modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
north/t5_base_NCC
north
2022-10-13T13:53:50Z
5
5
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T11:45:48Z
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- The North-T5-models are a set of Norwegian and Scandinavian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|✔|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/base/norwegian_NCC_plus_English_t5x_base/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
north/t5_base_NCC_lm
north
2022-10-13T13:53:23Z
9
1
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T11:45:24Z
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- The North-T5-models are a set of Norwegian and Scandinavian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|✔|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/base/norwegian_NCC_plus_English_pluss100k_lm_t5x_base/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
north/t5_small_NCC
north
2022-10-13T13:53:07Z
109
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T11:45:05Z
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- The North-T5-models are a set of Norwegian and Scandinavian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|✔|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/small/norwegian_NCC_plus_English_t5x_small/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
north/t5_small_NCC_lm
north
2022-10-13T13:52:45Z
104
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T11:44:41Z
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- The North-T5-models are a set of Norwegian and Scandinavian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|✔|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/small/norwegian_NCC_plus_English_pluss100k_lm_t5x_small/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
huggingtweets/boredapeyc-garyvee-opensea
huggingtweets
2022-10-13T12:52:04Z
130
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-13T12:48:37Z
--- language: en thumbnail: http://www.huggingtweets.com/boredapeyc-garyvee-opensea/1665665519153/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544105652330631168/ZuvjfGkT_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446569222352654344/Uc-tml-6_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gary Vaynerchuk & OpenSea & Bored Ape Yacht Club</div> <div style="text-align: center; font-size: 14px;">@boredapeyc-garyvee-opensea</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gary Vaynerchuk & OpenSea & Bored Ape Yacht Club. | Data | Gary Vaynerchuk | OpenSea | Bored Ape Yacht Club | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3239 | 3243 | | Retweets | 723 | 1428 | 3014 | | Short tweets | 838 | 410 | 11 | | Tweets kept | 1688 | 1401 | 218 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8ylc2l06/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boredapeyc-garyvee-opensea's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t159hph) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t159hph/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boredapeyc-garyvee-opensea') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jinofcoolnes/sksjinxmerge
jinofcoolnes
2022-10-13T11:03:07Z
0
11
null
[ "region:us" ]
null
2022-10-12T16:25:28Z
Use "sks jinx" or just "jinx" should work
shed-e/ner_peoples_daily
shed-e
2022-10-13T10:26:38Z
138
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:peoples_daily_ner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-13T09:49:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - peoples_daily_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_peoples_daily results: - task: name: Token Classification type: token-classification dataset: name: peoples_daily_ner type: peoples_daily_ner config: peoples_daily_ner split: train args: peoples_daily_ner metrics: - name: Precision type: precision value: 0.9205354599829109 - name: Recall type: recall value: 0.9365401332946972 - name: F1 type: f1 value: 0.9284688307957485 - name: Accuracy type: accuracy value: 0.9929549534505072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_peoples_daily This model is a fine-tuned version of [hfl/rbt6](https://huggingface.co/hfl/rbt6) on the peoples_daily_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0249 - Precision: 0.9205 - Recall: 0.9365 - F1: 0.9285 - Accuracy: 0.9930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3154 | 1.0 | 164 | 0.0410 | 0.8258 | 0.8684 | 0.8466 | 0.9868 | | 0.0394 | 2.0 | 328 | 0.0287 | 0.8842 | 0.9070 | 0.8954 | 0.9905 | | 0.0293 | 3.0 | 492 | 0.0264 | 0.8978 | 0.9168 | 0.9072 | 0.9916 | | 0.02 | 4.0 | 656 | 0.0254 | 0.9149 | 0.9226 | 0.9188 | 0.9923 | | 0.016 | 5.0 | 820 | 0.0250 | 0.9167 | 0.9281 | 0.9224 | 0.9927 | | 0.0124 | 6.0 | 984 | 0.0252 | 0.9114 | 0.9328 | 0.9220 | 0.9928 | | 0.0108 | 7.0 | 1148 | 0.0249 | 0.9169 | 0.9339 | 0.9254 | 0.9928 | | 0.0097 | 8.0 | 1312 | 0.0249 | 0.9205 | 0.9365 | 0.9285 | 0.9930 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
osanseviero/titanic_mlconsole
osanseviero
2022-10-13T09:56:26Z
0
1
mlconsole
[ "mlconsole", "tabular-classification", "dataset:train.csv", "license:unknown", "model-index", "region:us" ]
tabular-classification
2022-10-13T09:56:23Z
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - train.csv model-index: - name: titanic_mlconsole results: - task: type: tabular-classification name: tabular-classification dataset: type: train.csv name: train.csv metrics: - type: accuracy name: Accuracy value: 0.792792797088623 - type: loss name: Model loss value: 0.5146282911300659 --- # train.csv (#0) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/osanseviero/titanic_mlconsole).
sd-concepts-library/masyanya
sd-concepts-library
2022-10-13T09:35:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-13T09:35:25Z
--- license: mit --- ### Masyanya on Stable Diffusion This is the `<masyanya>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<masyanya> 0](https://huggingface.co/sd-concepts-library/masyanya/resolve/main/concept_images/0.jpeg) ![<masyanya> 1](https://huggingface.co/sd-concepts-library/masyanya/resolve/main/concept_images/2.jpeg) ![<masyanya> 2](https://huggingface.co/sd-concepts-library/masyanya/resolve/main/concept_images/3.jpeg) ![<masyanya> 3](https://huggingface.co/sd-concepts-library/masyanya/resolve/main/concept_images/1.jpeg)
sanjeev498/vit-base-beans
sanjeev498
2022-10-13T07:04:07Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-13T06:38:50Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0568 | 1.54 | 100 | 0.0299 | 1.0 | | 0.0135 | 3.08 | 200 | 0.0189 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
sxxyxn/kogpt_reduced_vocab
sxxyxn
2022-10-13T06:56:45Z
7
1
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "KakaoBrain", "KoGPT", "GPT", "GPT3", "ko", "arxiv:2104.09864", "arxiv:2109.04650", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-13T02:04:31Z
--- language: ko tags: - KakaoBrain - KoGPT - GPT - GPT3 license: cc-by-nc-4.0 --- # KoGPT KakaoBrain's Pre-Trained Language Models. * KoGPT (Korean Generative Pre-trained Transformer) * [https://github.com/kakaobrain/kogpt](https://github.com/kakaobrain/kogpt) * [https://huggingface.co/kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) ## Model Descriptions ### KoGPT6B-ryan1.5b * [\[huggingface\]\[kakaobrain/kogpt\]\[KoGPT6B-ryan1.5b\]](https://huggingface.co/kakaobrain/kogpt/tree/KoGPT6B-ryan1.5b) * [\[huggingface\]\[kakaobrain/kogpt\]\[KoGPT6B-ryan1.5b-float16\]](https://huggingface.co/kakaobrain/kogpt/tree/KoGPT6B-ryan1.5b-float16) | Hyperparameter | Value | |:---------------------|--------------:| | \\(n_{parameters}\\) | 6,166,502,400 | | \\(n_{layers}\\) | 28 | | \\(d_{model}\\) | 4,096 | | \\(d_{ff}\\) | 16,384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2,048 | | \\(n_{vocab}\\) | 64,512 | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | 64 | ## Hardware requirements ### KoGPT6B-ryan1.5b #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * `32GB GPU RAM` in the required minimum memory size ### KoGPT6B-ryan1.5b-float16 #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * half-precision requires NVIDIA GPUS based on Volta, Turing or Ampere * `16GB GPU RAM` in the required minimum memory size ## Usage ### prompt ```bash python -m kogpt --help usage: KoGPT inference [-h] [--model MODEL] [--revision {KoGPT6B-ryan1.5b}] [--device {cpu,cuda}] [-d] KakaoBrain Korean(hangul) Generative Pre-Training Model optional arguments: -h, --help show this help message and exit --model MODEL huggingface repo (default:kakaobrain/kogpt) --revision {KoGPT6B-ryan1.5b} --device {cpu,cuda} (default:cuda) -d, --debug ``` ```bash python -m kogpt prompt> 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 temperature(0.8)> max_length(128)> 64 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 문제의 해답을 찾을 수 있을 것이다. 과학기술이 고도로 발달한 21세기를 살아갈 우리 아이들에게 가장 필요한 것은 사고력 훈련이다. 사고력 훈련을 통해, 세상 prompt> ... ``` ### python ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]' ) model = AutoModelForCausalLM.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b pad_token_id=tokenizer.eos_token_id, torch_dtype='auto', low_cpu_mem_usage=True ).to(device='cuda', non_blocking=True) _ = model.eval() prompt = '인간처럼 생각하고, 행동하는 \'지능\'을 통해 인류가 이제까지 풀지 못했던' with torch.no_grad(): tokens = tokenizer.encode(prompt, return_tensors='pt').to(device='cuda', non_blocking=True) gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=64) generated = tokenizer.batch_decode(gen_tokens)[0] print(generated) # print: 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 문제의 해답을 찾을 수 있을 것이다. 과학기술이 고도로 발달한 21세기를 살아갈 우리 아이들에게 가장 필요한 것은 사고력 훈련이다. 사고력 훈련을 통해, 세상 ``` ## Experiments ### In-context Few-Shots | Models | #params | NSMC (Acc.) | YNAT (F1) | KLUE-STS (F1) | |:--------------|--------:|------------:|----------:|--------------:| | HyperCLOVA[1] | 1.3B | 83.9 | 58.7 | 60.9 | | HyperCLOVA[1] | 6.9B | 83.8 | 67.5 | 59.3 | | HyperCLOVA[1] | 13.0B | 87.9 | 67.9 | 60.0 | | HyperCLOVA[1] | 39.0B | 88.0 | 71.4 | 61.6 | | HyperCLOVA[1] | 82.0B | **88.2** | 72.7 | **65.1** | | **Ours** | 6.0B | 87.8 | **78.0** | 64.3 | ### Finetuning / P-Tuning We have been reported to have issues(https://github.com/kakaobrain/kogpt/issues/17) with our downstream evaluation. The previously published performance evaluation table was deleted because it was difficult to see it as a fair comparison because the comparison target algorithm was different and the performance measurement method could not be confirmed. You can refer to the above issue link for the existing performance evaluation table and troubleshooting results. ## Limitations KakaoBrain `KoGPT` was trained on `rayn dataset`, a dataset known to contain profanity, lewd, political changed, and other harsh language. Therefore, `KoGPT` can generate socially unacceptable texts. As with all language models, It is difficult to predict in advance how `KoGPT` will response to particular prompts and offensive content without warning. Primarily Korean: `KoGPT` is primarily trained on Korean texts, and is best for classifying, searching, summarizing or generating such texts. `KoGPT` by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean as well as specific dialects of Korean that are not well represented in the training data. [comment]: <> (If abnormal or socially unacceptable text is generated during testing, please send a "prompt" and the "generated text" to [[email protected]]&#40;mailto:[email protected]&#41;. ) 카카오브레인 `KoGPT`는 욕설, 음란, 정치적 내용 및 기타 거친 언어에 대한 처리를 하지 않은 `rayn dataset`으로 학습하였습니다. 따라서 `KoGPT`는 사회적으로 용인되지 않은 텍스트를 생성할 수 있습니다. 다른 언어 모델과 마찬가지로 특정 프롬프트와 공격적인 콘텐츠에 어떠한 결과를 생성할지 사전에 파악하기 어렵습니다. `KoGPT`는 주로 한국어 텍스트로 학습을 하였으며 이러한 텍스트를 분류, 검색, 요약 또는 생성하는데 가장 적합합니다. 기본적으로 `KoGPT`는 학습 데이터에 잘 나타나지 않는 방언뿐만아니라 한국어가 아닌 경우와 같이 학습 데이터에서 발견하기 어려운 입력에서 좋지 않은 성능을 보입니다. [comment]: <> (테스트중에 발생한 비정상적인 혹은 사회적으로 용인되지 않는 텍스트가 생성된 경우 [[email protected]]&#40;mailto:[email protected]&#41;로 "prompt"와 "생성된 문장"을 함께 보내주시기 바랍니다.) ## Citation If you apply this library or model to any project and research, please cite our code: ``` @misc{kakaobrain2021kogpt, title = {KoGPT: KakaoBrain Korean(hangul) Generative Pre-trained Transformer}, author = {Ildoo Kim and Gunsoo Han and Jiyeon Ham and Woonhyuk Baek}, year = {2021}, howpublished = {\url{https://github.com/kakaobrain/kogpt}}, } ``` ## Contact This is released as an open source in the hope that it will be helpful to many research institutes and startups for research purposes. We look forward to contacting us from various places who wish to cooperate with us. [[email protected]](mailto:[email protected]) ## License The `source code` of KakaoBrain `KoGPT` are licensed under [Apache 2.0](LICENSE.apache-2.0) License. The `pretrained wieghts` of KakaoBrain `KoGPT` are licensed under [CC-BY-NC-ND 4.0 License](https://creativecommons.org/licenses/by-nc-nd/4.0/) License. 카카오브레인 `KoGPT`의 `소스코드(source code)`는 [Apache 2.0](LICENSE.apache-2.0) 라이선스 하에 공개되어 있습니다. 카카오브레인 `KoGPT`의 `사전학습된 가중치(pretrained weights)`는 [CC-BY-NC-ND 4.0 라이선스](https://creativecommons.org/licenses/by-nc-nd/4.0/) 라이선스 하에 공개되어 있습니다. 모델 및 코드, 사전학습된 가중치를 사용할 경우 라이선스 내용을 준수해 주십시오. 라이선스 전문은 [Apache 2.0](LICENSE.apache-2.0), [LICENSE.cc-by-nc-nd-4.0](LICENSE.cc-by-nc-nd-4.0) 파일에서 확인하실 수 있습니다. ## References [1] [HyperCLOVA](https://arxiv.org/abs/2109.04650): Kim, Boseop, et al. "What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers." arXiv preprint arXiv:2109.04650 (2021).
luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2
luomingshuang
2022-10-13T06:43:37Z
0
3
null
[ "onnx", "region:us" ]
null
2022-05-19T14:32:27Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/349 # Pre-trained Transducer-Stateless2 models for the WenetSpeech dataset with icefall. The model was trained on the L subset of WenetSpeech with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/wenetspeech/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" ./pruned_transducer_stateless2/train.py \ --world-size 8 \ --num-epochs 15 \ --start-epoch 0 \ --exp-dir pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 180 \ --valid-interval 3000 \ --model-warm-step 3000 \ --save-every-n 8000 \ --training-subset L ``` ## Evaluation results The decoding results (WER%) on WenetSpeech(dev, test-net and test-meeting) are listed below, we got this result by averaging models from epoch 9 to 10. The WERs are | | dev | test-net | test-meeting | comment | |------------------------------------|-------|----------|--------------|------------------------------------------| | greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 | | modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 | | fast beam search (1best) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 | | fast beam search (nbest) | 9.82 | 10.98 | 16.37 | --epoch 10, --avg 2, --max-duration 600 | | fast beam search (nbest oracle) | 6.88 | 7.18 | 11.77 | --epoch 10, --avg 2, --max-duration 600 | | fast beam search (nbest LG) | 14.94 | 16.14 | 22.93 | --epoch 10, --avg 2, --max-duration 600 |
SaurabhKaushik/distilbert-base-uncased-finetuned-cola
SaurabhKaushik
2022-10-13T06:25:21Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T08:08:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: SaurabhKaushik/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # SaurabhKaushik/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1919 - Validation Loss: 0.5520 - Train Matthews Correlation: 0.5123 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5232 | 0.4685 | 0.4651 | 0 | | 0.3245 | 0.4620 | 0.4982 | 1 | | 0.1919 | 0.5520 | 0.5123 | 2 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
azad-wolf-se/FExGAN
azad-wolf-se
2022-10-13T06:01:13Z
0
0
null
[ "Computer Vision", "Machine Learning", "Deep Learning", "en", "arxiv:2201.09061", "region:us" ]
null
2022-10-13T05:27:57Z
--- language: en tags: - Computer Vision - Machine Learning - Deep Learning --- # Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network ![FExGAN GIF Demo](https://github.com/azadlab/FExGAN/blob/master/FExGAN.gif?raw=true) This is the implementation of the FExGAN proposed in the following article: [Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network](https://www.arxiv.com) FExGAN takes input an image and a vector of desired affect (e.g. angry,disgust,sad,surprise,joy,neutral and fear) and converts the input image to the desired emotion while keeping the identity of the original image. ![FExGAN GIF Demo](https://github.com/azadlab/FExGAN/blob/master/results.png?raw=true) # Requirements In order to run this you need following: * Python >= 3.7 * Tensorflow >= 2.6 * CUDA enabled GPU (e.g. GTX1070/GTX1080) # Usage Code https://www.github.com/azadlab/FExGAN # Citation If you use any part of this code or use ideas mentioned in the paper, please cite the following article. ``` @article{Siddiqui_FExGAN_2022, author = {{Siddiqui}, J. Rafid}, title = {{Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network}}, journal = {ArXiv e-prints}, archivePrefix = "arXiv", keywords = {Deep Learning, GAN, Facial Expressions}, year = {2022} url = {http://arxiv.org/abs/2201.09061}, } ```
g30rv17ys/ddpm-geeve-dme-10k-200ep
g30rv17ys
2022-10-13T05:07:02Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-12T14:38:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-dme-10k-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-dme-10k-200ep/tensorboard?#scalars)
format37/PPO-MountainCar-v0
format37
2022-10-13T04:43:04Z
3
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-13T04:42:45Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -151.80 +/- 16.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
fathan/ijelid-bert-base-multilingual
fathan
2022-10-13T03:51:51Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-05T06:00:07Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ijelid-bert-base-multilingual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ijelid-bert-base-multilingual This model is a fine-tuned version of [BERT multilingual base model (cased)](https://huggingface.co/bert-base-multilingual-cased) on the Indonesian-Javanese-English code-mixed Twitter dataset. Label ID and its corresponding name: | Label ID | Label Name | |:---------------:|:------------------------------------------: | LABEL_0 | English (EN) | | LABEL_1 | Indonesian (ID) | | LABEL_2 | Javanese (JV) | | LABEL_3 | Mixed Indonesian-English (MIX-ID-EN) | | LABEL_4 | Mixed Indonesian-Javanese (MIX-ID-JV) | | LABEL_5 | Mixed Javanese-English (MIX-JV-EN) | | LABEL_6 | Other (O) | It achieves the following results on the evaluation set: - Loss: 0.3553 - Precision: 0.9189 - Recall: 0.9188 - F1: 0.9187 - Accuracy: 0.9451 It achieves the following results on the test set: - Overall Precision: 0.9249 - Overall Recall: 0.9251 - Overall F1: 0.925 - Overall Accuracy: 0.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 386 | 0.2340 | 0.8956 | 0.8507 | 0.8715 | 0.9239 | | 0.3379 | 2.0 | 772 | 0.2101 | 0.9057 | 0.8904 | 0.8962 | 0.9342 | | 0.1603 | 3.0 | 1158 | 0.2231 | 0.9252 | 0.8896 | 0.9065 | 0.9367 | | 0.1079 | 4.0 | 1544 | 0.2013 | 0.9272 | 0.8902 | 0.9070 | 0.9420 | | 0.1079 | 5.0 | 1930 | 0.2179 | 0.9031 | 0.9179 | 0.9103 | 0.9425 | | 0.0701 | 6.0 | 2316 | 0.2330 | 0.9075 | 0.9165 | 0.9114 | 0.9435 | | 0.051 | 7.0 | 2702 | 0.2433 | 0.9117 | 0.9190 | 0.9150 | 0.9432 | | 0.0384 | 8.0 | 3088 | 0.2545 | 0.9001 | 0.9167 | 0.9078 | 0.9439 | | 0.0384 | 9.0 | 3474 | 0.2629 | 0.9164 | 0.9159 | 0.9158 | 0.9444 | | 0.0293 | 10.0 | 3860 | 0.2881 | 0.9263 | 0.9096 | 0.9178 | 0.9427 | | 0.022 | 11.0 | 4246 | 0.2882 | 0.9167 | 0.9222 | 0.9191 | 0.9450 | | 0.0171 | 12.0 | 4632 | 0.3028 | 0.9203 | 0.9152 | 0.9177 | 0.9447 | | 0.0143 | 13.0 | 5018 | 0.3236 | 0.9155 | 0.9167 | 0.9158 | 0.9440 | | 0.0143 | 14.0 | 5404 | 0.3301 | 0.9237 | 0.9163 | 0.9199 | 0.9444 | | 0.0109 | 15.0 | 5790 | 0.3290 | 0.9187 | 0.9154 | 0.9169 | 0.9442 | | 0.0092 | 16.0 | 6176 | 0.3308 | 0.9213 | 0.9178 | 0.9194 | 0.9448 | | 0.0075 | 17.0 | 6562 | 0.3501 | 0.9273 | 0.9142 | 0.9206 | 0.9445 | | 0.0075 | 18.0 | 6948 | 0.3520 | 0.9200 | 0.9184 | 0.9190 | 0.9447 | | 0.0062 | 19.0 | 7334 | 0.3524 | 0.9238 | 0.9183 | 0.9210 | 0.9458 | | 0.0051 | 20.0 | 7720 | 0.3553 | 0.9189 | 0.9188 | 0.9187 | 0.9451 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.7.1 - Datasets 2.5.1 - Tokenizers 0.12.1
masusuka/wav2vec2-large-xls-r-300m-tr-colab
masusuka
2022-10-13T03:44:51Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-10T18:43:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4316 - Wer: 0.2905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.9953 | 3.67 | 400 | 0.7024 | 0.7226 | | 0.4046 | 7.34 | 800 | 0.4342 | 0.5343 | | 0.201 | 11.01 | 1200 | 0.4396 | 0.5290 | | 0.1513 | 14.68 | 1600 | 0.4319 | 0.4108 | | 0.1285 | 18.35 | 2000 | 0.4422 | 0.3864 | | 0.1086 | 22.02 | 2400 | 0.4568 | 0.3796 | | 0.0998 | 25.69 | 2800 | 0.4687 | 0.3732 | | 0.0863 | 29.36 | 3200 | 0.4726 | 0.3803 | | 0.0809 | 33.03 | 3600 | 0.4479 | 0.3601 | | 0.0747 | 36.7 | 4000 | 0.4624 | 0.3525 | | 0.0692 | 40.37 | 4400 | 0.4366 | 0.3435 | | 0.0595 | 44.04 | 4800 | 0.4204 | 0.3510 | | 0.0584 | 47.71 | 5200 | 0.4202 | 0.3402 | | 0.0545 | 51.38 | 5600 | 0.4366 | 0.3343 | | 0.0486 | 55.05 | 6000 | 0.4492 | 0.3678 | | 0.0444 | 58.72 | 6400 | 0.4471 | 0.3301 | | 0.0406 | 62.39 | 6800 | 0.4382 | 0.3318 | | 0.0341 | 66.06 | 7200 | 0.4295 | 0.3258 | | 0.0297 | 69.72 | 7600 | 0.4336 | 0.3205 | | 0.0295 | 73.39 | 8000 | 0.4240 | 0.3199 | | 0.0261 | 77.06 | 8400 | 0.4316 | 0.3143 | | 0.0247 | 80.73 | 8800 | 0.4300 | 0.3165 | | 0.0207 | 84.4 | 9200 | 0.4380 | 0.3111 | | 0.0203 | 88.07 | 9600 | 0.4218 | 0.2998 | | 0.0174 | 91.74 | 10000 | 0.4271 | 0.2973 | | 0.015 | 95.41 | 10400 | 0.4330 | 0.2939 | | 0.0144 | 99.08 | 10800 | 0.4316 | 0.2905 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.13.1
caotouchan/distilbert_uncase_emo
caotouchan
2022-10-13T03:23:35Z
59
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-13T03:23:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_uncase_emo results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_uncase_emo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4588 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.4588 | 0 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.5.2 - Tokenizers 0.13.1
alibaba-pai/pai-ckbert-huge-zh
alibaba-pai
2022-10-13T01:42:48Z
141
3
transformers
[ "transformers", "pytorch", "megatron-bert", "bert", "fill-mask", "zh", "arxiv:2205.00258", "arxiv:2210.05287", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-11T03:27:18Z
--- language: zh pipeline_tag: fill-mask widget: - text: "巴黎是[MASK]国的首都。" - text: "生活的真谛是[MASK]。" tags: - bert license: apache-2.0 --- ## Chinese Kowledge-enhanced BERT (CKBERT) Knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge graphs, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. For Chinese natural language processing, we provide three **Chinese Kowledge-enhanced BERT (CKBERT)** models named **pai-ckbert-bert-zh**, **pai-ckbert-large-zh** and **pai-ckbert-huge-zh**, from our **EMNLP 2022** paper named **Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, publisher = {arXiv}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For CKBERT: ``` @article{ckbert, title = {Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training}, author = {Zhang, Taolin and Dong, Junwei and Wang, Jianing and Wang, Chengyu and Wang, An and Liu, Yinghui and Huang, Jun and Li, Yong and He, Xiaofeng}, publisher = {EMNLP}, url = {https://arxiv.org/abs/2210.05287}, year = {2022} } ```
alibaba-pai/pai-ckbert-large-zh
alibaba-pai
2022-10-13T01:42:12Z
191
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "zh", "arxiv:2205.00258", "arxiv:2210.05287", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-01T08:26:30Z
--- language: zh pipeline_tag: fill-mask tags: - bert license: apache-2.0 --- ## Chinese Kowledge-enhanced BERT (CKBERT) Knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge graphs, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. For Chinese natural language processing, we provide three **Chinese Kowledge-enhanced BERT (CKBERT)** models named **pai-ckbert-bert-zh**, **pai-ckbert-large-zh** and **pai-ckbert-huge-zh**, from our **EMNLP 2022** paper named **Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, publisher = {arXiv}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For CKBERT: ``` @article{ckbert, title = {Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training}, author = {Zhang, Taolin and Dong, Junwei and Wang, Jianing and Wang, Chengyu and Wang, An and Liu, Yinghui and Huang, Jun and Li, Yong and He, Xiaofeng}, publisher = {EMNLP}, url = {https://arxiv.org/abs/2210.05287}, year = {2022} } ```
alibaba-pai/pai-ckbert-base-zh
alibaba-pai
2022-10-13T01:41:01Z
165
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "zh", "arxiv:2205.00258", "arxiv:2210.05287", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-30T01:41:01Z
--- language: zh pipeline_tag: fill-mask tags: - bert license: apache-2.0 --- ## Chinese Kowledge-enhanced BERT (CKBERT) Knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge graphs, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. For Chinese natural language processing, we provide three **Chinese Kowledge-enhanced BERT (CKBERT)** models named **pai-ckbert-bert-zh**, **pai-ckbert-large-zh** and **pai-ckbert-huge-zh**, from our **EMNLP 2022** paper named **Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, publisher = {arXiv}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For CKBERT: ``` @article{ckbert, title = {Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training}, author = {Zhang, Taolin and Dong, Junwei and Wang, Jianing and Wang, Chengyu and Wang, An and Liu, Yinghui and Huang, Jun and Li, Yong and He, Xiaofeng}, publisher = {EMNLP}, url = {https://arxiv.org/abs/2210.05287}, year = {2022} } ```
Super-McTea/DialoGPT-small-McTea
Super-McTea
2022-10-13T00:22:05Z
130
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-12T13:17:28Z
--- tags: - conversational --- # DialoGPT model based on the text patterns of Discord user Super McTea
jhakaran1/bert-trainer
jhakaran1
2022-10-13T00:19:46Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T16:33:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-trainer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1889 - Accuracy: 0.6437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.751 | 1.0 | 3677 | 0.7828 | 0.6592 | | 0.6364 | 2.0 | 7354 | 0.8904 | 0.6374 | | 0.4125 | 3.0 | 11031 | 1.1889 | 0.6437 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
tiagoblima/punctuation-finetune-mec
tiagoblima
2022-10-13T00:05:42Z
114
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T23:42:07Z
--- license: mit tags: - generated_from_trainer model-index: - name: punctuation-finetune-mec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # punctuation-finetune-mec This model is a fine-tuned version of [tiagoblima/punctuation-taboa-bert](https://huggingface.co/tiagoblima/punctuation-taboa-bert) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 411 | 0.1356 | 0.9791 | 0.7083 | 0.8220 | 0.9553 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
stevhliu/my_awesome_eli5_mlm_model
stevhliu
2022-10-12T22:42:23Z
536
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-12T22:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 2.2325 | | No log | 2.0 | 40 | 2.1603 | | No log | 3.0 | 60 | 2.2368 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
sd-concepts-library/rahkshi-bionicle
sd-concepts-library
2022-10-12T21:52:04Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-12T21:31:24Z
--- license: mit --- ### rahkshi bionicle on Stable Diffusion This is the `<rahkshi-bionicle>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). To use in the stable diffusion webui app, simply put the `learned_embeds.bin` file in the `embeddings` folder (i reccomend renaming the file to rakshi.bin though). Then in the prompt box just copy and paste the `learned_embeds.bin` file name at the end of your prompt. Images are from the [Biomedia Project](https://biomediaproject.com/bmp/pictures/advance-art/y2003/sets/rahkshi/) Here is the new concept you will be able to use as an `object`: ![<rahkshi-bionicle> 0](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/guurahk%20sq%20512%20copy.png) ![<rahkshi-bionicle> 1](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/kurahk%20512%20copy.png) ![<rahkshi-bionicle> 2](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/lerahk%20512%20copy.png) ![<rahkshi-bionicle> 3](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/panrahk%20512%20copy.png) ![<rahkshi-bionicle> 4](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/turahk%20512%20copy.png) ![<rahkshi-bionicle> 5](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/vorahk%20512%20copy.png) ex output "a rahkshi bionicle in times square" ![ex](https://huggingface.co/sd-concepts-library/rahkshi-bionicle/resolve/main/concept_images/ex%20out%20a%20rahkshi%20bionicle%20in%20times%20square.png) Use this embedding for whatever you like, no need to credit.
juanarturovargas/t5-small-finetuned-xsum
juanarturovargas
2022-10-12T21:41:54Z
69
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-12T16:29:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juanarturovargas/t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juanarturovargas/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.6991 - Validation Loss: 2.3063 - Train Rouge1: 12.4391 - Train Rouge2: 4.7412 - Train Rougel: 12.2704 - Train Rougelsum: 12.2483 - Train Gen Len: 8.8482 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.6991 | 2.3063 | 12.4391 | 4.7412 | 12.2704 | 12.2483 | 8.8482 | 0 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.13.1
soleimanian/financial-roberta-large-sentiment
soleimanian
2022-10-12T21:04:39Z
8,579
39
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "Sentiment", "RoBERTa", "Financial Statements", "Accounting", "Finance", "Business", "ESG", "CSR Reports", "Financial News", "Earnings Call Transcripts", "Sustainability", "Corporate governance", "eng", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-16T04:09:10Z
--- license: apache-2.0 language: - eng tags: - text-classification - Sentiment - RoBERTa - Financial Statements - Accounting - Finance - Business - ESG - CSR Reports - Financial News - Earnings Call Transcripts - Sustainability - Corporate governance --- <!DOCTYPE html> <html> <body> <h1><b>Financial-RoBERTa</b></h1> <p><b>Financial-RoBERTa</b> is a pre-trained NLP model to analyze sentiment of financial text including:</p> <ul style="PADDING-LEFT: 40px"> <li>Financial Statements,</li> <li>Earnings Announcements,</li> <li>Earnings Call Transcripts,</li> <li>Corporate Social Responsibility (CSR) Reports,</li> <li>Environmental, Social, and Governance (ESG) News,</li> <li>Financial News,</li> <li>Etc.</li> </ul> <p>Financial-RoBERTa is built by further training and fine-tuning the RoBERTa Large language model using a large corpus created from 10k, 10Q, 8K, Earnings Call Transcripts, CSR Reports, ESG News, and Financial News text.</p> <p>The model will give softmax outputs for three labels: <b>Positive</b>, <b>Negative</b> or <b>Neutral</b>.</p> <p><b>How to perform sentiment analysis:</b></p> <p>The easiest way to use the model for single predictions is Hugging Face's sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:</p> <pre> <code> from transformers import pipeline sentiment_analysis = pipeline("sentiment-analysis",model="soleimanian/financial-roberta-large-sentiment") print(sentiment_analysis("In fiscal 2021, we generated a net yield of approximately 4.19% on our investments, compared to approximately 5.10% in fiscal 2020.")) </code> </pre> <p>I provide an example script via <a href="https://colab.research.google.com/drive/11RGWU3UDtxnjan8Ug6dyX82m9fBV6CGo?usp=sharing" target="_blank">Google Colab</a>. You can load your data to a Google Drive and run the script for free on a Colab. <p><b>Citation and contact:</b></p> <p>Please cite <a href="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4115943" target="_blank">this paper</a> when you use the model. Feel free to reach out to [email protected] with any questions or feedback you may have.<p/> </body> </html>
EddyGiusepe/bert-finetuned-ner
EddyGiusepe
2022-10-12T20:00:09Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T19:36:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9335 - Recall: 0.9517 - F1: 0.9425 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0685 | 0.9208 | 0.9367 | 0.9287 | 0.9829 | | 0.0336 | 2.0 | 3512 | 0.0612 | 0.9281 | 0.9495 | 0.9387 | 0.9856 | | 0.0181 | 3.0 | 5268 | 0.0602 | 0.9335 | 0.9517 | 0.9425 | 0.9864 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.1
siddharth963/vit-base-patch16-224-in21k-finetuned-cassava3
siddharth963
2022-10-12T19:37:08Z
216
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-12T17:13:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cassava3 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8855140186915887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cassava3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3419 - Accuracy: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5624 | 0.99 | 133 | 0.5866 | 0.8166 | | 0.4717 | 1.99 | 266 | 0.4245 | 0.8692 | | 0.4105 | 2.99 | 399 | 0.3708 | 0.8811 | | 0.3753 | 3.99 | 532 | 0.3646 | 0.8787 | | 0.2997 | 4.99 | 665 | 0.3655 | 0.8780 | | 0.3176 | 5.99 | 798 | 0.3545 | 0.8822 | | 0.2849 | 6.99 | 931 | 0.3441 | 0.8850 | | 0.2931 | 7.99 | 1064 | 0.3419 | 0.8855 | | 0.27 | 8.99 | 1197 | 0.3419 | 0.8848 | | 0.2927 | 9.99 | 1330 | 0.3403 | 0.8853 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dsilin/detok-deberta-xl
dsilin
2022-10-12T18:56:34Z
163
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: en widget: - text: "They 're a young team . they have great players and amazing freshmen coming in , so think they 'll grow into themselves next year ," - text: "\" We 'll talk go by now ; \" says Shucksmith ;" - text: "\" Warren Gatland is a professional person and it wasn 't a case of 's I 'll phone my mate Rob up to if he wants a coaching job ' , he would done a fair amount of homework about , \" Howley air said ." --- This model can be used to more accurately detokenize the moses tokenizer (it does a better job with certain lossy quotes and things) batched usage: ```python sentences = [ "They 're a young team . they have great players and amazing freshmen coming in , so think they 'll grow into themselves next year ,", "\" We 'll talk go by now ; \" says Shucksmith ;", "He 'll enjoy it more now that this he be dead , if put 'll pardon the expression .", "I think you 'll be amazed at this way it finds ,", "Michigan voters ^ are so frightened of fallen in permanent economic collapse that they 'll grab onto anything .", "You 'll finding outs episode 4 .", "\" Warren Gatland is a professional person and it wasn 't a case of 's I 'll phone my mate Rob up to if he wants a coaching job ' , he would done a fair amount of homework about , \" Howley air said .", "You can look at the things I 'm saying about my record and about the events of campaign and history and you 'll find if now and and then I miss a words or I get something slightly off , I 'll correct it , acknowledge where it are wrong .", "Wonder if 'll alive to see .", "We 'll have to combine and a numbered of people ." ] def sentences_to_input_tokens(sentences): all_tokens = [] max_length = 0 sents_tokens = [] iids = tokenizer(sentences) for sent_tokens in iids['input_ids']: sents_tokens.append(sent_tokens) if len(sent_tokens) > max_length: max_length = len(sent_tokens) attention_mask = [1] * len(sent_tokens) pos_ids = list(range(len(sent_tokens))) encoding = { "iids": sent_tokens, "am": attention_mask, "pos": pos_ids } all_tokens.append(encoding) input_ids = [] attention_masks = [] position_ids = [] for i in range(len(all_tokens)): encoding = all_tokens[i] pad_len = max_length - len(encoding['iids']) attention_masks.append(encoding['am'] + [0] * pad_len) position_ids.append(encoding['pos'] + [0] * pad_len) input_ids.append(encoding['iids'] + [tokenizer.pad_token_id] * pad_len) encoding = { "input_ids": torch.tensor(input_ids).to(device), "attention_mask": torch.tensor(attention_masks).to(device), "position_ids": torch.tensor(position_ids).to(device) } return encoding, sents_tokens def run_token_predictor_sentences(sentences): encoding, at = sentences_to_input_tokens(sentences) predictions = model(**encoding)[0].cpu().tolist() outstrs = [] for i in range(len(predictions)): outstr = "" for p in zip(tokenizer.convert_ids_to_tokens(at[i][1:-1]), predictions[i][1:-1]): if not "▁" in p[0]: outstr+=p[0] else: if p[1][0] > p[1][1]: outstr+=p[0].replace("▁", " ") else: outstr+=p[0].replace("▁", "") outstrs.append(outstr.strip()) return outstrs outs = run_token_predictor_sentences(sentences) for p in zip(outs, sentences): print(p[1]) print(p[0]) print('\n------\n') ```
r-moret/albert-humor-classification
r-moret
2022-10-12T18:54:21Z
67
1
transformers
[ "transformers", "tf", "albert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T18:54:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: albert-humor-classification results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # albert-humor-classification This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.10.0 - Tokenizers 0.13.1
stevhliu/my_awesome_swag_model
stevhliu
2022-10-12T18:53:50Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-10-12T17:52:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: my_awesome_swag_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_swag_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5192 - Accuracy: 0.7981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6873 | 1.0 | 4597 | 0.5192 | 0.7981 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
hatemnoaman/distilbert-base-uncased-finetuned-emotion
hatemnoaman
2022-10-12T18:04:46Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T17:38:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9259822329831515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2149 - Accuracy: 0.926 - F1: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8098 | 1.0 | 250 | 0.3095 | 0.9015 | 0.8975 | | 0.2416 | 2.0 | 500 | 0.2149 | 0.926 | 0.9260 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
amoux/roberta-cord19-1M7k
amoux
2022-10-12T17:59:56Z
112
0
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.githubassets.com/images/icons/emoji/unicode/2695.png widget: - text: Lung infiltrates cause significant morbidity and mortality in immunocompromised <mask>. - text: Tuberculosis appears to be an important <mask> in endemic regions especially in the non-HIV, non-hematologic malignancy group. - text: For vector-transmitted diseases this places huge significance on vector mortality rates as vectors usually don't <mask> an infection and instead remain infectious for life. - text: The lung lesions were characterized by bronchointerstitial pneumonia with accumulation of neutrophils, macrophages and necrotic debris in <mask> and bronchiolar lumens and peribronchiolar/perivascular infiltration of inflammatory cells. --- # roberta-cord19-1M7k ![](https://github.githubassets.com/images/icons/emoji/unicode/2695.png) > This model is based on ***RoBERTa*** and was pre-trained on 1.7 million sentences. The training corpus was papers taken from *Semantic Scholar*'s CORD-19 historical releases. Corpus size is `13k` papers, `~60M` tokens. I used the full-text `"body_text"` of the papers in training (details below). #### Usage ```python from transformers import pipeline from transformers import RobertaTokenizerFast, RobertaForMaskedLM tokenizer = RobertaTokenizerFast.from_pretrained("amoux/roberta-cord19-1M7k") model = RobertaForMaskedLM.from_pretrained("amoux/roberta-cord19-1M7k") fillmask = pipeline("fill-mask", model=model, tokenizer=tokenizer) text = "Lung infiltrates cause significant morbidity and mortality in immunocompromised patients." masked_text = text.replace("patients", tokenizer.mask_token) predictions = fillmask(masked_text, top_k=3) ``` - Predicted tokens ```bash [{'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised patients.</s>', 'score': 0.6273621320724487, 'token': 660, 'token_str': 'Ġpatients'}, {'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised individuals.</s>', 'score': 0.19800445437431335, 'token': 1868, 'token_str': 'Ġindividuals'}, {'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised animals.</s>', 'score': 0.022069649770855904, 'token': 1471, 'token_str': 'Ġanimals'}] ``` ## Dataset - About - name: *CORD-19: The Covid-19 Open Research Dataset* - date: *2020-03-18* - md5 | sha1: `a36fe181 | 8fbea927` - text-key: `body_text` - subsets (*total*: `13,202`): - *biorxiv_medrxiv*: `803` - *comm_use_subset*: `9000` - *pmc_custom_license*: `1426` - *noncomm_use_subset*: `1973` - Splits (*ratio: 0.9*) - sentences used for training: `1,687,124` - sentences used for evaluation: `187,459` - Total training steps: `210,890` - Total evaluation steps: `23,433` ## Parameters - Data - block_size: `256` - Training - per_device_train_batch_size: `8` - per_device_eval_batch_size: `8` - gradient_accumulation_steps: `2` - learning_rate: `5e-5` - num_train_epochs: `2` - fp16: `True` - fp16_opt_level: `'01'` - seed: `42` - Output - global_step: `210890` - training_loss: `3.5964575726682155` ## Evaluation - Perplexity: `17.469366079957922` ### Citation > Allen Institute CORD-19 [Historical Releases](https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html) ``` @article{Wang2020CORD19TC, title={CORD-19: The Covid-19 Open Research Dataset}, author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier}, journal={ArXiv}, year={2020} } ```
asparius/bert-fine-grained
asparius
2022-10-12T17:47:10Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T10:48:56Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-fine-grained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-grained This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1308 - Accuracy: 0.5761 - F1: 0.5655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0917 | 1.0 | 2188 | 1.0668 | 0.5789 | 0.5448 | | 0.9603 | 2.0 | 4376 | 1.0620 | 0.5868 | 0.5718 | | 0.8047 | 3.0 | 6564 | 1.1308 | 0.5761 | 0.5655 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/el-salvador-style-style
sd-concepts-library
2022-10-12T16:31:26Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-12T16:31:23Z
--- license: mit --- ### <el-salvador-style> style on Stable Diffusion This is the `<el-salvador-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<el-salvador-style> 0](https://huggingface.co/sd-concepts-library/el-salvador-style-style/resolve/main/concept_images/2.jpeg) ![<el-salvador-style> 1](https://huggingface.co/sd-concepts-library/el-salvador-style-style/resolve/main/concept_images/1.jpeg) ![<el-salvador-style> 2](https://huggingface.co/sd-concepts-library/el-salvador-style-style/resolve/main/concept_images/0.jpeg)
huggingtweets/ugroyp
huggingtweets
2022-10-12T16:08:18Z
128
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-12T15:48:53Z
--- language: en thumbnail: http://www.huggingtweets.com/ugroyp/1665590893363/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579799738987290627/UY1qNBWl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BdU</div> <div style="text-align: center; font-size: 14px;">@ugroyp</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BdU. | Data | BdU | | --- | --- | | Tweets downloaded | 2693 | | Retweets | 587 | | Short tweets | 181 | | Tweets kept | 1925 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jie4hq9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ugroyp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/u2hl6e4v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/u2hl6e4v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ugroyp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rgoldstein/autotrain-movie-rationales-1734060527
rgoldstein
2022-10-12T14:34:03Z
99
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:rgoldstein/autotrain-data-movie-rationales", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T14:30:47Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - rgoldstein/autotrain-data-movie-rationales co2_eq_emissions: emissions: 5.912842155368309 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1734060527 - CO2 Emissions (in grams): 5.9128 ## Validation Metrics - Loss: 0.198 - Accuracy: 0.934 - Precision: 0.937 - Recall: 0.931 - AUC: 0.983 - F1: 0.934 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rgoldstein/autotrain-movie-rationales-1734060527 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rgoldstein/autotrain-movie-rationales-1734060527", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rgoldstein/autotrain-movie-rationales-1734060527", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ntaka/xlm-roberta-base-finetuned-panx-de
ntaka
2022-10-12T13:32:08Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-08T13:42:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
gsarti/it5-efficient-small-el32-ilgiornale-to-repubblica
gsarti
2022-10-12T13:19:18Z
105
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "newspaper", "efficient", "ilgiornale", "repubblica", "style-transfer", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T14:12:35Z
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - efficient - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: it5-efficient-small-el32-ilgiornale-to-repubblica results: - task: type: headline-style-transfer-ilgiornale-to-repubblica name: "Headline style transfer (Il Giornale to Repubblica)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.286 name: "Test Rouge1" - type: rouge2 value: 0.099 name: "Test Rouge2" - type: rougeL value: 0.253 name: "Test RougeL" - type: bertscore value: 0.422 name: "Test BERTScore" - type: headline-headline-consistency-classifier value: 0.836 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.763 name: "Test Headline-Article Consistency Accuracy" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for News Headline Style Transfer (Il Giornale to Repubblica) 🗞️➡️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news headline style transfer in the Il Giornale to Repubblica direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate a headline in the style of Repubblica from the full body of an article written in the style of Il Giornale. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines g2r = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-ilgiornale-to-repubblica') g2r("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-ilgiornale-to-repubblica") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-ilgiornale-to-repubblica") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
troesy/distilbert-label-all-tokens
troesy
2022-10-12T13:17:05Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T13:08:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-label-all-tokens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-label-all-tokens This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.1769 | | No log | 2.0 | 348 | 0.1705 | | 0.188 | 3.0 | 522 | 0.1709 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
gsarti/it5-efficient-small-el32-repubblica-to-ilgiornale
gsarti
2022-10-12T13:16:45Z
105
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "efficient", "newspaper", "ilgiornale", "repubblica", "style-transfer", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T14:15:00Z
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - efficient - newspaper - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: it5-efficient-small-el32-repubblica-to-ilgiornale results: - task: type: headline-style-transfer-repubblica-to-ilgiornale name: "Headline style transfer (Repubblica to Il Giornale)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.269 name: "Test Rouge1" - type: rouge2 value: 0.087 name: "Test Rouge2" - type: rougeL value: 0.235 name: "Test RougeL" - type: bertscore value: 0.395 name: "Test BERTScore" - type: headline-headline-consistency-classifier value: 0.808 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.810 name: "Test Headline-Article Consistency Accuracy" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for News Headline Style Transfer (Repubblica to Il Giornale) 🗞️➡️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news headline style transfer in the Repubblica to Il Giornale direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate a headline in the style of Il Giornale from the full body of an article written in the style of Repubblica. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines r2g = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-repubblica-to-ilgiornale') r2g("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-repubblica-to-ilgiornale") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-repubblica-to-ilgiornale") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
gsarti/it5-efficient-small-el32-informal-to-formal
gsarti
2022-10-12T13:12:49Z
107
1
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "style-transfer", "efficient", "formality-style-transfer", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T13:48:32Z
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - efficient - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.430 name: "Avg. Test Rouge1" - type: rouge2 value: 0.221 name: "Avg. Test Rouge2" - type: rougeL value: 0.408 name: "Avg. Test RougeL" - type: bertscore value: 0.630 name: "Avg. Test BERTScore" --- # IT5 Cased Small Efficient EL32 for Informal-to-formal Style Transfer 🧐 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
gsarti/it5-efficient-small-el32-formal-to-informal
gsarti
2022-10-12T13:11:05Z
103
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "style-transfer", "efficient", "formality-style-transfer", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T13:29:43Z
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - efficient - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.459 name: "Avg. Test Rouge1" - type: rouge2 value: 0.244 name: "Avg. Test Rouge2" - type: rougeL value: 0.435 name: "Avg. Test RougeL" - type: bertscore value: 0.739 name: "Avg. Test BERTScore" --- # IT5 Cased Small Efficient EL32 for Formal-to-informal Style Transfer 🤗 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5-efficient-small-el32-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5-efficient-small-el32-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
doyoungkim/bert-base-uncased-finetuned-sst2
doyoungkim
2022-10-12T13:09:42Z
117
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: bert-base-uncased-finetuned-sst2 results: - dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.926605504587156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1666 | 1.0 | 2105 | 0.2403 | 0.9232 | | 0.1122 | 2.0 | 4210 | 0.2716 | 0.9266 | | 0.0852 | 3.0 | 6315 | 0.3150 | 0.9232 | | 0.056 | 4.0 | 8420 | 0.3209 | 0.9163 | | 0.0344 | 5.0 | 10525 | 0.3740 | 0.9243 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
gsarti/it5-efficient-small-el32-question-generation
gsarti
2022-10-12T13:09:07Z
106
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "Italian", "efficient", "sequence-to-sequence", "question-generation", "squad_it", "it", "dataset:squad_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T14:12:07Z
--- language: - it license: apache-2.0 datasets: - squad_it tags: - Italian - efficient - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.382 name: "Test Rouge1" - type: rouge2 value: 0.201 name: "Test Rouge2" - type: rougeL value: 0.357 name: "Test RougeL" - type: bertscore value: 0.517 name: "Test BERTScore" --- # IT5 Cased Small Efficient EL32 for Question Generation 💭 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
gsarti/it5-efficient-small-el32-news-summarization
gsarti
2022-10-12T13:07:40Z
141
4
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "fanpage", "efficient", "ilpost", "summarization", "it", "dataset:ARTeLab/fanpage", "dataset:ARTeLab/ilpost", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-04-28T14:11:32Z
--- language: - it license: apache-2.0 datasets: - ARTeLab/fanpage - ARTeLab/ilpost tags: - italian - sequence-to-sequence - fanpage - efficient - ilpost - summarization widget: - text: "Non lo vuole sposare. E’ quanto emerge all’interno dell’ultima intervista di Raffaella Fico che, ringraziando Mancini per i buoni consigli elargiti al suo fidanzato, rimanda l’idea del matrimonio per qualche anno ancora. La soubrette, che è stata recentemente protagonista di una dedica di Supermario, non ha ancora intenzione di accasarsi perché è sicura che per mettersi la fede al dito ci sia ancora tempo. Nonostante il suo Mario sia uno degli sportivi più desiderati al mondo, l’ex protagonista del Grande Fratello non ha alcuna intenzione di cedere seriamente alla sua corte. Solo qualche giorno fa, infatti, dopo l’ultima bravata di Balotelli, Mancini gli aveva consigliato di sposare la sua Raffaella e di mettere la testa a posto. Chi pensava che sarebbe stato Mario a rispondere, però, si è sbagliato. A mettere le cose bene in chiaro è la Fico che, intervistata dall’emittente radiofonica Rtl 102.5, dice: È presto per sposarsi, siamo ancora molto giovani. È giusto che prima uno si realizzi nel proprio lavoro. E poi successivamente perché no, ci si può anche pensare. Quando si è giovani capita di fare qualche pazzia, quindi ci sta. Comunque i tabloid inglesi sono totalmente accaniti sulla sua vita privata quando poi dovrebbero interessarsi di più di quello che fa sul campo. Lui non fa le cose con cattiveria, ma quando si è giovani si fanno determinate cose senza stare a pensare se sono giuste o sbagliate. Mario ha gli obiettivi puntati addosso: più per la sua vita privata che come giocatore. Per me può anche andare in uno strip club, se non fa niente di male, con gli amici, però devo dire che alla fine torna sempre da me, sono la sua preferita." - text: "Valerio è giovanissimo ma già una star. Fuori dall’Ariston ragazzine e meno ragazzine passano ore anche sotto la pioggia per vederlo. Lui è forte del suo talento e sicuro. Partecipa in gara tra i “big” di diritto, per essere arrivato in finalissima nel programma Amici di Maria De Filippi e presenta il brano Per tutte le volte che scritta per lui da Pierdavide Carone. Valerio Scanu è stato eliminato. Ma non è detta l'ultima parola: il duetto di questa sera con Alessandra Amoroso potrebbe risollevarlo e farlo rientrare in gara. Che cosa è successo alla giuria visto che sei stato eliminato anche se l’esibizione era perfetta? Nn lo so. Sono andate bene le esibizioni, ero emozionato ma tranquillo. Ero contento ma ho cantato bene. Non sono passato e stasera ci sarà il ballottaggio… Quali sono le differenze tra Amici e Sanremo? Sono due cose diverse. Amici ti prepara a salire sul palco di amici. A Sanremo ci devi arrivare… ho fatto più di sessanta serate nel tour estivo, poi promozione del secondo disco. Una bella palestra. Sono cresciuto anche umanamente. Sono riuscito a percepire quello che il pubblico trasmette. L’umiltà? Prima di tutto. Sennò non sarei qui." - text: "L’azienda statunitense Broadcom, uno dei più grandi produttori di semiconduttori al mondo, ha presentato un’offerta per acquisire Qualcomm, altra grande società degli Stati Uniti conosciuta soprattutto per la sua produzione di microprocessori Snapdragon (ARM), utilizzati in centinaia di milioni di smartphone in giro per il mondo. Broadcom ha proposto di acquistare ogni azione di Qualcomm al prezzo di 70 dollari, per un valore complessivo di circa 105 miliardi di dollari (130 miliardi se si comprendono 25 miliardi di debiti netti) . Se l’operazione dovesse essere approvata, sarebbe una delle più grandi acquisizioni di sempre nella storia del settore tecnologico degli Stati Uniti. Broadcom ha perfezionato per mesi la sua proposta di acquisto e, secondo i media statunitensi, avrebbe già preso contatti con Qualcomm per trovare un accordo. Secondo gli analisti, Qualcomm potrebbe comunque opporsi all’acquisizione perché il prezzo offerto è di poco superiore a quello dell’attuale valore delle azioni dell’azienda. Ci potrebbero essere inoltre complicazioni sul piano dell’antitrust da valutare, prima di un’eventuale acquisizione." - text: "Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente." metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-news-summarization results: - task: type: news-summarization name: "News Summarization" dataset: type: newssum-it name: "NewsSum-IT" metrics: - type: rouge1 value: 0.354 name: "Test Rouge1" - type: rouge2 value: 0.172 name: "Test Rouge2" - type: rougeL value: 0.278 name: "Test RougeL" - type: bertscore value: 0.410 name: "Avg. Test BERTScore" --- # IT5 Cased Small Efficient EL32 for News Summarization ✂️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news summarization on the [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage) and [Il Post](https://huggingface.co/datasets/ARTeLab/ilpost) corpora as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines newsum = pipeline("summarization", model='it5/it5-efficient-small-el32-news-summarization') newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.") >>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-news-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-news-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
Kasturi135/finetuning-sentiment-model-3000-samples
Kasturi135
2022-10-12T13:05:39Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T08:50:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3357 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
gsarti/it5-efficient-small-el32-headline-generation
gsarti
2022-10-12T12:59:39Z
108
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "efficient", "headline-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "arxiv:2109.10686", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T14:11:12Z
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - efficient - headline-generation widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-headline-generation results: - task: type: headline-generation name: "Headline generation" dataset: type: headgen_it name: "HeadGen-IT" metrics: - type: rouge1 value: 0.299 name: "Test Rouge1" - type: rouge2 value: 0.108 name: "Test Rouge2" - type: rougeL value: 0.264 name: "Test RougeL" - type: bertscore value: 0.427 name: "Test BERTScore" --- # IT5 Cased Small Efficient EL32 for News Headline Generation 🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
seonghyeonye/flipped_11B
seonghyeonye
2022-10-12T12:53:58Z
16
20
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:bigscience/P3", "arxiv:2210.02969", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-11T06:16:21Z
--- datasets: - bigscience/P3 language: en license: apache-2.0 --- **Official repository**: [seonghyeonye/Flipped-Learning](https://github.com/seonghyeonye/Flipped-Learning) # Model Description FLIPPED uses a unique meta-learning method to show zero-shot task generalization on classification natural language prompts, outperforming GPT-3 and T0-11B on many tasks with a 4x smaller scale. It is a series of encoder-decoder model trained on a numerous classification dataset. We show inputs and its corresponding outputs of each instances in each dataset to FLIPPED, and train it to generate its possible instruction. We add unlikelihood loss in order **not** to generate the instruction when given the same input, but a wrong output. To obtain FLIPPED, we fine-tune a T5 model in a given scale on a multitask mixture covering many different classification NLP tasks. # Intended uses You can use the models to perform inference on tasks by specifying your input-output NLP query in a "input: {input}\noutput: {output}" form , and the model will predict the instruction. For example, You can try *"input: <extra_id_0> this is the best cast iron skillet you will ever buy<extra_id_1>\noutput: Positive"* as an input, and the model will hopefully generate *"Title: Review:"*. # How to use Our overall explanation models along with ablations can be found in our [paper](https://arxiv.org/abs/2210.02969). We recommend using the [FLIPPED-11B](seonghyeonye/flipped_11B) checkpoint as it leads (on average) to the best performances on a variety of NLP tasks. |Model|Number of parameters| |-|-| |[Flipped_11B](https://huggingface.co/seonghyeonye/flipped_11B)|11 billion| |[Flipped_3B](https://huggingface.co/seonghyeonye/flipped_3B)|3 billion| Here is how to download the model in PyTorch: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("seonghyeonye/flipped_11B") tokenizer = T5Tokenizer.from_pretrained("seonghyeonye/flipped_11B") ``` If you want to use another checkpoint, please replace the path in `T5Tokenizer` and `T5ForConditionalGeneration`. We also provide a quick [Jupyter Notebook](https://github.com/seonghyeonye/Flipped-Learning/blob/master/flipped_inference.ipynb) where you can inference with our method. **Note: the model was trained with bfloat16 activations. As such, we highly discourage running inference with fp16.** # Training procedure FLIPPED models are based on [T5](https://huggingface.co/google/t5-v1_1-xxl), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). At a high level, the input text along with output label is fed to the encoder and the instruction text is produced by the decoder. The model is fine-tuned to autoregressively generate the target. We also feed input text along with a wrong input, adding an unlikelihood loss in order not to make model produce the proper instruction in that case. Here are our training details. Training details: - Fine-tuning steps: 5'000 - Input sequence length: 384 - Target sequence length: 64 - Batch size: 240 - Optimizer: Adafactor - Learning rate: 5e-5 - Dropout: 0.1 - Sampling strategy: proportional to the number of examples in each dataset (we randomly sampled any dataset if it has over 500'000 examples so that it has at most 500'000 examples. Also, we randomly choose which instruction to generate for each training steps, so ideally each instruction appears *num_examples/num_templates* while training.) # Training data We trained different variants T0 with different mixtures of datasets. |Model|Training datasets| |--|--| |FLIPPED-11B|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Topic Classification: AG News, DBPedia<br>- Paraphrase Identification: MRPC, PAWS, QQP| |FLIPPED_3B|Same as FLIPPED-11B| We only choose prompts examples that has output lables, which can be found on the dataset page. # Evaluation data We evaluate our models on following datasets: |Task category|Datasets| |-|-| |Natural language inference|ANLI(R1, R2, R3), CB, RTE| |Coreference resolution|WSC, Winogrande| |Word sense disambiguation|WiC| |Sentence completion|COPA, HellaSwag, Story Cloze| |QA|PIQA, ARC-Challenge, OpenbookQA| We also evaluate FLIPPED on a subset of [BIG-bench benchmark](https://github.com/google/BIG-bench): - Code description task - Conceptual combinations - Hindu knowledge json - Known unknowns - Language identification - Logic grid puzzle task - Logical deduction - Common misconceptions - Movie dialog same or different - Novel concepts - Strategyqa - Formal fallacies syllogisms negation - VitaminC - Winowhy multiple choice # Label generalization We evaluate the robustness of models on following datasets with changing the output label of the datasets. The substitute words can be found in our [paper](https://arxiv.org/abs/2210.02969). |Task category|(Datasets, Template name)| |-|-| |Unseen tasks|(WSC, does the pronoun refer to), (CB, can we infer), (RTE, MNLI crowdsource)| |Seen tasks|(IMDB, Reviewer Enjoyment Yes No), (PAWS, Meaning) | The template name we used can be found in the [promptsource template library](https://github.com/bigscience-workshop/promptsource/tree/main/promptsource/templates). # BibTeX entry and citation info ```bibtex @article{ye2022guess, title={Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners}, author={Ye, Seonghyeon and Kim, Doyoung and Jang, Joel and Shin, Joongbo and Seo, Minjoon}, journal={arXiv preprint arXiv:2210.02969}, year={2022} } ```
csam/finetuning-sentiment-model-3000-samples
csam
2022-10-12T11:14:28Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-12T11:01:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.880794701986755 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2913 - Accuracy: 0.88 - F1: 0.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Linus4Lyf/my-awesome-setfit-model
Linus4Lyf
2022-10-12T11:00:56Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-12T11:00:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Guihss/TypeBERT
Guihss
2022-10-12T10:40:25Z
131
0
transformers
[ "transformers", "pytorch", "type_bert", "text-classification", "custom_code", "license:openrail", "autotrain_compatible", "region:us" ]
text-classification
2022-10-12T09:45:16Z
--- license: openrail widget: - text: "a form of locomotion or movement in which an organism or non-living (e.g., robotic) mechanical system propels itself through the air along a ballistic trajectory." ---
troesy/bert-base-uncased-hatexplain-label-all-tokens-True-3epoch
troesy
2022-10-12T10:35:44Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T10:22:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-hatexplain-label-all-tokens-True-3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-hatexplain-label-all-tokens-True-3epoch This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.2211 | | No log | 2.0 | 348 | 0.2089 | | 0.2165 | 3.0 | 522 | 0.2139 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Farhan11/bert-finetuned-ner
Farhan11
2022-10-12T10:29:27Z
68
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T09:19:08Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Farhan11/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Farhan11/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0272 - Validation Loss: 0.0522 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1799 | 0.0605 | 0 | | 0.0479 | 0.0561 | 1 | | 0.0272 | 0.0522 | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.13.1
Yoshiki/chime4_enh_asr1_wpd_wavlm_conformer
Yoshiki
2022-10-12T10:09:17Z
7
0
espnet
[ "espnet", "audio", "speech-enhancement-recognition", "en", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-10-12T09:15:17Z
--- tags: - espnet - audio - speech-enhancement-recognition language: en datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 EnhS2T model ### `Yoshiki/chime4_enh_asr1_wpd_wavlm_conformer` This model was trained by Yoshiki using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet 8ed83f45d5aa2ca6b3635e44b9c29afb9b5fb600 pip install -e . cd egs2/chime4/enh_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Yoshiki/chime4_enh_asr1_wpd_wavlm_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Oct 11 02:40:53 UTC 2022` - python version: `3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.10.1+cu111` - Git hash: `` - Commit date: `` ## enh_asr_train_enh_asr_wpd_init_noenhloss_wavlm_conformer_raw_en_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/dt05_real_isolated_6ch_track|1640|27119|98.8|0.9|0.2|0.2|1.3|16.2| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/dt05_simu_isolated_6ch_track|1640|27120|98.9|0.9|0.2|0.1|1.3|15.2| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/et05_real_isolated_6ch_track|1320|21409|98.4|1.4|0.2|0.2|1.8|20.6| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/et05_simu_isolated_6ch_track|1320|21416|98.9|1.0|0.2|0.1|1.2|15.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/dt05_real_isolated_6ch_track|1640|160390|99.7|0.1|0.2|0.2|0.5|16.2| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/dt05_simu_isolated_6ch_track|1640|160400|99.7|0.1|0.2|0.1|0.5|15.2| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/et05_real_isolated_6ch_track|1320|126796|99.5|0.2|0.3|0.2|0.7|20.6| |decode_asr_transformer_largelm_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave_10best/et05_simu_isolated_6ch_track|1320|126812|99.7|0.2|0.2|0.1|0.5|15.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## EnhS2T config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_asr_wpd_init_noenhloss_wavlm_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_asr_train_enh_asr_wpd_init_noenhloss_wavlm_conformer_raw_en_char ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 31 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max - - train - loss - min keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 1 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - ../enh1/exp/enh_train_enh_beamformer_wpd_ci_sdr_shorttap_raw/valid.loss.best.pth:separator:enh_model.separator - ../asr1/exp/asr_train_asr_conformer_wavlm2_raw_en_char/valid.acc.best.pth:frontend:s2t_model.frontend - ../asr1/exp/asr_train_asr_conformer_wavlm2_raw_en_char/valid.acc.best.pth:preencoder:s2t_model.preencoder - ../asr1/exp/asr_train_asr_conformer_wavlm2_raw_en_char/valid.acc.best.pth:encoder:s2t_model.encoder - ../asr1/exp/asr_train_asr_conformer_wavlm2_raw_en_char/valid.acc.best.pth:ctc:s2t_model.ctc - ../asr1/exp/asr_train_asr_conformer_wavlm2_raw_en_char/valid.acc.best.pth:decoder:s2t_model.decoder ignore_init_mismatch: false freeze_param: - s2t_model.frontend.upstream num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_asr_stats_raw_en_char/train/speech_shape - exp/enh_asr_stats_raw_en_char/train/speech_ref1_shape - exp/enh_asr_stats_raw_en_char/train/text_spk1_shape.char valid_shape_file: - exp/enh_asr_stats_raw_en_char/valid/speech_shape - exp/enh_asr_stats_raw_en_char/valid/speech_ref1_shape - exp/enh_asr_stats_raw_en_char/valid/text_spk1_shape.char batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_multi_isolated_6ch_track/wav.scp - speech - sound - - dump/raw/tr05_multi_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_multi_isolated_6ch_track/text_spk1 - text_spk1 - text valid_data_path_and_name_and_type: - - dump/raw/dt05_multi_isolated_6ch_track/wav.scp - speech - sound - - dump/raw/dt05_multi_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_multi_isolated_6ch_track/text_spk1 - text_spk1 - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: sgd optim_conf: lr: 0.001 momentum: 0.9 scheduler: null scheduler_conf: {} token_list: data/en_token_list/char/tokens.txt src_token_list: null init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true enh_criterions: - name: ci_sdr conf: filter_length: 512 wrapper: fixed_order wrapper_conf: weight: 0.1 diar_num_spk: null diar_input_size: null enh_model_conf: stft_consistency: false loss_type: mask_mse mask_type: null asr_model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false st_model_conf: stft_consistency: false loss_type: mask_mse mask_type: null diar_model_conf: diar_weight: 1.0 attractor_weight: 1.0 subtask_series: - enh - asr model_conf: calc_enh_loss: false bypass_enh_prob: 0.0 use_preprocessor: true token_type: char bpemodel: null src_token_type: bpe src_bpemodel: null non_linguistic_symbols: data/nlsyms.txt cleaner: null g2p: null text_name: - text_spk1 enh_encoder: stft enh_encoder_conf: n_fft: 512 win_length: 400 hop_length: 128 use_builtin_complex: false enh_separator: wpe_beamformer enh_separator_conf: num_spk: 1 loss_type: spectrum use_wpe: false wnet_type: blstmp wlayers: 3 wunits: 512 wprojs: 512 wdropout_rate: 0.0 taps: 3 delay: 3 use_dnn_mask_for_wpe: true use_beamformer: true bnet_type: blstmp blayers: 3 bunits: 512 bprojs: 512 badim: 320 ref_channel: 4 use_noise_mask: true beamformer_type: wpd_souden bdropout_rate: 0.0 enh_decoder: stft enh_decoder_conf: n_fft: 512 win_length: 400 hop_length: 128 enh_mask_module: multi_mask enh_mask_module_conf: {} frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_large download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 100 num_freq_mask: 4 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} asr_preencoder: linear asr_preencoder_conf: input_size: 1024 output_size: 80 asr_encoder: conformer asr_encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d2 normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 15 asr_postencoder: null asr_postencoder_conf: {} asr_decoder: transformer asr_decoder_conf: input_layer: embed attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 st_preencoder: null st_preencoder_conf: {} st_encoder: rnn st_encoder_conf: {} st_postencoder: null st_postencoder_conf: {} st_decoder: rnn st_decoder_conf: {} st_extra_asr_decoder: rnn st_extra_asr_decoder_conf: {} st_extra_mt_decoder: rnn st_extra_mt_decoder_conf: {} diar_frontend: default diar_frontend_conf: {} diar_specaug: null diar_specaug_conf: {} diar_normalize: utterance_mvn diar_normalize_conf: {} diar_encoder: transformer diar_encoder_conf: {} diar_decoder: linear diar_decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} diar_attractor: null diar_attractor_conf: {} required: - output_dir version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
troesy/toxicbert-hatexplain-label-all-tokens-False-3epoch
troesy
2022-10-12T09:58:31Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T09:45:24Z
--- tags: - generated_from_trainer model-index: - name: toxicbert-hatexplain-label-all-tokens-False-3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toxicbert-hatexplain-label-all-tokens-False-3epoch This model is a fine-tuned version of [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.1816 | | No log | 2.0 | 348 | 0.1751 | | 0.1869 | 3.0 | 522 | 0.1779 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
anton-l/common_voice_generator
anton-l
2022-10-12T09:40:09Z
0
0
null
[ "region:us" ]
null
2022-04-29T15:53:56Z
## Common voice release generator 1. Copy the latest release id from the `RELEASES` dict in https://github.com/common-voice/common-voice/blob/main/web/src/components/pages/datasets/releases.ts to the `VERSIONS` variable in `generate_datasets.py`. 2. Copy the languages from https://github.com/common-voice/common-voice/blob/release-v1.78.0/web/locales/en/messages.ftl (replacing `release-v1.78.0` with the latest version tag) to the `languages.ftl` file. 3. Run `python generate_datasets.py` to generate the dataset repos. 4. `cd ..` 5. `huggingface-cli repo create --type dataset --organization mozilla-foundation common_voice_11_0` 6. `git clone https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0` 7. `cd common_voice_11_0` 8. `cp ../common_voice_generator/common_voice_11_0/* ./` 9. `git add . && git commit -m "Release" && git push`
farzeen/q-Taxi-v3
farzeen
2022-10-12T09:38:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-11T02:27:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="farzeen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
farzeen/q-FrozenLake-v0-4x4-noSlippery
farzeen
2022-10-12T09:35:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-12T01:35:32Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v0-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="farzeen/q-FrozenLake-v0-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
din0s/bart-large-asqa-cb
din0s
2022-10-12T09:27:35Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-12T08:51:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-large-asqa-cb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-asqa-cb This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4791 - Rougelsum: 38.2862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 3.347 | 1.0 | 545 | 2.5353 | 37.3812 | | 2.7829 | 2.0 | 1090 | 2.5087 | 37.6431 | | 2.6973 | 3.0 | 1635 | 2.4906 | 37.9194 | | 2.6125 | 4.0 | 2180 | 2.4812 | 38.1180 | | 2.5697 | 5.0 | 2725 | 2.4762 | 38.1616 | | 2.5086 | 6.0 | 3270 | 2.4773 | 38.1370 | | 2.4678 | 7.0 | 3815 | 2.4831 | 37.9346 | | 2.4404 | 8.0 | 4360 | 2.4896 | 38.1150 | | 2.3866 | 9.0 | 4905 | 2.4775 | 38.2222 | | 2.3791 | 10.0 | 5450 | 2.4791 | 38.2862 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
osanseviero/q-FrozenLake-v1-4x4-noSlippery-works
osanseviero
2022-10-12T07:57:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-12T07:57:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-works results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="osanseviero/q-FrozenLake-v1-4x4-noSlippery-works", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kiddothe2b/longformer-base-4096
kiddothe2b
2022-10-12T07:51:14Z
104
0
transformers
[ "transformers", "pytorch", "longformer", "fill-mask", "long-documents", "en", "dataset:c4", "arxiv:2004.05150", "arxiv:2210.05529", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-10T15:10:09Z
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask arxiv: 2210.05529 language: en tags: - long-documents datasets: - c4 model-index: - name: kiddothe2b/longformer-base-4096 results: [] --- # Longformer / longformer-base-4096 ## Model description [Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096. Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=longformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification or question answering. ## How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-base-4096', trust_remote_code=True) mlm_model("Hello I'm a <mask> model.") ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/longformer-base-4096", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint and has been continued pre-trained for additional 50k steps in long sequences (> 1024 subwords) of [C4](https://huggingface.co/datasets/c4) (Raffel et al., 2020). ### Training hyperparameters TThe following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7067 | 0.2 | 10000 | 1.5923 | 0.6714 | | 1.6532 | 0.4 | 20000 | 1.5494 | 0.6784 | | 1.622 | 0.6 | 30000 | 1.5208 | 0.6830 | | 1.588 | 0.8 | 40000 | 1.4880 | 0.6876 | | 1.5682 | 1.0 | 50000 | 1.4680 | 0.6908 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ``` Also cite the original work: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150). ``` @article{Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={Iz Beltagy and Matthew E. Peters and Arman Cohan}, journal={arXiv:2004.05150}, year={2020}, } ```
kiddothe2b/hierarchical-transformer-LC1-mini-1024
kiddothe2b
2022-10-12T07:46:58Z
103
0
transformers
[ "transformers", "pytorch", "hierarchical-transformer", "fill-mask", "long-documents", "custom_code", "en", "dataset:wikipedia", "arxiv:2210.05529", "license:cc-by-sa-4.0", "autotrain_compatible", "region:us" ]
fill-mask
2022-10-11T09:02:48Z
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - wikipedia model-index: - name: kiddothe2b/hierarchical-transformer-LC1-mini-1024 results: [] --- # Hierarchical Attention Transformer (HAT) / hierarchical-transformer-LC1-mini-1024 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 1,024. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?other=hierarchical-transformer) to look for other versions of HAT, or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelforForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) mlm_model = AutoModelforForMaskedLM("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) ``` You can also fine-tun it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3959 | 0.2 | 10000 | 2.2258 | | 2.3395 | 0.4 | 20000 | 2.1738 | | 2.3082 | 0.6 | 30000 | 2.1404 | | 2.273 | 0.8 | 40000 | 2.1145 | | 2.262 | 1.14 | 50000 | 2.1004 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
Ferro/xlm-roberta-base-finetuned-panx-fr
Ferro
2022-10-12T07:44:35Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T07:25:26Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Ferro/xlm-roberta-base-finetuned-panx-de-it
Ferro
2022-10-12T07:24:50Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T06:59:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1475 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2761 | 1.0 | 595 | 0.1644 | 0.8164 | | 0.1333 | 2.0 | 1190 | 0.1473 | 0.8525 | | 0.0848 | 3.0 | 1785 | 0.1475 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/deepleffen-the_dealersh1p
huggingtweets
2022-10-12T05:24:36Z
130
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-12T05:09:22Z
--- language: en thumbnail: http://www.huggingtweets.com/deepleffen-the_dealersh1p/1665552272191/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1211158441504456704/dCNSnY4k_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">『 』『dan』『 』 & Deep Leffen Bot</div> <div style="text-align: center; font-size: 14px;">@deepleffen-the_dealersh1p</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 『 』『dan』『 』 & Deep Leffen Bot. | Data | 『 』『dan』『 』 | Deep Leffen Bot | | --- | --- | --- | | Tweets downloaded | 2673 | 608 | | Retweets | 1336 | 14 | | Short tweets | 235 | 27 | | Tweets kept | 1102 | 567 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xu780cl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-the_dealersh1p's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3w2qdw30) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3w2qdw30/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-the_dealersh1p') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MuhammadIqbalBazmi/wav2vec2-large-960h-lv60-self-intent-classification-ori
MuhammadIqbalBazmi
2022-10-12T05:12:19Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-12T04:48:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-960h-lv60-self-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-960h-lv60-self-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1985 - Accuracy: 0.5417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2033 | 1.0 | 14 | 2.2126 | 0.0833 | | 2.2006 | 2.0 | 28 | 2.2026 | 0.0833 | | 2.1786 | 3.0 | 42 | 2.1758 | 0.3333 | | 2.1712 | 4.0 | 56 | 2.1436 | 0.3333 | | 2.1495 | 5.0 | 70 | 2.1120 | 0.3333 | | 2.1326 | 6.0 | 84 | 2.0909 | 0.3333 | | 2.1039 | 7.0 | 98 | 2.0966 | 0.3333 | | 2.0931 | 8.0 | 112 | 2.0355 | 0.3333 | | 2.1144 | 9.0 | 126 | 2.0082 | 0.3333 | | 2.0258 | 10.0 | 140 | 1.9901 | 0.375 | | 2.0028 | 11.0 | 154 | 1.9429 | 0.3958 | | 1.9737 | 12.0 | 168 | 1.9538 | 0.3958 | | 1.9023 | 13.0 | 182 | 1.8824 | 0.375 | | 1.9226 | 14.0 | 196 | 1.8607 | 0.3958 | | 1.8521 | 15.0 | 210 | 1.8065 | 0.3958 | | 1.7752 | 16.0 | 224 | 1.8153 | 0.4167 | | 1.8391 | 17.0 | 238 | 1.7470 | 0.4375 | | 1.7041 | 18.0 | 252 | 1.7419 | 0.4167 | | 1.7075 | 19.0 | 266 | 1.6644 | 0.4375 | | 1.6845 | 20.0 | 280 | 1.6340 | 0.4375 | | 1.6275 | 21.0 | 294 | 1.6271 | 0.4167 | | 1.4586 | 22.0 | 308 | 1.5640 | 0.4375 | | 1.4987 | 23.0 | 322 | 1.5279 | 0.4583 | | 1.5513 | 24.0 | 336 | 1.4873 | 0.4792 | | 1.4828 | 25.0 | 350 | 1.4887 | 0.4583 | | 1.4711 | 26.0 | 364 | 1.4613 | 0.4583 | | 1.371 | 27.0 | 378 | 1.4062 | 0.4792 | | 1.3789 | 28.0 | 392 | 1.4038 | 0.4792 | | 1.3579 | 29.0 | 406 | 1.4031 | 0.4792 | | 1.2771 | 30.0 | 420 | 1.3637 | 0.5 | | 1.3417 | 31.0 | 434 | 1.3655 | 0.5 | | 1.231 | 32.0 | 448 | 1.3698 | 0.5 | | 1.2367 | 33.0 | 462 | 1.3394 | 0.5 | | 1.2933 | 34.0 | 476 | 1.3448 | 0.4792 | | 1.1631 | 35.0 | 490 | 1.2867 | 0.5417 | | 1.165 | 36.0 | 504 | 1.2624 | 0.5417 | | 1.2431 | 37.0 | 518 | 1.2252 | 0.5625 | | 1.1731 | 38.0 | 532 | 1.2082 | 0.5625 | | 1.1734 | 39.0 | 546 | 1.2062 | 0.5417 | | 1.1631 | 40.0 | 560 | 1.2034 | 0.5417 | | 1.0963 | 41.0 | 574 | 1.1973 | 0.5417 | | 1.2157 | 42.0 | 588 | 1.1988 | 0.5625 | | 1.1467 | 43.0 | 602 | 1.2018 | 0.5417 | | 1.1503 | 44.0 | 616 | 1.1986 | 0.5417 | | 1.0945 | 45.0 | 630 | 1.1985 | 0.5417 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
MuhammadIqbalBazmi/wav2vec2-xls-r-300m-intent-classification-ori
MuhammadIqbalBazmi
2022-10-12T04:13:26Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-11T22:05:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xls-r-300m-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3107 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1982 | 1.0 | 14 | 2.1951 | 0.0625 | | 2.2021 | 2.0 | 28 | 2.1847 | 0.1458 | | 2.1819 | 3.0 | 42 | 2.1661 | 0.3333 | | 2.1789 | 4.0 | 56 | 2.1413 | 0.3333 | | 2.164 | 5.0 | 70 | 2.1183 | 0.3333 | | 2.1484 | 6.0 | 84 | 2.0974 | 0.3333 | | 2.1199 | 7.0 | 98 | 2.0939 | 0.3333 | | 2.1343 | 8.0 | 112 | 2.0829 | 0.3333 | | 2.1397 | 9.0 | 126 | 2.0654 | 0.3333 | | 2.1045 | 10.0 | 140 | 2.0553 | 0.3333 | | 2.1083 | 11.0 | 154 | 2.0255 | 0.3333 | | 2.0914 | 12.0 | 168 | 2.0065 | 0.3333 | | 2.0434 | 13.0 | 182 | 1.9696 | 0.3333 | | 2.0687 | 14.0 | 196 | 1.9231 | 0.4167 | | 2.0237 | 15.0 | 210 | 1.8679 | 0.4167 | | 1.9562 | 16.0 | 224 | 1.8184 | 0.4167 | | 2.0361 | 17.0 | 238 | 1.8803 | 0.3958 | | 1.888 | 18.0 | 252 | 1.7802 | 0.4167 | | 1.899 | 19.0 | 266 | 1.7662 | 0.4167 | | 1.8959 | 20.0 | 280 | 1.7076 | 0.4167 | | 1.8368 | 21.0 | 294 | 1.6566 | 0.4375 | | 1.7358 | 22.0 | 308 | 1.6283 | 0.5 | | 1.7877 | 23.0 | 322 | 1.6411 | 0.4583 | | 1.7311 | 24.0 | 336 | 1.5525 | 0.5208 | | 1.7079 | 25.0 | 350 | 1.5163 | 0.5 | | 1.6496 | 26.0 | 364 | 1.5458 | 0.5 | | 1.6374 | 27.0 | 378 | 1.5211 | 0.5 | | 1.6048 | 28.0 | 392 | 1.4533 | 0.5417 | | 1.5927 | 29.0 | 406 | 1.4319 | 0.5 | | 1.4987 | 30.0 | 420 | 1.4579 | 0.5208 | | 1.5745 | 31.0 | 434 | 1.4167 | 0.6042 | | 1.4632 | 32.0 | 448 | 1.4471 | 0.5417 | | 1.4686 | 33.0 | 462 | 1.4116 | 0.5625 | | 1.5368 | 34.0 | 476 | 1.3872 | 0.6042 | | 1.4327 | 35.0 | 490 | 1.3491 | 0.5833 | | 1.3978 | 36.0 | 504 | 1.3325 | 0.5833 | | 1.4509 | 37.0 | 518 | 1.3236 | 0.6042 | | 1.3881 | 38.0 | 532 | 1.3426 | 0.5833 | | 1.39 | 39.0 | 546 | 1.3137 | 0.6042 | | 1.4153 | 40.0 | 560 | 1.3123 | 0.625 | | 1.3635 | 41.0 | 574 | 1.3224 | 0.6042 | | 1.403 | 42.0 | 588 | 1.3111 | 0.6042 | | 1.3763 | 43.0 | 602 | 1.3197 | 0.5833 | | 1.3539 | 44.0 | 616 | 1.3077 | 0.6042 | | 1.306 | 45.0 | 630 | 1.3107 | 0.625 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Michael02/q-Taxi-v3
Michael02
2022-10-12T02:25:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-12T02:25:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Michael02/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/kirby
sd-concepts-library
2022-10-12T01:09:05Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-12T01:09:00Z
--- license: mit --- ### Kirby on Stable Diffusion This is the `<kirby>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<kirby> 0](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/2.jpeg) ![<kirby> 1](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/7.jpeg) ![<kirby> 2](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/4.jpeg) ![<kirby> 3](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/8.jpeg) ![<kirby> 4](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/1.jpeg) ![<kirby> 5](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/0.jpeg) ![<kirby> 6](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/3.jpeg) ![<kirby> 7](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/5.jpeg) ![<kirby> 8](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/6.jpeg)
rhhast/chan
rhhast
2022-10-12T01:08:09Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-12T01:08:09Z
--- license: bigscience-openrail-m ---
stevhliu/my_awesome_opus_books_model
stevhliu
2022-10-11T22:42:17Z
109
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-11T21:34:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.9186 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.5550 - Bleu: 5.9186 - Gen Len: 17.5809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.7524 | 1.0 | 6355 | 1.5696 | 5.8485 | 17.5793 | | 1.7452 | 2.0 | 12710 | 1.5550 | 5.9186 | 17.5809 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
jglaser/affinity_pred_regex_2
jglaser
2022-10-11T22:23:10Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-10-11T16:44:44Z
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
jglaser/affinity_pred_regex_1
jglaser
2022-10-11T22:22:59Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-10-11T16:31:49Z
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
jglaser/affinity_pred_bert_4
jglaser
2022-10-11T22:22:25Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-10-11T18:26:19Z
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
jglaser/affinity_pred_bert_3
jglaser
2022-10-11T22:21:38Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-10-11T18:22:37Z
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
MuhammadIqbalBazmi/wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori
MuhammadIqbalBazmi
2022-10-11T21:53:06Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-11T21:27:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9124 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1894 | 1.0 | 14 | 2.1812 | 0.3333 | | 2.1795 | 2.0 | 28 | 2.1553 | 0.3333 | | 2.144 | 3.0 | 42 | 2.1066 | 0.3333 | | 2.1175 | 4.0 | 56 | 2.0283 | 0.3542 | | 2.0542 | 5.0 | 70 | 1.9253 | 0.3958 | | 2.0007 | 6.0 | 84 | 1.8468 | 0.4167 | | 1.8891 | 7.0 | 98 | 1.7655 | 0.4583 | | 1.8484 | 8.0 | 112 | 1.6695 | 0.4792 | | 1.8256 | 9.0 | 126 | 1.5920 | 0.5 | | 1.6832 | 10.0 | 140 | 1.5331 | 0.5 | | 1.6149 | 11.0 | 154 | 1.4763 | 0.5 | | 1.5853 | 12.0 | 168 | 1.4453 | 0.5 | | 1.4357 | 13.0 | 182 | 1.3588 | 0.5 | | 1.4789 | 14.0 | 196 | 1.3238 | 0.4792 | | 1.3886 | 15.0 | 210 | 1.2822 | 0.4792 | | 1.313 | 16.0 | 224 | 1.2609 | 0.5 | | 1.3559 | 17.0 | 238 | 1.2191 | 0.5208 | | 1.1937 | 18.0 | 252 | 1.1936 | 0.5 | | 1.1847 | 19.0 | 266 | 1.1547 | 0.5417 | | 1.197 | 20.0 | 280 | 1.1390 | 0.5417 | | 1.1057 | 21.0 | 294 | 1.1310 | 0.5208 | | 1.0291 | 22.0 | 308 | 1.1086 | 0.5417 | | 1.0768 | 23.0 | 322 | 1.1075 | 0.5417 | | 1.0249 | 24.0 | 336 | 1.0654 | 0.5625 | | 1.0433 | 25.0 | 350 | 1.0390 | 0.5625 | | 0.9974 | 26.0 | 364 | 1.0086 | 0.6458 | | 0.9578 | 27.0 | 378 | 0.9939 | 0.625 | | 0.916 | 28.0 | 392 | 0.9938 | 0.625 | | 0.9187 | 29.0 | 406 | 0.9843 | 0.625 | | 0.8759 | 30.0 | 420 | 0.9755 | 0.625 | | 0.9199 | 31.0 | 434 | 0.9822 | 0.6042 | | 0.8791 | 32.0 | 448 | 0.9522 | 0.6458 | | 0.8436 | 33.0 | 462 | 0.9414 | 0.6458 | | 0.8692 | 34.0 | 476 | 0.9510 | 0.625 | | 0.8201 | 35.0 | 490 | 0.9208 | 0.6667 | | 0.8284 | 36.0 | 504 | 0.9398 | 0.6458 | | 0.8761 | 37.0 | 518 | 0.9438 | 0.6458 | | 0.7948 | 38.0 | 532 | 0.9253 | 0.6667 | | 0.8339 | 39.0 | 546 | 0.9250 | 0.6458 | | 0.8002 | 40.0 | 560 | 0.9145 | 0.6458 | | 0.7791 | 41.0 | 574 | 0.9062 | 0.6667 | | 0.7944 | 42.0 | 588 | 0.9077 | 0.6667 | | 0.7777 | 43.0 | 602 | 0.9069 | 0.6458 | | 0.7943 | 44.0 | 616 | 0.9118 | 0.625 | | 0.7573 | 45.0 | 630 | 0.9124 | 0.625 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
MuhammadIqbalBazmi/wav2vec2-large-960h-intent-classification-ori
MuhammadIqbalBazmi
2022-10-11T21:18:11Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-11T20:59:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-960h-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-960h-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1937 | 1.0 | 14 | 2.1715 | 0.3333 | | 2.1764 | 2.0 | 28 | 2.1317 | 0.3333 | | 2.1358 | 3.0 | 42 | 2.0794 | 0.3333 | | 2.1227 | 4.0 | 56 | 2.0367 | 0.3333 | | 2.1157 | 5.0 | 70 | 1.9845 | 0.3333 | | 2.0776 | 6.0 | 84 | 1.9369 | 0.3333 | | 2.0126 | 7.0 | 98 | 1.8021 | 0.375 | | 1.88 | 8.0 | 112 | 1.6825 | 0.4167 | | 1.8818 | 9.0 | 126 | 1.4638 | 0.5 | | 1.7044 | 10.0 | 140 | 1.4188 | 0.5208 | | 1.5442 | 11.0 | 154 | 1.3421 | 0.5625 | | 1.5045 | 12.0 | 168 | 1.3971 | 0.5 | | 1.3369 | 13.0 | 182 | 1.1602 | 0.5833 | | 1.4017 | 14.0 | 196 | 1.3510 | 0.5417 | | 1.2565 | 15.0 | 210 | 1.0978 | 0.5625 | | 1.1056 | 16.0 | 224 | 1.0847 | 0.5833 | | 1.2006 | 17.0 | 238 | 1.0262 | 0.625 | | 0.9235 | 18.0 | 252 | 0.9532 | 0.7083 | | 0.9528 | 19.0 | 266 | 1.0212 | 0.6042 | | 0.8195 | 20.0 | 280 | 0.8442 | 0.7083 | | 0.7518 | 21.0 | 294 | 0.8379 | 0.6875 | | 0.6017 | 22.0 | 308 | 0.9422 | 0.7292 | | 0.7697 | 23.0 | 322 | 0.7353 | 0.75 | | 0.5367 | 24.0 | 336 | 0.8685 | 0.6875 | | 0.5655 | 25.0 | 350 | 0.7440 | 0.7708 | | 0.5116 | 26.0 | 364 | 0.7572 | 0.75 | | 0.4297 | 27.0 | 378 | 0.7518 | 0.75 | | 0.4928 | 28.0 | 392 | 0.5988 | 0.7917 | | 0.4424 | 29.0 | 406 | 0.7240 | 0.75 | | 0.3313 | 30.0 | 420 | 0.6173 | 0.7708 | | 0.3854 | 31.0 | 434 | 0.7375 | 0.75 | | 0.4131 | 32.0 | 448 | 0.7026 | 0.7708 | | 0.2899 | 33.0 | 462 | 0.6516 | 0.7708 | | 0.3644 | 34.0 | 476 | 0.6201 | 0.7917 | | 0.2316 | 35.0 | 490 | 0.6111 | 0.7708 | | 0.2589 | 36.0 | 504 | 0.5518 | 0.7917 | | 0.3778 | 37.0 | 518 | 0.5512 | 0.7708 | | 0.2426 | 38.0 | 532 | 0.5779 | 0.7917 | | 0.304 | 39.0 | 546 | 0.7771 | 0.75 | | 0.1833 | 40.0 | 560 | 0.5839 | 0.7708 | | 0.1649 | 41.0 | 574 | 0.5699 | 0.7708 | | 0.2529 | 42.0 | 588 | 0.6190 | 0.75 | | 0.2121 | 43.0 | 602 | 0.5992 | 0.75 | | 0.2736 | 44.0 | 616 | 0.6011 | 0.7917 | | 0.2446 | 45.0 | 630 | 0.6013 | 0.7708 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
cduncanja/emotion_model
cduncanja
2022-10-11T20:26:12Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-09T21:30:47Z
--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: emotion_model results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: F1 type: f1 value: 0.14545454545454545 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_model This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 1.7815 - F1: 0.1455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7968 | 1.0 | 2 | 1.7804 | 0.2286 | | 1.7918 | 2.0 | 4 | 1.7812 | 0.2286 | | 1.7867 | 3.0 | 6 | 1.7822 | 0.08 | | 1.7884 | 4.0 | 8 | 1.7816 | 0.08 | | 1.7833 | 5.0 | 10 | 1.7815 | 0.1455 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.11.0
Tritkoman/RussiantoChukchi
Tritkoman
2022-10-11T20:05:54Z
3
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "en", "nl", "dataset:Tritkoman/autotrain-data-kkakkakqa", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-10-11T19:02:52Z
--- tags: - autotrain - translation language: - en - nl datasets: - Tritkoman/autotrain-data-kkakkakqa co2_eq_emissions: emissions: 96.54051975402358 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1726160287 - CO2 Emissions (in grams): 96.5405 ## Validation Metrics - Loss: 0.151 - SacreBLEU: 51.859 - Gen len: 14.625
MuhammadIqbalBazmi/wav2vec2-large-xlsr-53-intent-classification-ori
MuhammadIqbalBazmi
2022-10-11T19:55:06Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-11T17:50:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7682 - Accuracy: 0.4167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2017 | 1.0 | 14 | 2.2113 | 0.1042 | | 2.2013 | 2.0 | 28 | 2.2078 | 0.0625 | | 2.197 | 3.0 | 42 | 2.1981 | 0.0625 | | 2.1917 | 4.0 | 56 | 2.1760 | 0.3125 | | 2.1759 | 5.0 | 70 | 2.1534 | 0.3333 | | 2.1713 | 6.0 | 84 | 2.1305 | 0.3333 | | 2.1431 | 7.0 | 98 | 2.1044 | 0.3333 | | 2.1366 | 8.0 | 112 | 2.0838 | 0.3333 | | 2.1482 | 9.0 | 126 | 2.0649 | 0.3333 | | 2.1074 | 10.0 | 140 | 2.0532 | 0.3333 | | 2.1066 | 11.0 | 154 | 2.0506 | 0.3333 | | 2.089 | 12.0 | 168 | 2.0624 | 0.3333 | | 2.0625 | 13.0 | 182 | 2.0580 | 0.3333 | | 2.1106 | 14.0 | 196 | 2.0419 | 0.3333 | | 2.0714 | 15.0 | 210 | 2.0350 | 0.3333 | | 2.0256 | 16.0 | 224 | 2.0333 | 0.3333 | | 2.1226 | 17.0 | 238 | 2.0286 | 0.3333 | | 2.0451 | 18.0 | 252 | 2.0195 | 0.3333 | | 2.0822 | 19.0 | 266 | 1.9968 | 0.3333 | | 2.0991 | 20.0 | 280 | 1.9883 | 0.3333 | | 2.0537 | 21.0 | 294 | 1.9767 | 0.3333 | | 1.973 | 22.0 | 308 | 1.9524 | 0.3333 | | 2.0429 | 23.0 | 322 | 1.9432 | 0.3333 | | 2.0091 | 24.0 | 336 | 1.9402 | 0.3333 | | 2.0309 | 25.0 | 350 | 1.9295 | 0.3333 | | 2.0261 | 26.0 | 364 | 1.9167 | 0.3333 | | 2.0081 | 27.0 | 378 | 1.9083 | 0.3333 | | 2.023 | 28.0 | 392 | 1.9013 | 0.3333 | | 2.0 | 29.0 | 406 | 1.8623 | 0.375 | | 1.936 | 30.0 | 420 | 1.8483 | 0.3958 | | 1.9809 | 31.0 | 434 | 1.8344 | 0.3958 | | 1.9645 | 32.0 | 448 | 1.8428 | 0.4167 | | 1.9788 | 33.0 | 462 | 1.8372 | 0.3958 | | 1.9484 | 34.0 | 476 | 1.8246 | 0.3958 | | 1.9553 | 35.0 | 490 | 1.7941 | 0.4167 | | 1.9321 | 36.0 | 504 | 1.7824 | 0.4167 | | 1.9759 | 37.0 | 518 | 1.7884 | 0.3958 | | 1.9424 | 38.0 | 532 | 1.7875 | 0.3958 | | 1.9592 | 39.0 | 546 | 1.7901 | 0.3958 | | 1.9425 | 40.0 | 560 | 1.7812 | 0.3958 | | 1.8899 | 41.0 | 574 | 1.7736 | 0.3958 | | 1.9361 | 42.0 | 588 | 1.7711 | 0.4167 | | 1.9023 | 43.0 | 602 | 1.7711 | 0.4167 | | 1.9203 | 44.0 | 616 | 1.7688 | 0.4167 | | 1.8921 | 45.0 | 630 | 1.7682 | 0.4167 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ghadeermobasher/BC4CHEMD-Original-128-PubMedBERT-Trial-latest-general
ghadeermobasher
2022-10-11T19:39:04Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-11T18:22:48Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: BC4CHEMD-Original-128-PubMedBERT-Trial-latest-general results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BC4CHEMD-Original-128-PubMedBERT-Trial-latest-general This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - Precision: 0.9678 - Recall: 0.9892 - F1: 0.9784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.10.3
shuojiang/PPO-LunarLander-v2-Tuned
shuojiang
2022-10-11T19:00:34Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-11T19:00:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.92 +/- 19.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
microsoft/bloom-deepspeed-inference-fp16
microsoft
2022-10-11T18:28:26Z
13
12
transformers
[ "transformers", "bloom", "feature-extraction", "license:bigscience-bloom-rail-1.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-17T21:01:05Z
--- license: bigscience-bloom-rail-1.0 --- This is a copy of the original [BLOOM weights](https://huggingface.co/bigscience/bloom) that is more efficient to use with the [DeepSpeed-MII](https://github.com/microsoft/deepspeed-mii) and [DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/). In this repo the original tensors are split into 8 shards to target 8 GPUs, this allows the user to run the model with DeepSpeed-inference Tensor Parallelism. For specific details about the BLOOM model itself, please see the [original BLOOM model card](https://huggingface.co/bigscience/bloom). For examples on using this repo please see the following: * https://github.com/huggingface/transformers-bloom-inference * https://github.com/microsoft/DeepSpeed-MII
stevhliu/my_awesome_billsum_model
stevhliu
2022-10-11T18:23:16Z
699
5
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-11T18:04:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.176 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4290 - Rouge1: 0.176 - Rouge2: 0.0773 - Rougel: 0.1454 - Rougelsum: 0.1455 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.5195 | 0.1478 | 0.0528 | 0.1197 | 0.1194 | 19.0 | | No log | 2.0 | 124 | 2.4660 | 0.1572 | 0.06 | 0.1288 | 0.1287 | 19.0 | | No log | 3.0 | 186 | 2.4366 | 0.1691 | 0.0719 | 0.1394 | 0.1396 | 19.0 | | No log | 4.0 | 248 | 2.4290 | 0.176 | 0.0773 | 0.1454 | 0.1455 | 19.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Nakul24/RoBERTa-Goemotions-6
Nakul24
2022-10-11T18:12:22Z
112
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-10T00:09:23Z
Enter your thoughts in chat. The output would be probability of your current mental state.
nvidia/nemo-megatron-t5-3B
nvidia
2022-10-11T17:45:19Z
25
9
nemo
[ "nemo", "pytorch", "seq2seq", "masked language modeling", "en", "dataset:the_pile", "arxiv:1910.10683", "arxiv:1909.08053", "arxiv:2101.00027", "license:cc-by-4.0", "region:us" ]
null
2022-09-20T20:57:01Z
--- language: - en library_name: nemo datasets: - the_pile tags: - pytorch - seq2seq - masked language modeling license: cc-by-4.0 --- # NeMo Megatron-T5 3B <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Arch-Encoder--Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-3B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) ## Model Description NeMo Megatron-T5 3B is a transformer-based masked language model. [T5](https://arxiv.org/abs/1910.10683) [1] is a class of encoder-decoder models trained with a span-based masked language modeling objective. We follow the [T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1) approach of pre-training using only the masked language modeling objective. It has Tensor Parallelism (TP) of 2, Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU for inference and 2 A100 80G GPUs for finetuning. This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html). ## Getting started ### Step 1: Install NeMo and dependencies You will need to install NVIDIA Apex and NeMo. ``` git clone https://github.com/ericharper/apex.git cd apex git checkout nm_v1.11.0 pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./ ``` ``` pip install nemo_toolkit['nlp']==1.11.0 ``` Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed - [https://developer.nvidia.com/nemo-megatron-open-beta?nvid=nv-int-tblg-249896](https://developer.nvidia.com/nemo-megatron-open-beta) ### Step 2: Run inference **Note.** The model has been trained with Tensor Parallelism (TP) of 2 and Pipeline Parallelism (PP) of 1, but it should be possible to run inference with tensor parallel size 1 on most NVIDIA GPUs ``` git clone https://github.com/NVIDIA/NeMo.git cd NeMo/examples/nlp/language_modeling git checkout v1.11.0 python megatron_t5_eval.py \ --model_file /raid/Data/NMT/Models/t5_3b/nemo_megatron_t5_3b_bf16_tp2.nemo \ --prompt '<mask> was the first person to set foot on the moon. When he did, he uttered the phrase <mask> for man, one <mask> for mankind which is still a popular quote today.' \ --tensor_model_parallel_size 2 ``` The script will automatically replace all \<mask\> tokens with the appropriate sentinel tokens used while pre-training and attempt to fill them in autoregressively with greedy decoding. *Expected Response*: ``` { 'prompt': '<mask> was the first person to set foot on the moon. When he did, he uttered the phrase <mask> for man, one <mask> for mankind which is still a popular quote today.', 'completion': { 'text': '[CLS] <extra_id_0> Neil Armstrong <extra_id_1> one small step <extra_id_2> giant leap', 'tokens': [(101, '[CLS]', -2.9802276912960224e-06), (28996, '<extra_id_0>', -0.1492447555065155), (6003, 'Neil', -0.0015669699059799314), (8800, 'Armstrong', -0.013404252007603645), (28997, '<extra_id_1>', -0.9019092917442322), (1141, 'one', -0.7962003350257874), (1353, 'small', -0.006306509021669626), (2585, 'step', -1.9073468138230965e-06), (28998, '<extra_id_2>', -0.0026884861290454865), (4994, 'giant', -0.1679367572069168), (13660, 'leap', -5.960462772236497e-07)] }, 'masked_input': '<extra_id_0> was the first person to set foot on the moon . When he did , he uttered the phrase <extra_id_1> for man , one <extra_id_2> for mankind which is still a popular quote today .' } ``` - prompt: The provided raw prompt as input - completion: - text: The final generated text from the model along with special/sentinel tokens besides \</s\> - tokens: Each individual subword that is generated along with its log-probability. - masked_input: The original raw prompt with <mask> replaced with appropriate sentinel tokens. ## Training Data The model was trained on ["The Pile" dataset prepared by Eleuther.AI](https://pile.eleuther.ai/). [4] ## Evaluation results *Fine-tuned Performance* on downstream *validation* sets for different tasks | MNLI-M | MNLI-MM | SST-2 | STS-B (Spearman) | | -------| --------| ------| -----------------| | 90.62 | 90.61 | 97.2 | 91.5 | ## Limitations The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. ## References [1] [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) [2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
BigSalmon/FormalInformalConcise-FIM-NeoX-1.3B
BigSalmon
2022-10-11T17:30:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neox", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-11T15:58:04Z
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal Trained on this model: https://huggingface.co/CarperAI/FIM-NeoX-1.3B, which is geared toward filling in the blank. Check out their model and give them a like! ``` from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast tokenizer = GPTNeoXTokenizerFast.from_pretrained("CarperAI/FIM-NeoX-1.3B") model = GPTNeoXForCausalLM.from_pretrained("BigSalmon/FormalInformalConcise-FIM-NeoX-1.3B") ``` To load model, you may need to do: ``` pip install git+https://github.com/huggingface/transformers ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/GPT2Mask ``` ``` prompt = """<|SUF|> into relaxation <|PRE|> music before bedtime <|MID|>""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` How To Make Prompts: Infill Phrase Masking In-Fill ``` <|SUF|> into relaxation <|PRE|> music before bedtime <|MID|> ``` Informal To Formal ``` informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` music before bedtime [makes for being able to relax] -> is a recipe for relaxation. ``` ``` [people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway. ``` ``` in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal. *** politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ). ```
araffin/tqc-donkey-warren-track-v0
araffin
2022-10-11T15:28:18Z
11
0
stable-baselines3
[ "stable-baselines3", "donkey-warren-track-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T11:37:04Z
--- library_name: stable-baselines3 tags: - donkey-warren-track-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: 175.85 +/- 2.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: donkey-warren-track-v0 type: donkey-warren-track-v0 --- # **TQC** Agent playing **donkey-warren-track-v0** This is a trained model of a **TQC** agent playing **donkey-warren-track-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Autoencoder: https://github.com/araffin/aae-train-donkeycar branch: `feat/race_june` <br/> Gym env: https://github.com/araffin/gym-donkeycar-1 branch: `feat/race_june` <br/> RL Zoo branch: `feat/gym-donkeycar` **Pretrained autoencoder** can be downloaded here: https://github.com/araffin/aae-train-donkeycar/releases/download/live-twitch-2/match_ae-32_monaco_warren.pkl ``` export AE_PATH=/path/to/match_ae-32_monaco_warren.pkl # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env donkey-warren-track-v0 -orga araffin -f logs/ python enjoy.py --algo tqc --env donkey-warren-track-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env donkey-warren-track-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env donkey-warren-track-v0 -f logs/ -orga araffin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 200000), ('callback', [{'rl_zoo3.callbacks.ParallelTrainCallback': {'gradient_steps': 200}}, 'rl_zoo3.callbacks.LapTimeCallback']), ('ent_coef', 'auto'), ('env_wrapper', [{'gym.wrappers.time_limit.TimeLimit': {'max_episode_steps': 10000}}, 'ae.wrapper.AutoencoderWrapper', {'rl_zoo3.wrappers.HistoryWrapper': {'horizon': 2}}]), ('gamma', 0.99), ('gradient_steps', 256), ('learning_rate', 0.00073), ('learning_starts', 500), ('n_timesteps', 2000000.0), ('normalize', "{'norm_obs': True, 'norm_reward': False}"), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, ' 'use_expln=True)'), ('sde_sample_freq', 16), ('tau', 0.02), ('train_freq', 200), ('use_sde', True), ('use_sde_at_warmup', True), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ``` # Environment Arguments ```python {'conf': {'cam_resolution': (120, 160, 3), 'car_config': {'body_rgb': (226, 112, 18), 'body_style': 'donkey', 'car_name': 'Toni', 'font_size': 40}, 'frame_skip': 1, 'host': 'localhost', 'level': 'warren', 'log_level': 20, 'max_cte': 8, 'port': 9091, 'start_delay': 5.0}, 'min_throttle': -0.2, 'steer': 0.8} ```
araffin/tqc-RocketLander-v0
araffin
2022-10-11T15:28:13Z
22
1
stable-baselines3
[ "stable-baselines3", "RocketLander-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-06T20:48:41Z
--- library_name: stable-baselines3 tags: - RocketLander-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: -0.00 +/- 0.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: RocketLander-v0 type: RocketLander-v0 --- # **TQC** Agent playing **RocketLander-v0** This is a trained model of a **TQC** agent playing **RocketLander-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Gym env: https://github.com/sdsubhajitdas/Rocket_Lander_Gym ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env RocketLander-v0 -orga araffin -f logs/ python enjoy.py --algo tqc --env RocketLander-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env RocketLander-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env RocketLander-v0 -f logs/ -orga araffin ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', [{'rl_zoo3.wrappers.FrameSkip': {'skip': 4}}, {'rl_zoo3.wrappers.HistoryWrapper': {'horizon': 2}}]), ('n_timesteps', 3000000.0), ('policy', 'MlpPolicy'), ('normalize', False)]) ```
araffin/tqc-donkey-avc-sparkfun-v0
araffin
2022-10-11T15:28:04Z
18
1
stable-baselines3
[ "stable-baselines3", "donkey-avc-sparkfun-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-03T20:43:54Z
--- library_name: stable-baselines3 tags: - donkey-avc-sparkfun-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: 552.57 +/- 285.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: donkey-avc-sparkfun-v0 type: donkey-avc-sparkfun-v0 --- # **TQC** Agent playing **donkey-avc-sparkfun-v0** This is a trained model of a **TQC** agent playing **donkey-avc-sparkfun-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Autoencoder: https://github.com/araffin/aae-train-donkeycar branch: `feat/race_june` <br/> Gym env: https://github.com/araffin/gym-donkeycar-1 branch: `feat/race_june` <br/> RL Zoo branch: `feat/gym-donkeycar` **Pretrained autoencoder** can be downloaded here: https://github.com/araffin/aae-train-donkeycar/releases/download/live-twitch-2/ae-32_avc.pkl ``` # Export path to autoencoder export AE_PATH=/path/to/ae-32_avc.pkl # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env donkey-avc-sparkfun-v0 -orga araffin -f logs/ python enjoy.py --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ -orga araffin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 200000), ('callback', [{'rl_zoo3.callbacks.ParallelTrainCallback': {'gradient_steps': 200}}, 'rl_zoo3.callbacks.LapTimeCallback']), ('ent_coef', 'auto'), ('env_wrapper', ['ae.wrapper.AutoencoderWrapper', {'rl_zoo3.wrappers.HistoryWrapper': {'horizon': 2}}]), ('gamma', 0.99), ('gradient_steps', 256), ('learning_rate', 0.00073), ('learning_starts', 500), ('n_timesteps', 2000000.0), ('normalize', "{'norm_obs': True, 'norm_reward': False}"), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, ' 'use_expln=True)'), ('sde_sample_freq', 16), ('tau', 0.02), ('train_freq', 200), ('use_sde', True), ('use_sde_at_warmup', True), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ``` # Environment Arguments ```python {'conf': {'cam_resolution': (120, 160, 3), 'car_config': {'body_rgb': (226, 112, 18), 'body_style': 'donkey', 'car_name': 'Toni', 'font_size': 40}, 'frame_skip': 1, 'host': 'localhost', 'level': 'sparkfun_avc', 'log_level': 20, 'max_cte': 16, 'port': 9091, 'start_delay': 5.0}, 'min_throttle': -0.2, 'steer': 0.3} ```
sd-concepts-library/ayush-spider-spr
sd-concepts-library
2022-10-11T15:24:27Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-11T15:24:20Z
--- license: mit --- ### Ayush Spider SPR on Stable Diffusion This is the `<spr-mn>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<spr-mn> 0](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/1.jpeg) ![<spr-mn> 1](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/3.jpeg) ![<spr-mn> 2](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/2.jpeg) ![<spr-mn> 3](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/4.jpeg) ![<spr-mn> 4](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/0.jpeg)
araffin/ppo-LunarLander-v2
araffin
2022-10-11T15:23:43Z
11
17
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T22:21:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.49 +/- 13.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.evaluation import evaluate_policy # Download checkpoint checkpoint = load_from_hub("araffin/ppo-LunarLander-v2", "ppo-LunarLander-v2.zip") # Load the model model = PPO.load(checkpoint) env = make_vec_env("LunarLander-v2", n_envs=1) # Evaluate print("Evaluating model") mean_reward, std_reward = evaluate_policy( model, env, n_eval_episodes=20, deterministic=True, ) print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") # Start a new episode obs = env.reset() try: while True: action, _states = model.predict(obs, deterministic=True) obs, rewards, dones, info = env.step(action) env.render() except KeyboardInterrupt: pass ``` ## Training code (with SB3) ```python from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.callbacks import EvalCallback # Create the environment env_id = "LunarLander-v2" n_envs = 16 env = make_vec_env(env_id, n_envs=n_envs) # Create the evaluation envs eval_envs = make_vec_env(env_id, n_envs=5) # Adjust evaluation interval depending on the number of envs eval_freq = int(1e5) eval_freq = max(eval_freq // n_envs, 1) # Create evaluation callback to save best model # and monitor agent performance eval_callback = EvalCallback( eval_envs, best_model_save_path="./logs/", eval_freq=eval_freq, n_eval_episodes=10, ) # Instantiate the agent # Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo model = PPO( "MlpPolicy", env, n_steps=1024, batch_size=64, gae_lambda=0.98, gamma=0.999, n_epochs=4, ent_coef=0.01, verbose=1, ) # Train the agent (you can kill it before using ctrl+c) try: model.learn(total_timesteps=int(5e6), callback=eval_callback) except KeyboardInterrupt: pass # Load best model model = PPO.load("logs/best_model.zip") ```
sb3/tqc-FetchPush-v1
sb3
2022-10-11T15:19:44Z
4
0
stable-baselines3
[ "stable-baselines3", "FetchPush-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T20:55:29Z
--- library_name: stable-baselines3 tags: - FetchPush-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: -11.60 +/- 6.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FetchPush-v1 type: FetchPush-v1 --- # **TQC** Agent playing **FetchPush-v1** This is a trained model of a **TQC** agent playing **FetchPush-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env FetchPush-v1 -orga sb3 -f logs/ python enjoy.py --algo tqc --env FetchPush-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env FetchPush-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env FetchPush-v1 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 512), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.98), ('learning_rate', 0.001), ('n_timesteps', 1000000.0), ('policy', 'MultiInputPolicy'), ('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'), ('replay_buffer_class', 'HerReplayBuffer'), ('replay_buffer_kwargs', "dict( online_sampling=True, goal_selection_strategy='future', " 'n_sampled_goal=4, max_episode_length=100 )'), ('tau', 0.005), ('normalize', False)]) ```
sb3/tqc-FetchReach-v1
sb3
2022-10-11T15:19:40Z
5
0
stable-baselines3
[ "stable-baselines3", "FetchReach-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T20:54:49Z
--- library_name: stable-baselines3 tags: - FetchReach-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: -2.40 +/- 0.49 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FetchReach-v1 type: FetchReach-v1 --- # **TQC** Agent playing **FetchReach-v1** This is a trained model of a **TQC** agent playing **FetchReach-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env FetchReach-v1 -orga sb3 -f logs/ python enjoy.py --algo tqc --env FetchReach-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env FetchReach-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env FetchReach-v1 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 1000000), ('ent_coef', 'auto'), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.95), ('learning_rate', 0.001), ('learning_starts', 1000), ('n_timesteps', 20000.0), ('normalize', True), ('policy', 'MultiInputPolicy'), ('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'), ('replay_buffer_class', 'HerReplayBuffer'), ('replay_buffer_kwargs', "dict( online_sampling=True, goal_selection_strategy='future', " 'n_sampled_goal=4 )'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
sb3/ddpg-Walker2DBulletEnv-v0
sb3
2022-10-11T15:19:35Z
2
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T20:43:12Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DDPG results: - metrics: - type: mean_reward value: 1495.73 +/- 612.27 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **DDPG** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **DDPG** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ddpg --env Walker2DBulletEnv-v0 -orga sb3 -f logs/ python enjoy.py --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ddpg --env Walker2DBulletEnv-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.98), ('gradient_steps', -1), ('learning_rate', 0.0007), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('noise_std', 0.1), ('noise_type', 'normal'), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[400, 300])'), ('train_freq', [1, 'episode']), ('normalize', False)]) ```
sb3/ddpg-BipedalWalker-v3
sb3
2022-10-11T15:19:30Z
16
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T20:42:17Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DDPG results: - metrics: - type: mean_reward value: 153.32 +/- 164.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **DDPG** Agent playing **BipedalWalker-v3** This is a trained model of a **DDPG** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ddpg --env BipedalWalker-v3 -orga sb3 -f logs/ python enjoy.py --algo ddpg --env BipedalWalker-v3 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ddpg --env BipedalWalker-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ddpg --env BipedalWalker-v3 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('buffer_size', 200000), ('gamma', 0.98), ('gradient_steps', -1), ('learning_rate', 0.001), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('noise_std', 0.1), ('noise_type', 'normal'), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[400, 300])'), ('train_freq', [1, 'episode']), ('normalize', False)]) ```