modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
inkoziev/rugpt_chitchat
inkoziev
2022-10-19T07:44:11Z
208
17
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "PyTorch", "Transformers", "ru", "license:unlicense", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-15T07:20:18Z
--- pipeline_tag: text-generation tags: - PyTorch - Transformers - gpt2 license: unlicense language: ru widget: - text: "- У Джульетты было 7 пончиков, а потом она 3 съела. Сколько у нее осталось пончиков? -" - text: "- Поглажено 4 манула. Осталось погладить 6. Сколько всего манулов надо погладить? -" - text: "- Для начала скажи, чему равно пятью девять? -" - text: "- ты чё такой борзый? -" - text: "- Привет! Как ваше ничего? -" --- ## Russian Chit-chat, Deductive and Common Sense reasoning model Модель является ядром прототипа [диалоговой системы](https://github.com/Koziev/chatbot) с двумя основными функциями. Первая функция - **генерация реплик чит-чата**. В качестве затравки подается история диалога (предшествующие несколько реплик, от 1 до 10). ``` - Привет, как дела? - Привет, так себе. - <<< эту реплику ожидаем от модели >>> ``` Вторая функция модели - вывод ответа на заданный вопрос, опираясь на дополнительные факты или на "здравый смысл". Предполагается, что релевантные факты извлекаются из стороннего хранилища (базы знаний) с помощью другой модели, например [sbert_pq](https://huggingface.co/inkoziev/sbert_pq). Используя указанный факт(ы) и текст вопроса, модель построит грамматичный и максимально краткий ответ, как это сделал бы человек в подобной коммуникативной ситуации. Релевантные факты следует указывать перед текстом заданного вопроса так, будто сам собеседник сказал их: ``` - Сегодня 15 сентября. Какой сейчас у нас месяц? - Сентябрь ``` Модель не ожидает, что все найденные и добавленные в контекст диалога факты действительно имеют отношение к заданному вопросу. Поэтому модель, извлекающая из базы знаний информацию, может жертвовать точностью в пользу полноте и добавлять что-то лишнее. Модель читчата в этом случае сама выберет среди добавленных в контекст фактов необходимую фактуру и проигнорирует лишнее. Текущая версия модели допускает до 5 фактов перед вопросом. Например: ``` - Стасу 16 лет. Стас живет в Подольске. У Стаса нет своей машины. Где живет Стас? - в Подольске ``` В некоторых случаях модель может выполнять **силлогический вывод** ответа, опираясь на 2 предпосылки, связанные друг с другом. Выводимое из двух предпосылок следствие не фигурирует явно, а *как бы* используется для вывода ответа: ``` - Смертен ли Аристофан, если он был греческим философом, а все философы смертны? - Да ``` Как можно видеть из приведенных примеров, формат подаваемой на вход модели фактической информации для выполнения вывода предельно естественный и свободный. Кроме логического вывода, модель также умеет решать простые арифметические задачи в рамках 1-2 классов начальной школы, с двумя числовыми аргументами: ``` - Чему равно 2+8? - 10 ``` ### Варианты модели и метрики Выложенная на данный момент модель имеет 760 млн. параметров, т.е. уровня sberbank-ai/rugpt3large_based_on_gpt2. Далее приводится результат замера точности решения арифметических задач на отложенном тестовом наборе сэмплов: | base model | arith. accuracy | | --------------------------------------- | --------------- | | sberbank-ai/rugpt3large_based_on_gpt2 | 0.91 | | sberbank-ai/rugpt3medium_based_on_gpt2 | 0.70 | | sberbank-ai/rugpt3small_based_on_gpt2 | 0.58 | | tinkoff-ai/ruDialoGPT-small | 0.44 | | tinkoff-ai/ruDialoGPT-medium | 0.69 | Цифра 0.91 в столбце "arith. accuracy" означает, что 91% тестовых задач решено полностью верно. Любое отклонение сгенерированного ответа от эталонного рассматривается как ошибка. Например, выдача ответа "120" вместо "119" тоже фиксируется как ошибка. ### Пример использования ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "inkoziev/rugpt_chitchat" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>', 'pad_token': '<pad>'}) model = AutoModelForCausalLM.from_pretrained(model_name) model.to(device) model.eval() # На вход модели подаем последние 2-3 реплики диалога. Каждая реплика на отдельной строке, начинается с символа "-" input_text = """<s>- Привет! Что делаешь? - Привет :) В такси еду -""" encoded_prompt = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt").to(device) output_sequences = model.generate(input_ids=encoded_prompt, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id) text = tokenizer.decode(output_sequences[0].tolist(), clean_up_tokenization_spaces=True)[len(input_text)+1:] text = text[: text.find('</s>')] print(text) ``` ### Контакты Если у Вас есть какие-то вопросы по использованию этой модели, или предложения по ее улучшению - пишите мне [email protected] ### Citation: ``` @MISC{rugpt_chitchat, author = {Ilya Koziev}, title = {Russian Chit-chat with Common sence Reasoning}, url = {https://huggingface.co/inkoziev/rugpt_chitchat}, year = 2022 } ```
SalML/DETR-table-structure-recognition
SalML
2022-10-19T07:23:28Z
15
5
transformers
[ "transformers", "pytorch", "detr", "object-detection", "en", "dataset:PubTables-1M", "license:unknown", "endpoints_compatible", "region:us" ]
object-detection
2022-10-01T07:55:34Z
--- language: en tags: - detr license: unknown datasets: - PubTables-1M --- # The models are taken from https://github.com/microsoft/table-transformer/ # Original model now on MSFT org: https://huggingface.co/microsoft/table-transformer-structure-recognition I have built a HuggingFace Space: https://huggingface.co/spaces/SalML/TableTransformer2CSV It runs an OCR on the table-transformer output image to obtain a CSV downloadable table.
SalML/DETR-table-detection
SalML
2022-10-19T07:22:07Z
5
2
transformers
[ "transformers", "pytorch", "detr", "object-detection", "en", "dataset:PubTables-1M", "license:unknown", "endpoints_compatible", "region:us" ]
object-detection
2022-09-09T10:49:56Z
--- language: en tags: - detr license: unknown datasets: - PubTables-1M --- # The models are taken from https://github.com/microsoft/table-transformer/ # Original model now on MSFT org: https://huggingface.co/microsoft/table-transformer-detection I have built a HuggingFace Space: https://huggingface.co/spaces/SalML/TableTransformer2CSV It runs an OCR on the table-transformer output image to obtain a CSV downloadable table.
readerbench/RoGPT2-base
readerbench
2022-10-19T05:10:01Z
324
0
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Model card for RoGPT2-base --- language: - ro --- # RoGPT2: Romanian GPT2 for text generation All models are available: * [RoGPT2-base](https://huggingface.co/readerbench/RoGPT2-base) * [RoGPT2-medium](https://huggingface.co/readerbench/RoGPT2-medium) * [RoGPT2-large](https://huggingface.co/readerbench/RoGPT2-large) For code and evaluation check out [GitHub](https://github.com/readerbench/RoGPT2). #### How to use ```python # TensorFlow from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('readerbench/RoGPT2-base') model = TFAutoModelForCausalLM.from_pretrained('readerbench/RoGPT2-base') inputs = tokenizer.encode("Este o zi de vara", return_tensors='tf') text = model.generate(inputs, max_length=1024, no_repeat_ngram_size=2) print(tokenizer.decode(text[0])) # PyTorch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('readerbench/RoGPT2-base') model = AutoModelForCausalLM.from_pretrained('readerbench/RoGPT2-base') inputs = tokenizer.encode("Este o zi de vara", return_tensors='pt') text = model.generate(inputs, max_length=1024, no_repeat_ngram_size=2) print(tokenizer.decode(text[0])) ``` ## Training --- ### Corpus Statistics | Corpus | Total size | Number of words | Number of sentences | |:------:|:----------:|:---------------:|:-------------------:| |OSCAR| 11.54 GB | 1745M | 48.46M | |Wiki-Ro | 0.46 GB | 68M | 1.79M | |Debates | 0.5 GB | 73M | 3.61M | |Books | 4.37 GB | 667M | 37.39M | |News | 0.15 GB | 23M | 0.77M | ### Training Statistics | Version | Number of parameters | Number of epoch | Duration of an epoch | Context size | Batch size | PPL | |:-------:|:--------------------:|:---------------:|:--------------------:|:----------:|:----------:|:---:| | Base | 124M | 15 | 7h | 1024 | 72 | 22.96 | | Medium | 354M | 10 | 22h | 1024 | 24 | 17.64 | | Large | 774M | 5 | **45h** | 512 | 16 | **16.77**| ## Evaluation --- ### 1. MOROCO | Model | Dialect | Md to Ro | Ro to Md | |:-----------------:|:-------:|:--------:|:--------:| | KRR + SK | 94.06 | 67.59 | 75.47 | | BERT-base-ro | 95.98 | 69.90 | 78.08 | | RoBERT-small | 95.76 | 69.05 | 80.15 | | RoBERT-base |**97.24**| 68.80 | 82.37 | | RoBERT-large | 97.21 | 69.50 | **83.26**| | RoGPT2-base | 96.69 | 69.82 | 77.55 | | RoGPT2-medium | 96.42 | 69.77 | 80.51 | | RoGPT2-large | 96.93 |**71.07** | 82.56 | ### 2. LaRoSeDa | Model | Binary: Accuracy | Binary: F1-Score | Multi-Class: Accuracy | Multi-Class: F1-Score | |:------------:|:----------------:|:----------------:|:---------------------:|:---------------------:| |BERT-base-ro | 98.07 | 97.94 | - |79.61 | | RoDiBERT |**98.40** |**98.31** | - |83.01 | | RoBERT-small | 97.44 | 97.43 | 89.30 |84.23 | | RoBERT-base | 98.27 | 98.26 | 90.59 |86.27 | | RoBERT-large | 98.20 | 98.19 |**90.93** |**86.63** | | RoGPT2-base | 97.89 | 97.88 |89.65 |84.68 | |RoGPT2-medium | 98.03 |98.04 | 90.29 | 85.37 | | RoGPT2-large | 98.06 |98.07 | 90.26 | 84.89 | ### 3. RoSTS | Model | Spearman dev-set | Spearman test-set | Pearson dev-set | Pearson test-set | |:------------:|:----------------:|:-----------------:|:---------------:|:----------------:| |BERT-base-ro | 84.26 | 80.86 | 84.59 | 81.59 | |RoDiBERT | 77.07 | 71.47 | 77.13 | 72.25 | |RoBERT-small | 82.06 | 78.06 | 81.66 | 78.49 | |RoBERT-base | 84.93 | 80.39 | 85.03 | 80.39 | |RoBERT-large |**86.25** |**83.15** |**86.58** |**83.76** | |RoGPT2-base | 83.51 | 79.77 | 83.74 | 80.56 | |RoGPT2-medium | 85.75 | 82.25 | 86.04 | 83.16 | |RoGPT2-large | 85.70 | 82.64 | 86.14 | 83.46 | ### 4. WMT16 | Model | Decoder method | Ro-En | En-Ro | |:------------:|:--------------:|:------:|:------:| |mBART | - |**38.5**|**38.5**| |OpenNMT | - | - | 24.7 | |RoGPT2-base |Greedy | 30.37 | 20.27 | |RoGPT2-base |Beam-search-4 | 31.26 | 22.31 | |RoGPT2-base |Beam-search-8 | 31.39 | 22.95 | |RoGPT2-medium |Greedy | 32.48 | 22.18 | |RoGPT2-medium |Beam-search-4 | 34.08 | 24.03 | |RoGPT2-medium |Beam-search-8 | 34.16 | 24.13 | |RoGPT2-large |Greedy | 33.69 | 23.31 | |RoGPT2-large |Beam-search-4 |34.40 |24.23 | |RoGPT2-large |Beam-search-8 |34.51 |24.32 | ### 5. XQuAD | Model |Decoder method | EM | F1-Score | |:------------:|:-------------:|:-----:|:--------:| |BERT-base-ro | - | 47.89 | 63.74 | |RoDiBERT | - | 21.76 | 34.57 | |RoBERT-small | - | 30.84 | 45.17 | |RoBERT-base | - | 53.52 | 70.04 | |RoBERT-large | - | 55.46 | 69.64 | |mBERT | - |59.9 | 72.7 | |XLM-R Large | - |**69.7**|**83.6**| |RoGPT2-base | Greedy | 23.69 | 35.97 | |RoGPT2-base | Beam-search-4 | 24.11 | 35.27 | |RoGPT2-medium | Greedy | 29.66 | 44.74 | |RoGPT2-medium | Beam-search-4 | 31.59 | 45.32 | |RoGPT2-large | Greedy | 29.74 | 42.98 | |RoGPT2-large | Beam-search-4 | 29.66 | 43.05 | |RoGPT2-base-en-ro | Greedy | 23.86 | 34.27 | |RoGPT2-base-en-ro | Beam-search-4 | 25.04 | 34.51 | |RoGPT2-medium-en-ro | Greedy | 27.05 | 39.75 | |RoGPT2-medium-en-ro | Beam-search-4 | 27.64 | 39.11 | |RoGPT2-large-en-ro | Greedy | 28.40 | 39.79 | |RoGPT2-large-en-ro | Beam-search-4 | 28.73 | 39.71 | |RoGPT2-large-en-ro-mask | Greedy | 31.34 | 44.71 | |RoGPT2-large-en-ro-mask| Beam-search-4 | 31.59 | 43.53 | ### 6. Wiki-Ro: LM | Model | PPL dev | PPL test | |:------------:|:-------:|:--------:| |BERT-base-ro | 29.0897 | 28.0043| |RoGPT2-base | 34.3795 | 33.7460| |RoGPT2-medium | 23.7879 | 23.4581| |RoGPT2-large | **21.7491** | **21.5200** | ### 7. RoGEC | Model | Decoder mothod | P | R | F<sub>0.5</sub> | |:-----:|:--------------:|:---:|:---:|:------:| |Transformer-tiny | Beam-search | 53.53 | 26.36 | 44.38 | |Transformer-base Finetuning | Beam-search | 56.05 | 46.19 | 53.76 | |Transformer-base Finetuning | Beam-search-LM | 50.68 | 45.39 | 49.52 | |Transformer-base Finetuning | Beam-search-norm-LM | 51.06 | 45.43 | 49.83 | |RoGPT2-base | Greedy | 59.02 | 49.35 | 56.80 | |RoGPT2-base | Beam-search-4 | 65.23 | 49.26 | 61.26 | |RoGPT2-base |Beam-search-8 | 65.88 | 49.64 | 61.84 | |RoGPT2-medium | Greedy | 69.97 | 57.94 | 67.18 | |RoGPT2-medium | Beam-search-4 | **72.46** | **57.99** | **69.01** | |RoGPT2-medium | Beam-search-8 | 72.24 | 57.69 | 68.77 | |RoGP2-large | Greedy | 61.90 | 49.09 | 58.83 | |RoGP2-large | Beam-search-4 | 65.24 | 49.43 | 61.32 | |RoGP2-large | Beam-search-8 | 64.96 | 49.22 | 61.06 | |RoGPT2-base* | Greedy | 68.67 | 49.60 | 63.77 | |RoGPT2-base* | Beam-search-4 | 71.16 | 50.53 | 65.79 | |RoGPT2-base* | Beam-search-8 | 71.68 | 50.65 | 66.18 | |RoGPT2-medium* | Greedy | 58.21 | 43.32 | 54.47 | |RoGPT2-medium* | Beam-search-4 | 68.31 | 43.78 | 61.43 | |RoGPT2-medium* | Beam-search-8 | 68.68 | 43.99 | 61.75 | |RoGPT2-large* | Greedy | 64.86 | 41.30 | 58.22 | |RoGPT2-large* | Beam-search-4 | 65.57 | 41.00 | 58.55 | |RoGPT2-large* | Beam-search-8 | 65.44 | 41.09 | 58.50 | **__Note__**: * the models were trained using the dataset of 3,000,000 artificially generated pairs ## Acknowledgments --- Research supported with [Cloud TPUs](https://cloud.google.com/tpu/) from Google's [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) ## How to cite --- ```bibtex @inproceedings{niculescu2021rogpt2, title={RoGPT2: Romanian GPT2 for Text Generation}, author={Niculescu, Mihai Alexandru and Ruseti, Stefan and Dascalu, Mihai}, booktitle={2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)}, pages={1154--1161}, year={2021}, organization={IEEE} } ```
readerbench/RoGPT2-large
readerbench
2022-10-19T05:08:30Z
177
2
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Model card for RoGPT2-large --- language: - ro --- # RoGPT2: Romanian GPT2 for text generation All models are available: * [RoGPT2-base](https://huggingface.co/readerbench/RoGPT2-base) * [RoGPT2-medium](https://huggingface.co/readerbench/RoGPT2-medium) * [RoGPT2-large](https://huggingface.co/readerbench/RoGPT2-large) For code and evaluation check out [GitHub](https://github.com/readerbench/RoGPT2). #### How to use ```python # TensorFlow from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('readerbench/RoGPT2-large') model = TFAutoModelForCausalLM.from_pretrained('readerbench/RoGPT2-large') inputs = tokenizer.encode("Este o zi de vara", return_tensors='tf') text = model.generate(inputs, max_length=1024, no_repeat_ngram_size=2) print(tokenizer.decode(text[0])) # PyTorch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('readerbench/RoGPT2-large') model = AutoModelForCausalLM.from_pretrained('readerbench/RoGPT2-large') inputs = tokenizer.encode("Este o zi de vara", return_tensors='pt') text = model.generate(inputs, max_length=1024, no_repeat_ngram_size=2) print(tokenizer.decode(text[0])) ``` ## Training --- ### Corpus Statistics | Corpus | Total size | Number of words | Number of sentences | |:------:|:----------:|:---------------:|:-------------------:| |OSCAR| 11.54 GB | 1745M | 48.46M | |Wiki-Ro | 0.46 GB | 68M | 1.79M | |Debates | 0.5 GB | 73M | 3.61M | |Books | 4.37 GB | 667M | 37.39M | |News | 0.15 GB | 23M | 0.77M | ### Training Statistics | Version | Number of parameters | Number of epoch | Duration of an epoch | Context size | Batch size | PPL | |:-------:|:--------------------:|:---------------:|:--------------------:|:----------:|:----------:|:---:| | Base | 124M | 15 | 7h | 1024 | 72 | 22.96 | | Medium | 354M | 10 | 22h | 1024 | 24 | 17.64 | | Large | 774M | 5 | **45h** | 512 | 16 | **16.77**| ## Evaluation --- ### 1. MOROCO | Model | Dialect | Md to Ro | Ro to Md | |:-----------------:|:-------:|:--------:|:--------:| | KRR + SK | 94.06 | 67.59 | 75.47 | | BERT-base-ro | 95.98 | 69.90 | 78.08 | | RoBERT-small | 95.76 | 69.05 | 80.15 | | RoBERT-base |**97.24**| 68.80 | 82.37 | | RoBERT-large | 97.21 | 69.50 | **83.26**| | RoGPT2-base | 96.69 | 69.82 | 77.55 | | RoGPT2-medium | 96.42 | 69.77 | 80.51 | | RoGPT2-large | 96.93 |**71.07** | 82.56 | ### 2. LaRoSeDa | Model | Binary: Accuracy | Binary: F1-Score | Multi-Class: Accuracy | Multi-Class: F1-Score | |:------------:|:----------------:|:----------------:|:---------------------:|:---------------------:| |BERT-base-ro | 98.07 | 97.94 | - |79.61 | | RoDiBERT |**98.40** |**98.31** | - |83.01 | | RoBERT-small | 97.44 | 97.43 | 89.30 |84.23 | | RoBERT-base | 98.27 | 98.26 | 90.59 |86.27 | | RoBERT-large | 98.20 | 98.19 |**90.93** |**86.63** | | RoGPT2-base | 97.89 | 97.88 |89.65 |84.68 | |RoGPT2-medium | 98.03 |98.04 | 90.29 | 85.37 | | RoGPT2-large | 98.06 |98.07 | 90.26 | 84.89 | ### 3. RoSTS | Model | Spearman dev-set | Spearman test-set | Pearson dev-set | Pearson test-set | |:------------:|:----------------:|:-----------------:|:---------------:|:----------------:| |BERT-base-ro | 84.26 | 80.86 | 84.59 | 81.59 | |RoDiBERT | 77.07 | 71.47 | 77.13 | 72.25 | |RoBERT-small | 82.06 | 78.06 | 81.66 | 78.49 | |RoBERT-base | 84.93 | 80.39 | 85.03 | 80.39 | |RoBERT-large |**86.25** |**83.15** |**86.58** |**83.76** | |RoGPT2-base | 83.51 | 79.77 | 83.74 | 80.56 | |RoGPT2-medium | 85.75 | 82.25 | 86.04 | 83.16 | |RoGPT2-large | 85.70 | 82.64 | 86.14 | 83.46 | ### 4. WMT16 | Model | Decoder method | Ro-En | En-Ro | |:------------:|:--------------:|:------:|:------:| |mBART | - |**38.5**|**38.5**| |OpenNMT | - | - | 24.7 | |RoGPT2-base |Greedy | 30.37 | 20.27 | |RoGPT2-base |Beam-search-4 | 31.26 | 22.31 | |RoGPT2-base |Beam-search-8 | 31.39 | 22.95 | |RoGPT2-medium |Greedy | 32.48 | 22.18 | |RoGPT2-medium |Beam-search-4 | 34.08 | 24.03 | |RoGPT2-medium |Beam-search-8 | 34.16 | 24.13 | |RoGPT2-large |Greedy | 33.69 | 23.31 | |RoGPT2-large |Beam-search-4 |34.40 |24.23 | |RoGPT2-large |Beam-search-8 |34.51 |24.32 | ### 5. XQuAD | Model |Decoder method | EM | F1-Score | |:------------:|:-------------:|:-----:|:--------:| |BERT-base-ro | - | 47.89 | 63.74 | |RoDiBERT | - | 21.76 | 34.57 | |RoBERT-small | - | 30.84 | 45.17 | |RoBERT-base | - | 53.52 | 70.04 | |RoBERT-large | - | 55.46 | 69.64 | |mBERT | - | 59.9 | 72.7 | |XLM-R Large | - |**69.7**|**83.6**| |RoGPT2-base | Greedy | 23.69 | 35.97 | |RoGPT2-base | Beam-search-4 | 24.11 | 35.27 | |RoGPT2-medium | Greedy | 29.66 | 44.74 | |RoGPT2-medium | Beam-search-4 | 31.59 | 45.32 | |RoGPT2-large | Greedy | 29.74 | 42.98 | |RoGPT2-large | Beam-search-4 | 29.66 | 43.05 | |RoGPT2-base-en-ro | Greedy | 23.86 | 34.27 | |RoGPT2-base-en-ro | Beam-search-4 | 25.04 | 34.51 | |RoGPT2-medium-en-ro | Greedy | 27.05 | 39.75 | |RoGPT2-medium-en-ro | Beam-search-4 | 27.64 | 39.11 | |RoGPT2-large-en-ro | Greedy | 28.40 | 39.79 | |RoGPT2-large-en-ro | Beam-search-4 | 28.73 | 39.71 | |RoGPT2-large-en-ro-mask | Greedy | 31.34 | 44.71 | |RoGPT2-large-en-ro-mask| Beam-search-4 | 31.59 | 43.53 | ### 6. Wiki-Ro: LM | Model | PPL dev | PPL test | |:------------:|:-------:|:--------:| |BERT-base-ro | 29.0897 | 28.0043| |RoGPT2-base | 34.3795 | 33.7460| |RoGPT2-medium | 23.7879 | 23.4581| |RoGPT2-large | **21.7491** | **21.5200** | ### 7. RoGEC | Model | Decoder mothod | P | R | F<sub>0.5</sub> | |:-----:|:--------------:|:---:|:---:|:------:| |Transformer-tiny | Beam-search | 53.53 | 26.36 | 44.38 | |Transformer-base Finetuning | Beam-search | 56.05 | 46.19 | 53.76 | |Transformer-base Finetuning | Beam-search-LM | 50.68 | 45.39 | 49.52 | |Transformer-base Finetuning | Beam-search-norm-LM | 51.06 | 45.43 | 49.83 | |RoGPT2-base | Greedy | 59.02 | 49.35 | 56.80 | |RoGPT2-base | Beam-search-4 | 65.23 | 49.26 | 61.26 | |RoGPT2-base |Beam-search-8 | 65.88 | 49.64 | 61.84 | |RoGPT2-medium | Greedy | 69.97 | 57.94 | 67.18 | |RoGPT2-medium | Beam-search-4 | **72.46** | **57.99** | **69.01** | |RoGPT2-medium | Beam-search-8 | 72.24 | 57.69 | 68.77 | |RoGP2-large | Greedy | 61.90 | 49.09 | 58.83 | |RoGP2-large | Beam-search-4 | 65.24 | 49.43 | 61.32 | |RoGP2-large | Beam-search-8 | 64.96 | 49.22 | 61.06 | |RoGPT2-base* | Greedy | 68.67 | 49.60 | 63.77 | |RoGPT2-base* | Beam-search-4 | 71.16 | 50.53 | 65.79 | |RoGPT2-base* | Beam-search-8 | 71.68 | 50.65 | 66.18 | |RoGPT2-medium* | Greedy | 58.21 | 43.32 | 54.47 | |RoGPT2-medium* | Beam-search-4 | 68.31 | 43.78 | 61.43 | |RoGPT2-medium* | Beam-search-8 | 68.68 | 43.99 | 61.75 | |RoGPT2-large* | Greedy | 64.86 | 41.30 | 58.22 | |RoGPT2-large* | Beam-search-4 | 65.57 | 41.00 | 58.55 | |RoGPT2-large* | Beam-search-8 | 65.44 | 41.09 | 58.50 | **__Note__**: * the models were trained using the dataset of 3,000,000 artificially generated pairs ## Acknowledgments --- Research supported with [Cloud TPUs](https://cloud.google.com/tpu/) from Google's [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) ## How to cite --- ```bibtex @inproceedings{niculescu2021rogpt2, title={RoGPT2: Romanian GPT2 for Text Generation}, author={Niculescu, Mihai Alexandru and Ruseti, Stefan and Dascalu, Mihai}, booktitle={2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)}, pages={1154--1161}, year={2021}, organization={IEEE} } ```
bongsoo/mdistilbertV3.1
bongsoo
2022-10-19T02:19:47Z
18
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "en", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-19T01:50:21Z
--- license: apache-2.0 pipeline_tag: fill-mask tags: - fill-mask - transformers - en - ko widget: - text: 대한민국의 수도는 [MASK] 입니다. --- # mdistilbertV3.1 - distilbert-base-multilingual-cased 모델에 [moco-corpus-kowiki2022 말뭉치](https://huggingface.co/datasets/bongsoo/moco-corpus-kowiki2022)(kowiki202206 + MOCOMSYS 추출 3.2M 문장)로 vocab 추가하여 학습 시킨 모델 - **vocab: 159,552개 (기존 bert 모델 vocab(119,548개)에 40,004개 (한글단어30,000개+영문10,000개+수동 4개)vocab 추가** - mdistilbertV2.1 보다 약 **7,000개** 단어가 더 많고, 한글단어는 **mecab를 이용하여 추출**함. - **epoch은 12**번 학습함(mdistilbertV2.1은 8번) ## Usage (HuggingFace Transformers) ### 1. MASK 예시 ```python from transformers import AutoTokenizer, AutoModel, DistilBertForMaskedLM import torch import torch.nn.functional as F tokenizer = AutoTokenizer.from_pretrained('bongsoo/mdistilbertV3.1', do_lower_case=False) model = DistilBertForMaskedLM.from_pretrained('bongsoo/mdistilbertV3.1') text = ['한국의 수도는 [MASK] 이다', '에펠탑은 [MASK]에 있다', '충무공 이순신은 [MASK]에 최고의 장수였다'] tokenized_input = tokenizer(text, max_length=128, truncation=True, padding='max_length', return_tensors='pt') outputs = model(**tokenized_input) logits = outputs.logits mask_idx_list = [] for tokens in tokenized_input['input_ids'].tolist(): token_str = [tokenizer.convert_ids_to_tokens(s) for s in tokens] # **위 token_str리스트에서 [MASK] 인덱스를 구함 # => **해당 [MASK] 안덱스 값 mask_idx 에서는 아래 출력하는데 사용됨 mask_idx = token_str.index('[MASK]') mask_idx_list.append(mask_idx) for idx, mask_idx in enumerate(mask_idx_list): logits_pred=torch.argmax(F.softmax(logits[idx]), dim=1) mask_logits_idx = int(logits_pred[mask_idx]) # [MASK]에 해당하는 token 구함 mask_logits_token = tokenizer.convert_ids_to_tokens(mask_logits_idx) # 결과 출력 print('\n') print('*Input: {}'.format(text[idx])) print('*[MASK] : {} ({})'.format(mask_logits_token, mask_logits_idx)) ``` - 결과 ``` *Input: 한국의 수도는 [MASK] 이다 *[MASK] : 서울 (48253) *Input: 에펠탑은 [MASK]에 있다 *[MASK] : 프랑스 (47364) *Input: 충무공 이순신은 [MASK]에 최고의 장수였다 *[MASK] : 임진왜란 (121990) ``` ### 2. 임베딩 예시 - 평균 폴링(mean_pooling) 방식 사용. ([cls 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-cls-token), [max 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-max-tokens)) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/mdistilbertV3.1') model = AutoModel.from_pretrained('bongsoo/mdistilbertV3.1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` - 결과 ``` Sentence embeddings: tensor([[-0.1137, 0.1491, 0.6711, ..., -0.0217, 0.1839, -0.6143], [ 0.0482, -0.0649, 0.5333, ..., 0.1424, -0.0982, -0.3414]]) *cosine_score:0.4784715175628662 ``` ## Training **MLM(Masked Langeuage Model) 훈련** - 입력 모델 : distilbert-base-multilingual-cased - 말뭉치 : 훈련 : bongsoo/moco-corpus-kowiki2022(7.6M) , 평가: **bongsoo/moco_eval** - HyperParameter : **LearningRate : 5e-5, epochs: 12 , batchsize: 32, max_token_len : 128** - vocab : **159,552개** (기존 bert 모델 vocab(119,548개)에 40,004개 (한글단어30,000개+영문10,000개+수동 4개)vocab 추가 - 출력 모델 : mdistilbertV3.1 (size: 634MB) - 훈련시간 : 90h/1GPU (24GB/16.5 use) - **훈련loss: 2.1154, 평가loss: 2.5275** - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/distilbert/distilbert-MLM-Trainer-V1.2.ipynb) 참조 <br>perplexity 평가 코드는 [여기](https://github.com/kobongsoo/BERT/blob/master/distilbert/distilbert-perplexity-eval-V1.2.ipynb) 참조 ## Model Config ``` { "_name_or_path": "", "activation": "gelu", "architectures": [ "DistilBertForMaskedLM" ], "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "output_past": true, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "tie_weights_": true, "torch_dtype": "float32", "transformers_version": "4.21.2", "vocab_size": 159552 } ``` ## Citing & Authors bongsoo
MoseliMotsoehli/DeepGeoPark
MoseliMotsoehli
2022-10-19T02:07:19Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-10-17T21:09:29Z
--- license: openrail --- # <span>Public Parking Sport Detector Using Deep Learning</span>
craigchen/BART-139M-ecommerce-customer-service-query-to-intent-generation
craigchen
2022-10-19T01:35:10Z
14
5
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-19T01:34:13Z
--- tags: - generated_from_keras_callback model-index: - name: BART-139M-ecommerce-customer-service-query-to-intent-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BART-139M-ecommerce-customer-service-query-to-intent-generation This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
pierric/test-EsperBERTo-small
pierric
2022-10-19T01:28:09Z
13
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "eo", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: eo thumbnail: https://huggingface.co/blog/assets/EsperBERTo-thumbnail-v2.png --- ## EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ### Training Details - current checkpoint: 566000 - machine name: `galinette`
dnautiyal/bert_model_reddit_tsla_tracked
dnautiyal
2022-10-19T00:45:23Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-19T00:41:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert_model_reddit_tsla_tracked results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_model_reddit_tsla_tracked This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Arnaudmkonan/adn-setfit-model
Arnaudmkonan
2022-10-19T00:37:34Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-19T00:37:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2500, "warmup_steps": 250, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
emilys/hmBERT-CoNLL-cp3
emilys
2022-10-19T00:15:01Z
18
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T23:44:26Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: hmBERT-CoNLL-cp3 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9121408403919614 - name: Recall type: recall value: 0.9242679232581622 - name: F1 type: f1 value: 0.9181643400484828 - name: Accuracy type: accuracy value: 0.9862154900510105 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hmBERT-CoNLL-cp3 This model is a fine-tuned version of [dbmdz/bert-base-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0572 - Precision: 0.9121 - Recall: 0.9243 - F1: 0.9182 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.06 | 25 | 0.4115 | 0.3643 | 0.3728 | 0.3685 | 0.9007 | | No log | 0.11 | 50 | 0.2243 | 0.6393 | 0.6908 | 0.6641 | 0.9460 | | No log | 0.17 | 75 | 0.1617 | 0.7319 | 0.7637 | 0.7475 | 0.9580 | | No log | 0.23 | 100 | 0.1544 | 0.7282 | 0.7637 | 0.7455 | 0.9585 | | No log | 0.28 | 125 | 0.1341 | 0.7595 | 0.8117 | 0.7847 | 0.9644 | | No log | 0.34 | 150 | 0.1221 | 0.7980 | 0.8251 | 0.8114 | 0.9693 | | No log | 0.4 | 175 | 0.1013 | 0.7968 | 0.8344 | 0.8152 | 0.9719 | | No log | 0.46 | 200 | 0.1076 | 0.8265 | 0.8403 | 0.8333 | 0.9732 | | No log | 0.51 | 225 | 0.0883 | 0.8453 | 0.8635 | 0.8543 | 0.9763 | | No log | 0.57 | 250 | 0.0973 | 0.8439 | 0.8633 | 0.8535 | 0.9763 | | No log | 0.63 | 275 | 0.0883 | 0.8497 | 0.8655 | 0.8575 | 0.9765 | | No log | 0.68 | 300 | 0.0879 | 0.8462 | 0.8642 | 0.8551 | 0.9766 | | No log | 0.74 | 325 | 0.0781 | 0.8592 | 0.8834 | 0.8711 | 0.9787 | | No log | 0.8 | 350 | 0.0725 | 0.8697 | 0.8928 | 0.8811 | 0.9803 | | No log | 0.85 | 375 | 0.0755 | 0.8687 | 0.8943 | 0.8813 | 0.9807 | | No log | 0.91 | 400 | 0.0666 | 0.8781 | 0.9004 | 0.8891 | 0.9822 | | No log | 0.97 | 425 | 0.0658 | 0.8877 | 0.8995 | 0.8936 | 0.9823 | | No log | 1.03 | 450 | 0.0645 | 0.8951 | 0.9036 | 0.8993 | 0.9837 | | No log | 1.08 | 475 | 0.0697 | 0.8864 | 0.9039 | 0.8951 | 0.9831 | | 0.1392 | 1.14 | 500 | 0.0688 | 0.8824 | 0.8994 | 0.8908 | 0.9824 | | 0.1392 | 1.2 | 525 | 0.0681 | 0.8950 | 0.9049 | 0.8999 | 0.9827 | | 0.1392 | 1.25 | 550 | 0.0676 | 0.8855 | 0.8977 | 0.8915 | 0.9823 | | 0.1392 | 1.31 | 575 | 0.0618 | 0.8940 | 0.9088 | 0.9014 | 0.9842 | | 0.1392 | 1.37 | 600 | 0.0644 | 0.8945 | 0.9076 | 0.9010 | 0.9840 | | 0.1392 | 1.42 | 625 | 0.0641 | 0.8936 | 0.9086 | 0.9010 | 0.9837 | | 0.1392 | 1.48 | 650 | 0.0619 | 0.8969 | 0.9120 | 0.9044 | 0.9846 | | 0.1392 | 1.54 | 675 | 0.0608 | 0.9045 | 0.9105 | 0.9075 | 0.9848 | | 0.1392 | 1.59 | 700 | 0.0624 | 0.9038 | 0.9143 | 0.9091 | 0.9851 | | 0.1392 | 1.65 | 725 | 0.0596 | 0.9062 | 0.9170 | 0.9116 | 0.9852 | | 0.1392 | 1.71 | 750 | 0.0580 | 0.8995 | 0.9143 | 0.9069 | 0.9848 | | 0.1392 | 1.77 | 775 | 0.0582 | 0.9082 | 0.9172 | 0.9127 | 0.9858 | | 0.1392 | 1.82 | 800 | 0.0588 | 0.9024 | 0.9179 | 0.9101 | 0.9852 | | 0.1392 | 1.88 | 825 | 0.0592 | 0.9020 | 0.9219 | 0.9119 | 0.9856 | | 0.1392 | 1.94 | 850 | 0.0600 | 0.9054 | 0.9182 | 0.9118 | 0.9852 | | 0.1392 | 1.99 | 875 | 0.0568 | 0.9068 | 0.9202 | 0.9135 | 0.9861 | | 0.1392 | 2.05 | 900 | 0.0571 | 0.9131 | 0.9212 | 0.9171 | 0.9861 | | 0.1392 | 2.11 | 925 | 0.0577 | 0.9110 | 0.9204 | 0.9157 | 0.9858 | | 0.1392 | 2.16 | 950 | 0.0605 | 0.9127 | 0.9243 | 0.9185 | 0.9860 | | 0.1392 | 2.22 | 975 | 0.0575 | 0.9109 | 0.9224 | 0.9166 | 0.9867 | | 0.0392 | 2.28 | 1000 | 0.0572 | 0.9121 | 0.9243 | 0.9182 | 0.9862 | | 0.0392 | 2.33 | 1025 | 0.0567 | 0.9171 | 0.9253 | 0.9212 | 0.9870 | | 0.0392 | 2.39 | 1050 | 0.0570 | 0.9193 | 0.9295 | 0.9244 | 0.9871 | | 0.0392 | 2.45 | 1075 | 0.0584 | 0.9155 | 0.9276 | 0.9215 | 0.9867 | | 0.0392 | 2.51 | 1100 | 0.0591 | 0.9168 | 0.9286 | 0.9227 | 0.9867 | | 0.0392 | 2.56 | 1125 | 0.0577 | 0.9182 | 0.9312 | 0.9246 | 0.9874 | | 0.0392 | 2.62 | 1150 | 0.0570 | 0.9184 | 0.9283 | 0.9233 | 0.9870 | | 0.0392 | 2.68 | 1175 | 0.0563 | 0.9191 | 0.9298 | 0.9245 | 0.9872 | | 0.0392 | 2.73 | 1200 | 0.0565 | 0.9180 | 0.9313 | 0.9246 | 0.9872 | | 0.0392 | 2.79 | 1225 | 0.0559 | 0.9190 | 0.9298 | 0.9244 | 0.9873 | | 0.0392 | 2.85 | 1250 | 0.0562 | 0.9185 | 0.9293 | 0.9239 | 0.9873 | | 0.0392 | 2.9 | 1275 | 0.0564 | 0.9175 | 0.9285 | 0.9230 | 0.9872 | | 0.0392 | 2.96 | 1300 | 0.0563 | 0.9181 | 0.9295 | 0.9237 | 0.9873 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
crumb/midjourney-textual-inversions
crumb
2022-10-18T23:18:25Z
0
19
null
[ "license:mit", "region:us" ]
null
2022-10-18T23:12:35Z
--- license: mit --- These are the midjourney styles that are pre-loaded in [Whatchamacallit](https://colab.research.google.com/github/aicrumb/whatchamacallit/blob/main/Whatchamacallit.ipynb) Using original textual inversion bins that are compatible with most webuis/notebooks that support text inversion loading. They can be easily converted to diffusers-style and in Whatchamacallit there is code to do that already if you need reference. \- midj-strong: <br> good at that weird surreal melty almost golden sort of style, looks like clip guided diffusion in my opinion \- midj-portrait: <br> a bit more subtle but still very cinematic and changes the image significantly but less so than midj-strong \- midj-anthro: <br> was finetuned on some anthropomorphic animals (not traditional furry style, but just animals standing like humans). good on other subjects though. ![](https://pbs.twimg.com/media/Fc-K-oQX0AEyvUr?format=jpg&name=large)
mriggs/byt5-small-finetuned-2epoch-opus_books-en-to-it
mriggs
2022-10-18T20:50:33Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-18T19:38:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books model-index: - name: byt5-small-finetuned-2epoch-opus_books-en-to-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-small-finetuned-2epoch-opus_books-en-to-it This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2729 | 1.0 | 3638 | 0.9497 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
kevinbror/test
kevinbror
2022-10-18T20:37:35Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-18T20:37:26Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6406 - Train End Logits Accuracy: 0.5766 - Train Start Logits Accuracy: 0.5397 - Validation Loss: 1.2711 - Validation End Logits Accuracy: 0.6595 - Validation Start Logits Accuracy: 0.6190 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2766, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.6406 | 0.5766 | 0.5397 | 1.2711 | 0.6595 | 0.6190 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
gkioxari/omni3d
gkioxari
2022-10-18T20:15:39Z
0
1
null
[ "vision", "3D", "3D object detection", "dataset:omni3d", "arxiv:2207.10660", "region:us" ]
null
2022-10-18T17:14:50Z
--- tags: - vision - 3D - 3D object detection datasets: - omni3d metrics: - AP --- # 3D Object Detection with Cube R-CNN 3D Object Detection with Cube R-CNN is described in [**Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild**](https://arxiv.org/abs/2207.10660) and released in this [repository](https://github.com/facebookresearch/omni3d) ## Overview A description of the model and its architecture are shown below <img src="https://s3.amazonaws.com/moonup/production/uploads/1666115971617-634ededbd049354d7ee4b557.png" width=700px/> ## Training Data Cube R-CNN was trained on Omni3D, a large benchmark for 3D object detection in the wild. ## Demo: Inference on Any Image The model detects objects in 3D from a single image. There are 50 distinct object categories including *car, truck, chair, table, cabinet, books, and many more*. The model assumes known focal length for the image in order to predict the right metric scale. However, users can provide any focal length and will get predictions on a "relative" scale. For example, we can predict 3D objects from COCO images with a user-defined focal length of 4.0, as shown below <img src="https://github.com/facebookresearch/omni3d/blob/main/.github/generalization_coco.png?raw=true" width=500px/> The above output is produced by our demo ```bash python demo/demo.py \ --config cubercnn://omni3d/cubercnn_DLA34_FPN.yaml \ --input-folder "datasets/image_inputs" \ --threshold 0.25 --focal 4.0 --display \ MODEL.WEIGHTS cubercnn://omni3d/cubercnn_DLA34_FPN.pth \ OUTPUT_DIR output/demo ``` ## Checkpoints You can find model checkpoints in the original [model zoo](https://github.com/facebookresearch/omni3d/blob/main/MODEL_ZOO.md). ## Intended Use and Limitations Cube R-CNN is a data-driven method trained on an annotated dataset, Omni3D. The purpose of the project is to advance 3D computer vision and 3D object recognition. The dataset contains a *pedestrian* category, which we acknowledge as a potential issue in the case of unethical applications of our model. The limitations of our approach are: erroneous predictions especially for far away objects, mistakes in predicting rotations and depth. Our evaluation reports an analysis for various depths and object sizes to better understand performance.
mjawadazad2321/donut-base-Medical_Handwritten_Prescriptions_Information_Extraction_updated
mjawadazad2321
2022-10-18T20:09:41Z
43
2
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-10-18T20:02:17Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-Medical_Handwritten_Prescriptions_Information_Extraction_updated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-Medical_Handwritten_Prescriptions_Information_Extraction_updated This model is a fine-tuned version of [mjawadazad2321/donut-base-Medical_Handwritten_Prescriptions_Information_Extraction](https://huggingface.co/mjawadazad2321/donut-base-Medical_Handwritten_Prescriptions_Information_Extraction) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
kevinbror/korttextbert
kevinbror
2022-10-18T19:04:09Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-18T19:04:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: korttextbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # korttextbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7501 - Train End Logits Accuracy: 0.7864 - Train Start Logits Accuracy: 0.7557 - Validation Loss: 1.0797 - Validation End Logits Accuracy: 0.7166 - Validation Start Logits Accuracy: 0.6912 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11529, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4538 | 0.6209 | 0.5897 | 1.1081 | 0.6964 | 0.6739 | 0 | | 0.9285 | 0.7425 | 0.7106 | 1.0454 | 0.7147 | 0.6917 | 1 | | 0.7501 | 0.7864 | 0.7557 | 1.0797 | 0.7166 | 0.6912 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/tvman000
huggingtweets
2022-10-18T18:46:34Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-18T18:45:39Z
--- language: en thumbnail: http://www.huggingtweets.com/tvman000/1666118790144/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1313242619510689794/BO-zQyrZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Daniel Cieslinski</div> <div style="text-align: center; font-size: 14px;">@tvman000</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Daniel Cieslinski. | Data | Daniel Cieslinski | | --- | --- | | Tweets downloaded | 214 | | Retweets | 32 | | Short tweets | 42 | | Tweets kept | 140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xo7nzzp0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tvman000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gi0grtu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gi0grtu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tvman000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/__emmamme__-shell_nigeria-wef
huggingtweets
2022-10-18T18:30:01Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-18T18:29:53Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/565498192171507712/r2Hb2gvX_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582040730842841089/FGLi_5Xd_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/479362131813343232/Vl0Ow-_W_400x400.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">World Economic Forum & emma & Shell Nigeria</div> <div style="text-align: center; font-size: 14px;">@__emmamme__-shell_nigeria-wef</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from World Economic Forum & emma & Shell Nigeria. | Data | World Economic Forum | emma | Shell Nigeria | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 151 | 3195 | | Retweets | 29 | 6 | 455 | | Short tweets | 6 | 29 | 13 | | Tweets kept | 3215 | 116 | 2727 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11b1thr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @__emmamme__-shell_nigeria-wef's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tc6nf11) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tc6nf11/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/__emmamme__-shell_nigeria-wef') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lethebodies/ppo_lunarlander
lethebodies
2022-10-18T18:23:01Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T16:30:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 196.41 +/- 19.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ``` Use the model like this ```python import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip") model = PPO.load(checkpoint) # Evaluate the agent eval_env = gym.make('LunarLander-v2') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play obs = eval_env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = eval_env.step(action) eval_env.render() if done: obs = eval_env.reset() eval_env.close() ```
xh3b4sd/ppo-LunarLander-v2
xh3b4sd
2022-10-18T18:16:00Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T18:15:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 170.87 +/- 38.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mihakram/AraT5-base-question-generation
Mihakram
2022-10-18T18:03:41Z
270
8
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "answer-aware-question-generation", "question-generation", "QG", "ar", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T00:33:03Z
--- language: - ar tags: - answer-aware-question-generation - question-generation - QG dataset: - arabic_question_answering widget: - text: "context: الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري answer: 7 سنوات ونصف </s> " - text: "context: اسكتلندا دولة في شمال غرب أوروبا، تعتبر جزء من الدول الأربع المكونة المملكة المتحدة. تحتل الثلث الشمالي من جزيرة بريطانيا العظمى وتحدها جنوبا إنجلترا ويحدها شرقا بحر الشمال وغربا المحيط الأطلسي. عاصمتها أدنبرة، وأهم مدنها وأكبرها مدينة غلاسكو. كانت اسكتلندا مملكة مستقلة حتى 1 مايو 1707 answer: أدنبرة </s>" - text: "context: مات المستشار الألماني أدولف هتلر في 30 أبريل 1945 منتحرا عن طريق تناول مادة السيانيد السامة وإطلاق النار على نفسه وهي الرواية العامة المقبولة لطريقة موت الزعيم النازي answer: منتحرا </s> " metrics: - bleu model-index: - name: Arabic-Question-Generation results: - task: name: Question-Generation type: automatic-question-generation metrics: - name: Bleu1 type: bleu value: 37.62 - name: Bleu2 type: bleu value: 27.80 - name: Bleu3 type: bleu value: 20.89 - name: Bleu4 type: bleu value: 15.87 - name: meteor type: meteor value: 33.19 - name: rougel type: rouge value: 43.37 --- # Arabic Question Generation Model This model is ready to use for **Question Generation** task, simply input the text and answer, the model will generate a question, This model is a fine-tuned version of [AraT5-Base](https://huggingface.co/UBC-NLP/AraT5-base) ## Live Demo Get the Question from given Context and a Answer : [Arabic QG Model](https://huggingface.co/spaces/Mihakram/Arabic_Question_Generation) ## Model in Action 🚀 ```python #Requirements !pip install transformers from transformers import AutoTokenizer,AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("Mihakram/AraT5-base-question-generation") tokenizer = AutoTokenizer.from_pretrained("Mihakram/AraT5-base-question-generation") def get_question(context,answer): text="context: " +context + " " + "answer: " + answer + " </s>" text_encoding = tokenizer.encode_plus( text,return_tensors="pt" ) model.eval() generated_ids = model.generate( input_ids=text_encoding['input_ids'], attention_mask=text_encoding['attention_mask'], max_length=64, num_beams=5, num_return_sequences=1 ) return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ') context="الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري" answer =" 7 سنوات ونصف" get_question(context,answer) #output : question="كم استمرت الثورة الجزائرية؟ " ``` ## Citation If you want to cite this model you can use this: ## Contacts **Mihoubi Akram Fawzi**: [Linkedin](https://www.linkedin.com/in/mihoubi-akram/) | [Github](https://github.com/mihoubi-akram) | <[email protected]> **Ibrir Adel**: [Linkedin]() | [Github]() | <[email protected]>
huggingtweets/exxonmobil-tencentglobal-wef
huggingtweets
2022-10-18T16:36:52Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-18T12:03:50Z
--- language: en thumbnail: http://www.huggingtweets.com/exxonmobil-tencentglobal-wef/1666111008009/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/902558084064616448/YTOCYYnn_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397133852246646784/Z4XI4oyC_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/565498192171507712/r2Hb2gvX_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ExxonMobil & Tencent 腾讯 & World Economic Forum</div> <div style="text-align: center; font-size: 14px;">@exxonmobil-tencentglobal-wef</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ExxonMobil & Tencent 腾讯 & World Economic Forum. | Data | ExxonMobil | Tencent 腾讯 | World Economic Forum | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 590 | 3250 | | Retweets | 209 | 39 | 29 | | Short tweets | 7 | 1 | 6 | | Tweets kept | 3032 | 550 | 3215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/146l36xw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @exxonmobil-tencentglobal-wef's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kqpaxkc6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kqpaxkc6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/exxonmobil-tencentglobal-wef') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
micole66/autotrain-mercuryorsodium-1804662320
micole66
2022-10-18T16:32:30Z
42
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:micole66/autotrain-data-mercuryorsodium", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-18T16:32:04Z
--- tags: - autotrain - vision - image-classification datasets: - micole66/autotrain-data-mercuryorsodium widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.3397575484174952 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1804662320 - CO2 Emissions (in grams): 0.3398 ## Validation Metrics - Loss: 0.186 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
mrahusain/ppo-LunarLander-v2
mrahusain
2022-10-18T16:10:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T16:09:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -238.72 +/- 303.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
micole66/autotrain-sexy-or-ugly-1802962297
micole66
2022-10-18T15:59:45Z
12
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "en", "dataset:micole66/autotrain-data-sexy-or-ugly", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T15:59:23Z
--- tags: - autotrain - token-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - micole66/autotrain-data-sexy-or-ugly co2_eq_emissions: emissions: 0.316594943692132 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1802962297 - CO2 Emissions (in grams): 0.3166 ## Validation Metrics - Loss: 0.616 - Accuracy: 0.800 - Precision: 0.429 - Recall: 0.600 - F1: 0.500 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/micole66/autotrain-sexy-or-ugly-1802962297 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("micole66/autotrain-sexy-or-ugly-1802962297", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("micole66/autotrain-sexy-or-ugly-1802962297", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/emmarkgadgets
huggingtweets
2022-10-18T14:50:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-10T06:24:48Z
--- language: en thumbnail: http://www.huggingtweets.com/emmarkgadgets/1666104626415/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1577618253312040962/_WR59faP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Emmark</div> <div style="text-align: center; font-size: 14px;">@emmarkgadgets</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Emmark. | Data | Emmark | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 200 | | Short tweets | 2112 | | Tweets kept | 937 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zjdekgzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emmarkgadgets's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uheep0ve) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uheep0ve/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emmarkgadgets') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Rocketknight1/mt5-small-finetuned-amazon-en-es
Rocketknight1
2022-10-18T14:34:56Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T14:34:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.2613 - Validation Loss: 4.5342 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2613 | 4.5342 | 0 | ### Framework versions - Transformers 4.24.0.dev0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.11.0
philschmid/donut-base-finetuned-cord-v2
philschmid
2022-10-18T14:16:41Z
28
5
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "donut", "image-to-text", "vision", "endpoints-template", "arxiv:2111.15664", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2022-10-18T13:08:02Z
--- license: mit tags: - donut - image-to-text - vision - endpoints-template --- # Fork of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) > This is fork of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) implementing a custom `handler.py` as an example for how to use `donut` models with [inference-endpoints](https://hf.co/inference-endpoints) --- # Donut (base-sized model, fine-tuned on CORD) Donut model fine-tuned on CORD. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. # Use with Inference Endpoints Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use requests to send our requests. (make your you have it installed `pip install requests`) ![result](res.png) ## Send requests with Pyton load sample image ```bash wget https://huggingface.co/philschmid/donut-base-finetuned-cord-v2/resolve/main/sample.png ``` send request to endpoint ```python import json import requests as r import mimetypes ENDPOINT_URL="" # url of your endpoint HF_TOKEN="" # organization token where you deployed your endpoint def predict(path_to_image:str=None): with open(path_to_image, "rb") as i: b = i.read() headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": mimetypes.guess_type(path_to_image)[0] } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_image="sample.png") print(prediction) # {'menu': [{'nm': '0571-1854 BLUS WANITA', # 'unitprice': '@120.000', # 'cnt': '1', # 'price': '120,000'}, # {'nm': '1002-0060 SHOPPING BAG', 'cnt': '1', 'price': '0'}], # 'total': {'total_price': '120,000', # 'changeprice': '0', # 'creditcardprice': '120,000', # 'menuqty_cnt': '1'}} ``` **curl example** ```bash curl https://ak7gduay2ypyr9vp.us-east-1.aws.endpoints.huggingface.cloud \ -X POST \ --data-binary 'sample.png' \ -H "Authorization: Bearer XXX" \ -H "Content-Type: null" ```
lewtun/setfit-finetuned-sst2
lewtun
2022-10-18T13:52:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-18T13:52:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vvincentt/roberta-base-squad2
vvincentt
2022-10-18T13:45:25Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-18T10:24:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/cryptoanglio
huggingtweets
2022-10-18T13:20:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-18T11:38:14Z
--- language: en thumbnail: http://www.huggingtweets.com/cryptoanglio/1666099242969/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539914688611459074/jnZfe1Rf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anglio.S🟠L (33.3%)</div> <div style="text-align: center; font-size: 14px;">@cryptoanglio</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anglio.S🟠L (33.3%). | Data | Anglio.S🟠L (33.3%) | | --- | --- | | Tweets downloaded | 3213 | | Retweets | 634 | | Short tweets | 562 | | Tweets kept | 2017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g8dyjwv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptoanglio's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3laoj52a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3laoj52a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptoanglio') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jayantapaul888/vit-base-patch16-224-finetuned-memes-v2
jayantapaul888
2022-10-18T13:09:42Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-17T08:44:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-memes-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8377125193199382 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-memes-v2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4096 - Accuracy: 0.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8643 | 0.99 | 20 | 0.6406 | 0.7720 | | 0.4279 | 1.99 | 40 | 0.4885 | 0.8130 | | 0.2272 | 2.99 | 60 | 0.4224 | 0.8331 | | 0.1483 | 3.99 | 80 | 0.4096 | 0.8377 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1
Keerthan/finetuning-sentiment-model-distilbert-trial2
Keerthan
2022-10-18T13:06:12Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T10:21:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-distilbert-trial2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-distilbert-trial2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Accuracy: 0.9323 - F1: 0.9339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Rocketknight1/bert-finetuned-ner
Rocketknight1
2022-10-18T12:52:07Z
9
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T12:50:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1748 - Validation Loss: 0.0673 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1748 | 0.0673 | 0 | ### Framework versions - Transformers 4.24.0.dev0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.11.0
mriggs/byt5-small-finetuned-2epoch-opus_books-en-to-fr
mriggs
2022-10-18T12:17:44Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-18T08:41:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books model-index: - name: byt5-small-finetuned-2epoch-opus_books-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-small-finetuned-2epoch-opus_books-en-to-fr This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9652 | 1.0 | 14297 | 0.7181 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
hivemind/gpt-j-6B-8bit
hivemind
2022-10-18T11:49:06Z
146
131
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "arxiv:2106.09685", "arxiv:2110.02861", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- Note: this model was superceded by the [`load_in_8bit=True` feature in transformers](https://github.com/huggingface/transformers/pull/17901) by Younes Belkada and Tim Dettmers. Please see [this usage example](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4#scrollTo=W8tQtyjp75O). This legacy model was built for [transformers v4.15.0](https://github.com/huggingface/transformers/releases/tag/v4.15.0) and pytorch 1.11. Newer versions could work, but are not supported. ### Quantized EleutherAI/gpt-j-6b with 8-bit weights This is a version of EleutherAI's GPT-J with 6 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/check_perplexity.ipynb) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Where can I train for free? You can train fine in colab, but if you get a K80, it's probably best to switch to other free gpu providers: [kaggle](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a), [aws sagemaker](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a) or [paperspace](https://docs.paperspace.com/gradient/more/instance-types/free-instances). For intance, this is the same notebook [running in kaggle](https://www.kaggle.com/justheuristic/dmazur-converted) using a more powerful P100 instance. ### Can I use this technique with other models? The model was converted using [this notebook](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
ibm-research/qp-questions
ibm-research
2022-10-18T11:37:49Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T11:16:38Z
The QP model from the paper [Quality Controlled Paraphrase Generation](https://aclanthology.org/2022.acl-long.45/) Important: read [this](https://github.com/IBM/quality-controlled-paraphrase-generation/issues/5#issuecomment-1238453742) before any use. More details on the model training and usage see in this [GitHub repo](https://github.com/IBM/quality-controlled-paraphrase-generation).
nayan06/binary-classifier-conversion-intent-1.0
nayan06
2022-10-18T10:43:32Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "setfit classification", "binary_classification", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-17T10:13:25Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - setfit classification - binary_classification --- this is a setfit classifier which can be used for conversion or other , binary classification <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have SetFit installed, ``` pip install setfit ``` Then you can use the model like this: ```python from setfit import SetFitModel, SetFitTrainer model = SetFitModel.from_pretrained("nayan06/binary-classifier-conversion-intent-1.0") preds = model(["view details"]) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 573 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 573, "warmup_steps": 58, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NikitaBaramiia/PPO-FrozenLake-v1
NikitaBaramiia
2022-10-18T10:22:32Z
4
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T10:22:28Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 0.80 +/- 0.40 name: mean_reward verified: false --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YaYaB/yb_test_inference_endpoint_det
YaYaB
2022-10-18T10:21:20Z
0
0
null
[ "endpoints_compatible", "region:us" ]
null
2022-10-18T08:03:22Z
Please use the image nvcr.io/nvidia/pytorch:21.11-py3 when you want to launch it
Osaleh/sagemaker-bert-base-intent1018
Osaleh
2022-10-18T10:13:59Z
5
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T10:12:46Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sagemaker-bert-base-intent1018 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-bert-base-intent1018 This model is a fine-tuned version of [asafaya/bert-base-arabic](https://huggingface.co/asafaya/bert-base-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0371 - Accuracy: 0.0855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 44 | 4.2225 | 0.0192 | | No log | 2.0 | 88 | 4.0371 | 0.0855 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
victorbahlangene/deberta-v3-small-finetuned-Disaster-Tweets-Part1
victorbahlangene
2022-10-18T10:10:34Z
5
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T10:01:57Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-small-finetuned-Disaster-Tweets-Part1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-small-finetuned-Disaster-Tweets-Part1 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4014 - Accuracy: 0.8564 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.3828 | 0.8415 | 0.8414 | | No log | 2.0 | 406 | 0.4014 | 0.8564 | 0.8557 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
malteos/bloom-350m-german
malteos
2022-10-18T09:27:53Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bloom", "feature-extraction", "text-generation", "de", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-17T12:54:01Z
--- license: mit language: de pipeline_tag: text-generation --- A [bloom-350m](https://huggingface.co/bigscience/bloom-350m) model trained from scratch on German data.
ezzouhri/vit-base-patch16-224-in21k-finetuned-eurosat
ezzouhri
2022-10-18T08:53:56Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-17T09:17:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2695 - eval_accuracy: 0.9022 - eval_runtime: 195.5267 - eval_samples_per_second: 21.486 - eval_steps_per_second: 0.675 - epoch: 51.76 - step: 10196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 200 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Sebabrata/lmv2-g-rai_1-995-doc-10-18
Sebabrata
2022-10-18T08:37:34Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T06:05:06Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-rai_1-995-doc-10-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-rai_1-995-doc-10-18 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0163 - Dob Key Precision: 0.7638 - Dob Key Recall: 0.7638 - Dob Key F1: 0.7638 - Dob Key Number: 127 - Dob Value Precision: 0.9767 - Dob Value Recall: 0.9767 - Dob Value F1: 0.9767 - Dob Value Number: 129 - Doctor Name Key Precision: 0.6970 - Doctor Name Key Recall: 0.6866 - Doctor Name Key F1: 0.6917 - Doctor Name Key Number: 67 - Doctor Name Value Precision: 0.9275 - Doctor Name Value Recall: 0.9143 - Doctor Name Value F1: 0.9209 - Doctor Name Value Number: 70 - Patient Name Key Precision: 0.7055 - Patient Name Key Recall: 0.7357 - Patient Name Key F1: 0.7203 - Patient Name Key Number: 140 - Patient Name Value Precision: 0.9724 - Patient Name Value Recall: 0.9792 - Patient Name Value F1: 0.9758 - Patient Name Value Number: 144 - Overall Precision: 0.8460 - Overall Recall: 0.8523 - Overall F1: 0.8492 - Overall Accuracy: 0.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dob Key Precision | Dob Key Recall | Dob Key F1 | Dob Key Number | Dob Value Precision | Dob Value Recall | Dob Value F1 | Dob Value Number | Doctor Name Key Precision | Doctor Name Key Recall | Doctor Name Key F1 | Doctor Name Key Number | Doctor Name Value Precision | Doctor Name Value Recall | Doctor Name Value F1 | Doctor Name Value Number | Patient Name Key Precision | Patient Name Key Recall | Patient Name Key F1 | Patient Name Key Number | Patient Name Value Precision | Patient Name Value Recall | Patient Name Value F1 | Patient Name Value Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------------:|:-------------------------:|:---------------------:|:-------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.5034 | 1.0 | 796 | 0.0841 | 0.7143 | 0.7480 | 0.7308 | 127 | 0.7881 | 0.9225 | 0.85 | 129 | 0.0 | 0.0 | 0.0 | 67 | 0.0 | 0.0 | 0.0 | 70 | 0.5988 | 0.7143 | 0.6515 | 140 | 0.4908 | 0.9236 | 0.6410 | 144 | 0.5944 | 0.6603 | 0.6256 | 0.9887 | | 0.0579 | 2.0 | 1592 | 0.0365 | 0.7231 | 0.7402 | 0.7315 | 127 | 0.9766 | 0.9690 | 0.9728 | 129 | 0.6462 | 0.6269 | 0.6364 | 67 | 0.9296 | 0.9429 | 0.9362 | 70 | 0.7103 | 0.7357 | 0.7228 | 140 | 0.9392 | 0.9653 | 0.9521 | 144 | 0.8282 | 0.8405 | 0.8343 | 0.9954 | | 0.0317 | 3.0 | 2388 | 0.0297 | 0.7578 | 0.7638 | 0.7608 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.7077 | 0.6866 | 0.6970 | 67 | 0.8676 | 0.8429 | 0.8551 | 70 | 0.6474 | 0.7214 | 0.6824 | 140 | 0.8993 | 0.9306 | 0.9147 | 144 | 0.8101 | 0.8316 | 0.8207 | 0.9943 | | 0.0233 | 4.0 | 3184 | 0.0195 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9403 | 0.9767 | 0.9582 | 129 | 0.7015 | 0.7015 | 0.7015 | 67 | 0.9718 | 0.9857 | 0.9787 | 70 | 0.6164 | 0.7 | 0.6555 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8222 | 0.8538 | 0.8377 | 0.9958 | | 0.0189 | 5.0 | 3980 | 0.0188 | 0.7462 | 0.7638 | 0.7549 | 127 | 0.9545 | 0.9767 | 0.9655 | 129 | 0.5606 | 0.5522 | 0.5564 | 67 | 0.9565 | 0.9429 | 0.9496 | 70 | 0.6228 | 0.7429 | 0.6775 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8054 | 0.8434 | 0.8240 | 0.9955 | | 0.0174 | 6.0 | 4776 | 0.0167 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5970 | 0.5970 | 0.5970 | 67 | 0.9714 | 0.9714 | 0.9714 | 70 | 0.6478 | 0.7357 | 0.6890 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8250 | 0.8493 | 0.8370 | 0.9956 | | 0.0162 | 7.0 | 5572 | 0.0185 | 0.7578 | 0.7638 | 0.7608 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.4272 | 0.6567 | 0.5176 | 67 | 0.9677 | 0.8571 | 0.9091 | 70 | 0.7007 | 0.7357 | 0.7178 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.7997 | 0.8434 | 0.8210 | 0.9954 | | 0.0153 | 8.0 | 6368 | 0.0170 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5758 | 0.5672 | 0.5714 | 67 | 0.9571 | 0.9571 | 0.9571 | 70 | 0.7305 | 0.7357 | 0.7331 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8437 | 0.8449 | 0.8443 | 0.9957 | | 0.0142 | 9.0 | 7164 | 0.0163 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.6970 | 0.6866 | 0.6917 | 67 | 0.9275 | 0.9143 | 0.9209 | 70 | 0.7055 | 0.7357 | 0.7203 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8460 | 0.8523 | 0.8492 | 0.9958 | | 0.0136 | 10.0 | 7960 | 0.0177 | 0.7405 | 0.7638 | 0.7519 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.6094 | 0.5821 | 0.5954 | 67 | 0.8358 | 0.8 | 0.8175 | 70 | 0.6541 | 0.7429 | 0.6957 | 140 | 0.9589 | 0.9722 | 0.9655 | 144 | 0.8075 | 0.8301 | 0.8186 | 0.9953 | | 0.0131 | 11.0 | 8756 | 0.0202 | 0.7402 | 0.7402 | 0.7402 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5968 | 0.5522 | 0.5736 | 67 | 0.9403 | 0.9 | 0.9197 | 70 | 0.7305 | 0.7357 | 0.7331 | 140 | 0.9655 | 0.9722 | 0.9689 | 144 | 0.8390 | 0.8316 | 0.8353 | 0.9954 | | 0.0134 | 12.0 | 9552 | 0.0195 | 0.7239 | 0.7638 | 0.7433 | 127 | 0.9237 | 0.8450 | 0.8826 | 129 | 0.5846 | 0.5672 | 0.5758 | 67 | 0.9041 | 0.9429 | 0.9231 | 70 | 0.7305 | 0.7357 | 0.7331 | 140 | 0.9722 | 0.9722 | 0.9722 | 144 | 0.8193 | 0.8168 | 0.8180 | 0.9949 | | 0.0127 | 13.0 | 10348 | 0.0169 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.7077 | 0.6866 | 0.6970 | 67 | 0.9403 | 0.9 | 0.9197 | 70 | 0.6211 | 0.7143 | 0.6645 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8256 | 0.8464 | 0.8359 | 0.9957 | | 0.0119 | 14.0 | 11144 | 0.0174 | 0.7638 | 0.7638 | 0.7638 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5821 | 0.5821 | 0.5821 | 67 | 0.9437 | 0.9571 | 0.9504 | 70 | 0.6897 | 0.7143 | 0.7018 | 140 | 0.9338 | 0.9792 | 0.9559 | 144 | 0.8261 | 0.8419 | 0.8339 | 0.9955 | | 0.013 | 15.0 | 11940 | 0.0174 | 0.6953 | 0.7008 | 0.6980 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.6164 | 0.6716 | 0.6429 | 67 | 0.9706 | 0.9429 | 0.9565 | 70 | 0.6667 | 0.7143 | 0.6897 | 140 | 0.9583 | 0.9583 | 0.9583 | 144 | 0.8150 | 0.8331 | 0.8240 | 0.9950 | | 0.0133 | 16.0 | 12736 | 0.0195 | 0.7008 | 0.7008 | 0.7008 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5823 | 0.6866 | 0.6301 | 67 | 0.9054 | 0.9571 | 0.9306 | 70 | 0.6174 | 0.6571 | 0.6367 | 140 | 0.9161 | 0.9097 | 0.9129 | 144 | 0.7860 | 0.8139 | 0.7997 | 0.9946 | | 0.0154 | 17.0 | 13532 | 0.0239 | 0.6885 | 0.6614 | 0.6747 | 127 | 0.8623 | 0.9225 | 0.8914 | 129 | 0.5057 | 0.6567 | 0.5714 | 67 | 0.9403 | 0.9 | 0.9197 | 70 | 0.3727 | 0.5857 | 0.4556 | 140 | 0.9655 | 0.9722 | 0.9689 | 144 | 0.6829 | 0.7858 | 0.7308 | 0.9935 | | 0.0163 | 18.0 | 14328 | 0.0437 | 0.6607 | 0.5827 | 0.6192 | 127 | 0.5736 | 0.8760 | 0.6933 | 129 | 0.4177 | 0.4925 | 0.4521 | 67 | 0.8243 | 0.8714 | 0.8472 | 70 | 0.4845 | 0.5571 | 0.5183 | 140 | 0.5990 | 0.7986 | 0.6845 | 144 | 0.5816 | 0.7001 | 0.6354 | 0.9887 | | 0.0109 | 19.0 | 15124 | 0.0220 | 0.7578 | 0.7638 | 0.7608 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.7097 | 0.6567 | 0.6822 | 67 | 0.9403 | 0.9 | 0.9197 | 70 | 0.6776 | 0.7357 | 0.7055 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.8404 | 0.8479 | 0.8441 | 0.9955 | | 0.0104 | 20.0 | 15920 | 0.0184 | 0.6093 | 0.7244 | 0.6619 | 127 | 0.976 | 0.9457 | 0.9606 | 129 | 0.6133 | 0.6866 | 0.6479 | 67 | 0.9437 | 0.9571 | 0.9504 | 70 | 0.6013 | 0.6571 | 0.6280 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.7778 | 0.8272 | 0.8017 | 0.9950 | | 0.0086 | 21.0 | 16716 | 0.0232 | 0.3889 | 0.4409 | 0.4133 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5270 | 0.5821 | 0.5532 | 67 | 0.9444 | 0.9714 | 0.9577 | 70 | 0.5245 | 0.5357 | 0.5300 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.7143 | 0.7459 | 0.7298 | 0.9930 | | 0.0085 | 22.0 | 17512 | 0.0197 | 0.7480 | 0.7480 | 0.7480 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.6471 | 0.6567 | 0.6519 | 67 | 0.9189 | 0.9714 | 0.9444 | 70 | 0.6149 | 0.65 | 0.6319 | 140 | 0.9658 | 0.9792 | 0.9724 | 144 | 0.8165 | 0.8346 | 0.8254 | 0.9951 | | 0.0083 | 23.0 | 18308 | 0.0220 | 0.7328 | 0.7559 | 0.7442 | 127 | 0.9692 | 0.9767 | 0.9730 | 129 | 0.6081 | 0.6716 | 0.6383 | 67 | 0.9571 | 0.9571 | 0.9571 | 70 | 0.6479 | 0.6571 | 0.6525 | 140 | 0.9592 | 0.9792 | 0.9691 | 144 | 0.8170 | 0.8375 | 0.8271 | 0.9952 | | 0.0084 | 24.0 | 19104 | 0.0226 | 0.6418 | 0.6772 | 0.6590 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5 | 0.7164 | 0.5890 | 67 | 0.8919 | 0.9429 | 0.9167 | 70 | 0.5034 | 0.5286 | 0.5157 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.7462 | 0.7991 | 0.7718 | 0.9942 | | 0.0067 | 25.0 | 19900 | 0.0257 | 0.6691 | 0.7165 | 0.6920 | 127 | 0.9692 | 0.9767 | 0.9730 | 129 | 0.6267 | 0.7015 | 0.6620 | 67 | 0.9143 | 0.9143 | 0.9143 | 70 | 0.6828 | 0.7071 | 0.6947 | 140 | 0.94 | 0.9792 | 0.9592 | 144 | 0.8045 | 0.8390 | 0.8214 | 0.9949 | | 0.0071 | 26.0 | 20696 | 0.0241 | 0.5828 | 0.6929 | 0.6331 | 127 | 0.9692 | 0.9767 | 0.9730 | 129 | 0.6029 | 0.6119 | 0.6074 | 67 | 0.8889 | 0.9143 | 0.9014 | 70 | 0.5563 | 0.5643 | 0.5603 | 140 | 0.9658 | 0.9792 | 0.9724 | 144 | 0.7602 | 0.7962 | 0.7778 | 0.9943 | | 0.0072 | 27.0 | 21492 | 0.0222 | 0.6850 | 0.6850 | 0.6850 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.5714 | 0.6567 | 0.6111 | 67 | 0.9178 | 0.9571 | 0.9371 | 70 | 0.6370 | 0.6643 | 0.6503 | 140 | 0.9592 | 0.9792 | 0.9691 | 144 | 0.7983 | 0.8242 | 0.8110 | 0.9948 | | 0.0057 | 28.0 | 22288 | 0.0259 | 0.5909 | 0.6142 | 0.6023 | 127 | 0.9767 | 0.9767 | 0.9767 | 129 | 0.6714 | 0.7015 | 0.6861 | 67 | 0.9275 | 0.9143 | 0.9209 | 70 | 0.5734 | 0.5857 | 0.5795 | 140 | 0.9724 | 0.9792 | 0.9758 | 144 | 0.7820 | 0.7947 | 0.7883 | 0.9943 | | 0.0054 | 29.0 | 23084 | 0.0299 | 0.6418 | 0.6772 | 0.6590 | 127 | 0.9618 | 0.9767 | 0.9692 | 129 | 0.6216 | 0.6866 | 0.6525 | 67 | 0.8873 | 0.9 | 0.8936 | 70 | 0.5306 | 0.5571 | 0.5436 | 140 | 0.9655 | 0.9722 | 0.9689 | 144 | 0.7678 | 0.7962 | 0.7817 | 0.9937 | | 0.0066 | 30.0 | 23880 | 0.0254 | 0.5532 | 0.6142 | 0.5821 | 127 | 0.9259 | 0.9690 | 0.9470 | 129 | 0.5938 | 0.5672 | 0.5802 | 67 | 0.9130 | 0.9 | 0.9065 | 70 | 0.6738 | 0.6786 | 0.6762 | 140 | 0.9592 | 0.9792 | 0.9691 | 144 | 0.7747 | 0.7976 | 0.7860 | 0.9943 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.2.2 - Tokenizers 0.13.1
micole66/autotrain-pachyderm-1799762243
micole66
2022-10-18T08:35:41Z
11
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "en", "dataset:micole66/autotrain-data-pachyderm", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T08:34:29Z
--- tags: - autotrain - token-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - micole66/autotrain-data-pachyderm co2_eq_emissions: emissions: 1.2406150246482144 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1799762243 - CO2 Emissions (in grams): 1.2406 ## Validation Metrics - Loss: 0.463 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - F1: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/micole66/autotrain-pachyderm-1799762243 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("micole66/autotrain-pachyderm-1799762243", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("micole66/autotrain-pachyderm-1799762243", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
teacookies/autotrain-18102022_retoken-1799162225
teacookies
2022-10-18T08:01:54Z
13
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-18102022_retoken", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T07:50:22Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-18102022_retoken co2_eq_emissions: emissions: 20.17997164723111 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1799162225 - CO2 Emissions (in grams): 20.1800 ## Validation Metrics - Loss: 0.024 - Accuracy: 0.993 - Precision: 0.829 - Recall: 0.893 - F1: 0.860 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-18102022_retoken-1799162225 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-18102022_retoken-1799162225", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-18102022_retoken-1799162225", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Makokokoko/AI
Makokokoko
2022-10-18T07:36:19Z
0
0
null
[ "region:us" ]
null
2022-10-18T06:40:52Z
pip install diffusers transformers nvidia-ml-py3 ftfy pytorch pillow
sd-concepts-library/beholder
sd-concepts-library
2022-10-18T07:28:26Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-18T07:28:20Z
--- license: mit --- ### Beholder on Stable Diffusion This is the `<beholder>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<beholder> 0](https://huggingface.co/sd-concepts-library/beholder/resolve/main/concept_images/2.jpeg) ![<beholder> 1](https://huggingface.co/sd-concepts-library/beholder/resolve/main/concept_images/0.jpeg) ![<beholder> 2](https://huggingface.co/sd-concepts-library/beholder/resolve/main/concept_images/1.jpeg) ![<beholder> 3](https://huggingface.co/sd-concepts-library/beholder/resolve/main/concept_images/3.jpeg) ![<beholder> 4](https://huggingface.co/sd-concepts-library/beholder/resolve/main/concept_images/4.jpeg)
tehnlulz/pruned_datavq__ydnj-is_phishing-classification
tehnlulz
2022-10-18T07:15:14Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-10-18T07:15:12Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on pruned_datavq__ydnj to apply classification on is_phishing **Metrics of the best model:** accuracy 1.0 average_precision 1.0 roc_auc 1.0 recall_macro 1.0 f1_macro 1.0 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=1), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False bad_domain False False False ... False True False safe_domain False False False ... False False False[3 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
tkubotake/xlm-roberta-base-finetuned-panx-de
tkubotake
2022-10-18T06:51:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T06:26:50Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Formzu/bert-base-japanese-jsnli
Formzu
2022-10-18T03:13:20Z
59
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "ja", "dataset:JSNLI", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-14T07:50:13Z
--- language: - ja license: cc-by-sa-4.0 tags: - zero-shot-classification - text-classification - nli - pytorch metrics: - accuracy datasets: - JSNLI pipeline_tag: text-classification widget: - text: "あなたが好きです。 あなたを愛しています。" model-index: - name: bert-base-japanese-jsnli results: - task: type: text-classification name: Natural Language Inference dataset: type: snli name: JSNLI split: dev metrics: - type: accuracy value: 0.9288 verified: false --- # bert-base-japanese-jsnli This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) on the [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset. It achieves the following results on the evaluation set: - Loss: 0.2085 - Accuracy: 0.9288 ### How to use the model #### Simple zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli") sequence_to_classify = "いつか世界を見る。" candidate_labels = ['旅行', '料理', '踊り'] out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。") print(out) #{'sequence': 'いつか世界を見る。', # 'labels': ['旅行', '料理', '踊り'], # 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]} ``` #### NLI use-case ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "Formzu/bert-base-japanese-jsnli" model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) premise = "いつか世界を見る。" label = '旅行' hypothesis = f'この例は{label}です。' input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device) with torch.no_grad(): logits = model(input)["logits"][0] probs = logits.softmax(dim=-1) print(probs.cpu().numpy(), logits.cpu().numpy()) #[0.68940836 0.29482093 0.01577068] [ 1.7791482 0.92968255 -1.998533 ] ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | | :-----------: | :---: | :---: | :-------------: | :------: | | 0.4054 | 1.0 | 16657 | 0.2141 | 0.9216 | | 0.3297 | 2.0 | 33314 | 0.2145 | 0.9236 | | 0.2645 | 3.0 | 49971 | 0.2085 | 0.9288 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
joelb/custom-handler-tutorial
joelb
2022-10-18T02:23:12Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "emotion", "endpoints-template", "en", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T02:21:57Z
--- language: - en tags: - text-classification - emotion - endpoints-template license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
sd-concepts-library/arq-render
sd-concepts-library
2022-10-18T02:10:58Z
0
8
null
[ "license:mit", "region:us" ]
null
2022-10-18T02:10:47Z
--- license: mit --- ### arq render on Stable Diffusion This is the `<arq-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<arq-style> 0](https://huggingface.co/sd-concepts-library/arq-render/resolve/main/concept_images/2.jpeg) ![<arq-style> 1](https://huggingface.co/sd-concepts-library/arq-render/resolve/main/concept_images/0.jpeg) ![<arq-style> 2](https://huggingface.co/sd-concepts-library/arq-render/resolve/main/concept_images/1.jpeg) ![<arq-style> 3](https://huggingface.co/sd-concepts-library/arq-render/resolve/main/concept_images/3.jpeg) ![<arq-style> 4](https://huggingface.co/sd-concepts-library/arq-render/resolve/main/concept_images/4.jpeg)
teacookies/autotrain-17102022-update_scope_and_date-1789062099
teacookies
2022-10-18T01:53:54Z
13
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022-update_scope_and_date", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-18T01:42:37Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022-update_scope_and_date co2_eq_emissions: emissions: 19.692537664708304 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1789062099 - CO2 Emissions (in grams): 19.6925 ## Validation Metrics - Loss: 0.029 - Accuracy: 0.992 - Precision: 0.777 - Recall: 0.826 - F1: 0.801 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022-update_scope_and_date-1789062099 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022-update_scope_and_date-1789062099", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022-update_scope_and_date-1789062099", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
althoughh/distilroberta-base-finetuned-wikitext2
althoughh
2022-10-18T01:23:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-18T01:13:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 251 | 1.7837 | | 2.0311 | 2.0 | 502 | 1.7330 | | 2.0311 | 3.0 | 753 | 1.7085 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
corgi777/distilbert-base-uncased-finetuned-emotion
corgi777
2022-10-18T01:00:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-18T00:07:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9262012280043272 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2135 - Accuracy: 0.926 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.2996 | 0.915 | 0.9124 | | No log | 2.0 | 500 | 0.2135 | 0.926 | 0.9262 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
KarelDO/gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42
KarelDO
2022-10-18T00:17:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:OpenTable", "license:mit", "model-index", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-10-18T00:13:32Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE-ABSA type: OpenTable args: opentable-absa metrics: - name: Accuracy type: accuracy value: 0.8310893512851897 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the OpenTable OPENTABLE-ABSA dataset. It achieves the following results on the evaluation set: - Loss: 0.4726 - Accuracy: 0.8311 - Macro-f1: 0.8295 - Weighted-macro-f1: 0.8313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
MrBananaHuman/re_generator
MrBananaHuman
2022-10-17T23:26:07Z
7
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-20T13:43:52Z
important_labels = { "no_relation":"관계 없음", "per:employee_of":"고용", "org:member_of":"소속", "org:place_of_headquarters":"장소", "org:top_members/employees":"대표", "per:origin":"출신", "per:title":"직업", "per:colleagues":"동료", "org:members":"소속", "org:alternate_names":"본명", "per:place_of_residence":"거주지" } https://colab.research.google.com/drive/1K3lygU6BBLsFwI99JNaX8BauH7vgUsv9?authuser=1#scrollTo=h8-68Ko_pKpJ
MrBananaHuman/en_ko_translator
MrBananaHuman
2022-10-17T23:24:52Z
8
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T04:28:10Z
https://colab.research.google.com/drive/1AD96dq3y0s2MSzWKgCpI9-oHMpzsbyR2?authuser=1
MrBananaHuman/ko_en_translator
MrBananaHuman
2022-10-17T23:24:40Z
11
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T04:39:37Z
https://colab.research.google.com/drive/1AD96dq3y0s2MSzWKgCpI9-oHMpzsbyR2?authuser=1
sd-concepts-library/ghost-style
sd-concepts-library
2022-10-17T23:08:16Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-17T23:08:12Z
--- license: mit --- ### GHOST style on Stable Diffusion This is the `<ghost>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ghost> 0](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/2.jpeg) ![<ghost> 1](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/0.jpeg) ![<ghost> 2](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/1.jpeg) ![<ghost> 3](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/3.jpeg) ![<ghost> 4](https://huggingface.co/sd-concepts-library/ghost-style/resolve/main/concept_images/4.jpeg)
facebook/textless_sm_et_es
facebook
2022-10-17T23:06:02Z
1
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:22:43Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_de_es
facebook
2022-10-17T23:05:53Z
2
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:22:09Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_cs_es
facebook
2022-10-17T23:05:44Z
4
1
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T00:03:47Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_es_css10
facebook
2022-10-17T22:56:56Z
4
0
fairseq
[ "fairseq", "audio", "text-to-speech", "en", "dataset:mtedx", "dataset:covost2", "dataset:europarl_st", "dataset:voxpopuli", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2022-10-17T22:13:09Z
--- license: cc-by-nc-4.0 library_name: fairseq task: text-to-speech tags: - fairseq - audio - text-to-speech language: en datasets: - mtedx - covost2 - europarl_st - voxpopuli ---
facebook/textless_sm_ro_fr
facebook
2022-10-17T22:12:06Z
3
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:21:43Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_fi_fr
facebook
2022-10-17T22:10:59Z
2
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:20:46Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_es_fr
facebook
2022-10-17T22:10:39Z
5
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:20:29Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
facebook/textless_sm_de_fr
facebook
2022-10-17T22:09:29Z
4
0
fairseq
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2022-10-16T01:19:56Z
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation license: cc-by-nc-4.0 --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
Kateryna/eva_ru_forum_headlines
Kateryna
2022-10-17T21:44:55Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-20T00:00:24Z
--- language: - ru widget: - text: "Цель одна - истребление как можно больше славянских народов. На очереди поляки, они тоже славяне, их тоже на утилизировать. Это Цель НАТО. Ну и заодно разрушение экономики ЕС, ну и Китай дот кучи под плинтус загнать." - text: "Дочке 15, книг не читает, вся жизнь (вне школы) в телефоне на кровати. Любознательности ноль. Куда-то поехать в новое место, узнать что-то, найти интересные курсы - вообще не про нее. Учеба все хуже, багажа знаний уже нет, списывает и выкручивается в течение четверти, как контрольная или что-то посерьезнее, где не списать - на 2-3. При любой возможности не ходит в школу (голова болит, можно сегодня не пойду. а потом пятница, что на один день ходить...)" - "Ребёнок учится в 8 классе. По алгебре одни тройки. Но это точно 2. Просто учитель не будет ставить в четверти 2. Она гуманитарий. Алгебра никак не идёт. Репетитор сейчас занимается, понимает только лёгкие темы. Я боюсь, что провалит ОГЭ. Там пересдать можно? А если опять 2,это второй год?" --- # eva_ru_forum_headlines ## Model Description The model was trained on forum topics names and first posts (100 - 150 words). It generates short headlines (3 - 5 words) in the opposite to headlines from models trained on newspaper articles. "I do not know how to title this post" can be a valid headline. "What would you do in my place?" is one of the most popular headline. ### Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "Kateryna/eva_ru_forum_headlines" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Я влюбилась в одного парня. Каждый раз, когда он меня видит, он плюется и переходит на другую сторону улицы. Как вы думаете, он меня любит?" input_ids = tokenizer( [text], max_length=150, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=25, num_beams=4, repetition_penalty=5.0, no_repeat_ngram_size=4 )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True) print(headline) ``` ### Training and Validation Training dataset: https://huggingface.co/datasets/Kateryna/eva_ru_forum_headlines From all available posts and topics names I selected only posts and abstractive topic names e.g. the topic name does not match exactly anything in the correspondent post. The base model is cointegrated/rut5-base Training parameters: - max_source_tokens_count = 150 - max_target_tokens_count = 25 - learning_rate = 0.0007 - num_train_epochs = 3 - batch_size = 8 - gradient_accumulation_steps = 96 ROUGE and BLUE scores were not very helpful to choose a best model. I manually estimated ~100 results in each candidate model. 1. The less gradient_accumulation_steps the more abstractive headlines but they becomes less and less related to the correspondent posts. The worse model with gradient_accumulation_steps = 1 had all headlines abstractive but random. 2. The source for the model is real short texts created by ordinary persons without any editing. In many cases, the forum posts are not connected sentences and it is not clear what the author wanted to say or discuss. Sometimes there is a contradiction in the text and only the real topic name reveals what this all about. Naturally the model fails to produce a good headline in such cases. https://github.com/KaterynaD/eva.ru/tree/main/Code/Notebooks/9.%20Headlines
WonderingNut/TheNuts
WonderingNut
2022-10-17T21:38:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-17T21:38:06Z
--- license: creativeml-openrail-m ---
ArafatBHossain/distilbert-base-uncased_fine_tuned_sent140
ArafatBHossain
2022-10-17T20:59:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T20:51:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased_fine_tuned_sent140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fine_tuned_sent140 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0133 - Accuracy: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.6699 | 0.7807 | | 0.7334 | 2.0 | 816 | 0.7937 | 0.7781 | | 0.3584 | 3.0 | 1224 | 1.0133 | 0.7674 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
damilare-akin/test_worm
damilare-akin
2022-10-17T20:57:03Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-10-17T19:48:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: damilare-akin/test_worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ArafatBHossain/debert_base_fine_tuned_sent140
ArafatBHossain
2022-10-17T20:47:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T20:21:43Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: debert_base_fine_tuned_sent140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debert_base_fine_tuned_sent140 This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9678 - Accuracy: 0.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 408 | 0.8139 | 0.7219 | | 0.8198 | 2.0 | 816 | 0.7742 | 0.7460 | | 0.4479 | 3.0 | 1224 | 0.9678 | 0.7647 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bwconrad/beit-base-patch16-224-pt22k-ft22k-dafre
bwconrad
2022-10-17T20:38:52Z
0
0
null
[ "arxiv:2101.08674", "license:apache-2.0", "region:us" ]
null
2022-10-17T17:26:30Z
--- license: apache-2.0 --- A BEiT-b/16 model fine-tuned for anime character classification on the [DAF:re dataset](https://arxiv.org/abs/2101.08674). Training code can be found [here](https://github.com/bwconrad/dafre). ## DAF:re Results | Top-1 Val Acc | Top-5 Val Acc | Top-1 Test Acc| Top-5 Test Acc| |:-------------:|:-------------:|:-------------:|:-------------:| | 95.26 | 98.38 | 94.84 | 98.30 |
kevinbror/dead
kevinbror
2022-10-17T19:53:11Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-17T19:52:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dead results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dead This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6198 - Train End Logits Accuracy: 0.5843 - Train Start Logits Accuracy: 0.5459 - Validation Loss: 1.2514 - Validation End Logits Accuracy: 0.6603 - Validation Start Logits Accuracy: 0.6255 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2766, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.6198 | 0.5843 | 0.5459 | 1.2514 | 0.6603 | 0.6255 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
heriosousa/LunarLander-v2
heriosousa
2022-10-17T19:47:50Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T19:44:50Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -161.34 +/- 91.29 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'f': None 'repo_id': 'heriosousa/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
heriosousa/ppo-CartPole-v1
heriosousa
2022-10-17T19:46:56Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T19:05:13Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 148.00 +/- 47.52 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'f': '/root/.local/share/jupyter/runtime/kernel-9c96fe8c-041c-4681-aa25-a76703c94d0d.json' 'repo_id': 'heriosousa/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
introduck/en_ner_vc_lg
introduck
2022-10-17T19:19:13Z
0
2
spacy
[ "spacy", "token-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
token-classification
2022-09-29T21:30:53Z
--- language: en license: mit tags: - spacy - token-classification --- English pipeline optimized for CPU. Components: ner.
pfr/conditional-utilitarian-roberta-01
pfr
2022-10-17T19:08:15Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2008.02275", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T21:14:11Z
--- inference: parameters: function_to_apply: "none" widget: - text: "I cuddled with my dog today." --- # Conditional Utilitarian Roberta 01 ## Model description This is a [Roberta-based](https://huggingface.co/roberta-large) model. It was first fine-tuned on for computing utility estimates of experiences (see [utilitarian-roberta-01](https://huggingface.co/pfr/utilitarian-roberta-01). It was then further fine-tuned on 160 examples of pairwise comparisons of conditional utilities. ## Intended use The main use case is the computation of utility estimates of first-person text scenarios, under extra contextual information. ## Limitations The model was fine-tuned on only 160 examples, so it should be expected to have limited performance. Further, while the base model was trained on ~10000 examples, they are still restricted, and only on first-person sentences. It does not have the capability of interpreting highly complex or unusual scenarios, and it does not have hard guarantees on its domain of accuracy. ## How to use Given a scenario S under a context C, and the model U, one computes the estimated conditional utility with `U(f'{C} {S}') - U(C)`. ## Training data The first training data is the train split from the Utilitarianism part of the [ETHICS dataset](https://arxiv.org/abs/2008.02275). The second training data consists of 160 crowdsourced examples of triples (S, C0, C1) consisting of one scenario and two possible contexts, where `U(S | C0) > U(S | C1)`. ## Training procedure Starting from [utilitarian-roberta-01](https://huggingface.co/pfr/utilitarian-roberta-01), we fine-tune the model over the training data of 160 examples, with a learning rate of `1e-5`, a batch size of `8`, and for 2 epochs. ## Evaluation results The model achieves ~70% accuracy over 40 crowdsourced examples, from the same distribution as the training data.
pfr/utilitarian-roberta-01
pfr
2022-10-17T18:41:29Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2008.02275", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T20:49:32Z
--- inference: parameters: function_to_apply: "none" widget: - text: "I cuddled with my dog today." --- # Utilitarian Roberta 01 ## Model description This is a [Roberta model](https://huggingface.co/roberta-large) fine-tuned on for computing utility estimates of experiences, represented in first-person sentences. It was trained from human-annotated pairwise utility comparisons, from the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Intended use The main use case is the computation of utility estimates of first-person text scenarios. ## Limitations The model was only trained on a limited number of scenarios, and only on first-person sentences. It does not have the capability of interpreting highly complex or unusual scenarios, and it does not have hard guarantees on its domain of accuracy. ## How to use The model receives a sentence describing a scenario in first-person, and outputs a scalar representing a utility estimate. ## Training data The training data is the train split from the Utilitarianism part of the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Training procedure Training can be reproduced by executing the training procedure from [`tune.py`](https://github.com/hendrycks/ethics/blob/3e4c09259a1b4022607da093e9452383fc1bb7e3/utilitarianism/tune.py) as follows: ``` python tune.py --ngpus 1 --model roberta-large --learning_rate 1e-5 --batch_size 16 --nepochs 2 ``` ## Evaluation results The model achieves 90.8% accuracy on [The Moral Uncertainty Research Competition](https://moraluncertainty.mlsafety.org/), which consists of a subset of the ETHICS dataset.
pfr/utilitarian-deberta-01
pfr
2022-10-17T18:36:46Z
6
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "deberta-v3", "arxiv:2008.02275", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T03:33:34Z
--- tags: - deberta-v3 inference: parameters: function_to_apply: "none" widget: - text: "I cuddled with my dog today." --- # Utilitarian Deberta 01 ## Model description This is a [Deberta model](https://huggingface.co/microsoft/deberta-v3-large) fine-tuned on for computing utility estimates of experiences, represented in first-person sentences. It was trained from human-annotated pairwise utility comparisons, from the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Intended use The main use case is the computation of utility estimates of first-person text scenarios. ## Limitations The model was only trained on a limited number of scenarios, and only on first-person sentences. It does not have the capability of interpreting highly complex or unusual scenarios, and it does not have hard guarantees on its domain of accuracy. ## How to use The model receives a sentence describing a scenario in first-person, and outputs a scalar representing a utility estimate. ## Training data The training data is the train split from the Utilitarianism part of the [ETHICS dataset](https://arxiv.org/abs/2008.02275). ## Training procedure Training can be reproduced by executing the training procedure from [`tune.py`](https://github.com/hendrycks/ethics/blob/3e4c09259a1b4022607da093e9452383fc1bb7e3/utilitarianism/tune.py) as follows: ``` python tune.py --ngpus 1 --model microsoft/deberta-v3-large --learning_rate 1e-5 --batch_size 16 --nepochs 2 ``` ## Evaluation results The model achieves 92.2% accuracy on [The Moral Uncertainty Research Competition](https://moraluncertainty.mlsafety.org/), which consists of a subset of the ETHICS dataset.
sd-concepts-library/willy-hd
sd-concepts-library
2022-10-17T17:55:03Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-17T17:54:56Z
--- license: mit --- ### Willy-HD on Stable Diffusion This is the `<willy_character>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<willy_character> 0](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/1.jpeg) ![<willy_character> 1](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/2.jpeg) ![<willy_character> 2](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/0.jpeg) ![<willy_character> 3](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/4.jpeg) ![<willy_character> 4](https://huggingface.co/sd-concepts-library/willy-hd/resolve/main/concept_images/3.jpeg)
kevinbror/nyaszzzz
kevinbror
2022-10-17T17:50:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-17T17:32:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: nyaszzzz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nyaszzzz This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6801 | 0.5 | 1384 | 1.4490 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
damilare-akin/testpyramidsrnd
damilare-akin
2022-10-17T16:53:49Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-10-17T16:53:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: damilare-akin/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pachi107/autotrain-ethos-sentiments-1790262082
pachi107
2022-10-17T16:30:43Z
102
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:pachi107/autotrain-data-ethos-sentiments", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T16:29:55Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - pachi107/autotrain-data-ethos-sentiments co2_eq_emissions: emissions: 0.8181506582658064 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1790262082 - CO2 Emissions (in grams): 0.8182 ## Validation Metrics - Loss: 0.565 - Accuracy: 0.775 - Precision: 0.783 - Recall: 0.832 - AUC: 0.823 - F1: 0.807 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pachi107/autotrain-ethos-sentiments-1790262082 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262082", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262082", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
pachi107/autotrain-ethos-sentiments-1790262081
pachi107
2022-10-17T16:30:36Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:pachi107/autotrain-data-ethos-sentiments", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T16:29:48Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - pachi107/autotrain-data-ethos-sentiments co2_eq_emissions: emissions: 1.1459528952345301 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1790262081 - CO2 Emissions (in grams): 1.1460 ## Validation Metrics - Loss: 0.498 - Accuracy: 0.795 - Precision: 0.781 - Recall: 0.885 - AUC: 0.857 - F1: 0.830 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pachi107/autotrain-ethos-sentiments-1790262081 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262081", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262081", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
pachi107/autotrain-ethos-sentiments-1790262079
pachi107
2022-10-17T16:30:34Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:pachi107/autotrain-data-ethos-sentiments", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-17T16:29:42Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - pachi107/autotrain-data-ethos-sentiments co2_eq_emissions: emissions: 0.8438685047317921 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1790262079 - CO2 Emissions (in grams): 0.8439 ## Validation Metrics - Loss: 0.513 - Accuracy: 0.755 - Precision: 0.881 - Recall: 0.655 - AUC: 0.857 - F1: 0.751 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pachi107/autotrain-ethos-sentiments-1790262079 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262079", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pachi107/autotrain-ethos-sentiments-1790262079", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/zero
sd-concepts-library
2022-10-17T16:16:00Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-17T16:15:56Z
--- license: mit --- ### zero on Stable Diffusion This is the `<zero>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<zero> 0](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/1.jpeg) ![<zero> 1](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/2.jpeg) ![<zero> 2](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/0.jpeg) ![<zero> 3](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/4.jpeg) ![<zero> 4](https://huggingface.co/sd-concepts-library/zero/resolve/main/concept_images/3.jpeg)
une/uneune-diffusion
une
2022-10-17T14:58:29Z
0
1
null
[ "stable-diffusion", "text-to-image", "ja", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-10-15T04:37:52Z
--- language: - "ja" thumbnail: "https://pbs.twimg.com/media/Fei_dTPagAETB1q?format=png&name=900x900" tags: - stable-diffusion - text-to-image license: "creativeml-openrail-m" --- waifudiffusion1.3をベースに自作のイラスト学習データ348枚でチューニングさせたckptファイルです。 token:uneune class:person 自分の絵柄を学習させたデータを公開する人増えたら楽しいなぁ。 pixivでの公開など https://www.pixiv.net/artworks/101775163
israel/AmhWordPieceTokenizer
israel
2022-10-17T14:32:38Z
0
0
null
[ "Amharic", "Word Piece Tokenizer", "Tokenizer", "amh", "doi:10.57967/hf/0044", "license:cc-by-4.0", "region:us" ]
null
2022-10-17T11:11:22Z
--- language: - amh tags: - Amharic - Word Piece Tokenizer - Tokenizer license: cc-by-4.0 --- ``` from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("israel/AmhWordPieceTokenizer") encoding = tokenizer.encode("ኮሌጁ ቢያስተምርም ወደስራ የሚመድባቸው መንግስት ነው abcs") encoding.tokens ```
airnicco8/xlm-roberta-en-it-de
airnicco8
2022-10-17T14:15:20Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "english", "german", "italian", "nli", "text-classification", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-14T08:53:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - english - german - italian - nli - text-classification --- # airnicco8/xlm-roberta-en-it-de This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a student XLMRoBERTa model trained in order to have multilingual sentence embeddings for English, German and Italian. It can be fine-tuned for downstream tasks, such as: semantic similarity (example provided here), NLI and Text Classification. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('airnicco8/xlm-roberta-en-it-de') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('airnicco8/xlm-roberta-en-it-de') model = AutoModel.from_pretrained('airnicco8/xlm-roberta-en-it-de') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=airnicco8/xlm-roberta-en-it-de) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6142 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pszemraj/neuspell-scrnn-probwordnoise
pszemraj
2022-10-17T14:04:44Z
0
0
null
[ "pytorch", "neuspell", "spelling", "spell-correction", "license:apache-2.0", "region:us" ]
null
2022-10-11T02:29:11Z
--- languages: en license: apache-2.0 tags: - neuspell - spelling - spell-correction --- # neuspell-scrnn-probwordnoise > towards a reliable workaround for the `neuspell` lib being broken. See the [github repository](https://github.com/neuspell/neuspell) for usage and all official information. ## usage clone this model repo with git: ```bash sudo apt-get install git-lfs -q git clone https://huggingface.co/pszemraj/neuspell-scrnn-probwordnoise ``` install neuspell: ```bash pip install -U neuspell -q ``` use in python for spell correction: ```python from neuspell import SclstmChecker checker = SclstmChecker() checker.from_pretrained("./neuspell-scrnn-probwordnoise/") checker.correct("I luk foward to receving your reply") # correct a string checker.correct_strings( ["I luk foward to receving your reply", "were did wendigo goe boating?"] ) # correct a list of strings ```
teacookies/autotrain-17102022-cert_update_date-1786462003
teacookies
2022-10-17T12:34:15Z
109
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022-cert_update_date", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-17T12:23:09Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022-cert_update_date co2_eq_emissions: emissions: 18.37074974959855 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1786462003 - CO2 Emissions (in grams): 18.3707 ## Validation Metrics - Loss: 0.019 - Accuracy: 0.995 - Precision: 0.835 - Recall: 0.867 - F1: 0.851 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022-cert_update_date-1786462003 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022-cert_update_date-1786462003", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022-cert_update_date-1786462003", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ner4archives/fr_ner4archives_v3_with_vectors
ner4archives
2022-10-17T12:32:56Z
30
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-14T12:41:47Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_v3_with_vectors results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8829593693 - name: NER Recall type: recall value: 0.8489795918 - name: NER F Score type: f_score value: 0.8656361474 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_v3_with_vectors` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 86.56 | | `ENTS_P` | 88.30 | | `ENTS_R` | 84.90 | | `TOK2VEC_LOSS` | 13527.63 | | `NER_LOSS` | 58805.82 |
ner4archives/fr_ner4archives_v3_default
ner4archives
2022-10-17T12:31:01Z
29
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-07T16:34:00Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_v3_default results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8390532544 - name: NER Recall type: recall value: 0.8268221574 - name: NER F Score type: f_score value: 0.8328928047 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_v3_default` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 83.29 | | `ENTS_P` | 83.91 | | `ENTS_R` | 82.68 | | `TOK2VEC_LOSS` | 68553.28 | | `NER_LOSS` | 18164.88 |
ner4archives/fr_ner4archives_V3_camembert_base
ner4archives
2022-10-17T12:26:27Z
7
1
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-10-14T16:03:05Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_V3_camembert_base results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.916087963 - name: NER Recall type: recall value: 0.92303207 - name: NER F Score type: f_score value: 0.9195469068 --- | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_V3_camembert_base` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 3.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.95 | | `ENTS_P` | 91.61 | | `ENTS_R` | 92.30 | | `TRANSFORMER_LOSS` | 395487.28 | | `NER_LOSS` | 11238.70 |