modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 00:44:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 00:43:54
card
stringlengths
11
1.01M
niksmer/PolicyBERTa-7d
niksmer
2022-03-24T09:19:57Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit language: - en metrics: - accuracy - precision - recall model-index: - name: PolicyBERTa-7d results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # PolicyBERTa-7d This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). It was inspired by the model from [Laurer (2020)](https://huggingface.co/MoritzLaurer/policy-distilbert-7d). It achieves the following results on the evaluation set: - Loss: 0.8549 - Accuracy: 0.7059 - F1-micro: 0.7059 - F1-macro: 0.6683 - F1-weighted: 0.7033 - Precision: 0.7059 - Recall: 0.7059 ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of seven political categories: "external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society" and "social groups". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/PolicyBERTa-7d") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data PolicyBERTa-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each domain. ### Tain data Train data was higly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 7,640 | | 1 | freedom and democracy | 5,880 | | 2 | political system | 11,234 | | 3 | economy | 29,218 | | 4 | welfare and quality of life | 37,200 | | 5 | fabric of society | 13,594 | | 6 | social groups | 11,177 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 1,345 | | 1 | freedom and democracy | 1,043 | | 2 | political system | 2,038 | | 3 | economy | 5,140 | | 4 | welfare and quality of life | 6,554 | | 5 | fabric of society | 2,384 | | 6 | social groups | 1,957 | Overall count: 20,461 ## Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 824 | | 1 | freedom and democracy | 296 | | 2 | political system | 1,041 | | 3 | economy | 2,188 | | 4 | welfare and quality of life | 2,654 | | 5 | fabric of society | 940 | | 6 | social groups | 387 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_steps=0, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.9154 | 1.0 | 1812 | 0.8984 | 0.6785 | 0.6785 | 0.6383 | 0.6772 | 0.6785 | 0.6785 | | 0.8374 | 2.0 | 3624 | 0.8569 | 0.6957 | 0.6957 | 0.6529 | 0.6914 | 0.6957 | 0.6957 | | 0.7053 | 3.0 | 5436 | 0.8582 | 0.7019 | 0.7019 | 0.6594 | 0.6967 | 0.7019 | 0.7019 | | 0.7178 | 4.0 | 7248 | 0.8488 | 0.7030 | 0.7030 | 0.6662 | 0.7011 | 0.7030 | 0.7030 | | 0.6688 | 5.0 | 9060 | 0.8549 | 0.7059 | 0.7059 | 0.6683 | 0.7033 | 0.7059 | 0.7059 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.71 | 0.67 | 0.70 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.65 | 0.60 | 0.65 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | external relations | 0.76 | 0.70 | | freedom and democracy | 0.61 | 0.55 | | political system | 0.55 | 0.55 | | economy | 0.74 | 0.67 | | welfare and quality of life | 0.77 | 0.72 | | fabric of society | 0.67 | 0.60 | | social groups | 0.58 | 0.41 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). But PolicyBERTa isn't fine-tuned to predict the rile-index, if you're interested in that, check [ManiBERT](https://huggingface.co/niksmer/ManiBERT) or [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). In the following table, the predicted and original share of the individual policy domains are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original shares is 0.965. | Party-ID | Year | Type | Share external relations | Share freedom and democracy | Share political system | Share economy | Share welfare and quality of life | Share fabric of society | Share social groups | |--------------|-------------|---------------|--------------------------|-----------------------------|------------------------|----------------|-----------------------------------|-------------------------|---------------------| | 62320 | 2004 | Predicted | 7.1% | 4.8% | 13.2% | 20.3% | 35.2% | 9.6% | 9.8% | | | | Original | 10.2% | 2.5% | 13.7% | 23.8% | 31.7% | 11.6% | 6.4% | | 62320 | 2006 | Predicted | 2.9% | 4.7% | 16.4% | 18.9% | 38.3% | 11.9% | 6.9% | | | | Original | 5.6% | 5.0% | 15.8% | 20.7% | 38.7% | 9.3% | 4.9% | | 62320 | 2008 | Predicted | 6.8% | 4.7% | 6.2% | 24.7% | 38.3% | 10.3% | 9.0% | | | | Original | 5.6% | 3.7% | 8.2% | 33.1% | 29.5% | 11.7% | 4.3% | | 62420 | 2004 | Predicted | 9.7% | 3.5% | 14.5% | 24.7% | 34.8% | 8.5% | 4.3% | | | | Original | 12.6% | 1.3% | 18.8% | 23.0% | 33.2% | 9.0% | 2.0% | | 62420 | 2006 | Predicted | 9.5% | 2.2% | 7.9% | 27.8% | 34.8% | 9.2% | 8.7% | | | | Original | 10.6% | 2.5% | 9.6% | 29.7% | 33.1% | 8.3% | 6.2% | | 62420 | 2008 | Predicted | 0.7% | 0.5% | 3.5% | 41.7% | 46.4% | 3.7% | 3.5% | | | | Original | 2.0% | 0.2% | 4.4% | 33.3% | 45.9% | 7.7% | 6.4% | | 62623 | 2004 | Predicted | 7.1% | 11.4% | 24.5% | 17.6% | 21.5% | 13.6% | 4.3% | | | | Original | 8.4% | 6.7% | 28.8% | 17.4% | 18.7% | 15.5% | 4.5% | | 62623 | 2006 | Predicted | 5.6% | 8.5% | 23.6% | 15.6% | 14.8% | 24.3% | 7.6% | | | | Original | 5.0% | 8.9% | 22.2% | 17.4% | 17.2% | 25.7% | 3.6% | | 62623 | 2008 | Predicted | 5.0% | 4.4% | 12.2% | 33.1% | 21.9% | 17.5% | 5.9% | | | | Original | 5.6% | 2.2% | 11.6% | 37.8% | 17.8% | 20.9% | 4.1% | | 62110 | 2008 | Predicted | 10.0% | 3.1% | 6.8% | 22.7% | 41.3% | 10.1% | 6.0% | | | | Original | 13.4% | 3.3% | 7.7% | 26.9% | 35.6% | 8.9% | 4.3% | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
niksmer/RoBERTa-RILE
niksmer
2022-03-24T09:19:40Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: RoBERTa-RILE results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # RoBERTa-RILE This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of three political categories: "neutral", "left", "right". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/RoBERTa-RILE") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data ## Training and evaluation data RoBERTa-RILE was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in over 50 main categories - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each categorie. It has created a valid left-right-scale, the rile-index, to aaggregate manifesto in a standardized, onde-dimensional political space from left to right based on saliency-theory. RoBERTa-RILE classifies texts based on the rile index. ### Tain data Train data was slightly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 52,277 | | 1 | left | 37,106 | | 2 | right | 26,560 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 9,198 | | 1 | left | 6,637 | | 2 | right | 4,626 | Overall count: 20,461 ### Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 3,881 | | 1 | left | 2,611 | | 2 | right | 1,838 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.7442 | 1.0 | 1812 | 0.6827 | 0.7120 | 0.7120 | 0.7007 | 0.7126 | 0.7120 | 0.7120 | | 0.6447 | 2.0 | 3624 | 0.6618 | 0.7281 | 0.7281 | 0.7169 | 0.7281 | 0.7281 | 0.7281 | | 0.5467 | 3.0 | 5436 | 0.6657 | 0.7309 | 0.7309 | 0.7176 | 0.7295 | 0.7309 | 0.7309 | | 0.5179 | 4.0 | 7248 | 0.6654 | 0.7346 | 0.7346 | 0.7240 | 0.7345 | 0.7346 | 0.7346 | | 0.4787 | 5.0 | 9060 | 0.6757 | 0.7350 | 0.7350 | 0.7241 | 0.7347 | 0.7350 | 0.7350 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.74 | 0.72 | 0.73 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.69 | 0.67 | 0.69 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | neutral | 0.77 | 0.74 | | left | 0.73 | 0.65 | | right | 0.67 | 0.62 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [ManiBERT](https://huggingface.co/niksmer/ManiBERT). ![image](english_robertarile_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
buvnswrn/daml-t5-pretrain
buvnswrn
2022-03-24T09:08:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-24T07:11:08Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tiennvcs/distilbert-base-uncased-finetuned-ner
tiennvcs
2022-03-24T07:29:26Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T07:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9264836138175376 - name: Recall type: recall value: 0.9361226087929299 - name: F1 type: f1 value: 0.9312781703856213 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9265 - Recall: 0.9361 - F1: 0.9313 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2437 | 1.0 | 878 | 0.0745 | 0.9144 | 0.9173 | 0.9158 | 0.9799 | | 0.0518 | 2.0 | 1756 | 0.0621 | 0.9177 | 0.9353 | 0.9264 | 0.9826 | | 0.03 | 3.0 | 2634 | 0.0616 | 0.9265 | 0.9361 | 0.9313 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
nguyenvulebinh/iwslt-asr-wav2vec-large-4500h
nguyenvulebinh
2022-03-24T07:12:52Z
4
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en", "dataset:common_voice", "dataset:librispeech_asr", "dataset:how2", "dataset:must-c-v1", "dataset:must-c-v2", "dataset:europarl", "dataset:tedlium", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-23T14:53:55Z
--- language: en datasets: - common_voice - librispeech_asr - how2 - must-c-v1 - must-c-v2 - europarl - tedlium tags: - audio - automatic-speech-recognition license: cc-by-nc-4.0 --- # Fine-Tune Wav2Vec2 large model for English ASR ### Data for fine-tune | Dataset | Duration in hours | |--------------|-------------------| | Common Voice | 1667 | | Europarl | 85 | | How2 | 356 | | Librispeech | 936 | | MuST-C v1 | 407 | | MuST-C v2 | 482 | | Tedlium | 482 | ### Evaluation result | Dataset | Duration in hours | WER w/o LM | WER with LM | |-------------|-------------------|------------|-------------| | Librispeech | 5.4 | 2.9 | 1.1 | | Tedlium | 2.6 | 7.9 | 5.4 | ### Usage [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FAhtGvjRdHT4W0KeMdMMlL7sm6Hbe7dv?usp=sharing) ```python from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/iwslt-asr-wav2vec-large-4500h" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="tst_2010_sample.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # and of course there's teams that have a lot more tada structures and among the best are recent graduates of kindergarten # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text) # and of course there are teams that have a lot more ta da structures and among the best are recent graduates of kindergarten ``` ### Model Parameters License The ASR model parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode ### Contact [email protected] [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
libalabala/mt5-small-finetuned-amazon-en-es
libalabala
2022-03-24T07:00:11Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-17T08:45:00Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1997 - Rouge1: 16.7312 - Rouge2: 8.6607 - Rougel: 16.1846 - Rougelsum: 16.2411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0772 | 1.0 | 1209 | 3.3307 | 12.4644 | 4.0353 | 12.0167 | 12.0722 | | 4.0223 | 2.0 | 2418 | 3.2257 | 15.338 | 7.0168 | 14.7769 | 14.8391 | | 3.8018 | 3.0 | 3627 | 3.1997 | 16.7312 | 8.6607 | 16.1846 | 16.2411 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-sample
Pavithra
2022-03-24T06:41:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:12:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5219 - eval_runtime: 603.3856 - eval_samples_per_second: 154.402 - eval_steps_per_second: 4.826 - epoch: 0.15 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail
Prototypeu
2022-03-24T05:13:18Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-22T18:11:10Z
--- tags: - generated_from_keras_callback model-index: - name: Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail This model is a fine-tuned version of [Prototypeu/bart-base-finetuned-xsum](https://huggingface.co/Prototypeu/bart-base-finetuned-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5049 - Train Logits Loss: 1.5049 - Train Rouge1: 28.1795 - Train Rouge2: 14.0392 - Train Rougel: 23.7617 - Train Rougelsum: 26.5583 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 3e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 255113, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 32000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.98, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Logits Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:-----------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.9074 | 2.9074 | 26.9164 | 12.6984 | 22.4321 | 25.2287 | 19.0 | 0 | | 1.9368 | 1.9368 | 28.0165 | 13.8906 | 23.4187 | 26.3779 | 19.0 | 1 | | 1.7246 | 1.7246 | 27.6022 | 13.5255 | 23.2301 | 25.9923 | 19.0 | 2 | | 1.5945 | 1.5945 | 28.0347 | 13.7045 | 23.4851 | 26.3488 | 19.0 | 3 | | 1.5049 | 1.5049 | 28.1795 | 14.0392 | 23.7617 | 26.5583 | 19.0 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_logits_10k
beston91
2022-03-24T05:04:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T14:36:17Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_10k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.3791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 54 | 6.1576 | | No log | 1.99 | 108 | 6.2663 | | No log | 2.99 | 162 | 6.3520 | | No log | 3.99 | 216 | 6.3791 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
quincyqiang/chinese-roberta-wwm-ext
quincyqiang
2022-03-24T04:58:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:52:35Z
--- license: apache-2.0 ---
Yaxin/xlm-roberta-base-yelp-mlm
Yaxin
2022-03-24T04:44:37Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:10:58Z
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: xlm-roberta-base-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.7356223359340127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-yelp-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Accuracy: 0.7356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
lazyturtl/digital
lazyturtl
2022-03-24T04:28:50Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-15T00:21:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: digital results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8974359035491943 --- # digital ## Example Images #### ansys ![ansys](images/ansys.jpeg) #### blender ![blender](images/blender.jpeg) #### roblox ![roblox](images/roblox.jpeg) #### sketchup ![sketchup](images/sketchup.jpeg)
clisi2000/distilbert-base-uncased-distilled-clinc
clisi2000
2022-03-24T03:50:04Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T03:43:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cpu - Datasets 1.18.4 - Tokenizers 0.10.3
huggingtweets/btohtoh-willitbetoomuch
huggingtweets
2022-03-24T02:06:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:50:00Z
--- language: en thumbnail: http://www.huggingtweets.com/btohtoh-willitbetoomuch/1648087519902/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488467916198539265/3pTy_Kr3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh & unloading</div> <div style="text-align: center; font-size: 14px;">@btohtoh-willitbetoomuch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh & unloading. | Data | BToh | unloading | | --- | --- | --- | | Tweets downloaded | 3241 | 85 | | Retweets | 347 | 0 | | Short tweets | 480 | 3 | | Tweets kept | 2414 | 82 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d3flykp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh-willitbetoomuch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh-willitbetoomuch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Waynehillsdev/Wayne_NLP_mT5
Waynehillsdev
2022-03-24T02:02:30Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: Wayne_NLP_mT5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wayne_NLP_mT5 This model was trained only english datasets. if you want trained korean + english model go to wayne_mulang_mT5. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+3fd9dcf - Datasets 1.18.3 - Tokenizers 0.11.0
rurupang/roberta-base-finetuned-sts
rurupang
2022-03-24T01:54:26Z
25
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T14:13:32Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: roberta-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.956039443806831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sts This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1999 - Pearsonr: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 329 | 0.2462 | 0.9478 | | 1.2505 | 2.0 | 658 | 0.1671 | 0.9530 | | 1.2505 | 3.0 | 987 | 0.1890 | 0.9525 | | 0.133 | 4.0 | 1316 | 0.2360 | 0.9548 | | 0.0886 | 5.0 | 1645 | 0.2265 | 0.9528 | | 0.0886 | 6.0 | 1974 | 0.2097 | 0.9518 | | 0.0687 | 7.0 | 2303 | 0.2281 | 0.9523 | | 0.0539 | 8.0 | 2632 | 0.2212 | 0.9542 | | 0.0539 | 9.0 | 2961 | 0.1843 | 0.9532 | | 0.045 | 10.0 | 3290 | 0.1999 | 0.9560 | | 0.0378 | 11.0 | 3619 | 0.2357 | 0.9533 | | 0.0378 | 12.0 | 3948 | 0.2134 | 0.9541 | | 0.033 | 13.0 | 4277 | 0.2273 | 0.9540 | | 0.03 | 14.0 | 4606 | 0.2148 | 0.9533 | | 0.03 | 15.0 | 4935 | 0.2207 | 0.9534 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
negfir/distilbert-base-uncased-finetuned-squad
negfir
2022-03-24T01:39:12Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2789 | 1.0 | 5533 | 1.2200 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/btohtoh
huggingtweets
2022-03-24T01:35:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:35:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh</div> <div style="text-align: center; font-size: 14px;">@btohtoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh. | Data | BToh | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 347 | | Short tweets | 480 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnk5832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
microsoft/amos
microsoft
2022-03-24T01:24:38Z
13
1
transformers
[ "transformers", "pytorch", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-24T01:16:31Z
--- license: mit --- # Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators This model card contains the AMOS model (**base++** version) proposed in [this paper](). The official GitHub repository can be found [here](https://github.com/microsoft/AMOS). # Citation If you find this model card useful for your research, please cite the following paper: ``` @inproceedings{meng2022amos, title={Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators}, author={Meng, Yu and Xiong, Chenyan and Bajaj, Payal and Tiwary, Saurabh and Bennett, Paul and Han, Jiawei and Song, Xia}, booktitle={ICLR}, year={2022} } ```
espnet/chai_microsoft_indian_langs_te
espnet
2022-03-24T00:36:45Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "te", "dataset:microsoft_indian_languages_interspeech2018", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:36:26Z
--- tags: - espnet - audio - automatic-speech-recognition language: te datasets: - microsoft_indian_languages_interspeech2018 license: cc-by-4.0 --- ## ESPnet2 model ### `` This model was trained by Chaitanya Narisetty using recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/ms_indic_is18/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/chai_microsoft_indian_langs_te ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Mar 22 13:38:24 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1+cu111` - Git hash: `f91410f712d1287cd6809c5bf26b54c5a40fe314` - Commit date: `Mon Mar 14 22:32:17 2022 -0400` ## asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.5|2.4|24.4|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.4|2.6|2.4|24.4|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.6|2.5|24.5|79.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.1|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.0|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.1|2.2|1.6|6.0|79.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.7|4.7|2.6|1.6|8.9|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.7|2.6|1.6|8.9|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.6|2.6|1.6|8.9|79.9| ## config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_xlsr53_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/train/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_te_sp/wav.scp - speech - sound - - dump/raw/train_te_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_te/wav.scp - speech - sound - - dump/raw/dev_te/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - ా - ు - ి - ం - ే - వ - న - ల - ▁అ - క - ్ - ో - మ - ▁ - త - ర - ప - ీ - ▁మ - య - డ - ▁ప - ద - ని - గ - ▁వ - స - కు - ె - ర్ - ▁స - ▁క - ్య - న్న - ట - ▁చ - ▁త - ాల - ంట - ూ - శ - ంద - ార - ▁న - ారు - ▁ఉ - లు - ▁ఆ - ను - జ - రి - ▁ప్ర - ించ - ధ - ై - హ - ంది - ్ర - ▁ఇ - చ - రు - స్త - లో - ▁ద - డు - ▁ఎ - ▁వి - ల్ల - ణ - గా - ది - డి - న్నారు - దు - ిన - ▁ర - త్ - ొ - ▁గ - ంత - ంగా - ▁కా - బ - ▁జ - ష - ▁తెల - ులు - ▁ఏ - ట్ట - చ్చ - తి - నే - కి - ంలో - ▁అవును - ▁చెప్ప - భ - ▁ఈ - ప్ప - ▁ని - ▁రా - క్క - ▁బ - ట్ల - ▁భ - తో - ▁కూడా - ▁బా - ద్ద - ▁చేస - ▁లే - ాయి - ానికి - త్ర - ▁కొ - ఖ - ▁ఒక - ▁చాలా - క్ష - ళ - ▁చేస్త - ృ - థ - ఘ - ఫ - ఓ - ౌ - ఒ - ఐ - ఠ - ఢ - అ - ఉ - ఏ - ఈ - ౦ - ఇ - ః - ఋ - ఝ - ఔ - ఛ - ఞ - ఊ - ఎ - ఆ - ఙ - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/te_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: fused frontend_conf: frontends: - frontend_type: default n_fft: 512 win_length: 400 hop_length: 160 - frontend_type: s3prl frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true align_method: linear_projection proj_dim: 200 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 400 output_size: 100 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/russian_commonvoice_blstm
espnet
2022-03-24T00:02:17Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ru", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:59:42Z
--- tags: - espnet - audio - automatic-speech-recognition language: ru datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/russian_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout fa1b865352475b744c37f70440de1cc6b257ba70 pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/russian_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Mar 23 19:56:59 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `fa1b865352475b744c37f70440de1cc6b257ba70` - Commit date: `Wed Feb 16 16:42:36 2022 -0500` ## asr_blstm_specaug_num_time_mask_2_lr_0.1 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|71189|79.3|18.4|2.4|2.1|22.8|71.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|537025|95.0|3.0|2.0|1.1|6.1|71.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|399162|93.2|4.5|2.3|1.4|8.2|71.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_blstm_specaug_num_time_mask_2_lr_0.1 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/train/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_ru_sp/wav.scp - speech - sound - - dump/raw/train_ru_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_ru/wav.scp - speech - sound - - dump/raw/dev_ru/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - е - о - и - с - м - а - в - н - д - т - у - . - я - ы - л - й - з - п - к - но - ',' - ▁в - ра - б - ж - ю - г - го - ▁по - ▁с - ни - ч - х - р - ко - ре - ш - ли - ть - ▁на - ль - ва - ер - ▁и - ет - ст - ро - на - ла - ле - ь - ен - то - ло - да - ка - ▁не - ств - ти - ци - ся - ▁за - ▁про - че - ем - ру - же - та - ▁при - ▁со - ▁это - ри - ф - ки - бо - ц - ▁С - ста - ения - щ - сти - э - К - О - А - И - '-' - Т - Я - Б - Д - М - '?' - – - Г - — - '!' - У - ъ - '"' - » - ё - Ф - ':' - Х - Ю - F - ; - O - I - E - R - − - В - С - '''' - П - C - L - A - ‐ - H - T - G - S - ( - ) - B - K - P - Z - M - Й - X - Ц - Ж - Ч - Ш - « - З - Л - Е - Р - Э - N - Н - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/ru_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_ru_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
public-data/dlib_face_landmark_model
public-data
2022-03-23T22:54:12Z
0
0
null
[ "region:us" ]
null
2022-03-23T22:52:02Z
# dlib face landmark model - http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
radev/xlm-roberta-base-finetuned-panx-de
radev
2022-03-23T22:27:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T22:11:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8593216480764853 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
bigmorning/my-gpt-model-5
bigmorning
2022-03-23T22:11:47Z
5
1
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T22:04:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-5 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.9979 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 4.9979 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/radagasttbrown
huggingtweets
2022-03-23T21:33:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T21:13:19Z
--- language: en thumbnail: http://www.huggingtweets.com/radagasttbrown/1648071147429/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362404255798280192/yIKMf5AN_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radagast 🌋</div> <div style="text-align: center; font-size: 14px;">@radagasttbrown</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Radagast 🌋. | Data | Radagast 🌋 | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 457 | | Short tweets | 230 | | Tweets kept | 2541 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b1t67ko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @radagasttbrown's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/radagasttbrown') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pere/test-t5-small
pere
2022-03-23T20:39:40Z
5
1
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-20T12:17:29Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- ## Test T5 small conversion This is a test repo for the conversion of T5X to HuggingFace Flax. The current model is first converted from MTF to T5X using the conversion script included in the T5X library: ```bash python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr ``` After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1 ```bash python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small ``` The tokenizer.json was copied from https://huggingface.co/t5-small/blob/main/tokenizer.json. To be able to use the widgets in HuggingFace, the model was converted to pyTorch by running: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True) model.save_pretrained(".") ```
bigmorning/my-gpt-model-4
bigmorning
2022-03-23T20:00:04Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:52:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-4 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.0556 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.0556 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/ryiacy
huggingtweets
2022-03-23T19:51:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:28:42Z
--- language: en thumbnail: http://www.huggingtweets.com/ryiacy/1648065062687/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424813722011410434/73S-oYNT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cyriac</div> <div style="text-align: center; font-size: 14px;">@ryiacy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cyriac. | Data | cyriac | | --- | --- | | Tweets downloaded | 1050 | | Retweets | 32 | | Short tweets | 60 | | Tweets kept | 958 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26de85bt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ryiacy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ryiacy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Zarkit/bert-base-multilingual-uncased-sentiment1
Zarkit
2022-03-23T19:50:26Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T18:58:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Zarkit/bert-base-multilingual-uncased-sentiment1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Zarkit/bert-base-multilingual-uncased-sentiment1 This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4891 - Validation Loss: 0.5448 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7980, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6166 | 0.5680 | 0 | | 0.4891 | 0.5448 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
negfir/uncased_L-12_H-128_A-2
negfir
2022-03-23T19:18:33Z
3
0
transformers
[ "transformers", "pytorch", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2022-03-23T18:49:57Z
--- tags: - generated_from_keras_callback model-index: - name: uncased_L-12_H-128_A-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # uncased_L-12_H-128_A-2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
gayanin/bart-med-term-conditional-masking
gayanin
2022-03-23T19:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T14:24:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5115 - Rouge2 Precision: 0.7409 - Rouge2 Recall: 0.5343 - Rouge2 Fmeasure: 0.6025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6278 | 1.0 | 15827 | 0.5546 | 0.7255 | 0.5244 | 0.5908 | | 0.5356 | 2.0 | 31654 | 0.5286 | 0.7333 | 0.5293 | 0.5966 | | 0.4757 | 3.0 | 47481 | 0.5154 | 0.7376 | 0.532 | 0.5998 | | 0.4337 | 4.0 | 63308 | 0.5107 | 0.7406 | 0.5342 | 0.6023 | | 0.4045 | 5.0 | 79135 | 0.5115 | 0.7409 | 0.5343 | 0.6025 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Zohar/distilgpt2-finetuned-hotel-reviews
Zohar
2022-03-23T18:42:18Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:17:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-hotel-reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-hotel-reviews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7533 | 1.0 | 1259 | 3.6803 | | 3.6644 | 2.0 | 2518 | 3.6366 | | 3.6426 | 3.0 | 3777 | 3.6253 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
ScandinavianMrT/gpt2_ONION_prefinetune_4.0
ScandinavianMrT
2022-03-23T18:39:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:34:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_ONION_prefinetune_4.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_ONION_prefinetune_4.0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 153 | 4.7368 | | No log | 2.0 | 306 | 4.6732 | | No log | 3.0 | 459 | 4.6527 | | 4.8529 | 4.0 | 612 | 4.6484 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1
DrishtiSharma
2022-03-23T18:35:19Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.20626555409164105 - name: Test CER type: cer value: 0.051648321634392154 - name: Test WER (+LM) type: wer value: 0.13482652613087395 - name: Test CER (+LM) type: cer value: 0.038838663862562475 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.5406156320830592 - name: Dev CER type: cer value: 0.22249723590310583 - name: Dev WER (+LM) type: wer value: 0.49783147459727384 - name: Dev CER (+LM) type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
DrishtiSharma
2022-03-23T18:35:17Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "mt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - mt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-maltese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0174 | 9.01 | 1000 | 3.0552 | 1.0 | | 1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 | | 0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 | | 0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 | | 0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 | | 0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 | | 0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 | | 0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 | | 0.451 | 81.08 | 9000 | 0.3146 | 0.2907 | | 0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 | | 0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Script !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese \ --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
Akashpb13/Hausa_xlsr
Akashpb13
2022-03-23T18:35:09Z
53
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "ha", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - ha - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Hausa_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 --- # Akashpb13/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
sammy786/wav2vec2-xlsr-bashkir
sammy786
2022-03-23T18:35:07Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - ba - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ba metrics: - name: Test WER type: wer value: 11.32 - name: Test CER type: cer value: 2.34 --- # sammy786/wav2vec2-xlsr-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ba dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: - Wer: ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 5.387100 | 1.982867 | 1.000000 | | 400 | 1.269800 | 0.369958 | 0.545755 | | 600 | 0.903600 | 0.287705 | 0.465594 | | 800 | 0.787300 | 0.235142 | 0.417091 | | 1000 | 0.816300 | 0.206325 | 0.390534 | | 1200 | 0.700500 | 0.197106 | 0.383987 | | 1400 | 0.707100 | 0.179855 | 0.381368 | | 1600 | 0.657800 | 0.181605 | 0.370593 | | 1800 | 0.647800 | 0.168626 | 0.358767 | | 2000 | 0.650700 | 0.164833 | 0.351483 | | 2200 | 0.490900 | 0.168133 | 0.363309 | | 2400 | 0.431000 | 0.161201 | 0.344350 | | 2600 | 0.372100 | 0.160254 | 0.338280 | | 2800 | 0.367500 | 0.150885 | 0.329687 | | 3000 | 0.351300 | 0.154112 | 0.331392 | | 3200 | 0.314800 | 0.147147 | 0.326700 | | 3400 | 0.316800 | 0.142681 | 0.325090 | | 3600 | 0.313000 | 0.138736 | 0.319553 | | 3800 | 0.291800 | 0.138166 | 0.315570 | | 4000 | 0.311300 | 0.135977 | 0.322894 | | 4200 | 0.304900 | 0.128820 | 0.308627 | | 4400 | 0.301600 | 0.129475 | 0.307440 | | 4600 | 0.281800 | 0.131863 | 0.305967 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-bashkir --dataset mozilla-foundation/common_voice_8_0 --config ba --split test ```
nouamanetazi/wav2vec2-xls-r-300m-ar
nouamanetazi
2022-03-23T18:35:04Z
16
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
infinitejoy/wav2vec2-large-xls-r-300m-hungarian
infinitejoy
2022-03-23T18:34:54Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hu metrics: - name: Test WER type: wer value: 31.099 - name: Test CER type: cer value: 6.737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 45.469 - name: Test CER type: cer value: 15.727 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 48.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hungarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HU dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.3964 | 3.52 | 1000 | 1.2251 | 0.8781 | | 1.3176 | 7.04 | 2000 | 0.3872 | 0.4462 | | 1.1999 | 10.56 | 3000 | 0.3244 | 0.3922 | | 1.1633 | 14.08 | 4000 | 0.3014 | 0.3704 | | 1.1132 | 17.61 | 5000 | 0.2913 | 0.3623 | | 1.0888 | 21.13 | 6000 | 0.2864 | 0.3498 | | 1.0487 | 24.65 | 7000 | 0.2821 | 0.3435 | | 1.0431 | 28.17 | 8000 | 0.2739 | 0.3308 | | 0.9896 | 31.69 | 9000 | 0.2629 | 0.3243 | | 0.9839 | 35.21 | 10000 | 0.2806 | 0.3308 | | 0.9586 | 38.73 | 11000 | 0.2650 | 0.3235 | | 0.9501 | 42.25 | 12000 | 0.2585 | 0.3173 | | 0.938 | 45.77 | 13000 | 0.2561 | 0.3117 | | 0.921 | 49.3 | 14000 | 0.2559 | 0.3115 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-hindi
infinitejoy
2022-03-23T18:34:51Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 92.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5414 - Wer: 1.0194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6095 | 3.38 | 500 | 4.5881 | 0.9999 | | 3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 | | 2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 | | 1.523 | 13.51 | 2000 | 0.7836 | 1.0051 | | 1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 | | 1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 | | 1.231 | 23.65 | 3500 | 0.6120 | 1.0105 | | 1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 | | 1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 | | 1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 | | 1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 | | 1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 | | 1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 | | 0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 | | 0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 | | 0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 | | 0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 | | 0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 | | 0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 | | 0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 | | 0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 | | 0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 | | 0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 | | 0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 | | 0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 | | 0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 | | 0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 | | 0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 | | 0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-galician
infinitejoy
2022-03-23T18:34:49Z
32
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gl", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gl - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gl metrics: - name: Test WER type: wer value: 101.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 105.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 101.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-galician This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GL dataset. It achieves the following results on the evaluation set: - Loss: 0.1525 - Wer: 0.1542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0067 | 4.35 | 500 | 2.9632 | 1.0 | | 1.4939 | 8.7 | 1000 | 0.5005 | 0.4157 | | 0.9982 | 13.04 | 1500 | 0.1967 | 0.1857 | | 0.8726 | 17.39 | 2000 | 0.1587 | 0.1564 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-gl-CV8
emre
2022-03-23T18:34:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "gl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: gl tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-gl-CV8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice gl type: common_voice args: gl metrics: - name: Test WER type: wer value: 0.208 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gl metrics: - name: Test WER type: wer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 47.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 50.8 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-ab-CV8
emre
2022-03-23T18:34:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ab", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: ab tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ab-CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ab metrics: - name: Test WER type: wer value: 44.9 --- # wav2vec2-xls-r-300m-ab-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Wer: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | | 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | | 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | | 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | | 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | | 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | | 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | | 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | | 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | | 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | | 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | | 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | | 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | | 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | | 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | | 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | | 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | | 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | | 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | | 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | | 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | | 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | | 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
Harveenchadha/odia_large_wav2vec2
Harveenchadha
2022-03-23T18:34:27Z
21
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - or tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - or - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: or metrics: - name: Test WER type: wer value: 54.26 - name: Test CER type: cer value: 11.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: or metrics: - name: Test WER type: wer value: 53.58 - name: Test CER type: cer value: 11.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 55.26 - name: Test CER type: cer value: 13.01 ---
AndrewMcDowell/wav2vec2-xls-r-300m-japanese
AndrewMcDowell
2022-03-23T18:34:20Z
38
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300-m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.82 - name: Test CER type: cer value: 23.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 100.0 - name: Test CER type: cer value: 30.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test CER type: cer value: 30.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 34.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. On mozilla-foundation/common_voice_8_0 it achieved: - cer: 23.64% On speech-recognition-community-v2/dev_data it achieved: - cer: 30.99% It achieves the following results on the evaluation set: - Loss: 0.5212 - Wer: 1.3068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | | 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | | 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | | 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | | 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | | 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | | 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | | 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | | 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | | 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
sammy786/wav2vec2-xlsr-finnish
sammy786
2022-03-23T18:34:11Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fi metrics: - name: Test WER type: wer value: 13.72 - name: Test CER type: cer value: 2.35 --- # sammy786/wav2vec2-xlsr-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - fi dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 8.7555 - Wer: 23.0231 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.253700 | 0.881733 | 0.967007 | | 400 | 0.864800 | 0.226977 | 0.420836 | | 600 | 0.607000 | 0.157473 | 0.343375 | | 800 | 0.380200 | 0.145640 | 0.302672 | | 1000 | 0.318400 | 0.128028 | 0.293886 | | 1200 | 0.261100 | 0.121414 | 0.289941 | | 1400 | 0.232300 | 0.113451 | 0.279182 | | 1600 | 0.216600 | 0.113649 | 0.282948 | | 1800 | 0.202500 | 0.112375 | 0.276134 | | 2000 | 0.190000 | 0.105725 | 0.273803 | | 2200 | 0.171000 | 0.109715 | 0.270755 | | 2400 | 0.156500 | 0.105042 | 0.264300 | | 2600 | 0.155600 | 0.108337 | 0.260714 | | 2800 | 0.149100 | 0.112435 | 0.263583 | | 3000 | 0.145100 | 0.106193 | 0.261969 | | 3200 | 0.131700 | 0.102860 | 0.251210 | | 3400 | 0.129100 | 0.096058 | 0.246907 | | 3600 | 0.121600 | 0.099932 | 0.246369 | | 3800 | 0.112000 | 0.099041 | 0.244397 | | 4000 | 0.114100 | 0.101566 | 0.242604 | | 4200 | 0.111500 | 0.089498 | 0.239197 | | 4400 | 0.099800 | 0.092835 | 0.240990 | | 4600 | 0.095300 | 0.093518 | 0.238121 | | 4800 | 0.094300 | 0.090783 | 0.240631 | | 5000 | 0.089000 | 0.094046 | 0.238479 | | 5200 | 0.088000 | 0.089342 | 0.235252 | | 5400 | 0.083600 | 0.087770 | 0.234535 | | 5600 | 0.083600 | 0.088804 | 0.234355 | | 5800 | 0.080300 | 0.090168 | 0.231307 | | 6000 | 0.078100 | 0.090163 | 0.230949 | | 6200 | 0.075600 | 0.088876 | 0.232383 | | 6400 | 0.078700 | 0.087235 | 0.232024 | | 6600 | 0.074800 | 0.086825 | 0.231486 | | 6800 | 0.076400 | 0.087308 | 0.231845 | | 7000 | 0.070700 | 0.087695 | 0.230769 | | 7200 | 0.075500 | 0.087555 | 0.230231 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-finnish --dataset mozilla-foundation/common_voice_8_0 --config fi --split test ```
polodealvarado/xls-r-300m-es
polodealvarado
2022-03-23T18:34:06Z
17
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "es", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - es tags: - common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wave2vec-xls-r-300m-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 es type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 14.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 28.63 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 29.72 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2-XLSR-300m-es This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the spanish common_voice dataset thanks to the GPU credits generously given by the OVHcloud for the Speech Recognition challenge. It achieves the following results on the evaluation set Without LM: - Loss : 0.1900 - Wer : 0.146 With 5-gram: - WER: 0.109 - CER: 0.036 ### Usage with 5-gram. The model can be used with n-gram (n=5) included in the processor as follows. ```python import re from transformers import AutoModelForCTC,Wav2Vec2ProcessorWithLM import torch # Loading model and processor processor = Wav2Vec2ProcessorWithLM.from_pretrained("polodealvarado/xls-r-300m-es") model = AutoModelForCTC.from_pretrained("polodealvarado/xls-r-300m-es") # Cleaning characters def remove_extra_chars(batch): chars_to_ignore_regex = '[^a-záéíóúñ ]' text = batch["translation"][target_lang] batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower()) return batch # Preparing dataset def prepare_dataset(batch): audio = batch["audio"] batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"],return_tensors="pt",padding=True).input_values[0] with processor.as_target_processor(): batch["labels"] = processor(batch["sentence"]).input_ids return batch common_voice_test = load_dataset("mozilla-foundation/common_voice_8_0", "es", split="test",use_auth_token=True) common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000)) common_voice_test = common_voice_test.map(remove_extra_chars, remove_columns=dataset.column_names) common_voice_test = common_voice_test.map(prepare_dataset) # Testing first sample inputs = torch_tensor(common_voice_test[0]["input_values"]) with torch.no_grad(): logits = model(inputs).logits pred_ids = torch.argmax(logits, dim=-1) text = processor.batch_decode(logits.numpy()).text print(text) # 'bien y qué regalo vas a abrir primero' ``` On the other, you can execute the eval.py file for evaluation ```bash # To use GPU: --device 0 $ python eval.py --model_id polodealvarado/xls-r-300m-es --dataset mozilla-foundation/common_voice_8_0 --config es --device 0 --split test ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6747 | 0.3 | 400 | 0.6535 | 0.5926 | | 0.4439 | 0.6 | 800 | 0.3753 | 0.3193 | | 0.3291 | 0.9 | 1200 | 0.3267 | 0.2721 | | 0.2644 | 1.2 | 1600 | 0.2816 | 0.2311 | | 0.24 | 1.5 | 2000 | 0.2647 | 0.2179 | | 0.2265 | 1.79 | 2400 | 0.2406 | 0.2048 | | 0.1994 | 2.09 | 2800 | 0.2357 | 0.1869 | | 0.1613 | 2.39 | 3200 | 0.2242 | 0.1821 | | 0.1546 | 2.69 | 3600 | 0.2123 | 0.1707 | | 0.1441 | 2.99 | 4000 | 0.2067 | 0.1619 | | 0.1138 | 3.29 | 4400 | 0.2044 | 0.1519 | | 0.1072 | 3.59 | 4800 | 0.1917 | 0.1457 | | 0.0992 | 3.89 | 5200 | 0.1900 | 0.1438 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
lgris/wav2vec2_base_10k_8khz_pt_cv7_2
lgris
2022-03-23T18:34:03Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2_base_10k_8khz_pt_cv7_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 36.9 - name: Test CER type: cer value: 14.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 40.53 - name: Test CER type: cer value: 16.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 37.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 38.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_base_10k_8khz_pt_cv7_2 This model is a fine-tuned version of [lgris/seasr_2022_base_10k_8khz_pt](https://huggingface.co/lgris/seasr_2022_base_10k_8khz_pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 76.3426 - Wer: 0.1979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 189.1362 | 0.65 | 500 | 80.6347 | 0.2139 | | 174.2587 | 1.3 | 1000 | 80.2062 | 0.2116 | | 164.676 | 1.95 | 1500 | 78.2161 | 0.2073 | | 176.5856 | 2.6 | 2000 | 78.8920 | 0.2074 | | 164.3583 | 3.25 | 2500 | 77.2865 | 0.2066 | | 161.414 | 3.9 | 3000 | 77.8888 | 0.2048 | | 158.283 | 4.55 | 3500 | 77.3472 | 0.2033 | | 159.2265 | 5.19 | 4000 | 79.0953 | 0.2036 | | 156.3967 | 5.84 | 4500 | 76.6855 | 0.2029 | | 154.2743 | 6.49 | 5000 | 77.7785 | 0.2015 | | 156.6497 | 7.14 | 5500 | 77.1220 | 0.2033 | | 157.3038 | 7.79 | 6000 | 76.2926 | 0.2027 | | 162.8151 | 8.44 | 6500 | 76.7602 | 0.2013 | | 151.8613 | 9.09 | 7000 | 77.4777 | 0.2011 | | 153.0225 | 9.74 | 7500 | 76.5206 | 0.2001 | | 157.52 | 10.39 | 8000 | 76.1061 | 0.2006 | | 145.0592 | 11.04 | 8500 | 76.7855 | 0.1992 | | 150.0066 | 11.69 | 9000 | 76.0058 | 0.1988 | | 146.8128 | 12.34 | 9500 | 76.2853 | 0.1987 | | 146.9148 | 12.99 | 10000 | 76.3426 | 0.1979 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-romanian
infinitejoy
2022-03-23T18:33:55Z
471
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "ro", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - ro - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 14.194 - name: Test CER type: cer value: 3.288 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 40.869 - name: Test CER type: cer value: 12.049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 47.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1973 | 8.89 | 2000 | 0.4481 | 0.4849 | | 0.6005 | 17.78 | 4000 | 0.1420 | 0.1777 | | 0.5248 | 26.67 | 6000 | 0.1303 | 0.1651 | | 0.4871 | 35.56 | 8000 | 0.1207 | 0.1523 | | 0.4428 | 44.44 | 10000 | 0.1143 | 0.1425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-mongolian
infinitejoy
2022-03-23T18:33:52Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: mn metrics: - name: Test WER type: wer value: 44.709 - name: Test CER type: cer value: 13.532 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 76.643 - name: Test CER type: cer value: 36.997 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 78.45 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.6003 - Wer: 0.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3677 | 15.87 | 2000 | 0.6432 | 0.6198 | | 1.1379 | 31.75 | 4000 | 0.6196 | 0.5592 | | 1.0093 | 47.62 | 6000 | 0.5828 | 0.5117 | | 0.8888 | 63.49 | 8000 | 0.5754 | 0.4822 | | 0.7985 | 79.37 | 10000 | 0.5987 | 0.4690 | | 0.697 | 95.24 | 12000 | 0.6014 | 0.4471 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa
infinitejoy
2022-03-23T18:33:50Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "bas", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bas metrics: - name: Test WER type: wer value: 104.08 - name: Test CER type: cer value: 228.48 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5975 - Wer: 0.4981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | | 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | | 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | | 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | | 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | | 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | | 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | | 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | | 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | | 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | | 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | | 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Akashpb13/xlsr_hungarian_new
Akashpb13
2022-03-23T18:33:33Z
41
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/xlsr_hungarian_new results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 47.15 --- # Akashpb13/xlsr_hungarian_new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - hu dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other and dev datasets): - Loss: 0.197464 - Wer: 0.330094 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice hungarian train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000095637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 16 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 4.785300 | 0.952295 | 0.796236 | | 1000 | 0.535800 | 0.217474 | 0.381613 | | 1500 | 0.258400 | 0.205524 | 0.345056 | | 2000 | 0.202800 | 0.198680 | 0.336264 | | 2500 | 0.182700 | 0.197464 | 0.330094 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/xlsr_hungarian_new --dataset mozilla-foundation/common_voice_8_0 --config hu --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-kurdish
infinitejoy
2022-03-23T18:33:23Z
98
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "kmr", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - kmr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - kmr - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kurmanji Kurdish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: kmr metrics: - name: Test WER type: wer value: 102.308 - name: Test CER type: cer value: 538.748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kurdish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KMR dataset. It achieves the following results on the evaluation set: - Loss: 0.2548 - Wer: 0.2688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3161 | 12.27 | 2000 | 0.4199 | 0.4797 | | 1.0643 | 24.54 | 4000 | 0.2982 | 0.3721 | | 0.9718 | 36.81 | 6000 | 0.2762 | 0.3333 | | 0.8772 | 49.08 | 8000 | 0.2586 | 0.3051 | | 0.8236 | 61.35 | 10000 | 0.2575 | 0.2865 | | 0.7745 | 73.62 | 12000 | 0.2603 | 0.2816 | | 0.7297 | 85.89 | 14000 | 0.2539 | 0.2727 | | 0.7079 | 98.16 | 16000 | 0.2554 | 0.2681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
deepdml/wav2vec2-large-xls-r-300m-basque
deepdml
2022-03-23T18:33:20Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "basque", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "eu", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: eu metrics: - wer - cer tags: - automatic-speech-recognition - basque - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eu metrics: - name: Test WER type: wer value: 51.89 - name: Test CER type: cer value: 10.01 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basque This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4276 - Wer: 0.5962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9902 | 1.29 | 400 | 2.1257 | 1.0 | | 0.9625 | 2.59 | 800 | 0.5695 | 0.7452 | | 0.4605 | 3.88 | 1200 | 0.4276 | 0.5962 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-breton
sammy786
2022-03-23T18:33:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "br", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - br - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: br metrics: - name: Test WER type: wer value: 48.2 - name: Test CER type: cer value: 15.02 --- # sammy786/wav2vec2-xlsr-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - br dataset. ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 32 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-breton --dataset mozilla-foundation/common_voice_8_0 --config br --split test ```
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
2022-03-23T18:33:04Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "fr", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa-cv8
infinitejoy
2022-03-23T18:32:58Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bas", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - bas - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 38.057 - name: Test CER type: cer value: 11.233 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Wer: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9421 | 12.82 | 500 | 2.8894 | 1.0 | | 1.1872 | 25.64 | 1000 | 0.6688 | 0.7460 | | 0.8894 | 38.46 | 1500 | 0.4868 | 0.6516 | | 0.769 | 51.28 | 2000 | 0.4960 | 0.6507 | | 0.6936 | 64.1 | 2500 | 0.4781 | 0.5384 | | 0.624 | 76.92 | 3000 | 0.4643 | 0.5430 | | 0.5966 | 89.74 | 3500 | 0.4530 | 0.5591 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
AlexN/xls-r-300m-fr
AlexN
2022-03-23T18:32:43Z
56
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "fr", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 21.58 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 36.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 38.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2700 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-mongolian
sammy786
2022-03-23T18:30:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER type: wer value: 32.63 - name: Test CER type: cer value: 9.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 91.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 91.37 --- # sammy786/wav2vec2-xlsr-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - mn dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 31.52 - Wer: 34.1522 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.906200 | 3.012986 | 1.000000 | | 400 | 1.734600 | 0.704821 | 0.750497 | | 600 | 1.132100 | 0.496223 | 0.531241 | | 800 | 0.929300 | 0.468937 | 0.469043 | | 1000 | 0.772300 | 0.425313 | 0.448168 | | 1200 | 0.623900 | 0.394633 | 0.414229 | | 1400 | 0.512400 | 0.369225 | 0.397614 | | 1600 | 0.439900 | 0.346033 | 0.391650 | | 1800 | 0.391300 | 0.358454 | 0.379296 | | 2000 | 0.377000 | 0.346822 | 0.359415 | | 2200 | 0.347500 | 0.325205 | 0.348481 | | 2400 | 0.343600 | 0.315233 | 0.344078 | | 2600 | 0.328000 | 0.308826 | 0.341522 | | 2800 | 0.358200 | 0.331786 | 0.343084 | | 3000 | 0.417200 | 0.370051 | 0.356433 | | 3200 | 0.685300 | 0.595438 | 0.407413 | | 3400 | 0.764100 | 0.643449 | 0.359983 | | 3600 | 0.717100 | 0.505033 | 0.371911 | | 3800 | 0.620900 | 0.464138 | 0.369071 | | 4000 | 0.590700 | 0.445417 | 0.363249 | | 4200 | 0.561000 | 0.440727 | 0.360267 | | 4400 | 0.550600 | 0.447122 | 0.360267 | | 4600 | 0.562100 | 0.457020 | 0.359841 | | 4800 | 0.578800 | 0.470477 | 0.360551 | | 5000 | 0.580400 | 0.481413 | 0.362539 | | 5200 | 0.605500 | 0.485240 | 0.362823 | | 5400 | 0.582900 | 0.486654 | 0.362965 | | 5600 | 0.593900 | 0.486715 | 0.363107 | | 5800 | 0.590900 | 0.486716 | 0.363107 | | 6000 | 0.587200 | 0.486716 | 0.363107 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-mongolian --dataset mozilla-foundation/common_voice_8_0 --config mn --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-urdu
infinitejoy
2022-03-23T18:30:21Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ur", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event - ur datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Urdu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ur metrics: - name: Test WER type: wer value: 105.66 - name: Test CER type: cer value: 434.011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> infinitejoy/wav2vec2-large-xls-r-300m-urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - -UR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-urdu --dataset speech-recognition-community-v2/dev_data \ --config ur --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-urdu" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER):
infinitejoy/wav2vec2-large-xls-r-300m-bashkir
infinitejoy
2022-03-23T18:30:18Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ba", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ba metrics: - name: Test WER type: wer value: 24.2 - name: Test CER type: cer value: 5.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set: - Loss: 0.1892 - Wer: 0.2421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4792 | 0.5 | 2000 | 0.4598 | 0.5404 | | 1.449 | 1.0 | 4000 | 0.4650 | 0.5610 | | 1.3742 | 1.49 | 6000 | 0.4001 | 0.4977 | | 1.3375 | 1.99 | 8000 | 0.3916 | 0.4894 | | 1.2961 | 2.49 | 10000 | 0.3641 | 0.4569 | | 1.2714 | 2.99 | 12000 | 0.3491 | 0.4488 | | 1.2399 | 3.48 | 14000 | 0.3151 | 0.3986 | | 1.2067 | 3.98 | 16000 | 0.3081 | 0.3923 | | 1.1842 | 4.48 | 18000 | 0.2875 | 0.3703 | | 1.1644 | 4.98 | 20000 | 0.2840 | 0.3670 | | 1.161 | 5.48 | 22000 | 0.2790 | 0.3597 | | 1.1303 | 5.97 | 24000 | 0.2552 | 0.3272 | | 1.0874 | 6.47 | 26000 | 0.2405 | 0.3142 | | 1.0613 | 6.97 | 28000 | 0.2352 | 0.3055 | | 1.0498 | 7.47 | 30000 | 0.2249 | 0.2910 | | 1.021 | 7.96 | 32000 | 0.2118 | 0.2752 | | 1.0002 | 8.46 | 34000 | 0.2046 | 0.2662 | | 0.9762 | 8.96 | 36000 | 0.1969 | 0.2530 | | 0.9568 | 9.46 | 38000 | 0.1917 | 0.2449 | | 0.953 | 9.96 | 40000 | 0.1893 | 0.2425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2
DrishtiSharma
2022-03-23T18:30:10Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-d2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.28775471338792613 - name: Test CER type: cer value: 0.06861971204625049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.49783147459727384 - name: Test CER type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 51.25 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bg-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 - Wer: 0.2860 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8791 | 1.74 | 200 | 3.1902 | 1.0 | | 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 | | 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 | | 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 | | 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 | | 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 | | 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 | | 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 | | 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 | | 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 | | 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 | | 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 | | 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 | | 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 | | 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 | | 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 | | 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 | | 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 | | 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 | | 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
vitouphy/wav2vec2-xls-r-300m-japanese
vitouphy
2022-03-23T18:30:07Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/0124", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 54.05 - name: Test CER type: cer value: 27.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Validation WER type: wer value: 48.77 - name: Validation CER type: cer value: 24.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 27.36 --- # This model is for transcribing audio into Hiragana, one format of Japanese language. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `mozilla-foundation/common_voice_8_0 dataset`. Note that the following results are achieved by: - Modify `eval.py` to suit the use case. - Since kanji and katakana shares the same sound as hiragana, we convert all texts to hiragana using [pykakasi](https://pykakasi.readthedocs.io) and tokenize them using [fugashi](https://github.com/polm/fugashi). It achieves the following results on the evaluation set: - Loss: 0.7751 - Cer: 0.2227 # Evaluation results (Running ./eval.py): | Model | Metric | Common-Voice-8/test | speech-recognition-community-v2/dev-data | |:--------:|:------:|:-------------------:|:------------------------------------------:| | w/o LM | WER | 0.5964 | 0.5532 | | | CER | 0.2944 | 0.2629 | | w/ LM | WER | 0.5405 | 0.4877 | | | CER | **0.2754** | **0.2487** | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4081 | 1.6 | 500 | 4.0983 | 1.0 | | 3.303 | 3.19 | 1000 | 3.3563 | 1.0 | | 3.1538 | 4.79 | 1500 | 3.2066 | 0.9239 | | 2.1526 | 6.39 | 2000 | 1.1597 | 0.3355 | | 1.8726 | 7.98 | 2500 | 0.9023 | 0.2505 | | 1.7817 | 9.58 | 3000 | 0.8219 | 0.2334 | | 1.7488 | 11.18 | 3500 | 0.7915 | 0.2222 | | 1.7039 | 12.78 | 4000 | 0.7751 | 0.2227 | | Stop & Train | | | | | | 1.6571 | 15.97 | 5000 | 0.6788 | 0.1685 | | 1.520400 | 19.16 | 6000 | 0.6095 | 0.1409 | | 1.448200 | 22.35 | 7000 | 0.5843 | 0.1430 | | 1.385400 | 25.54 | 8000 | 0.5699 | 0.1263 | | 1.354200 | 28.73 | 9000 | 0.5686 | 0.1219 | | 1.331500 | 31.92 | 10000 | 0.5502 | 0.1144 | | 1.290800 | 35.11 | 11000 | 0.5371 | 0.1140 | | Stop & Train | | | | | | 1.235200 | 38.30 | 12000 | 0.5394 | 0.1106 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-1b-cv8
lgris
2022-03-23T18:29:59Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 17.7 - name: Test CER type: cer value: 5.21 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 45.68 - name: Test CER type: cer value: 18.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 45.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 48.03 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2007 - Wer: 0.1838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.1172 | 0.32 | 500 | 1.2852 | 0.9783 | | 1.4152 | 0.64 | 1000 | 0.6434 | 0.6105 | | 1.4342 | 0.96 | 1500 | 0.4844 | 0.3989 | | 1.4657 | 1.29 | 2000 | 0.5080 | 0.4490 | | 1.4961 | 1.61 | 2500 | 0.4764 | 0.4264 | | 1.4515 | 1.93 | 3000 | 0.4519 | 0.4068 | | 1.3924 | 2.25 | 3500 | 0.4472 | 0.4132 | | 1.4524 | 2.57 | 4000 | 0.4455 | 0.3939 | | 1.4328 | 2.89 | 4500 | 0.4369 | 0.4069 | | 1.3456 | 3.22 | 5000 | 0.4234 | 0.3774 | | 1.3725 | 3.54 | 5500 | 0.4387 | 0.3789 | | 1.3812 | 3.86 | 6000 | 0.4298 | 0.3825 | | 1.3282 | 4.18 | 6500 | 0.4025 | 0.3703 | | 1.3326 | 4.5 | 7000 | 0.3917 | 0.3502 | | 1.3028 | 4.82 | 7500 | 0.3889 | 0.3582 | | 1.293 | 5.14 | 8000 | 0.3859 | 0.3496 | | 1.321 | 5.47 | 8500 | 0.3875 | 0.3576 | | 1.3165 | 5.79 | 9000 | 0.3927 | 0.3589 | | 1.2701 | 6.11 | 9500 | 0.4058 | 0.3621 | | 1.2718 | 6.43 | 10000 | 0.4211 | 0.3916 | | 1.2683 | 6.75 | 10500 | 0.3968 | 0.3620 | | 1.2643 | 7.07 | 11000 | 0.4128 | 0.3848 | | 1.2485 | 7.4 | 11500 | 0.3849 | 0.3727 | | 1.2608 | 7.72 | 12000 | 0.3770 | 0.3474 | | 1.2388 | 8.04 | 12500 | 0.3774 | 0.3574 | | 1.2524 | 8.36 | 13000 | 0.3789 | 0.3550 | | 1.2458 | 8.68 | 13500 | 0.3770 | 0.3410 | | 1.2505 | 9.0 | 14000 | 0.3638 | 0.3403 | | 1.2254 | 9.32 | 14500 | 0.3770 | 0.3509 | | 1.2459 | 9.65 | 15000 | 0.3592 | 0.3349 | | 1.2049 | 9.97 | 15500 | 0.3600 | 0.3428 | | 1.2097 | 10.29 | 16000 | 0.3626 | 0.3347 | | 1.1988 | 10.61 | 16500 | 0.3740 | 0.3269 | | 1.1671 | 10.93 | 17000 | 0.3548 | 0.3245 | | 1.1532 | 11.25 | 17500 | 0.3394 | 0.3140 | | 1.1459 | 11.58 | 18000 | 0.3349 | 0.3156 | | 1.1511 | 11.9 | 18500 | 0.3272 | 0.3110 | | 1.1465 | 12.22 | 19000 | 0.3348 | 0.3084 | | 1.1426 | 12.54 | 19500 | 0.3193 | 0.3027 | | 1.1278 | 12.86 | 20000 | 0.3318 | 0.3021 | | 1.149 | 13.18 | 20500 | 0.3169 | 0.2947 | | 1.114 | 13.5 | 21000 | 0.3224 | 0.2986 | | 1.1249 | 13.83 | 21500 | 0.3227 | 0.2921 | | 1.0968 | 14.15 | 22000 | 0.3033 | 0.2878 | | 1.0851 | 14.47 | 22500 | 0.2996 | 0.2863 | | 1.0985 | 14.79 | 23000 | 0.3011 | 0.2843 | | 1.0808 | 15.11 | 23500 | 0.2932 | 0.2759 | | 1.069 | 15.43 | 24000 | 0.2919 | 0.2750 | | 1.0602 | 15.76 | 24500 | 0.2959 | 0.2713 | | 1.0369 | 16.08 | 25000 | 0.2931 | 0.2754 | | 1.0573 | 16.4 | 25500 | 0.2920 | 0.2722 | | 1.051 | 16.72 | 26000 | 0.2855 | 0.2632 | | 1.0279 | 17.04 | 26500 | 0.2850 | 0.2649 | | 1.0496 | 17.36 | 27000 | 0.2817 | 0.2585 | | 1.0516 | 17.68 | 27500 | 0.2961 | 0.2635 | | 1.0244 | 18.01 | 28000 | 0.2781 | 0.2589 | | 1.0099 | 18.33 | 28500 | 0.2783 | 0.2565 | | 1.0016 | 18.65 | 29000 | 0.2719 | 0.2537 | | 1.0157 | 18.97 | 29500 | 0.2621 | 0.2449 | | 0.9572 | 19.29 | 30000 | 0.2582 | 0.2427 | | 0.9802 | 19.61 | 30500 | 0.2707 | 0.2468 | | 0.9577 | 19.94 | 31000 | 0.2563 | 0.2389 | | 0.9562 | 20.26 | 31500 | 0.2592 | 0.2382 | | 0.962 | 20.58 | 32000 | 0.2539 | 0.2341 | | 0.9541 | 20.9 | 32500 | 0.2505 | 0.2288 | | 0.9587 | 21.22 | 33000 | 0.2486 | 0.2302 | | 0.9146 | 21.54 | 33500 | 0.2461 | 0.2269 | | 0.9215 | 21.86 | 34000 | 0.2387 | 0.2228 | | 0.9105 | 22.19 | 34500 | 0.2405 | 0.2222 | | 0.8949 | 22.51 | 35000 | 0.2316 | 0.2191 | | 0.9153 | 22.83 | 35500 | 0.2358 | 0.2180 | | 0.8907 | 23.15 | 36000 | 0.2369 | 0.2168 | | 0.8973 | 23.47 | 36500 | 0.2323 | 0.2120 | | 0.8878 | 23.79 | 37000 | 0.2293 | 0.2104 | | 0.8818 | 24.12 | 37500 | 0.2302 | 0.2132 | | 0.8919 | 24.44 | 38000 | 0.2262 | 0.2083 | | 0.8473 | 24.76 | 38500 | 0.2257 | 0.2040 | | 0.8516 | 25.08 | 39000 | 0.2246 | 0.2031 | | 0.8451 | 25.4 | 39500 | 0.2198 | 0.2000 | | 0.8288 | 25.72 | 40000 | 0.2199 | 0.1990 | | 0.8465 | 26.05 | 40500 | 0.2165 | 0.1972 | | 0.8305 | 26.37 | 41000 | 0.2128 | 0.1957 | | 0.8202 | 26.69 | 41500 | 0.2127 | 0.1937 | | 0.8223 | 27.01 | 42000 | 0.2100 | 0.1934 | | 0.8322 | 27.33 | 42500 | 0.2076 | 0.1905 | | 0.8139 | 27.65 | 43000 | 0.2054 | 0.1880 | | 0.8299 | 27.97 | 43500 | 0.2026 | 0.1868 | | 0.7937 | 28.3 | 44000 | 0.2045 | 0.1872 | | 0.7972 | 28.62 | 44500 | 0.2025 | 0.1861 | | 0.809 | 28.94 | 45000 | 0.2026 | 0.1858 | | 0.813 | 29.26 | 45500 | 0.2013 | 0.1838 | | 0.7718 | 29.58 | 46000 | 0.2010 | 0.1837 | | 0.7929 | 29.9 | 46500 | 0.2008 | 0.1840 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
jsnfly/wav2vec2-large-xlsr-53-german-gpt2
jsnfly
2022-03-23T18:29:57Z
21
2
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2-Large-XLSR-53-German-GPT2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 10.02 - name: Test CER type: cer value: 4.7 --- # Wav2Vec2-Large-XLSR-53-German-GPT2 This is an encoder-decoder model for automatic speech recognition trained on on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. The encoder was initialized from [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) and the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). It was trained using a two step process: * fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell * relatively fast training * also works on small GPU (eg. 8 GB) * but may take a lot of disk space * should already yield decent results * fine-tuning the model end-to-end * much slower * needs a bigger GPU There is also one trick, which seemed to improve performance significantly: adding position embeddings to the encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`). The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning rate schedule.
ubamba98/wav2vec2-xls-r-1b-ro
ubamba98
2022-03-23T18:29:42Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ro", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b-ro results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 99.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 99.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 99.99 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1113 - Wer: 0.4770 - Cer: 0.0306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.7844 | 1.67 | 1500 | 0.3412 | 0.8600 | 0.0940 | | 0.7272 | 3.34 | 3000 | 0.1926 | 0.6409 | 0.0527 | | 0.6924 | 5.02 | 4500 | 0.1413 | 0.5722 | 0.0401 | | 0.6327 | 6.69 | 6000 | 0.1252 | 0.5366 | 0.0371 | | 0.6363 | 8.36 | 7500 | 0.1235 | 0.5741 | 0.0389 | | 0.6238 | 10.03 | 9000 | 0.1180 | 0.5542 | 0.0362 | | 0.6018 | 11.71 | 10500 | 0.1192 | 0.5694 | 0.0369 | | 0.583 | 13.38 | 12000 | 0.1216 | 0.5772 | 0.0385 | | 0.5643 | 15.05 | 13500 | 0.1195 | 0.5419 | 0.0371 | | 0.5399 | 16.72 | 15000 | 0.1240 | 0.5224 | 0.0370 | | 0.5529 | 18.39 | 16500 | 0.1174 | 0.5555 | 0.0367 | | 0.5246 | 20.07 | 18000 | 0.1097 | 0.5047 | 0.0339 | | 0.4936 | 21.74 | 19500 | 0.1225 | 0.5189 | 0.0382 | | 0.4629 | 23.41 | 21000 | 0.1142 | 0.5047 | 0.0344 | | 0.4463 | 25.08 | 22500 | 0.1168 | 0.4887 | 0.0339 | | 0.4671 | 26.76 | 24000 | 0.1119 | 0.5073 | 0.0338 | | 0.4359 | 28.43 | 25500 | 0.1206 | 0.5479 | 0.0363 | | 0.4225 | 30.1 | 27000 | 0.1122 | 0.5170 | 0.0345 | | 0.4038 | 31.77 | 28500 | 0.1159 | 0.5032 | 0.0343 | | 0.4271 | 33.44 | 30000 | 0.1116 | 0.5126 | 0.0339 | | 0.3867 | 35.12 | 31500 | 0.1101 | 0.4937 | 0.0327 | | 0.3674 | 36.79 | 33000 | 0.1142 | 0.4940 | 0.0330 | | 0.3607 | 38.46 | 34500 | 0.1106 | 0.5145 | 0.0327 | | 0.3651 | 40.13 | 36000 | 0.1172 | 0.4921 | 0.0317 | | 0.3268 | 41.81 | 37500 | 0.1093 | 0.4830 | 0.0310 | | 0.3345 | 43.48 | 39000 | 0.1131 | 0.4760 | 0.0314 | | 0.3236 | 45.15 | 40500 | 0.1132 | 0.4864 | 0.0317 | | 0.312 | 46.82 | 42000 | 0.1124 | 0.4861 | 0.0315 | | 0.3106 | 48.49 | 43500 | 0.1116 | 0.4745 | 0.0306 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
shivam/xls-r-300m-marathi
shivam
2022-03-23T18:29:32Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "mr", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - mr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 8.0 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 38.27 - name: Test CER type: cer value: 8.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set: - Without LM + WER: 48.53 + CER: 10.63 - With LM + WER: 38.27 + CER: 8.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 400.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | | 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | | 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | | 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | | 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | | 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | | 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | | 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | | 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | | 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | | 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | | 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | | 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | | 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | | 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | | 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | | 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
anuragshas
2022-03-23T18:29:27Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
anantoj/wav2vec2-xls-r-1b-korean
anantoj
2022-03-23T18:29:13Z
37
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ko", "dataset:kresnik/zeroth_korean", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - kresnik/zeroth_korean model-index: - name: Wav2Vec2 XLS-R 1B Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ko metrics: - name: Test WER type: wer value: 82.07 - name: Test CER type: cer value: 42.12 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ko metrics: - name: Test WER type: wer value: 82.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Wer: 0.0449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.603 | 0.72 | 500 | 4.6572 | 0.9985 | | 2.6314 | 1.44 | 1000 | 2.0424 | 0.9256 | | 2.2708 | 2.16 | 1500 | 0.9889 | 0.6989 | | 2.1769 | 2.88 | 2000 | 0.8366 | 0.6312 | | 2.1142 | 3.6 | 2500 | 0.7555 | 0.5998 | | 2.0084 | 4.32 | 3000 | 0.7144 | 0.6003 | | 1.9272 | 5.04 | 3500 | 0.6311 | 0.5461 | | 1.8687 | 5.75 | 4000 | 0.6252 | 0.5430 | | 1.8186 | 6.47 | 4500 | 0.5491 | 0.4988 | | 1.7364 | 7.19 | 5000 | 0.5463 | 0.4959 | | 1.6809 | 7.91 | 5500 | 0.4724 | 0.4484 | | 1.641 | 8.63 | 6000 | 0.4679 | 0.4461 | | 1.572 | 9.35 | 6500 | 0.4387 | 0.4236 | | 1.5256 | 10.07 | 7000 | 0.3970 | 0.4003 | | 1.5044 | 10.79 | 7500 | 0.3690 | 0.3893 | | 1.4563 | 11.51 | 8000 | 0.3752 | 0.3875 | | 1.394 | 12.23 | 8500 | 0.3386 | 0.3567 | | 1.3641 | 12.95 | 9000 | 0.3290 | 0.3467 | | 1.2878 | 13.67 | 9500 | 0.2893 | 0.3135 | | 1.2602 | 14.39 | 10000 | 0.2723 | 0.3029 | | 1.2302 | 15.11 | 10500 | 0.2603 | 0.2989 | | 1.1865 | 15.83 | 11000 | 0.2440 | 0.2794 | | 1.1491 | 16.55 | 11500 | 0.2500 | 0.2788 | | 1.093 | 17.27 | 12000 | 0.2279 | 0.2629 | | 1.0367 | 17.98 | 12500 | 0.2076 | 0.2443 | | 0.9954 | 18.7 | 13000 | 0.1844 | 0.2259 | | 0.99 | 19.42 | 13500 | 0.1794 | 0.2179 | | 0.9385 | 20.14 | 14000 | 0.1765 | 0.2122 | | 0.8952 | 20.86 | 14500 | 0.1706 | 0.1974 | | 0.8841 | 21.58 | 15000 | 0.1791 | 0.1969 | | 0.847 | 22.3 | 15500 | 0.1780 | 0.2060 | | 0.8669 | 23.02 | 16000 | 0.1608 | 0.1862 | | 0.8066 | 23.74 | 16500 | 0.1447 | 0.1626 | | 0.7908 | 24.46 | 17000 | 0.1457 | 0.1655 | | 0.7459 | 25.18 | 17500 | 0.1350 | 0.1445 | | 0.7218 | 25.9 | 18000 | 0.1276 | 0.1421 | | 0.703 | 26.62 | 18500 | 0.1177 | 0.1302 | | 0.685 | 27.34 | 19000 | 0.1147 | 0.1305 | | 0.6811 | 28.06 | 19500 | 0.1128 | 0.1244 | | 0.6444 | 28.78 | 20000 | 0.1120 | 0.1213 | | 0.6323 | 29.5 | 20500 | 0.1137 | 0.1166 | | 0.5998 | 30.22 | 21000 | 0.1051 | 0.1107 | | 0.5706 | 30.93 | 21500 | 0.1035 | 0.1037 | | 0.5555 | 31.65 | 22000 | 0.1031 | 0.0927 | | 0.5389 | 32.37 | 22500 | 0.0997 | 0.0900 | | 0.5201 | 33.09 | 23000 | 0.0920 | 0.0912 | | 0.5146 | 33.81 | 23500 | 0.0929 | 0.0947 | | 0.515 | 34.53 | 24000 | 0.1000 | 0.0953 | | 0.4743 | 35.25 | 24500 | 0.0922 | 0.0892 | | 0.4707 | 35.97 | 25000 | 0.0852 | 0.0808 | | 0.4456 | 36.69 | 25500 | 0.0855 | 0.0779 | | 0.443 | 37.41 | 26000 | 0.0843 | 0.0738 | | 0.4388 | 38.13 | 26500 | 0.0816 | 0.0699 | | 0.4162 | 38.85 | 27000 | 0.0752 | 0.0645 | | 0.3979 | 39.57 | 27500 | 0.0761 | 0.0621 | | 0.3889 | 40.29 | 28000 | 0.0771 | 0.0625 | | 0.3923 | 41.01 | 28500 | 0.0755 | 0.0598 | | 0.3693 | 41.73 | 29000 | 0.0730 | 0.0578 | | 0.3642 | 42.45 | 29500 | 0.0739 | 0.0598 | | 0.3532 | 43.17 | 30000 | 0.0712 | 0.0553 | | 0.3513 | 43.88 | 30500 | 0.0762 | 0.0516 | | 0.3349 | 44.6 | 31000 | 0.0731 | 0.0504 | | 0.3305 | 45.32 | 31500 | 0.0725 | 0.0507 | | 0.3285 | 46.04 | 32000 | 0.0709 | 0.0489 | | 0.3179 | 46.76 | 32500 | 0.0667 | 0.0467 | | 0.3158 | 47.48 | 33000 | 0.0653 | 0.0494 | | 0.3033 | 48.2 | 33500 | 0.0638 | 0.0456 | | 0.3023 | 48.92 | 34000 | 0.0644 | 0.0464 | | 0.2975 | 49.64 | 34500 | 0.0643 | 0.0455 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz
infinitejoy
2022-03-23T18:28:58Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Abkhaz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 60.07 - name: Test CER type: cer value: 12.5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-abkhaz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5359 - Wer: 0.6192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8617 | 22.73 | 500 | 2.6264 | 1.0013 | | 1.2716 | 45.45 | 1000 | 0.6218 | 0.6942 | | 1.049 | 68.18 | 1500 | 0.5442 | 0.6368 | | 0.9632 | 90.91 | 2000 | 0.5364 | 0.6242 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Harveenchadha/hindi_large_wav2vec2
Harveenchadha
2022-03-23T18:28:53Z
44
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - hi tags: - automatic-speech-recognition - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: hi metrics: - name: Test WER type: wer value: 23.08 - name: Test CER type: cer value: 8.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 23.36 - name: Test CER type: cer value: 8.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 24.85 - name: Test CER type: cer value: 9.99 ---
vutankiet2901/wav2vec2-large-xlsr-53-ja
vutankiet2901
2022-03-23T18:28:48Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-53-ja results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 15.37 - name: Test CER (with LM) type: cer value: 6.91 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 16.09 - name: Test CER (with LM) type: cer value: 7.15 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 37.96 - name: Test CER (with LM) type: cer value: 21.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 26.02 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 15.74 | 25.10 | |with 4-grams LM| 15.37 | 16.09 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 9.51 | 9.95 | |with 4-grams LM| 6.91 | 7.15 | ## Evaluation Please use the eval.py file to run the evaluation: ```python python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 4.7776 | 4.73 | 1500 | 2.9540 | 0.9772 | 0.8489 | | 1.9076 | 9.46 | 3000 | 0.7146 | 0.5371 | 0.2484 | | 1.507 | 14.2 | 4500 | 0.5843 | 0.4689 | 0.2196 | | 1.3742 | 18.93 | 6000 | 0.5286 | 0.4321 | 0.1988 | | 1.2776 | 23.66 | 7500 | 0.5007 | 0.4056 | 0.1870 | | 1.2003 | 28.39 | 9000 | 0.4676 | 0.3848 | 0.1802 | | 1.1281 | 33.12 | 10500 | 0.4524 | 0.3694 | 0.1720 | | 1.0657 | 37.85 | 12000 | 0.4449 | 0.3590 | 0.1681 | | 1.0129 | 42.59 | 13500 | 0.4266 | 0.3423 | 0.1617 | | 0.9691 | 47.32 | 15000 | 0.4214 | 0.3375 | 0.1587 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
manifoldix/xlsr-fa-lm
manifoldix
2022-03-23T18:28:30Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "fa", "dataset:common_voice", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fa datasets: - common_voice tags: - hf-asr-leaderboard - robust-speech-event widget: - example_title: Common Voice sample 2978 src: https://huggingface.co/manifoldix/xlsr-fa-lm/resolve/main/sample2978.flac - example_title: Common Voice sample 5168 src: https://huggingface.co/manifoldix/xlsr-fa-lm/resolve/main/sample5168.flac model-index: - name: XLS-R-300m Wav2Vec2 Persian results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fa type: common_voice args: fa metrics: - name: Test WER without LM type: wer value: 26% - name: Test WER with LM type: wer value: 23% --- ## XLSR-300m Persian Fine-tuned on commom voice FA
emre/wav2vec2-xls-r-300m-Russian-small
emre
2022-03-23T18:28:22Z
19
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ru tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Russian-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ru type: common_voice args: ru metrics: - name: Test WER type: wer value: 48.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 58.25 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 56.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
edugp/wav2vec2-xls-r-300m-36-tokens-with-lm-es
edugp
2022-03-23T18:28:19Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - es tags: - es - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-36-tokens-with-lm-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common_voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 0.08677014042867702 - name: Test CER type: cer value: 0.02810974186831335 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 31.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 34.45 --- # Wav2Vec2-xls-r-300m-36-tokens-with-lm-es <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.0868 - Cer: 0.0281 This model consists of a Wav2Vec2 model with an additional KenLM 5-gram language model for CTC decoding. The model is trained removing all characters that are not lower-case unaccented letters between `a-z` or the Spanish accented vowels `á`, `é`, `í`, `ó`, `ú` or the dieresis on the vowel `u` - `ü`. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.6512 | 0.07 | 400 | 0.5734 | 0.4325 | | 0.4404 | 0.14 | 800 | 0.3329 | 0.3021 | | 0.3465 | 0.22 | 1200 | 0.3067 | 0.2871 | | 0.3214 | 0.29 | 1600 | 0.2808 | 0.2694 | | 0.319 | 0.36 | 2000 | 0.2755 | 0.2677 | | 0.3015 | 0.43 | 2400 | 0.2667 | 0.2437 | | 0.3102 | 0.51 | 2800 | 0.2679 | 0.2475 | | 0.2955 | 0.58 | 3200 | 0.2591 | 0.2421 | | 0.292 | 0.65 | 3600 | 0.2547 | 0.2404 | | 0.2961 | 0.72 | 4000 | 0.2824 | 0.2716 | | 0.2906 | 0.8 | 4400 | 0.2531 | 0.2321 | | 0.2886 | 0.87 | 4800 | 0.2668 | 0.2573 | | 0.2934 | 0.94 | 5200 | 0.2608 | 0.2454 | | 0.2844 | 1.01 | 5600 | 0.2414 | 0.2233 | | 0.2649 | 1.09 | 6000 | 0.2412 | 0.2198 | | 0.2587 | 1.16 | 6400 | 0.2432 | 0.2211 | | 0.2631 | 1.23 | 6800 | 0.2414 | 0.2225 | | 0.2584 | 1.3 | 7200 | 0.2489 | 0.2290 | | 0.2588 | 1.37 | 7600 | 0.2341 | 0.2156 | | 0.2581 | 1.45 | 8000 | 0.2323 | 0.2155 | | 0.2603 | 1.52 | 8400 | 0.2423 | 0.2231 | | 0.2527 | 1.59 | 8800 | 0.2381 | 0.2192 | | 0.2588 | 1.66 | 9200 | 0.2323 | 0.2176 | | 0.2543 | 1.74 | 9600 | 0.2391 | 0.2151 | | 0.2528 | 1.81 | 10000 | 0.2295 | 0.2091 | | 0.2535 | 1.88 | 10400 | 0.2317 | 0.2099 | | 0.2501 | 1.95 | 10800 | 0.2225 | 0.2105 | | 0.2441 | 2.03 | 11200 | 0.2356 | 0.2180 | | 0.2275 | 2.1 | 11600 | 0.2341 | 0.2115 | | 0.2281 | 2.17 | 12000 | 0.2269 | 0.2117 | | 0.227 | 2.24 | 12400 | 0.2367 | 0.2125 | | 0.2471 | 2.32 | 12800 | 0.2307 | 0.2090 | | 0.229 | 2.39 | 13200 | 0.2231 | 0.2005 | | 0.2325 | 2.46 | 13600 | 0.2243 | 0.2100 | | 0.2314 | 2.53 | 14000 | 0.2252 | 0.2098 | | 0.2309 | 2.6 | 14400 | 0.2269 | 0.2089 | | 0.2267 | 2.68 | 14800 | 0.2155 | 0.1976 | | 0.225 | 2.75 | 15200 | 0.2263 | 0.2067 | | 0.2309 | 2.82 | 15600 | 0.2196 | 0.2041 | | 0.225 | 2.89 | 16000 | 0.2212 | 0.2052 | | 0.228 | 2.97 | 16400 | 0.2192 | 0.2028 | | 0.2136 | 3.04 | 16800 | 0.2169 | 0.2042 | | 0.2038 | 3.11 | 17200 | 0.2173 | 0.1998 | | 0.2035 | 3.18 | 17600 | 0.2185 | 0.2002 | | 0.207 | 3.26 | 18000 | 0.2358 | 0.2120 | | 0.2102 | 3.33 | 18400 | 0.2213 | 0.2019 | | 0.211 | 3.4 | 18800 | 0.2176 | 0.1980 | | 0.2099 | 3.47 | 19200 | 0.2186 | 0.1960 | | 0.2093 | 3.55 | 19600 | 0.2208 | 0.2016 | | 0.2046 | 3.62 | 20000 | 0.2138 | 0.1960 | | 0.2095 | 3.69 | 20400 | 0.2222 | 0.2023 | | 0.2106 | 3.76 | 20800 | 0.2159 | 0.1964 | | 0.2066 | 3.83 | 21200 | 0.2083 | 0.1931 | | 0.2119 | 3.91 | 21600 | 0.2130 | 0.1957 | | 0.2167 | 3.98 | 22000 | 0.2210 | 0.1987 | | 0.1973 | 4.05 | 22400 | 0.2112 | 0.1930 | | 0.1917 | 4.12 | 22800 | 0.2107 | 0.1891 | | 0.1903 | 4.2 | 23200 | 0.2132 | 0.1911 | | 0.1903 | 4.27 | 23600 | 0.2077 | 0.1883 | | 0.1914 | 4.34 | 24000 | 0.2054 | 0.1901 | | 0.1943 | 4.41 | 24400 | 0.2059 | 0.1885 | | 0.1943 | 4.49 | 24800 | 0.2095 | 0.1899 | | 0.1936 | 4.56 | 25200 | 0.2078 | 0.1879 | | 0.1963 | 4.63 | 25600 | 0.2018 | 0.1884 | | 0.1934 | 4.7 | 26000 | 0.2034 | 0.1872 | | 0.2011 | 4.78 | 26400 | 0.2051 | 0.1896 | | 0.1901 | 4.85 | 26800 | 0.2059 | 0.1858 | | 0.1934 | 4.92 | 27200 | 0.2028 | 0.1832 | | 0.191 | 4.99 | 27600 | 0.2046 | 0.1870 | | 0.1775 | 5.07 | 28000 | 0.2081 | 0.1891 | | 0.175 | 5.14 | 28400 | 0.2084 | 0.1904 | | 0.19 | 5.21 | 28800 | 0.2086 | 0.1920 | | 0.1798 | 5.28 | 29200 | 0.2079 | 0.1935 | | 0.1765 | 5.35 | 29600 | 0.2145 | 0.1930 | | 0.181 | 5.43 | 30000 | 0.2062 | 0.1918 | | 0.1808 | 5.5 | 30400 | 0.2083 | 0.1875 | | 0.1769 | 5.57 | 30800 | 0.2117 | 0.1895 | | 0.1788 | 5.64 | 31200 | 0.2055 | 0.1857 | | 0.181 | 5.72 | 31600 | 0.2057 | 0.1870 | | 0.1781 | 5.79 | 32000 | 0.2053 | 0.1872 | | 0.1852 | 5.86 | 32400 | 0.2077 | 0.1904 | | 0.1832 | 5.93 | 32800 | 0.1979 | 0.1821 | | 0.1758 | 6.01 | 33200 | 0.1957 | 0.1754 | | 0.1611 | 6.08 | 33600 | 0.2028 | 0.1773 | | 0.1606 | 6.15 | 34000 | 0.2018 | 0.1780 | | 0.1702 | 6.22 | 34400 | 0.1977 | 0.1759 | | 0.1649 | 6.3 | 34800 | 0.2073 | 0.1845 | | 0.1641 | 6.37 | 35200 | 0.1947 | 0.1774 | | 0.1703 | 6.44 | 35600 | 0.2009 | 0.1811 | | 0.1716 | 6.51 | 36000 | 0.2091 | 0.1817 | | 0.1732 | 6.58 | 36400 | 0.1942 | 0.1743 | | 0.1642 | 6.66 | 36800 | 0.1930 | 0.1749 | | 0.1685 | 6.73 | 37200 | 0.1962 | 0.1716 | | 0.1647 | 6.8 | 37600 | 0.1977 | 0.1822 | | 0.1647 | 6.87 | 38000 | 0.1917 | 0.1748 | | 0.1667 | 6.95 | 38400 | 0.1948 | 0.1774 | | 0.1647 | 7.02 | 38800 | 0.2018 | 0.1783 | | 0.15 | 7.09 | 39200 | 0.2010 | 0.1796 | | 0.1663 | 7.16 | 39600 | 0.1969 | 0.1731 | | 0.1536 | 7.24 | 40000 | 0.1935 | 0.1726 | | 0.1544 | 7.31 | 40400 | 0.2030 | 0.1799 | | 0.1536 | 7.38 | 40800 | 0.1973 | 0.1772 | | 0.1559 | 7.45 | 41200 | 0.1973 | 0.1763 | | 0.1547 | 7.53 | 41600 | 0.2052 | 0.1782 | | 0.1584 | 7.6 | 42000 | 0.1965 | 0.1737 | | 0.1542 | 7.67 | 42400 | 0.1878 | 0.1725 | | 0.1525 | 7.74 | 42800 | 0.1946 | 0.1750 | | 0.1547 | 7.81 | 43200 | 0.1934 | 0.1691 | | 0.1534 | 7.89 | 43600 | 0.1919 | 0.1711 | | 0.1574 | 7.96 | 44000 | 0.1935 | 0.1745 | | 0.1471 | 8.03 | 44400 | 0.1915 | 0.1689 | | 0.1433 | 8.1 | 44800 | 0.1956 | 0.1719 | | 0.1433 | 8.18 | 45200 | 0.1980 | 0.1720 | | 0.1424 | 8.25 | 45600 | 0.1906 | 0.1681 | | 0.1428 | 8.32 | 46000 | 0.1892 | 0.1649 | | 0.1424 | 8.39 | 46400 | 0.1916 | 0.1698 | | 0.1466 | 8.47 | 46800 | 0.1970 | 0.1739 | | 0.1496 | 8.54 | 47200 | 0.1902 | 0.1662 | | 0.1408 | 8.61 | 47600 | 0.1858 | 0.1649 | | 0.1445 | 8.68 | 48000 | 0.1893 | 0.1648 | | 0.1459 | 8.76 | 48400 | 0.1875 | 0.1686 | | 0.1433 | 8.83 | 48800 | 0.1920 | 0.1673 | | 0.1448 | 8.9 | 49200 | 0.1833 | 0.1631 | | 0.1461 | 8.97 | 49600 | 0.1904 | 0.1693 | | 0.1451 | 9.04 | 50000 | 0.1969 | 0.1661 | | 0.1336 | 9.12 | 50400 | 0.1950 | 0.1674 | | 0.1362 | 9.19 | 50800 | 0.1971 | 0.1685 | | 0.1316 | 9.26 | 51200 | 0.1928 | 0.1648 | | 0.132 | 9.33 | 51600 | 0.1908 | 0.1615 | | 0.1301 | 9.41 | 52000 | 0.1842 | 0.1569 | | 0.1322 | 9.48 | 52400 | 0.1892 | 0.1616 | | 0.1391 | 9.55 | 52800 | 0.1956 | 0.1656 | | 0.132 | 9.62 | 53200 | 0.1876 | 0.1598 | | 0.1349 | 9.7 | 53600 | 0.1870 | 0.1624 | | 0.1325 | 9.77 | 54000 | 0.1834 | 0.1586 | | 0.1389 | 9.84 | 54400 | 0.1892 | 0.1647 | | 0.1364 | 9.91 | 54800 | 0.1840 | 0.1597 | | 0.1339 | 9.99 | 55200 | 0.1858 | 0.1626 | | 0.1269 | 10.06 | 55600 | 0.1875 | 0.1619 | | 0.1229 | 10.13 | 56000 | 0.1909 | 0.1619 | | 0.1258 | 10.2 | 56400 | 0.1933 | 0.1631 | | 0.1256 | 10.27 | 56800 | 0.1930 | 0.1640 | | 0.1207 | 10.35 | 57200 | 0.1823 | 0.1585 | | 0.1248 | 10.42 | 57600 | 0.1889 | 0.1596 | | 0.1264 | 10.49 | 58000 | 0.1845 | 0.1584 | | 0.1251 | 10.56 | 58400 | 0.1869 | 0.1588 | | 0.1251 | 10.64 | 58800 | 0.1885 | 0.1613 | | 0.1276 | 10.71 | 59200 | 0.1855 | 0.1575 | | 0.1303 | 10.78 | 59600 | 0.1836 | 0.1597 | | 0.1246 | 10.85 | 60000 | 0.1810 | 0.1573 | | 0.1283 | 10.93 | 60400 | 0.1830 | 0.1581 | | 0.1273 | 11.0 | 60800 | 0.1837 | 0.1619 | | 0.1202 | 11.07 | 61200 | 0.1865 | 0.1588 | | 0.119 | 11.14 | 61600 | 0.1889 | 0.1580 | | 0.1179 | 11.22 | 62000 | 0.1884 | 0.1592 | | 0.1187 | 11.29 | 62400 | 0.1824 | 0.1565 | | 0.1198 | 11.36 | 62800 | 0.1848 | 0.1552 | | 0.1154 | 11.43 | 63200 | 0.1866 | 0.1565 | | 0.1211 | 11.51 | 63600 | 0.1862 | 0.1563 | | 0.1177 | 11.58 | 64000 | 0.1816 | 0.1527 | | 0.1156 | 11.65 | 64400 | 0.1834 | 0.1540 | | 0.1144 | 11.72 | 64800 | 0.1837 | 0.1524 | | 0.119 | 11.79 | 65200 | 0.1859 | 0.1538 | | 0.1183 | 11.87 | 65600 | 0.1869 | 0.1558 | | 0.122 | 11.94 | 66000 | 0.1853 | 0.1535 | | 0.1197 | 12.01 | 66400 | 0.1871 | 0.1586 | | 0.1096 | 12.08 | 66800 | 0.1838 | 0.1540 | | 0.1074 | 12.16 | 67200 | 0.1915 | 0.1592 | | 0.1084 | 12.23 | 67600 | 0.1845 | 0.1545 | | 0.1097 | 12.3 | 68000 | 0.1904 | 0.1552 | | 0.112 | 12.37 | 68400 | 0.1846 | 0.1578 | | 0.1109 | 12.45 | 68800 | 0.1862 | 0.1549 | | 0.1114 | 12.52 | 69200 | 0.1889 | 0.1552 | | 0.1119 | 12.59 | 69600 | 0.1828 | 0.1530 | | 0.1124 | 12.66 | 70000 | 0.1822 | 0.1540 | | 0.1127 | 12.74 | 70400 | 0.1865 | 0.1589 | | 0.1128 | 12.81 | 70800 | 0.1786 | 0.1498 | | 0.1069 | 12.88 | 71200 | 0.1813 | 0.1522 | | 0.1069 | 12.95 | 71600 | 0.1895 | 0.1558 | | 0.1083 | 13.02 | 72000 | 0.1925 | 0.1557 | | 0.1009 | 13.1 | 72400 | 0.1883 | 0.1522 | | 0.1007 | 13.17 | 72800 | 0.1829 | 0.1480 | | 0.1014 | 13.24 | 73200 | 0.1861 | 0.1510 | | 0.0974 | 13.31 | 73600 | 0.1836 | 0.1486 | | 0.1006 | 13.39 | 74000 | 0.1821 | 0.1462 | | 0.0973 | 13.46 | 74400 | 0.1857 | 0.1484 | | 0.1011 | 13.53 | 74800 | 0.1822 | 0.1471 | | 0.1031 | 13.6 | 75200 | 0.1823 | 0.1489 | | 0.1034 | 13.68 | 75600 | 0.1809 | 0.1452 | | 0.0998 | 13.75 | 76000 | 0.1817 | 0.1490 | | 0.1071 | 13.82 | 76400 | 0.1808 | 0.1501 | | 0.1083 | 13.89 | 76800 | 0.1796 | 0.1475 | | 0.1053 | 13.97 | 77200 | 0.1785 | 0.1470 | | 0.0978 | 14.04 | 77600 | 0.1886 | 0.1495 | | 0.094 | 14.11 | 78000 | 0.1854 | 0.1489 | | 0.0915 | 14.18 | 78400 | 0.1854 | 0.1498 | | 0.0947 | 14.25 | 78800 | 0.1888 | 0.1500 | | 0.0939 | 14.33 | 79200 | 0.1885 | 0.1494 | | 0.0973 | 14.4 | 79600 | 0.1877 | 0.1466 | | 0.0946 | 14.47 | 80000 | 0.1904 | 0.1494 | | 0.0931 | 14.54 | 80400 | 0.1815 | 0.1473 | | 0.0958 | 14.62 | 80800 | 0.1905 | 0.1508 | | 0.0982 | 14.69 | 81200 | 0.1881 | 0.1511 | | 0.0963 | 14.76 | 81600 | 0.1823 | 0.1449 | | 0.0943 | 14.83 | 82000 | 0.1782 | 0.1458 | | 0.0981 | 14.91 | 82400 | 0.1795 | 0.1465 | | 0.0995 | 14.98 | 82800 | 0.1811 | 0.1484 | | 0.0909 | 15.05 | 83200 | 0.1822 | 0.1450 | | 0.0872 | 15.12 | 83600 | 0.1890 | 0.1466 | | 0.0878 | 15.2 | 84000 | 0.1859 | 0.1468 | | 0.0884 | 15.27 | 84400 | 0.1825 | 0.1429 | | 0.0871 | 15.34 | 84800 | 0.1816 | 0.1438 | | 0.0883 | 15.41 | 85200 | 0.1817 | 0.1433 | | 0.0844 | 15.48 | 85600 | 0.1821 | 0.1412 | | 0.0843 | 15.56 | 86000 | 0.1863 | 0.1411 | | 0.0805 | 15.63 | 86400 | 0.1863 | 0.1441 | | 0.085 | 15.7 | 86800 | 0.1808 | 0.1440 | | 0.0848 | 15.77 | 87200 | 0.1808 | 0.1421 | | 0.0844 | 15.85 | 87600 | 0.1841 | 0.1406 | | 0.082 | 15.92 | 88000 | 0.1850 | 0.1442 | | 0.0854 | 15.99 | 88400 | 0.1773 | 0.1426 | | 0.0835 | 16.06 | 88800 | 0.1888 | 0.1436 | | 0.0789 | 16.14 | 89200 | 0.1922 | 0.1434 | | 0.081 | 16.21 | 89600 | 0.1864 | 0.1448 | | 0.0799 | 16.28 | 90000 | 0.1902 | 0.1428 | | 0.0848 | 16.35 | 90400 | 0.1873 | 0.1422 | | 0.084 | 16.43 | 90800 | 0.1835 | 0.1421 | | 0.083 | 16.5 | 91200 | 0.1878 | 0.1390 | | 0.0794 | 16.57 | 91600 | 0.1877 | 0.1398 | | 0.0807 | 16.64 | 92000 | 0.1800 | 0.1385 | | 0.0829 | 16.71 | 92400 | 0.1910 | 0.1434 | | 0.0839 | 16.79 | 92800 | 0.1843 | 0.1381 | | 0.0815 | 16.86 | 93200 | 0.1812 | 0.1365 | | 0.0831 | 16.93 | 93600 | 0.1889 | 0.1383 | | 0.0803 | 17.0 | 94000 | 0.1902 | 0.1403 | | 0.0724 | 17.08 | 94400 | 0.1934 | 0.1380 | | 0.0734 | 17.15 | 94800 | 0.1865 | 0.1394 | | 0.0739 | 17.22 | 95200 | 0.1876 | 0.1395 | | 0.0758 | 17.29 | 95600 | 0.1938 | 0.1411 | | 0.0733 | 17.37 | 96000 | 0.1933 | 0.1410 | | 0.077 | 17.44 | 96400 | 0.1848 | 0.1385 | | 0.0754 | 17.51 | 96800 | 0.1876 | 0.1407 | | 0.0746 | 17.58 | 97200 | 0.1863 | 0.1371 | | 0.0732 | 17.66 | 97600 | 0.1927 | 0.1401 | | 0.0746 | 17.73 | 98000 | 0.1874 | 0.1390 | | 0.0755 | 17.8 | 98400 | 0.1853 | 0.1381 | | 0.0724 | 17.87 | 98800 | 0.1849 | 0.1365 | | 0.0716 | 17.94 | 99200 | 0.1848 | 0.1380 | | 0.074 | 18.02 | 99600 | 0.1891 | 0.1362 | | 0.0687 | 18.09 | 100000 | 0.1974 | 0.1357 | | 0.0651 | 18.16 | 100400 | 0.1942 | 0.1353 | | 0.0672 | 18.23 | 100800 | 0.1823 | 0.1363 | | 0.0671 | 18.31 | 101200 | 0.1959 | 0.1357 | | 0.0684 | 18.38 | 101600 | 0.1959 | 0.1374 | | 0.0688 | 18.45 | 102000 | 0.1904 | 0.1353 | | 0.0696 | 18.52 | 102400 | 0.1926 | 0.1364 | | 0.0661 | 18.6 | 102800 | 0.1905 | 0.1351 | | 0.0684 | 18.67 | 103200 | 0.1955 | 0.1343 | | 0.0712 | 18.74 | 103600 | 0.1873 | 0.1353 | | 0.0701 | 18.81 | 104000 | 0.1822 | 0.1354 | | 0.0688 | 18.89 | 104400 | 0.1905 | 0.1373 | | 0.0695 | 18.96 | 104800 | 0.1879 | 0.1335 | | 0.0661 | 19.03 | 105200 | 0.2005 | 0.1351 | | 0.0644 | 19.1 | 105600 | 0.1972 | 0.1351 | | 0.0627 | 19.18 | 106000 | 0.1956 | 0.1340 | | 0.0633 | 19.25 | 106400 | 0.1962 | 0.1340 | | 0.0629 | 19.32 | 106800 | 0.1937 | 0.1342 | | 0.0636 | 19.39 | 107200 | 0.1905 | 0.1355 | | 0.0631 | 19.46 | 107600 | 0.1917 | 0.1326 | | 0.0624 | 19.54 | 108000 | 0.1977 | 0.1355 | | 0.0621 | 19.61 | 108400 | 0.1941 | 0.1345 | | 0.0635 | 19.68 | 108800 | 0.1949 | 0.1336 | | 0.063 | 19.75 | 109200 | 0.1919 | 0.1317 | | 0.0636 | 19.83 | 109600 | 0.1928 | 0.1317 | | 0.0612 | 19.9 | 110000 | 0.1923 | 0.1314 | | 0.0636 | 19.97 | 110400 | 0.1923 | 0.1343 | | 0.0581 | 20.04 | 110800 | 0.2036 | 0.1332 | | 0.0573 | 20.12 | 111200 | 0.2007 | 0.1315 | | 0.0566 | 20.19 | 111600 | 0.1974 | 0.1319 | | 0.0589 | 20.26 | 112000 | 0.1958 | 0.1322 | | 0.0577 | 20.33 | 112400 | 0.1946 | 0.1307 | | 0.0587 | 20.41 | 112800 | 0.1957 | 0.1295 | | 0.0588 | 20.48 | 113200 | 0.2013 | 0.1306 | | 0.0594 | 20.55 | 113600 | 0.2010 | 0.1312 | | 0.0602 | 20.62 | 114000 | 0.1993 | 0.1314 | | 0.0583 | 20.69 | 114400 | 0.1931 | 0.1297 | | 0.059 | 20.77 | 114800 | 0.1974 | 0.1305 | | 0.0566 | 20.84 | 115200 | 0.1979 | 0.1294 | | 0.0588 | 20.91 | 115600 | 0.1944 | 0.1292 | | 0.0569 | 20.98 | 116000 | 0.1974 | 0.1309 | | 0.0554 | 21.06 | 116400 | 0.2080 | 0.1307 | | 0.0542 | 21.13 | 116800 | 0.2056 | 0.1301 | | 0.0532 | 21.2 | 117200 | 0.2027 | 0.1309 | | 0.0535 | 21.27 | 117600 | 0.1970 | 0.1287 | | 0.0533 | 21.35 | 118000 | 0.2124 | 0.1310 | | 0.0546 | 21.42 | 118400 | 0.2043 | 0.1300 | | 0.0544 | 21.49 | 118800 | 0.2056 | 0.1281 | | 0.0562 | 21.56 | 119200 | 0.1986 | 0.1273 | | 0.0549 | 21.64 | 119600 | 0.2075 | 0.1283 | | 0.0522 | 21.71 | 120000 | 0.2058 | 0.1278 | | 0.052 | 21.78 | 120400 | 0.2057 | 0.1280 | | 0.0563 | 21.85 | 120800 | 0.1966 | 0.1295 | | 0.0546 | 21.92 | 121200 | 0.2002 | 0.1285 | | 0.0539 | 22.0 | 121600 | 0.1996 | 0.1279 | | 0.0504 | 22.07 | 122000 | 0.2077 | 0.1273 | | 0.0602 | 22.14 | 122400 | 0.2055 | 0.1278 | | 0.0503 | 22.21 | 122800 | 0.2037 | 0.1283 | | 0.0496 | 22.29 | 123200 | 0.2109 | 0.1279 | | 0.0523 | 22.36 | 123600 | 0.2068 | 0.1276 | | 0.0508 | 22.43 | 124000 | 0.2051 | 0.1257 | | 0.0505 | 22.5 | 124400 | 0.2056 | 0.1269 | | 0.05 | 22.58 | 124800 | 0.1995 | 0.1268 | | 0.0496 | 22.65 | 125200 | 0.2022 | 0.1290 | | 0.0484 | 22.72 | 125600 | 0.2095 | 0.1291 | | 0.0518 | 22.79 | 126000 | 0.2132 | 0.1271 | | 0.0499 | 22.87 | 126400 | 0.2124 | 0.1263 | | 0.0485 | 22.94 | 126800 | 0.2092 | 0.1252 | | 0.0476 | 23.01 | 127200 | 0.2138 | 0.1256 | | 0.0467 | 23.08 | 127600 | 0.2119 | 0.1256 | | 0.048 | 23.15 | 128000 | 0.2138 | 0.1269 | | 0.0461 | 23.23 | 128400 | 0.2036 | 0.1244 | | 0.0467 | 23.3 | 128800 | 0.2163 | 0.1255 | | 0.0475 | 23.37 | 129200 | 0.2180 | 0.1258 | | 0.0468 | 23.44 | 129600 | 0.2129 | 0.1245 | | 0.0456 | 23.52 | 130000 | 0.2122 | 0.1250 | | 0.0458 | 23.59 | 130400 | 0.2157 | 0.1257 | | 0.0453 | 23.66 | 130800 | 0.2088 | 0.1242 | | 0.045 | 23.73 | 131200 | 0.2144 | 0.1247 | | 0.0469 | 23.81 | 131600 | 0.2113 | 0.1246 | | 0.0453 | 23.88 | 132000 | 0.2151 | 0.1234 | | 0.0471 | 23.95 | 132400 | 0.2130 | 0.1229 | | 0.0443 | 24.02 | 132800 | 0.2150 | 0.1225 | | 0.0446 | 24.1 | 133200 | 0.2166 | 0.1235 | | 0.0435 | 24.17 | 133600 | 0.2143 | 0.1222 | | 0.0407 | 24.24 | 134000 | 0.2175 | 0.1218 | | 0.0421 | 24.31 | 134400 | 0.2147 | 0.1227 | | 0.0435 | 24.38 | 134800 | 0.2193 | 0.1233 | | 0.0414 | 24.46 | 135200 | 0.2172 | 0.1225 | | 0.0419 | 24.53 | 135600 | 0.2156 | 0.1225 | | 0.0419 | 24.6 | 136000 | 0.2143 | 0.1235 | | 0.0423 | 24.67 | 136400 | 0.2179 | 0.1226 | | 0.0423 | 24.75 | 136800 | 0.2144 | 0.1221 | | 0.0424 | 24.82 | 137200 | 0.2135 | 0.1210 | | 0.0419 | 24.89 | 137600 | 0.2166 | 0.1218 | | 0.0408 | 24.96 | 138000 | 0.2151 | 0.1211 | | 0.0433 | 25.04 | 138400 | 0.2174 | 0.1214 | | 0.0395 | 25.11 | 138800 | 0.2242 | 0.1210 | | 0.0403 | 25.18 | 139200 | 0.2219 | 0.1215 | | 0.0413 | 25.25 | 139600 | 0.2225 | 0.1207 | | 0.0389 | 25.33 | 140000 | 0.2187 | 0.1202 | | 0.0395 | 25.4 | 140400 | 0.2244 | 0.1204 | | 0.0398 | 25.47 | 140800 | 0.2263 | 0.1199 | | 0.0386 | 25.54 | 141200 | 0.2165 | 0.1187 | | 0.0396 | 25.61 | 141600 | 0.2171 | 0.1187 | | 0.0406 | 25.69 | 142000 | 0.2199 | 0.1190 | | 0.0404 | 25.76 | 142400 | 0.2224 | 0.1190 | | 0.0391 | 25.83 | 142800 | 0.2230 | 0.1185 | | 0.04 | 25.9 | 143200 | 0.2208 | 0.1200 | | 0.0396 | 25.98 | 143600 | 0.2179 | 0.1191 | | 0.0353 | 26.05 | 144000 | 0.2285 | 0.1178 | | 0.0368 | 26.12 | 144400 | 0.2273 | 0.1186 | | 0.0393 | 26.19 | 144800 | 0.2247 | 0.1196 | | 0.0368 | 26.27 | 145200 | 0.2314 | 0.1181 | | 0.0373 | 26.34 | 145600 | 0.2215 | 0.1188 | | 0.038 | 26.41 | 146000 | 0.2262 | 0.1180 | | 0.0363 | 26.48 | 146400 | 0.2250 | 0.1172 | | 0.0365 | 26.56 | 146800 | 0.2299 | 0.1174 | | 0.0382 | 26.63 | 147200 | 0.2292 | 0.1165 | | 0.0365 | 26.7 | 147600 | 0.2282 | 0.1165 | | 0.0371 | 26.77 | 148000 | 0.2276 | 0.1172 | | 0.0365 | 26.85 | 148400 | 0.2280 | 0.1173 | | 0.0376 | 26.92 | 148800 | 0.2248 | 0.1164 | | 0.0365 | 26.99 | 149200 | 0.2230 | 0.1158 | | 0.0343 | 27.06 | 149600 | 0.2300 | 0.1157 | | 0.0354 | 27.13 | 150000 | 0.2298 | 0.1166 | | 0.0333 | 27.21 | 150400 | 0.2307 | 0.1158 | | 0.0353 | 27.28 | 150800 | 0.2300 | 0.1157 | | 0.036 | 27.35 | 151200 | 0.2335 | 0.1160 | | 0.0343 | 27.42 | 151600 | 0.2324 | 0.1155 | | 0.0361 | 27.5 | 152000 | 0.2300 | 0.1150 | | 0.0352 | 27.57 | 152400 | 0.2279 | 0.1146 | | 0.0353 | 27.64 | 152800 | 0.2307 | 0.1149 | | 0.0342 | 27.71 | 153200 | 0.2315 | 0.1152 | | 0.0345 | 27.79 | 153600 | 0.2290 | 0.1146 | | 0.034 | 27.86 | 154000 | 0.2319 | 0.1141 | | 0.0347 | 27.93 | 154400 | 0.2312 | 0.1144 | | 0.0338 | 28.0 | 154800 | 0.2328 | 0.1146 | | 0.0347 | 28.08 | 155200 | 0.2352 | 0.1151 | | 0.033 | 28.15 | 155600 | 0.2337 | 0.1142 | | 0.0336 | 28.22 | 156000 | 0.2345 | 0.1141 | | 0.0337 | 28.29 | 156400 | 0.2315 | 0.1143 | | 0.0314 | 28.36 | 156800 | 0.2353 | 0.1140 | | 0.0333 | 28.44 | 157200 | 0.2338 | 0.1146 | | 0.0317 | 28.51 | 157600 | 0.2345 | 0.1139 | | 0.0326 | 28.58 | 158000 | 0.2336 | 0.1143 | | 0.033 | 28.65 | 158400 | 0.2352 | 0.1137 | | 0.0325 | 28.73 | 158800 | 0.2312 | 0.1130 | | 0.0321 | 28.8 | 159200 | 0.2338 | 0.1133 | | 0.0334 | 28.87 | 159600 | 0.2335 | 0.1130 | | 0.0317 | 28.94 | 160000 | 0.2340 | 0.1126 | | 0.0321 | 29.02 | 160400 | 0.2349 | 0.1126 | | 0.032 | 29.09 | 160800 | 0.2369 | 0.1127 | | 0.0312 | 29.16 | 161200 | 0.2363 | 0.1124 | | 0.0303 | 29.23 | 161600 | 0.2363 | 0.1123 | | 0.0322 | 29.31 | 162000 | 0.2354 | 0.1124 | | 0.03 | 29.38 | 162400 | 0.2360 | 0.1122 | | 0.0299 | 29.45 | 162800 | 0.2378 | 0.1124 | | 0.0313 | 29.52 | 163200 | 0.2377 | 0.1120 | | 0.0299 | 29.59 | 163600 | 0.2367 | 0.1124 | | 0.0313 | 29.67 | 164000 | 0.2380 | 0.1120 | | 0.031 | 29.74 | 164400 | 0.2369 | 0.1120 | | 0.0327 | 29.81 | 164800 | 0.2358 | 0.1117 | | 0.0316 | 29.88 | 165200 | 0.2358 | 0.1118 | | 0.0307 | 29.96 | 165600 | 0.2362 | 0.1118 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell
FremyCompany
2022-03-23T18:28:16Z
9
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "nl_BE", "nl_NL", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 3.93 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 16.35 - name: Test CER type: cer value: 9.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 15.81 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.03931 - Cer: 0.01224 > **IMPORTANT NOTE**: The `hunspell` typo fixer is **not enabled** on the website, which returns raw CTC+LM results. Hunspell reranking is only available in the `eval.py` decoding script. For best results, please use the code in that file while using the model locally for inference. > **IMPORTANT NOTE**: Evaluating this model requires `apt install libhunspell-dev` and a pip install of `hunspell` in addition to pip installs of `pipy-kenlm` and `pyctcdecode` (see `install_requirements.sh`); in addition, the chunking lengths and strides were optimized for the model as `12s` and `2s` respectively (see `eval.sh`). > **QUICK REMARK**: The "Robust Speech Event" set does not contain cleaned transcription text, so its WER/CER are vastly over-estimated. For instance `2014` in the dev set is left as a number but will be recognized as `tweeduizend veertien`, which counts as 3 mistakes (`2014` missing, and both `tweeduizend` and `veertien` wrongly inserted). Other normalization problems in the dev set include the presence of single quotes around some words, that then end up as non-match despite being the correct word (but without quotes), and the removal of some speech words in the final transcript (`ja`, etc...). As a result, our real error rate on the dev set is significantly lower than reported. > > ![Image showing the difference between the prediction and target of the dev set](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/resolve/main/dev_set_diff_4.png) > > You can compare the [predictions](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/blob/main/log_speech-recognition-community-v2_dev_data_nl_validation_predictions.txt) with the [targets](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/blob/main/log_speech-recognition-community-v2_dev_data_nl_validation_targets.txt) on the validation dev set yourself, for example using [this diffing tool](https://countwordsfree.com/comparetexts). > **WE DO SPEECH RECOGNITION**: Hello reader! If you are considering using this (or another) model in production, but would benefit from a model fine-tuned specifically for your use case (using text and/or labelled speech), feel free to [contact our team](https://www.ugent.be/ea/idlab/en/research/semantic-intelligence/speech-and-audio-processing.htm). This model was developped during the [Robust Speech Recognition challenge](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) event by [François REMY](https://www.linkedin.com/in/fremycompany/) [(twitter)](https://twitter.com/FremyCompany) and [Geoffroy VANDERREYDT](https://be.linkedin.com/in/geoffroy-vanderreydt-a4421460). > We would like to thank [OVH](https://www.ovhcloud.com/en/public-cloud/ai-training/) for providing us with a V100S GPU. ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. To further deal with typos, `hunspell` is used to propose alternative spellings for words not in the unigrams of the language model. These alternatives are then reranked based on the language model trained above, and a penalty proportional to the levenshtein edit distance between the alternative and the recognized word. This for examples enables to correct `collegas` into `collega's` or `gogol` into `google`. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os
FremyCompany
2022-03-23T18:28:14Z
5
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "nl_BE", "nl_NL", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 4.06 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 17.77 - name: Test CER type: cer value: 9.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 16.32 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.04057 - Cer: 0.01222 ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
yaswanth/xls-r-300m-yaswanth-hindi2
yaswanth
2022-03-23T18:28:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-300m-yaswanth-hindi2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-yaswanth-hindi2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7163 - Wer: 0.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | | 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | | 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | | 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | | 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | | 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | | 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | | 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | | 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | | 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | | 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | | 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | | 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | | 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | | 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | | 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | | 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | | 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | | 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | | 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | | 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | | 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
geninhu/xls-asr-vi-40h-1B
geninhu
2022-03-23T18:27:57Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - vi tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-asr-vi-40h-1B results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 25.846 - name: Test CER (with LM) type: cer value: 12.961 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 31.158 - name: Test CER (with LM) type: cer value: 16.179 --- # xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
nouamanetazi/wav2vec2-xls-r-300m-ar-with-lm
nouamanetazi
2022-03-23T18:27:54Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
lgris/sew-tiny-portuguese-cv
lgris
2022-03-23T18:27:49Z
5
0
transformers
[ "transformers", "pytorch", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - common_voice model-index: - name: sew-tiny-portuguese-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 30.02 - name: Test CER type: cer value: 10.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.46 - name: Test CER type: cer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 57.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 61.3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5110 - Wer: 0.2842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 4.92 | 1000 | 0.8468 | 0.6494 | | 3.4638 | 9.85 | 2000 | 0.4978 | 0.3815 | | 3.4638 | 14.78 | 3000 | 0.4734 | 0.3417 | | 0.9904 | 19.7 | 4000 | 0.4577 | 0.3344 | | 0.9904 | 24.63 | 5000 | 0.4376 | 0.3170 | | 0.8849 | 29.55 | 6000 | 0.4225 | 0.3118 | | 0.8849 | 34.48 | 7000 | 0.4354 | 0.3080 | | 0.819 | 39.41 | 8000 | 0.4434 | 0.3004 | | 0.819 | 44.33 | 9000 | 0.4710 | 0.3132 | | 0.7706 | 49.26 | 10000 | 0.4497 | 0.3064 | | 0.7706 | 54.19 | 11000 | 0.4598 | 0.3100 | | 0.7264 | 59.11 | 12000 | 0.4271 | 0.3013 | | 0.7264 | 64.04 | 13000 | 0.4333 | 0.2959 | | 0.6909 | 68.96 | 14000 | 0.4554 | 0.3019 | | 0.6909 | 73.89 | 15000 | 0.4444 | 0.2888 | | 0.6614 | 78.81 | 16000 | 0.4734 | 0.3081 | | 0.6614 | 83.74 | 17000 | 0.4820 | 0.3058 | | 0.6379 | 88.67 | 18000 | 0.4416 | 0.2950 | | 0.6379 | 93.59 | 19000 | 0.4614 | 0.2974 | | 0.6055 | 98.52 | 20000 | 0.4812 | 0.3018 | | 0.6055 | 103.45 | 21000 | 0.4700 | 0.3018 | | 0.5823 | 108.37 | 22000 | 0.4726 | 0.2999 | | 0.5823 | 113.3 | 23000 | 0.4979 | 0.2887 | | 0.5597 | 118.23 | 24000 | 0.4813 | 0.2980 | | 0.5597 | 123.15 | 25000 | 0.4968 | 0.2972 | | 0.542 | 128.08 | 26000 | 0.5331 | 0.3059 | | 0.542 | 133.0 | 27000 | 0.5046 | 0.2978 | | 0.5185 | 137.93 | 28000 | 0.4882 | 0.2922 | | 0.5185 | 142.85 | 29000 | 0.4945 | 0.2938 | | 0.499 | 147.78 | 30000 | 0.4971 | 0.2913 | | 0.499 | 152.71 | 31000 | 0.4948 | 0.2873 | | 0.4811 | 157.63 | 32000 | 0.4924 | 0.2918 | | 0.4811 | 162.56 | 33000 | 0.5128 | 0.2911 | | 0.4679 | 167.49 | 34000 | 0.5098 | 0.2892 | | 0.4679 | 172.41 | 35000 | 0.4966 | 0.2863 | | 0.456 | 177.34 | 36000 | 0.5033 | 0.2839 | | 0.456 | 182.27 | 37000 | 0.5114 | 0.2875 | | 0.4453 | 187.19 | 38000 | 0.5154 | 0.2859 | | 0.4453 | 192.12 | 39000 | 0.5102 | 0.2847 | | 0.4366 | 197.04 | 40000 | 0.5110 | 0.2842 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
pablouribe/xls-r-spanish-test
pablouribe
2022-03-23T18:27:46Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-spanish-test results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: es metrics: - name: Test WER type: wer value: 13.89 - name: Test CER type: cer value: 3.85 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 37.66 - name: Test CER type: cer value: 15.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 41.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1461 - Wer: 1.0063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.953 | 0.15 | 1000 | 2.9528 | 1.0 | | 1.1519 | 0.3 | 2000 | 0.3735 | 1.0357 | | 1.0278 | 0.45 | 3000 | 0.2529 | 1.0390 | | 0.9922 | 0.61 | 4000 | 0.2208 | 1.0270 | | 0.9618 | 0.76 | 5000 | 0.2088 | 1.0294 | | 0.9364 | 0.91 | 6000 | 0.2019 | 1.0214 | | 0.9179 | 1.06 | 7000 | 0.1940 | 1.0294 | | 0.9154 | 1.21 | 8000 | 0.1915 | 1.0290 | | 0.8985 | 1.36 | 9000 | 0.1837 | 1.0211 | | 0.9055 | 1.51 | 10000 | 0.1838 | 1.0273 | | 0.8861 | 1.67 | 11000 | 0.1765 | 1.0139 | | 0.892 | 1.82 | 12000 | 0.1723 | 1.0188 | | 0.8778 | 1.97 | 13000 | 0.1735 | 1.0092 | | 0.8645 | 2.12 | 14000 | 0.1707 | 1.0106 | | 0.8595 | 2.27 | 15000 | 0.1713 | 1.0186 | | 0.8392 | 2.42 | 16000 | 0.1686 | 1.0053 | | 0.8436 | 2.57 | 17000 | 0.1653 | 1.0096 | | 0.8405 | 2.73 | 18000 | 0.1689 | 1.0077 | | 0.8382 | 2.88 | 19000 | 0.1645 | 1.0114 | | 0.8247 | 3.03 | 20000 | 0.1647 | 1.0078 | | 0.8219 | 3.18 | 21000 | 0.1611 | 1.0026 | | 0.8024 | 3.33 | 22000 | 0.1580 | 1.0062 | | 0.8087 | 3.48 | 23000 | 0.1578 | 1.0038 | | 0.8097 | 3.63 | 24000 | 0.1556 | 1.0057 | | 0.8094 | 3.79 | 25000 | 0.1552 | 1.0035 | | 0.7836 | 3.94 | 26000 | 0.1516 | 1.0052 | | 0.8042 | 4.09 | 27000 | 0.1515 | 1.0054 | | 0.7925 | 4.24 | 28000 | 0.1499 | 1.0031 | | 0.7855 | 4.39 | 29000 | 0.1490 | 1.0041 | | 0.7814 | 4.54 | 30000 | 0.1482 | 1.0068 | | 0.7859 | 4.69 | 31000 | 0.1460 | 1.0066 | | 0.7819 | 4.85 | 32000 | 0.1464 | 1.0062 | | 0.7784 | 5.0 | 33000 | 0.1460 | 1.0063 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
w11wo
2022-03-23T18:27:41Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 31.73 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test CER type: cer value: 56.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 55.11 --- # Wav2Vec2 XLS-R 300M Cantonese (zh-HK) Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | CER | | -------------------------------- | ------ | ------ | | `Common Voice` | 0.8089 | 31.73% | | `Common Voice 7` | N/A | 23.11% | | `Common Voice 8` | N/A | 23.02% | | `Robust Speech Event - Dev Data` | N/A | 56.60% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
lgris/sew-tiny-portuguese-cv7
lgris
2022-03-23T18:27:38Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: sew-tiny-portuguese-cv7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 28.9 - name: Test CER type: cer value: 9.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 47.27 - name: Test CER type: cer value: 19.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 47.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 49.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv7 This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4232 - Wer: 0.2745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 2.6 | 1000 | 1.0034 | 0.7308 | | 4.1307 | 5.19 | 2000 | 0.6274 | 0.4721 | | 4.1307 | 7.79 | 3000 | 0.5541 | 0.4130 | | 1.3117 | 10.39 | 4000 | 0.5302 | 0.3880 | | 1.3117 | 12.99 | 5000 | 0.5082 | 0.3644 | | 1.2047 | 15.58 | 6000 | 0.4818 | 0.3539 | | 1.2047 | 18.18 | 7000 | 0.4822 | 0.3477 | | 1.14 | 20.78 | 8000 | 0.4781 | 0.3428 | | 1.14 | 23.38 | 9000 | 0.4840 | 0.3401 | | 1.0818 | 25.97 | 10000 | 0.4613 | 0.3251 | | 1.0818 | 28.57 | 11000 | 0.4569 | 0.3257 | | 1.0451 | 31.17 | 12000 | 0.4494 | 0.3132 | | 1.0451 | 33.77 | 13000 | 0.4560 | 0.3201 | | 1.011 | 36.36 | 14000 | 0.4687 | 0.3174 | | 1.011 | 38.96 | 15000 | 0.4397 | 0.3122 | | 0.9785 | 41.56 | 16000 | 0.4605 | 0.3173 | | 0.9785 | 44.16 | 17000 | 0.4380 | 0.3064 | | 0.9458 | 46.75 | 18000 | 0.4372 | 0.3048 | | 0.9458 | 49.35 | 19000 | 0.4426 | 0.3039 | | 0.9126 | 51.95 | 20000 | 0.4317 | 0.2962 | | 0.9126 | 54.54 | 21000 | 0.4345 | 0.2960 | | 0.8926 | 57.14 | 22000 | 0.4365 | 0.2948 | | 0.8926 | 59.74 | 23000 | 0.4306 | 0.2940 | | 0.8654 | 62.34 | 24000 | 0.4303 | 0.2928 | | 0.8654 | 64.93 | 25000 | 0.4351 | 0.2915 | | 0.8373 | 67.53 | 26000 | 0.4340 | 0.2909 | | 0.8373 | 70.13 | 27000 | 0.4279 | 0.2907 | | 0.83 | 72.73 | 28000 | 0.4214 | 0.2867 | | 0.83 | 75.32 | 29000 | 0.4256 | 0.2849 | | 0.8062 | 77.92 | 30000 | 0.4281 | 0.2826 | | 0.8062 | 80.52 | 31000 | 0.4398 | 0.2865 | | 0.7846 | 83.12 | 32000 | 0.4218 | 0.2812 | | 0.7846 | 85.71 | 33000 | 0.4227 | 0.2791 | | 0.7697 | 88.31 | 34000 | 0.4200 | 0.2767 | | 0.7697 | 90.91 | 35000 | 0.4285 | 0.2791 | | 0.7539 | 93.51 | 36000 | 0.4238 | 0.2777 | | 0.7539 | 96.1 | 37000 | 0.4288 | 0.2757 | | 0.7413 | 98.7 | 38000 | 0.4205 | 0.2748 | | 0.7413 | 101.3 | 39000 | 0.4241 | 0.2761 | | 0.7348 | 103.89 | 40000 | 0.4232 | 0.2745 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
cahya/wav2vec2-luganda
cahya
2022-03-23T18:27:18Z
27
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "common_voice", "hf-asr-leaderboard", "lg", "robust-speech-event", "speech", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: lg datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer tags: - audio - automatic-speech-recognition - common_voice - hf-asr-leaderboard - lg - robust-speech-event - speech license: apache-2.0 model-index: - name: Wav2Vec2 Luganda by Indonesian-NLP results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lg type: common_voice args: lg metrics: - name: Test WER type: wer value: 9.332 - name: Test CER type: cer value: 1.987 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lg metrics: - name: Test WER type: wer value: 13.844 - name: Test CER type: cer value: 2.68 --- # Automatic Speech Recognition for Luganda This is the model built for the [Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition). It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0. We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() if "audio" in batch: speech_array = torch.tensor(batch["audio"]["array"]) else: speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` WER without KenLM: 15.38 % WER With KenLM: **Test Result**: 7.53 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1
DrishtiSharma
2022-03-23T18:27:15Z
12
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.4709579127785184 - name: Test CER type: cer value: 0.10205125354383235 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.7053128872366791 - name: Test CER type: cer value: 0.210804311998487 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 72.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.5197 - Wer: 0.4689 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3711 | 2.61 | 300 | 4.3122 | 1.0 | | 3.1653 | 5.22 | 600 | 3.1156 | 1.0 | | 2.8904 | 7.83 | 900 | 2.8421 | 0.9918 | | 0.9207 | 10.43 | 1200 | 0.9895 | 0.8689 | | 0.6384 | 13.04 | 1500 | 0.6994 | 0.7700 | | 0.5215 | 15.65 | 1800 | 0.5628 | 0.6443 | | 0.4573 | 18.26 | 2100 | 0.5316 | 0.6174 | | 0.3875 | 20.87 | 2400 | 0.4932 | 0.5779 | | 0.3562 | 23.48 | 2700 | 0.4972 | 0.5475 | | 0.3218 | 26.09 | 3000 | 0.4895 | 0.5219 | | 0.2954 | 28.7 | 3300 | 0.5226 | 0.5192 | | 0.287 | 31.3 | 3600 | 0.4957 | 0.5146 | | 0.2587 | 33.91 | 3900 | 0.4944 | 0.4893 | | 0.2496 | 36.52 | 4200 | 0.4976 | 0.4895 | | 0.2365 | 39.13 | 4500 | 0.5185 | 0.4819 | | 0.2264 | 41.74 | 4800 | 0.5152 | 0.4776 | | 0.2224 | 44.35 | 5100 | 0.5031 | 0.4746 | | 0.2096 | 46.96 | 5400 | 0.5062 | 0.4708 | | 0.2038 | 49.57 | 5700 | 0.5217 | 0.4698 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
geninhu/xls-asr-vi-40h
geninhu
2022-03-23T18:27:13Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - vi tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-asr-vi-40h results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER (with Language model) type: wer value: 56.57 --- # xls-asr-vi-40h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common voice 7.0 vi & private dataset. It achieves the following results on the evaluation set (Without Language Model): - Loss: 1.1177 - Wer: 60.58 ## Evaluation Please run the eval.py file ```bash !python eval_custom.py --model_id geninhu/xls-asr-vi-40h --dataset mozilla-foundation/common_voice_7_0 --config vi --split test ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.3878 | 0.93 | 1500 | 21.9179 | 1.0 | | 8.8862 | 1.85 | 3000 | 6.0599 | 1.0 | | 4.3701 | 2.78 | 4500 | 4.3837 | 1.0 | | 4.113 | 3.7 | 6000 | 4.2698 | 0.9982 | | 3.9666 | 4.63 | 7500 | 3.9726 | 0.9989 | | 3.5965 | 5.56 | 9000 | 3.7124 | 0.9975 | | 3.3944 | 6.48 | 10500 | 3.5005 | 1.0057 | | 3.304 | 7.41 | 12000 | 3.3710 | 1.0043 | | 3.2482 | 8.33 | 13500 | 3.4201 | 1.0155 | | 3.212 | 9.26 | 15000 | 3.3732 | 1.0151 | | 3.1778 | 10.19 | 16500 | 3.2763 | 1.0009 | | 3.1027 | 11.11 | 18000 | 3.1943 | 1.0025 | | 2.9905 | 12.04 | 19500 | 2.8082 | 0.9703 | | 2.7095 | 12.96 | 21000 | 2.4993 | 0.9302 | | 2.4862 | 13.89 | 22500 | 2.3072 | 0.9140 | | 2.3271 | 14.81 | 24000 | 2.1398 | 0.8949 | | 2.1968 | 15.74 | 25500 | 2.0594 | 0.8817 | | 2.111 | 16.67 | 27000 | 1.9404 | 0.8630 | | 2.0387 | 17.59 | 28500 | 1.8895 | 0.8497 | | 1.9504 | 18.52 | 30000 | 1.7961 | 0.8315 | | 1.9039 | 19.44 | 31500 | 1.7433 | 0.8213 | | 1.8342 | 20.37 | 33000 | 1.6790 | 0.7994 | | 1.7824 | 21.3 | 34500 | 1.6291 | 0.7825 | | 1.7359 | 22.22 | 36000 | 1.5783 | 0.7706 | | 1.7053 | 23.15 | 37500 | 1.5248 | 0.7492 | | 1.6504 | 24.07 | 39000 | 1.4930 | 0.7406 | | 1.6263 | 25.0 | 40500 | 1.4572 | 0.7348 | | 1.5893 | 25.93 | 42000 | 1.4202 | 0.7161 | | 1.5669 | 26.85 | 43500 | 1.3987 | 0.7143 | | 1.5277 | 27.78 | 45000 | 1.3512 | 0.6991 | | 1.501 | 28.7 | 46500 | 1.3320 | 0.6879 | | 1.4781 | 29.63 | 48000 | 1.3112 | 0.6788 | | 1.4477 | 30.56 | 49500 | 1.2850 | 0.6657 | | 1.4483 | 31.48 | 51000 | 1.2813 | 0.6633 | | 1.4065 | 32.41 | 52500 | 1.2475 | 0.6541 | | 1.3779 | 33.33 | 54000 | 1.2244 | 0.6503 | | 1.3788 | 34.26 | 55500 | 1.2116 | 0.6407 | | 1.3428 | 35.19 | 57000 | 1.1938 | 0.6352 | | 1.3453 | 36.11 | 58500 | 1.1927 | 0.6340 | | 1.3137 | 37.04 | 60000 | 1.1699 | 0.6252 | | 1.2984 | 37.96 | 61500 | 1.1666 | 0.6229 | | 1.2927 | 38.89 | 63000 | 1.1585 | 0.6188 | | 1.2919 | 39.81 | 64500 | 1.1618 | 0.6190 | | 1.293 | 40.74 | 66000 | 1.1479 | 0.6181 | | 1.2853 | 41.67 | 67500 | 1.1423 | 0.6202 | | 1.2687 | 42.59 | 69000 | 1.1315 | 0.6131 | | 1.2603 | 43.52 | 70500 | 1.1333 | 0.6128 | | 1.2577 | 44.44 | 72000 | 1.1191 | 0.6079 | | 1.2435 | 45.37 | 73500 | 1.1177 | 0.6079 | | 1.251 | 46.3 | 75000 | 1.1211 | 0.6092 | | 1.2482 | 47.22 | 76500 | 1.1177 | 0.6060 | | 1.2422 | 48.15 | 78000 | 1.1227 | 0.6097 | | 1.2485 | 49.07 | 79500 | 1.1187 | 0.6071 | | 1.2425 | 50.0 | 81000 | 1.1177 | 0.6058 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
patrickvonplaten/xls-r-300-sv-cv7
patrickvonplaten
2022-03-23T18:27:10Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "sv", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - sv datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Swedish - CV7 - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sv-SE metrics: - name: Test WER type: wer value: 15.99 - name: Test CER type: cer value: 5.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 24.41 - name: Test CER type: cer value: 11.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.2604 - Wer: 0.2334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results See Tensorboard ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
anuragshas/wav2vec2-xls-r-1b-hi-with-lm
anuragshas
2022-03-23T18:26:47Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-1B - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 15.899 - name: Test CER type: cer value: 5.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-1B - Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | | 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | | 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | | 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | | 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | | 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | | 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | | 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | | 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | | 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | | 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | | 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | | 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | | 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | | 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | | 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | | 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | | 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | | 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | | 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | | 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | | 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | | 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | | 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.209 | 15.899 |
Wikidepia/wav2vec2-xls-r-300m-indonesian
Wikidepia
2022-03-23T18:26:42Z
2,077
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "id", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - id - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: XLS-R-300M - Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: id metrics: - name: Test WER type: wer value: 5.046 - name: Test CER type: cer value: 1.699 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: id metrics: - name: Test WER type: wer value: 41.31 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: id metrics: - name: Test WER type: wer value: 52.23 --- # Wav2Vec2 XLS-R-300M - Indonesian This model is a fine-tuned version of `facebook/wav2vec2-xls-r-300m` on the `mozilla-foundation/common_voice_8_0` and [MagicHub Indonesian Conversational Speech Corpus](https://magichub.com/datasets/indonesian-conversational-speech-corpus/).
jsnfly/wav2vec2-xls-r-1b-de-cv8
jsnfly
2022-03-23T18:26:40Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 11.37 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Dev WER type: wer value: 31.16 - name: Dev CER type: cer value: 13.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.79 --- # XLS-R-1b-DE This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. (See `run.sh` for training parameters).
sammy786/wav2vec2-xlsr-czech
sammy786
2022-03-23T18:26:37Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "cs", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - cs - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-czech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cs metrics: - name: Test WER type: wer value: 11.22 - name: Test CER type: cer value: 2.52 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 97.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 69.7 --- # sammy786/wav2vec2-xlsr-czech This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - cs dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 7.26 - Wer: 19.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 6.654600 | 3.329486 | 1.000000 | | 400 | 1.700600 | 0.317266 | 0.409446 | | 600 | 0.767400 | 0.211371 | 0.313981 | | 800 | 0.718600 | 0.167771 | 0.280676 | | 1000 | 0.661700 | 0.142229 | 0.258938 | | 1200 | 0.594400 | 0.137321 | 0.256275 | | 1400 | 0.583900 | 0.132922 | 0.248418 | | 1600 | 0.565100 | 0.117214 | 0.238640 | | 1800 | 0.369600 | 0.116954 | 0.238291 | | 2000 | 0.292800 | 0.109973 | 0.227509 | | 2200 | 0.255400 | 0.104955 | 0.228120 | | 2400 | 0.266800 | 0.097268 | 0.220525 | | 2600 | 0.232700 | 0.096055 | 0.213584 | | 2800 | 0.213700 | 0.097770 | 0.218866 | | 3000 | 0.209900 | 0.091633 | 0.210485 | | 3200 | 0.196800 | 0.090342 | 0.208739 | | 3400 | 0.200500 | 0.082326 | 0.204767 | | 3600 | 0.176800 | 0.085491 | 0.204068 | | 3800 | 0.170000 | 0.081289 | 0.201231 | | 4000 | 0.166200 | 0.080762 | 0.200227 | | 4200 | 0.161700 | 0.076671 | 0.198001 | | 4400 | 0.147000 | 0.077383 | 0.196997 | | 4600 | 0.141900 | 0.076057 | 0.195862 | | 4800 | 0.144800 | 0.074612 | 0.195120 | | 5000 | 0.138900 | 0.073138 | 0.193985 | | 5200 | 0.143900 | 0.072802 | 0.192894 | | 5400 | 0.131100 | 0.072764 | 0.193723 | | 5600 | 0.137000 | 0.072697 | 0.193679 | | 5800 | 0.133300 | 0.072651 | 0.193286 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-czech --dataset mozilla-foundation/common_voice_8_0 --config cs --split test ```
arampacha/wav2vec2-xls-r-1b-uk
arampacha
2022-03-23T18:26:29Z
12
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-hy results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice uk args: uk metrics: - type: wer value: 10.406342913776015 name: WER LM - type: cer value: 2.0387492208601703 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: uk metrics: - name: Test WER type: wer value: 40.57 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: uk metrics: - name: Test WER type: wer value: 28.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
mpoyraz/wav2vec2-xls-r-300m-cv6-turkish
mpoyraz
2022-03-23T18:26:27Z
9
7
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv6-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: tr metrics: - name: Test WER type: wer value: 8.83 - name: Test CER type: cer value: 2.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 32.81 - name: Test CER type: cer value: 11.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 34.86 --- # wav2vec2-xls-r-300m-cv6-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 6.1 TR](https://huggingface.co/datasets/common_voice) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `common_voice` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset common_voice --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 6.1 TR test split| 8.83 | 2.37 | |Speech Recognition Community dev data| 32.81 | 11.22 |
cahya/wav2vec2-base-turkish
cahya
2022-03-23T18:26:22Z
57
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2 Base Turkish by Cahya results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 9.437 - name: Test CER type: cer value: 3.325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.147 - name: Test CER type: cer value: 2.802 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 28.011 - name: Test CER type: cer value: 10.66 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 33.62 --- # This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: | | Dataset | WER | CER | |---|-------------------------------|---------|----------| | 1 | Common Voice 6.1 | 9.437 | 3.325 | | 2 | Common Voice 7.0 | 8.147 | 2.802 | | 3 | Common Voice 8.0 | 8.335 | 2.336 | | 4 | Speech Recognition Community | 28.011 | 10.66 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) 'train', 'validation' and 'other' split were used for training. - [Media Speech](https://www.openslr.org/108/) - [Magic Hub](https://magichub.com/) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1224 | 3.45 | 500 | 0.1641 | 0.1396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
bakrianoo/sinai-voice-ar-stt
bakrianoo
2022-03-23T18:25:21Z
54
11
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "ar", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: Sinai Voice Arabic Speech Recognition Model results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ar args: ar metrics: - type: wer value: 0.181 name: Test WER - type: cer value: 0.049 name: Test CER - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 93.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 90.79 widget: - example_title: Example 1 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19077324.mp3 - example_title: Example 2 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19205138.mp3 - example_title: Example 3 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19331711.mp3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sinai Voice Arabic Speech Recognition Model # نموذج **صوت سيناء** للتعرف على الأصوات العربية الفصحى و تحويلها إلى نصوص This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Wer: 0.1808 It achieves the following results on the evaluation set: - eval_loss = 0.2141 - eval_samples = 10388 - eval_wer = 0.181 - eval_cer = 0.049 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id bakrianoo/sinai-voice-ar-stt --dataset mozilla-foundation/common_voice_8_0 --config ar --split test ``` ### Inference Without LM ```python from transformers import (Wav2Vec2Processor, Wav2Vec2ForCTC) import torchaudio import torch def speech_file_to_array_fn(voice_path, resampling_to=16000): speech_array, sampling_rate = torchaudio.load(voice_path) resampler = torchaudio.transforms.Resample(sampling_rate, resampling_to) return resampler(speech_array)[0].numpy(), sampling_rate # load the model cp = "bakrianoo/sinai-voice-ar-stt" processor = Wav2Vec2Processor.from_pretrained(cp) model = Wav2Vec2ForCTC.from_pretrained(cp) # recognize the text in a sample sound file sound_path = './my_voice.mp3' sample, sr = speech_file_to_array_fn(sound_path) inputs = processor([sample], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values,).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.354 | 0.64 | 1000 | 0.4109 | 0.4493 | | 0.5886 | 1.28 | 2000 | 0.2798 | 0.3099 | | 0.4977 | 1.92 | 3000 | 0.2387 | 0.2673 | | 0.4253 | 2.56 | 4000 | 0.2266 | 0.2523 | | 0.3942 | 3.2 | 5000 | 0.2171 | 0.2437 | | 0.3619 | 3.84 | 6000 | 0.2076 | 0.2253 | | 0.3245 | 4.48 | 7000 | 0.2088 | 0.2186 | | 0.308 | 5.12 | 8000 | 0.2086 | 0.2206 | | 0.2881 | 5.76 | 9000 | 0.2089 | 0.2105 | | 0.2557 | 6.4 | 10000 | 0.2015 | 0.2004 | | 0.248 | 7.04 | 11000 | 0.2044 | 0.1953 | | 0.2251 | 7.68 | 12000 | 0.2058 | 0.1932 | | 0.2052 | 8.32 | 13000 | 0.2117 | 0.1878 | | 0.1976 | 8.96 | 14000 | 0.2104 | 0.1825 | | 0.1845 | 9.6 | 15000 | 0.2156 | 0.1821 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/lucca_dev
huggingtweets
2022-03-23T18:20:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:07:47Z
--- language: en thumbnail: http://www.huggingtweets.com/lucca_dev/1648059357338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475818681628246021/sf4z2j_9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucca</div> <div style="text-align: center; font-size: 14px;">@lucca_dev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucca. | Data | Lucca | | --- | --- | | Tweets downloaded | 2525 | | Retweets | 17 | | Short tweets | 100 | | Tweets kept | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bq4zgob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lucca_dev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lucca_dev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muhammedshihebi/bert-base-multilingual-cased-squad
muhammedshihebi
2022-03-23T17:48:47Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T17:48:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-base-multilingual-cased-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5271 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1256 | 0 | | 0.7252 | 1 | | 0.5271 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/stedmanhalliday
huggingtweets
2022-03-23T17:16:45Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:16:37Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500999718331199496/yhpq7J8H_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SODI</div> <div style="text-align: center; font-size: 14px;">@stedmanhalliday</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SODI. | Data | SODI | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 59 | | Short tweets | 559 | | Tweets kept | 2632 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ry6l5q3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stedmanhalliday's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stedmanhalliday') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pierreavdb
huggingtweets
2022-03-23T16:50:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T16:43:47Z
--- language: en thumbnail: http://www.huggingtweets.com/pierreavdb/1648054135143/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479780096483512323/LmKFSR3X_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pierre</div> <div style="text-align: center; font-size: 14px;">@pierreavdb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pierre. | Data | Pierre | | --- | --- | | Tweets downloaded | 1064 | | Retweets | 172 | | Short tweets | 133 | | Tweets kept | 759 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bimkjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pierreavdb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pierreavdb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)