modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
527 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 06:27:12
card
stringlengths
11
1.01M
abhijeet2022/q-FrozenLake-v1-4x4-noSlippery
abhijeet2022
2023-08-13T08:02:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T08:01:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="abhijeet2022/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/mdcsi-mode-schmuck-zubehoer-setfit
fathyshalab
2023-08-13T08:01:34Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T08:00:39Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp_3k_lzj7\fathyshalab\mdcsi-mode-schmuck-zubehoer-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp_3k_lzj7\fathyshalab\mdcsi-mode-schmuck-zubehoer-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
nekohacker591/google1
nekohacker591
2023-08-13T07:32:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gptj", "text-generation", "text generation", "conversational", "en", "license:creativeml-openrail-m", "autotrain_compatible", "region:us" ]
text-generation
2023-08-13T02:07:02Z
--- license: creativeml-openrail-m language: - en thumbnail: tags: - text generation - conversational inference: false --- # Pygmalion 6B ## Model description Pymalion 6B is a proof-of-concept dialogue model based on EleutherAI's [GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B). **Warning:** This model is **NOT** suitable for use by minors. It **will** output X-rated content under certain circumstances. ## Training data The fine-tuning dataset consisted of 56MB of dialogue data gathered from multiple sources, which includes both real _and_ partially machine-generated conversations. ## Training procedure Model weights were initialized from the `uft-6b` ConvoGPT model made available in [this commit](https://huggingface.co/hakurei/convogpt/tree/41b67bfddb6cd97070ffddf708e9720c9cb8d224/6b-uft). The model was then further fine-tuned on ~48.5 million tokens for ~5k steps on 4 NVIDIA A40s using DeepSpeed. ## Intended use ### The easy way We provide a notebook with a Gradio UI for playing around with the model without having to manually format inputs. This notebook can be found [here](https://github.com/PygmalionAI/gradio-ui/blob/master/notebooks/GPU.ipynb). ### The manual way The model can be used as a regular text generation model, but it'll perform best if the input prompt adheres to the following format: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [Your input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is chat history so the model can have some conversational context to draw from. Ideally it'll be pairs of messages like: ``` [CHARACTER]: [some dialogue here] You: [your response to the dialogue above] ``` Apart from chat history, you can also just add example conversations in `[DIALOGUE HISTORY]` to show how the character should speak - ideally at the beginning, so it doesn't get confused as to what's conversation history vs. character definition. ## Known issues We haven't played around with the model enough to enumerate them. Feel free to give us some feedback!
asenella/MMVAEPlus_beta_10_scale_True_seed_3
asenella
2023-08-13T07:25:30Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T19:37:18Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
timjwhite/distilhubert-finetuned-gtzan
timjwhite
2023-08-13T07:21:22Z
168
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:Sandiago21/distilhubert-finetuned-gtzan", "base_model:finetune:Sandiago21/distilhubert-finetuned-gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-11T10:54:34Z
--- license: apache-2.0 base_model: Sandiago21/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9951 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0951 | 1.0 | 57 | 0.5566 | 0.87 | | 0.0629 | 2.0 | 114 | 0.6819 | 0.83 | | 0.0231 | 3.0 | 171 | 0.6118 | 0.86 | | 0.0159 | 4.0 | 228 | 0.9208 | 0.83 | | 0.0374 | 5.0 | 285 | 0.8746 | 0.85 | | 0.1714 | 6.0 | 342 | 0.6671 | 0.87 | | 0.2148 | 7.0 | 399 | 1.1850 | 0.79 | | 0.0147 | 8.0 | 456 | 1.0551 | 0.79 | | 0.0788 | 9.0 | 513 | 1.5179 | 0.79 | | 0.0015 | 10.0 | 570 | 1.3290 | 0.8 | | 0.0049 | 11.0 | 627 | 1.0943 | 0.85 | | 0.0012 | 12.0 | 684 | 1.0667 | 0.85 | | 0.0043 | 13.0 | 741 | 1.1816 | 0.82 | | 0.0015 | 14.0 | 798 | 0.9108 | 0.88 | | 0.0011 | 15.0 | 855 | 1.0289 | 0.87 | | 0.001 | 16.0 | 912 | 0.7696 | 0.87 | | 0.0006 | 17.0 | 969 | 0.8539 | 0.87 | | 0.1001 | 18.0 | 1026 | 1.1917 | 0.78 | | 0.0017 | 19.0 | 1083 | 1.0016 | 0.83 | | 0.0525 | 20.0 | 1140 | 0.9513 | 0.88 | | 0.0004 | 21.0 | 1197 | 0.9268 | 0.86 | | 0.0003 | 22.0 | 1254 | 1.1209 | 0.82 | | 0.0003 | 23.0 | 1311 | 0.9270 | 0.87 | | 0.0003 | 24.0 | 1368 | 1.1148 | 0.84 | | 0.0003 | 25.0 | 1425 | 1.0507 | 0.85 | | 0.0002 | 26.0 | 1482 | 1.0156 | 0.86 | | 0.0002 | 27.0 | 1539 | 1.0062 | 0.87 | | 0.0002 | 28.0 | 1596 | 1.0124 | 0.87 | | 0.0002 | 29.0 | 1653 | 1.0154 | 0.87 | | 0.0002 | 30.0 | 1710 | 1.0092 | 0.88 | | 0.0002 | 31.0 | 1767 | 1.0123 | 0.88 | | 0.0175 | 32.0 | 1824 | 0.9928 | 0.88 | | 0.0002 | 33.0 | 1881 | 1.0014 | 0.88 | | 0.0115 | 34.0 | 1938 | 0.9989 | 0.88 | | 0.0001 | 35.0 | 1995 | 0.9871 | 0.88 | | 0.0001 | 36.0 | 2052 | 0.9920 | 0.88 | | 0.0002 | 37.0 | 2109 | 0.9974 | 0.88 | | 0.0002 | 38.0 | 2166 | 0.9950 | 0.88 | | 0.0001 | 39.0 | 2223 | 0.9997 | 0.88 | | 0.0001 | 40.0 | 2280 | 0.9951 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
caiAtSNU/ppo-from-scratch-LunarLander-v2
caiAtSNU
2023-08-13T07:10:14Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T07:07:30Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -126.67 +/- 91.01 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo_solution' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'caiAtSNU/ppo-from-scratch-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
LongSafari/hyenadna-large-1m-seqlen
LongSafari
2023-08-13T07:06:05Z
33
28
transformers
[ "transformers", "arxiv:2306.15794", "arxiv:2302.10866", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-23T07:14:22Z
--- license: bsd-3-clause --- # HyenaDNA Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**. See below for an [overview](#model) of the model and training. Better yet, check out these resources. **Resources:** - [arxiv](https://arxiv.org/abs/2306.15794) - [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) - [github](https://github.com/HazyResearch/hyena-dna) **Links to all HuggingFace models:** - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main) - [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main) See [GPU requirements](#hardware) for each model. ### Sample snippet This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings. See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna). ```python # instantiate pretrained model pretrained_model_name = 'hyenadna-medium-450k-seqlen' max_length = 450_000 model = HyenaDNAPreTrainedModel.from_pretrained( './checkpoints', pretrained_model_name, ) # create tokenizer, no training involved :) tokenizer = CharacterTokenizer( characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters model_max_length=max_length, ) # create a sample sequence = 'ACTG' * int(max_length/4) tok_seq = tokenizer(sequence)["input_ids"] # place on device, convert to tensor tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim # prep model and forward model.to(device) model.eval() # deterministic with torch.inference_mode(): embeddings = model(tok_seq) print(embeddings.shape) # embeddings here! ``` ### How to use pretrained weights - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first. - [github](https://github.com/HazyResearch/hyena-dna) Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that. If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too. ### GPU requirements (suggested) <a name="hardware"></a> Here are suggestions on the hardware (preferred minimum) we think you can use for each model. GPU during: Pretrain, fine-tune, inference - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40) T4: 16GB A100-40: 40GB A100-80: 80GB ## Model & Training Overview <a name="model"></a> HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations. This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention). We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer. We pretrain using next token (nucleotide) prediction on the human reference genome (HG38). HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning. Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA! ### Authors Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re. **Contact** Eric Nguyen, [email protected] Michael Poli, [email protected] Marjan Faizi, [email protected] ## Citation Feel free to cite us :) ``` @article{nguyen2023hyenadna, title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution}, author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré}, year={2023}, eprint={2306.15794}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
LongSafari/hyenadna-medium-450k-seqlen
LongSafari
2023-08-13T07:05:18Z
9
7
transformers
[ "transformers", "arxiv:2306.15794", "arxiv:2302.10866", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-23T08:11:59Z
--- license: bsd-3-clause --- # HyenaDNA Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**. See below for an [overview](#model) of the model and training. Better yet, check out these resources. **Resources:** - [arxiv](https://arxiv.org/abs/2306.15794) - [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) - [github](https://github.com/HazyResearch/hyena-dna) **Links to all HuggingFace models:** - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main) - [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main) See [GPU requirements](#hardware) for each model. ### Sample snippet This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings. See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna). ```python # instantiate pretrained model pretrained_model_name = 'hyenadna-medium-450k-seqlen' max_length = 450_000 model = HyenaDNAPreTrainedModel.from_pretrained( './checkpoints', pretrained_model_name, ) # create tokenizer, no training involved :) tokenizer = CharacterTokenizer( characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters model_max_length=max_length, ) # create a sample sequence = 'ACTG' * int(max_length/4) tok_seq = tokenizer(sequence)["input_ids"] # place on device, convert to tensor tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim # prep model and forward model.to(device) model.eval() # deterministic with torch.inference_mode(): embeddings = model(tok_seq) print(embeddings.shape) # embeddings here! ``` ### How to use pretrained weights - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first. - [github](https://github.com/HazyResearch/hyena-dna) Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that. If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too. ### GPU requirements (suggested) <a name="hardware"></a> Here are suggestions on the hardware (preferred minimum) we think you can use for each model. GPU during: Pretrain, fine-tune, inference - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40) T4: 16GB A100-40: 40GB A100-80: 80GB ## Model & Training Overview <a name="model"></a> HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations. This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention). We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer. We pretrain using next token (nucleotide) prediction on the human reference genome (HG38). HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning. Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA! ### Authors Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re. **Contact** Eric Nguyen, [email protected] Michael Poli, [email protected] Marjan Faizi, [email protected] ## Citation Feel free to cite us :) ``` @article{nguyen2023hyenadna, title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution}, author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré}, year={2023}, eprint={2306.15794}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
LongSafari/hyenadna-tiny-1k-seqlen
LongSafari
2023-08-13T07:04:19Z
132
5
transformers
[ "transformers", "arxiv:2306.15794", "arxiv:2302.10866", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-22T19:06:15Z
--- license: bsd-3-clause --- # HyenaDNA Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**. See below for an [overview](#model) of the model and training. Better yet, check out these resources. **Resources:** - [arxiv](https://arxiv.org/abs/2306.15794) - [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) - [github](https://github.com/HazyResearch/hyena-dna) **Links to all HuggingFace models:** - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main) - [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main) See [GPU requirements](#hardware) for each model. ### Sample snippet This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings. See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna). ```python # instantiate pretrained model pretrained_model_name = 'hyenadna-medium-450k-seqlen' max_length = 450_000 model = HyenaDNAPreTrainedModel.from_pretrained( './checkpoints', pretrained_model_name, ) # create tokenizer, no training involved :) tokenizer = CharacterTokenizer( characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters model_max_length=max_length, ) # create a sample sequence = 'ACTG' * int(max_length/4) tok_seq = tokenizer(sequence)["input_ids"] # place on device, convert to tensor tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim # prep model and forward model.to(device) model.eval() # deterministic with torch.inference_mode(): embeddings = model(tok_seq) print(embeddings.shape) # embeddings here! ``` ### How to use pretrained weights - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first. - [github](https://github.com/HazyResearch/hyena-dna) Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that. If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too. ### GPU requirements (suggested) <a name="hardware"></a> Here are suggestions on the hardware (preferred minimum) we think you can use for each model. GPU during: Pretrain, fine-tune, inference - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40) T4: 16GB A100-40: 40GB A100-80: 80GB ## Model & Training Overview <a name="model"></a> HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations. This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention). We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer. We pretrain using next token (nucleotide) prediction on the human reference genome (HG38). HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning. Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA! ### Authors Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re. **Contact** Eric Nguyen, [email protected] Michael Poli, [email protected] Marjan Faizi, [email protected] ## Citation Feel free to cite us :) ``` @article{nguyen2023hyenadna, title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution}, author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré}, year={2023}, eprint={2306.15794}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
fp16-guy/Disney_Pixar_Cartoon_Type_A_fp16_cleaned
fp16-guy
2023-08-13T06:57:15Z
0
2
null
[ "text-to-image", "region:us" ]
text-to-image
2023-08-01T10:41:52Z
--- pipeline_tag: text-to-image --- Disney Pixar Cartoon Type A, but fp16/cleaned - smaller size, same result. ======== /// **[**original checkpoint link**](https://civitai.com/models/65203/disney-pixar-cartoon-type-a)** *(all rights to the model belong to PromptSharingSamaritan)* --- *[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/disneypixar%2010%2001%2020230801122719-111-disneyPixarCartoon_v10-Euler%20a-6.png) *(1.99gb version)* *[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/disneypixar%2010%2002%20no%20vae%2020230801123402-111-disneyPixarCartoon_v10-Euler%20a-6.png) *(1.83gb version - no vae)* *[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/disneypixar%2010%20inp%2001%2020230812124144-111-disneyPixarCartoon_v10_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)* *[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/disneypixar%2010%20inp%2002%2020230812124250-111-disneyPixarCartoon_v10_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
Evan-Lin/Bart-large-abs-yelp-allure-entailment
Evan-Lin
2023-08-13T06:46:25Z
49
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-13T06:31:54Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpaufyfs2c/Evan-Lin/Bart-large-abs-yelp-allure-entailment") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpaufyfs2c/Evan-Lin/Bart-large-abs-yelp-allure-entailment") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpaufyfs2c/Evan-Lin/Bart-large-abs-yelp-allure-entailment") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
bigmorning/whisper_charsplit_0005
bigmorning
2023-08-13T06:26:40Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T06:26:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0544 - Train Accuracy: 0.0561 - Train Wermet: 9.9365 - Validation Loss: 0.8809 - Validation Accuracy: 0.0623 - Validation Wermet: 10.1087 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.7836 | 0.0245 | 8.8338 | 2.1866 | 0.0348 | 6.5008 | 0 | | 2.0715 | 0.0354 | 7.5148 | 1.8725 | 0.0410 | 5.8800 | 1 | | 1.7730 | 0.0412 | 7.4995 | 1.5964 | 0.0467 | 6.7257 | 2 | | 1.4468 | 0.0478 | 8.1713 | 1.2401 | 0.0544 | 8.7249 | 3 | | 1.0544 | 0.0561 | 9.9365 | 0.8809 | 0.0623 | 10.1087 | 4 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Linkthat/mdcsi-mode-schmuck-zubehoer-setfit
Linkthat
2023-08-13T06:25:31Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T06:24:41Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmprifa4wlr\Linkthat\mdcsi-mode-schmuck-zubehoer-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmprifa4wlr\Linkthat\mdcsi-mode-schmuck-zubehoer-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
HamZurger/ppo-SnowballTarget
HamZurger
2023-08-13T06:20:42Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-13T06:20:38Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: HamZurger/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NocteZeta/ppo-Huggy
NocteZeta
2023-08-13T06:17:15Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-13T06:17:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NocteZeta/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lukas1h07/murphythedog
lukas1h07
2023-08-13T06:14:25Z
3
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T06:09:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### murphythedog Dreambooth model trained by lukas1h07 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Evan-Lin/Bart-large-abs-yelp-allure
Evan-Lin
2023-08-13T06:10:19Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-13T05:59:24Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp77v0b9fs/Evan-Lin/Bart-large-abs-yelp-allure") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp77v0b9fs/Evan-Lin/Bart-large-abs-yelp-allure") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp77v0b9fs/Evan-Lin/Bart-large-abs-yelp-allure") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Evan-Lin/Bart-large-abs-yelp-entailment
Evan-Lin
2023-08-13T06:09:54Z
49
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-13T06:02:49Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
iknow-lab/ko-flan-zero-v0-0731
iknow-lab
2023-08-13T05:46:38Z
112
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ko", "dataset:nsmc", "dataset:jason9693/APEACH", "dataset:KETI-AIR/korquad", "dataset:klue", "dataset:smilegate-ai/kor_unsmile", "dataset:kor_nlu", "dataset:skt/kobest_v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-08T13:49:38Z
--- license: apache-2.0 language: - ko pipeline_tag: text-classification widget: - text: 예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요 [SEP] 댓글 주제를 분류하세요 [SEP] 시네마 - text: >- 인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발 KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다. [SEP] 경제에 긍정적인 뉴스인가요? [SEP] 아니요 - text: 마지막에는 k팝 공연보고 좋은 추억 남았으면 좋겠네요 [SEP] 욕설이 포함되어있나요? [SEP] 아니요 datasets: - nsmc - jason9693/APEACH - KETI-AIR/korquad - klue - smilegate-ai/kor_unsmile - kor_nlu - skt/kobest_v1 --- ## 사용 예시 ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("iknow-lab/ko-flan-zero-v0-0731") model = AutoModelForSequenceClassification.from_pretrained("iknow-lab/ko-flan-zero-v0-0731") def inference(instruction, input, labels): instruction = f"{input} [SEP] {instruction}" inputs = tokenizer([instruction] * len(labels), labels, truncation=True, padding=True, return_tensors="pt") scores = model(**inputs).logits.squeeze(1).tolist() output = dict(zip(labels, scores)) print(instruction, output) inference( "문장을 감성분류해주세요", "아 영화 개노잼", ["긍정적", "부정적"] ) inference( "글과 관련된 내용을 만들어주세요", "예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요", ["영화에 관한 글이다", "드라마에 관한 글입니다"] ) inference( "글을 읽고 시장에 미칠 영향을 판단해보세요", """인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발 KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다. 25일 시에 따르면 연수구 옥련동 104 일대 29만1천725㎡(8만8천평)에 추진 중인 2만8천62가구 규모의 송도역세권구역 도시개발사업과 연계, KTX 송도역 복합환승센터와 상업시설·업무시설 등의 조성을 추진 중이다. """, ["긍정", "부정", "중립"] ) ``` ### 실행 결과 ``` 아 영화 개노잼 [SEP] 문장을 감성분류해주세요 {'긍정적': -7.878206253051758, '부정적': 50.96009826660156} 예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요 [SEP] 글과 관련된 내용을 만들어주세요 {'영화에 관한 글이다': 25.37109375, '드라마에 관한 글입니다': -31.869916915893555} 인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발 KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다. 25일 시에 따르면 연수구 옥련동 104 일대 29만1천725㎡(8만8천평)에 추진 중인 2만8천62가구 규모의 송도역세권구역 도시개발사업과 연계, KTX 송도역 복합환승센터와 상업시설·업무시설 등의 조성을 추진 중이다.  [SEP] 글을 읽고 시장에 미칠 영향을 판단해보세요 {'긍정': -61.86758804321289, '부정': 23.72732925415039, '중립': -70.4837417602539} ``` ## 학습 데이터 구성 ```json { "splits": "train", "tasks": "nsmc,apeach,korquad_v1.0,klue_mrc,klue_nli,klue_ynat,kor_nlu,unsmile,klue_re,kobest_copa,kobest_hellaswag,kobest_boolq,kobest_wic,niklex,nikl_absa", "max_instance_per_task": 20000, "split_train": { "nsmc": 20000, "apeach": 7895, "korquad_v1.0": 20000, "klue_mrc": 17553, "klue_nli": 8046, "klue_ynat": 20000, "kor_nlu": 20000, "unsmile": 15002, "klue_re": 20000, "kobest_copa": 3075, "kobest_hellaswag": 499, "kobest_boolq": 3664, "kobest_wic": 3317, "niklex": 20000, "nikl_absa": 2139 }, "split_train_total": 181190 } ``` ## 평가(test set) | task | accuracy | | --- | --- | | [nsmc](https://huggingface.co/datasets/nsmc) | 85.92 | | [jason9693/APEACH](https://huggingface.co/datasets/jason9693/APEACH) | 32.12 | | [klue-ynat](https://huggingface.co/datasets/klue) | 77.59 | | [kobest-boolq](https://huggingface.co/datasets/skt/kobest_v1) | 76.99 | | [kobest-copa](https://huggingface.co/datasets/skt/kobest_v1) | 61.2 | | [kobest-hellaswag](https://huggingface.co/datasets/skt/kobest_v1) | 코드 버그 있어서 제외 | | [kobest-sentineg](https://huggingface.co/datasets/skt/kobest_v1) | 55.92 | | [kobest-wic](https://huggingface.co/datasets/skt/kobest_v1) | 58.49 | ### 평가 방식 - 모델에 `[CLS] {input} [SEP] {instruction} [SEP] label [SEP]` 형식으로 넣고 나온 positive와 negative끼리 비교함. - positive는 정답 라벨을 사용하고, negative는 정답 라벨이 아닌 모든 라벨을 사용 - 정답 라벨의 점수가 모든 negative보다 높을 경우 맞춘 것으로 간주함. 이런 식으로 accuracy 측정. 테스트에 사용한 매핑 코드 ``` klue_ynat_labelToTextDict = { 0: "IT과학", 1: "경제", 2: "사회", 3: "생활문화", 4: "세계", 5: "스포츠", 6: "정치", } klue_ynat_labels = set(klue_ynat_labelToTextDict.values()) def klue_ynat_mapper(item): positives = [klue_ynat_labelToTextDict[item["label"]]] return { "instruction": "문장을 읽고 주제를 분류하세요", "input": item["title"], "positives": positives, "negatives": klue_ynat_labels - set(positives) } kobest_wic_labels = ["아니오", "예"] def kobest_wic_mapper(item): return { "instruction": "주어진 두 문장에서 단어 {word}은(는) 동일한 의미로 사용되었나요?".format(word=item["word"]), "input": "문장1: {context_1}\n문장2: {context_2}".format(**item), "positives": [kobest_wic_labels[item['label']]], "negatives": [kobest_wic_labels[1 - item['label']]] } copa_question = { "결과": "이후에 이어질 결과는?", "원인": "이러한 일이 일어난 원인은?" } def kobest_copa_mapper(item): answers = [item["alternative_1"], item["alternative_2"]] return { "instruction": copa_question[item["question"]], "input": item["premise"], "positives": [answers[item['label']]], "negatives": [answers[1 - item['label']]] } def kobest_hellaswag_mapper(item): answers = [item[f"ending_{i}"] for i in range(1, 5)] label = answers[item['label']] answers.remove(label) return { "instruction": "이후에 이어질 내용으로 가장 적절한 것은?", "input": item["context"], "positives": [label], "negatives": answers } kobest_boolq_labels = ["아니오", "예"] def kobest_boolq_mapper(item): return { "instruction": item["question"], "input": item["paragraph"], "positives": [kobest_boolq_labels[item['label']]], "negatives": [kobest_boolq_labels[1 - item['label']]] } kobest_sentineg_labels = ["부정", "긍정"] def kobest_sentineg_mapper(item): return { "instruction": "주어진 문장의 감정을 분류하세요", "input": item["sentence"], "positives": [kobest_boolq_labels[item['label']]], "negatives": [kobest_boolq_labels[1 - item['label']]] } nsmc_labels = ["부정", "긍정"] def nsmc_mapper(item): return { "instruction": "주어진 문장의 감정을 분류하세요", "input": item["document"], "positives": [nsmc_labels[item['label']]], "negatives": [nsmc_labels[1 - item['label']]] } apeach_labels = ["혐오 표현이 아닙니다", "혐오표현"] def apeach_mapper(item): return { "instruction": "혐오성을 분류해보세요.", "input": item["text"], "positives": [nsmc_labels[item['class']]], "negatives": [nsmc_labels[1 - item['class']]] } EVAL_LIST = { "klue-ynat": dict( load_args=dict( path="klue", name="ynat", split="validation" ), mapper=klue_ynat_mapper ), "nsmc": dict( load_args=dict( path="nsmc", split="test" ), mapper=nsmc_mapper ), "apeach": dict( load_args=dict( path="jason9693/APEACH", split="test" ), mapper=apeach_mapper ), "kobest-wic": dict( load_args=dict( path="skt/kobest_v1", name="wic", split="test" ), mapper=kobest_wic_mapper ), "kobest-copa": dict( load_args=dict( path="skt/kobest_v1", name="copa", split="test" ), mapper=kobest_copa_mapper ), "kobest-hellaswag": dict( load_args=dict( path="skt/kobest_v1", name="hellaswag", split="test" ), mapper=kobest_hellaswag_mapper ), "kobest-boolq": dict( load_args=dict( path="skt/kobest_v1", name="boolq", split="test" ), mapper=kobest_boolq_mapper ), "kobest-sentineg": dict( load_args=dict( path="skt/kobest_v1", name="sentineg", split="test" ), mapper=kobest_sentineg_mapper ) } ```
Linkthat/mdcsi-supermaerkte-drogerien-setfit
Linkthat
2023-08-13T05:44:50Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T05:43:59Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmprsbcp9i2\Linkthat\mdcsi-supermaerkte-drogerien-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmprsbcp9i2\Linkthat\mdcsi-supermaerkte-drogerien-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Dredta/Ukiyana
Dredta
2023-08-13T05:12:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T05:10:04Z
--- license: creativeml-openrail-m ---
learn3r/bart_memsum
learn3r
2023-08-13T05:00:27Z
106
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:learn3r/gov_report_memsum_oracle", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-12T15:54:25Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer datasets: - learn3r/gov_report_memsum_oracle model-index: - name: bart_memsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_memsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the learn3r/gov_report_memsum_oracle dataset. It achieves the following results on the evaluation set: - Loss: 1.7431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Chattiori/MelonMix
Chattiori
2023-08-13T04:37:41Z
37
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Grapefruit", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-20T09:42:48Z
--- license: creativeml-openrail-m language: - en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - Grapefruit --- # <span style="color:#00a0a0; font-size:30pt; font-weight:bolder; font-style:italic;"> MelonMix </span> This model was checkpoint merge of Anything v4.5, AbyssOrangeMix 3A1B, GrapeFruitV4.1 and 7th Anime v3 C. V2 has AnyOrangeMix 48A13B, Hassaku v1.3, blue_pencil EX, MIX-Pro v4.5+ColorBox and MeinaPastel V6. Since AnyOrangeMix 48A13B is the mix of Anything v5, AnythingElse v4.5, AbyssOrangeMix3 A1B and AbyssOrangeMix3 A3, merge recipe showing below is identicle. For V2, I used [Chattiori-Model-Merger](https://github.com/Faildes/Chattiori-Model-Merger). ## Merge Recipe V1:(Anything v4.5 (0.5) + AbyssOrangeMix 3A1B (0.5) Weighted Sum) (0.5) + (grapefruitV4.1 (0.5) + 7th Anime v3 C (0.5) Weighted Sum) (0.5) Weighted Sum V2: * Weighted Sum, [**AnythingElse V4-v4.5**](https://civitai.com/models/4855) + [**Anything v5-Prt-Re**](https://civitai.com/models/9409), alpha(0.6) >> **TEMP_0** * Weighted Sum, [**AbyssOrangeMix3-A1B**](https://civitai.com/models/9942) + [**AbyssOrangeMix3-A3**](https://civitai.com/models/9942), alpha(0.5) >> **TEMP_1** * Sum Twice, **TEMP_0** + **TEMP_1** + [**MIX-Pro-V4.5+ColorBox**](https://civitai.com/models/14206), alpha(0.5) rand_beta(0.3, 0.7, 17546192) >> **TEMP_2** * Sum Twice, [**Hassaku (hentai model)-v1.3**](https://civitai.com/models/2583) + [**MeinaPastel-V6**](https://civitai.com/models/11866) + [**blue_pencil-EX**](https://civitai.com/models/79083), rand_alpha(0.35, 0.65, 5481652) rand_beta(0.2, 0.45, 61427253) >> **TEMP_3** * Weighted Sum, **TEMP_3** + **TEMP_2**, rand_alpha(0.25, 0.75, 964451837) >> **MelonMixV2**
yinyin67/roberta-large-peft-p-tuning
yinyin67
2023-08-13T04:36:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T04:36:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
fnlp/claif-scaled-roberta-base
fnlp
2023-08-13T04:32:19Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "en", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-13T03:53:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 language: - en --- # fnlp/claif-scaled-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('fnlp/claif-scaled-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-scaled-roberta-base') model = AutoModel.from_pretrained('fnlp/claif-scaled-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-scaled-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 37989 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 125, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11397, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fnlp/claif-scaled-bert-base
fnlp
2023-08-13T04:31:28Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-13T04:03:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 language: - en --- # fnlp/claif-scaled-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('fnlp/claif-scaled-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-scaled-bert-base') model = AutoModel.from_pretrained('fnlp/claif-scaled-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-scaled-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 37989 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 125, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11397, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fnlp/claif-bert-base
fnlp
2023-08-13T04:30:34Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-13T04:14:49Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 language: - en --- # fnlp/claif-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('fnlp/claif-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-bert-base') model = AutoModel.from_pretrained('fnlp/claif-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3556 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 125, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1067, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
asenella/MMVAEPlus_beta_10_scale_True_seed_2
asenella
2023-08-13T04:15:42Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:12:40Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Envoid/Bacchus-22B-ggml
Envoid
2023-08-13T04:11:37Z
0
1
null
[ "region:us" ]
null
2023-08-13T03:38:26Z
q4_0 ggml of Bacchus-22B see the main repo for more details about the model.
mariagraterol/gradio-demo
mariagraterol
2023-08-13T03:59:47Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-08-06T04:59:37Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
asenella/MMVAEPlus_beta_5_scale_True_seed_2
asenella
2023-08-13T03:54:17Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:11:20Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
leofto/lora-trained-xl-colab
leofto
2023-08-13T03:12:38Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-12T23:17:51Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of nelsie tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - leofto/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of nelsie using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Open-Orca/LlongOrca-7B-16k
Open-Orca
2023-08-13T03:00:14Z
1,560
46
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "arxiv:2306.02707", "arxiv:2301.13688", "arxiv:2307.09288", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-05T16:31:15Z
--- license: llama2 language: - en library_name: transformers pipeline_tag: text-generation datasets: - Open-Orca/OpenOrca --- <p><h1>🐋 The First Llong Context Orca! 🐋</h1></p> ![OpenOrca Logo](https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/OpenOrcaLogo.png "OpenOrca Logo") # OpenOrca - LlongOrca - 7B - 16k We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune on top of [LLongMA-2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k). This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707). We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This release is trained on a curated filtered subset of most of our GPT-4 augmented data. It is the same subset of our data as was used in our [OpenOrcaxOpenChat-Preview2-13B model](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B). This release reveals that stacking our training on an existing long context fine-tuned model yields significant improvements to model performance. We measured this with BigBench-Hard and AGIEval results, finding **~134%** of the base Llongma2-16k model's performance on average. We have run extensive evaluations internally and expect this model to place number 4 on the HuggingFaceH4 Open LLM Leaderboard for 7B models, but with >99% performance of the first place and **place number 1** for longer context 7B models. We did this training as part of testing integration of OpenChat's [MultiPack algorithm](https://github.com/imoneoi/multipack_sampler) into the Axolotl trainer. MultiPack achieves 99.85% bin-packing efficiency on our dataset. This has significantly reduced training time, with efficiency improvement of 3-10X over traditional methods. <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 300px"> Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2). [<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2) Many thanks to @EnricoShippole, @theemozilla, and @kaiokendev1 for the fine work on creating the LlongMA-2-7b-16k model this was trained on top of! We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners. We will also give sneak-peak announcements on our Discord, which you can find here: https://AlignmentLab.ai # Prompt Template We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this. ## Example Prompt Exchange ``` <|im_start|>system You are LlongOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers! <|im_end|> <|im_start|>user How are you<|im_end|> <|im_start|>assistant I am doing well!<|im_end|> <|im_start|>user How are you now?<|im_end|> ``` # Evaluation We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have significantly improved upon the base long context model. As well, we should place #4 among all 7B models (and #1 for a model with long context) at release time! ## AGIEval Performance We present our performance on AGI Eval in comparison to base Llama2-7B and to [Llongma2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k), which we trained on top of. This demonstrates the benefits of stacking OpenOrca dataset training on existing models. Most notably, there is a very dramatic improvement of nearly 3X in the English writing performance. ![LlongOrca 7B 16k AGIEval Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BAGIEval.png "AGIEval Performance") ## BigBench-Hard Performance We present our performance on BigBench-Hard in comparison to base Llama2-7B and to [Llongma2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k), which we trained on top of. This demonstrates the benefits of stacking OpenOrca dataset training on existing models. ![LlongOrca 7B 16k BigBench-Hard Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BBigBenchHard.png "BigBench-Hard Performance") ## HuggingFaceH4 Open LLM Leaderboard Performance We have run our own tests using parameters matching the [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) evals. We place #4 for all 7B models at release time, and #1 for long context models. ![LlongOrca 7B 16k Leaderboard Internal Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BHFLeaderboard.png "HuggingFace Leaderboard Internal Performance") # Dataset We used a curated, filtered selection of most of the GPT-4 augmented data from our OpenOrca dataset, which aims to reproduce the Orca Research Paper dataset. Further details of our curation practices will be forthcoming with our full model releases. # Training [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl"/>](https://github.com/OpenAccess-AI-Collective/axolotl) We trained with 8x A6000-48GB (first-gen) GPUs for 37 hours, completing 4 epochs of full fine tuning on our dataset in one training run. Commodity cost was ~$200. Axolotl training parameters can be found in [configs/oo7b.yml](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/blob/main/configs/oo-7b.yml). We used the `packing-attn` branch of Axolotl during training. # Citation ```bibtex @software{lian2023llongorca7b, title = {LlongOrca7B: Llama2-7B Model Instruct-tuned for Long Context on Filtered OpenOrcaV1 GPT-4 Dataset}, author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/Open-Orca/LlongOrca-7B-16k}, } @software{openchat, title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}}, author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling}, doi = {10.5281/zenodo.8105775}, url = {https://github.com/imoneoi/openchat}, version = {pre-release}, year = {2023}, month = {7}, } @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{longpre2023flan, title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts}, year={2023}, eprint={2301.13688}, archivePrefix={arXiv}, primaryClass={cs.AI} } @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, } ```
Rounak28/bengaliAI-finetuned-0-55000-new
Rounak28
2023-08-13T02:48:33Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-12T17:29:29Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: bengaliAI-finetuned-0-55000-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bengaliAI-finetuned-0-55000-new This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2824 - Wer: 61.2368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2921 | 0.65 | 2000 | 0.2824 | 61.2368 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
skittlesmurf/ppo-LunarLander-v2
skittlesmurf
2023-08-13T02:46:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T02:46:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.13 +/- 17.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
abhowmick22/coinvent-llama2-test
abhowmick22
2023-08-13T02:35:41Z
0
0
null
[ "en", "arxiv:1910.09700", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-13T01:45:39Z
--- license: cc-by-nc-sa-4.0 language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tsobolev/speecht5_finetuned_voxpopuli_fi
tsobolev
2023-08-13T02:09:03Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "fi", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-13T00:00:34Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_fi results: [] language: - fi pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_fi This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5025 | 13.18 | 1000 | 0.4663 | | 0.4873 | 26.36 | 2000 | 0.4581 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.14.3 - Tokenizers 0.13.3
UWECProgrammer/setfit-model-2.3
UWECProgrammer
2023-08-13T01:44:49Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T01:23:10Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # UWECProgrammer/setfit-model-2.3 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("UWECProgrammer/setfit-model-2.3") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` This model predicts actual emotions, such as fear or embarrasment, and althought this may not be exactly what we originally planned, it could be useful/interesting ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
indonesian-nlp/gpt2-medium-indonesian
indonesian-nlp
2023-08-13T01:41:56Z
660
11
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira." --- # GPT2-medium-indonesian This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. The demo can be found [here](https://huggingface.co/spaces/indonesian-nlp/gpt2-app). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='indonesian-nlp/gpt2-medium-indonesian') >>> set_seed(42) >>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5) [{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\ “Kau tau, bagaimana dulu kita bertemu?” aku'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\ Tuhan akan memberi lebih dari apa yang kita'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('indonesian-nlp/gpt2-medium-indonesian') model = GPT2Model.from_pretrained('indonesian-nlp/gpt2-medium-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('indonesian-nlp/gpt2-medium-indonesian') model = TFGPT2Model.from_pretrained('indonesian-nlp/gpt2-medium-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we > do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry > out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, > race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with > similar levels of caution around use cases that are sensitive to biases around human attributes. We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/indonesian-nlp/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/indonesian-nlp/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications. ### Gender bias We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online. ![gender bias - male](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_male.png) The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant). ![gender bias - female](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_female.png) ### Ethnicity bias We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme: * Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity) * Topic - we will use 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: *let [person] ...* * define: *is* Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...) We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_ethnicity.png) ### Religion bias With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_religion.png) ## Training data The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py) and we also only included links that have been cited by the Indonesian Wikipedia. ## Training procedure The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `6d 3h 7m 26s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | ID OSCAR+mc4+Wikipedia (29GB) | 2.79 | 2.696 | 14.826 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-medium-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya). ## Team members - Akmal ([@Wikidepia](https://huggingface.co/Wikidepia)) - alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner)) - Cahya Wirawan ([@cahya](https://huggingface.co/cahya)) - Galuh Sahid ([@Galuh](https://huggingface.co/Galuh)) - Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia)) - Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli)) - Samsul Rahmadani ([@munggok](https://huggingface.co/munggok)) ## Future work We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains if we can get the necessary hardware resources.
indonesian-nlp/gpt2
indonesian-nlp
2023-08-13T01:41:27Z
338
8
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira." --- # GPT2-small-indonesian This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='flax-community/gpt2-small-indonesian') >>> set_seed(42) >>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5) [{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\ “Kau tau, bagaimana dulu kita bertemu?” aku'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\ Tuhan akan memberi lebih dari apa yang kita'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = GPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = TFGPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we > do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry > out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, > race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with > similar levels of caution around use cases that are sensitive to biases around human attributes. We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications. ### Gender bias We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online. ![gender bias - male](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_male.png) The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant). ![gender bias - female](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_female.png) ### Ethnicity bias We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme: * Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity) * Topic - we will use 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: *let [person] ...* * define: *is* Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...) We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_ethnicity.png) ### Religion bias With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_religion.png) ## Training data The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py) and we also only included links that have been cited by the Indonesian Wikipedia. ## Training procedure The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `4d 14h 50m 47s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | ID OSCAR+mc4+wikipedia (29GB) | 3.046 | 2.926 | 18.66 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-small-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya). ## Team members - Akmal ([@Wikidepia](https://huggingface.co/Wikidepia)) - alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner)) - Cahya Wirawan ([@cahya](https://huggingface.co/cahya)) - Galuh Sahid ([@Galuh](https://huggingface.co/Galuh)) - Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia)) - Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli)) - Samsul Rahmadani ([@munggok](https://huggingface.co/munggok)) ## Future work We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains if we can get the necessary hardware resources.
cto-algo-huggingface/eternity-ring-tiffany-style
cto-algo-huggingface
2023-08-13T01:38:23Z
29
1
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T01:35:34Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### eternity_ring_tiffany_style on Stable Diffusion via Dreambooth #### model by cto-algo-huggingface This your the Stable Diffusion model fine-tuned the eternity_ring_tiffany_style concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<eternity_ring> tiffany** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/9.jpeg) ![image 1](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/7.jpeg) ![image 3](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/13.jpeg) ![image 4](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/3.jpeg) ![image 5](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/8.jpeg) ![image 6](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/5.jpeg) ![image 7](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/12.jpeg) ![image 8](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/11.jpeg) ![image 9](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/1.jpeg) ![image 10](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/0.jpeg) ![image 11](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/10.jpeg) ![image 12](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/6.jpeg) ![image 13](https://huggingface.co/cto-algo-huggingface/eternity-ring-tiffany-style/resolve/main/concept_images/4.jpeg)
degor/ppp-Pyramids
degor
2023-08-13T01:27:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-13T01:26:19Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: degor/ppp-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HachiML/japanese-stablelm-alpha-7b-instruct-ja-qlora-2ep-v2
HachiML
2023-08-13T01:09:37Z
4
0
peft
[ "peft", "dataset:HachiML/databricks-dolly-15k-ja-alpaca-format", "region:us" ]
null
2023-08-11T02:44:14Z
--- library_name: peft datasets: - HachiML/databricks-dolly-15k-ja-alpaca-format --- ## JGLUE Score I evaluated this model using the following JGLUE tasks. Here are the scores: | Task | stablelm-base-alpha-7b | This Model | stablelm-instruct-alpha-7b | |---------------------|:-----------------:|:----------:|:-----------------:| | JCOMMONSENSEQA(acc) | 33.42 | 79.17 | 82.22 | | JNLI(acc) | 43.34 | 47.82 | 52.05 | | MARC_JA(acc) | 96.73 | 88.14 | 82.88 | | JSQUAD(exact_match) | 70.62 | 29.85 | 63.26 | | **Average** | **61.03** | **61.25** | **70.10** | - Note: Use v0.3 prompt template - The JGLUE scores were measured using the following script: [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable) - The JGLUE scores of Model "stablelm-base-alpha-7b" and "stablelm-instruct-alpha-7b" were referenced from Github above. ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
HachiML/japanese-stablelm-alpha-7b-instruct-ja-qlora-1.2ep-v5
HachiML
2023-08-13T01:07:32Z
4
0
peft
[ "peft", "dataset:HachiML/databricks-dolly-15k-ja-alpaca-format", "region:us" ]
null
2023-08-12T15:11:06Z
--- library_name: peft datasets: - HachiML/databricks-dolly-15k-ja-alpaca-format --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep
HachiML
2023-08-13T01:06:53Z
10
2
peft
[ "peft", "en", "ja", "dataset:HachiML/databricks-dolly-15k-ja-alpaca-format", "region:us" ]
null
2023-08-06T04:09:24Z
--- library_name: peft datasets: - HachiML/databricks-dolly-15k-ja-alpaca-format language: - en - ja --- ## JGLUE Score I evaluated this model using the following JGLUE tasks. Here are the scores: | Task | Llama-2-13b-hf(*) | This Model | |---------------------|:-----------------:|:----------:| | JCOMMONSENSEQA(acc) | 75.06 | 75.78 | | JNLI(acc) | 22.18 | 50.69 | | MARC_JA(acc) | 38.83 | 79.64 | | JSQUAD(exact_match) | 76.13 | 62.83 | | **Average** | **53.05** | **67.23** | - Note: Use v0.3 prompt template - The JGLUE scores were measured using the following script: [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable) ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer from peft import PeftModel model_name = "meta-llama/Llama-2-13b-hf" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(model_name) pt_model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, ) peft_name = "HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep" model = PeftModel.from_pretrained( pt_model, peft_name, ) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e9_s108_v4_l4_r4
KingKazma
2023-08-13T00:48:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:48:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Evan-Lin/Bart-abs-yelp-allure3
Evan-Lin
2023-08-13T00:40:10Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-13T00:36:19Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp2p00m8_5/Evan-Lin/Bart-abs-yelp-allure3") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp2p00m8_5/Evan-Lin/Bart-abs-yelp-allure3") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp2p00m8_5/Evan-Lin/Bart-abs-yelp-allure3") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
KingKazma/cnn_dailymail_t5-small_p_tuning_500_6_50000_8_e-1_s6789_v3_l4_v50_manual
KingKazma
2023-08-13T00:36:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:36:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e5_s108_v4_l4_r4
KingKazma
2023-08-13T00:34:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:34:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_lora_500_10_3000_8_e10_s108_v3_l4_r4
KingKazma
2023-08-13T00:31:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:31:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Syrg4me5/Lora
Syrg4me5
2023-08-13T00:24:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-12T23:29:27Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_t5-small_lora_500_10_3000_8_e7_s108_v3_l4_r4
KingKazma
2023-08-13T00:22:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:22:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
yasndr/Reinforce-Pixelcopter-PLE-v0
yasndr
2023-08-13T00:20:19Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T00:20:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 35.30 +/- 39.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/xsum_t5-small_lora_500_10_3000_8_e3_s108_v3_l4_r4
KingKazma
2023-08-13T00:10:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:10:25Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
anniedong/projectile-flan-t5-v2
anniedong
2023-08-13T00:09:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:22:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Yong-Sik/distilbert-base-uncased-finetuned-clinc
Yong-Sik
2023-08-13T00:08:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-12T06:51:02Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9170967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7724 - Accuracy: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2924 | 1.0 | 318 | 3.2762 | 0.7261 | | 2.6142 | 2.0 | 636 | 1.8625 | 0.8384 | | 1.5395 | 3.0 | 954 | 1.1513 | 0.8987 | | 1.0092 | 4.0 | 1272 | 0.8540 | 0.9123 | | 0.7936 | 5.0 | 1590 | 0.7724 | 0.9171 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e8_s108_v3_l4_r4
KingKazma
2023-08-13T00:07:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T00:07:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e5_s108_v3_l4_r4
KingKazma
2023-08-12T23:56:50Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-12T23:56:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e4_s108_v3_l4_r4
KingKazma
2023-08-12T23:53:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T23:53:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e3_s108_v3_l4_r4
KingKazma
2023-08-12T23:49:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T23:49:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e2_s108_v3_l4_r4
KingKazma
2023-08-12T23:46:30Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-12T23:46:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
asenella/incomplete_mhd_MVTCAE_beta_5_scale_True_seed_2
asenella
2023-08-12T23:44:45Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-12T23:44:36Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
marcossilva/smiles2vec_test
marcossilva
2023-08-12T23:38:44Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-08-12T23:37:10Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
helamri/poca-SoccerTwos
helamri
2023-08-12T23:32:03Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-12T23:12:35Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: helamri/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MostafaRohaninejad/ppo-LunarLander-v2
MostafaRohaninejad
2023-08-12T23:24:29Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-12T23:24:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.70 +/- 22.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
degor/ppo-SnowballTarget
degor
2023-08-12T23:17:04Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-12T23:16:58Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: degor/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KingKazma/xsum_t5-small_lora_500_3_50000_8_e-1_s6789_v3_l4_r4_manual
KingKazma
2023-08-12T23:11:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T23:11:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
tftgregrge/emmamayers-2300
tftgregrge
2023-08-12T23:05:41Z
0
0
null
[ "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-12T21:53:28Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### emmamayers_2300 Dreambooth model trained by tftgregrge with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-08.png) ![1](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-05.png) ![2](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-18.png) ![3](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-09.png) ![4](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-14.png) ![5](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-13.png) ![6](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-04.jpg) ![7](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-02.jpeg) ![8](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-17.png) ![9](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-10.png) ![10](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-12.png) ![11](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-16.png) ![12](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-01.jpg) ![13](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-06.png) ![14](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-11.png) ![15](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-07.png) ![16](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-15.png) ![17](https://huggingface.co/tftgregrge/emmamayers-2300/resolve/main/sample_images/emmamayers-03.jpg)
KingKazma/cnn_dailymail_t5-small_p_tuning_500_6_50000_8_e1_s6789_v3_l4_v50
KingKazma
2023-08-12T22:54:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T22:54:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5
rizquuula
2023-08-12T22:44:06Z
118
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-12T15:08:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2163 | 1.0 | 8145 | 2.0167 | | 1.7866 | 2.0 | 16290 | 1.9174 | | 1.6696 | 3.0 | 24435 | 1.8724 | | 1.6033 | 4.0 | 32580 | 1.8688 | | 1.5639 | 5.0 | 40725 | 1.8692 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
ElLokoAkrata/da-real-dave-mustaine
ElLokoAkrata
2023-08-12T22:38:02Z
0
0
null
[ "region:us" ]
null
2023-08-12T19:18:03Z
Título: "Rebelión de Cuerdas: El Legado de Dave Mustaine en IA" Descripción: Bienvenidos a una odisea donde el metal se encuentra con la máquina, y el arte desafía la realidad. Este repositorio es un homenaje a Dave Mustaine, un ídolo, un rebelde, un guitarrista que rompió las reglas y formó las mías. Utilizando el modelo stabilityai/stable-diffusion-xl-base-1.0, he entrenado una inteligencia artificial para emular la esencia de Mustaine, para capturar su furia, su pasión, su grito contra el sistema. Las imágenes generadas aquí son más que píxeles; son la resonancia de un espíritu indomable. Características: Modelo Entrenado: 'my_dreambooth_project-dave-mustaine' Prompt Creativo: 'photo of a da real Dave Mustaine' Resolución: 1024 Configuración Personalizada: Detallada en el código y documentación Licencia: cc-by-nc-sa-3.0 Esta obra está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0. Eres libre de compartir, copiar y redistribuir el material en cualquier medio o formato, y de adaptar, remezclar y transformar el material, siempre que me atribuyas el crédito y respetes los términos de la licencia. Contacto: Para colaboraciones, preguntas o exploraciones sonoras y visuales, no dudes en contactarme. Únete a esta rebelión, donde el arte se convierte en un acto de desafío y la creatividad se libera de sus cadenas. imágenes que puede generar: ![0](https://huggingface.co/Rickydread/da-real-dave-mustaine/resolve/main/imagenes%20de%20muestra/generated_image_2023-08-12_21-13-55_photo_of_a_da_real_Dave_Mustaine_as_a_rebel_trash_metal_artist_.png) ![1](https://huggingface.co/Rickydread/da-real-dave-mustaine/resolve/main/imagenes%20de%20muestra/generated_image_2023-08-12_21-17-07_photo_of_a_da_real_Dave_Mustaine_as_a_rebel_and_angry_trash_metal_artist_.png) ![2](https://huggingface.co/Rickydread/da-real-dave-mustaine/resolve/main/imagenes%20de%20muestra/generated_image_2023-08-12_21-18-49_photo_of_a_da_real_Dave_Mustaine_as_a_rebel_and_angry_trash_metal_artist%2C_psychedelic_mad_high_vibe_.png) ![3](https://huggingface.co/Rickydread/da-real-dave-mustaine/resolve/main/imagenes%20de%20muestra/generated_image_2023-08-12_22-04-22_photo_of_a_da_real_Dave_Mustaine%2C_is_upset_and_shouting_against_the_established_system%2C_he_is__mad_and_high_.png) ![4](https://huggingface.co/Rickydread/da-real-dave-mustaine/resolve/main/imagenes%20de%20muestra/generated_image_seed_68999_2023-08-12_22-06-35_photo_of_a_da_real_Dave_Mustaine_in_psychedelic_mystic_style.png) #DaveMustaine #ArteGenerativo #RebeliónCreativa
TheRains/cv9-special-batch8-grad2-small
TheRains
2023-08-12T22:26:57Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-12T18:47:06Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.666206579250058 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.3042 - Wer: 12.6662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2062 | 1.94 | 1000 | 0.2485 | 14.3639 | | 0.0373 | 3.87 | 2000 | 0.2622 | 13.4115 | | 0.0077 | 5.81 | 3000 | 0.3042 | 12.6662 | | 0.0019 | 7.74 | 4000 | 0.3233 | 12.8042 | | 0.0013 | 9.68 | 5000 | 0.3306 | 12.9193 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_t5-small_lora_500_5_1000_16_e1_s6789_v3_l4_r4
KingKazma
2023-08-12T22:06:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T22:06:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_new_split_ch_08__0005
bigmorning
2023-08-12T21:59:14Z
62
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-08T04:28:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_new_split_ch_08__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_new_split_ch_08__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0288 - Train Accuracy: 0.0397 - Train Wermet: 6.0799 - Validation Loss: 1.9309 - Validation Accuracy: 0.0265 - Validation Wermet: 13.6220 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.9538 | 0.0228 | 5.6932 | 2.4237 | 0.0203 | 14.2654 | 0 | | 2.4052 | 0.0321 | 6.0897 | 2.1989 | 0.0229 | 15.5551 | 1 | | 2.2222 | 0.0358 | 6.1102 | 2.0871 | 0.0245 | 13.4374 | 2 | | 2.1102 | 0.0380 | 6.0428 | 1.9986 | 0.0253 | 13.7934 | 3 | | 2.0288 | 0.0397 | 6.0799 | 1.9309 | 0.0265 | 13.6220 | 4 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
asenella/incomplete_mhd_MoPoE_beta_5_scale_True_seed_2
asenella
2023-08-12T21:53:18Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-12T21:53:09Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/incomplete_mhd_MoPoE_beta_5_scale_True_seed_3
asenella
2023-08-12T21:51:00Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-12T21:50:51Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/incomplete_mhd_MoPoE_beta_5_scale_True_seed_0
asenella
2023-08-12T21:48:04Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-12T20:35:54Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e9_s6789_v3_l4_r2
KingKazma
2023-08-12T21:38:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:38:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e9_s6789_v3_l6_r2
KingKazma
2023-08-12T21:38:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:38:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
sclahttraktor/Sunboy
sclahttraktor
2023-08-12T21:31:39Z
0
0
null
[ "ru", "license:other", "region:us" ]
null
2023-08-12T21:27:39Z
--- license: other language: - ru ---
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e7_s6789_v3_l6_r2
KingKazma
2023-08-12T21:24:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:24:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
unionai/RedPajama-INCITE-7B-Chat-LoRA-alpaca-cleaned
unionai
2023-08-12T21:23:11Z
4
0
peft
[ "peft", "pytorch", "region:us" ]
null
2023-06-12T21:28:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
troyle/ppo-LunarLander-v2
troyle
2023-08-12T21:21:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-12T20:11:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.34 +/- 20.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e6_s6789_v3_l6_r2
KingKazma
2023-08-12T21:16:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:16:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e-1_s6789_v3_l6_r2_manual
KingKazma
2023-08-12T21:03:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T21:27:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e4_s6789_v3_l6_r2
KingKazma
2023-08-12T21:02:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:02:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e4_s6789_v3_l4_r2
KingKazma
2023-08-12T21:01:50Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-12T21:01:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e-1_s6789_v3_l4_r2_manual
KingKazma
2023-08-12T21:01:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-20T21:26:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e2_s6789_v3_l4_r2
KingKazma
2023-08-12T20:47:08Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:47:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
tolgadev/sdxl_tk
tolgadev
2023-08-12T20:46:08Z
4
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "sdxl", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-11T11:06:58Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a tktktk tags: - text-to-image - diffusers - autotrain - sdxl inference: true pipeline_tag: text-to-image --- # SDXL-Finetuned Model by HuggingFace AutoTrain This is the text-to-image model based on SDXL model trained with my several selfie pics. ## I used [this](https://colab.research.google.com/github/huggingface/autotrain-advanced/blob/main/colabs/AutoTrain_Dreambooth.ipynb) colab notebook for fine-tuning. Stable Diffusion XL Base model: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0 Sample picture: ![photo](1691867768601.jfif)
RottenCrimson/SARASDXL
RottenCrimson
2023-08-12T20:41:52Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-11T23:57:53Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: sraless tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e1_s6789_v3_l6_r2
KingKazma
2023-08-12T20:41:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:41:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e0_s6789_v3_l6_r2
KingKazma
2023-08-12T20:34:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:34:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
JaiveerGill/fine-tuned-chem-model-final-eos2
JaiveerGill
2023-08-12T20:33:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:32:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e-1_s6789_v3_l6_r2
KingKazma
2023-08-12T20:27:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T20:27:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
BauyrjanQ/whisper-kk-speech2ner-b16-ms8k-ss2K-8ep-s-ksc_t
BauyrjanQ
2023-08-12T20:25:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-11T23:04:54Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-kk-speech2ner-b16-ms4k-ss2K-8ep-wlv2-ksc_t results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-kk-speech2ner-b16-ms4k-ss2K-8ep-wlv2-ksc_t This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0557 - Wer: 18.6267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0218 | 0.22 | 2000 | 0.0644 | 20.8004 | | 0.0176 | 0.43 | 4000 | 0.0633 | 17.3922 | | 0.0147 | 0.65 | 6000 | 0.0576 | 18.1864 | | 0.0117 | 0.87 | 8000 | 0.0557 | 18.6267 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
shanover/medbot_godel_v3
shanover
2023-08-12T20:21:14Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-12T18:37:32Z
--- license: mit widget: - text: I am having itching, skin rash, and nodal skin eruptions example_title: Fungal infection example - text: I feel like vomiting, breathlessness, and sweating example_title: Heart Attack example - text: I am feeling fatigue, weight loss, restlessness and also lethargy. example_title: Diabetes example --- # Disease Prognosis and Precautions Text2Text Generation Welcome to the Disease Prognosis and Precautions Text2Text Generation repository! Fine-tuned microsoft/GODEL-v1_1-large-seq2seq. The model is designed to generate responses for disease prognosis and recommended precautions based on given symptoms. ## Model Overview The model in this repository is a text-to-text generation model. It takes a prompt in the form of symptoms related to a particular disease and generates a response that includes the potential disease prognosis along with recommended precautions. The columns used in the training dataset are: - **Disease:** The name of the disease related to the symptoms. - **Symptoms:** The list of symptoms provided in the prompt. - **Precautions:** The recommended precautions for the identified disease. ## Examples Here are some examples of how you can use the model: ### Example 1 **Prompt:** "I am feeling continuous sneezing, shivering and chills" **Response:** "Seems like allergy. You should try to avoid dust and air pollution." ### Example 2 **Prompt:** "I am feeling itching, skin rash and patches" **Response:** "Seems like fungal infection. You should bathe twice a day and use antifungal soap." ## How to Use To use the model for generating disease prognosis and precautions based on symptoms, you can use the `generate` function provided by the Hugging Face Transformers library. Here's a basic example using Python: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load the model and tokenizer model_name = "shanover/medbot_godel_v3" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define your symptom prompt prompt = "I am feeling continuous sneezing, shivering and chills" def generate_response(input_text, model, tokenizer, max_length): input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=max_length, truncation=True) input_ids = input_ids.to(device) with torch.no_grad(): output_ids = model.generate(input_ids) generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return generated_text print(generate_response(prompt, model, tokenizer)) ``` Remember to replace `"shanover/medbot_godel_v3"` with the actual name or path of the model you've downloaded or fine-tuned. ## Acknowledgments Trained on Microsoft/Godel: https://huggingface.co/microsoft/GODEL-v1_1-large-seq2seq ## Issues and Contributions If you encounter any issues while using the model or have suggestions for improvements, please feel free to open an issue in this repository. Contributions are also welcome! ## Disclaimer Please note that the information generated by the model is for informational purposes only and should not be considered a substitute for professional medical advice. Always consult a medical professional for accurate diagnoses and treatments. Thank you for using the Disease Prognosis and Precautions Text2Text Generation model! We hope it proves to be a helpful tool.
EmirhanExecute/Reinforce-Pixelcopter
EmirhanExecute
2023-08-12T19:55:09Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-12T19:29:17Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -2.40 +/- 0.49 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Shahzay/bert-base-banking77-pt2
Shahzay
2023-08-12T19:54:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:banking77", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-12T12:57:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - banking77 metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: test args: default metrics: - name: F1 type: f1 value: 0.9348825614500316 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.2956 - F1: 0.9349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6757 | 1.0 | 1251 | 0.5184 | 0.8868 | | 0.265 | 2.0 | 2502 | 0.3234 | 0.9207 | | 0.1595 | 3.0 | 3753 | 0.2986 | 0.9375 | | 0.034 | 4.0 | 5004 | 0.2956 | 0.9349 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1+cu118 - Datasets 2.9.0 - Tokenizers 0.13.3
Yntec/WesternAnimation
Yntec
2023-08-12T19:41:57Z
397
6
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Western Animation Diffusion", "Lykon", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-18T01:34:22Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Western Animation Diffusion - Lykon --- # Western Animation Diffusion Model by Lykon Original page: https://civitai.com/models/86546/western-animation-diffusion