize=(xs_small,ys_small),interpolation=cv2.INTER_NEAREST) i,j,d = wherediff(smallercanvas,smallerflower) sd = np.mean(d) print('mean diff:',sd) d[i,:]=1.0 d[:,j]=1.0 cv2.imshow('canvas',smallercanvas) cv2.imshow('flower',smallerflower) cv2.imshow('diff',d) cv2.waitKey(1) cv2.waitKey(1) def destroy(): cv2.destroyAllWindows() def positive_sharpen(i,overblur=False,coeff=8.): #no darken to original image # emphasize the edges blurred = cv2.blur(i,(5,5)) sharpened = i + (i - blurred) * coeff if overblur: return cv2.blur(np.maximum(sharpened,i),(11,11)) return cv2.blur(np.maximum(sharpened,i),(3,3)) def diff(i1,i2,overblur=False): #calculate the difference of 2 float32 BGR images. # # use lab # i1=i1.astype(np.float32) # i2=i2.astype(np.float32) # lab1 = cv2.cvtColor(i1,cv2.COLOR_BGR2LAB) # lab2 = cv2.cvtColor(i2,cv2.COLOR_BGR2LAB) # d = lab1-lab2 # d = d*d / 10000 # # use rgb d = (i1-i2)# * [0.2,1.5,1.3] d = d*d d = positive_sharpen(np.sum(d,-1),overblur=overblur) return d # grayscalize def wherediff(i1=None,i2=None): global canvas,flower if i1 is None: i1 = canvas if i2 is None: i2 = flower # find out where max difference point is. d = diff(i1,i2,overblur=True) i,j = np.unravel_index(d.argmax(),d.shape) return i,j,d def get_random_color(): return np.array([rn(),rn(),rn()]).astype('float32') #danger: default to float64 def limit(x,minimum,maximum): return min(max(x,minimum),maximum) # history and replay section # global history. hist = [] def record(sth): hist.append(sth) # repaint the image from history def repaint(constraint_angle=False,upscale=1.,batchsize=16): starttime = time.time() newcanvas = np.array(canvas).astype('uint8') # newcanvas = cv2.cvtColor(newcanvas,cv2.COLOR_BGR2BGRA) # fastest format if upscale!=1.: newcanvas = cv2.resize(newcanvas,dsize=(int(newcanvas.shape[1]*upscale),int(newcanvas.shape[0]*upscale))) newcanvas[:,:,:] = int(0.8*255) def showthis(): showsize = 640 resize_scale = min(showsize/newcanvas.shape[1],1.) resizedx,resizedy = int(newcanvas.shape[1]*resize_scale),int(newcanvas.shape[0]*resize_scale) smallercanvas = cv2.resize(newcanvas,dsize=(resizedx,resizedy),interpolation=cv2.INTER_NEAREST) cv2.imshow('repaint',smallercanvas) cv2.waitKey(1) def paintone(histitem): x,y,radius,srad,angle,cb,cg,cr,brushname = histitem cb,cg,cr = int(cb*255),int(cg*255),int(cr*255) # cv2.ellipse(newcanvas,(int(x),int(y)),(radius,srad),angle,0,360,color=(cb,cg,cr),thickness=-1) b,key = rb.get_brush(brushname) if constraint_angle: angle = constraint_angle+rn()*20-10 if upscale!=1: x,y,radius,srad = x*upscale,y*upscale,radius*upscale,srad*upscale rb.compose(newcanvas,b,x=x,y=y,rad=radius,srad=srad,angle=angle,color=[cb,cg,cr],useoil=True,lock=canvaslock) k = 0 batch = [] def runbatch(batch): from thready import amap # multithreading return amap(paintone,batch) lastep = 0 while k<len(hist): while len(batch)<batchsize and k<len(hist): batch.append(hist[k]) k+=1 runbatch(batch) print(k,'painted. one of them:',batch[0]) # show progress: ep = int(k/(newcanvas.shape[1]*upscale)) # larger image => longer wait per show if ep >lastep: showthis() lastep = ep # show every 32p batch=[] print(time.time()-starttime,'s elapsed') showthis() return newcanvas import json def savehist(filename='hist.json'): f = open(filename,'w') json.dump(hist,f) f.close() def loadhist(filename='hist.json'): f = open(filename,'r') global hist hist = json.load(f) # end hist section def paint_one(x,y,brushname='random',angle=-1.,minrad=10,maxrad=60): oradius = rn()*rn()*maxrad+minrad fatness = 1/(1+rn()*rn()*6) brush,key = rb.get_brush(brushname) def intrad(orad): #obtain integer radius and shorter-radius radius = int(orad) srad = int(orad*fatness+1) return radius,srad radius,srad = intrad(oradius) #set initial angle if angle == -1.: angle = rn()*360 # set initial color # c = get_random_color() # sample color from image => converges faster. c = flower[int(y),int(x),:] delta = 1e-4 # get copy of square ROI area, to do drawing and calculate error. def get_roi(newx,newy,newrad): radius,srad = intrad(newrad) xshape = flower.shape[1] yshape = flower.shape[0] yp = int(min(newy+radius,yshape-1)) ym = int(max(0,newy-radius)) xp = int(min(newx+radius,xshape-1)) xm = int(max(0,newx-radius)) if yp<=ym or xp<=xm: # if zero w or h raise NameError('zero roi') ref = flower[ym:yp,xm:xp] bef = canvas[ym:yp,xm:xp] aftr = np.array(bef) # print(flower.dtype,canvas.dtype,ref.dtype) return ref,bef,aftr # paint one stroke with given config and return the error. def paint_aftr_w(color,angle,nx,ny,nr): ref,bef,aftr = get_roi(nx,ny,nr) radius,srad = intrad(nr) # cv2.circle(aftr,(radius,radius),radius,color=color,thickness=-1) # cv2.ellipse(aftr,(radius,radius),(radius,srad),angle,0,360,color=color,thickness=-1) rb.compose(aftr,brush,x=radius,y=radius,rad=radius,srad=srad,angle=angle,color=color,usefloat=True,useoil=False) # if useoil here set to true: 2x slow down + instability err_aftr = np.mean(diff(aftr,ref)) return err_aftr # finally paint the same stroke onto the canvas. def paint_final_w(color,angle,nr): radius,srad = intrad(nr) # cv2.circle(canvas,(x,y), radius, color=color,thickness=-1) # cv2.ellipse(canvas,(int(x),int(y)),(radius,srad),angle,0,360,color=color,thickness=-1) rb.compose(canvas,brush,x=x,y=y,rad=radius,srad=srad,angle=angle,color=color,usefloat=True,useoil=True,lock=canvaslock) # enable oil effects on final paint. # np.float64 will cause problems rec = [x,y,radius,srad,angle,color[0],color[1],color[2],brushname] rec = [float(r) if type(r)==np.float64 or type(r)==np.float32 else r for r in rec] record(rec) # log it! # given err, calculate gradient of parameters wrt to it def calc_gradient(err): b,g,r = c[0],c[1],c[2] cc = b,g,r err_aftr = paint_aftr_w((b+delta,g,r),angle,x,y,oradius) gb = err_aftr - err err_aftr = paint_aftr_w((b,g+delta,r),angle,x,y,oradius) gg = err_aftr - err err_aftr = paint_aftr_w((b,g,r+delta),angle,x,y,oradius) gr = err_aftr - err err_aftr = paint_aftr_w(cc,(angle+5.)%360,x,y,oradius) ga = err_aftr - err err_aftr = paint_aftr_w(cc,angle,x+2,y,oradius) gx = err_aftr - err err_aftr = paint_aftr_w(cc,angle,x,y+2,oradius) gy = err_aftr - err err_aftr = paint_aftr_w(cc,angle,x,y,oradius+3) gradius = err_aftr - err return np.array([gb,gg,gr])/delta,ga/5,gx/2,gy/2,gradius/3,err # max and min steps for gradient descent tryfor = 12 mintry = 3 for i in range(tryfor): try: # might have error # what is the error at ROI? ref,bef,aftr = get_roi(x,y,oradius) orig_err = np.mean(diff(bef,ref)) # do the painting err = paint_aftr_w(c,angle,x,y,oradius) # if error decreased: if err<orig_err and i>=mintry : paint_final_w(c,angle,oradius) return True,i # if not satisfactory # calculate gradient grad,anglegrad,gx,gy,gradius,err = calc_gradient(err) except NameError as e: print(e) print('error within calc_gradient') return False,i if printgrad: #debug purpose. if i==0: print('----------') print('orig_err',orig_err) print('ep:{}, err:{:3f}, color:{}, angle:{:2f}, xy:{:2f},{:2f}, radius:{:2f}'.format(i,err,c,angle,x,y,oradius)) # do descend if i<tryfor-1: c = c - (grad*.3).clip(max=0.3,min=-0.3) c = c.clip(max=1.,min=0.) angle = (angle - limit(anglegrad*100000,-5,5))%360 x = x - limit(gx*1000*radius,-3,3) y = y - limit(gy*1000*radius,-3,3) oradius = oradius* (1-limit(gradius*20000,-0.2,.2)) oradius = limit(oradius,7,100) # print('after desc:x:{:2f},y:{:2f},angle:{:2f},oradius:{:5f}' # .format(x,y,angle,oradius)) return False,tryfor def putstrokes(howmany): def samplepoints(): # sample a lot of points from one error image - save computation cost point_list = [] y,x,d = wherediff() phasemap = gradient.get_phase(flower) # while not enough points: while len(point_list)<howmany: # randomly pick one point yshape,xshape = flower.shape[0:2] ry,rx = int(rn()*yshape),int(rn()*xshape) # accept with high probability if error is large # and vice versa if d[ry,rx]>0.5*rn(): # get gradient orientation info from phase map phase = phasemap[ry,rx] # phase should be between [0,2pi) # choose direction perpendicular to gradient angle = (phase/math.pi*180+90)%360 # angle = 22.5 point_list.append((ry,rx,angle)) return point_list def pcasync(tup): y,x,angle = tup b,key = rb.get_brush(key='random') # get a random brush return paint_one(x,y,brushname=key,minrad=10,maxrad=50,angle=angle) #num of epoch if True: from thready import amap # multithreading point_list = samplepoints() return amap(pcasync,point_list) else: # single threading test point_list = samplepoints() res={} for idx,item in enumerate(point_list): print('single threaded mode.',idx) res[idx] = pcasync(item) return res # autosave during canvas painting dosaveimage = True # dosaveimage = False # gradient debug info print printgrad = False # printgrad = True # run the whole thing def r(epoch=1): # filename prefix for each run seed = int(rn()*1000) print('running...') st = time.time() # timing counter for autosave and showimg() timecounter = 0 showcounter = 0 for i in range(epoch): loopfor = 1 paranum = 256 # number of stroke tries per batch, sent to thread pool # smaller number decreases efficiency succeeded = 0 # how many strokes being placed ti = time.time() # average step of gradient descent performed avgstep=0. for k in range(loopfor): res = putstrokes(paranum) # res is a map of results for r in res: status,step = res[r] avgstep += step succeeded += 1 if status else 0 avgstep/=loopfor*paranum steptime = time.time()-ti tottime = time.time()-st #info out print('epoch',i,'/',epoch ,'succeeded:',succeeded,'/',loopfor*paranum,'avg step:' ,avgstep,'time:{:.1f}s, total:{:.1f}s'.format(steptime,tottime)) #autosave timecounter+=steptime if(timecounter>20): timecounter=0 if dosaveimage: print('saving to disk...') if not os.path.exists('./'+imname): os.mkdir('./'+imname) cv2.imwrite(imname+'/{}_{:04d}.png'.format(seed,i),canvas*255) print('saved.') # refresh view showcounter+=steptime if(showcounter>3): showcounter=0 showimg() showimg()
[ "os.mkdir", "numpy.maximum", "numpy.sum", "numpy.mean", "cv2.imshow", "rotate_brush.get_brush", "os.path.exists", "threading.Lock", "cv2.destroyAllWindows", "cv2.resize", "json.dump", "cv2.waitKey", "random.random", "json.load", "cv2.blur", "time.time", "gradient.get_phase", "cv2.imread", "thready.amap", "numpy.array", "rotate_brush.compose" ]
[((207, 223), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (221, 223), False, 'import threading\n'), ((722, 742), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (732, 742), False, 'import cv2\n'), ((1378, 1393), 'random.random', 'random.random', ([], {}), '()\n', (1391, 1393), False, 'import random\n'), ((1632, 1642), 'numpy.mean', 'np.mean', (['d'], {}), '(d)\n', (1639, 1642), True, 'import numpy as np\n'), ((1706, 1741), 'cv2.imshow', 'cv2.imshow', (['"""canvas"""', 'smallercanvas'], {}), "('canvas', smallercanvas)\n", (1716, 1741), False, 'import cv2\n'), ((1745, 1780), 'cv2.imshow', 'cv2.imshow', (['"""flower"""', 'smallerflower'], {}), "('flower', smallerflower)\n", (1755, 1780), False, 'import cv2\n'), ((1784, 1805), 'cv2.imshow', 'cv2.imshow', (['"""diff"""', 'd'], {}), "('diff', d)\n", (1794, 1805), False, 'import cv2\n'), ((1810, 1824), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1821, 1824), False, 'import cv2\n'), ((1829, 1843), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1840, 1843), False, 'import cv2\n'), ((1864, 1887), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1885, 1887), False, 'import cv2\n'), ((2007, 2026), 'cv2.blur', 'cv2.blur', (['i', '(5, 5)'], {}), '(i, (5, 5))\n', (2015, 2026), False, 'import cv2\n'), ((3321, 3332), 'time.time', 'time.time', ([], {}), '()\n', (3330, 3332), False, 'import time\n'), ((5336, 5354), 'json.dump', 'json.dump', (['hist', 'f'], {}), '(hist, f)\n', (5345, 5354), False, 'import json\n'), ((5459, 5471), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5468, 5471), False, 'import json\n'), ((5649, 5672), 'rotate_brush.get_brush', 'rb.get_brush', (['brushname'], {}), '(brushname)\n', (5661, 5672), True, 'import rotate_brush as rb\n'), ((12273, 12284), 'time.time', 'time.time', ([], {}), '()\n', (12282, 12284), False, 'import time\n'), ((1494, 1573), 'cv2.resize', 'cv2.resize', (['canvas'], {'dsize': '(xs_small, ys_small)', 'interpolation': 'cv2.INTER_NEAREST'}), '(canvas, dsize=(xs_small, ys_small), interpolation=cv2.INTER_NEAREST)\n', (1504, 1573), False, 'import cv2\n'), ((2161, 2185), 'numpy.maximum', 'np.maximum', (['sharpened', 'i'], {}), '(sharpened, i)\n', (2171, 2185), True, 'import numpy as np\n'), ((2585, 2598), 'numpy.sum', 'np.sum', (['d', '(-1)'], {}), '(d, -1)\n', (2591, 2598), True, 'import numpy as np\n'), ((3863, 3950), 'cv2.resize', 'cv2.resize', (['newcanvas'], {'dsize': '(resizedx, resizedy)', 'interpolation': 'cv2.INTER_NEAREST'}), '(newcanvas, dsize=(resizedx, resizedy), interpolation=cv2.\n INTER_NEAREST)\n', (3873, 3950), False, 'import cv2\n'), ((3951, 3987), 'cv2.imshow', 'cv2.imshow', (['"""repaint"""', 'smallercanvas'], {}), "('repaint', smallercanvas)\n", (3961, 3987), False, 'import cv2\n'), ((3995, 4009), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (4006, 4009), False, 'import cv2\n'), ((4277, 4300), 'rotate_brush.get_brush', 'rb.get_brush', (['brushname'], {}), '(brushname)\n', (4289, 4300), True, 'import rotate_brush as rb\n'), ((4490, 4614), 'rotate_brush.compose', 'rb.compose', (['newcanvas', 'b'], {'x': 'x', 'y': 'y', 'rad': 'radius', 'srad': 'srad', 'angle': 'angle', 'color': '[cb, cg, cr]', 'useoil': '(True)', 'lock': 'canvaslock'}), '(newcanvas, b, x=x, y=y, rad=radius, srad=srad, angle=angle,\n color=[cb, cg, cr], useoil=True, lock=canvaslock)\n', (4500, 4614), True, 'import rotate_brush as rb\n'), ((4717, 4738), 'thready.amap', 'amap', (['paintone', 'batch'], {}), '(paintone, batch)\n', (4721, 4738), False, 'from thready import amap\n'), ((6652, 6665), 'numpy.array', 'np.array', (['bef'], {}), '(bef)\n', (6660, 6665), True, 'import numpy as np\n'), ((7110, 7236), 'rotate_brush.compose', 'rb.compose', (['aftr', 'brush'], {'x': 'radius', 'y': 'radius', 'rad': 'radius', 'srad': 'srad', 'angle': 'angle', 'color': 'color', 'usefloat': '(True)', 'useoil': '(False)'}), '(aftr, brush, x=radius, y=radius, rad=radius, srad=srad, angle=\n angle, color=color, usefloat=True, useoil=False)\n', (7120, 7236), True, 'import rotate_brush as rb\n'), ((7658, 7791), 'rotate_brush.compose', 'rb.compose', (['canvas', 'brush'], {'x': 'x', 'y': 'y', 'rad': 'radius', 'srad': 'srad', 'angle': 'angle', 'color': 'color', 'usefloat': '(True)', 'useoil': '(True)', 'lock': 'canvaslock'}), '(canvas, brush, x=x, y=y, rad=radius, srad=srad, angle=angle,\n color=color, usefloat=True, useoil=True, lock=canvaslock)\n', (7668, 7791), True, 'import rotate_brush as rb\n'), ((10697, 10723), 'gradient.get_phase', 'gradient.get_phase', (['flower'], {}), '(flower)\n', (10715, 10723), False, 'import gradient\n'), ((11483, 11509), 'rotate_brush.get_brush', 'rb.get_brush', ([], {'key': '"""random"""'}), "(key='random')\n", (11495, 11509), True, 'import rotate_brush as rb\n'), ((11736, 11761), 'thready.amap', 'amap', (['pcasync', 'point_list'], {}), '(pcasync, point_list)\n', (11740, 11761), False, 'from thready import amap\n'), ((12622, 12633), 'time.time', 'time.time', ([], {}), '()\n', (12631, 12633), False, 'import time\n'), ((2108, 2132), 'numpy.maximum', 'np.maximum', (['sharpened', 'i'], {}), '(sharpened, i)\n', (2118, 2132), True, 'import numpy as np\n'), ((3350, 3366), 'numpy.array', 'np.array', (['canvas'], {}), '(canvas)\n', (3358, 3366), True, 'import numpy as np\n'), ((5185, 5196), 'time.time', 'time.time', ([], {}), '()\n', (5194, 5196), False, 'import time\n'), ((13002, 13013), 'time.time', 'time.time', ([], {}), '()\n', (13011, 13013), False, 'import time\n'), ((13035, 13046), 'time.time', 'time.time', ([], {}), '()\n', (13044, 13046), False, 'import time\n'), ((1027, 1073), 'cv2.resize', 'cv2.resize', (['flower'], {'dsize': '(xs_small, ys_small)'}), '(flower, dsize=(xs_small, ys_small))\n', (1037, 1073), False, 'import cv2\n'), ((8860, 8882), 'numpy.array', 'np.array', (['[gb, gg, gr]'], {}), '([gb, gg, gr])\n', (8868, 8882), True, 'import numpy as np\n'), ((13422, 13451), 'os.path.exists', 'os.path.exists', (["('./' + imname)"], {}), "('./' + imname)\n", (13436, 13451), False, 'import os\n'), ((13471, 13494), 'os.mkdir', 'os.mkdir', (["('./' + imname)"], {}), "('./' + imname)\n", (13479, 13494), False, 'import os\n')]
import numpy as np from numpy import vectorize import scipy.optimize as so @vectorize def U(c, h, kappa, nu): if c<=0: u = -np.inf elif c>0: u = np.log(c) - (kappa*h**(1+1/nu))/((1+1/nu)) return u class rep_ag: def __init__(self, theta, beta, delta, kappa, nu, kmin, kmax, hmin, hmax, num_node=20, order=3): self.theta = theta self.beta = beta self.delta = delta self.kappa = kappa self.nu = nu self.kmin = kmin self.kmax = kmax self.hmin = hmin self.hmax = hmax self.num_node = num_node self.order = order ##### creating the basis functions func = [] Psi1 = np.vectorize(lambda x: 1) Psi2 = np.vectorize(lambda x: x) func.append(Psi1) func.append(Psi2) for i in range(2,order): f = np.vectorize(lambda x, n=i: 2*x*func[n-1](x)-func[n-2](x)) func.append(f) self.func = func self.gridk, self.gridk_cheb = self.cheb_node(kmin, kmax, num_node, cheby=0) PHI = [] for f in self.func: phi = f(2*(self.gridk-self.kmin)/(self.kmax-self.kmin) -1) PHI.append(phi) self.PHI = np.array(PHI).T def cheb_node(self, a, b, num, cheby=1): vec = np.arange(0,num) vec = np.flip(vec, axis=0) chb = np.cos((vec*np.pi)/(num-1)) points = (a+b)/2 + ((b-a)/2)*chb if cheby == 0: vec_unit = 1/2 + (1/2)*chb return np.array(points), np.array(vec_unit) else: return np.array(points) def update_val(self, Theta_guess, ki, start): #Theta_guess here is just for a specific ki so we also need ki Kp = lambda c, h: (1-self.delta)*ki + ki**(1-self.theta) *h**self.theta - c Kp_cheb = lambda c, h: 2*(Kp(c,h)-self.kmin)/(self.kmax-self.kmin) -1 # here the value is function of kp not k so we need to map kp to (0,1) not k Suma = lambda c, h: sum(Theta_guess[i]*self.func[i](Kp_cheb(c,h)) for i in range(len(self.func))) VnotM = lambda x: -U(x[0], x[1], self.kappa, self.nu) - self.beta*Suma(x[0],x[1]) # - the objective because I am minimizing when I want to maximize #non linear constraint const = ({'type': 'ineq', 'fun': lambda x: ki**(1-self.theta)* x[1]**self.theta -x[0]})#higher or equal to zero Boundc = (0.01*ki**(1-self.theta), None) Boundh = (0.001*self.hmin,self.hmax) Bound = (Boundc, Boundh) res = so.minimize(VnotM, start, method = 'SLSQP', bounds = Bound, constraints=const)# start should be the solution found previously so we have interest in storing previous solution # it should be an enequality not an upper_bound Value = -res.fun c_opt = res.x[0] h_opt = res.x[1] return Value, c_opt, h_opt def update_theta(self, Theta_Old, Old_opt): New_opt = [] V = [] for i in range(len(self.gridk)): Value, c_opt, h_opt = self.update_val(Theta_Old, self.gridk[i], Old_opt[i,:]) #Old_opt is going to be a matrix containing the previews policy funtions New_opt.append([c_opt, h_opt]) V.append(Value) New_opt = np.array(New_opt) V = np.array(V) New_theta = np.linalg.inv([email protected])@self.PHI.T@V return New_opt, New_theta def problem(self, Old_theta = None, Tol = 10**(-6)): if Old_theta == None: Old_theta = np.zeros(len(self.func)) Old_c = (self.kmax/4)**(1-self.theta) *np.ones(len(self.gridk)) Old_h = (self.hmax/4)*np.ones(len(self.gridk)) Old_opt = np.vstack((Old_c,Old_h)).T err = 1 j = 0 while err>Tol: New_opt, New_theta = self.update_theta(Old_theta, Old_opt) err = np.max(np.abs(Old_theta-New_theta)) if j%50 == 0: print('iteration:', j) print('error:', err) Old_theta = New_theta Old_opt = New_opt j = j+1 self.New_opt = New_opt self.New_theta = New_theta return New_opt, New_theta def Val_pol_fun(self): kc = lambda k: 2*(k-self.kmin)/(self.kmax-self.kmin) -1 self.V = np.vectorize(lambda k: sum(self.New_theta[i]*self.func[i](kc(k)) for i in range(len(self.func)))) self.Theta_c = np.linalg.inv([email protected])@[email protected]_opt[:,0] self.Theta_h = np.linalg.inv([email protected])@[email protected]_opt[:,1] self.gc = np.vectorize(lambda k: sum(self.Theta_c[i]*self.func[i](kc(k)) for i in range(len(self.func)))) self.gh = np.vectorize(lambda k: sum(self.Theta_h[i]*self.func[i](kc(k)) for i in range(len(self.func))))
[ "scipy.optimize.minimize", "numpy.vectorize", "numpy.flip", "numpy.log", "numpy.abs", "numpy.arange", "numpy.array", "numpy.cos", "numpy.linalg.inv", "numpy.vstack" ]
[((732, 757), 'numpy.vectorize', 'np.vectorize', (['(lambda x: 1)'], {}), '(lambda x: 1)\n', (744, 757), True, 'import numpy as np\n'), ((774, 799), 'numpy.vectorize', 'np.vectorize', (['(lambda x: x)'], {}), '(lambda x: x)\n', (786, 799), True, 'import numpy as np\n'), ((1378, 1395), 'numpy.arange', 'np.arange', (['(0)', 'num'], {}), '(0, num)\n', (1387, 1395), True, 'import numpy as np\n'), ((1410, 1430), 'numpy.flip', 'np.flip', (['vec'], {'axis': '(0)'}), '(vec, axis=0)\n', (1417, 1430), True, 'import numpy as np\n'), ((1446, 1477), 'numpy.cos', 'np.cos', (['(vec * np.pi / (num - 1))'], {}), '(vec * np.pi / (num - 1))\n', (1452, 1477), True, 'import numpy as np\n'), ((2612, 2686), 'scipy.optimize.minimize', 'so.minimize', (['VnotM', 'start'], {'method': '"""SLSQP"""', 'bounds': 'Bound', 'constraints': 'const'}), "(VnotM, start, method='SLSQP', bounds=Bound, constraints=const)\n", (2623, 2686), True, 'import scipy.optimize as so\n'), ((3350, 3367), 'numpy.array', 'np.array', (['New_opt'], {}), '(New_opt)\n', (3358, 3367), True, 'import numpy as np\n'), ((3381, 3392), 'numpy.array', 'np.array', (['V'], {}), '(V)\n', (3389, 3392), True, 'import numpy as np\n'), ((1271, 1284), 'numpy.array', 'np.array', (['PHI'], {}), '(PHI)\n', (1279, 1284), True, 'import numpy as np\n'), ((1672, 1688), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (1680, 1688), True, 'import numpy as np\n'), ((179, 188), 'numpy.log', 'np.log', (['c'], {}), '(c)\n', (185, 188), True, 'import numpy as np\n'), ((1600, 1616), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (1608, 1616), True, 'import numpy as np\n'), ((1618, 1636), 'numpy.array', 'np.array', (['vec_unit'], {}), '(vec_unit)\n', (1626, 1636), True, 'import numpy as np\n'), ((3414, 3450), 'numpy.linalg.inv', 'np.linalg.inv', (['(self.PHI.T @ self.PHI)'], {}), '(self.PHI.T @ self.PHI)\n', (3427, 3450), True, 'import numpy as np\n'), ((3802, 3827), 'numpy.vstack', 'np.vstack', (['(Old_c, Old_h)'], {}), '((Old_c, Old_h))\n', (3811, 3827), True, 'import numpy as np\n'), ((3983, 4012), 'numpy.abs', 'np.abs', (['(Old_theta - New_theta)'], {}), '(Old_theta - New_theta)\n', (3989, 4012), True, 'import numpy as np\n'), ((4557, 4593), 'numpy.linalg.inv', 'np.linalg.inv', (['(self.PHI.T @ self.PHI)'], {}), '(self.PHI.T @ self.PHI)\n', (4570, 4593), True, 'import numpy as np\n'), ((4646, 4682), 'numpy.linalg.inv', 'np.linalg.inv', (['(self.PHI.T @ self.PHI)'], {}), '(self.PHI.T @ self.PHI)\n', (4659, 4682), True, 'import numpy as np\n')]
import os import sqlite3 import pandas as pd import numpy as np from .pybash import get_file_info def connect_to_db(path): """ Interact with a SQLite database Parameters ---------- path: str Location of the SQLite database Returns ------- conn: Connector The SQLite connection object curs: Cursor The SQLite cursor object Usage ----- conn, curs = connect_to_db("data/raw/foo.db") """ try: if os.path.exists(path): print("Connecting to Existing DB") conn = sqlite3.connect(path) else: print("Initialising new SQLite DB") conn = sqlite3.connect(path) curs = conn.cursor() except: print("An error occured. Please check the file path") return conn, curs def print_table_names(path_to_db): """ Print and return the names of tables in a SQLite database """ conn, curs = connect_to_db(path_to_db) result = curs.execute("SELECT name FROM sqlite_master WHERE type='table'").fetchall() print(result) return result def load_file_to_db(path_to_file, path_to_db, table_name, delim): """ Load a text file of any size into a SQLite database Parameters ---------- path_to_file: str Location of the text file path_to_db: str Location of the SQLite db table_name: str Name of the table to be created in the database delim: str The delimiter for the text file Returns ------- None """ conn, curs = connect_to_db(path_to_db) print("The database at {} contains the following tables.".format(path_to_db)) print(curs.execute("SELECT name FROM sqlite_master WHERE type='table'").fetchall()) if os.path.exists(path_to_file): size_ = get_file_info(path_to_file).get('size') rows_ = get_file_info(path_to_file).get('rows') try: if size_ < 250: print("{} is a small file. Importing directly.".format(path_to_file)) df_ = pd.read_csv( path_to_file, sep=delim, low_memory=False, error_bad_lines=False, quoting=csv.QUOTE_NONE ) df_.to_sql( name=table_name, con=conn, index=False, if_exists='append' ) print("Done.") else: print("{} is large. Importing in chunks.".format(path_to_file)) csize = int(np.ceil(rows_/10)) chunks = pd.read_csv( path_to_file, sep=delim, chunksize=csize, error_bad_lines=False, low_memory=False, quoting=csv.QUOTE_NONE ) for c in chunks: c.to_sql( name=table_name, con=conn, index=False, if_exists='append' ) print("Done") except: print("An error occurred while reading the file.") else: print("File not found at {}, please check the path".format(path_to_file)) return None
[ "pandas.read_csv", "sqlite3.connect", "os.path.exists", "numpy.ceil" ]
[((1773, 1801), 'os.path.exists', 'os.path.exists', (['path_to_file'], {}), '(path_to_file)\n', (1787, 1801), False, 'import os\n'), ((486, 506), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (500, 506), False, 'import os\n'), ((574, 595), 'sqlite3.connect', 'sqlite3.connect', (['path'], {}), '(path)\n', (589, 595), False, 'import sqlite3\n'), ((677, 698), 'sqlite3.connect', 'sqlite3.connect', (['path'], {}), '(path)\n', (692, 698), False, 'import sqlite3\n'), ((2064, 2170), 'pandas.read_csv', 'pd.read_csv', (['path_to_file'], {'sep': 'delim', 'low_memory': '(False)', 'error_bad_lines': '(False)', 'quoting': 'csv.QUOTE_NONE'}), '(path_to_file, sep=delim, low_memory=False, error_bad_lines=\n False, quoting=csv.QUOTE_NONE)\n', (2075, 2170), True, 'import pandas as pd\n'), ((2679, 2801), 'pandas.read_csv', 'pd.read_csv', (['path_to_file'], {'sep': 'delim', 'chunksize': 'csize', 'error_bad_lines': '(False)', 'low_memory': '(False)', 'quoting': 'csv.QUOTE_NONE'}), '(path_to_file, sep=delim, chunksize=csize, error_bad_lines=False,\n low_memory=False, quoting=csv.QUOTE_NONE)\n', (2690, 2801), True, 'import pandas as pd\n'), ((2635, 2654), 'numpy.ceil', 'np.ceil', (['(rows_ / 10)'], {}), '(rows_ / 10)\n', (2642, 2654), True, 'import numpy as np\n')]
""" script to matrix normalization """ from functools import reduce import math as m import numpy as np def minmax_normalization(x, type): """ :param x: column of matrix data :param type: type of normalization :return: min max normalized column of matrix data """ if min(x) == max(x): return np.ones(x.shape) if type == 'cost': return (max(x) - x) / (max(x) - min(x)) return (x - min(x)) / (max(x) - min(x)) def max_normalization(x, type): """ :param x: column of matrix data :param type: type of normalization :return: max normalized column of matrix data """ if type == 'cost': return 1 - x/max(x) return x / max(x) def sum_normalization(x, type): """ :param x: column of matrix data :param type: type of normalization :return: sum normalized column of matrix data """ if type == 'cost': return (1/x) / sum(1/x) return x / sum(x) def vector_normalization(x, type): """ :param x: column of matrix data :param type: type of normalization :return: vector normalized column of matrix data """ if type == 'cost': return 1 - (x / np.sqrt(sum(x ** 2))) return x / np.sqrt(sum(x ** 2)) def logaritmic_normalization(x, type): """ :param x: column of matrix data :param type: type of normalization :return: logarithmic normalized column of matrix data """ prod = reduce(lambda a, b: a*b, x) if type == 'cost': return (1 - (np.log(x) / m.log(prod))) / (len(x) - 1) return np.log(x) / m.log(prod) def normalize(matrix, types, method, precision = 2): """ :param matrix: decision matrix :param types: types of normalization for columns :param method: method of normalization :param precision: precision :return: normalized matrix """ if matrix.shape[1] != len(types): print('Sizes does not match') normalized_matrix = matrix.astype('float') for i in range(len(types)): if type == 1: normalized_matrix[:, i] = np.round(method(matrix[:, i], types[i]), precision) else: normalized_matrix[:, i] = np.round(method(matrix[:, i], types[i]), precision) return normalized_matrix
[ "functools.reduce", "numpy.log", "numpy.ones", "math.log" ]
[((1453, 1482), 'functools.reduce', 'reduce', (['(lambda a, b: a * b)', 'x'], {}), '(lambda a, b: a * b, x)\n', (1459, 1482), False, 'from functools import reduce\n'), ((328, 344), 'numpy.ones', 'np.ones', (['x.shape'], {}), '(x.shape)\n', (335, 344), True, 'import numpy as np\n'), ((1577, 1586), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (1583, 1586), True, 'import numpy as np\n'), ((1589, 1600), 'math.log', 'm.log', (['prod'], {}), '(prod)\n', (1594, 1600), True, 'import math as m\n'), ((1525, 1534), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (1531, 1534), True, 'import numpy as np\n'), ((1537, 1548), 'math.log', 'm.log', (['prod'], {}), '(prod)\n', (1542, 1548), True, 'import math as m\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' data4models.py # Sentiment Indentification for Roman Urdu ''' import numpy as np import pandas as pd class Data: # Constructor def __init__( self, config ): self.config = config def split( self, df ): ''' Split the (entire) data into training data & test data ''' assert isinstance( df, pd.DataFrame), 'df must be a pandas.DataFrame.' test_split_ratio = self.config.test_split_ratio print(f'Data.preprocess.split: test_split_ratio= {test_split_ratio}' ) reviews = df['review'] sentiments = df['sentiment'] n_dataset = df.shape[0] n_test = int( n_dataset * test_split_ratio ) # 0.7 n_training = n_dataset - n_test # 0.3 # Use indexcing to split the data. index_data = np.arange( n_dataset ) index_training = np.random.choice( index_data, n_training, replace=False ) index_test = np.delete( index_data, index_training ) data_training_np = reviews.loc[ index_training ].values data_test_np = reviews.loc[ index_test ].values labels_training_np = sentiments.loc[ index_training ].values labels_test_np = sentiments.loc[ index_test ].values print(f' number of dataset =', n_dataset ) print(f' np.shape(x_train) =', np.shape(data_training_np) ) print(f' np.shape(y_train) =', np.shape(labels_training_np) ) print(f' np.shape(x_test) =', np.shape(data_test_np) ) print(f' np.shape(y_test) =', np.shape(labels_test_np) ) return data_training_np, labels_training_np, data_test_np, labels_test_np # x_train, y_train, x_test, y_test # def __init__( self, x, y, config ): # self.config = config # self.x = x # shape = (length, dimension) # self.y = y # shape = (length,) def split( self, split_rate=[0.7, 0.2, 0.1] ): ''' The default ratio to split the training, evaluation, & test data is 7:2:1. ''' print( 'split_rate = ', split_rate ) length, dimension = np.shape( self.x ) # Split the (entire) data into training data & test data n_training = int( length * split_rate[0] ) # 0.7 n_evaluation = int( length * split_rate[1] ) # 0.2 n_test = length - n_training - n_evaluation # Use indexcing to split the data. index_data = np.arange( length ) # 13704, [0, length-1] index_training = np.random.choice( index_data, n_training, replace=False ) # 9592 index_temp = np.delete( index_data, index_training ) # 4112 index_evaluation = np.random.choice( index_temp, n_evaluation ) # 2740 index_test = np.delete( index_temp, index_evaluation ) # 3547, This must be 1372! data_training = self.x[ index_training, : ] data_evaluation = self.x[ index_evaluation, : ] data_test = self.x[ index_test, : ] labels_training = self.y[ index_training ] labels_evaluation = self.y[ index_evaluation ] labels_test = self.y[ index_test ] training = [data_training, labels_training] evaluation = [data_evaluation, labels_evaluation] test = [data_test, labels_test] return training, evaluation, test # #=====================================================================# # # The above variables don't have the leading self. to improve readability. # self.length = length # = size, or n_data # self.dimension = dimension # # self.n_training = n_training # self.n_test = n_test def load(self, batch_size): data_length = len( self.data_training ) if data_length >= batch_size: # Because of replace=False, # ValueError: Cannot take a larger sample than population when 'replace=False' index = np.random.choice( data_length, batch_size, replace=False ) data = self.data_training[ index,: ] labels = self.labels_training[ index ] self.data_training = np.delete( self.data_training, index, axis=0 ) self.labels_training = np.delete( self.labels_training, index ) done = True else: #data_length < batch_size: self.data_training = self.x[ self.index_training ] self.labels_training = self.y[ self.index_training ] done = False return data, labels, done # EOF
[ "numpy.shape", "numpy.arange", "numpy.delete", "numpy.random.choice" ]
[((927, 947), 'numpy.arange', 'np.arange', (['n_dataset'], {}), '(n_dataset)\n', (936, 947), True, 'import numpy as np\n'), ((976, 1031), 'numpy.random.choice', 'np.random.choice', (['index_data', 'n_training'], {'replace': '(False)'}), '(index_data, n_training, replace=False)\n', (992, 1031), True, 'import numpy as np\n'), ((1060, 1097), 'numpy.delete', 'np.delete', (['index_data', 'index_training'], {}), '(index_data, index_training)\n', (1069, 1097), True, 'import numpy as np\n'), ((2284, 2300), 'numpy.shape', 'np.shape', (['self.x'], {}), '(self.x)\n', (2292, 2300), True, 'import numpy as np\n'), ((2630, 2647), 'numpy.arange', 'np.arange', (['length'], {}), '(length)\n', (2639, 2647), True, 'import numpy as np\n'), ((2702, 2757), 'numpy.random.choice', 'np.random.choice', (['index_data', 'n_training'], {'replace': '(False)'}), '(index_data, n_training, replace=False)\n', (2718, 2757), True, 'import numpy as np\n'), ((2796, 2833), 'numpy.delete', 'np.delete', (['index_data', 'index_training'], {}), '(index_data, index_training)\n', (2805, 2833), True, 'import numpy as np\n'), ((2882, 2924), 'numpy.random.choice', 'np.random.choice', (['index_temp', 'n_evaluation'], {}), '(index_temp, n_evaluation)\n', (2898, 2924), True, 'import numpy as np\n'), ((2962, 3001), 'numpy.delete', 'np.delete', (['index_temp', 'index_evaluation'], {}), '(index_temp, index_evaluation)\n', (2971, 3001), True, 'import numpy as np\n'), ((1488, 1514), 'numpy.shape', 'np.shape', (['data_training_np'], {}), '(data_training_np)\n', (1496, 1514), True, 'import numpy as np\n'), ((1558, 1586), 'numpy.shape', 'np.shape', (['labels_training_np'], {}), '(labels_training_np)\n', (1566, 1586), True, 'import numpy as np\n'), ((1630, 1652), 'numpy.shape', 'np.shape', (['data_test_np'], {}), '(data_test_np)\n', (1638, 1652), True, 'import numpy as np\n'), ((1696, 1720), 'numpy.shape', 'np.shape', (['labels_test_np'], {}), '(labels_test_np)\n', (1704, 1720), True, 'import numpy as np\n'), ((4261, 4317), 'numpy.random.choice', 'np.random.choice', (['data_length', 'batch_size'], {'replace': '(False)'}), '(data_length, batch_size, replace=False)\n', (4277, 4317), True, 'import numpy as np\n'), ((4475, 4519), 'numpy.delete', 'np.delete', (['self.data_training', 'index'], {'axis': '(0)'}), '(self.data_training, index, axis=0)\n', (4484, 4519), True, 'import numpy as np\n'), ((4558, 4596), 'numpy.delete', 'np.delete', (['self.labels_training', 'index'], {}), '(self.labels_training, index)\n', (4567, 4596), True, 'import numpy as np\n')]
# ---------------------------------------------------------------------------- # # World Cup: Stats scanner # Ver: 0.01 # ---------------------------------------------------------------------------- # # # Code by <NAME> # # ---------------------------------------------------------------------------- # import os import numpy as np import pandas as pd import re from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import TimeoutException, NoSuchElementException, WebDriverException from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from time import sleep os.chdir("/mnt/aec0936f-d983-44c1-99f5-0f5b36390285/Dropbox/Python/Predictive Analytics FIFA") ''' browser = webdriver.Firefox() browser.get("https://www.whoscored.com/Regions/247/Tournaments/36/Seasons/5967/Stages/15737/Show/International-FIFA-World-Cup-2018") sleep(3) base_url = 'https://www.whoscored.com' def get_countries_links(browser): return [team.get_attribute('href') for team in browser.find_elements_by_xpath('//table[@id="tournament-fixture"]//td[contains(@class,"team")]//a')] countries_link = set() countries_link.update(get_countries_links(browser)) browser.find_elements_by_xpath('//table[@id="tournament-fixture"]//td[contains(@class,"team")]//a')[0].get_attribute('href') # click next page browser.find_element_by_xpath('//span[contains(@class, "ui-icon-triangle-1-e")]').click() sleep(1) countries_link.update(get_countries_links(browser)) # click next page browser.find_element_by_xpath('//span[contains(@class, "ui-icon-triangle-1-e")]').click() sleep(1) countries_link.update(get_countries_links(browser)) #countries_link player_link = dict() for country_link in countries_link: browser.get(country_link) sleep(1) team = browser.find_element_by_xpath('//span[@class="team-header-name"]') player_link[team.text] = dict() for player in browser.find_elements_by_xpath('//table[@id="top-player-stats-summary-grid"]//tbody//tr//a'): player_link[team.text][player.text] = player.get_attribute('href') np.save("Data/player_link.npy", player_link) ''' def detect_element(browser, element_id, by_what = By.ID): # Simplify the detection of an element in the browser element_present = EC.presence_of_element_located((by_what, element_id)) try: WebDriverWait(browser, 5, poll_frequency = .1).until(element_present) return True except TimeoutException as e: return False player_link = np.load("Data/player_link.npy").item() # will delete nan from already_loaded already_loaded = rating_dict.copy() for team in rating_dict.keys(): for player in rating_dict[team]: if pd.isnull(rating_dict[team][player]): already_loaded[team].pop(player, None) #caps = DesiredCapabilities().FIREFOX caps = DesiredCapabilities.CHROME caps["pageLoadStrategy"] = "none" #rating_dict = {team:{} for team in player_link.keys()} browser = webdriver.Chrome(desired_capabilities = caps)#Firefox(capabilities=caps) for team in player_link.keys(): for player in player_link[team].keys(): if player in already_loaded[team].keys(): continue while True: try: browser.get(player_link[team][player]) wait = WebDriverWait(browser, 20) wait.until(EC.presence_of_element_located((By.XPATH, '//table[@id="top-player-stats-summary-grid"]'))) browser.execute_script("window.stop();") try: rating_dict[team][player] = browser.find_elements_by_xpath('//table[@id="top-player-stats-summary-grid"]//td[@class="rating"]')[-1].text print(rating_dict[team][player]) break except IndexError: try: iframe = browser.find_element_by_xpath('//iframe') browser.switch_to_frame(iframe) browser.find_element_by_xpath('//p[contains(text(), "Access Denied")]') sleep(5) except NoSuchElementException: rating_dict[team][player] = np.nan except TimeoutException: sleep(5) np.save("Data/rating_dict.npy", rating_dict) rating_dict['Saudi Arabia']
[ "selenium.webdriver.support.ui.WebDriverWait", "selenium.webdriver.support.expected_conditions.presence_of_element_located", "numpy.load", "numpy.save", "pandas.isnull", "time.sleep", "selenium.webdriver.Chrome", "os.chdir" ]
[((897, 1001), 'os.chdir', 'os.chdir', (['"""/mnt/aec0936f-d983-44c1-99f5-0f5b36390285/Dropbox/Python/Predictive Analytics FIFA"""'], {}), "(\n '/mnt/aec0936f-d983-44c1-99f5-0f5b36390285/Dropbox/Python/Predictive Analytics FIFA'\n )\n", (905, 1001), False, 'import os\n'), ((3265, 3308), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'desired_capabilities': 'caps'}), '(desired_capabilities=caps)\n', (3281, 3308), False, 'from selenium import webdriver\n'), ((4577, 4621), 'numpy.save', 'np.save', (['"""Data/rating_dict.npy"""', 'rating_dict'], {}), "('Data/rating_dict.npy', rating_dict)\n", (4584, 4621), True, 'import numpy as np\n'), ((2570, 2623), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (['(by_what, element_id)'], {}), '((by_what, element_id))\n', (2600, 2623), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((2807, 2838), 'numpy.load', 'np.load', (['"""Data/player_link.npy"""'], {}), "('Data/player_link.npy')\n", (2814, 2838), True, 'import numpy as np\n'), ((3001, 3037), 'pandas.isnull', 'pd.isnull', (['rating_dict[team][player]'], {}), '(rating_dict[team][player])\n', (3010, 3037), True, 'import pandas as pd\n'), ((2642, 2687), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['browser', '(5)'], {'poll_frequency': '(0.1)'}), '(browser, 5, poll_frequency=0.1)\n', (2655, 2687), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((3594, 3620), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['browser', '(20)'], {}), '(browser, 20)\n', (3607, 3620), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((3648, 3742), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (['(By.XPATH, \'//table[@id="top-player-stats-summary-grid"]\')'], {}), '((By.XPATH,\n \'//table[@id="top-player-stats-summary-grid"]\'))\n', (3678, 3742), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((4555, 4563), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (4560, 4563), False, 'from time import sleep\n'), ((4382, 4390), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (4387, 4390), False, 'from time import sleep\n')]
# coding=utf-8 # Copyright (c) DIRECT Contributors from typing import List, Optional, Tuple, Union import numpy as np from scipy.stats import multivariate_normal as normal def simulate_sensitivity_maps( shape: Union[List[int], Tuple[int]], num_coils: int, var: float = 1, seed: Optional[int] = None ) -> np.ndarray: r"""Simulates coil sensitivities using bi-variate or tri-variate gaussian distribution. Parameters ---------- shape: List[int] or Tuple[int] (nx, ny) or (nx, ny, nz). num_coils: int Number of coils to be simulated. var: float Variance. seed: int or None If not None, a seed will be used to produce an offset for the gaussian mean :math:`\mu`. Returns ------- sensitivity_map : nd.array Simulated coil sensitivity maps of shape (num_coils, \*shape). Notes ----- Sensitivity maps are normalized such that: .. math:: \sum_{k=1}^{n_c} {S^{k}}^{*}S^{k} = I. """ if num_coils == 1: return np.ones(shape)[None] + 0.0j # X, Y are switched in np.meshgrid meshgrid = np.meshgrid(*[np.linspace(-1, 1, n) for n in shape[:2][::-1] + shape[2:]]) indices = np.stack(meshgrid, axis=-1) sensitivity_map = np.zeros((num_coils, *shape)) # Assume iid cov = np.zeros(len(shape)) for ii in range(len(shape)): cov[ii] = var cov = np.diag(cov) if seed: np.random.seed(seed) offset = np.random.uniform(0, 2 * np.pi, 1) for coil_idx in range(num_coils): mu = [ np.cos(coil_idx / num_coils * 2 * np.pi + offset).item(), np.sin(coil_idx / num_coils * 2 * np.pi + offset).item(), ] if len(shape) == 3: mu += [0.0] sensitivity_map[coil_idx] = normal(mu, cov).pdf(indices) sensitivity_map = sensitivity_map + 1.0j * sensitivity_map # make complex # Normalize sensitivity_map_norm = np.sqrt((np.conj(sensitivity_map) * sensitivity_map).sum(0))[None] sensitivity_map = sensitivity_map / sensitivity_map_norm return sensitivity_map
[ "numpy.stack", "numpy.random.uniform", "numpy.conj", "numpy.random.seed", "numpy.zeros", "numpy.ones", "scipy.stats.multivariate_normal", "numpy.sin", "numpy.linspace", "numpy.cos", "numpy.diag" ]
[((1211, 1238), 'numpy.stack', 'np.stack', (['meshgrid'], {'axis': '(-1)'}), '(meshgrid, axis=-1)\n', (1219, 1238), True, 'import numpy as np\n'), ((1262, 1291), 'numpy.zeros', 'np.zeros', (['(num_coils, *shape)'], {}), '((num_coils, *shape))\n', (1270, 1291), True, 'import numpy as np\n'), ((1405, 1417), 'numpy.diag', 'np.diag', (['cov'], {}), '(cov)\n', (1412, 1417), True, 'import numpy as np\n'), ((1473, 1507), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2 * np.pi)', '(1)'], {}), '(0, 2 * np.pi, 1)\n', (1490, 1507), True, 'import numpy as np\n'), ((1439, 1459), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1453, 1459), True, 'import numpy as np\n'), ((1040, 1054), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (1047, 1054), True, 'import numpy as np\n'), ((1136, 1157), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'n'], {}), '(-1, 1, n)\n', (1147, 1157), True, 'import numpy as np\n'), ((1799, 1814), 'scipy.stats.multivariate_normal', 'normal', (['mu', 'cov'], {}), '(mu, cov)\n', (1805, 1814), True, 'from scipy.stats import multivariate_normal as normal\n'), ((1573, 1622), 'numpy.cos', 'np.cos', (['(coil_idx / num_coils * 2 * np.pi + offset)'], {}), '(coil_idx / num_coils * 2 * np.pi + offset)\n', (1579, 1622), True, 'import numpy as np\n'), ((1643, 1692), 'numpy.sin', 'np.sin', (['(coil_idx / num_coils * 2 * np.pi + offset)'], {}), '(coil_idx / num_coils * 2 * np.pi + offset)\n', (1649, 1692), True, 'import numpy as np\n'), ((1960, 1984), 'numpy.conj', 'np.conj', (['sensitivity_map'], {}), '(sensitivity_map)\n', (1967, 1984), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 23 13:17:41 2018 @author: laurenwalters """ import numpy as np import matplotlib.pyplot as plt import random #For saving/importing data from numpy import asarray from numpy import save from numpy import load #Created by <NAME>, 2018-2020 #Contributions by <NAME> #For reactions in aqueous conditions #find out how much detail you want in your graph #n=input("Enter the mesh grid detail you want, suggested (30-140): ") n=30; #Constants R=8.31447; #kJ/(mol*K) T=298.15; #K F= 9.648533*10**4; #kJ/(V*mol) P=1; #bar, 10^5*Pa eta=6 nI=10**-eta; #Activity Concentration #Array showing the composition of Cu:Bi:S composition=np.array([1,1,1]) #pH Range and Constants lowpH = -2; highpH = 16; pHrange = int; pHrange = highpH-lowpH; pHcount = pHrange/n; #used to iterate through pH range #Applied Potential Range and Constants Ulow = -1.5; #V Uhigh = 1.5; #V Urange = Uhigh-Ulow; #V Ucount = Urange/n; #used to iterate through U (energy) range ############################################################################### ######################## DFT CALCULATIONS ##################################### ############################################################################### #Electronic Energies in eV/f.u. #PBEsol with SOC Ee_Bi= -5.114928333; Ee_Bi2O3= -31.163316; Ee_Bi2O5= -40.1344765; Ee_Bi2O4=-36.7221975; Ee_Bi4O7=-68.40888; #PBEsol Ee_Cu=-4.3152965; Ee_CuO=-10.7488868; Ee_Cu2O=-14.99698; Ee_CuOH2_s=-25.1916025; #PBEsol Ee_O2=-10.281123 Ee_H2=-6.5141508 Ee_S= -4.391811875; ############################################################################### ########### MULTICOMPONENT SPECIES ############################################ #Calculated with PBEsol Ee_Cu2S=-13.4793116667; Ee_Cu7S4=-49.8241325; Ee_CuS=-9.170266; Ee_CuS2=-13.63935; Ee_Cu2SO4_3=-101.5166; Ee_BiCu=-9.31218; Ee_CuBiO2_2=-42.245475; Ee_BiS2=-14.6172585; Ee_Bi2S3=-24.878388; Ee_Bi2S2O=-27.2327565; Ee_Bi2SO4_3=-109.35902; Ee_Bi14OS24=-247.57619; Ee_Bi2SO2=-29.50652; Ee_BiSCuO=-21.5022935; Ee_Cu3BiS3=-32.4713275; Ee_Cu4Bi4S9=-80.830705; Ee_Cu4BiS2_5=-90.647798; Ee_CuBiS2=-19.041996; ############################################################################### ###### Vibrational Energy ##################################################### ############################################################################### #Vibrational Energies in eV/f.u. #From PBEsol Phonon Calculations Fvib_O2=-0.272; F_rot_trans_O2=0.099; Ftot_O2=Fvib_O2+F_rot_trans_O2; F_H = .202; Fvib_S=-0.0091266451372 Fvib_CuO=0.062498987735 Fvib_Cu2O=0.00507624852 Fvib_Cu=-0.007167374680 Fvib_CuOH2_s=0.66653026525 Fvib_Bi=-0.0761976993239 Fvib_Bi2O3=-0.057653546889 Fvib_Bi2O5=0.14677315404 Fvib_Bi2O4=0.12231438709 Fvib_Bi4O7=0.08741679245 Fvib_Cu2S=-0.0050937891364 Fvib_Cu7S4=-0.178002185722 Fvib_CuS=-0.0119849701814 Fvib_CuS2=-0.0033060080158 Fvib_Cu2SO4_3=1.00135494361 Fvib_BiCu=-0.11006963132 Fvib_CuBiO2_2=0.09853363658 Fvib_BiS2=-0.063943629448 Fvib_Bi2S3=-0.1428187610337 Fvib_Bi2S2O=-0.08193190191 Fvib_Bi2SO4_3=0.81266278392 Fvib_Bi14OS24=0.02990373431 Fvib_Bi2SO2=-0.0265520338422 Fvib_BiSCuO=-0.039894146059 Fvib_Cu3BiS3=-0.1661179102334 Fvib_Cu4Bi4S9=-0.3270592722135 Fvib_Cu4BiS2_5=-0.430548296696 Fvib_CuBiS2=-0.08663072302 ############################################################################### ### Compounds-Calculate the formation energies ############################ ############################################################################### #Free Energies of Formation in eV/f.u. dGf_CuO= (Ee_CuO+Fvib_CuO) -(Ee_Cu+Fvib_Cu) - 0.5*(Ee_O2+Ftot_O2); dGf_Cu2O=(Ee_Cu2O+Fvib_Cu2O) -2.0*(Ee_Cu+Fvib_Cu) - 0.5*(Ee_O2+Ftot_O2); dGf_CuOH2_s= (Ee_CuOH2_s+Fvib_CuOH2_s) -(Ee_Cu+Fvib_Cu)-(Ee_O2+Ftot_O2)-(Ee_H2+F_H); dGf_Bi2O3= ((Ee_Bi2O3)+Fvib_Bi2O3) -2.0*(Ee_Bi+Fvib_Bi)-1.5*(Ee_O2-Ftot_O2); dGf_Bi2O5= ((Ee_Bi2O5)+Fvib_Bi2O5) -2.0*(Ee_Bi+Fvib_Bi)-2.5*(Ee_O2-Ftot_O2); dGf_Bi2O4= ((Ee_Bi2O4)+Fvib_Bi2O4) -2.0*(Ee_Bi+Fvib_Bi)-2.0*(Ee_O2-Ftot_O2); dGf_Bi4O7= ((Ee_Bi4O7)+Fvib_Bi4O7) -4.0*(Ee_Bi+Fvib_Bi)-3.5*(Ee_O2-Ftot_O2); dGf_Cu2S=(Ee_Cu2S+Fvib_Cu2S) -2*(Ee_Cu+Fvib_Cu)-(Ee_S+Fvib_S); dGf_Cu7S4=(Ee_Cu7S4+Fvib_Cu7S4) -7*(Ee_Cu+Fvib_Cu)-4*(Ee_S+Fvib_S); dGf_CuS=(Ee_CuS+Fvib_CuS) -(Ee_Cu+Fvib_Cu)-(Ee_S+Fvib_S); dGf_CuS2=(Ee_CuS2+Fvib_CuS2) -(Ee_Cu+Fvib_Cu)-2*(Ee_S+Fvib_S); dGf_Cu2SO4_3=(Ee_Cu2SO4_3+Fvib_Cu2SO4_3) -2*(Ee_Cu+Fvib_Cu)-3*(Ee_S+Fvib_S)-6.0*((Ee_O2)-Ftot_O2); dGf_BiCu=(Ee_BiCu+Fvib_BiCu) -(Ee_Cu+Fvib_Cu)-(Ee_Bi+Fvib_Bi); dGf_CuBiO2_2=(Ee_CuBiO2_2+Fvib_CuBiO2_2) -(Ee_Cu+Fvib_Cu)-2*(Ee_Bi+Fvib_Bi)-2.0*((Ee_O2)-Ftot_O2); dGf_BiS2=(Ee_BiS2+Fvib_BiS2) -(Ee_Bi+Fvib_Bi)-2*(Ee_S+Fvib_S); dGf_Bi2S3=(Ee_Bi2S3+Fvib_Bi2S3) -2*(Ee_Bi+Fvib_Bi)-3*(Ee_S+Fvib_S); dGf_Bi2S2O=(Ee_Bi2S2O+Fvib_Bi2S2O) -2*(Ee_Bi+Fvib_Bi)-2*(Ee_S+Fvib_S)-0.5*((Ee_O2)-Ftot_O2); dGf_Bi2SO4_3=(Ee_Bi2SO4_3+Fvib_Bi2SO4_3) -2*(Ee_Bi+Fvib_Bi)-3*(Ee_S+Fvib_S)-6.0*((Ee_O2)-Ftot_O2); dGf_Bi14OS24=(Ee_Bi14OS24+Fvib_Bi14OS24) -14*(Ee_Bi+Fvib_Bi)-24*(Ee_S+Fvib_S)-0.5*((Ee_O2)-Ftot_O2); dGf_Bi2SO2=(Ee_Bi2SO2+Fvib_Bi2SO2) -2*(Ee_Bi+Fvib_Bi)-(Ee_S+Fvib_S)-1.0*((Ee_O2)-Ftot_O2); dGf_BiSCuO=(Ee_BiSCuO+Fvib_BiSCuO) -(Ee_Cu+Fvib_Cu)-(Ee_Bi+Fvib_Bi)-(Ee_S+Fvib_S)-0.5*((Ee_O2)-Ftot_O2); dGf_Cu3BiS3=(Ee_Cu3BiS3+Fvib_Cu3BiS3) -3*(Ee_Cu+Fvib_Cu)-(Ee_Bi+Fvib_Bi)-3*(Ee_S+Fvib_S); dGf_Cu4Bi4S9=(Ee_Cu4Bi4S9+Fvib_Cu4Bi4S9) -4*(Ee_Cu+Fvib_Cu)-4*(Ee_Bi+Fvib_Bi)-9*(Ee_S+Fvib_S); dGf_Cu4BiS2_5=(Ee_Cu4BiS2_5+Fvib_Cu4BiS2_5)-4*(Ee_Cu+Fvib_Cu)-5*(Ee_Bi+Fvib_Bi)-10*(Ee_S+Fvib_S); dGf_CuBiS2=(Ee_CuBiS2+Fvib_CuBiS2) -(Ee_Cu+Fvib_Cu)-(Ee_Bi+Fvib_Bi)-2*(Ee_S+Fvib_S); #Set the reference values dGf_Cu=0.0; dGf_Bi=0.0; dGf_S=0.0; ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############## Aqueous Ion Free Energies of Formation ######################### #Free Energies of Formation in eV/f.u. ##Elemental Bismuth Species dGf_Bi_3Plus= 0.6430898 dGf_BiOH_2Plus= -1.6968378 dGf_BiO_Plus= -1.4977965 ##Elemental Copper Species dGf_Cu1= 0.506502 dGf_Cu2= 0.674092 dGf_CuOH2_minus= -3.4518209 dGf_CuOH3= -5.1197432 dGf_CuOH_Plus= -1.3127387 dGf_CuOH4_2=-6.814302 dGf_CuOH2= -3.2666113 dGf_CuOH = -1.2677578 dGf_Cu2OH2_2plus=-2.942417 dGf_Cu3OH4_2plus=-6.567839 #Elemental Sulphur Species dGf_H2S=-0.283601 dGf_HS_Minus=0.13053 dGf_S_2Minus=0.9521892 dGf_S2_2Minus=0.8563979 dGf_S3_2Minus=0.7791664 dGf_S4_2Minus=0.7204948 dGf_S5_2Minus=0.6803396 dGf_H2S2O3=-5.6329986 dGf_HS2O3_Minus=-5.6156529 dGf_S2O3_2Minus=-5.515915 dGf_S5O6_2Minus=-9.9087 dGf_S4O6_2Minus=-10.5939 dGf_HS2O4_Minus=-6.13203282 dGf_S2O4_2Minus=-5.9842 dGf_S3O6_2Minus=-9.930382 dGf_H2SO3=-5.580528 dGf_HSO3_Minus=-5.464 dGf_SO3_2Minus=-5.03457 dGf_S2O6_2Minus=-10.02 dGf_H2SO4=-7.6901922 dGf_HSO4_Minus=-7.8029389 dGf_SO4_2Minus=-7.6901922 dGf_S2O8_2Minus=-11.361 dGf_HSO5_Minus= -6.60739025 dGf_S2O5_2Minus= -8.195817793 #Water dGf_H2O=-2.458; ############################################################################### ############################################################################### ############################################################################### ################################################################################ ############# CONVERT from eV to kJ/mol #################################### ############################################################################### dGf_Cu= dGf_Cu*F; dGf_CuO= dGf_CuO*F; dGf_Cu2O= dGf_Cu2O*F; dGf_Cu1= dGf_Cu1*F; dGf_Cu2= dGf_Cu2*F; dGf_CuOH4_2= dGf_CuOH4_2*F; dGf_CuOH2_minus= dGf_CuOH2_minus*F; dGf_CuOH3= dGf_CuOH3*F; dGf_CuOH_Plus= dGf_CuOH_Plus*F; dGf_CuOH2= dGf_CuOH2*F; dGf_CuOH = dGf_CuOH*F; dGf_Cu2OH2_2plus=dGf_Cu2OH2_2plus*F; dGf_Cu3OH4_2plus=dGf_Cu3OH4_2plus*F; dGf_CuOH2_s=dGf_CuOH2_s*F dGf_Bi= dGf_Bi*F; dGf_Bi2O3= dGf_Bi2O3*F; dGf_Bi2O5= dGf_Bi2O5*F; dGf_Bi2O4=dGf_Bi2O4*F; dGf_Bi4O7=dGf_Bi4O7*F; dGf_Bi_3Plus= dGf_Bi_3Plus*F; dGf_BiOH_2Plus= dGf_BiOH_2Plus*F; dGf_BiO_Plus= dGf_BiO_Plus*F; dGf_S= dGf_S*F; dGf_H2S=dGf_H2S*F; dGf_HS_Minus=dGf_HS_Minus*F; dGf_S_2Minus=dGf_S_2Minus*F; dGf_S2_2Minus=dGf_S2_2Minus*F; dGf_S3_2Minus=dGf_S3_2Minus*F; dGf_S4_2Minus=dGf_S4_2Minus*F; dGf_S5_2Minus=dGf_S5_2Minus*F; dGf_H2S2O3=dGf_H2S2O3*F; dGf_HS2O3_Minus=dGf_HS2O3_Minus*F; dGf_S2O3_2Minus=dGf_S2O3_2Minus*F; dGf_S5O6_2Minus=dGf_S5O6_2Minus*F; dGf_S4O6_2Minus=dGf_S4O6_2Minus*F; dGf_HS2O4_Minus=dGf_HS2O4_Minus*F; dGf_S2O4_2Minus=dGf_S2O4_2Minus*F; dGf_S3O6_2Minus=dGf_S3O6_2Minus*F; dGf_H2SO3=dGf_H2SO3*F; dGf_HSO3_Minus=dGf_HSO3_Minus*F; dGf_SO3_2Minus=dGf_SO3_2Minus*F; dGf_S2O6_2Minus=dGf_S2O6_2Minus*F; dGf_H2SO4=dGf_H2SO4*F; dGf_HSO4_Minus=dGf_HSO4_Minus*F; dGf_SO4_2Minus=dGf_SO4_2Minus*F; dGf_S2O8_2Minus=dGf_S2O8_2Minus*F; dGf_HSO5_Minus=dGf_HSO5_Minus*F; dGf_S2O5_2Minus=dGf_S2O5_2Minus*F; dGf_Cu2S=dGf_Cu2S*F; dGf_Cu7S4=dGf_Cu7S4*F; dGf_CuS=dGf_CuS*F; dGf_CuS2=dGf_CuS2*F; dGf_Cu2SO4_3=dGf_Cu2SO4_3*F; dGf_BiCu=dGf_BiCu*F; dGf_CuBiO2_2=dGf_CuBiO2_2*F; dGf_BiS2=dGf_BiS2*F; dGf_Bi2S3=dGf_Bi2S3*F; dGf_Bi2S2O=dGf_Bi2S2O*F; dGf_Bi2SO4_3=dGf_Bi2SO4_3*F; dGf_Bi14OS24=dGf_Bi14OS24*F; dGf_Bi2SO2=dGf_Bi2SO2*F; dGf_BiSCuO=dGf_BiSCuO*F; dGf_Cu3BiS3=dGf_Cu3BiS3*F; dGf_Cu4Bi4S9=dGf_Cu4Bi4S9*F; dGf_Cu4BiS2_5=dGf_Cu4BiS2_5*F; dGf_CuBiS2=dGf_CuBiS2*F; dGf_H2O= dGf_H2O*F; ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############### Populate the species matrix ################################ ############################################################################### species=np.zeros((65,8)) ######## Formation Energies ################################################### species[0,0]=0.00; species[1,0]=dGf_CuO species[2,0]=dGf_Cu2O species[3,0]=dGf_Cu1 species[4,0]=dGf_Cu2 species[5,0]=dGf_CuOH4_2 species[6,0]=dGf_CuOH2_minus species[7,0]=dGf_CuOH3 species[8,0]=dGf_CuOH_Plus species[9,0]=dGf_CuOH2 species[10,0]=dGf_CuOH species[11,0]=dGf_Cu2OH2_2plus species[12,0]=dGf_Cu3OH4_2plus species[13,0]=dGf_Bi species[14,0]=dGf_Bi2O3 species[15,0]=dGf_Bi2O5 species[16,0]=dGf_Bi2O4 species[17,0]=dGf_Bi4O7 species[18,0]=dGf_Bi_3Plus species[19,0]=dGf_BiOH_2Plus species[20,0]=dGf_BiO_Plus species[21,0]=dGf_S species[22,0]=dGf_H2S species[23,0]=dGf_HS_Minus species[24,0]=dGf_S_2Minus species[25,0]=dGf_S2_2Minus species[26,0]=dGf_S3_2Minus species[27,0]=dGf_S4_2Minus species[28,0]=dGf_S5_2Minus species[29,0]=dGf_H2S2O3 species[30,0]=dGf_HS2O3_Minus species[31,0]=dGf_S2O3_2Minus species[32,0]=dGf_S5O6_2Minus species[33,0]=dGf_S4O6_2Minus species[34,0]=dGf_HS2O4_Minus species[35,0]=dGf_S2O4_2Minus species[36,0]=dGf_S3O6_2Minus species[37,0]=dGf_H2SO3 species[38,0]=dGf_HSO3_Minus species[39,0]=dGf_SO3_2Minus species[40,0]=dGf_S2O6_2Minus species[41,0]=dGf_H2SO4 species[42,0]=dGf_HSO4_Minus species[43,0]=dGf_SO4_2Minus species[44,0]=dGf_S2O8_2Minus species[45,0]=dGf_HSO5_Minus species[46,0]=dGf_S2O5_2Minus species[47,0]=dGf_Cu2S species[48,0]=dGf_Cu7S4 species[49,0]=dGf_CuS species[50,0]=dGf_CuS2 species[51,0]=dGf_Cu2SO4_3 species[52,0]=dGf_BiCu species[53,0]=dGf_CuBiO2_2 species[54,0]=dGf_BiS2 species[55,0]=dGf_Bi2S3 species[56,0]=dGf_Bi2S2O species[57,0]=dGf_Bi2SO4_3 species[58,0]=dGf_Bi14OS24 species[59,0]=dGf_Bi2SO2 species[60,0]=dGf_CuBiS2 species[61,0]=dGf_Cu4Bi4S9 species[62,0]=dGf_Cu4BiS2_5 species[63,0]=dGf_BiSCuO species[64,0]=dGf_Cu3BiS3 ######## Electron Count ####################################################### #Cu species[0,1]=0.00; species[1,1]=2 species[2,1]=2 species[3,1]=1 species[4,1]=2 species[5,1]=2 species[6,1]=1 species[7,1]=2 species[8,1]=2 species[9,1]=2 species[10,1]=1 species[11,1]=4 species[12,1]=6 #Bi species[13,1]=0 species[14,1]=6 species[15,1]=10 species[16,1]=8 species[17,1]=14 species[18,1]=3 species[19,1]=3 species[20,1]=3 #S species[21,1]=0 species[22,1]=-2 species[23,1]=-2 species[24,1]=-2 species[25,1]=-2 species[26,1]=-2 species[27,1]=-2 species[28,1]=-2 species[29,1]=4 species[30,1]=4 species[31,1]=4 species[32,1]=10 species[33,1]=10 species[34,1]=6 species[35,1]=6 species[36,1]=10 species[37,1]=4 species[38,1]=4 species[39,1]=4 species[40,1]=10 species[41,1]=6 species[42,1]=6 species[43,1]=6 species[44,1]=14 species[45,1]=8 species[46,1]=8 #CuSOBi species[47,1]=0 species[48,1]=0 species[49,1]=0 species[50,1]=0 species[51,1]=24 species[52,1]=0 species[53,1]=8 #BiSO species[54,1]=0 species[55,1]=0 species[56,1]=2 species[57,1]=24 species[58,1]=2 species[59,1]=4 #CuBiS species[60,1]=0 species[61,1]=0 species[62,1]=0 #BiCuSO species[63,1]=2 species[64,1]=0 ######## Hydrogen H+ Count #################################################### #Cu species[0,2]=0 species[1,2]=2 species[2,2]=2 species[3,2]=0 species[4,2]=0 species[5,2]=4 species[6,2]=2 species[7,2]=3 species[8,2]=1 species[9,2]=2 species[10,2]=1 species[11,2]=2 species[12,2]=4 #Bi species[13,2]=0 species[14,2]=6 species[15,2]=10 species[16,2]=8 species[17,2]=14 species[18,2]=0 species[19,2]=1 species[20,2]=2 #S species[21,2]=0 species[22,2]=-2 species[23,2]=-1 species[24,2]=0 species[25,2]=0 species[26,2]=0 species[27,2]=0 species[28,2]=0 species[29,2]=6 species[30,2]=5 species[31,2]=4 species[32,2]=12 species[33,2]=12 species[34,2]=6 species[35,2]=8 species[36,2]=12 species[37,2]=4 species[38,2]=5 species[39,2]=6 species[40,2]=12 species[41,2]=6 species[42,2]=7 species[43,2]=8 species[44,2]=16 species[45,2]=9 species[46,2]=10 #CuSBiO species[47,2]=0 species[48,2]=0 species[49,2]=0 species[50,2]=0 species[51,2]=24 species[52,2]=0 species[53,2]=8 #BiSO species[54,2]=0 species[55,2]=0 species[56,2]=2 species[57,2]=24 species[58,2]=2 species[59,2]=4 #BiCuS species[60,2]=0 species[61,2]=0 species[62,2]=0 #BiCuSO species[63,2]=2 species[64,2]=0 ########### Number of Coppers Cu ############################################## #Cu species[0,3]=1 species[1,3]=1 species[2,3]=2 species[3,3]=1 species[4,3]=1 species[5,3]=1 species[6,3]=1 species[7,3]=1 species[8,3]=1 species[9,3]=1 species[10,3]=1 species[11,3]=2 species[12,3]=3 #Bismuth and Sulphur species[13,3]=0 species[14,3]=0 species[15,3]=0 species[16,3]=0 species[17,3]=0 species[18,3]=0 species[19,3]=0 species[20,3]=0 species[21,3]=0 species[22,3]=0 species[23,3]=0 species[24,3]=0 species[25,3]=0 species[26,3]=0 species[27,3]=0 species[28,3]=0 species[29,3]=0 species[30,3]=0 species[31,3]=0 species[32,3]=0 species[33,3]=0 species[34,3]=0 species[35,3]=0 species[36,3]=0 species[37,3]=0 species[38,3]=0 species[39,3]=0 species[40,3]=0 species[41,3]=0 species[42,3]=0 species[43,3]=0 species[44,3]=0 species[45,3]=0 species[46,3]=0 #CuBiSO species[47,3]=2 species[48,3]=7 species[49,3]=1 species[50,3]=1 species[51,3]=2 species[52,3]=1 species[53,3]=1 #BiSO species[54,3]=0 species[55,3]=0 species[56,3]=0 species[57,3]=0 species[58,3]=0 species[59,3]=0 #CuBiS species[60,3]=1 species[61,3]=4 species[62,3]=4 #BiCuSO species[63,3]=1 species[64,3]=3 ########### Number of Bismuths Bi ############################################# #Copper species[0,4]=0 species[1,4]=0 species[2,4]=0 species[3,4]=0 species[4,4]=0 species[5,4]=0 species[6,4]=0 species[7,4]=0 species[8,4]=0 species[9,4]=0 species[10,4]=0 species[11,4]=0 species[12,4]=0 #Bismuth species[13,4]=1 species[14,4]=2 species[15,4]=2 species[16,4]=2 species[17,4]=4 species[18,4]=1 species[19,4]=1 species[20,4]=1 #Sulphur species[21,4]=0 species[22,4]=0 species[23,4]=0 species[24,4]=0 species[25,4]=0 species[26,4]=0 species[27,4]=0 species[28,4]=0 species[29,4]=0 species[30,4]=0 species[31,4]=0 species[32,4]=0 species[33,4]=0 species[34,4]=0 species[35,4]=0 species[36,4]=0 species[37,4]=0 species[38,4]=0 species[39,4]=0 species[40,4]=0 species[41,4]=0 species[42,4]=0 species[43,4]=0 species[44,4]=0 species[45,4]=0 species[46,4]=0 #CuSBiO species[47,4]=0 species[48,4]=0 species[49,4]=0 species[50,4]=0 species[51,4]=0 species[52,4]=1 species[53,4]=2 #BiSO species[54,4]=1 species[55,4]=2 species[56,4]=2 species[57,4]=2 species[58,4]=14 species[59,4]=2 #CuBiS species[60,4]=1 species[61,4]=4 species[62,4]=5 #BiCuSO species[63,4]=1 species[64,4]=1 ########### Number of Sulphurs S ############################################# #Coppers species[0,5]=0 species[1,5]=0 species[2,5]=0 species[3,5]=0 species[4,5]=0 species[5,5]=0 species[6,5]=0 species[7,5]=0 species[8,5]=0 species[9,5]=0 species[10,5]=0 species[11,5]=0 species[12,5]=0 #Bismuth species[13,5]=0 species[14,5]=0 species[15,5]=0 species[16,5]=0 species[17,5]=0 species[18,5]=0 species[19,5]=0 species[20,5]=0 #Sulphur species[21,5]=1 species[22,5]=1 species[23,5]=1 species[24,5]=1 species[25,5]=2 species[26,5]=3 species[27,5]=4 species[28,5]=5 species[29,5]=2 species[30,5]=2 species[31,5]=2 species[32,5]=5 species[33,5]=4 species[34,5]=2 species[35,5]=2 species[36,5]=3 species[37,5]=1 species[38,5]=1 species[39,5]=1 species[40,5]=2 species[41,5]=1 species[42,5]=1 species[43,5]=1 species[44,5]=2 species[45,5]=1 species[46,5]=2 #CuSBiO species[47,5]=1 species[48,5]=4 species[49,5]=1 species[50,5]=2 species[51,5]=3 species[52,5]=0 species[53,5]=0 #BiSO species[54,5]=2 species[55,5]=3 species[56,5]=2 species[57,5]=3 species[58,5]=24 species[59,5]=1 #CuBiS species[60,5]=2 species[61,5]=9 species[62,5]=10 #BiCuSO species[63,5]=1 species[64,5]=3 ######### Number of H2O's ##################################################### #Copper species[0,6]=0 species[1,6]=1 species[2,6]=1 species[3,6]=0 species[4,6]=0 species[5,6]=4 species[6,6]=2 species[7,6]=3 species[8,6]=1 species[9,6]=2 species[10,6]=1 species[11,6]=2 species[12,6]=4 #Bi species[13,6]=0 species[14,6]=3 species[15,6]=5 species[16,6]=4 species[17,6]=7 species[18,6]=0 species[19,6]=1 species[20,6]=1 #Sulphur species[21,6]=0 species[22,6]=0 species[23,6]=0 species[24,6]=0 species[25,6]=0 species[26,6]=0 species[27,6]=0 species[28,6]=0 species[29,6]=3 species[30,6]=3 species[31,6]=3 species[32,6]=6 species[33,6]=6 species[34,6]=4 species[35,6]=4 species[36,6]=6 species[37,6]=3 species[38,6]=3 species[39,6]=3 species[40,6]=6 species[41,6]=4 species[42,6]=4 species[43,6]=4 species[44,6]=8 species[45,6]=5 species[46,6]=5 #CuSBiO species[47,6]=0 species[48,6]=0 species[49,6]=0 species[50,6]=0 species[51,6]=12 species[52,6]=0 species[53,6]=4 #BiSO species[54,6]=0 species[55,6]=0 species[56,6]=1 species[57,6]=12 species[58,6]=1 species[59,6]=2 #CuBiS species[60,6]=0 species[61,6]=0 species[62,6]=0 #BiCuSO species[63,6]=1 species[64,6]=0 ########## Aqueous Ions?????? ################################################# #Copper species[0,7]=0 species[1,7]=0 species[2,7]=0 species[3,7]=1 species[4,7]=1 species[5,7]=1 species[6,7]=1 species[7,7]=1 species[8,7]=1 species[9,7]=1 species[10,7]=1 species[11,7]=1 species[12,7]=1 #Bismuth species[13,7]=0 species[14,7]=0 species[15,7]=0 species[16,7]=0 species[17,7]=0 species[18,7]=1 species[19,7]=1 species[20,7]=1 #Sulphur species[21,7]=0 species[22,7]=1 species[23,7]=1 species[24,7]=1 species[25,7]=1 species[26,7]=1 species[27,7]=1 species[28,7]=1 species[29,7]=1 species[30,7]=1 species[31,7]=1 species[32,7]=1 species[33,7]=1 species[34,7]=1 species[35,7]=1 species[36,7]=1 species[37,7]=1 species[38,7]=1 species[39,7]=1 species[40,7]=1 species[41,7]=1 species[42,7]=1 species[43,7]=1 species[44,7]=1 species[45,7]=1 species[46,7]=1 #CuSBiO species[47,7]=0 species[48,7]=0 species[49,7]=0 species[50,7]=0 species[51,7]=0 species[52,7]=0 species[53,7]=0 #BiSO species[54,7]=0 species[55,7]=0 species[56,7]=0 species[57,7]=0 species[58,7]=0 species[59,7]=0 #CuBiS species[60,7]=0 species[61,7]=0 species[62,7]=0 #BiCuSO species[63,7]=0 species[64,7]=0 #Function to determine species combinations try: combos=load('BiCuOS-speciesCombo.npy') num=load('BiCuOS-numberSpecies.npy') combo_num=int(num[0]) except OSError: print('Cannot Open File') ############################################################################### #### Determine which species are able to combine at the composition ########### ############################################################################### t=1 flag=1 f_total=int; f=np.zeros((3)) combos=np.zeros((45000,9,3)) combo_num=0 combos[combo_num, 0, 0]=-1 combos[combo_num, 0, 1]=-1 combos[combo_num, 0, 2]=-1 for k in range(0, len(species)): for m in range(0, len(species)): for p in range(0, len(species)): #Check to make sure each element is in this combination of species if((species[k, 3]>0 or species[m, 3] >0 or species[p, 3]) \ and (species[k, 4]>0 or species[m, 4] >0 or species[p, 4]) \ and (species[k, 5]>0 or species[m, 5] >0 or species[p, 5])): #save species in array t=1 a = np.array([[species[k, 3],species[m, 3], species[p,3]], \ [species[k, 4],species[m, 4], species[p,4]], \ [species[k, 5],species[m, 5], species[p,5]]]) #check to see if each species contains a single element. This is a really long call. flag=1 if((species[k, 3]==0 and species[m, 3] ==0) or \ (species[m, 3]==0 and species[p, 3] ==0) or \ (species[k, 3]==0 and species[p, 3] ==0)): if((species[k, 4]==0 and species[m, 4] ==0) or \ (species[m, 4]==0 and species[p, 4] ==0) or \ (species[k, 4]==0 and species[p, 4] ==0)): if((species[k, 5]==0 and species[m, 5] ==0) or \ (species[m, 5]==0 and species[p, 5] ==0) or \ (species[k, 5]==0 and species[p, 5] ==0)): flag=0 #if so, find the composition though linear algebra. try: f=np.linalg.solve(a, composition) except: #print('Error: Species '+str(k)+', Species2: '+str(m)+', Species3: '+str(p)+'\n') t=1 t=0 #If there is at least one multi-element species in this combination if(flag==1): #test each linear combination for h in range(1, 20): for i in range(1, 20): for j in range(1, 20): #Is there a linear combination of the elements that will allow #For the if(((h*a[0,0]+i*a[0,1]+j*a[0,2])/(h*a[1,0]+i*a[1,1]+j*a[1,2]))==composition[0]/composition[1] and \ ((h*a[1,0]+i*a[1,1]+j*a[1,2])/(h*a[2,0]+i*a[2,1]+j*a[2,2]))==composition[1]/composition[2] and \ ((h*a[0,0]+i*a[0,1]+j*a[0,2])/(h*a[2,0]+i*a[2,1]+j*a[2,2]))==composition[0]/composition[2]): #save the composition f[0]=h f[1]=i f[2]=j #Ending parameters, break loops t=0; h=40; i=40; j=40; #If there is a linear combination, save the species in the combos array. if (t==0): #print(str(combo_num)+': Species1: '+str(k)+', Species2: '+str(m)+'\n') #Species Number combos[combo_num, 0, 0]=k combos[combo_num, 0, 1]=m combos[combo_num, 0, 2]=p #Energy combos[combo_num, 1, 0]=species[k,0] combos[combo_num, 1, 1]=species[m,0] combos[combo_num, 1, 2]=species[p,0] #Electrons combos[combo_num, 2, 0]=species[k,1] combos[combo_num, 2, 1]=species[m,1] combos[combo_num, 2, 2]=species[p,1] #H+ combos[combo_num, 3, 0]=species[k,2] combos[combo_num, 3, 1]=species[m,2] combos[combo_num, 3, 2]=species[p,2] #Number Silvers combos[combo_num, 4, 0]=species[k,3] combos[combo_num, 4, 1]=species[m,3] combos[combo_num, 4, 2]=species[p,3] #Number Bismuth combos[combo_num, 5, 0]=species[k,4] combos[combo_num, 5, 1]=species[m,4] combos[combo_num, 5, 2]=species[p,4] #Number H2O combos[combo_num, 6, 0]=species[k,5] combos[combo_num, 6, 1]=species[m,5] combos[combo_num, 6, 2]=species[p,5] #Aqueous Ions combos[combo_num, 7, 0]=species[k,6] combos[combo_num, 7, 1]=species[m,6] combos[combo_num, 7, 2]=species[p,6] #Percent of each in species in final combo f_total=f[0]+f[1]+f[2]; combos[combo_num, 8, 0]=f[0]/f_total combos[combo_num, 8, 1]=f[1]/f_total combos[combo_num, 8, 2]=f[2]/f_total combo_num=combo_num+1; t=1 #print('entered') else: #Catch and switch the value of t back to no t=1 save('BiCuOS-speciesCombo.npy', combos) save('BiCuOS-numberSpecies.npy', asarray([[combo_num]])) print('The number of species combinations is '+ str(combo_num)+'.\n') ############################################################################### ############################################################################### ############################################################################### ############################################################################### ########### Chemical Potential Mesh Calculations ############################ ############################################################################### #should be as long as there are specicies considered #populate with smaller values that will be calculated. muValues=np.zeros((n+1,n+1,4)) current_mu=int current_ele=int current_H=int current_H2O=int current_aquI=int current_NumEle=int sort=np.zeros((3,1)) #fill in the grid. Calculate for i in range(0, n+1): #calculate the energies for each species number pH=lowpH+(i*pHcount); for j in range(0,n+1): U=Ulow+(j*Ucount); muValues[i,j,0]=-1 muValues[i,j,1]=-1 muValues[i,j,2]=-1 muValues[i,j,3]=100000000 #Go through all species, commpare all pairs for k in range(0, combo_num): p=int(combos[k,0,0]); m=int(combos[k,0,1]); s=int(combos[k,0,2]); f1=combos[k,8,0]; f2=combos[k,8,1]; f3=combos[k,8,2]; #The first species's contribution to the mu current_eng=species[p,0] current_ele=F*U*(species[p,1]) current_H=R*T*np.log(10.0)*pH*(species[p,2]) current_H2O=dGf_H2O*(species[p,6]) current_aquI=R*T*np.log(nI)*(species[p,7]) current_NumEle=1 for t in range(3,6): if(species[p,t]>1): current_NumEle=current_NumEle*species[p,t]; current_mu=f1*((current_eng+current_aquI-current_ele-current_H-current_H2O)/current_NumEle); #The second species' contribution to the mu current_eng=species[m,0]; current_ele=F*U*(species[m,1]) current_H=R*T*np.log(10.0)*pH*(species[m,2]) current_H2O=dGf_H2O*(species[m,6]) current_aquI=R*T*np.log(nI)*(species[m,7]) current_NumEle=1 for t in range(3,6): if(species[m,t]>1): current_NumEle=current_NumEle*species[m,t]; current_mu=current_mu+f2*((current_eng+current_aquI-current_ele-current_H-current_H2O)/current_NumEle); #The second species' contribution to the mu current_eng=species[s,0]; current_ele=F*U*(species[s,1]) current_H=R*T*np.log(10.0)*pH*(species[s,2]) current_H2O=dGf_H2O*(species[s,6]) current_aquI=R*T*np.log(nI)*(species[s,7]) current_NumEle=1 for t in range(3,6): if(species[s,t]>1): current_NumEle=current_NumEle*species[s,t]; current_mu=current_mu+f3*((current_eng+current_aquI-current_ele-current_H-current_H2O)/current_NumEle); if(current_mu<muValues[i,j,3]): sort[0,0]=p sort[1,0]=m sort[2,0]=s a=np.sort(sort[:,0]) muValues[i,j,0]=a[0] muValues[i,j,1]=a[1] muValues[i,j,2]=a[2] muValues[i,j,3]=current_mu ############################################################################### ############################################################################### ############################################################################### ############################################################################### ################### Plot Pourbaix Diagram ################################### ############################################################################### flag = np.zeros((50,6)) # The first 4 indexes are the materials stored, the next three are the colors index=0; fig =plt.figure() ax=plt.subplot(111) ax = plt.gca() ax.set_xlim([lowpH,highpH]) ax.set_ylim([Ulow,Uhigh]) l=0; index=0; for i in range(0, n+1): pH=lowpH+i*pHcount; for j in range(0,n+1): U=Ulow+(Ucount*j); l=0 for k in range(0, len(flag)): if(flag[k,0]==muValues[i,j,0] and flag[k,1]==muValues[i,j,1] and flag[k,2]==muValues[i,j,2]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 elif(flag[k,0]==muValues[i,j,0] and flag[k,1]==muValues[i,j,2]and flag[k,2]==muValues[i,j,1]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 elif(flag[k,0]==muValues[i,j,1] and flag[k,1]==muValues[i,j,2]and flag[k,2]==muValues[i,j,0]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 elif(flag[k,0]==muValues[i,j,1] and flag[k,1]==muValues[i,j,0]and flag[k,2]==muValues[i,j,2]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 elif(flag[k,0]==muValues[i,j,2] and flag[k,1]==muValues[i,j,0]and flag[k,2]==muValues[i,j,1]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 elif(flag[k,0]==muValues[i,j,2] and flag[k,1]==muValues[i,j,1]and flag[k,2]==muValues[i,j,0]): ax.plot(pH,U,'.', color = [flag[k,3],flag[k,4],flag[k,5]],markersize=4) #break loop, the color is found k=len(flag)+1 l=1 if(l==0): label='M1: '+str(muValues[i,j,0])+', M2: '+str(muValues[i,j,1])+' M3: '+str(muValues[i,j,2]) flag[index,0] = muValues[i,j,0] flag[index,1] = muValues[i,j,1] flag[index,2] = muValues[i,j,2] flag[index,3] = random.random(); flag[index,4] = random.random(); flag[index,5] = random.random(); ax.plot(pH,U,'.', color = [flag[index,3],flag[index,4],flag[index,5]],markersize=4,label=label) index=index+1; #####Plot H2O and H2 lines################################## muH=np.zeros((pHrange+1)); muH2O=np.zeros((pHrange+1)); pHArray=np.zeros((pHrange+1)); for i in range(0, pHrange): pHArray[i] =lowpH+i; muH[i]=-0.059*pHArray[i]; muH2O[i]=1.23-0.059*pHArray[i]; pHArray[pHrange] =lowpH+(pHrange); muH[pHrange]=-0.059*pHArray[pHrange]; muH2O[pHrange]=1.23-0.059*pHArray[pHrange]; ############################################################## ax.plot(pHArray[:], muH[:],'c--',label='$H_2$',linewidth=1) ax.plot(pHArray[:], muH2O[:],'b--',label='$H_2O$', linewidth=1) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.9), ncol=1) plt.ylabel('Electric Potential, E(V)') plt.xlabel('pH') plt.title('Bi-Cu-S Pourbaix Diagram, $\eta_{Bi,Cu,S}=10^{-'+str(eta)+'}$, '+str(composition[0])+'Cu:' +str(composition[1])+'Bi:'+str(composition[2])+'S') ############################################################################### ############## Plot with Lines ############################################ ############################################################################### flag = np.zeros((50,6)) # The first 4 indexes are the materials stored, the next three are the colors index=0; fig =plt.figure() ax=plt.subplot(111) ax = plt.gca() ax.set_xlim([lowpH,highpH]) ax.set_ylim([Ulow,Uhigh]) #If drawing lines for metastable phases for i in range(1, n): #calculate the energies for each species number pH=lowpH+(i*pHcount); for j in range(1,n): U=Ulow+(j*Ucount); #If drawing lines for metastable phases if((muValues[i,j,0]!=muValues[i-1,j,0])): ax.plot(pH,U,'.', color = [0.0,0.0,0.0],markersize=2) elif(muValues[i,j,1]!=muValues[i-1,j,1]): ax.plot(pH,U,'.', color = [0.0,0.0,0.0],markersize=2) elif((muValues[i,j,0]!=muValues[i,j-1,0]) or (muValues[i,j,1]!=muValues[i,j-1,1])): ax.plot(pH,U,'.', color = [0.0,0.0,0.0],markersize=2) elif((muValues[i,j,2]!=muValues[i,j-1,2]) or (muValues[i,j,2]!=muValues[i-1,j,2])): ax.plot(pH,U,'.', color = [0.0,0.0,0.0],markersize=2) ax.plot(pHArray[:], muH[:],'c--',label='$H_2$',linewidth=1) ax.plot(pHArray[:], muH2O[:],'b--',label='$H_2O$', linewidth=1) plt.ylabel('Electric Potential, E(V)') plt.xlabel('pH') plt.title('Bi-Cu-S Pourbaix Diagram, $\eta_{Bi,Cu,S}=10^{-'+str(eta)+'}$, '+str(composition[0])+'Cu:' +str(composition[1])+'Bi:'+str(composition[2])+'S') chartBox=ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1.5, chartBox.height*1.5]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.9), ncol=1) plt.show() print('End of Script')
[ "matplotlib.pyplot.subplot", "numpy.load", "numpy.save", "matplotlib.pyplot.show", "numpy.log", "numpy.asarray", "numpy.zeros", "random.random", "matplotlib.pyplot.figure", "numpy.sort", "numpy.array", "matplotlib.pyplot.gca", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "numpy.linalg.solve" ]
[((734, 753), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (742, 753), True, 'import numpy as np\n'), ((10420, 10437), 'numpy.zeros', 'np.zeros', (['(65, 8)'], {}), '((65, 8))\n', (10428, 10437), True, 'import numpy as np\n'), ((27784, 27811), 'numpy.zeros', 'np.zeros', (['(n + 1, n + 1, 4)'], {}), '((n + 1, n + 1, 4))\n', (27792, 27811), True, 'import numpy as np\n'), ((27908, 27924), 'numpy.zeros', 'np.zeros', (['(3, 1)'], {}), '((3, 1))\n', (27916, 27924), True, 'import numpy as np\n'), ((31114, 31131), 'numpy.zeros', 'np.zeros', (['(50, 6)'], {}), '((50, 6))\n', (31122, 31131), True, 'import numpy as np\n'), ((31223, 31235), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (31233, 31235), True, 'import matplotlib.pyplot as plt\n'), ((31239, 31255), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (31250, 31255), True, 'import matplotlib.pyplot as plt\n'), ((31261, 31270), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (31268, 31270), True, 'import matplotlib.pyplot as plt\n'), ((33846, 33867), 'numpy.zeros', 'np.zeros', (['(pHrange + 1)'], {}), '(pHrange + 1)\n', (33854, 33867), True, 'import numpy as np\n'), ((33875, 33896), 'numpy.zeros', 'np.zeros', (['(pHrange + 1)'], {}), '(pHrange + 1)\n', (33883, 33896), True, 'import numpy as np\n'), ((33906, 33927), 'numpy.zeros', 'np.zeros', (['(pHrange + 1)'], {}), '(pHrange + 1)\n', (33914, 33927), True, 'import numpy as np\n'), ((34443, 34481), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Electric Potential, E(V)"""'], {}), "('Electric Potential, E(V)')\n", (34453, 34481), True, 'import matplotlib.pyplot as plt\n'), ((34482, 34498), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""pH"""'], {}), "('pH')\n", (34492, 34498), True, 'import matplotlib.pyplot as plt\n'), ((34902, 34919), 'numpy.zeros', 'np.zeros', (['(50, 6)'], {}), '((50, 6))\n', (34910, 34919), True, 'import numpy as np\n'), ((35011, 35023), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (35021, 35023), True, 'import matplotlib.pyplot as plt\n'), ((35027, 35043), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (35038, 35043), True, 'import matplotlib.pyplot as plt\n'), ((35049, 35058), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (35056, 35058), True, 'import matplotlib.pyplot as plt\n'), ((36055, 36093), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Electric Potential, E(V)"""'], {}), "('Electric Potential, E(V)')\n", (36065, 36093), True, 'import matplotlib.pyplot as plt\n'), ((36094, 36110), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""pH"""'], {}), "('pH')\n", (36104, 36110), True, 'import matplotlib.pyplot as plt\n'), ((36442, 36452), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (36450, 36452), True, 'import matplotlib.pyplot as plt\n'), ((20454, 20485), 'numpy.load', 'load', (['"""BiCuOS-speciesCombo.npy"""'], {}), "('BiCuOS-speciesCombo.npy')\n", (20458, 20485), False, 'from numpy import load\n'), ((20494, 20526), 'numpy.load', 'load', (['"""BiCuOS-numberSpecies.npy"""'], {}), "('BiCuOS-numberSpecies.npy')\n", (20498, 20526), False, 'from numpy import load\n'), ((20893, 20904), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (20901, 20904), True, 'import numpy as np\n'), ((20918, 20941), 'numpy.zeros', 'np.zeros', (['(45000, 9, 3)'], {}), '((45000, 9, 3))\n', (20926, 20941), True, 'import numpy as np\n'), ((27010, 27049), 'numpy.save', 'save', (['"""BiCuOS-speciesCombo.npy"""', 'combos'], {}), "('BiCuOS-speciesCombo.npy', combos)\n", (27014, 27049), False, 'from numpy import save\n'), ((27087, 27109), 'numpy.asarray', 'asarray', (['[[combo_num]]'], {}), '([[combo_num]])\n', (27094, 27109), False, 'from numpy import asarray\n'), ((33537, 33552), 'random.random', 'random.random', ([], {}), '()\n', (33550, 33552), False, 'import random\n'), ((33582, 33597), 'random.random', 'random.random', ([], {}), '()\n', (33595, 33597), False, 'import random\n'), ((33627, 33642), 'random.random', 'random.random', ([], {}), '()\n', (33640, 33642), False, 'import random\n'), ((30404, 30423), 'numpy.sort', 'np.sort', (['sort[:, 0]'], {}), '(sort[:, 0])\n', (30411, 30423), True, 'import numpy as np\n'), ((28790, 28800), 'numpy.log', 'np.log', (['nI'], {}), '(nI)\n', (28796, 28800), True, 'import numpy as np\n'), ((29367, 29377), 'numpy.log', 'np.log', (['nI'], {}), '(nI)\n', (29373, 29377), True, 'import numpy as np\n'), ((29954, 29964), 'numpy.log', 'np.log', (['nI'], {}), '(nI)\n', (29960, 29964), True, 'import numpy as np\n'), ((21582, 21741), 'numpy.array', 'np.array', (['[[species[k, 3], species[m, 3], species[p, 3]], [species[k, 4], species[m, \n 4], species[p, 4]], [species[k, 5], species[m, 5], species[p, 5]]]'], {}), '([[species[k, 3], species[m, 3], species[p, 3]], [species[k, 4],\n species[m, 4], species[p, 4]], [species[k, 5], species[m, 5], species[p,\n 5]]])\n', (21590, 21741), True, 'import numpy as np\n'), ((28683, 28695), 'numpy.log', 'np.log', (['(10.0)'], {}), '(10.0)\n', (28689, 28695), True, 'import numpy as np\n'), ((29260, 29272), 'numpy.log', 'np.log', (['(10.0)'], {}), '(10.0)\n', (29266, 29272), True, 'import numpy as np\n'), ((29847, 29859), 'numpy.log', 'np.log', (['(10.0)'], {}), '(10.0)\n', (29853, 29859), True, 'import numpy as np\n'), ((22820, 22851), 'numpy.linalg.solve', 'np.linalg.solve', (['a', 'composition'], {}), '(a, composition)\n', (22835, 22851), True, 'import numpy as np\n')]
# test bin, analyze, and plot functions # imports import os from os.path import join from os import listdir import matplotlib.pyplot as plt # imports import numpy as np import pandas as pd from scipy.optimize import curve_fit import filter import analyze from correction import correct from utils import fit, functions, bin, io, plotting, modify, plot_collections from utils.plotting import lighten_color # A note on SciencePlots colors """ Blue: #0C5DA5 Green: #00B945 Red: #FF9500 Orange: #FF2C00 Other Colors: Light Blue: #7BC8F6 Paler Blue: #0343DF Azure: #069AF3 Dark Green: #054907 """ sciblue = '#0C5DA5' scigreen = '#00B945' scired = '#FF9500' sciorange = '#FF2C00' plt.style.use(['science', 'ieee', 'std-colors']) fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) # ---------------------------------------------------------------------------------------------------------------------- # 1. SETUP - BASE DIRECTORY base_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/' # ---------------------------------------------------------------------------------------------------------------------- # 2. SETUP - IDPT path_idpt = join(base_dir, 'results-04.26.22_idpt') path_test_coords = join(path_idpt, 'coords/test-coords') path_calib_coords = join(path_idpt, 'coords/calib-coords') path_similarity = join(path_idpt, 'similarity') path_results = join(path_idpt, 'results') path_figs = join(path_idpt, 'figs') # ---------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- # 3. ANALYSIS - READ FILES method = 'idpt' microns_per_pixel = 0.8 # ----- 4.1 CORRECT TEST COORDS correct_test_coords = False if correct_test_coords: use_idpt_zf = False use_spct_zf = False # ------------------------------------------------------------------------------------------------------------------ if use_idpt_zf: """ NOTE: This correction scheme fits a 2D spline to the in-focus particle positions and uses this to set their z_f = 0 position. """ param_zf = 'zf_from_peak_int' plot_calib_plane = False plot_calib_spline = False kx, ky = 2, 2 # step 1. read calibration coords dfc, dfcpid, dfcpop, dfcstats = io.read_calib_coords(path_calib_coords, method) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > zf_c_mean - zf_c_std) & (dfcpid[param_zf] < zf_c_mean + zf_c_std)] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_calib_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/idpt-calib-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/idpt-calib-coords_fit-plane_raw.xlsx') # step 4. FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) if plot_calib_spline: fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/idpt-calib-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # step 5. read test_coords dft = io.read_test_coords(path_test_coords) # step 6. drop unnecessary columns in dft dft = dft[['frame', 'id', 'z', 'z_true', 'x', 'y', 'cm', 'error']] # step 7. create a z_corr column by using fitted spline to correct z dft = correct.correct_z_by_spline(dft, bispl=bispl_c, param_z='z') dft['z_true_corr'] = dft['z_true'] - dft['z_cal_surf'] # step 8. export corrected test_coords dft.to_excel(path_results + '/test_coords_corrected_t-calib2_c-calib1.xlsx', index=False) elif use_spct_zf: """ NOTE: No correction is currently performed. The z-coords are well aligned enough in both calibration image sets to just ignore. This is not necessarily surprising because the calibration images were acquired with the intention of making the z-coords identical for all calibration image sets (by using the same beginning and ending tick mark on the fine adjustment knob during image acquisition). """ # -------------------------------------------------------------------------------------------------------------- # SETUP - SPCT CALIBRATION IN-FOCUS COORDS # SPCT analysis of images used for IDPT calibration path_spct_calib_coords = join(base_dir, 'results-04.26.22_spct_calib1_test-2-3/coords/calib-coords') path_calib_pid_defocus = join(path_spct_calib_coords, 'calib_spct_pid_defocus_stats_c-calib1_t-calib2.xlsx') path_calib_spct_stats = join(path_spct_calib_coords, 'calib_spct_stats_c-calib1_t-calib2.xlsx') path_calib_spct_pop = join(path_spct_calib_coords, 'calib_spct_pop_defocus_stats_c-calib1_t-calib2.xlsx') # SPCT analysis of images used for IDPT test path_spct_test_coords = join(base_dir, 'results-04.28.22_spct-calib2_test3/coords/calib-coords') path_test_pid_defocus = join(path_spct_test_coords, 'calib_spct_pid_defocus_stats_c-calib2_t-calib3.xlsx') path_test_spct_stats = join(path_spct_test_coords, 'calib_spct_stats_c-calib2_t-calib3.xlsx') path_test_spct_pop = join(path_spct_test_coords, 'calib_spct_pop_defocus_stats_c-calib2_t-calib3.xlsx') # -------------------------------------------------------------------------------------------------------------- # --- PART A. READ COORDS USED FOR IDPT CALIBRATION (i.e. 'calib1') merge_spct_stats = True param_zf = 'zf_from_peak_int' plot_calib_plane = True plot_test_plane = True kx, ky = 2, 2 # step 1. merge [['x', 'y']] into spct pid defocus stats. if merge_spct_stats: # read SPCT calibration coords and merge ['x', 'y'] into pid_defocus_stats dfcpid = pd.read_excel(path_calib_pid_defocus) dfcstats = pd.read_excel(path_calib_spct_stats) dfcpid = modify.merge_calib_pid_defocus_and_correction_coords(path_calib_coords, method, dfs=[dfcstats, dfcpid]) else: # read SPCT pid defocus stats that have already been merged path_calib_pid_defocus = join(path_calib_coords, 'calib_spct_pid_defocus_stats_calib1_xy.xlsx') dfcpid = pd.read_excel(path_calib_pid_defocus) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > 34) & (dfcpid[param_zf] < zf_c_mean + zf_c_std / 2)] dfcpid = dfcpid[dfcpid['x'] > 120] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_calib_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/calibration-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/calibration-coords_fit-plane_raw.xlsx') # FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/calibration-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # --- # --- PART B. READ COORDS USED FOR IDPT TEST (i.e. 'calib2') # step 1. merge [['x', 'y']] into spct pid defocus stats. if merge_spct_stats: # read SPCT calibration coords and merge ['x', 'y'] into pid_defocus_stats dfcpid = pd.read_excel(path_test_pid_defocus) dfcstats = pd.read_excel(path_test_spct_stats) dfcpid = modify.merge_calib_pid_defocus_and_correction_coords(path_calib_coords, method, dfs=[dfcstats, dfcpid]) else: # read SPCT pid defocus stats that have already been merged path_calib_pid_defocus = join(path_calib_coords, 'calib_spct_pid_defocus_stats_calib2_xy.xlsx') dfcpid = pd.read_excel(path_calib_pid_defocus) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > zf_c_mean - zf_c_std / 2) & (dfcpid[param_zf] < zf_c_mean + zf_c_std / 2)] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_test_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/test-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/test-coords_fit-plane_raw.xlsx') # FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/test-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # ---------------------------------------------------------------------------------------------------------------------- # 4. PLOT TEST COORDS RMSE-Z analyze_test_coords = False save_plots = False show_plots = False if analyze_test_coords: # read test coords dft = io.read_test_coords(path_test_coords) # test coords stats mag_eff = 20.0 area_pixels = 512 ** 2 area_microns = (512 * microns_per_pixel) ** 2 i_num_rows = len(dft) i_num_pids = len(dft.id.unique()) # --- # --- STEP 0. drop and rename columns for simplicity dft = dft.drop(columns=['z', 'z_true']) dft = dft.rename(columns={'z_corr': 'z', 'z_true_corr': 'z_true'}) # --- rmse_all_particles = False rmse_on_off_bpe = False rmse_compare = False # format plots xylim = 37.25 xyticks = [-30, -15, 0, 15, 30] lbls = ['On', 'Border', 'Off'] markers = ['s', 'd', 'o'] if rmse_all_particles: # --- STEP 1. CALCULATE RMSE-Z FOR ALL PARTICLES column_to_bin = 'z_true' bins_z = 20 round_z_to_decimal = 3 min_cm = 0.5 # 1.1 mean rmse-z dfrmse_mean = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=1, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse_mean.to_excel(path_results + '/mean-rmse-z_bin=1_no-filters.xlsx') # 1.2 binned rmse-z dfrmse = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse.to_excel(path_results + '/binned-rmse-z_bins={}_no-filters.xlsx'.format(bins_z)) # 1.3 groupby 'bin' rmse-z mean + std dfrmsem, dfrmsestd = bin.bin_generic(dft, column_to_bin='bin', column_to_count='id', bins=bins_z, round_to_decimal=round_z_to_decimal, return_groupby=True) # 1.3 plot binned rmse-z if save_plots or show_plots: # close all figs plt.close('all') # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(dfrmse.index, dfrmse.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') plt.tight_layout() if save_plots: plt.savefig(path_figs + '/rmse-z_microns.png') if show_plots: plt.show() plt.close() # ----------------------- Z-MEAN +/- Z-STD PLOTS # fit line popt, pcov = curve_fit(functions.line, dfrmse.z_true, dfrmse.z) z_fit = np.linspace(dfrmse.z_true.min(), dfrmse.z_true.max()) rmse_fit_line = np.sqrt(np.sum((functions.line(dfrmse.z_true, *popt) - dfrmse.z)**2) / len(dfrmse.z)) print(rmse_fit_line) # binned calibration curve with std-z errorbars (microns) + fit line fig, ax = plt.subplots() ax.errorbar(dfrmsem.z_true, dfrmsem.z, yerr=dfrmsestd.z, fmt='o', ms=3, elinewidth=0.5, capsize=1, color=sciblue, label=r'$\overline{z} \pm \sigma$') # ax.plot(z_fit, functions.line(z_fit, *popt), linestyle='--', linewidth=1.5, color='black', alpha=0.25, label=r'$dz/dz_{true} = $' + ' {}'.format(np.round(popt[0], 3))) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', handletextpad=0.25, borderaxespad=0.3) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/calibration_curve_z+std-errobars_fit_line_a{}_b{}_slope-label-blk.png'.format( np.round(popt[0], 3), np.round(popt[1], 3)) ) if show_plots: plt.show() plt.close() if rmse_on_off_bpe: # --- STEP 0. SPLIT DATAFRAME INTO (1) OFF BPE and (2) OFF BPE. column_to_bin = 'x' bins_x = [145, 175, 205] round_x_to_decimal = 0 dfbx = bin.bin_by_list(dft, column_to_bin=column_to_bin, bins=bins_x, round_to_decimal=round_x_to_decimal, ) df_on = dfbx[dfbx['bin'] == bins_x[0]] df_edge = dfbx[dfbx['bin'] == bins_x[1]] df_off = dfbx[dfbx['bin'] == bins_x[2]] # --- plotting # --- STEP 1. PLOT CALIBRATION CURVE (Z VS. Z_TRUE) FOR EACH DATAFRAME (ON, EDGE, OFF) ss = 1 fig, ax = plt.subplots() ax.scatter(df_off.z_true, df_off.z, s=ss, marker=markers[2], color=sciblue, label=lbls[2]) ax.scatter(df_on.z_true, df_on.z, s=ss, marker=markers[0], color=sciorange, label=lbls[0]) ax.scatter(df_edge.z_true, df_edge.z, s=ss, marker=markers[1], color=scired, label=lbls[1]) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', markerscale=2.5) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/on-edge-off-bpe_calibration_curve.png') if show_plots: plt.show() plt.close() # --- STEP 2. FOR EACH DATAFRAME (ON, EDGE, OFF), COMPUTE RMSE-Z AND PLOT for lbl, dft in zip(lbls, [df_on, df_edge, df_off]): # --- STEP 1. CALCULATE RMSE-Z FOR ALL PARTICLES column_to_bin = 'z_true' bins_z = 20 round_z_to_decimal = 3 min_cm = 0.5 # 1.1 mean rmse-z dfrmse_mean = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=1, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse_mean.to_excel(path_results + '/{}_mean-rmse-z_bin=1_no-filters.xlsx'.format(lbl)) # 1.2 binned rmse-z dfrmse = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse.to_excel(path_results + '/{}_binned-rmse-z_bins={}_no-filters.xlsx'.format(lbl, bins_z)) # 1.3 groupby 'bin' rmse-z mean + std dfrmsem, dfrmsestd = bin.bin_generic(dft, column_to_bin='bin', column_to_count='id', bins=bins_z, round_to_decimal=round_z_to_decimal, return_groupby=True) # 1.3 plot binned rmse-z if save_plots or show_plots: # close all figs plt.close('all') # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(dfrmse.index, dfrmse.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') plt.tight_layout() if save_plots: plt.savefig(path_figs + '/{}_rmse-z_microns.png'.format(lbl)) if show_plots: plt.show() plt.close() # ----------------------- Z-MEAN +/- Z-STD PLOTS # fit line popt, pcov = curve_fit(functions.line, dfrmse.z_true, dfrmse.z) z_fit = np.linspace(dfrmse.z_true.min(), dfrmse.z_true.max()) rmse_fit_line = np.sqrt(np.sum((functions.line(dfrmse.z_true, *popt) - dfrmse.z) ** 2) / len(dfrmse.z)) print(rmse_fit_line) # binned calibration curve with std-z errorbars (microns) + fit line fig, ax = plt.subplots() ax.errorbar(dfrmsem.z_true, dfrmsem.z, yerr=dfrmsestd.z, fmt='o', ms=3, elinewidth=0.5, capsize=1, color=sciblue, label=r'$\overline{z} \pm \sigma$') # ax.plot(z_fit, functions.line(z_fit, *popt), linestyle='--', linewidth=1.5, color='black', alpha=0.25, label=r'$dz/dz_{true} = $' + ' {}'.format(np.round(popt[0], 3))) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', handletextpad=0.25, borderaxespad=0.3) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/{}_calibration_curve_z+std-errobars_fit_line_a{}_b{}_slope-label-blk.png'.format( lbl, np.round(popt[0], 3), np.round(popt[1], 3)) ) if show_plots: plt.show() plt.close() if rmse_compare: # 1. read binned rmse-z dataframes from Excel path_rmse_compare = join(path_results, 'on-edge-off-bpe') df1 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[0]))) df2 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[1]))) df3 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[2]))) # 1.3 plot binned rmse-z if save_plots or show_plots: ms = 4 # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(df3.bin, df3.rmse_z, '-o', ms=ms, label=lbls[2], color=sciblue) ax.plot(df2.bin, df2.rmse_z, '-o', ms=ms, label=lbls[1], color=scired) ax.plot(df1.bin, df1.rmse_z, '-o', ms=ms, label=lbls[0], color=sciorange) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns.png') if show_plots: plt.show() plt.close() # rmse-z (microns) + c_m darken_clr = 1.0 alpha_clr = 1.0 fig, [axr, ax] = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 2]}) axr.plot(df3.bin, df3.cm, '-', ms=ms-2, marker=markers[2], color=sciblue) axr.plot(df2.bin, df2.cm, '-', ms=ms-2, marker=markers[1], color=scired) axr.plot(df1.bin, df1.cm, '-', ms=ms-2, marker=markers[0], color=sciorange) axr.set_ylabel(r'$c_{m}$') ax.plot(df3.bin, df3.rmse_z, '-', ms=ms-0.75, marker=markers[2], color=sciblue, label=lbls[2]) ax.plot(df2.bin, df2.rmse_z, '-', ms=ms-0.75, marker=markers[1], color=scired, label=lbls[1]) ax.plot(df1.bin, df1.rmse_z, '-', ms=ms-0.75, marker=markers[0], color=sciorange, label=lbls[0]) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns_cm.png') if show_plots: plt.show() plt.close() # ---------------------------------------------------------------------------------------------------------------------- # 5. IDPT VS. SPCT - COMPARE NUMBER OF PARTICLES PER Z compare_idpt_spct = False save_plots = False show_plots = False if compare_idpt_spct: # --- 1. IDPT # read IDPT test coords dft = io.read_test_coords(path_test_coords) # test coords stats mag_eff = 20.0 area_pixels = 512 ** 2 area_microns = (512 * microns_per_pixel) ** 2 i_num_rows = len(dft) i_num_pids = len(dft.id.unique()) dft = dft.drop(columns=['z', 'z_true']) dft = dft.rename(columns={'z_corr': 'z', 'z_true_corr': 'z_true'}) # --- 2. SPCT # 2.1 read SPCT off-bpe test coords dfs_off = pd.read_excel('/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_calib1_test-2-3/coords/test-coords/test_coords_t-calib2_c-calib1.xlsx') dfs_on = pd.read_excel('/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_stack-id-on-bpe/testcalib2_calcalib1/test_coords_t_20X_ccalib1_tcalib2_c_20X_tcalib2_ccalib1_2022-04-26 20:45:34.334931.xlsx') # 2.2 correct z by mean z_f from peak_intensity z_f_mean = 35.1 dfs_off['z'] = dfs_off['z'] - z_f_mean dfs_off['z_true'] = dfs_off['z_true'] - z_f_mean dfs_on['z'] = dfs_on['z'] - z_f_mean dfs_on['z_true'] = dfs_on['z_true'] - z_f_mean # --- 3. GROUPBY Z_TRUE dftg = dft.copy() dftg = dftg.round({'z_true': 0}) dftc = dftg.groupby('z_true').count().reset_index() dfs_offc = dfs_off.groupby('z_true').count().reset_index() dfs_onc = dfs_on.groupby('z_true').count().reset_index() # filter z_true for pretty plotting zlim = 35 dftc = dftc[(dftc['z_true'] > -zlim) & (dftc['z_true'] < zlim)] dfs_offc = dfs_offc[(dfs_offc['z_true'] > -zlim) & (dfs_offc['z_true'] < zlim)] dfs_onc = dfs_onc[(dfs_onc['z_true'] > -zlim) & (dfs_onc['z_true'] < zlim)] # --- # --- plotting # format plots xylim = 37.25 xyticks = [-30, -15, 0, 15, 30] ms = 3 # FIGURE 1. PLOT NUMBER OF PARTICLES PER Z_TRUE fig, ax = plt.subplots() ax.plot(dftc.z_true, dftc.z, '-o', ms=ms, color=sciblue, label=r'$IDPT$') ax.plot(dfs_offc.z_true, dfs_offc.z, '-o', ms=ms, color=lighten_color(scigreen, 1.0), label=r'$SPCT_{Low}$') ax.plot(dfs_onc.z_true, dfs_onc.z, '-o', ms=ms, color=lighten_color(scigreen, 1.2), label=r'$SPCT_{High}$') ax.set_xlabel(r'$z \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(xyticks) ax.set_ylabel(r'$N_{p} \: (\#)$') ax.set_ylim([0, 200]) ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-idpt-spct_num-particles.png') if show_plots: plt.show() plt.close() # --- # FIGURE 2. PLOT NUMBER OF PARTICLES PER Z_TRUE AND CM dftm = dftg.groupby('z_true').mean().reset_index() dfs_offm = dfs_off.groupby('z_true').mean().reset_index() dfs_onm = dfs_on.groupby('z_true').mean().reset_index() # filter z_true for pretty plotting dftm = dftm[(dftm['z_true'] > -zlim) & (dftm['z_true'] < zlim)] dfs_offm = dfs_offm[(dfs_offm['z_true'] > -zlim) & (dfs_offm['z_true'] < zlim)] dfs_onm = dfs_onm[(dfs_onm['z_true'] > -zlim) & (dfs_onm['z_true'] < zlim)] # plot fig, [axr, ax] = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 2]}) axr.plot(dftm.z_true, dftm.cm, '-o', ms=ms - 1, color=sciblue) axr.plot(dfs_offm.z_true, dfs_offm.cm, '-o', ms=ms - 1, color=lighten_color(scigreen, 1.0)) axr.plot(dfs_onm.z_true, dfs_onm.cm, '-o', ms=ms - 1, color=lighten_color(scigreen, 1.2)) axr.set_ylabel(r'$c_{m}$') axr.set_ylim([0.790, 1.01]) axr.set_yticks([0.8, 0.9, 1.0]) ax.plot(dftc.z_true, dftc.z, '-o', ms=ms, color=sciblue, label=r'$IDPT$') ax.plot(dfs_offc.z_true, dfs_offc.z, '-o', ms=ms, color=lighten_color(scigreen, 1.0), label=r'$SPCT_{Low}$') ax.plot(dfs_onc.z_true, dfs_onc.z, '-o', ms=ms, color=lighten_color(scigreen, 1.2), label=r'$SPCT_{High}$') ax.set_xlabel(r'$z \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(xyticks) ax.set_ylabel(r'$N_{p} \: (\#)$') ax.set_ylim([0, 185]) ax.set_yticks([0, 50, 100, 150]) ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-idpt-spct_num-particles_and_cm.png') if show_plots: plt.show() plt.close() # ---------------------------------------------------------------------------------------------------------------------- # 6. AVERAGE PARTICLE-TO-PARTICLE SIMILARITY PER-FRAME plot_average_particle_similarity = False if plot_average_particle_similarity: # setup save_plots = True xylim = 37.25 xyticks = [-30, -15, 0, 15, 30] ms = 3 # read dataframe fp = join(base_dir, 'average-particle-similarity/' 'average_similarity_SPCT_11.02.21-BPE_Pressure_Deflection_20X_c-calib1_t-calib2.xlsx') dfsim = pd.read_excel(fp) # plot fig, ax = plt.subplots() ax.plot(dfsim.z_corr, dfsim.sim, '-o', ms=ms) ax.set_xlabel(r'$z \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(xyticks) ax.set_ylabel(r'$S (p_{i}, p_{N})$') ax.set_ylim([0.49, 1.01]) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/average-particle-to-particle-similarity.png') plt.show() plt.close() j = 1 print("Analysis completed without errors.")
[ "utils.plotting.lighten_color", "utils.functions.line", "utils.io.read_calib_coords", "utils.plotting.scatter_3d_and_spline", "matplotlib.pyplot.style.use", "matplotlib.pyplot.tight_layout", "os.path.join", "numpy.round", "utils.bin.bin_by_list", "matplotlib.pyplot.close", "utils.plotting.plot_fitted_plane_and_points", "correction.correct.fit_in_focus_plane", "matplotlib.pyplot.subplots", "utils.fit.fit_3d_spline", "matplotlib.pyplot.show", "pandas.DataFrame.from_dict", "scipy.optimize.curve_fit", "pandas.read_excel", "correction.correct.correct_z_by_spline", "utils.bin.bin_local_rmse_z", "utils.bin.bin_generic", "utils.modify.merge_calib_pid_defocus_and_correction_coords", "utils.io.read_test_coords", "matplotlib.pyplot.savefig" ]
[((681, 729), 'matplotlib.pyplot.style.use', 'plt.style.use', (["['science', 'ieee', 'std-colors']"], {}), "(['science', 'ieee', 'std-colors'])\n", (694, 729), True, 'import matplotlib.pyplot as plt\n'), ((740, 754), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (752, 754), True, 'import matplotlib.pyplot as plt\n'), ((808, 822), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (817, 822), True, 'import matplotlib.pyplot as plt\n'), ((1247, 1286), 'os.path.join', 'join', (['base_dir', '"""results-04.26.22_idpt"""'], {}), "(base_dir, 'results-04.26.22_idpt')\n", (1251, 1286), False, 'from os.path import join\n'), ((1306, 1343), 'os.path.join', 'join', (['path_idpt', '"""coords/test-coords"""'], {}), "(path_idpt, 'coords/test-coords')\n", (1310, 1343), False, 'from os.path import join\n'), ((1364, 1402), 'os.path.join', 'join', (['path_idpt', '"""coords/calib-coords"""'], {}), "(path_idpt, 'coords/calib-coords')\n", (1368, 1402), False, 'from os.path import join\n'), ((1421, 1450), 'os.path.join', 'join', (['path_idpt', '"""similarity"""'], {}), "(path_idpt, 'similarity')\n", (1425, 1450), False, 'from os.path import join\n'), ((1466, 1492), 'os.path.join', 'join', (['path_idpt', '"""results"""'], {}), "(path_idpt, 'results')\n", (1470, 1492), False, 'from os.path import join\n'), ((1505, 1528), 'os.path.join', 'join', (['path_idpt', '"""figs"""'], {}), "(path_idpt, 'figs')\n", (1509, 1528), False, 'from os.path import join\n'), ((13148, 13185), 'utils.io.read_test_coords', 'io.read_test_coords', (['path_test_coords'], {}), '(path_test_coords)\n', (13167, 13185), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((27923, 27960), 'utils.io.read_test_coords', 'io.read_test_coords', (['path_test_coords'], {}), '(path_test_coords)\n', (27942, 27960), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((28335, 28559), 'pandas.read_excel', 'pd.read_excel', (['"""/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_calib1_test-2-3/coords/test-coords/test_coords_t-calib2_c-calib1.xlsx"""'], {}), "(\n '/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_calib1_test-2-3/coords/test-coords/test_coords_t-calib2_c-calib1.xlsx'\n )\n", (28348, 28559), True, 'import pandas as pd\n'), ((28563, 28842), 'pandas.read_excel', 'pd.read_excel', (['"""/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_stack-id-on-bpe/testcalib2_calcalib1/test_coords_t_20X_ccalib1_tcalib2_c_20X_tcalib2_ccalib1_2022-04-26 20:45:34.334931.xlsx"""'], {}), "(\n '/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_stack-id-on-bpe/testcalib2_calcalib1/test_coords_t_20X_ccalib1_tcalib2_c_20X_tcalib2_ccalib1_2022-04-26 20:45:34.334931.xlsx'\n )\n", (28576, 28842), True, 'import pandas as pd\n'), ((29834, 29848), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (29846, 29848), True, 'import matplotlib.pyplot as plt\n'), ((30336, 30354), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (30352, 30354), True, 'import matplotlib.pyplot as plt\n'), ((30488, 30499), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (30497, 30499), True, 'import matplotlib.pyplot as plt\n'), ((31056, 31129), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'sharex': '(True)', 'gridspec_kw': "{'height_ratios': [1, 2]}"}), "(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 2]})\n", (31068, 31129), True, 'import matplotlib.pyplot as plt\n'), ((32011, 32029), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (32027, 32029), True, 'import matplotlib.pyplot as plt\n'), ((32170, 32181), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (32179, 32181), True, 'import matplotlib.pyplot as plt\n'), ((32571, 32709), 'os.path.join', 'join', (['base_dir', '"""average-particle-similarity/average_similarity_SPCT_11.02.21-BPE_Pressure_Deflection_20X_c-calib1_t-calib2.xlsx"""'], {}), "(base_dir,\n 'average-particle-similarity/average_similarity_SPCT_11.02.21-BPE_Pressure_Deflection_20X_c-calib1_t-calib2.xlsx'\n )\n", (32575, 32709), False, 'from os.path import join\n'), ((32740, 32757), 'pandas.read_excel', 'pd.read_excel', (['fp'], {}), '(fp)\n', (32753, 32757), True, 'import pandas as pd\n'), ((32784, 32798), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (32796, 32798), True, 'import matplotlib.pyplot as plt\n'), ((33024, 33042), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (33040, 33042), True, 'import matplotlib.pyplot as plt\n'), ((33146, 33156), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (33154, 33156), True, 'import matplotlib.pyplot as plt\n'), ((33161, 33172), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (33170, 33172), True, 'import matplotlib.pyplot as plt\n'), ((2505, 2552), 'utils.io.read_calib_coords', 'io.read_calib_coords', (['path_calib_coords', 'method'], {}), '(path_calib_coords, method)\n', (2525, 2552), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((2937, 3035), 'correction.correct.fit_in_focus_plane', 'correct.fit_in_focus_plane', ([], {'df': 'dfcpid', 'param_zf': 'param_zf', 'microns_per_pixel': 'microns_per_pixel'}), '(df=dfcpid, param_zf=param_zf, microns_per_pixel=\n microns_per_pixel)\n', (2963, 3035), False, 'from correction import correct\n'), ((3623, 3698), 'utils.fit.fit_3d_spline', 'fit.fit_3d_spline', ([], {'x': 'dfcpid.x', 'y': 'dfcpid.y', 'z': 'dfcpid[param_zf]', 'kx': 'kx', 'ky': 'ky'}), '(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky)\n', (3640, 3698), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((4636, 4673), 'utils.io.read_test_coords', 'io.read_test_coords', (['path_test_coords'], {}), '(path_test_coords)\n', (4655, 4673), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((4892, 4952), 'correction.correct.correct_z_by_spline', 'correct.correct_z_by_spline', (['dft'], {'bispl': 'bispl_c', 'param_z': '"""z"""'}), "(dft, bispl=bispl_c, param_z='z')\n", (4919, 4952), False, 'from correction import correct\n'), ((14030, 14224), 'utils.bin.bin_local_rmse_z', 'bin.bin_local_rmse_z', (['dft'], {'column_to_bin': 'column_to_bin', 'bins': '(1)', 'min_cm': 'min_cm', 'z_range': 'None', 'round_to_decimal': 'round_z_to_decimal', 'df_ground_truth': 'None', 'dropna': '(True)', 'error_column': '"""error"""'}), "(dft, column_to_bin=column_to_bin, bins=1, min_cm=\n min_cm, z_range=None, round_to_decimal=round_z_to_decimal,\n df_ground_truth=None, dropna=True, error_column='error')\n", (14050, 14224), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((14733, 14932), 'utils.bin.bin_local_rmse_z', 'bin.bin_local_rmse_z', (['dft'], {'column_to_bin': 'column_to_bin', 'bins': 'bins_z', 'min_cm': 'min_cm', 'z_range': 'None', 'round_to_decimal': 'round_z_to_decimal', 'df_ground_truth': 'None', 'dropna': '(True)', 'error_column': '"""error"""'}), "(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=\n min_cm, z_range=None, round_to_decimal=round_z_to_decimal,\n df_ground_truth=None, dropna=True, error_column='error')\n", (14753, 14932), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((15441, 15579), 'utils.bin.bin_generic', 'bin.bin_generic', (['dft'], {'column_to_bin': '"""bin"""', 'column_to_count': '"""id"""', 'bins': 'bins_z', 'round_to_decimal': 'round_z_to_decimal', 'return_groupby': '(True)'}), "(dft, column_to_bin='bin', column_to_count='id', bins=bins_z,\n round_to_decimal=round_z_to_decimal, return_groupby=True)\n", (15456, 15579), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((18493, 18596), 'utils.bin.bin_by_list', 'bin.bin_by_list', (['dft'], {'column_to_bin': 'column_to_bin', 'bins': 'bins_x', 'round_to_decimal': 'round_x_to_decimal'}), '(dft, column_to_bin=column_to_bin, bins=bins_x,\n round_to_decimal=round_x_to_decimal)\n', (18508, 18596), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((19018, 19032), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (19030, 19032), True, 'import matplotlib.pyplot as plt\n'), ((19664, 19682), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (19680, 19682), True, 'import matplotlib.pyplot as plt\n'), ((19838, 19849), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (19847, 19849), True, 'import matplotlib.pyplot as plt\n'), ((25021, 25058), 'os.path.join', 'join', (['path_results', '"""on-edge-off-bpe"""'], {}), "(path_results, 'on-edge-off-bpe')\n", (25025, 25058), False, 'from os.path import join\n'), ((30382, 30445), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/compare-idpt-spct_num-particles.png')"], {}), "(path_figs + '/compare-idpt-spct_num-particles.png')\n", (30393, 30445), True, 'import matplotlib.pyplot as plt\n'), ((30473, 30483), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (30481, 30483), True, 'import matplotlib.pyplot as plt\n'), ((32057, 32127), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/compare-idpt-spct_num-particles_and_cm.png')"], {}), "(path_figs + '/compare-idpt-spct_num-particles_and_cm.png')\n", (32068, 32127), True, 'import matplotlib.pyplot as plt\n'), ((32155, 32165), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (32163, 32165), True, 'import matplotlib.pyplot as plt\n'), ((33070, 33141), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/average-particle-to-particle-similarity.png')"], {}), "(path_figs + '/average-particle-to-particle-similarity.png')\n", (33081, 33141), True, 'import matplotlib.pyplot as plt\n'), ((3127, 3212), 'utils.plotting.plot_fitted_plane_and_points', 'plotting.plot_fitted_plane_and_points', ([], {'df': 'dfcpid', 'dict_fit_plane': 'dictc_fit_plane'}), '(df=dfcpid, dict_fit_plane=dictc_fit_plane\n )\n', (3164, 3212), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((3220, 3283), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/idpt-calib-coords_fit-plane_raw.png')"], {}), "(path_figs + '/idpt-calib-coords_fit-plane_raw.png')\n", (3231, 3283), True, 'import matplotlib.pyplot as plt\n'), ((3296, 3307), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3305, 3307), True, 'import matplotlib.pyplot as plt\n'), ((3339, 3413), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['dictc_fit_plane'], {'orient': '"""index"""', 'columns': "['value']"}), "(dictc_fit_plane, orient='index', columns=['value'])\n", (3361, 3413), True, 'import pandas as pd\n'), ((3928, 4056), 'utils.plotting.scatter_3d_and_spline', 'plotting.scatter_3d_and_spline', (['dfcpid.x', 'dfcpid.y', 'dfcpid[param_zf]', 'bispl_c'], {'cmap': '"""RdBu"""', 'grid_resolution': '(30)', 'view': '"""multi"""'}), "(dfcpid.x, dfcpid.y, dfcpid[param_zf],\n bispl_c, cmap='RdBu', grid_resolution=30, view='multi')\n", (3958, 4056), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((4574, 4585), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4583, 4585), True, 'import matplotlib.pyplot as plt\n'), ((5904, 5979), 'os.path.join', 'join', (['base_dir', '"""results-04.26.22_spct_calib1_test-2-3/coords/calib-coords"""'], {}), "(base_dir, 'results-04.26.22_spct_calib1_test-2-3/coords/calib-coords')\n", (5908, 5979), False, 'from os.path import join\n'), ((6013, 6100), 'os.path.join', 'join', (['path_spct_calib_coords', '"""calib_spct_pid_defocus_stats_c-calib1_t-calib2.xlsx"""'], {}), "(path_spct_calib_coords,\n 'calib_spct_pid_defocus_stats_c-calib1_t-calib2.xlsx')\n", (6017, 6100), False, 'from os.path import join\n'), ((6129, 6200), 'os.path.join', 'join', (['path_spct_calib_coords', '"""calib_spct_stats_c-calib1_t-calib2.xlsx"""'], {}), "(path_spct_calib_coords, 'calib_spct_stats_c-calib1_t-calib2.xlsx')\n", (6133, 6200), False, 'from os.path import join\n'), ((6231, 6318), 'os.path.join', 'join', (['path_spct_calib_coords', '"""calib_spct_pop_defocus_stats_c-calib1_t-calib2.xlsx"""'], {}), "(path_spct_calib_coords,\n 'calib_spct_pop_defocus_stats_c-calib1_t-calib2.xlsx')\n", (6235, 6318), False, 'from os.path import join\n'), ((6401, 6473), 'os.path.join', 'join', (['base_dir', '"""results-04.28.22_spct-calib2_test3/coords/calib-coords"""'], {}), "(base_dir, 'results-04.28.22_spct-calib2_test3/coords/calib-coords')\n", (6405, 6473), False, 'from os.path import join\n'), ((6506, 6592), 'os.path.join', 'join', (['path_spct_test_coords', '"""calib_spct_pid_defocus_stats_c-calib2_t-calib3.xlsx"""'], {}), "(path_spct_test_coords,\n 'calib_spct_pid_defocus_stats_c-calib2_t-calib3.xlsx')\n", (6510, 6592), False, 'from os.path import join\n'), ((6620, 6690), 'os.path.join', 'join', (['path_spct_test_coords', '"""calib_spct_stats_c-calib2_t-calib3.xlsx"""'], {}), "(path_spct_test_coords, 'calib_spct_stats_c-calib2_t-calib3.xlsx')\n", (6624, 6690), False, 'from os.path import join\n'), ((6720, 6806), 'os.path.join', 'join', (['path_spct_test_coords', '"""calib_spct_pop_defocus_stats_c-calib2_t-calib3.xlsx"""'], {}), "(path_spct_test_coords,\n 'calib_spct_pop_defocus_stats_c-calib2_t-calib3.xlsx')\n", (6724, 6806), False, 'from os.path import join\n'), ((8357, 8455), 'correction.correct.fit_in_focus_plane', 'correct.fit_in_focus_plane', ([], {'df': 'dfcpid', 'param_zf': 'param_zf', 'microns_per_pixel': 'microns_per_pixel'}), '(df=dfcpid, param_zf=param_zf, microns_per_pixel=\n microns_per_pixel)\n', (8383, 8455), False, 'from correction import correct\n'), ((11256, 11354), 'correction.correct.fit_in_focus_plane', 'correct.fit_in_focus_plane', ([], {'df': 'dfcpid', 'param_zf': 'param_zf', 'microns_per_pixel': 'microns_per_pixel'}), '(df=dfcpid, param_zf=param_zf, microns_per_pixel=\n microns_per_pixel)\n', (11282, 11354), False, 'from correction import correct\n'), ((15914, 15930), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (15923, 15930), True, 'import matplotlib.pyplot as plt\n'), ((16042, 16056), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (16054, 16056), True, 'import matplotlib.pyplot as plt\n'), ((16328, 16346), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (16344, 16346), True, 'import matplotlib.pyplot as plt\n'), ((16503, 16514), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (16512, 16514), True, 'import matplotlib.pyplot as plt\n'), ((16626, 16676), 'scipy.optimize.curve_fit', 'curve_fit', (['functions.line', 'dfrmse.z_true', 'dfrmse.z'], {}), '(functions.line, dfrmse.z_true, dfrmse.z)\n', (16635, 16676), False, 'from scipy.optimize import curve_fit\n'), ((17003, 17017), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (17015, 17017), True, 'import matplotlib.pyplot as plt\n'), ((17794, 17812), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (17810, 17812), True, 'import matplotlib.pyplot as plt\n'), ((18275, 18286), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (18284, 18286), True, 'import matplotlib.pyplot as plt\n'), ((19718, 19783), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/on-edge-off-bpe_calibration_curve.png')"], {}), "(path_figs + '/on-edge-off-bpe_calibration_curve.png')\n", (19729, 19783), True, 'import matplotlib.pyplot as plt\n'), ((19819, 19829), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19827, 19829), True, 'import matplotlib.pyplot as plt\n'), ((20235, 20429), 'utils.bin.bin_local_rmse_z', 'bin.bin_local_rmse_z', (['dft'], {'column_to_bin': 'column_to_bin', 'bins': '(1)', 'min_cm': 'min_cm', 'z_range': 'None', 'round_to_decimal': 'round_z_to_decimal', 'df_ground_truth': 'None', 'dropna': '(True)', 'error_column': '"""error"""'}), "(dft, column_to_bin=column_to_bin, bins=1, min_cm=\n min_cm, z_range=None, round_to_decimal=round_z_to_decimal,\n df_ground_truth=None, dropna=True, error_column='error')\n", (20255, 20429), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((21001, 21200), 'utils.bin.bin_local_rmse_z', 'bin.bin_local_rmse_z', (['dft'], {'column_to_bin': 'column_to_bin', 'bins': 'bins_z', 'min_cm': 'min_cm', 'z_range': 'None', 'round_to_decimal': 'round_z_to_decimal', 'df_ground_truth': 'None', 'dropna': '(True)', 'error_column': '"""error"""'}), "(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=\n min_cm, z_range=None, round_to_decimal=round_z_to_decimal,\n df_ground_truth=None, dropna=True, error_column='error')\n", (21021, 21200), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((21765, 21903), 'utils.bin.bin_generic', 'bin.bin_generic', (['dft'], {'column_to_bin': '"""bin"""', 'column_to_count': '"""id"""', 'bins': 'bins_z', 'round_to_decimal': 'round_z_to_decimal', 'return_groupby': '(True)'}), "(dft, column_to_bin='bin', column_to_count='id', bins=bins_z,\n round_to_decimal=round_z_to_decimal, return_groupby=True)\n", (21780, 21903), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((25601, 25615), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (25613, 25615), True, 'import matplotlib.pyplot as plt\n'), ((26112, 26130), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (26128, 26130), True, 'import matplotlib.pyplot as plt\n'), ((26311, 26322), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (26320, 26322), True, 'import matplotlib.pyplot as plt\n'), ((26448, 26521), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'sharex': '(True)', 'gridspec_kw': "{'height_ratios': [1, 2]}"}), "(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 2]})\n", (26460, 26521), True, 'import matplotlib.pyplot as plt\n'), ((27385, 27403), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (27401, 27403), True, 'import matplotlib.pyplot as plt\n'), ((27587, 27598), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (27596, 27598), True, 'import matplotlib.pyplot as plt\n'), ((29988, 30016), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.0)'], {}), '(scigreen, 1.0)\n', (30001, 30016), False, 'from utils.plotting import lighten_color\n'), ((30099, 30127), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.2)'], {}), '(scigreen, 1.2)\n', (30112, 30127), False, 'from utils.plotting import lighten_color\n'), ((31264, 31292), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.0)'], {}), '(scigreen, 1.0)\n', (31277, 31292), False, 'from utils.plotting import lighten_color\n'), ((31358, 31386), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.2)'], {}), '(scigreen, 1.2)\n', (31371, 31386), False, 'from utils.plotting import lighten_color\n'), ((31626, 31654), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.0)'], {}), '(scigreen, 1.0)\n', (31639, 31654), False, 'from utils.plotting import lighten_color\n'), ((31737, 31765), 'utils.plotting.lighten_color', 'lighten_color', (['scigreen', '(1.2)'], {}), '(scigreen, 1.2)\n', (31750, 31765), False, 'from utils.plotting import lighten_color\n'), ((7362, 7399), 'pandas.read_excel', 'pd.read_excel', (['path_calib_pid_defocus'], {}), '(path_calib_pid_defocus)\n', (7375, 7399), True, 'import pandas as pd\n'), ((7423, 7459), 'pandas.read_excel', 'pd.read_excel', (['path_calib_spct_stats'], {}), '(path_calib_spct_stats)\n', (7436, 7459), True, 'import pandas as pd\n'), ((7481, 7588), 'utils.modify.merge_calib_pid_defocus_and_correction_coords', 'modify.merge_calib_pid_defocus_and_correction_coords', (['path_calib_coords', 'method'], {'dfs': '[dfcstats, dfcpid]'}), '(path_calib_coords,\n method, dfs=[dfcstats, dfcpid])\n', (7533, 7588), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((7814, 7884), 'os.path.join', 'join', (['path_calib_coords', '"""calib_spct_pid_defocus_stats_calib1_xy.xlsx"""'], {}), "(path_calib_coords, 'calib_spct_pid_defocus_stats_calib1_xy.xlsx')\n", (7818, 7884), False, 'from os.path import join\n'), ((7906, 7943), 'pandas.read_excel', 'pd.read_excel', (['path_calib_pid_defocus'], {}), '(path_calib_pid_defocus)\n', (7919, 7943), True, 'import pandas as pd\n'), ((8547, 8632), 'utils.plotting.plot_fitted_plane_and_points', 'plotting.plot_fitted_plane_and_points', ([], {'df': 'dfcpid', 'dict_fit_plane': 'dictc_fit_plane'}), '(df=dfcpid, dict_fit_plane=dictc_fit_plane\n )\n', (8584, 8632), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((8640, 8704), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/calibration-coords_fit-plane_raw.png')"], {}), "(path_figs + '/calibration-coords_fit-plane_raw.png')\n", (8651, 8704), True, 'import matplotlib.pyplot as plt\n'), ((8717, 8728), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8726, 8728), True, 'import matplotlib.pyplot as plt\n'), ((8760, 8834), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['dictc_fit_plane'], {'orient': '"""index"""', 'columns': "['value']"}), "(dictc_fit_plane, orient='index', columns=['value'])\n", (8782, 8834), True, 'import pandas as pd\n'), ((9045, 9120), 'utils.fit.fit_3d_spline', 'fit.fit_3d_spline', ([], {'x': 'dfcpid.x', 'y': 'dfcpid.y', 'z': 'dfcpid[param_zf]', 'kx': 'kx', 'ky': 'ky'}), '(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky)\n', (9062, 9120), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((9336, 9464), 'utils.plotting.scatter_3d_and_spline', 'plotting.scatter_3d_and_spline', (['dfcpid.x', 'dfcpid.y', 'dfcpid[param_zf]', 'bispl_c'], {'cmap': '"""RdBu"""', 'grid_resolution': '(30)', 'view': '"""multi"""'}), "(dfcpid.x, dfcpid.y, dfcpid[param_zf],\n bispl_c, cmap='RdBu', grid_resolution=30, view='multi')\n", (9366, 9464), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((9983, 9994), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9992, 9994), True, 'import matplotlib.pyplot as plt\n'), ((10284, 10320), 'pandas.read_excel', 'pd.read_excel', (['path_test_pid_defocus'], {}), '(path_test_pid_defocus)\n', (10297, 10320), True, 'import pandas as pd\n'), ((10344, 10379), 'pandas.read_excel', 'pd.read_excel', (['path_test_spct_stats'], {}), '(path_test_spct_stats)\n', (10357, 10379), True, 'import pandas as pd\n'), ((10401, 10508), 'utils.modify.merge_calib_pid_defocus_and_correction_coords', 'modify.merge_calib_pid_defocus_and_correction_coords', (['path_calib_coords', 'method'], {'dfs': '[dfcstats, dfcpid]'}), '(path_calib_coords,\n method, dfs=[dfcstats, dfcpid])\n', (10453, 10508), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((10734, 10804), 'os.path.join', 'join', (['path_calib_coords', '"""calib_spct_pid_defocus_stats_calib2_xy.xlsx"""'], {}), "(path_calib_coords, 'calib_spct_pid_defocus_stats_calib2_xy.xlsx')\n", (10738, 10804), False, 'from os.path import join\n'), ((10826, 10863), 'pandas.read_excel', 'pd.read_excel', (['path_calib_pid_defocus'], {}), '(path_calib_pid_defocus)\n', (10839, 10863), True, 'import pandas as pd\n'), ((11445, 11530), 'utils.plotting.plot_fitted_plane_and_points', 'plotting.plot_fitted_plane_and_points', ([], {'df': 'dfcpid', 'dict_fit_plane': 'dictc_fit_plane'}), '(df=dfcpid, dict_fit_plane=dictc_fit_plane\n )\n', (11482, 11530), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((11538, 11595), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/test-coords_fit-plane_raw.png')"], {}), "(path_figs + '/test-coords_fit-plane_raw.png')\n", (11549, 11595), True, 'import matplotlib.pyplot as plt\n'), ((11608, 11619), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11617, 11619), True, 'import matplotlib.pyplot as plt\n'), ((11651, 11725), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['dictc_fit_plane'], {'orient': '"""index"""', 'columns': "['value']"}), "(dictc_fit_plane, orient='index', columns=['value'])\n", (11673, 11725), True, 'import pandas as pd\n'), ((11929, 12004), 'utils.fit.fit_3d_spline', 'fit.fit_3d_spline', ([], {'x': 'dfcpid.x', 'y': 'dfcpid.y', 'z': 'dfcpid[param_zf]', 'kx': 'kx', 'ky': 'ky'}), '(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky)\n', (11946, 12004), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((12220, 12348), 'utils.plotting.scatter_3d_and_spline', 'plotting.scatter_3d_and_spline', (['dfcpid.x', 'dfcpid.y', 'dfcpid[param_zf]', 'bispl_c'], {'cmap': '"""RdBu"""', 'grid_resolution': '(30)', 'view': '"""multi"""'}), "(dfcpid.x, dfcpid.y, dfcpid[param_zf],\n bispl_c, cmap='RdBu', grid_resolution=30, view='multi')\n", (12250, 12348), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((12860, 12871), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (12869, 12871), True, 'import matplotlib.pyplot as plt\n'), ((16390, 16436), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/rmse-z_microns.png')"], {}), "(path_figs + '/rmse-z_microns.png')\n", (16401, 16436), True, 'import matplotlib.pyplot as plt\n'), ((16480, 16490), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16488, 16490), True, 'import matplotlib.pyplot as plt\n'), ((17235, 17263), 'utils.functions.line', 'functions.line', (['z_fit', '*popt'], {}), '(z_fit, *popt)\n', (17249, 17263), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((18252, 18262), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (18260, 18262), True, 'import matplotlib.pyplot as plt\n'), ((22274, 22290), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (22283, 22290), True, 'import matplotlib.pyplot as plt\n'), ((22414, 22428), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (22426, 22428), True, 'import matplotlib.pyplot as plt\n'), ((22724, 22742), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (22740, 22742), True, 'import matplotlib.pyplot as plt\n'), ((22934, 22945), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (22943, 22945), True, 'import matplotlib.pyplot as plt\n'), ((23069, 23119), 'scipy.optimize.curve_fit', 'curve_fit', (['functions.line', 'dfrmse.z_true', 'dfrmse.z'], {}), '(functions.line, dfrmse.z_true, dfrmse.z)\n', (23078, 23119), False, 'from scipy.optimize import curve_fit\n'), ((23468, 23482), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (23480, 23482), True, 'import matplotlib.pyplot as plt\n'), ((24335, 24353), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (24351, 24353), True, 'import matplotlib.pyplot as plt\n'), ((24904, 24915), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (24913, 24915), True, 'import matplotlib.pyplot as plt\n'), ((26174, 26244), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns.png')"], {}), "(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns.png')\n", (26185, 26244), True, 'import matplotlib.pyplot as plt\n'), ((26288, 26298), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (26296, 26298), True, 'import matplotlib.pyplot as plt\n'), ((27447, 27520), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns_cm.png')"], {}), "(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns_cm.png')\n", (27458, 27520), True, 'import matplotlib.pyplot as plt\n'), ((27564, 27574), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27572, 27574), True, 'import matplotlib.pyplot as plt\n'), ((4442, 4461), 'numpy.round', 'np.round', (['rmse_c', '(3)'], {}), '(rmse_c, 3)\n', (4450, 4461), True, 'import numpy as np\n'), ((22907, 22917), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22915, 22917), True, 'import matplotlib.pyplot as plt\n'), ((23740, 23768), 'utils.functions.line', 'functions.line', (['z_fit', '*popt'], {}), '(z_fit, *popt)\n', (23754, 23768), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((24877, 24887), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24885, 24887), True, 'import matplotlib.pyplot as plt\n'), ((9850, 9869), 'numpy.round', 'np.round', (['rmse_c', '(3)'], {}), '(rmse_c, 3)\n', (9858, 9869), True, 'import numpy as np\n'), ((12734, 12753), 'numpy.round', 'np.round', (['rmse_c', '(3)'], {}), '(rmse_c, 3)\n', (12742, 12753), True, 'import numpy as np\n'), ((17385, 17405), 'numpy.round', 'np.round', (['popt[0]', '(3)'], {}), '(popt[0], 3)\n', (17393, 17405), True, 'import numpy as np\n'), ((18021, 18041), 'numpy.round', 'np.round', (['popt[0]', '(3)'], {}), '(popt[0], 3)\n', (18029, 18041), True, 'import numpy as np\n'), ((18116, 18136), 'numpy.round', 'np.round', (['popt[1]', '(3)'], {}), '(popt[1], 3)\n', (18124, 18136), True, 'import numpy as np\n'), ((16796, 16832), 'utils.functions.line', 'functions.line', (['dfrmse.z_true', '*popt'], {}), '(dfrmse.z_true, *popt)\n', (16810, 16832), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n'), ((23894, 23914), 'numpy.round', 'np.round', (['popt[0]', '(3)'], {}), '(popt[0], 3)\n', (23902, 23914), True, 'import numpy as np\n'), ((24622, 24642), 'numpy.round', 'np.round', (['popt[0]', '(3)'], {}), '(popt[0], 3)\n', (24630, 24642), True, 'import numpy as np\n'), ((24725, 24745), 'numpy.round', 'np.round', (['popt[1]', '(3)'], {}), '(popt[1], 3)\n', (24733, 24745), True, 'import numpy as np\n'), ((23247, 23283), 'utils.functions.line', 'functions.line', (['dfrmse.z_true', '*popt'], {}), '(dfrmse.z_true, *popt)\n', (23261, 23283), False, 'from utils import fit, functions, bin, io, plotting, modify, plot_collections\n')]
import pyart import pydda from matplotlib import pyplot as plt import numpy as np berr_grid = pyart.io.read_grid("berr_Darwin_hires.nc") cpol_grid = pyart.io.read_grid("cpol_Darwin_hires.nc") sounding = pyart.io.read_arm_sonde( "/home/rjackson/data/soundings/twpsondewnpnC3.b1.20060119.231600.custom.cdf") print(berr_grid.projection) print(cpol_grid.get_projparams()) u_back = sounding[1].u_wind v_back = sounding[1].v_wind z_back = sounding[1].height #u_init, v_init, w_init = pydda.retrieval.make_constant_wind_field(cpol_grid, wind=(0.0,0.0,0.0), vel_field='VT') u_init, v_init, w_init = pydda.retrieval.make_wind_field_from_profile(cpol_grid, sounding, vel_field='VT') #u_init, v_init, w_init = pydda.retrieval.make_test_divergence_field( # cpol_grid, 30, 9.0, 15e3, 20e3, 5, 0, -20e3, 0) # Test mass continuity by putting convergence at surface and divergence aloft berr_grid.fields['DT']['data'] = cpol_grid.fields['DT']['data'] # Step 1 - do iterations with just data Grids = pydda.retrieval.get_dd_wind_field([berr_grid, cpol_grid], u_init, v_init, w_init,u_back=u_back, v_back=v_back, z_back=z_back, Co=100.0, Cm=1500.0, vel_name='VT', refl_field='DT', frz=5000.0, filt_iterations=0, mask_w_outside_opt=False) plt.figure(figsize=(8,8)) pydda.vis.plot_horiz_xsection_barbs(Grids, 'DT', level=6, vel_contours=[1, 4, 10]) plt.interactive(False) cpol_z = cpol_grid.fields['DT']['data'] lat_level=45 plt.figure(figsize=(10,10)) plt.pcolormesh(cpol_x[::,lat_level,::], cpol_h[::,lat_level,::], cpol_z[::,lat_level,::], cmap=pyart.graph.cm_colorblind.HomeyerRainbow) plt.colorbar(label='Z [dBZ]') plt.barbs(cpol_x[::barb_density_vert,lat_level,::barb_density], cpol_h[::barb_density_vert,lat_level,::barb_density], u['data'][::barb_density_vert,lat_level,::barb_density], w['data'][::barb_density_vert,lat_level,::barb_density]) cs = plt.contour(cpol_x[::,lat_level,::], cpol_h[::,lat_level,::], w['data'][::,lat_level,::], levels=np.arange(1,20,2), linewidth=16, alpha=0.5) plt.clabel(cs) plt.xlabel('X [km]', fontsize=20) plt.ylabel('Z [m]', fontsize=20) plt.show()
[ "pyart.io.read_arm_sonde", "matplotlib.pyplot.clabel", "matplotlib.pyplot.show", "matplotlib.pyplot.interactive", "pyart.io.read_grid", "matplotlib.pyplot.barbs", "matplotlib.pyplot.colorbar", "pydda.retrieval.get_dd_wind_field", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.pcolormesh", "pydda.retrieval.make_wind_field_from_profile", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "pydda.vis.plot_horiz_xsection_barbs" ]
[((95, 137), 'pyart.io.read_grid', 'pyart.io.read_grid', (['"""berr_Darwin_hires.nc"""'], {}), "('berr_Darwin_hires.nc')\n", (113, 137), False, 'import pyart\n'), ((150, 192), 'pyart.io.read_grid', 'pyart.io.read_grid', (['"""cpol_Darwin_hires.nc"""'], {}), "('cpol_Darwin_hires.nc')\n", (168, 192), False, 'import pyart\n'), ((205, 316), 'pyart.io.read_arm_sonde', 'pyart.io.read_arm_sonde', (['"""/home/rjackson/data/soundings/twpsondewnpnC3.b1.20060119.231600.custom.cdf"""'], {}), "(\n '/home/rjackson/data/soundings/twpsondewnpnC3.b1.20060119.231600.custom.cdf'\n )\n", (228, 316), False, 'import pyart\n'), ((597, 683), 'pydda.retrieval.make_wind_field_from_profile', 'pydda.retrieval.make_wind_field_from_profile', (['cpol_grid', 'sounding'], {'vel_field': '"""VT"""'}), "(cpol_grid, sounding, vel_field\n ='VT')\n", (641, 683), False, 'import pydda\n'), ((997, 1246), 'pydda.retrieval.get_dd_wind_field', 'pydda.retrieval.get_dd_wind_field', (['[berr_grid, cpol_grid]', 'u_init', 'v_init', 'w_init'], {'u_back': 'u_back', 'v_back': 'v_back', 'z_back': 'z_back', 'Co': '(100.0)', 'Cm': '(1500.0)', 'vel_name': '"""VT"""', 'refl_field': '"""DT"""', 'frz': '(5000.0)', 'filt_iterations': '(0)', 'mask_w_outside_opt': '(False)'}), "([berr_grid, cpol_grid], u_init, v_init,\n w_init, u_back=u_back, v_back=v_back, z_back=z_back, Co=100.0, Cm=\n 1500.0, vel_name='VT', refl_field='DT', frz=5000.0, filt_iterations=0,\n mask_w_outside_opt=False)\n", (1030, 1246), False, 'import pydda\n'), ((1500, 1526), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (1510, 1526), True, 'from matplotlib import pyplot as plt\n'), ((1526, 1613), 'pydda.vis.plot_horiz_xsection_barbs', 'pydda.vis.plot_horiz_xsection_barbs', (['Grids', '"""DT"""'], {'level': '(6)', 'vel_contours': '[1, 4, 10]'}), "(Grids, 'DT', level=6, vel_contours=[1, \n 4, 10])\n", (1561, 1613), False, 'import pydda\n'), ((1646, 1668), 'matplotlib.pyplot.interactive', 'plt.interactive', (['(False)'], {}), '(False)\n', (1661, 1668), True, 'from matplotlib import pyplot as plt\n'), ((1723, 1751), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (1733, 1751), True, 'from matplotlib import pyplot as plt\n'), ((1751, 1891), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['cpol_x[:, lat_level, :]', 'cpol_h[:, lat_level, :]', 'cpol_z[:, lat_level, :]'], {'cmap': 'pyart.graph.cm_colorblind.HomeyerRainbow'}), '(cpol_x[:, lat_level, :], cpol_h[:, lat_level, :], cpol_z[:,\n lat_level, :], cmap=pyart.graph.cm_colorblind.HomeyerRainbow)\n', (1765, 1891), True, 'from matplotlib import pyplot as plt\n'), ((1920, 1949), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'label': '"""Z [dBZ]"""'}), "(label='Z [dBZ]')\n", (1932, 1949), True, 'from matplotlib import pyplot as plt\n'), ((1950, 2204), 'matplotlib.pyplot.barbs', 'plt.barbs', (['cpol_x[::barb_density_vert, lat_level, ::barb_density]', 'cpol_h[::barb_density_vert, lat_level, ::barb_density]', "u['data'][::barb_density_vert, lat_level, ::barb_density]", "w['data'][::barb_density_vert, lat_level, ::barb_density]"], {}), "(cpol_x[::barb_density_vert, lat_level, ::barb_density], cpol_h[::\n barb_density_vert, lat_level, ::barb_density], u['data'][::\n barb_density_vert, lat_level, ::barb_density], w['data'][::\n barb_density_vert, lat_level, ::barb_density])\n", (1959, 2204), True, 'from matplotlib import pyplot as plt\n'), ((2396, 2410), 'matplotlib.pyplot.clabel', 'plt.clabel', (['cs'], {}), '(cs)\n', (2406, 2410), True, 'from matplotlib import pyplot as plt\n'), ((2411, 2444), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X [km]"""'], {'fontsize': '(20)'}), "('X [km]', fontsize=20)\n", (2421, 2444), True, 'from matplotlib import pyplot as plt\n'), ((2445, 2477), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Z [m]"""'], {'fontsize': '(20)'}), "('Z [m]', fontsize=20)\n", (2455, 2477), True, 'from matplotlib import pyplot as plt\n'), ((2478, 2488), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2486, 2488), True, 'from matplotlib import pyplot as plt\n'), ((2334, 2353), 'numpy.arange', 'np.arange', (['(1)', '(20)', '(2)'], {}), '(1, 20, 2)\n', (2343, 2353), True, 'import numpy as np\n')]
import numpy as np # use nanmean from bottleneck if it's installed, otherwise use the numpy one # bottleneck nanmean is ~2.5x faster try: import bottleneck as bn nanmean = bn.nanmean except ImportError: nanmean = np.nanmean from pytplot import get_data, store_data, options from ...utilities.tnames import tnames def mms_eis_spec_combine_sc( species='proton', data_units='flux', datatype='extof', data_rate='srvy', level='l2', suffix='', ): ''' Combines omni-directional energy spectrogram variable from EIS on multiple MMS spacecraft. Parameters ---------- datatype: str 'extof', 'electroenergy', or 'phxtof' (default: 'extof') data_rate: str instrument data rate, e.g., 'srvy' or 'brst' (default: 'srvy') level: str data level ['l1a','l1b','l2pre','l2' (default)] data_units: str desired units for data, e.g., 'flux' or 'cps' (default: 'flux') suffix: str suffix of the loaded data; useful for preserving original tplot var species: str species for calculation, e.g., proton, oxygen, alpha or electron (default: 'proton') Returns: Name of tplot variables created. ''' ## Thoughts for extensions: ## - Ensure arguments passed to modules are of lowecase if data_units == 'flux': units_label = 'Intensity\n[1/cm^2-sr-s-keV]' elif data_units == 'cps': units_label = 'CountRate\n[counts/s]' elif data_units == 'counts': units_label = 'Counts\n[counts]' #assert type(datatype) is str if not isinstance(species, list): species = [species] if not isinstance(datatype, list): datatype = [datatype] out_vars = [] for species_id in species: for dtype in datatype: # retrieve: omni variables of species to determine # of probes _species = species_id if dtype == 'electronenergy': _species = 'electron' eis_sc_check = tnames('mms*eis*' + data_rate + '*' + dtype+'*' + _species + '*' + data_units + '*omni'+ suffix) # process multiple probes probes = [] for name in eis_sc_check: probes.append(name[3:4]) if len(probes) > 4: probes = probes[:-2] if len(probes) > 1: probe_string = probes[0] + '-' + probes[-1] else: if probes: probe_string = probes[0] else: print('No probes found from eis_sc_check tnames.') return allmms_prefix = 'mmsx_epd_eis_' + data_rate + '_' + level + '_' + dtype + '_' # DETERMINE SPACECRAFT WITH SMALLEST NUMBER OF TIME STEPS TO USE # AS A REFERENCE SPACECRAFT omni_vars = tnames('mms?_epd_eis_'+data_rate+'_'+level+'_'+dtype+'_'+_species+'_'+data_units+'_omni'+suffix) if not omni_vars: print('No EIS '+dtype+'data loaded!') return time_size = np.zeros(len(probes)) energy_size = np.zeros(len(probes)) # Retrieve probe's pitch angle dist for all 6 (omni) telescopes for p, probe in enumerate(probes): # note: return from get_data here is (times, data, v) # according to https://github.com/MAVENSDC/PyTplot/blob/ec87591521e84bae8d81caccaf64fc2a5785186f/pytplot/get_data.py#L66 # note: there are also available 'spec_bins' values #print(pytplot.data_quants[omni_vars[p]].coords) #t, data, v = get_data(omni_vars[p]) omni_times, omni_data, omni_energies = get_data(omni_vars[p]) time_size[p] = len(omni_times) energy_size[p] = len(omni_energies) reftime_sc_loc = np.argmin(time_size) ref_sc_time_size = int(min(time_size)) refenergy_sc_loc = np.argmin(energy_size) ref_sc_energy_size = int(min(energy_size)) prefix = 'mms'+probes[reftime_sc_loc]+'_epd_eis_'+data_rate+'_'+level+'_'+dtype+'_' # Retrieve specific probe's data based on minimum time/energy # Note: I did not split these tuples as the namespace is reused, i.e., "_refprobe" time_refprobe = get_data(omni_vars[reftime_sc_loc]) energy_refprobe = get_data(omni_vars[refenergy_sc_loc]) # time x energy x spacecraft omni_spec_data = np.empty([len(time_refprobe[0]), len(energy_refprobe[2]), len(probes)]) omni_spec_data[:] = np.nan # time x energy omni_spec = np.empty([len(time_refprobe[0]), len(energy_refprobe[2])]) omni_spec[:] = np.nan energy_data = np.zeros([len(energy_refprobe[2]), len(probes)]) common_energy = np.zeros(len(energy_refprobe[2])) # Average omni flux over all spacecraft and define common energy grid for pp in range(len(omni_vars)): temp_data = get_data(omni_vars[pp]) energy_data[:,pp] = temp_data[2][0:len(common_energy)] omni_spec_data[0:ref_sc_time_size,:,pp] = temp_data[1][0:ref_sc_time_size,0:len(common_energy)] for ee in range(len(common_energy)): common_energy[ee] = nanmean(energy_data[ee,:], axis=0) # Average omni flux over all spacecraft for tt in range(len(time_refprobe[0])): for ee in range(len(energy_refprobe[2])): omni_spec[tt,ee] = nanmean(omni_spec_data[tt,ee,:], axis=0) # store new tplot variable omni_spec[np.isnan(omni_spec)] = 0. new_name = allmms_prefix+_species+'_'+data_units+'_omni' store_data(new_name, data={'x':time_refprobe[0], 'y':omni_spec, 'v':energy_refprobe[2]}) options(new_name, 'ylog', True) options(new_name, 'zlog', True) options(new_name, 'spec', True) options(new_name, 'Colormap', 'jet') options(new_name, 'ztitle', units_label) options(new_name, 'ytitle', ' \\ '.join(['mms'+probe_string, _species.upper(), 'Energy [keV]'])) out_vars.append(new_name) # Spin-average the data spin_nums = get_data(prefix+'spin'+suffix) if spin_nums is None: print('Error: Could not find EIS spin variable -- now ending procedure.') return # find where the spin starts _, spin_starts = np.unique(spin_nums[1], return_index=True) spin_sum_flux = np.zeros([len(spin_starts), len(omni_spec[0,:])]) current_start = 0 for spin_idx in range(len(spin_starts)): spin_sum_flux[spin_idx,:] = nanmean(omni_spec[current_start:spin_starts[spin_idx],:], axis=0) current_start = spin_starts[spin_idx] + 1 sp = '_spin' new_name = allmms_prefix+_species+'_'+data_units+'_omni'+sp store_data(new_name, data={'x':spin_nums[0][spin_starts], 'y':spin_sum_flux, 'v':energy_refprobe[2]}) options(new_name, 'spec', True) options(new_name, 'zlog', True) options(new_name, 'ylog', True) options(new_name, 'spec', True) out_vars.append(new_name) return out_vars
[ "pytplot.store_data", "numpy.argmin", "pytplot.get_data", "numpy.isnan", "pytplot.options", "numpy.unique" ]
[((3932, 3952), 'numpy.argmin', 'np.argmin', (['time_size'], {}), '(time_size)\n', (3941, 3952), True, 'import numpy as np\n'), ((4035, 4057), 'numpy.argmin', 'np.argmin', (['energy_size'], {}), '(energy_size)\n', (4044, 4057), True, 'import numpy as np\n'), ((4408, 4443), 'pytplot.get_data', 'get_data', (['omni_vars[reftime_sc_loc]'], {}), '(omni_vars[reftime_sc_loc])\n', (4416, 4443), False, 'from pytplot import get_data, store_data, options\n'), ((4474, 4511), 'pytplot.get_data', 'get_data', (['omni_vars[refenergy_sc_loc]'], {}), '(omni_vars[refenergy_sc_loc])\n', (4482, 4511), False, 'from pytplot import get_data, store_data, options\n'), ((5873, 5968), 'pytplot.store_data', 'store_data', (['new_name'], {'data': "{'x': time_refprobe[0], 'y': omni_spec, 'v': energy_refprobe[2]}"}), "(new_name, data={'x': time_refprobe[0], 'y': omni_spec, 'v':\n energy_refprobe[2]})\n", (5883, 5968), False, 'from pytplot import get_data, store_data, options\n'), ((5974, 6005), 'pytplot.options', 'options', (['new_name', '"""ylog"""', '(True)'], {}), "(new_name, 'ylog', True)\n", (5981, 6005), False, 'from pytplot import get_data, store_data, options\n'), ((6018, 6049), 'pytplot.options', 'options', (['new_name', '"""zlog"""', '(True)'], {}), "(new_name, 'zlog', True)\n", (6025, 6049), False, 'from pytplot import get_data, store_data, options\n'), ((6062, 6093), 'pytplot.options', 'options', (['new_name', '"""spec"""', '(True)'], {}), "(new_name, 'spec', True)\n", (6069, 6093), False, 'from pytplot import get_data, store_data, options\n'), ((6106, 6142), 'pytplot.options', 'options', (['new_name', '"""Colormap"""', '"""jet"""'], {}), "(new_name, 'Colormap', 'jet')\n", (6113, 6142), False, 'from pytplot import get_data, store_data, options\n'), ((6155, 6195), 'pytplot.options', 'options', (['new_name', '"""ztitle"""', 'units_label'], {}), "(new_name, 'ztitle', units_label)\n", (6162, 6195), False, 'from pytplot import get_data, store_data, options\n'), ((6404, 6438), 'pytplot.get_data', 'get_data', (["(prefix + 'spin' + suffix)"], {}), "(prefix + 'spin' + suffix)\n", (6412, 6438), False, 'from pytplot import get_data, store_data, options\n'), ((6653, 6695), 'numpy.unique', 'np.unique', (['spin_nums[1]'], {'return_index': '(True)'}), '(spin_nums[1], return_index=True)\n', (6662, 6695), True, 'import numpy as np\n'), ((7136, 7244), 'pytplot.store_data', 'store_data', (['new_name'], {'data': "{'x': spin_nums[0][spin_starts], 'y': spin_sum_flux, 'v': energy_refprobe[2]}"}), "(new_name, data={'x': spin_nums[0][spin_starts], 'y':\n spin_sum_flux, 'v': energy_refprobe[2]})\n", (7146, 7244), False, 'from pytplot import get_data, store_data, options\n'), ((7250, 7281), 'pytplot.options', 'options', (['new_name', '"""spec"""', '(True)'], {}), "(new_name, 'spec', True)\n", (7257, 7281), False, 'from pytplot import get_data, store_data, options\n'), ((7294, 7325), 'pytplot.options', 'options', (['new_name', '"""zlog"""', '(True)'], {}), "(new_name, 'zlog', True)\n", (7301, 7325), False, 'from pytplot import get_data, store_data, options\n'), ((7338, 7369), 'pytplot.options', 'options', (['new_name', '"""ylog"""', '(True)'], {}), "(new_name, 'ylog', True)\n", (7345, 7369), False, 'from pytplot import get_data, store_data, options\n'), ((7382, 7413), 'pytplot.options', 'options', (['new_name', '"""spec"""', '(True)'], {}), "(new_name, 'spec', True)\n", (7389, 7413), False, 'from pytplot import get_data, store_data, options\n'), ((3780, 3802), 'pytplot.get_data', 'get_data', (['omni_vars[p]'], {}), '(omni_vars[p])\n', (3788, 3802), False, 'from pytplot import get_data, store_data, options\n'), ((5133, 5156), 'pytplot.get_data', 'get_data', (['omni_vars[pp]'], {}), '(omni_vars[pp])\n', (5141, 5156), False, 'from pytplot import get_data, store_data, options\n'), ((5766, 5785), 'numpy.isnan', 'np.isnan', (['omni_spec'], {}), '(omni_spec)\n', (5774, 5785), True, 'import numpy as np\n')]
''' tournament to rank refiners + discriminators for simgan ''' import numpy as np import pandas as pd import torch def get_graph_ratings(refiners, discriminators, validation_data, device, starting_rating=1500, starting_rd=350, norm_val=173.7178, n_rounds=3, matches_per_pairing=5, samples_per_match=10, discriminator_win_thresh=0.6): ''' TODO...can we get a Source? https://arxiv.org/abs/1808.04888 ????? Find the best refiner and discriminator from the list of refiners and discriminators using the Tournament Skill Rating Evaluation. Parameters: refiners (list(torch.nn)): list of refiners discriminators (list(torch.nn)): list of discriminators validation_data (simganData): SimGAN dataset train_config (dict): dictionary holding information related to training starting_rating (float): The rating that players were initialized to starting_RD (float): The RD that players were initialized to norm_val (float): The normalization value used to convert between phi and RD n_rounds(int): Number of rounds for the tournament matches_per_pairing(int): The number of matches per refiner/discriminator pairing to determine the overall winner samples_per_match(int): The number of samples per match to determine the winner of the match discriminator_win_thresh: The accuracy of the discriminator needed for the discriminator to be declared the winner Returns: A tuple a of Pandas DataFrames... A Pandas DataFrame for metadata-ratings where 1 row is for 1 refiner (respectively for discriminator). ''' n_refiners = len(refiners) ids = np.arange(n_refiners + len(discriminators)) refiner_ids = ids[:n_refiners] discriminator_ids = ids[n_refiners:] ratings = {} for id in ids: ratings[id] = {'r': starting_rating, 'RD': starting_rd, 'mu': 0, 'phi': starting_rd/norm_val} labels_real = torch.zeros(samples_per_match, dtype=torch.float, device=device) labels_refined = torch.ones(samples_per_match, dtype=torch.float, device=device) all_real = validation_data.real_raw all_simulated = validation_data.simulated_raw for rnd in range(n_rounds): # instantiate match results match_results = {} for id in ids: match_results[id] = {'opponent_mus': [], 'opponent_phis': [], 'scores': []} # Perform matches between each pair (R,D) for id_R, R in zip(refiner_ids, refiners): for id_D, D in zip(discriminator_ids, discriminators): # RODD - ?...why do we need multiple matches? why not just change samples to samples_per_match*matches_per_pairing # ...like it's just running data through refiner and discrim. like why not just do that once but with more data? for match in range(matches_per_pairing): real_inds = np.random.choice(np.arange(len(all_real)), samples_per_match, replace=False) real = torch.tensor(all_real[real_inds], dtype=torch.float, device=device) sim_inds = np.random.choice(np.arange(len(all_simulated)), samples_per_match, replace=False) simulated = torch.tensor(all_simulated[sim_inds], dtype=torch.float, device=device) refined = R(simulated) # Get discriminator accuracy on real and refined data d_pred_real = D(real) acc_real = calc_acc(d_pred_real, labels_real) d_pred_refined = D(refined) acc_refined = calc_acc(d_pred_refined, labels_refined) # Find the average accuracy of the discriminator avg_acc = (acc_real + acc_refined) / 2.0 # Add this match's results to match_results match_results[id_D]['opponent_mus'].append(ratings[id_R]['mu']) match_results[id_R]['opponent_mus'].append(ratings[id_D]['mu']) match_results[id_D]['opponent_phis'].append(ratings[id_R]['phi']) match_results[id_R]['opponent_phis'].append(ratings[id_D]['phi']) if avg_acc >= discriminator_win_thresh: # An accuracy greater than or equal to this threshold is considered a win for the discriminator # A score of 1 is a win match_results[id_D]['scores'].append(1) match_results[id_R]['scores'].append(0) else: match_results[id_D]['scores'].append(0) match_results[id_R]['scores'].append(1) # Update scores for the refiners and discriminators new_ratings = ratings.copy() for id in ids: results = match_results[id] glicko_calculations = calculate_new_glicko_scores(ratings[id]['mu'], ratings[id]['phi'], np.array(results['opponent_mus']), np.array(results['opponent_phis']), np.array(results['scores']), starting_rating, norm_val) new_ratings[id]['mu'], new_ratings[id]['phi'], new_ratings[id]['r'], new_ratings[id]['RD'] = glicko_calculations ratings = new_ratings # Get refiner and discriminator with best ratings ratings_pd = pd.DataFrame(ratings).T refiner_ratings = ratings_pd.loc[refiner_ids] discriminator_ratings = ratings_pd.loc[discriminator_ids] return refiner_ratings, discriminator_ratings def calc_acc(tensor_output, tensor_labels): ''' Calculate the percent accuracy of the output, using the labels. Note that the sigmoid is already calculated as part of the Discriminator Network. Parameters: tensor_output (torch.Tensor): M tensor output of the discriminator (M samples,) probability of being class '1' tensor_labels (torch.Tensor): M tensor true labels for each sample Returns: acc (float): the probability accuracy of the output vs. the true labels ''' y_pred = torch.round(tensor_output)#.detatch()) acc = torch.sum(y_pred == tensor_labels.detach()) / len(tensor_labels.detach()) return acc def calculate_new_glicko_scores(old_mu, old_phi, opponent_mus, opponent_phis, scores, starting_rating, norm_val): ''' TODO ...Source ???? http://www.glicko.net/glicko/glicko2.pdf ???? https://en.wikipedia.org/wiki/Glicko_rating_system ???? Calculate and return the new glicko values for the player using Glicko2 calculation Parameters: old_mu (float): The former mu rating old_phi (float): The former phi rating opponent_mus (list(float)): The mu ratings of the opponents played opponent_phis (list(float)): The phi ratings of the opponents played scores (list(inte)): The scores of the games played, 1 indicating a win, 0 indicating a loss starting_rating (float): The rating that players were initialized to norm_val (float): The normalization value used to convert between phi and RD Returns: (new_mu, new_phi, new_rating, new_rd) (float, float, float, float): The updated Glicko values for the player ''' g = 1.0 / (1 + 3 * opponent_phis**2 / np.pi**2) ** 0.5 # TODO: explain/figure out what g is E = 1.0 / (1 + np.exp(-1 * g * (old_mu - opponent_mus))) # Probability of player winning each match v = np.sum(g**2 * E * (1 - E)) ** -1 # Estimated variance of the player's rating based on game outcomes delta = v * np.sum(g * (scores - E)) # Estimated improvement in rating new_phi = 1 / (1/old_phi**2 + 1/v) ** 0.5 new_mu = old_mu + new_phi**2 * np.sum(g * (scores - E)) new_rating = norm_val * new_mu + starting_rating new_rd = norm_val * new_phi return new_mu, new_phi, new_rating, new_rd
[ "pandas.DataFrame", "torch.ones", "numpy.sum", "numpy.array", "numpy.exp", "torch.zeros", "torch.round", "torch.tensor" ]
[((2232, 2296), 'torch.zeros', 'torch.zeros', (['samples_per_match'], {'dtype': 'torch.float', 'device': 'device'}), '(samples_per_match, dtype=torch.float, device=device)\n', (2243, 2296), False, 'import torch\n'), ((2318, 2381), 'torch.ones', 'torch.ones', (['samples_per_match'], {'dtype': 'torch.float', 'device': 'device'}), '(samples_per_match, dtype=torch.float, device=device)\n', (2328, 2381), False, 'import torch\n'), ((6683, 6709), 'torch.round', 'torch.round', (['tensor_output'], {}), '(tensor_output)\n', (6694, 6709), False, 'import torch\n'), ((5944, 5965), 'pandas.DataFrame', 'pd.DataFrame', (['ratings'], {}), '(ratings)\n', (5956, 5965), True, 'import pandas as pd\n'), ((8078, 8106), 'numpy.sum', 'np.sum', (['(g ** 2 * E * (1 - E))'], {}), '(g ** 2 * E * (1 - E))\n', (8084, 8106), True, 'import numpy as np\n'), ((8194, 8218), 'numpy.sum', 'np.sum', (['(g * (scores - E))'], {}), '(g * (scores - E))\n', (8200, 8218), True, 'import numpy as np\n'), ((7985, 8025), 'numpy.exp', 'np.exp', (['(-1 * g * (old_mu - opponent_mus))'], {}), '(-1 * g * (old_mu - opponent_mus))\n', (7991, 8025), True, 'import numpy as np\n'), ((8334, 8358), 'numpy.sum', 'np.sum', (['(g * (scores - E))'], {}), '(g * (scores - E))\n', (8340, 8358), True, 'import numpy as np\n'), ((5342, 5375), 'numpy.array', 'np.array', (["results['opponent_mus']"], {}), "(results['opponent_mus'])\n", (5350, 5375), True, 'import numpy as np\n'), ((5439, 5473), 'numpy.array', 'np.array', (["results['opponent_phis']"], {}), "(results['opponent_phis'])\n", (5447, 5473), True, 'import numpy as np\n'), ((5537, 5564), 'numpy.array', 'np.array', (["results['scores']"], {}), "(results['scores'])\n", (5545, 5564), True, 'import numpy as np\n'), ((3300, 3367), 'torch.tensor', 'torch.tensor', (['all_real[real_inds]'], {'dtype': 'torch.float', 'device': 'device'}), '(all_real[real_inds], dtype=torch.float, device=device)\n', (3312, 3367), False, 'import torch\n'), ((3513, 3584), 'torch.tensor', 'torch.tensor', (['all_simulated[sim_inds]'], {'dtype': 'torch.float', 'device': 'device'}), '(all_simulated[sim_inds], dtype=torch.float, device=device)\n', (3525, 3584), False, 'import torch\n')]