modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
ish97/bert-finetuned-chunking-for-echo-reading
ish97
2022-08-29T19:27:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T18:07:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-chunking-for-echo-reading results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-chunking-for-echo-reading This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 2 | 0.4490 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 2.0 | 4 | 0.3668 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 3.0 | 6 | 0.3411 | 0.0 | 0.0 | 0.0 | 0.875 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ntinosmg/dqn-SpaceInvadersNoFrameskip-v4
ntinosmg
2022-08-29T19:21:48Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T19:21:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 555.50 +/- 234.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ntinosmg -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ntinosmg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/lustfulliberal-pg13scottwatson
huggingtweets
2022-08-29T19:11:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-26T02:13:36Z
--- language: en thumbnail: http://www.huggingtweets.com/lustfulliberal-pg13scottwatson/1661800282918/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1114620037300654082/KcWDPQsE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1231999409916764162/mo9U0uNT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Loony Liberal - Tweets or GTFO & (18+ ONLY) - The Lustful Liberal - Scorny on Main</div> <div style="text-align: center; font-size: 14px;">@lustfulliberal-pg13scottwatson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Loony Liberal - Tweets or GTFO & (18+ ONLY) - The Lustful Liberal - Scorny on Main. | Data | The Loony Liberal - Tweets or GTFO | (18+ ONLY) - The Lustful Liberal - Scorny on Main | | --- | --- | --- | | Tweets downloaded | 3234 | 3228 | | Retweets | 1055 | 893 | | Short tweets | 235 | 336 | | Tweets kept | 1944 | 1999 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20f7h18q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lustfulliberal-pg13scottwatson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1y0wr0ip) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1y0wr0ip/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lustfulliberal-pg13scottwatson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonaskoenig/xtremedistil-l6-h256-uncased-future-time-references-D1
jonaskoenig
2022-08-29T18:44:10Z
9
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "dataset:jonaskoenig/trump_administration_statement", "dataset:jonaskoenig/future-time-references-static-filter-D1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-15T10:48:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: xtremedistil-l6-h256-uncased-future-time-references-D1 results: [] datasets: - jonaskoenig/trump_administration_statement - jonaskoenig/future-time-references-static-filter-D1 --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-future-time-references-D1 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the [jonaskoenig/trump_administration_statement](https://huggingface.co/datasets/jonaskoenig/trump_administration_statement) and [jonaskoenig/future-time-refernces-static-filter](https://huggingface.co/datasets/jonaskoenig/future-time-refernces-static-filter) datsets. It achieves the following results on the evaluation set: - Train Loss: 0.0099 - Train Sparse Categorical Accuracy: 0.9977 - Validation Loss: 0.0128 - Validation Sparse Categorical Accuracy: 0.9976 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.0276 | 0.9932 | 0.0156 | 0.9968 | 0 | | 0.0138 | 0.9969 | 0.0125 | 0.9972 | 1 | | 0.0117 | 0.9974 | 0.0126 | 0.9974 | 2 | | 0.0099 | 0.9977 | 0.0128 | 0.9976 | 3 | The test accuracy is: 99.77% ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Dizzykong/Aristotle-8-29
Dizzykong
2022-08-29T17:46:28Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T16:31:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: Aristotle-8-29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aristotle-8-29 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/chrishildabrant
huggingtweets
2022-08-29T17:19:30Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T17:19:20Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1367991702523437062/x5beyUQ-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Hildabrant</div> <div style="text-align: center; font-size: 14px;">@chrishildabrant</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Hildabrant. | Data | Chris Hildabrant | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 243 | | Tweets kept | 3007 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dagd4ww/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrishildabrant's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrishildabrant') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/actbrigitte
huggingtweets
2022-08-29T16:46:55Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T16:45:33Z
--- language: en thumbnail: http://www.huggingtweets.com/actbrigitte/1661791610963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1001845274476797954/TbklBZ1r_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brigitte Gabriel</div> <div style="text-align: center; font-size: 14px;">@actbrigitte</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brigitte Gabriel. | Data | Brigitte Gabriel | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 716 | | Short tweets | 105 | | Tweets kept | 2429 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/w0rkndg8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @actbrigitte's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jtfv41h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jtfv41h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/actbrigitte') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cemilcelik/distilgpt2_pubmed
cemilcelik
2022-08-29T16:34:51Z
157
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T13:16:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2_pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_pubmed This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7569 | 1.0 | 528 | 2.0859 | | 2.1098 | 2.0 | 1056 | 1.9187 | | 2.0058 | 3.0 | 1584 | 1.8745 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
merve/20newsgroups
merve
2022-08-29T16:04:55Z
0
0
sklearn
[ "sklearn", "skops", "text-classification", "license:mit", "region:us" ]
text-classification
2022-08-29T16:04:53Z
--- license: mit library_name: sklearn tags: - sklearn - skops - text-classification --- # Model description This is a multinomial naive Bayes model trained on 20 new groups dataset. Count vectorizer and TFIDF vectorizer are used on top of the model. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------|----------------------------------------------------------------------------------------| | memory | | | steps | [('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB())] | | verbose | False | | vect | CountVectorizer() | | tfidf | TfidfTransformer() | | clf | MultinomialNB() | | vect__analyzer | word | | vect__binary | False | | vect__decode_error | strict | | vect__dtype | <class 'numpy.int64'> | | vect__encoding | utf-8 | | vect__input | content | | vect__lowercase | True | | vect__max_df | 1.0 | | vect__max_features | | | vect__min_df | 1 | | vect__ngram_range | (1, 1) | | vect__preprocessor | | | vect__stop_words | | | vect__strip_accents | | | vect__token_pattern | (?u)\b\w\w+\b | | vect__tokenizer | | | vect__vocabulary | | | tfidf__norm | l2 | | tfidf__smooth_idf | True | | tfidf__sublinear_tf | False | | tfidf__use_idf | True | | clf__alpha | 1.0 | | clf__class_prior | | | clf__fit_prior | True | </details> ### Model Plot The model plot is below. <style>#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 {color: black;background-color: white;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 pre{padding: 0;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-toggleable {background-color: white;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-item {z-index: 1;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-parallel-item:only-child::after {width: 0;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-8f9616f3-01a7-4784-b5f5-5c31d2b0f7a6" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;vect&#x27;, CountVectorizer()), (&#x27;tfidf&#x27;, TfidfTransformer()),(&#x27;clf&#x27;, MultinomialNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9caae382-ba9c-4e50-b4e0-017fa1bca4b4" type="checkbox" ><label for="9caae382-ba9c-4e50-b4e0-017fa1bca4b4" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;vect&#x27;, CountVectorizer()), (&#x27;tfidf&#x27;, TfidfTransformer()),(&#x27;clf&#x27;, MultinomialNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6bf44786-d8ef-4af0-be6a-2ac8b82cf581" type="checkbox" ><label for="6bf44786-d8ef-4af0-be6a-2ac8b82cf581" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="69b80eb1-41d4-421a-9875-a9e95faa6d45" type="checkbox" ><label for="69b80eb1-41d4-421a-9875-a9e95faa6d45" class="sk-toggleable__label sk-toggleable__label-arrow">TfidfTransformer</label><div class="sk-toggleable__content"><pre>TfidfTransformer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="63c8c7e2-7443-4092-a86b-32b1cbef1a1b" type="checkbox" ><label for="63c8c7e2-7443-4092-a86b-32b1cbef1a1b" class="sk-toggleable__label sk-toggleable__label-arrow">MultinomialNB</label><div class="sk-toggleable__content"><pre>MultinomialNB()</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: merve # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ```
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive
Atharvgarg
2022-08-29T15:47:39Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T15:10:50Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6549 - Rouge1: 38.9186 - Rouge2: 30.2223 - Rougel: 32.6201 - Rougelsum: 37.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.3838 | 1.0 | 445 | 1.4841 | 39.1621 | 30.4379 | 32.6613 | 37.9963 | | 1.0077 | 2.0 | 890 | 1.5173 | 39.388 | 30.9125 | 33.099 | 38.2442 | | 0.7983 | 3.0 | 1335 | 1.5726 | 38.7913 | 30.0766 | 32.6092 | 37.5953 | | 0.6681 | 4.0 | 1780 | 1.6549 | 38.9186 | 30.2223 | 32.6201 | 37.7502 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news
Atharvgarg
2022-08-29T12:38:44Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T11:36:02Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: distilbart-xsum-6-6-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2624 - Rouge1: 62.1927 - Rouge2: 54.4754 - Rougel: 55.868 - Rougelsum: 60.9345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.4213 | 1.0 | 445 | 0.2005 | 59.4886 | 51.7791 | 53.5126 | 58.3405 | | 0.1355 | 2.0 | 890 | 0.1887 | 61.7474 | 54.2823 | 55.7324 | 60.5787 | | 0.0891 | 3.0 | 1335 | 0.1932 | 61.1312 | 53.103 | 54.6992 | 59.8923 | | 0.0571 | 4.0 | 1780 | 0.2141 | 60.8797 | 52.6195 | 54.4402 | 59.5298 | | 0.0375 | 5.0 | 2225 | 0.2318 | 61.7875 | 53.8753 | 55.5068 | 60.5448 | | 0.0251 | 6.0 | 2670 | 0.2484 | 62.3535 | 54.6029 | 56.2804 | 61.031 | | 0.0175 | 7.0 | 3115 | 0.2542 | 61.6351 | 53.8248 | 55.6399 | 60.3765 | | 0.0133 | 8.0 | 3560 | 0.2624 | 62.1927 | 54.4754 | 55.868 | 60.9345 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mayjul/t5-small-finetuned-xsum
mayjul
2022-08-29T11:52:46Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T14:36:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.2727 - Rouge2: 7.7068 - Rougel: 22.1993 - Rougelsum: 22.2071 - Gen Len: 18.8238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7189 | 1.0 | 12753 | 2.4789 | 28.2727 | 7.7068 | 22.1993 | 22.2071 | 18.8238 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
PKM230/Lunar_lander
PKM230
2022-08-29T11:32:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T11:31:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 14.50 +/- 141.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
StefanSteib/Photographer
StefanSteib
2022-08-29T11:27:39Z
0
0
null
[ "region:us" ]
null
2022-08-29T11:26:32Z
Carry plenty cameras black clothes
hhffxx/pegasus-samsum
hhffxx
2022-08-29T10:52:44Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T06:48:07Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [stas/pegasus-cnn_dailymail-tiny-random](https://huggingface.co/stas/pegasus-cnn_dailymail-tiny-random) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 7.5735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6148 | 0.54 | 500 | 7.5735 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
autoevaluate/summarization
autoevaluate
2022-08-29T10:12:08Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "summarization", "dataset:xsum", "dataset:autoevaluate/xsum-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-05-28T12:27:47Z
--- license: apache-2.0 tags: - generated_from_trainer - summarization datasets: - xsum - autoevaluate/xsum-sample metrics: - rouge model-index: - name: summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 23.9405 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6690 - Rouge1: 23.9405 - Rouge2: 5.0879 - Rougel: 18.4981 - Rougelsum: 18.5032 - Gen Len: 18.7376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9249 | 0.08 | 1000 | 2.6690 | 23.9405 | 5.0879 | 18.4981 | 18.5032 | 18.7376 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
autoevaluate/translation
autoevaluate
2022-08-29T10:08:28Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "dataset:autoevaluate/wmt16-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T14:14:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 - autoevaluate/wmt16-sample metrics: - bleu model-index: - name: translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.5866 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.3170 - Bleu: 28.5866 - Gen Len: 33.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.8302 | 0.03 | 1000 | 1.3170 | 28.5866 | 33.9575 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
artfrontier/ddpm-butterflies-128
artfrontier
2022-08-29T09:07:51Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T07:14:18Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/artfrontier/ddpm-butterflies-128/tensorboard?#scalars)
kingabzpro/Reinforce-CartPole-v1
kingabzpro
2022-08-29T08:58:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T08:56:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
hieule/bert-finetuned-ner
hieule
2022-08-29T07:32:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T06:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9441802252816022 - name: Accuracy type: accuracy value: 0.9866221227997881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0858 - Precition: 0.9363 - Recall: 0.9522 - F1: 0.9442 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precition | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0081 | 1.0 | 1756 | 0.0914 | 0.9273 | 0.9446 | 0.9359 | 0.9848 | | 0.012 | 2.0 | 3512 | 0.0852 | 0.9321 | 0.9478 | 0.9399 | 0.9857 | | 0.0036 | 3.0 | 5268 | 0.0858 | 0.9363 | 0.9522 | 0.9442 | 0.9866 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-ja-colab-new
pinot
2022-08-29T07:21:29Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-28T16:18:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1931 - Wer: 0.2584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 5.3089 | 0.9670 | | No log | 2.0 | 1274 | 3.2716 | 0.6123 | | No log | 3.0 | 1911 | 2.1797 | 0.4708 | | No log | 4.0 | 2548 | 1.8331 | 0.4113 | | 6.3938 | 5.0 | 3185 | 1.5111 | 0.3460 | | 6.3938 | 6.0 | 3822 | 1.3575 | 0.3132 | | 6.3938 | 7.0 | 4459 | 1.2946 | 0.2957 | | 6.3938 | 8.0 | 5096 | 1.2346 | 0.2762 | | 1.023 | 9.0 | 5733 | 1.2053 | 0.2653 | | 1.023 | 10.0 | 6370 | 1.1931 | 0.2584 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shengyu/Evaluation_of_NER_models
Shengyu
2022-08-29T03:03:59Z
0
1
null
[ "region:us" ]
null
2022-08-29T02:58:44Z
# **Evaluation of the NER models in medical dataset** The goal of the whole project is to compare the NER models and feature evaluation in the medical dataset, and the program of model comparison needs to be executed in the GPU environment. Here are the instructions for the two project. ## 1. Model Comparison ### 1.1 Environment setting: (1) Python 3 environment (Python 3.6 and above) The user can click the link (https://www.python.org/) to select the appropriate python version and download. (2) Some related package in python The version of the package we used is as follows: ```shell Transformers: 4.8.2 NERDA: 0.9.5 Pytorch: 1.8.1+cu101 Tensorflow: 2.3.0 ``` The user can execute the following command in python environment. ```shell pip install tensorflow-gpu==2.3.0 -i https://pypi.doubanio.com/simple pip install transformers==4.8.2 pip install NERDA pip install sentencepiece pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html ``` ### 1.2 The process of implementation (1) Training and testing Users can check the "training&testing.ipynb" file. The user can load the models to be trained and download them locally, or directly import it into the internal model of transformers website. For example: ```python # Model loading in the "training&testing.ipynb" file transformer = '../../Model/bigbird-roberta-base/' or transformer = 'google/bigbird-roberta-base' ``` Address of model download: ```http https://huggingface.co/dmis-lab/biobert-base-cased-v1.1 https://huggingface.co/roberta-base https://huggingface.co/google/bigbird-roberta-base https://huggingface.co/microsoft/deberta-base ``` The user can download models through the above websites and put them in the "model" folder. (2) Prediction program Users can load the trained models and input new text to make that the model recognize the entities in the text. We give five trained models with the best training effect for RoBERTa, BigBird, DeBERTa, and BioBERT NER models ( The suffix of the five models ends with ". bin" ). These models is saved in "Trained model" file. For example: ```python import torch model = torch.load('../../trained_model/trained_models_by_Revised_JNLPBA_dataset/deberta.bin') model.predict_text('Number of glucocorticoid receptors in lymphocytes and their sensitivity to hormone action.') ->> ([['Number', 'of', 'glucocorticoid', 'receptors', 'in', 'lymphocytes', 'and', 'their', 'sensitivity', 'to', 'hormone','action','.']], [['O', 'O', 'B-protein','I-protein','o','B-cell_type','O','O','O','O','O','O','O']]) ``` ## 2. Feature Evaluation ### 2.1 Environment setting: (1) Some related package in python Packages we used is as follows, users can download the latest packages by ”pip install package name“ commend. ```shell 1. warnings 2. matplotlib 3. pandas 4. seaborn 5. statsmodels 6. sklearn ``` ### 2.2 The process of implementation Users can check the "feature_selection.ipynb" and "feature_evaluation.ipynb"file. Due to the privacy of the data, we did not upload the feature data, so users can view different methods of feature selection in this file. ### 3. Contact If user have any questions, please contact us. (1) Sizhu Wu - [[email protected]] (2) Shengyu Liu - [[email protected]]
rajistics/layoutlmv3-finetuned-cord_300
rajistics
2022-08-28T22:32:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T21:38:54Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_300 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9325426241660489 - name: Recall type: recall value: 0.9416167664670658 - name: F1 type: f1 value: 0.9370577281191806 - name: Accuracy type: accuracy value: 0.9363327674023769 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_300 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3434 - Precision: 0.9325 - Recall: 0.9416 - F1: 0.9371 - Accuracy: 0.9363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 1.0379 | 0.7204 | 0.7829 | 0.7504 | 0.7941 | | 1.4162 | 8.33 | 500 | 0.5642 | 0.8462 | 0.8772 | 0.8614 | 0.8820 | | 1.4162 | 12.5 | 750 | 0.3836 | 0.9055 | 0.9184 | 0.9119 | 0.9206 | | 0.3211 | 16.67 | 1000 | 0.3209 | 0.9139 | 0.9296 | 0.9217 | 0.9334 | | 0.3211 | 20.83 | 1250 | 0.2962 | 0.9275 | 0.9386 | 0.9330 | 0.9435 | | 0.1191 | 25.0 | 1500 | 0.2979 | 0.9254 | 0.9379 | 0.9316 | 0.9402 | | 0.1191 | 29.17 | 1750 | 0.3079 | 0.9282 | 0.9386 | 0.9334 | 0.9355 | | 0.059 | 33.33 | 2000 | 0.3039 | 0.9232 | 0.9364 | 0.9298 | 0.9325 | | 0.059 | 37.5 | 2250 | 0.3254 | 0.9248 | 0.9386 | 0.9316 | 0.9355 | | 0.0342 | 41.67 | 2500 | 0.3404 | 0.9246 | 0.9364 | 0.9305 | 0.9334 | | 0.0342 | 45.83 | 2750 | 0.3386 | 0.9354 | 0.9431 | 0.9392 | 0.9355 | | 0.0226 | 50.0 | 3000 | 0.3274 | 0.9354 | 0.9431 | 0.9392 | 0.9359 | | 0.0226 | 54.17 | 3250 | 0.3282 | 0.9341 | 0.9446 | 0.9393 | 0.9393 | | 0.017 | 58.33 | 3500 | 0.3475 | 0.9319 | 0.9424 | 0.9371 | 0.9363 | | 0.017 | 62.5 | 3750 | 0.3367 | 0.9340 | 0.9431 | 0.9385 | 0.9372 | | 0.0145 | 66.67 | 4000 | 0.3434 | 0.9325 | 0.9416 | 0.9371 | 0.9363 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ChaoLi/xlm-roberta-base-finetuned-panx-it
ChaoLi
2022-08-28T19:55:33Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:52:28Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8224755700325732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2521 - F1: 0.8225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8088 | 1.0 | 70 | 0.3423 | 0.7009 | | 0.2844 | 2.0 | 140 | 0.2551 | 0.8027 | | 0.1905 | 3.0 | 210 | 0.2521 | 0.8225 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-fr
ChaoLi
2022-08-28T19:52:12Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:47:35Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8325761399966348 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2978 - F1: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.574 | 1.0 | 191 | 0.3495 | 0.7889 | | 0.2649 | 2.0 | 382 | 0.2994 | 0.8242 | | 0.1716 | 3.0 | 573 | 0.2978 | 0.8326 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-de-fr
ChaoLi
2022-08-28T19:46:37Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:37:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1643 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1472 | 2.0 | 1430 | 0.1633 | 0.8488 | | 0.0948 | 3.0 | 2145 | 0.1643 | 0.8626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
baudm/trba
baudm
2022-08-28T19:03:01Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T19:01:11Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # TRBA v1.0 TRBA model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{Baek_2019_ICCV, author = {Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, title = {What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {10}, year = {2019} } ```
baudm/abinet-lv
baudm
2022-08-28T19:00:28Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:55:28Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # ABINet-LV v1.0 ABINet model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{Fang_2021_CVPR, author = {Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang, Yongdong}, title = {Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {6}, year = {2021}, pages = {7098-7107} } ```
baudm/vitstr-small-patch16-224
baudm
2022-08-28T18:53:19Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:52:01Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # ViTSTR small v1.0 ViTSTR model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 224x224 with a patch size of 16x16. Disclaimer: this model card was not written by the original author. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{atienza2021vision, title={Vision transformer for fast and efficient scene text recognition}, author={Atienza, Rowel}, booktitle={International Conference on Document Analysis and Recognition}, pages={319--334}, year={2021}, organization={Springer} } ```
caffsean/t5-base-finetuned-keyword-to-text-generation
caffsean
2022-08-28T18:36:02Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T23:29:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-keyword-to-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-keyword-to-text-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4643 - Rouge1: 2.1108 - Rouge2: 0.3331 - Rougel: 1.7368 - Rougelsum: 1.7391 - Gen Len: 16.591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 375 | 3.4862 | 2.0718 | 0.326 | 1.7275 | 1.7308 | 16.7995 | | 3.5928 | 2.0 | 750 | 3.4761 | 2.0829 | 0.3253 | 1.7192 | 1.7224 | 16.773 | | 3.5551 | 3.0 | 1125 | 3.4701 | 2.1028 | 0.3272 | 1.7274 | 1.7296 | 16.6505 | | 3.5225 | 4.0 | 1500 | 3.4671 | 2.11 | 0.3305 | 1.7343 | 1.7362 | 16.699 | | 3.5225 | 5.0 | 1875 | 3.4653 | 2.1134 | 0.3319 | 1.7418 | 1.7437 | 16.5485 | | 3.4987 | 6.0 | 2250 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.4939 | 7.0 | 2625 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.498 | 8.0 | 3000 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vikram71198/roberta-base-finetuned-irony
vikram71198
2022-08-28T18:19:31Z
106
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "Irony Detection", "Text Classification", "tweet_eval", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T17:36:41Z
--- license: apache-2.0 tags: - Irony Detection - Text Classification - tweet_eval #metrics: #- accuracy model-index: - name: roberta-base-finetuned-irony results: [] --- # roberta-base-finetuned-irony This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the Irony Dataset from [Tweet_Eval](https://huggingface.co/datasets/tweet_eval). This is the classification report after training for 10 full epochs: | | Precision | Recall | F-1 Score | Support | |:-------------:|:-----:|:----:|:---------------:|:--------:| | Not Irony (0) | 0.73 | 0.78| 0.75 | 473 | | Irony (1) | 0.62 | 0.56 | 0.59 | 311 | | accuracy | | | 0.69 | 784 | | macro avg | 0.68 | 0.67 | 0.67 | 784 | | weighted avg | 0.69 | 0.69 | 0.69 | 784 | ## Training and evaluation data All of the process to train this model is available in [this](https://github.com/vikram71198/Transformers/tree/main/Irony%20Detection) repository. The dataset has been split into 2,862 examples for training, 955 for validation & 784 for testing. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: default AdamW Optimizer - num_epochs: 10 - warmup_steps: 500 - weight_decay: 0.01 - random seed: 42 I also trained for 10 full epochs on Colab's Tesla P100-PCIE-16GB GPU. ### Training results | Epoch | Training Loss | Validation Loss | |:-------------:|:----:|:---------------:| | 1 | 0.691600 |0.6738196 | | 2 | 0.621800 | 0.611911 | | 3 | 0.510800 | 0.516174 | | 4 | 0.384700 | 0.574607 | | 5 | 0.273900 | 0.644613 | | 6 | 0.162300 | 0.846262 | | 7 | 0.119000 | 0.869178 | | 8 | 0.079700 | 1.131574 | | 9 | 0.035800 | 1.5123457 | | 10 | 0.013600 |1.5706617 | ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch.nn as nn tokenizer = AutoTokenizer.from_pretrained("vikram71198/roberta-base-finetuned-irony") model = AutoModelForSequenceClassification.from_pretrained("vikram71198/roberta-base-finetuned-irony") #Following the same truncation & padding strategy used while training encoded_input = tokenizer("Enter any text/tweet to be classified. Can input a list of tweets too.", padding = True, return_tensors='pt') output = model(**encoded_input)["logits"] #detaching the output from the computation graph detached_output = output.detach() #Applying softmax here for single label classification softmax = nn.Softmax(dim = 1) prediction_probabilities = list(softmax(detached_output).detach().numpy()) predictions = [] for x,y in prediction_probabilities: predictions.append("not_irony") if x > y else predictions.append("irony") print(predictions) ``` Please note that if you're performing inference on a lengthy dataset, split it up into multiple batches, otherwise your RAM will overflow, unless you're using a really high end GPU/TPU setup. I'd recommend a batch length of 50, if you're working with a vanilla GPU setup. ### Framework versions - Transformers 4.12.5 - Pytorch 1.11.0 - Datasets 1.17.0 - Tokenizers 0.10.3
silviacamplani/distilbert-finetuned-tapt-lm-music
silviacamplani
2022-08-28T16:28:36Z
7
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T16:24:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-finetuned-tapt-lm-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-tapt-lm-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -1000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
aware-ai/wav2vec2-xls-r-300m-english
aware-ai
2022-08-28T16:15:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_10_0", "generated_from_trainer", "de", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T12:31:54Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_10_0 - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-english This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_10_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.5577 - Wer: 0.3864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.317 | 1.0 | 7194 | 0.5577 | 0.3864 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-dapt-lm-music
silviacamplani
2022-08-28T15:42:41Z
65
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T11:31:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-finetuned-dapt-lm-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-dapt-lm-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 32911, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
buddhist-nlp/mbart-buddhist-chinese-to-eng
buddhist-nlp
2022-08-28T15:27:25Z
10
2
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "zh", "en", "autotrain_compatible", "region:us" ]
translation
2022-08-28T10:39:38Z
--- language: - zh - en tags: - translation widget: - text: "如是我闻:一时,佛在舍卫国只树花林窟,与大比丘众千二百五十人俱。" inference: false --- This model is based on MBART and translates Buddhist Chinese to English. It is optimized for a sequence length of 300 (Buddhist Chinese input sequences shouldn't exceed 150 characters). This model uses "#" with a space before and after as delimiter between sentences (in addition to the normal Chinese punctuation). Input should be converted to simplified Chinese before running. The model also doesn't like short sequences very much, for best results supply input sequences between 100 and 150 characters in length. The model shows good performance on Sūtra texts and does perform not too bad on Abhidharma and Yogācāra. However, it does have the usual problems that NMT systems have with named entities (names of persons and places). Also it shows a tendency to hallucinate at times, i.e. generating a translation that has no direct relationship with the input.
huggingtweets/giorgiameloni
huggingtweets
2022-08-28T15:17:42Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-28T15:16:16Z
--- language: en thumbnail: http://www.huggingtweets.com/giorgiameloni/1661699858331/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1134047615354646528/KqlMwvCx_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Giorgia Meloni 🇮🇹 ن</div> <div style="text-align: center; font-size: 14px;">@giorgiameloni</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Giorgia Meloni 🇮🇹 ن. | Data | Giorgia Meloni 🇮🇹 ن | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 438 | | Short tweets | 12 | | Tweets kept | 2753 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28rrt6ee/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @giorgiameloni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g0ixwv5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g0ixwv5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/giorgiameloni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tanvirkhan/distilbert-base-uncased-finetuned-imdb
tanvirkhan
2022-08-28T14:59:47Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T11:50:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yirmibesogluz/t2t-ner-ade-balanced
yirmibesogluz
2022-08-28T12:59:14Z
13
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "adverse-drug-events", "twitter", "social-media-mining-for-health", "SMM4H", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T12:30:48Z
--- license: mit language: en tags: - adverse-drug-events - twitter - social-media-mining-for-health - SMM4H widget: - text: "ner ade: i'm so irritable when my vyvanse wears off" example_title: "ADE" - text: "ner ade: bout to have a kick ass summer then it's time to get serious fer school #vyvanse #geekmode" example_title: "noADE" --- ## t2t-ner-ade-balanced t2t-ner-ade-balanced is a text-to-text (**t2t**) adverse drug event (**ade**) extraction (NER) model trained with over- and undersampled (balanced) English tweets reporting adverse drug events. It is trained as part of BOUN-TABI system for the Social Media Mining for Health (SMM4H) 2022 shared task. The system description paper has been accepted for publication in *Proceedings of the Seventh Social Media Mining for Health (#SMM4H) Workshop and Shared Task* and will be available soon. The source code has been released on GitHub at [https://github.com/gokceuludogan/boun-tabi-smm4h22](https://github.com/gokceuludogan/boun-tabi-smm4h22). The model utilizes the T5 model and its text-to-text formulation. The inputs are fed to the model with the task prefix "ner ade:", followed with a sentence/tweet. In turn, either the extracted adverse event span is returned, or "none". ## Requirements ``` sentencepiece transformers ``` ## Usage ```python from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced") model = AutoModelForSeq2SeqLM.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced") predictor = pipeline("text2text-generation", model=model, tokenizer=tokenizer) predictor("ner ade: i'm so irritable when my vyvanse wears off") ``` ## Citation ```bibtex @inproceedings{uludogan-gokce-yirmibesoglu-zeynep-2022-boun-tabi-smm4h22, title = "{BOUN}-{TABI}@{SMM4H}'22: Text-to-{T}ext {A}dverse {D}rug {E}vent {E}xtraction with {D}ata {B}alancing and {P}rompting", author = "Uludo{\u{g}}an, G{\"{o}}k{\c{c}}e and Yirmibe{\c{s}}o{\u{g}}lu, Zeynep", booktitle = "Proceedings of the Seventh Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", year = "2022", } ```
Mcy/t5-small-finetuned-xsum
Mcy
2022-08-28T12:40:36Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T08:59:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 178 | 1.9530 | 9.1314 | 1.226 | 9.1213 | 9.1047 | 14.4473 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/bmrf_alerts
huggingtweets
2022-08-28T11:57:30Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-25T15:42:06Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/947480106469023744/dxcygpaz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Black Mesa Announcement System</div> <div style="text-align: center; font-size: 14px;">@bmrf_alerts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Black Mesa Announcement System. | Data | Black Mesa Announcement System | | --- | --- | | Tweets downloaded | 3251 | | Retweets | 0 | | Short tweets | 2 | | Tweets kept | 3249 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c177htj1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bmrf_alerts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19dwnb8u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19dwnb8u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bmrf_alerts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Shivus/q-FrozenLake-v1-4x4-noSlippery
Shivus
2022-08-28T11:25:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T11:25:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Shivus/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
silviacamplani/distilbert-finetuned-ner-music
silviacamplani
2022-08-28T10:44:38Z
4
1
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T10:40:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-ner-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-ner-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6767 - Validation Loss: 0.7802 - Train Precision: 0.5256 - Train Recall: 0.5824 - Train F1: 0.5525 - Train Accuracy: 0.8017 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.6671 | 2.0032 | 0.0 | 0.0 | 0.0 | 0.5482 | 0 | | 1.7401 | 1.5194 | 0.1820 | 0.0693 | 0.1004 | 0.5902 | 1 | | 1.3487 | 1.2627 | 0.2628 | 0.2952 | 0.2781 | 0.6766 | 2 | | 1.1390 | 1.0990 | 0.4018 | 0.4527 | 0.4257 | 0.7181 | 3 | | 0.9823 | 0.9837 | 0.4575 | 0.4887 | 0.4726 | 0.7311 | 4 | | 0.8741 | 0.9022 | 0.5008 | 0.5338 | 0.5168 | 0.7544 | 5 | | 0.7904 | 0.8449 | 0.5085 | 0.5626 | 0.5342 | 0.7776 | 6 | | 0.7327 | 0.8097 | 0.5211 | 0.5779 | 0.5480 | 0.7917 | 7 | | 0.7000 | 0.7872 | 0.5281 | 0.5842 | 0.5547 | 0.7975 | 8 | | 0.6767 | 0.7802 | 0.5256 | 0.5824 | 0.5525 | 0.8017 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
flair/ner-german-large
flair
2022-08-28T09:08:06Z
221,703
39
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "arxiv:2011.06993", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 widget: - text: "George Washington ging nach Washington" --- ## German NER in Flair (large model) This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,31** (CoNLL-03 German revised) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-german-large") # make example sentence sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03_GERMAN corpus = CONLL_03_GERMAN() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-german-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
paola-md/recipe-lr1e05-wd0.02-bs32
paola-md
2022-08-28T08:41:28Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T08:13:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.02-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.02-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.1-bs32
paola-md
2022-08-28T08:13:25Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T07:45:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
yoyoyo1118/xlm-roberta-base-finetuned-panx-de-fr
yoyoyo1118
2022-08-28T07:53:58Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T07:31:23Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Minds/rare-puppers
Minds
2022-08-28T06:54:12Z
45
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-28T06:54:01Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8888888955116272 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### fresh leaf of plant ![fresh leaf of plant](images/fresh_leaf_of_plant.jpg) #### plant diseases ![plant diseases](images/plant_diseases.jpg)
paola-md/recipe-lr8e06-wd0.02-bs32
paola-md
2022-08-28T06:49:07Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T06:21:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.02-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.02-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 - Rmse: 0.5246 - Mse: 0.2752 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2773 | 0.5266 | 0.2773 | 0.4296 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4144 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5251 | 0.2758 | 0.4232 | | 0.2705 | 6.0 | 3738 | 0.2752 | 0.5246 | 0.2752 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.1-bs32
paola-md
2022-08-28T06:21:06Z
167
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T05:53:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 - Rmse: 0.5246 - Mse: 0.2752 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2773 | 0.5266 | 0.2773 | 0.4297 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4144 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5252 | 0.2758 | 0.4233 | | 0.2705 | 6.0 | 3738 | 0.2752 | 0.5246 | 0.2752 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
yoyoyo1118/xlm-roberta-base-finetuned-panx-de
yoyoyo1118
2022-08-28T06:05:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T05:45:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr8e06-wd0.005-bs32
paola-md
2022-08-28T05:53:02Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T05:25:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.005-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.005-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 - Rmse: 0.5246 - Mse: 0.2752 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2773 | 0.5266 | 0.2773 | 0.4296 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4144 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5251 | 0.2758 | 0.4232 | | 0.2705 | 6.0 | 3738 | 0.2752 | 0.5246 | 0.2752 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
rebolforces/Reinforce-CartPole-v1-exp2
rebolforces
2022-08-28T05:35:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T05:35:26Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-exp2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr8e06-wd0.01-bs32
paola-md
2022-08-28T05:25:05Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T04:57:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2753 - Rmse: 0.5246 - Mse: 0.2753 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2774 | 0.5266 | 0.2774 | 0.4296 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4145 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5251 | 0.2758 | 0.4232 | | 0.2705 | 6.0 | 3738 | 0.2753 | 0.5246 | 0.2753 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
rebolforces/Reinforce-CartPole-v1-exp1
rebolforces
2022-08-28T05:11:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T05:10:50Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-exp1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 458.90 +/- 80.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr1e05-wd0.1-bs8
paola-md
2022-08-28T03:18:14Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T02:53:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Rmse: 0.5271 - Mse: 0.2779 - Mae: 0.4280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2740 | 0.5235 | 0.2740 | 0.4175 | | 0.2738 | 2.0 | 4980 | 0.2785 | 0.5277 | 0.2785 | 0.4296 | | 0.2724 | 3.0 | 7470 | 0.2779 | 0.5271 | 0.2779 | 0.4280 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
anas-awadalla/distilroberta-base-task-specific-distilation-on-squad
anas-awadalla
2022-08-28T01:17:22Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-27T23:50:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilroberta-base-task-specific-distilation-on-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-task-specific-distilation-on-squad This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
paola-md/recipe-lr8e06-wd0.005-bs8
paola-md
2022-08-28T01:12:20Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T00:48:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.005-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.005-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Rmse: 0.5274 - Mse: 0.2782 - Mae: 0.4298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2739 | 0.5234 | 0.2739 | 0.4154 | | 0.2739 | 2.0 | 4980 | 0.2768 | 0.5261 | 0.2768 | 0.4273 | | 0.2725 | 3.0 | 7470 | 0.2782 | 0.5274 | 0.2782 | 0.4298 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.01-bs8
paola-md
2022-08-28T00:47:15Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T00:22:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Rmse: 0.5274 - Mse: 0.2782 - Mae: 0.4299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2739 | 2.0 | 4980 | 0.2769 | 0.5262 | 0.2769 | 0.4274 | | 0.2725 | 3.0 | 7470 | 0.2782 | 0.5274 | 0.2782 | 0.4299 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.02-bs8
paola-md
2022-08-28T00:22:11Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:57:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.02-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.02-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2767 - Rmse: 0.5260 - Mse: 0.2767 - Mae: 0.4245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 2490 | 0.2746 | 0.5240 | 0.2746 | 0.4201 | | 0.2739 | 2.0 | 4980 | 0.2810 | 0.5301 | 0.2810 | 0.4329 | | 0.2723 | 3.0 | 7470 | 0.2767 | 0.5260 | 0.2767 | 0.4245 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.1-bs8
paola-md
2022-08-27T23:57:08Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:32:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2768 - Rmse: 0.5262 - Mse: 0.2768 - Mae: 0.4258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 2490 | 0.2745 | 0.5239 | 0.2745 | 0.4180 | | 0.2739 | 2.0 | 4980 | 0.2814 | 0.5304 | 0.2814 | 0.4321 | | 0.2723 | 3.0 | 7470 | 0.2768 | 0.5262 | 0.2768 | 0.4258 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
caffsean/t5-small-finetuned-keyword-to-text-generation
caffsean
2022-08-27T23:15:01Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T20:39:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-keyword-to-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-keyword-to-text-generation This model is a fine-tuned version of [caffsean/t5-small-finetuned-keyword-to-text-generation](https://huggingface.co/caffsean/t5-small-finetuned-keyword-to-text-generation) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 188 | 3.8742 | 0.5567 | 0.0851 | 0.4968 | 0.4972 | 16.243 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.01-bs8
paola-md
2022-08-27T23:07:05Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:42:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.01-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.01-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2765 - Rmse: 0.5259 - Mse: 0.2765 - Mae: 0.4240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 2490 | 0.2743 | 0.5237 | 0.2743 | 0.4175 | | 0.2739 | 2.0 | 4980 | 0.2801 | 0.5292 | 0.2801 | 0.4307 | | 0.2723 | 3.0 | 7470 | 0.2765 | 0.5259 | 0.2765 | 0.4240 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.02-bs16
paola-md
2022-08-27T22:42:16Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:25:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2793 - Rmse: 0.5285 - Mse: 0.2793 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4125 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5250 | 0.2757 | 0.4212 | | 0.2727 | 3.0 | 3735 | 0.2793 | 0.5285 | 0.2793 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/bart-paraphrase-v4-e1-feedback
theojolliffe
2022-08-27T22:37:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T22:26:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-v4-e1-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v4-e1-feedback This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 27 | 3.9313 | 67.6687 | 57.1881 | 66.7507 | 66.2643 | 20.0 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
paola-md/recipe-lr1e05-wd0.1-bs16
paola-md
2022-08-27T22:24:30Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - Rmse: 0.5286 - Mse: 0.2794 - Mae: 0.4343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4124 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5250 | 0.2757 | 0.4211 | | 0.2727 | 3.0 | 3735 | 0.2794 | 0.5286 | 0.2794 | 0.4343 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.02-bs16
paola-md
2022-08-27T21:31:07Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T21:13:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2795 - Rmse: 0.5287 - Mse: 0.2795 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2745 | 0.5239 | 0.2745 | 0.4140 | | 0.2741 | 2.0 | 2490 | 0.2760 | 0.5254 | 0.2760 | 0.4222 | | 0.2729 | 3.0 | 3735 | 0.2795 | 0.5287 | 0.2795 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
Bahushruth/distilbert-base-uncased-distilled-clinc
Bahushruth
2022-08-27T21:15:24Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:55:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr8e06-wd0.1-bs16
paola-md
2022-08-27T21:13:06Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:55:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2795 - Rmse: 0.5287 - Mse: 0.2795 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2745 | 0.5239 | 0.2745 | 0.4140 | | 0.2741 | 2.0 | 2490 | 0.2760 | 0.5253 | 0.2760 | 0.4222 | | 0.2729 | 3.0 | 3735 | 0.2795 | 0.5287 | 0.2795 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.005-bs16
paola-md
2022-08-27T20:55:19Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:38:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.005-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.005-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - Rmse: 0.5286 - Mse: 0.2794 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2745 | 0.5239 | 0.2745 | 0.4140 | | 0.2741 | 2.0 | 2490 | 0.2760 | 0.5253 | 0.2760 | 0.4222 | | 0.2729 | 3.0 | 3735 | 0.2794 | 0.5286 | 0.2794 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.02-bs16
paola-md
2022-08-27T20:19:45Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:02:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2780 - Rmse: 0.5272 - Mse: 0.2780 - Mae: 0.4313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 1245 | 0.2743 | 0.5237 | 0.2743 | 0.4111 | | 0.2738 | 2.0 | 2490 | 0.2814 | 0.5305 | 0.2814 | 0.4294 | | 0.2725 | 3.0 | 3735 | 0.2780 | 0.5272 | 0.2780 | 0.4313 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.1-bs16
paola-md
2022-08-27T20:01:59Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:44:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Rmse: 0.5275 - Mse: 0.2783 - Mae: 0.4319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 1245 | 0.2744 | 0.5238 | 0.2744 | 0.4105 | | 0.2738 | 2.0 | 2490 | 0.2819 | 0.5309 | 0.2819 | 0.4298 | | 0.2724 | 3.0 | 3735 | 0.2783 | 0.5275 | 0.2783 | 0.4319 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.01-bs16
paola-md
2022-08-27T19:26:37Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:08:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.01-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.01-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2792 - Rmse: 0.5284 - Mse: 0.2792 - Mae: 0.4332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2768 | 1.0 | 1245 | 0.2747 | 0.5241 | 0.2747 | 0.4081 | | 0.2737 | 2.0 | 2490 | 0.2793 | 0.5285 | 0.2793 | 0.4288 | | 0.2722 | 3.0 | 3735 | 0.2792 | 0.5284 | 0.2792 | 0.4332 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
BigSalmon/Infill2
BigSalmon
2022-08-27T19:24:38Z
163
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T19:08:51Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Infill2") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Infill2") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` Infill / Infilling / Masking / Phrase Masking ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** ``` ``` original: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the [MASK] star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently [MASK] the big screen in Garden State, which he also directed. Farrell is pencilled in to [MASK] of Crockett in a film version of 1980s police [MASK] Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. infill: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the show. The film star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently been seen on the big screen in Garden State, which he also directed. Farrell is pencilled in to play the role of Crockett in a film version of 1980s police drama Miami Vice. Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. ```
Bahushruth/distilbert-base-uncased-finetuned-clinc
Bahushruth
2022-08-27T19:19:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T18:37:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7711 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2892 | 1.0 | 318 | 3.2830 | 0.7426 | | 2.627 | 2.0 | 636 | 1.8728 | 0.8410 | | 1.5429 | 3.0 | 954 | 1.1555 | 0.8913 | | 1.0089 | 4.0 | 1272 | 0.8530 | 0.9126 | | 0.7939 | 5.0 | 1590 | 0.7711 | 0.9174 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion
ChaoLi
2022-08-27T19:17:37Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:01:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9242101664142519 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2189 - Accuracy: 0.9245 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8191 | 1.0 | 250 | 0.3159 | 0.9065 | 0.9046 | | 0.2411 | 2.0 | 500 | 0.2189 | 0.9245 | 0.9242 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
danieladejumo/Pong-PLE-v0
danieladejumo
2022-08-27T18:24:35Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T18:24:26Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pong-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
wannaphong/khanomtan-tts-v1.1
wannaphong
2022-08-27T16:41:51Z
10
3
transformers
[ "transformers", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-08-26T15:17:07Z
--- license: apache-2.0 --- # KhanomTan TTS v1.1 KhanomTan TTS (ขนมตาล) is an open-source Thai text-to-speech model that supports multilingual speakers such as Thai, English, and others. KhanomTan TTS v1.1 is a YourTTS model trained on multilingual languages that supports Thai. We use Thai speech corpora, TSync 1* and TSync 2* [mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS](https://huggingface.co/datasets/mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS) to train the YourTTS model by using code from the 🐸 Coqui-TTS and remove the voice that have the license's problem (All voice that doesn't use CC-0 or public license) from model, so the model's license is apache-2.0. ## Speakers - Linda (English, female, [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)) - Bernard (fr-fr, male, [m-ailabs](https://www.caito.de/2019/01/03/the-m-ailabs-speech-dataset/)) - Kerstin (x-de, female, [Rhasspy](https://github.com/rhasspy/dataset-voice-kerstin)) - Thorsten (x-de, male, [Thorsten](https://www.thorsten-voice.de/)) ## Language - th-th: Thai - en: English - fr-fr: French language - pt-br: Portuguese - x-de: Danish - x-lb: Luxembourgish *Note: Those are not complete corpus. We can access the public corpus only.
espnet/americasnlp22-asr-tav
espnet
2022-08-27T16:12:23Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "tav", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-06T19:08:34Z
--- tags: - espnet - audio - automatic-speech-recognition language: tav datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-tav` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 66ca5df9f08b6084dbde4d9f312fa8ba0a47ecfc pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-tav \ --lang tav \ --local_data_opts "--lang tav" \ --train_set train_tav \ --valid_set dev_tav \ --test_sets dev_tav \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_tav/text \ --bpe_train_text data/train_tav/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 02:36:59 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_tav_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|1201|3.0|83.1|13.9|17.0|114.0|99.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|8606|57.5|19.9|22.7|12.0|54.5|99.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|6741|49.2|28.5|22.3|12.6|63.4|99.6| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_tav_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_tav_bpe100_sp/train/speech_shape - exp/asr_stats_raw_tav_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_tav_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_tav_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_tav_sp/wav.scp - speech - sound - - dump/raw/train_tav_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_tav/wav.scp - speech - sound - - dump/raw/dev_tav/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - '''' - i - h - o - e - u - U - do - ':' - li - na - sa - ▁ti - n - k - ',' - '~' - p - ye - le - ka - ta - pe - ▁ni - ti - ▁ihi - ▁ma - ▁~ - 'no' - ya - s - ▁wa - aye - t - . - y - m - g - d - r - ã - '"' - õ - ( - ) - l - '!' - c - '0' - I - '[' - ']' - '2' - '-' - ç - M - '6' - f - A - D - '?' - J - j - Y - z - Õ - K - '`' - Ã - O - N - F - C - '1' - S - P - L - T - G - v - ñ - b - H - E - '3' - '4' - '5' - '7' - B - W - é - ó - ́ - w - í - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/tav_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/americasnlp22-asr-quy
espnet
2022-08-27T16:07:06Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "quy", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-13T17:12:18Z
--- tags: - espnet - audio - automatic-speech-recognition language: quy datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-quy` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fc62b1ce3e50c5ef8a2ac8cedb0d92ac41df54ca pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-quy \ --lang quy \ --local_data_opts "--lang quy" \ --train_set train_quy \ --valid_set dev_quy \ --test_sets dev_quy \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_quy/text \ --bpe_train_text data/train_quy/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 04:51:42 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_quy_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_quy|250|11465|18.7|67.0|14.3|4.3|85.6|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_quy|250|95334|78.6|8.0|13.4|10.1|31.5|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_quy|250|51740|64.7|18.6|16.7|9.7|45.0|100.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_quy_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_quy_bpe100_sp/train/speech_shape - exp/asr_stats_raw_quy_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_quy_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_quy_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_quy_sp/wav.scp - speech - sound - - dump/raw/train_quy_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_quy/wav.scp - speech - sound - - dump/raw/dev_quy/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - n - y - u - qa - s - ta - q - ri - ku - i - kuna - r - m - e - cha - pi - pa - o - lla - na - ▁kay - ▁ka - ▁chay - c - chu - ki - ▁wa - ña - w - ▁pa - ra - si - man - pas - sqa - l - tu - nku - ▁ma - yku - taq - ▁a - ▁ima - d - ti - chi - manta - ya - ka - mi - h - p - wan - nchik - ll - chkan - spa - ▁ha - ▁ni - pu - yta - chik - mun - ni - paq - sun - ▁mana - ▁wi - k - ▁allin - ▁ancha - ▁hina - rí - ▁punchaw - ▁yacha - ▁llaqta - ñ - ynin - ▁rima - b - ▁huk - skan - '''' - g - j - z - á - ó - í - ú - f - v - t - x - é - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/quy_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
danieladejumo/Reinforce-Pixelcopter-PLE-v0
danieladejumo
2022-08-27T16:05:55Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T16:05:49Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.30 +/- 8.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
muhtasham/tajroberto-ner
muhtasham
2022-08-27T15:37:05Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T15:27:16Z
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: tajroberto-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tg split: train+test args: tg metrics: - name: Precision type: precision value: 0.3155080213903743 - name: Recall type: recall value: 0.5673076923076923 - name: F1 type: f1 value: 0.4054982817869416 - name: Accuracy type: accuracy value: 0.83597621407334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tajroberto-ner This model is a fine-tuned version of [muhtasham/RoBERTa-tg](https://huggingface.co/muhtasham/RoBERTa-tg) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.9408 - Precision: 0.3155 - Recall: 0.5673 - F1: 0.4055 - Accuracy: 0.8360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 50 | 0.7710 | 0.0532 | 0.1827 | 0.0824 | 0.6933 | | No log | 4.0 | 100 | 0.5901 | 0.0847 | 0.25 | 0.1265 | 0.7825 | | No log | 6.0 | 150 | 0.5226 | 0.2087 | 0.4615 | 0.2874 | 0.8186 | | No log | 8.0 | 200 | 0.5041 | 0.2585 | 0.5096 | 0.3430 | 0.8449 | | No log | 10.0 | 250 | 0.5592 | 0.2819 | 0.5096 | 0.3630 | 0.8499 | | No log | 12.0 | 300 | 0.5725 | 0.3032 | 0.5481 | 0.3904 | 0.8558 | | No log | 14.0 | 350 | 0.6433 | 0.3122 | 0.5673 | 0.4027 | 0.8508 | | No log | 16.0 | 400 | 0.6744 | 0.3543 | 0.5962 | 0.4444 | 0.8553 | | No log | 18.0 | 450 | 0.7617 | 0.3353 | 0.5577 | 0.4188 | 0.8335 | | 0.2508 | 20.0 | 500 | 0.7608 | 0.3262 | 0.5865 | 0.4192 | 0.8419 | | 0.2508 | 22.0 | 550 | 0.8483 | 0.3224 | 0.5673 | 0.4111 | 0.8494 | | 0.2508 | 24.0 | 600 | 0.8370 | 0.3275 | 0.5385 | 0.4073 | 0.8439 | | 0.2508 | 26.0 | 650 | 0.8652 | 0.3410 | 0.5673 | 0.4260 | 0.8394 | | 0.2508 | 28.0 | 700 | 0.9441 | 0.3409 | 0.5769 | 0.4286 | 0.8216 | | 0.2508 | 30.0 | 750 | 0.9228 | 0.3333 | 0.5577 | 0.4173 | 0.8439 | | 0.2508 | 32.0 | 800 | 0.9175 | 0.3430 | 0.5673 | 0.4275 | 0.8355 | | 0.2508 | 34.0 | 850 | 0.9603 | 0.3073 | 0.5288 | 0.3887 | 0.8340 | | 0.2508 | 36.0 | 900 | 0.9417 | 0.3240 | 0.5577 | 0.4099 | 0.8370 | | 0.2508 | 38.0 | 950 | 0.9408 | 0.3155 | 0.5673 | 0.4055 | 0.8360 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
fractalego/conversation-qa
fractalego
2022-08-27T14:25:41Z
35
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "doi:10.57967/hf/0010", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-21T10:26:36Z
# Conversational QA This framework is trained on the [CoQA dataset](https://stanfordnlp.github.io/coqa/). # Install pip install conversation-qa # Example ```python from conversation_qa import QA, Dialogue qa = QA("fractalego/conversation-qa") dialogue = Dialogue() dialogue.add_dialogue_pair("Where was the cat?", "The fence.") text = "A white cat is on the fence." query = "What color is it?" qa.get_answer(text, dialogue.get_text(), query) ```
theojolliffe/T5-model-1-d-4
theojolliffe
2022-08-27T14:20:07Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:54:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-4 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0456 - Rouge1: 93.3486 - Rouge2: 82.1873 - Rougel: 92.8611 - Rougelsum: 92.7768 - Gen Len: 14.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0873 | 1.0 | 8043 | 0.0456 | 93.3486 | 82.1873 | 92.8611 | 92.7768 | 14.9953 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
nrazavi/xlm-roberta-base-finetuned-panx-all
nrazavi
2022-08-27T14:19:11Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T14:01:42Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - F1: 0.8560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3057 | 1.0 | 835 | 0.1901 | 0.8135 | | 0.1565 | 2.0 | 1670 | 0.1727 | 0.8436 | | 0.1021 | 3.0 | 2505 | 0.1727 | 0.8560 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
UKI001/ddpm-butterflies-128
UKI001
2022-08-27T14:10:15Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-27T13:35:30Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/UKI001/ddpm-butterflies-128/tensorboard?#scalars)
danieladejumo/Reinforce-CartPole-v1
danieladejumo
2022-08-27T14:05:13Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T14:03:47Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 83.20 +/- 44.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
huggingtweets/nickelodeon-nickjr-sesamestreet
huggingtweets
2022-08-27T13:55:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T13:54:55Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1326222819248791552/u6HtLEIV_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478805340212838413/YAJM_fei_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1516077327981109259/Z4JJ2Pey_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sesame Street & Nick Jr. & Nickelodeon</div> <div style="text-align: center; font-size: 14px;">@nickelodeon-nickjr-sesamestreet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sesame Street & Nick Jr. & Nickelodeon. | Data | Sesame Street | Nick Jr. | Nickelodeon | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3250 | | Retweets | 746 | 51 | 54 | | Short tweets | 41 | 754 | 658 | | Tweets kept | 2463 | 2445 | 2538 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2en4utsq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nickelodeon-nickjr-sesamestreet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6x3fqezt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6x3fqezt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nickelodeon-nickjr-sesamestreet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Shamus/mBART_skr-en_longerrun
Shamus
2022-08-27T11:28:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T07:38:38Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mBART_skr-en_longerrun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART_skr-en_longerrun This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4577 - Bleu: 30.8071 - Gen Len: 34.548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.5444 | 0.72 | 500 | 1.3416 | 28.7505 | 34.228 | | 0.8576 | 1.45 | 1000 | 1.3411 | 30.1776 | 34.328 | | 0.6422 | 2.18 | 1500 | 1.3882 | 30.2815 | 34.164 | | 0.532 | 2.9 | 2000 | 1.3716 | 30.8947 | 34.556 | | 0.4473 | 3.63 | 2500 | 1.4577 | 30.8071 | 34.548 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rangacharysrinivasan/electra-small-discriminator-finetuned-squad
rangacharysrinivasan
2022-08-27T10:31:10Z
8
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-26T08:33:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-small-discriminator-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3825 | 1.0 | 5533 | 1.2656 | | 1.1783 | 2.0 | 11066 | 1.1815 | | 1.0474 | 3.0 | 16599 | 1.1658 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-ja-colab-3
pinot
2022-08-27T06:14:51Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T23:39:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-3 This model is a fine-tuned version of [pinot/wav2vec2-large-xls-r-300m-ja-colab-2](https://huggingface.co/pinot/wav2vec2-large-xls-r-300m-ja-colab-2) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2696 - Wer: 0.2299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 1.4666 | 0.2862 | | No log | 2.0 | 1274 | 1.4405 | 0.2866 | | No log | 3.0 | 1911 | 1.4162 | 0.2762 | | No log | 4.0 | 2548 | 1.4128 | 0.2709 | | 0.2814 | 5.0 | 3185 | 1.3927 | 0.2613 | | 0.2814 | 6.0 | 3822 | 1.3629 | 0.2536 | | 0.2814 | 7.0 | 4459 | 1.3349 | 0.2429 | | 0.2814 | 8.0 | 5096 | 1.3116 | 0.2356 | | 0.1624 | 9.0 | 5733 | 1.2774 | 0.2307 | | 0.1624 | 10.0 | 6370 | 1.2696 | 0.2299 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bnsh/ddpm-butterflies-128
bnsh
2022-08-27T05:56:30Z
5
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-27T04:43:24Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/bnsh/ddpm-butterflies-128/tensorboard?#scalars)
JNK789/distilbert-base-uncased-finetuned-emotion
JNK789
2022-08-27T03:55:45Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T18:53:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9307950942842982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1712 - Accuracy: 0.9305 - F1: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7721 | 1.0 | 250 | 0.2778 | 0.9145 | 0.9131 | | 0.2103 | 2.0 | 500 | 0.1818 | 0.925 | 0.9249 | | 0.1446 | 3.0 | 750 | 0.1712 | 0.9305 | 0.9308 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/noagencynewyork
huggingtweets
2022-08-27T03:15:02Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T03:03:46Z
--- language: en thumbnail: http://www.huggingtweets.com/noagencynewyork/1661570097601/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486361303165947905/nUHbxq9z_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">No Agency New York</div> <div style="text-align: center; font-size: 14px;">@noagencynewyork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from No Agency New York. | Data | No Agency New York | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 396 | | Short tweets | 709 | | Tweets kept | 2141 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2loewb7b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @noagencynewyork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32oryfuk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32oryfuk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/noagencynewyork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mindofmadness/faces01
mindofmadness
2022-08-27T02:11:32Z
0
0
null
[ "region:us" ]
null
2022-08-27T02:08:30Z
short narrow face, mid size lips, light freckles on upper cheeks, light grey eyes, brunette hair, nerd glasses
caffsean/distilbert-base-uncased-finetuned-for-tweet-sentiment
caffsean
2022-08-27T02:07:47Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T01:57:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-for-tweet-sentiment results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249379397708433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-for-tweet-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.925 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3561 | 1.0 | 250 | 0.3072 | 0.9115 | 0.9098 | | 0.2195 | 2.0 | 500 | 0.2161 | 0.925 | 0.9249 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
caffsean/distilbert-base-uncased-finetuned-emotion
caffsean
2022-08-27T01:27:28Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T00:35:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9223304536402763 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2111 - Accuracy: 0.9225 - F1: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8274 | 1.0 | 250 | 0.3054 | 0.912 | 0.9096 | | 0.2409 | 2.0 | 500 | 0.2111 | 0.9225 | 0.9223 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
moyix/csrc_774m
moyix
2022-08-26T23:42:27Z
9
6
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "programming", "causal-lm", "code", "license:cc0-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: code thumbnail: https://doesnotexist.codes/messlab.png tags: - programming - gpt2 - causal-lm license: cc0-1.0 --- # GPT-CSRC This is a GPT2 774M model trained on the C/C++ code of the top 10,000 most popular packages in Debian, according to the [Debian Popularity Contest](https://popcon.debian.org/). The source files were deduplicated using a process similar to the OpenWebText preprocessing (basically a locality-sensitive hash to detect near-duplicates). The model was originally trained using [NVIDIA's Megatron-LM](https://github.com/nvidia/Megatron-LM) but has been converted to Huggingface. Note that the tokenizer is *not* the standard GPT2 BPE vocab, but one that has been trained for this dataset; the tokenizer is also available from this repository. The processed dataset (in JSON format) can be found here: [csrc\_dataset\_large.json.gz](https://moyix.net/~moyix/csrc_dataset_large.json.gz). This model was used to generate snippets for the web site [This Code Does Not Exist](https://doesnotexist.codes/). # Usage ``` >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("moyix/csrc_774m") >>> device = torch.device("cuda") >>> model.to(device) >>> tokenizer = AutoTokenizer.from_pretrained("moyix/csrc_774m") >>> prompt = tokenizer.encode('// say hello\nvoid hello() {', return_tensors="pt") >>> output = model.generate(input_ids=prompt.to(device), max_length=32, num_return_sequences=1, do_sample=True, num_beams=4) >>> print(tokenizer.decode(output[0].tolist(),clean_up_tokenization_spaces=True)) // say hello void hello() { std::cout << "hello" << std::endl; } int main() { ```
nrazavi/xlm-roberta-base-finetuned-panx-de
nrazavi
2022-08-26T22:31:10Z
128
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-26T22:12:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8609504366564591 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - F1: 0.8610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2594 | 1.0 | 525 | 0.1734 | 0.8095 | | 0.1305 | 2.0 | 1050 | 0.1414 | 0.8462 | | 0.0818 | 3.0 | 1575 | 0.1359 | 0.8610 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
hhffxx/xlm-roberta-base-finetuned-panx-en
hhffxx
2022-08-26T20:52:39Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-26T20:08:33Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6307099614749588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.7589 - F1: 0.6307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9453 | 1.0 | 1180 | 0.7589 | 0.6307 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
daviddaubner/ppo-LunarLander-v2
daviddaubner
2022-08-26T20:32:54Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-26T20:32:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 196.29 +/- 79.87 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```