modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 00:39:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 00:38:59
card
stringlengths
11
1.01M
Chikashi/t5-small-finetuned-cnndm3-wikihow3
Chikashi
2022-04-16T01:42:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikihow", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T23:11:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm3-wikihow3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.2654 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm3-wikihow3 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm3-wikihow2](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm3-wikihow2) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3138 - Rouge1: 27.2654 - Rouge2: 10.5461 - Rougel: 23.2451 - Rougelsum: 26.6151 - Gen Len: 18.5263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.5019 | 1.0 | 39313 | 2.3138 | 27.2654 | 10.5461 | 23.2451 | 26.6151 | 18.5263 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
AdwayK/hugging_face_biobert_MLMA
AdwayK
2022-04-16T00:19:03Z
5
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-14T22:28:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: AdwayK/hugging_face_biobert_MLMA results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AdwayK/hugging_face_biobert_MLMA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0 - Validation Loss: 0.0814 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3390, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0 | 0.0579 | 0 | | 0.0 | 0.0509 | 1 | | 0.0 | 0.0544 | 2 | | 0.0 | 0.0621 | 3 | | 0.0 | 0.0671 | 4 | | 0.0 | 0.0811 | 5 | | 0.0 | 0.0798 | 6 | | 0.0 | 0.0774 | 7 | | 0.0 | 0.0811 | 8 | | 0.0 | 0.0814 | 9 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
pdroberts/xlm-roberta-base-finetuned-panx-de
pdroberts
2022-04-15T23:05:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-15T22:55:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8632527372262775 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1367 - F1: 0.8633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2582 | 1.0 | 525 | 0.1653 | 0.8238 | | 0.1301 | 2.0 | 1050 | 0.1417 | 0.8439 | | 0.0841 | 3.0 | 1575 | 0.1367 | 0.8633 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
ssavla2/bert-finetuned-ner
ssavla2
2022-04-15T23:02:56Z
6
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-15T18:52:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ssavla2/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ssavla2/bert-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0243 - Validation Loss: 0.0603 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1199 | 0.0570 | 0 | | 0.0399 | 0.0586 | 1 | | 0.0243 | 0.0603 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nila-yuki/final_lab
nila-yuki
2022-04-15T22:02:04Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-15T18:47:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nila-yuki/final_lab results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nila-yuki/final_lab This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0240 - Validation Loss: 0.0593 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1059 | 0.0572 | 0 | | 0.0391 | 0.0542 | 1 | | 0.0240 | 0.0593 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Chikashi/t5-small-finetuned-cnndm3-wikihow2
Chikashi
2022-04-15T21:49:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T16:30:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm3-wikihow2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6704 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm3-wikihow2 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm2-wikihow2](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm2-wikihow2) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6265 - Rouge1: 24.6704 - Rouge2: 11.9038 - Rougel: 20.3622 - Rougelsum: 23.2612 - Gen Len: 18.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8071 | 1.0 | 71779 | 1.6265 | 24.6704 | 11.9038 | 20.3622 | 23.2612 | 18.9997 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
gary109/wav2vec2-base-MIR_ST500_ASR_109
gary109
2022-04-15T21:15:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "/workspace/datasets/datasets/MIR_ST500/MIR_ST500.py", "generated_from_trainer", "dataset:mir_st500", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-15T14:52:50Z
--- license: apache-2.0 tags: - automatic-speech-recognition - /workspace/datasets/datasets/MIR_ST500/MIR_ST500.py - generated_from_trainer datasets: - mir_st500 model-index: - name: wav2vec2-base-MIR_ST500_ASR_109 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-MIR_ST500_ASR_109 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the /WORKSPACE/DATASETS/DATASETS/MIR_ST500/MIR_ST500.PY - ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.6452 - Wer: 0.3732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 12.5751 | 0.27 | 100 | 6.0291 | 1.0 | | 4.343 | 0.53 | 200 | 2.8709 | 1.0 | | 4.1911 | 0.8 | 300 | 2.5472 | 1.0 | | 2.4535 | 1.06 | 400 | 2.4323 | 1.0 | | 2.6157 | 1.33 | 500 | 2.2799 | 1.0 | | 2.4839 | 1.6 | 600 | 2.2722 | 1.0 | | 2.2787 | 1.86 | 700 | 2.2269 | 1.0 | | 2.1981 | 2.13 | 800 | 2.2221 | 1.0 | | 2.159 | 2.39 | 900 | 2.1657 | 1.0 | | 2.1421 | 2.66 | 1000 | 2.1769 | 1.0 | | 2.0841 | 2.93 | 1100 | 2.1688 | 1.0 | | 2.0599 | 3.19 | 1200 | 2.1141 | 1.0 | | 2.0257 | 3.46 | 1300 | 2.0445 | 1.0 | | 1.979 | 3.72 | 1400 | 2.0180 | 1.0 | | 1.9366 | 3.99 | 1500 | 1.9419 | 1.0 | | 1.8547 | 4.26 | 1600 | 1.8765 | 1.0 | | 1.3988 | 4.52 | 1700 | 1.4151 | 0.7999 | | 1.1881 | 4.79 | 1800 | 1.1158 | 0.7347 | | 0.9557 | 5.05 | 1900 | 1.0095 | 0.6485 | | 0.9087 | 5.32 | 2000 | 0.9644 | 0.6848 | | 0.8086 | 5.59 | 2100 | 0.8960 | 0.6119 | | 0.9106 | 5.85 | 2200 | 0.8892 | 0.5941 | | 0.8252 | 6.12 | 2300 | 0.8333 | 0.5756 | | 0.8299 | 6.38 | 2400 | 0.8559 | 0.5838 | | 0.8021 | 6.65 | 2500 | 0.8201 | 0.5883 | | 0.7979 | 6.91 | 2600 | 0.8349 | 0.575 | | 0.7223 | 7.18 | 2700 | 0.7883 | 0.5563 | | 0.6754 | 7.45 | 2800 | 0.7590 | 0.5393 | | 0.6454 | 7.71 | 2900 | 0.7411 | 0.5291 | | 0.6228 | 7.98 | 3000 | 0.7464 | 0.5300 | | 0.6475 | 8.24 | 3100 | 0.7478 | 0.5295 | | 0.6452 | 8.51 | 3200 | 0.7555 | 0.5360 | | 0.5636 | 8.78 | 3300 | 0.7369 | 0.5232 | | 0.564 | 9.04 | 3400 | 0.7331 | 0.5076 | | 0.6173 | 9.31 | 3500 | 0.7199 | 0.5034 | | 0.625 | 9.57 | 3600 | 0.7243 | 0.5193 | | 0.8122 | 9.84 | 3700 | 0.7436 | 0.5242 | | 0.5455 | 10.11 | 3800 | 0.7111 | 0.4920 | | 0.7928 | 10.37 | 3900 | 0.7137 | 0.4858 | | 0.5446 | 10.64 | 4000 | 0.6874 | 0.4828 | | 0.4772 | 10.9 | 4100 | 0.6760 | 0.4801 | | 0.6447 | 11.17 | 4200 | 0.6893 | 0.4886 | | 0.5818 | 11.44 | 4300 | 0.6789 | 0.4740 | | 0.4952 | 11.7 | 4400 | 0.7043 | 0.4811 | | 0.5722 | 11.97 | 4500 | 0.6794 | 0.4766 | | 0.58 | 12.23 | 4600 | 0.6629 | 0.4580 | | 0.5432 | 12.5 | 4700 | 0.6907 | 0.4906 | | 0.4786 | 12.77 | 4800 | 0.6925 | 0.4854 | | 0.5177 | 13.03 | 4900 | 0.6666 | 0.4532 | | 0.5448 | 13.3 | 5000 | 0.6744 | 0.4542 | | 0.5732 | 13.56 | 5100 | 0.6930 | 0.4986 | | 0.5065 | 13.83 | 5200 | 0.6647 | 0.4351 | | 0.4005 | 14.1 | 5300 | 0.6659 | 0.4508 | | 0.4256 | 14.36 | 5400 | 0.6682 | 0.4533 | | 0.4459 | 14.63 | 5500 | 0.6594 | 0.4326 | | 0.4645 | 14.89 | 5600 | 0.6615 | 0.4287 | | 0.4275 | 15.16 | 5700 | 0.6423 | 0.4299 | | 0.4026 | 15.43 | 5800 | 0.6539 | 0.4217 | | 0.3507 | 15.69 | 5900 | 0.6555 | 0.4299 | | 0.3998 | 15.96 | 6000 | 0.6526 | 0.4213 | | 0.4462 | 16.22 | 6100 | 0.6469 | 0.4230 | | 0.4095 | 16.49 | 6200 | 0.6516 | 0.4210 | | 0.4452 | 16.76 | 6300 | 0.6373 | 0.4133 | | 0.3997 | 17.02 | 6400 | 0.6456 | 0.4211 | | 0.3826 | 17.29 | 6500 | 0.6278 | 0.4042 | | 0.3867 | 17.55 | 6600 | 0.6459 | 0.4112 | | 0.4367 | 17.82 | 6700 | 0.6464 | 0.4131 | | 0.3887 | 18.09 | 6800 | 0.6567 | 0.4150 | | 0.3481 | 18.35 | 6900 | 0.6548 | 0.4145 | | 0.4241 | 18.62 | 7000 | 0.6490 | 0.4123 | | 0.3742 | 18.88 | 7100 | 0.6561 | 0.4135 | | 0.423 | 19.15 | 7200 | 0.6498 | 0.4051 | | 0.3803 | 19.41 | 7300 | 0.6475 | 0.3903 | | 0.3084 | 19.68 | 7400 | 0.6403 | 0.4042 | | 0.3012 | 19.95 | 7500 | 0.6460 | 0.4004 | | 0.3306 | 20.21 | 7600 | 0.6491 | 0.3837 | | 0.3612 | 20.48 | 7700 | 0.6752 | 0.3884 | | 0.3572 | 20.74 | 7800 | 0.6383 | 0.3793 | | 0.3638 | 21.01 | 7900 | 0.6349 | 0.3838 | | 0.3658 | 21.28 | 8000 | 0.6544 | 0.3793 | | 0.3726 | 21.54 | 8100 | 0.6567 | 0.3756 | | 0.3618 | 21.81 | 8200 | 0.6390 | 0.3795 | | 0.3212 | 22.07 | 8300 | 0.6359 | 0.3768 | | 0.3561 | 22.34 | 8400 | 0.6452 | 0.3732 | | 0.3231 | 22.61 | 8500 | 0.6416 | 0.3731 | | 0.3764 | 22.87 | 8600 | 0.6428 | 0.3697 | | 0.4142 | 23.14 | 8700 | 0.6415 | 0.3665 | | 0.2713 | 23.4 | 8800 | 0.6541 | 0.3676 | | 0.2277 | 23.67 | 8900 | 0.6492 | 0.3684 | | 0.3849 | 23.94 | 9000 | 0.6448 | 0.3651 | | 0.266 | 24.2 | 9100 | 0.6602 | 0.3643 | | 0.3464 | 24.47 | 9200 | 0.6673 | 0.3607 | | 0.2919 | 24.73 | 9300 | 0.6557 | 0.3677 | | 0.2878 | 25.0 | 9400 | 0.6377 | 0.3653 | | 0.1603 | 25.27 | 9500 | 0.6598 | 0.3700 | | 0.2055 | 25.53 | 9600 | 0.6558 | 0.3614 | | 0.1508 | 25.8 | 9700 | 0.6543 | 0.3605 | | 0.3162 | 26.06 | 9800 | 0.6570 | 0.3576 | | 0.2613 | 26.33 | 9900 | 0.6604 | 0.3584 | | 0.2244 | 26.6 | 10000 | 0.6618 | 0.3634 | | 0.1585 | 26.86 | 10100 | 0.6698 | 0.3634 | | 0.2959 | 27.13 | 10200 | 0.6709 | 0.3593 | | 0.2778 | 27.39 | 10300 | 0.6638 | 0.3537 | | 0.2354 | 27.66 | 10400 | 0.6770 | 0.3585 | | 0.2992 | 27.93 | 10500 | 0.6698 | 0.3506 | | 0.2664 | 28.19 | 10600 | 0.6725 | 0.3533 | | 0.2582 | 28.46 | 10700 | 0.6689 | 0.3542 | | 0.2096 | 28.72 | 10800 | 0.6731 | 0.3527 | | 0.4169 | 28.99 | 10900 | 0.6691 | 0.3521 | | 0.2716 | 29.26 | 11000 | 0.6712 | 0.3517 | | 0.2944 | 29.52 | 11100 | 0.6708 | 0.3509 | | 0.2737 | 29.79 | 11200 | 0.6699 | 0.3491 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
public-data/Hopenet
public-data
2022-04-15T20:12:15Z
0
0
null
[ "region:us" ]
null
2022-04-15T20:03:56Z
# Hopenet - https://github.com/natanielruiz/deep-head-pose - https://drive.google.com/file/d/1EJPu2sOAwrfuamTitTkw2xJ2ipmMsmD3/view - https://drive.google.com/file/d/16OZdRULgUpceMKZV6U9PNFiigfjezsCY/view - https://drive.google.com/file/d/1m25PrSE7g9D2q2XJVMR6IA7RaCvWSzCR/view ## Note ```python import pathlib import torch paths = sorted(pathlib.Path('orig').glob('*')) out_dir = pathlib.Path('models') out_dir.mkdir(exist_ok=True) for path in paths: ckpt = torch.load(path, map_location='cpu') torch.save(ckpt, out_dir / path.name) ```
profoz/distilbert-toxic-clf
profoz
2022-04-15T17:31:47Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T17:13:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-toxic-clf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-toxic-clf This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.10.3
dpazmino/finetuning-sentiment-model_duke_final_two
dpazmino
2022-04-15T17:30:54Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T23:30:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: finetuning-sentiment-model_duke_final_two results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model_duke_final_two This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3381 - F1: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
inovex/multi2convai-corona-fr-bert
inovex
2022-04-15T17:09:57Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - text-classification widget: - text: "Dois-je porter un masque?" license: mit language: fr --- # Multi2ConvAI-Corona: finetuned Bert for French This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Corona (more details about our use cases: ([en](https://multi2conv.ai/en/blog/use-cases), [de](https://multi2conv.ai/en/blog/use-cases))) - language: French (fr) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-fr-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-fr-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
Zhaoheng/svoice_wsj0_2mix
Zhaoheng
2022-04-15T16:58:15Z
3
4
espnet
[ "espnet", "audio", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-04-14T12:16:35Z
--- tags: - espnet - audio - audio-to-audio language: en datasets: - wsj0_2mix license: cc-by-4.0 --- ## ESPnet2 ENH model ### `Zhaoheng/svoice_wsj0_2mix` This model was trained by Zhaoheng Ni using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 5ae7c9580f85dae5bc81cb1e845366c251d871ac pip install -e . cd egs2/wsj0_2mix/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model Zhaoheng/svoice_wsj0_2mix ``` <!-- Generated by ./scripts/utils/show_enh_score.sh --> # RESULTS ## Environments - date: `Thu Apr 14 09:47:05 UTC 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1+cu111` - Git hash: `9dbe4179b866b994f6914ef52ea7483696d22760` - Commit date: `Wed Mar 16 13:25:26 2022 +0000` ## .. config: conf/tuning/train_enh_svoice.yaml |dataset|STOI|SAR|SDR|SIR|SI_SNR| |---|---|---|---|---|---| |enhanced_cv_min_8k|0.97|21.44|20.98|32.21|20.67| |enhanced_tt_min_8k|0.98|21.41|20.96|32.27|20.66| ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_svoice.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_svoice_raw ngpu: 4 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 150 patience: 20 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_8k/train/speech_mix_shape - exp/enh_stats_8k/train/speech_ref1_shape - exp/enh_stats_8k/train/speech_ref2_shape valid_shape_file: - exp/enh_stats_8k/valid/speech_mix_shape - exp/enh_stats_8k/valid/speech_ref1_shape - exp/enh_stats_8k/valid/speech_ref2_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 16000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_min_8k/wav.scp - speech_mix - sound - - dump/raw/tr_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/tr_min_8k/spk2.scp - speech_ref2 - sound valid_data_path_and_name_and_type: - - dump/raw/cv_min_8k/wav.scp - speech_mix - sound - - dump/raw/cv_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/cv_min_8k/spk2.scp - speech_ref2 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.7 patience: 1 init: xavier_uniform model_conf: stft_consistency: false loss_type: mask_mse mask_type: null criterions: - name: si_snr conf: eps: 1.0e-07 wrapper: multilayer_pit wrapper_conf: weight: 1.0 independent_perm: true use_preprocessor: false encoder: same encoder_conf: {} separator: svoice separator_conf: enc_dim: 128 kernel_size: 8 hidden_size: 128 num_spk: 2 num_layers: 6 segment_size: 128 input_normalize: false decoder: same decoder_conf: {} required: - output_dir version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{ESPnet-SE, author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"o}}ddeker and Zhuo Chen and Shinji Watanabe} @inproceedings{nachmani2020voice, title={Voice separation with an unknown number of multiple speakers}, author={Nachmani, Eliya and Adi, Yossi and Wolf, Lior}, booktitle={International Conference on Machine Learning}, pages={7164--7175}, year={2020}, organization={PMLR} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
public-data/Anime2Sketch
public-data
2022-04-15T16:17:03Z
0
2
null
[ "region:us" ]
null
2022-04-15T16:12:54Z
# Anime2Sketch - https://github.com/Mukosame/Anime2Sketch - https://drive.google.com/drive/folders/1Srf-WYUixK0wiUddc9y3pNKHHno5PN6R
Chikashi/t5-small-finetuned-cnndm2-wikihow2
Chikashi
2022-04-15T15:13:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikihow", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T12:41:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm2-wikihow2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.0962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm2-wikihow2 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm2-wikihow1](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm2-wikihow1) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3311 - Rouge1: 27.0962 - Rouge2: 10.3575 - Rougel: 23.1099 - Rougelsum: 26.4664 - Gen Len: 18.5197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.517 | 1.0 | 39313 | 2.3311 | 27.0962 | 10.3575 | 23.1099 | 26.4664 | 18.5197 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
birgermoell/psst-fairseq-larger-rir
birgermoell
2022-04-15T13:59:09Z
2
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-15T12:44:14Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition --- This model is trained on the PSST Challenge data, with a subset of TIMIT that was augmented using Room Impulse Response (RIR). A file containing the list of TIMIT IDs is in the repository (`timit-ids.txt`) The model was finetuned on [Wav2vec 2.0 Large, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec), and the results on the validation set were **PER:** 21\.0%, **FER:** 9\.2%.
huggan/pix2pix-uavid-15
huggan
2022-04-15T13:45:13Z
0
0
null
[ "pytorch", "huggan", "gan", "dataset:arakesh/uavid-15-hq-mixedres", "arxiv:1611.07004", "license:mit", "region:us" ]
null
2022-04-12T18:53:30Z
--- tags: - huggan - gan datasets: - arakesh/uavid-15-hq-mixedres # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description [Pix2pix Model](https://arxiv.org/abs/1611.07004) is a conditional adversarial networks, a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. ## Intended uses & limitations: Used for reconstruction of images from edges #### How to use ```python from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image import cv2 from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-uavid-15) def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' predict_fn(img) ``` #### Limitations and bias * Gives unrealistic colors in the image ## Training data * [edges2shoes](https://huggingface.co/datasets/huggan/edges2shoes) ## Training procedure ``` # clone the repository git clone https://github.com/huggingface/community-events.git pip install . # change directory cd community-events/huggan/pytorch/pix2pix/ # define config accelerate config # launch training with required parameters accelerate launch train.py --checkpoint_interval 1 --dataset arakesh/uavid-15-hq-mixedres --push_to_hub --model_name pix2pix-uavid-15 --batch_size 2 --n_epochs 50 --image_size 1024 --sample_interval 500 ``` ## Generated Images Here, * First Image Row: Input Image * Second Image Row: Generated Image * Third Image Row: Target Image ![image1](34000.png) ![image2](35000.png) ### BibTeX entry and citation info ```bibtex @article{pix2pix2017, title={Image-to-Image Translation with Conditional Adversarial Networks}, author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, journal={CVPR}, year={2017} } ```
annaeze/lab9_1
annaeze
2022-04-15T12:44:42Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-14T13:43:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: annaeze/lab9_1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # annaeze/lab9_1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0230 - Validation Loss: 0.0572 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1174 | 0.0596 | 0 | | 0.0391 | 0.0529 | 1 | | 0.0230 | 0.0572 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Chikashi/t5-small-finetuned-cnndm2-wikihow1
Chikashi
2022-04-15T11:30:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T06:14:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm2-wikihow1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6317 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm2-wikihow1 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm1-wikihow1](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm1-wikihow1) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6305 - Rouge1: 24.6317 - Rouge2: 11.8655 - Rougel: 20.3598 - Rougelsum: 23.2467 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8062 | 1.0 | 71779 | 1.6305 | 24.6317 | 11.8655 | 20.3598 | 23.2467 | 18.9996 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ketan-rmcf/hinglish-finetuned
ketan-rmcf
2022-04-15T10:03:30Z
3
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-14T21:05:58Z
--- tags: - generated_from_trainer model-index: - name: hinglish-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hinglish-finetuned This model is a fine-tuned version of [verloop/Hinglish-Bert](https://huggingface.co/verloop/Hinglish-Bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3784 | 1.0 | 80 | 3.0527 | | 3.0398 | 2.0 | 160 | 2.8067 | | 2.9133 | 3.0 | 240 | 2.7252 | | 2.7872 | 4.0 | 320 | 2.5783 | | 2.6205 | 5.0 | 400 | 2.5050 | | 2.5979 | 6.0 | 480 | 2.4654 | | 2.5655 | 7.0 | 560 | 2.4091 | | 2.5412 | 8.0 | 640 | 2.3630 | | 2.4479 | 9.0 | 720 | 2.3754 | | 2.3724 | 10.0 | 800 | 2.2860 | | 2.3842 | 11.0 | 880 | 2.2812 | | 2.3411 | 12.0 | 960 | 2.2038 | | 2.2617 | 13.0 | 1040 | 2.1887 | | 2.3141 | 14.0 | 1120 | 2.1966 | | 2.2115 | 15.0 | 1200 | 2.1248 | | 2.2363 | 16.0 | 1280 | 2.1006 | | 2.2191 | 17.0 | 1360 | 2.1248 | | 2.1856 | 18.0 | 1440 | 2.0872 | | 2.2009 | 19.0 | 1520 | 2.0299 | | 2.2364 | 20.0 | 1600 | 2.0193 | | 2.1785 | 21.0 | 1680 | 2.0227 | | 2.1934 | 22.0 | 1760 | 2.0540 | | 2.1479 | 23.0 | 1840 | 2.0381 | | 2.0973 | 24.0 | 1920 | 1.9885 | | 2.1376 | 25.0 | 2000 | 2.0142 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
malcolm/REA_GenderIdentification_v1
malcolm
2022-04-15T08:38:29Z
5
6
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T08:23:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: REA_GenderIdentification_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # REA_GenderIdentification_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3366 - Accuracy: 0.8798 - F1: 0.8522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
agdsga/chinese-bert-wwm-finetuned-product-1
agdsga
2022-04-15T06:06:27Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-04-15T02:08:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: chinese-bert-wwm-finetuned-product-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bert-wwm-finetuned-product-1 This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0000 - eval_runtime: 10.6737 - eval_samples_per_second: 362.572 - eval_steps_per_second: 5.715 - epoch: 11.61 - step: 18797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
aaya/distilbert-base-uncased-finetuned-ner
aaya
2022-04-15T05:46:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-14T11:55:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
zhuzhusleepearly/bert-finetuned
zhuzhusleepearly
2022-04-15T05:13:59Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-14T23:16:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: zhuzhusleepearly/bert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # zhuzhusleepearly/bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0248 - Validation Loss: 0.0614 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1264 | 0.0606 | 0 | | 0.0422 | 0.0551 | 1 | | 0.0248 | 0.0614 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
qp321/distilbert-base-uncased-finetuned-cola
qp321
2022-04-15T05:11:06Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T04:22:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: qp321/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # qp321/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1122 - Validation Loss: 0.6352 - Train Matthews Correlation: 0.5295 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.3241 | 0.4856 | 0.5251 | 0 | | 0.1893 | 0.5330 | 0.5158 | 1 | | 0.1122 | 0.6352 | 0.5295 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Manishkalra/finetuning-sentiment-model-4000-samples
Manishkalra
2022-04-15T05:05:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T04:38:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-4000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9 - name: F1 type: f1 value: 0.9038461538461539 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-4000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2706 - Accuracy: 0.9 - F1: 0.9038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
huggan/pix2pix-night2day
huggan
2022-04-15T04:27:40Z
0
2
null
[ "pytorch", "huggan", "gan", "dataset:huggan/night2day", "arxiv:1611.07004", "license:mit", "region:us" ]
null
2022-04-14T15:42:14Z
--- tags: - huggan - gan datasets: - huggan/night2day # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description [Pix2pix Model](https://arxiv.org/abs/1611.07004) is a conditional adversarial networks, a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. ## Intended uses & limitations: Used for reconstruction of images from edges #### How to use ```python from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image import cv2 from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-night2day') def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' predict_fn(img) ``` #### Limitations and bias * Gives unrealistic colors in the image * Gives Blurry image sometimes ## Training data * [night2day](https://huggingface.co/datasets/huggan/night2day) ## Training procedure ``` # clone the repository git clone https://github.com/huggingface/community-events.git pip install . # change directory cd community-events/huggan/pytorch/pix2pix/ # define config accelerate config # launch training with required parameters accelerate launch train.py --checkpoint_interval 5 --dataset huggan/night2day --push_to_hub --model_name pix2pix-night2day --batch_size 128 --n_epochs 50 ``` ## Generated Images Here, * First Image Row: Input Image * Second Image Row: Generated Image * Third Image Row: Target Image ![image1](7000.png) ![image2](6500.png) ### BibTeX entry and citation info ```bibtex @article{pix2pix2017, title={Image-to-Image Translation with Conditional Adversarial Networks}, author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, journal={CVPR}, year={2017} } ```
zhuzhusleepearly/bert-task5finetuned
zhuzhusleepearly
2022-04-15T04:23:54Z
2
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-15T04:17:15Z
--- tags: - generated_from_keras_callback model-index: - name: zhuzhusleepearly/bert-task5finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # zhuzhusleepearly/bert-task5finetuned This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0350 - Validation Loss: 0.0775 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 669, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1257 | 0.0908 | 0 | | 0.0567 | 0.0718 | 1 | | 0.0350 | 0.0775 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
junnyu/roformer_chinese_sim_char_ft_base
junnyu
2022-04-15T03:52:49Z
9
7
transformers
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 inference: False --- # 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
junnyu/roformer_chinese_sim_char_ft_small
junnyu
2022-04-15T03:51:50Z
6
3
transformers
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 inference: False --- # 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
Chikashi/t5-small-finetuned-cnndm1-wikihow1
Chikashi
2022-04-15T03:46:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikihow", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T01:03:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm1-wikihow1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 26.6881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm1-wikihow1 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm1-wikihow0](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm1-wikihow0) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3727 - Rouge1: 26.6881 - Rouge2: 9.9589 - Rougel: 22.6828 - Rougelsum: 26.0203 - Gen Len: 18.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.56 | 1.0 | 39313 | 2.3727 | 26.6881 | 9.9589 | 22.6828 | 26.0203 | 18.4813 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
nicholasdino/bert-finetuned-ner
nicholasdino
2022-04-15T02:58:55Z
2
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-15T01:28:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nicholasdino/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nicholasdino/bert-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0241 - Validation Loss: 0.0588 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1261 | 0.0587 | 0 | | 0.0397 | 0.0540 | 1 | | 0.0241 | 0.0588 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Raychanan/bert-base-chinese-first512
Raychanan
2022-04-15T02:50:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T02:10:28Z
first 512 training_args = TrainingArguments( output_dir="./results", learning_rate=5e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01, evaluation_strategy="epoch", push_to_hub=True )
vabadeh213/autotrain-iris-744122711
vabadeh213
2022-04-15T02:09:16Z
2
0
transformers
[ "transformers", "joblib", "decision_tree", "autotrain", "tabular", "classification", "structured-data-classification", "dataset:vabadeh213/autotrain-data-iris", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-04-15T02:08:51Z
--- tags: - autotrain - tabular - classification - structured-data-classification datasets: - vabadeh213/autotrain-data-iris co2_eq_emissions: 0.0006493037575021453 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 744122711 - CO2 Emissions (in grams): 0.0006493037575021453 ## Validation Metrics - Loss: 0.09241962407466127 - Accuracy: 0.9666666666666667 - Macro F1: 0.9665831244778613 - Micro F1: 0.9666666666666667 - Weighted F1: 0.9665831244778613 - Macro Precision: 0.9696969696969697 - Micro Precision: 0.9666666666666667 - Weighted Precision: 0.9696969696969696 - Macro Recall: 0.9666666666666667 - Micro Recall: 0.9666666666666667 - Weighted Recall: 0.9666666666666667 ## Usage ```python import json import joblib model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) ```
Raychanan/COVID_RandomOver
Raychanan
2022-04-15T01:24:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T00:42:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4235 - F1: 0.9546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1307 | 1.0 | 3268 | 0.9040 | 0.0 | | 0.8795 | 2.0 | 6536 | 0.5532 | 0.9546 | | 0.8183 | 3.0 | 9804 | 0.3641 | 0.9546 | | 1.0074 | 4.0 | 13072 | 0.3998 | 0.9546 | | 0.7947 | 5.0 | 16340 | 0.4235 | 0.9546 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Raychanan/COVID
Raychanan
2022-04-14T23:55:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T23:32:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5193 - F1: 0.9546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3803 | 1.0 | 1792 | 0.5110 | 0.9546 | | 0.4129 | 2.0 | 3584 | 0.5256 | 0.9546 | | 0.4804 | 3.0 | 5376 | 0.5305 | 0.9546 | | 0.6571 | 4.0 | 7168 | 0.5583 | 0.9546 | | 0.6605 | 5.0 | 8960 | 0.5193 | 0.9546 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Chikashi/t5-small-finetuned-cnndm1-wikihow0
Chikashi
2022-04-14T23:28:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-14T17:20:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm1-wikihow0 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm1-wikihow0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6436 - Rouge1: 24.6116 - Rouge2: 11.8788 - Rougel: 20.3665 - Rougelsum: 23.2474 - Gen Len: 18.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8208 | 1.0 | 71779 | 1.6436 | 24.6116 | 11.8788 | 20.3665 | 23.2474 | 18.9998 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Adrian/distilbert-base-uncased-finetuned-emotion
Adrian
2022-04-14T22:11:34Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T21:58:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.927345202022014 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2071 - Accuracy: 0.9275 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8153 | 1.0 | 250 | 0.2942 | 0.9125 | 0.9102 | | 0.2406 | 2.0 | 500 | 0.2071 | 0.9275 | 0.9273 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
brad1141/oldData_BERT
brad1141
2022-04-14T21:27:01Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T20:35:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: oldData_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # oldData_BERT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2348 | 1.0 | 1125 | 1.0185 | | 1.0082 | 2.0 | 2250 | 0.7174 | | 0.699 | 3.0 | 3375 | 0.3657 | | 0.45 | 4.0 | 4500 | 0.1880 | | 0.2915 | 5.0 | 5625 | 0.1140 | | 0.2056 | 6.0 | 6750 | 0.0708 | | 0.1312 | 7.0 | 7875 | 0.0616 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
AhmedSayeem/VIT_Basic
AhmedSayeem
2022-04-14T19:01:22Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-14T19:01:13Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: VIT_Basic results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- # VIT_Basic Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chairs ![chairs](images/chairs.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### ice cream ![ice cream](images/ice_cream.jpg) #### ladders ![ladders](images/ladders.jpg) #### tables ![tables](images/tables.jpg)
Tianle/distilbert-base-uncased-finetuned-squad
Tianle
2022-04-14T18:59:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-13T17:56:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2631 | 1.0 | 5533 | 1.2169 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
luquesky/distilbert-base-uncased-finetuned-emotion
luquesky
2022-04-14T17:48:19Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T11:25:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9337817808480242 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Accuracy: 0.934 - F1: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1768 | 1.0 | 250 | 0.1867 | 0.924 | 0.9235 | | 0.1227 | 2.0 | 500 | 0.1588 | 0.934 | 0.9346 | | 0.1031 | 3.0 | 750 | 0.1656 | 0.931 | 0.9306 | | 0.0843 | 4.0 | 1000 | 0.1662 | 0.9395 | 0.9392 | | 0.0662 | 5.0 | 1250 | 0.1714 | 0.9325 | 0.9326 | | 0.0504 | 6.0 | 1500 | 0.1821 | 0.934 | 0.9338 | | 0.0429 | 7.0 | 1750 | 0.2038 | 0.933 | 0.9324 | | 0.0342 | 8.0 | 2000 | 0.2054 | 0.938 | 0.9379 | | 0.0296 | 9.0 | 2250 | 0.2128 | 0.9345 | 0.9345 | | 0.0211 | 10.0 | 2500 | 0.2155 | 0.934 | 0.9338 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
florentiino/DialoGPT-small-rick
florentiino
2022-04-14T15:24:54Z
2
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-14T13:56:29Z
--- tags: - conversational --- # My Awesome Model that talks like Rick but thinks that your name is Morty
Ning-fish/xlm-roberta-base-finetuned-panx-de
Ning-fish
2022-04-14T15:17:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-14T13:02:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
anton-l/xtreme_s_xlsr_300m_fleurs_asr
anton-l
2022-04-14T14:49:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-10T17:26:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xtreme_s_xlsr_300m_fleurs_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_fleurs_asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Cer: 0.3330 - Loss: 1.2864 - Wer: 0.8344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:------:|:---------------:|:------:| | 4.677 | 0.13 | 1000 | 1.0 | 3.2323 | 1.0 | | 4.1512 | 0.26 | 2000 | 0.5098 | 1.7858 | 0.9869 | | 1.119 | 0.39 | 3000 | 0.4412 | 1.6628 | 0.9063 | | 0.8573 | 0.52 | 4000 | 0.3588 | 1.3440 | 0.9016 | | 1.0232 | 0.65 | 5000 | 0.3690 | 1.3004 | 0.8775 | | 0.6328 | 0.78 | 6000 | 0.3354 | 1.2219 | 0.8331 | | 0.6636 | 0.91 | 7000 | 0.3604 | 1.2839 | 0.8637 | | 0.6536 | 1.04 | 8000 | 0.3420 | 1.2481 | 0.8504 | | 0.5002 | 1.17 | 9000 | 0.3518 | 1.2514 | 0.8403 | | 0.4785 | 1.3 | 10000 | 0.3399 | 1.2409 | 0.8570 | | 0.517 | 1.43 | 11000 | 0.3599 | 1.3058 | 0.8654 | | 0.506 | 1.56 | 12000 | 0.3484 | 1.2350 | 0.8441 | | 0.4013 | 1.69 | 13000 | 0.3327 | 1.1982 | 0.8246 | | 0.3521 | 1.82 | 14000 | 0.3270 | 1.1653 | 0.8265 | | 0.4265 | 1.95 | 15000 | 0.3562 | 1.2647 | 0.8564 | | 0.3949 | 2.08 | 16000 | 0.3490 | 1.2988 | 0.8480 | | 0.3059 | 2.21 | 17000 | 0.3327 | 1.2332 | 0.8323 | | 0.3618 | 2.34 | 18000 | 0.3480 | 1.2394 | 0.8517 | | 0.2567 | 2.47 | 19000 | 0.3365 | 1.2294 | 0.8394 | | 0.3501 | 2.6 | 20000 | 0.3271 | 1.1853 | 0.8250 | | 0.2766 | 2.73 | 21000 | 0.3425 | 1.2339 | 0.8443 | | 0.3396 | 2.86 | 22000 | 0.3501 | 1.2768 | 0.8669 | | 0.3566 | 2.99 | 23000 | 0.3477 | 1.2648 | 0.8710 | | 0.3166 | 3.12 | 24000 | 0.3550 | 1.3773 | 0.8641 | | 0.2388 | 3.25 | 25000 | 0.3301 | 1.2374 | 0.8316 | | 0.2057 | 3.38 | 26000 | 0.3429 | 1.2846 | 0.8560 | | 0.2264 | 3.51 | 27000 | 0.3469 | 1.2676 | 0.8542 | | 0.1998 | 3.64 | 28000 | 0.3531 | 1.3365 | 0.8655 | | 0.2701 | 3.77 | 29000 | 0.3518 | 1.3124 | 0.8711 | | 0.18 | 3.9 | 30000 | 0.3498 | 1.3095 | 0.8648 | | 0.1337 | 4.03 | 31000 | 0.3397 | 1.2941 | 0.8452 | | 0.162 | 4.16 | 32000 | 0.3320 | 1.2942 | 0.8295 | | 0.2776 | 4.29 | 33000 | 0.3275 | 1.2690 | 0.8276 | | 0.1634 | 4.42 | 34000 | 0.3307 | 1.3145 | 0.8331 | | 0.2172 | 4.54 | 35000 | 0.3334 | 1.3031 | 0.8435 | | 0.1305 | 4.67 | 36000 | 0.3303 | 1.2768 | 0.8321 | | 0.1436 | 4.8 | 37000 | 0.3353 | 1.2968 | 0.8416 | | 0.134 | 4.93 | 38000 | 0.3330 | 1.2864 | 0.8344 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
jogonba2/barthez-deft-linguistique
jogonba2
2022-04-14T14:04:46Z
4
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: barthez-deft-linguistique results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 41.989 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # barthez-deft-linguistique This model is a fine-tuned version of [moussaKam/barthez](https://huggingface.co/moussaKam/barthez) on an unknown dataset. **Note**: this model is one of the preliminary experiments and it underperforms the models published in the paper (using [MBartHez](https://huggingface.co/moussaKam/mbarthez) and HAL/Wiki pre-training + copy mechanisms) It achieves the following results on the evaluation set: - Loss: 1.7596 - Rouge1: 41.989 - Rouge2: 22.4524 - Rougel: 32.7966 - Rougelsum: 32.7953 - Gen Len: 22.1549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.0569 | 1.0 | 108 | 2.0282 | 31.6993 | 14.9483 | 25.5565 | 25.4379 | 18.3803 | | 2.2892 | 2.0 | 216 | 1.8553 | 35.2563 | 18.019 | 28.3135 | 28.2927 | 18.507 | | 1.9062 | 3.0 | 324 | 1.7696 | 37.4613 | 18.1488 | 28.9959 | 29.0134 | 19.5352 | | 1.716 | 4.0 | 432 | 1.7641 | 37.6903 | 18.7496 | 30.1097 | 30.1027 | 18.9577 | | 1.5722 | 5.0 | 540 | 1.7781 | 38.1013 | 19.8291 | 29.8142 | 29.802 | 19.169 | | 1.4655 | 6.0 | 648 | 1.7661 | 38.3557 | 20.3309 | 30.5068 | 30.4728 | 19.3662 | | 1.3507 | 7.0 | 756 | 1.7596 | 39.7409 | 20.2998 | 31.0849 | 31.1152 | 19.3944 | | 1.2874 | 8.0 | 864 | 1.7706 | 37.7846 | 20.3457 | 30.6826 | 30.6321 | 19.4789 | | 1.2641 | 9.0 | 972 | 1.7848 | 38.7421 | 19.5701 | 30.5798 | 30.6305 | 19.3944 | | 1.1192 | 10.0 | 1080 | 1.8008 | 40.3313 | 20.3378 | 31.8325 | 31.8648 | 19.5493 | | 1.0724 | 11.0 | 1188 | 1.8450 | 38.9612 | 20.5719 | 31.4496 | 31.3144 | 19.8592 | | 1.0077 | 12.0 | 1296 | 1.8364 | 36.5997 | 18.46 | 29.1808 | 29.1705 | 19.7324 | | 0.9362 | 13.0 | 1404 | 1.8677 | 38.0371 | 19.2321 | 30.3893 | 30.3926 | 19.6338 | | 0.8868 | 14.0 | 1512 | 1.9154 | 36.4737 | 18.5314 | 29.325 | 29.3634 | 19.6479 | | 0.8335 | 15.0 | 1620 | 1.9344 | 35.7583 | 18.0687 | 27.9666 | 27.8675 | 19.8028 | | 0.8305 | 16.0 | 1728 | 1.9556 | 37.2137 | 18.2199 | 29.5959 | 29.5799 | 19.9577 | | 0.8057 | 17.0 | 1836 | 1.9793 | 36.6834 | 17.8505 | 28.6701 | 28.7145 | 19.7324 | | 0.7869 | 18.0 | 1944 | 1.9994 | 37.5918 | 19.1984 | 28.8569 | 28.8278 | 19.7606 | | 0.7549 | 19.0 | 2052 | 2.0117 | 37.3278 | 18.5169 | 28.778 | 28.7737 | 19.8028 | | 0.7497 | 20.0 | 2160 | 2.0189 | 37.7513 | 19.1813 | 29.3675 | 29.402 | 19.6901 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
jogonba2/barthez-deft-archeologie
jogonba2
2022-04-14T14:04:35Z
4
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: barthez-deft-archeologie results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 37.1845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # barthez-deft-archeologie This model is a fine-tuned version of [moussaKam/barthez](https://huggingface.co/moussaKam/barthez) on an unknown dataset. **Note**: this model is one of the preliminary experiments and it underperforms the models published in the paper (using [MBartHez](https://huggingface.co/moussaKam/mbarthez) and HAL/Wiki pre-training + copy mechanisms) It achieves the following results on the evaluation set: - Loss: 2.0733 - Rouge1: 37.1845 - Rouge2: 16.9534 - Rougel: 28.8416 - Rougelsum: 29.077 - Gen Len: 34.4028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.4832 | 1.0 | 108 | 2.4237 | 22.6662 | 10.009 | 19.8729 | 19.8814 | 15.8333 | | 2.557 | 2.0 | 216 | 2.2328 | 24.8102 | 11.9911 | 20.4773 | 20.696 | 19.0139 | | 2.2702 | 3.0 | 324 | 2.2002 | 25.6482 | 11.6191 | 21.8383 | 21.9341 | 18.1944 | | 2.1119 | 4.0 | 432 | 2.1266 | 25.5806 | 11.9765 | 21.3973 | 21.3503 | 19.4306 | | 1.9582 | 5.0 | 540 | 2.1072 | 25.6578 | 12.2709 | 22.182 | 22.0548 | 19.1528 | | 1.8137 | 6.0 | 648 | 2.1008 | 26.5272 | 11.4033 | 22.359 | 22.3259 | 19.4722 | | 1.7725 | 7.0 | 756 | 2.1074 | 25.0405 | 11.1773 | 21.1369 | 21.1847 | 19.1806 | | 1.6772 | 8.0 | 864 | 2.0959 | 26.5237 | 11.6028 | 22.5018 | 22.3931 | 19.3333 | | 1.5798 | 9.0 | 972 | 2.0976 | 27.7443 | 11.9898 | 22.4052 | 22.2954 | 19.7222 | | 1.4753 | 10.0 | 1080 | 2.0733 | 28.3502 | 12.9162 | 22.6352 | 22.6015 | 19.8194 | | 1.4646 | 11.0 | 1188 | 2.1091 | 27.9198 | 12.8591 | 23.0718 | 23.0779 | 19.6111 | | 1.4082 | 12.0 | 1296 | 2.1036 | 28.8509 | 13.0987 | 23.4189 | 23.5044 | 19.4861 | | 1.2862 | 13.0 | 1404 | 2.1222 | 28.6641 | 12.8157 | 22.6799 | 22.7051 | 19.8611 | | 1.2612 | 14.0 | 1512 | 2.1487 | 26.9709 | 11.6084 | 22.0312 | 22.0543 | 19.875 | | 1.2327 | 15.0 | 1620 | 2.1808 | 28.218 | 12.6239 | 22.7372 | 22.7881 | 19.7361 | | 1.2264 | 16.0 | 1728 | 2.1778 | 26.7393 | 11.4474 | 21.6057 | 21.555 | 19.7639 | | 1.1848 | 17.0 | 1836 | 2.1995 | 27.6902 | 12.1082 | 22.0406 | 22.0101 | 19.6806 | | 1.133 | 18.0 | 1944 | 2.2038 | 27.0402 | 12.1846 | 21.7793 | 21.7513 | 19.8056 | | 1.168 | 19.0 | 2052 | 2.2116 | 27.5149 | 11.9876 | 22.1113 | 22.1527 | 19.7222 | | 1.1206 | 20.0 | 2160 | 2.2133 | 28.2321 | 12.677 | 22.749 | 22.8485 | 19.5972 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
obokkkk/bert-base-multilingual-cased-finetuned-klue
obokkkk
2022-04-14T12:57:25Z
6
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-14T03:17:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-klue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-klue This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 36 - total_train_batch_size: 288 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6323 | 5.0 | 500 | 1.6799 | | 1.3765 | 10.0 | 1000 | 1.3027 | | 0.8433 | 15.0 | 1500 | 1.2946 | | 0.5224 | 20.0 | 2000 | 1.4197 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
ClaireV/MLMA_Lab8
ClaireV
2022-04-14T12:46:24Z
2
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-13T20:33:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ClaireV/MLMA_Lab8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ClaireV/MLMA_Lab8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0232 - Validation Loss: 0.0598 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1262 | 0.0666 | 0 | | 0.0380 | 0.0571 | 1 | | 0.0232 | 0.0598 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/elonmusk-joebiden
huggingtweets
2022-04-14T12:38:39Z
2
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-14T12:38:32Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Joe Biden</div> <div style="text-align: center; font-size: 14px;">@elonmusk-joebiden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Joe Biden. | Data | Elon Musk | Joe Biden | | --- | --- | --- | | Tweets downloaded | 200 | 3249 | | Retweets | 15 | 571 | | Short tweets | 60 | 34 | | Tweets kept | 125 | 2644 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ne2s3c4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-joebiden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ka86kb6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ka86kb6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-joebiden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Wanjiru/bert-base-multilingual_en_ner_
Wanjiru
2022-04-14T12:33:55Z
5
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-12T16:05:06Z
Label ID Label Name 0 0 1. B-PER 2. I-PER 3. B-ORG 4. I-ORG 5. B-LOC 6. I-LOC
zzzzzzttt/swin-tiny-patch4-window7-224-finetuned-eurosat
zzzzzzttt
2022-04-14T12:20:10Z
81
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-14T09:04:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9762962962962963 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0654 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2431 | 1.0 | 190 | 0.1119 | 0.9607 | | 0.1682 | 2.0 | 380 | 0.0921 | 0.9693 | | 0.1644 | 3.0 | 570 | 0.0654 | 0.9763 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Felix92/doctr-dummy-tf-linknet-resnet34
Felix92
2022-04-14T12:18:22Z
2
1
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T12:18:14Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-linknet-resnet50
Felix92
2022-04-14T11:37:56Z
1
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:37:48Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-linknet-resnet18
Felix92
2022-04-14T11:29:46Z
3
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:29:39Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-db-mobilenet-v3-large
Felix92
2022-04-14T11:28:25Z
1
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:28:18Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-mobilenet-v3-large
Felix92
2022-04-14T11:23:03Z
1
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:22:55Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-magc-resnet31
Felix92
2022-04-14T11:13:32Z
3
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:13:24Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-tf-resnet50
Felix92
2022-04-14T11:09:30Z
1
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T11:09:22Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
gary109/wav2vec2-large-xlsr-53-MIR_ST500_ASR
gary109
2022-04-14T11:05:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "/workspace/datasets/datasets/MIR_ST500/MIR_ST500.py", "generated_from_trainer", "dataset:mir_st500", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-14T03:20:19Z
--- license: apache-2.0 tags: - automatic-speech-recognition - /workspace/datasets/datasets/MIR_ST500/MIR_ST500.py - generated_from_trainer datasets: - mir_st500 model-index: - name: wav2vec2-large-xlsr-53-MIR_ST500_ASR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-MIR_ST500_ASR This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the /WORKSPACE/DATASETS/DATASETS/MIR_ST500/MIR_ST500.PY - ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.5180 - Wer: 0.5824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 56.764 | 0.13 | 100 | 24.4254 | 0.9990 | | 7.5081 | 0.27 | 200 | 2.9111 | 1.0 | | 3.4899 | 0.4 | 300 | 2.1361 | 1.0 | | 2.4094 | 0.53 | 400 | 1.9088 | 1.0 | | 2.6764 | 0.67 | 500 | 1.8543 | 1.0 | | 3.3107 | 0.8 | 600 | 1.7979 | 1.0 | | 2.2856 | 0.93 | 700 | 1.7571 | 1.0 | | 1.856 | 1.07 | 800 | 1.7351 | 0.9648 | | 1.8882 | 1.2 | 900 | 1.7181 | 0.9654 | | 2.1731 | 1.33 | 1000 | 1.6736 | 0.9637 | | 1.8252 | 1.46 | 1100 | 1.3468 | 0.9647 | | 1.9092 | 1.6 | 1200 | 1.3302 | 0.9627 | | 1.9435 | 1.73 | 1300 | 1.2428 | 0.9634 | | 1.3027 | 1.86 | 1400 | 1.2133 | 0.9644 | | 1.3438 | 2.0 | 1500 | 1.2002 | 0.9635 | | 1.2161 | 2.13 | 1600 | 1.1901 | 0.9636 | | 1.203 | 2.26 | 1700 | 1.1620 | 0.9616 | | 1.1159 | 2.4 | 1800 | 1.1660 | 0.9598 | | 1.1466 | 2.53 | 1900 | 1.2089 | 0.9605 | | 1.0563 | 2.66 | 2000 | 1.1732 | 0.9603 | | 1.1019 | 2.8 | 2100 | 1.1468 | 0.9612 | | 1.029 | 2.93 | 2200 | 1.1188 | 0.9622 | | 1.0079 | 3.06 | 2300 | 1.0604 | 0.9617 | | 1.0483 | 3.2 | 2400 | 1.0499 | 0.9612 | | 0.9892 | 3.33 | 2500 | 1.0292 | 0.9606 | | 0.9556 | 3.46 | 2600 | 1.0228 | 0.9604 | | 0.9626 | 3.6 | 2700 | 1.0028 | 0.9617 | | 1.0537 | 3.73 | 2800 | 1.0051 | 0.9608 | | 1.0648 | 3.86 | 2900 | 0.9723 | 0.9604 | | 0.8657 | 3.99 | 3000 | 0.9620 | 0.9605 | | 0.8964 | 4.13 | 3100 | 1.0432 | 0.9612 | | 0.9639 | 4.26 | 3200 | 0.9322 | 0.9589 | | 0.8965 | 4.39 | 3300 | 0.9091 | 0.9559 | | 0.8257 | 4.53 | 3400 | 0.8999 | 0.9499 | | 0.8002 | 4.66 | 3500 | 0.8754 | 0.9554 | | 0.7335 | 4.79 | 3600 | 0.8608 | 0.9572 | | 0.936 | 4.93 | 3700 | 0.8564 | 0.9510 | | 0.8185 | 5.06 | 3800 | 0.8890 | 0.9517 | | 0.7422 | 5.19 | 3900 | 0.8262 | 0.9392 | | 0.7784 | 5.33 | 4000 | 0.8292 | 0.9259 | | 0.8123 | 5.46 | 4100 | 0.8180 | 0.9374 | | 0.7256 | 5.59 | 4200 | 0.8158 | 0.9077 | | 0.7638 | 5.73 | 4300 | 0.8423 | 0.9170 | | 0.6737 | 5.86 | 4400 | 0.7818 | 0.9182 | | 0.7644 | 5.99 | 4500 | 0.7692 | 0.8934 | | 0.7911 | 6.13 | 4600 | 0.7627 | 0.8978 | | 0.6922 | 6.26 | 4700 | 0.7627 | 0.8906 | | 0.7369 | 6.39 | 4800 | 0.7570 | 0.8838 | | 0.6642 | 6.52 | 4900 | 0.9476 | 0.8953 | | 0.7502 | 6.66 | 5000 | 0.7336 | 0.8955 | | 0.6243 | 6.79 | 5100 | 0.7583 | 0.8896 | | 0.6912 | 6.92 | 5200 | 0.7764 | 0.8761 | | 0.7744 | 7.06 | 5300 | 0.7615 | 0.8790 | | 0.6195 | 7.19 | 5400 | 0.7114 | 0.8712 | | 0.7418 | 7.32 | 5500 | 0.8314 | 0.8864 | | 0.7658 | 7.46 | 5600 | 0.8531 | 0.8718 | | 0.6821 | 7.59 | 5700 | 0.9068 | 0.8786 | | 0.6931 | 7.72 | 5800 | 0.7549 | 0.8645 | | 0.6771 | 7.86 | 5900 | 0.7138 | 0.8442 | | 0.6735 | 7.99 | 6000 | 0.6947 | 0.8493 | | 0.6427 | 8.12 | 6100 | 0.6997 | 0.8475 | | 0.6988 | 8.26 | 6200 | 0.6814 | 0.8098 | | 0.6726 | 8.39 | 6300 | 0.6656 | 0.8259 | | 0.6247 | 8.52 | 6400 | 0.6438 | 0.8314 | | 0.5101 | 8.66 | 6500 | 0.6323 | 0.8446 | | 0.5325 | 8.79 | 6600 | 0.6305 | 0.8413 | | 0.5918 | 8.92 | 6700 | 0.6353 | 0.8076 | | 0.617 | 9.05 | 6800 | 0.6544 | 0.8118 | | 0.4861 | 9.19 | 6900 | 0.6174 | 0.8429 | | 0.6396 | 9.32 | 7000 | 0.6140 | 0.8117 | | 0.436 | 9.45 | 7100 | 0.6148 | 0.7887 | | 0.6141 | 9.59 | 7200 | 0.6133 | 0.8007 | | 0.5781 | 9.72 | 7300 | 0.6135 | 0.8211 | | 0.52 | 9.85 | 7400 | 0.6155 | 0.8042 | | 0.6681 | 9.99 | 7500 | 0.6074 | 0.7843 | | 0.5004 | 10.12 | 7600 | 0.5950 | 0.8035 | | 0.4993 | 10.25 | 7700 | 0.5888 | 0.7710 | | 0.4768 | 10.39 | 7800 | 0.5922 | 0.7633 | | 0.4535 | 10.52 | 7900 | 0.5906 | 0.8030 | | 0.517 | 10.65 | 8000 | 0.5875 | 0.7823 | | 0.5894 | 10.79 | 8100 | 0.5882 | 0.7932 | | 0.6005 | 10.92 | 8200 | 0.5798 | 0.7922 | | 0.4284 | 11.05 | 8300 | 0.5775 | 0.7701 | | 0.5163 | 11.19 | 8400 | 0.5715 | 0.7592 | | 0.4701 | 11.32 | 8500 | 0.5955 | 0.7485 | | 0.5152 | 11.45 | 8600 | 0.6041 | 0.6914 | | 0.4442 | 11.58 | 8700 | 0.5614 | 0.7439 | | 0.4451 | 11.72 | 8800 | 0.5619 | 0.7033 | | 0.4433 | 11.85 | 8900 | 0.5562 | 0.7246 | | 0.4799 | 11.98 | 9000 | 0.5834 | 0.7040 | | 0.4832 | 12.12 | 9100 | 0.5902 | 0.7349 | | 0.523 | 12.25 | 9200 | 0.5562 | 0.7326 | | 0.4419 | 12.38 | 9300 | 0.5472 | 0.7326 | | 0.437 | 12.52 | 9400 | 0.5466 | 0.7100 | | 0.4797 | 12.65 | 9500 | 0.5470 | 0.6698 | | 0.3971 | 12.78 | 9600 | 0.5437 | 0.6835 | | 0.5254 | 12.92 | 9700 | 0.5385 | 0.6747 | | 0.5046 | 13.05 | 9800 | 0.5330 | 0.6554 | | 0.4692 | 13.18 | 9900 | 0.5305 | 0.6527 | | 0.4305 | 13.32 | 10000 | 0.5292 | 0.6314 | | 0.6132 | 13.45 | 10100 | 0.5405 | 0.6028 | | 0.4741 | 13.58 | 10200 | 0.5311 | 0.6207 | | 0.398 | 13.72 | 10300 | 0.5320 | 0.6261 | | 0.458 | 13.85 | 10400 | 0.5240 | 0.6242 | | 0.4154 | 13.98 | 10500 | 0.5262 | 0.6215 | | 0.3702 | 14.11 | 10600 | 0.5206 | 0.6136 | | 0.427 | 14.25 | 10700 | 0.5231 | 0.6289 | | 0.4307 | 14.38 | 10800 | 0.5210 | 0.5908 | | 0.4738 | 14.51 | 10900 | 0.5211 | 0.5826 | | 0.5522 | 14.65 | 11000 | 0.5193 | 0.5886 | | 0.4717 | 14.78 | 11100 | 0.5194 | 0.5907 | | 0.4819 | 14.91 | 11200 | 0.5178 | 0.5870 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
javilonso/Mex_Rbta_Opinion_Polarity
javilonso
2022-04-14T09:44:12Z
7
1
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T09:04:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/Mex_Rbta_Opinion_Polarity results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/Mex_Rbta_Opinion_Polarity This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4033 - Validation Loss: 0.5572 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5986, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5989 | 0.5516 | 0 | | 0.4033 | 0.5572 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Matthijs/snacks-classifier
Matthijs
2022-04-14T09:39:49Z
90
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-14T09:19:01Z
`microsoft/swin-tiny-patch4-window7-224` fine-tuned on the `Matthijs/snacks` dataset. Test set accuracy after 50 epochs: 0.9286.
ndavid/autotrain-trec-fine-bert-739422530
ndavid
2022-04-14T09:39:42Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:ndavid/autotrain-data-trec-fine-bert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T09:37:03Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ndavid/autotrain-data-trec-fine-bert co2_eq_emissions: 0.02238820299105448 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 739422530 - CO2 Emissions (in grams): 0.02238820299105448 ## Validation Metrics - Loss: 0.36623290181159973 - Accuracy: 0.9321753515301903 - Macro F1: 0.9066706944656866 - Micro F1: 0.9321753515301903 - Weighted F1: 0.9314858667247282 - Macro Precision: 0.9489233194839841 - Micro Precision: 0.9321753515301903 - Weighted Precision: 0.9347346558570125 - Macro Recall: 0.8842587178845419 - Micro Recall: 0.9321753515301903 - Weighted Recall: 0.9321753515301903 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ndavid/autotrain-trec-fine-bert-739422530 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Felix92/doctr-dummy-torch-fasterrcnn-mobilenet-v3-large-fpn
Felix92
2022-04-14T09:28:24Z
3
1
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T09:28:16Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: obj_detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
htufgg/roberta-finetuned-CPV_Spanish
htufgg
2022-04-14T09:01:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T17:43:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-CPV_Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-CPV_Spanish This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0422 - F1: 0.7739 - Roc Auc: 0.8704 - Accuracy: 0.7201 - Coverage Error: 11.5798 - Label Ranking Average Precision Score: 0.7742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Coverage Error | Label Ranking Average Precision Score | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|:--------------:|:-------------------------------------:| | 0.0579 | 1.0 | 2039 | 0.0548 | 0.6327 | 0.7485 | 0.5274 | 21.7879 | 0.5591 | | 0.0411 | 2.0 | 4078 | 0.0441 | 0.7108 | 0.8027 | 0.6386 | 16.8647 | 0.6732 | | 0.0294 | 3.0 | 6117 | 0.0398 | 0.7437 | 0.8295 | 0.6857 | 14.6700 | 0.7249 | | 0.0223 | 4.0 | 8156 | 0.0389 | 0.7568 | 0.8453 | 0.7056 | 13.3552 | 0.7494 | | 0.0163 | 5.0 | 10195 | 0.0397 | 0.7626 | 0.8569 | 0.7097 | 12.5895 | 0.7620 | | 0.0132 | 6.0 | 12234 | 0.0395 | 0.7686 | 0.8620 | 0.7126 | 12.1926 | 0.7656 | | 0.0095 | 7.0 | 14273 | 0.0409 | 0.7669 | 0.8694 | 0.7109 | 11.5978 | 0.7700 | | 0.0066 | 8.0 | 16312 | 0.0415 | 0.7705 | 0.8726 | 0.7107 | 11.4252 | 0.7714 | | 0.0055 | 9.0 | 18351 | 0.0417 | 0.7720 | 0.8689 | 0.7163 | 11.6987 | 0.7716 | | 0.0045 | 10.0 | 20390 | 0.0422 | 0.7739 | 0.8704 | 0.7201 | 11.5798 | 0.7742 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
Toshifumi/bert-base-multilingual-cased-finetuned-emotion
Toshifumi
2022-04-14T08:27:21Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T13:33:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9195 - name: F1 type: f1 value: 0.9204823251325381 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-emotion This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - Accuracy: 0.9195 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9212 | 1.0 | 250 | 0.3466 | 0.8965 | 0.8966 | | 0.2893 | 2.0 | 500 | 0.2369 | 0.9195 | 0.9205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Felix92/doctr-dummy-torch-mobilenet-v3-small
Felix92
2022-04-14T08:25:21Z
146
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T08:25:15Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-torch-magc-resnet31
Felix92
2022-04-14T08:18:52Z
145
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T08:18:44Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Felix92/doctr-dummy-torch-resnet50
Felix92
2022-04-14T08:06:25Z
146
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T08:06:18Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
ASCCCCCCCC/PENGMENGJIE-finetuned-sms
ASCCCCCCCC
2022-04-14T07:57:02Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-14T06:37:58Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PENGMENGJIE-finetuned-sms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PENGMENGJIE-finetuned-sms This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0116 | 1.0 | 1250 | 0.0060 | 0.999 | 0.9990 | | 0.003 | 2.0 | 2500 | 0.0000 | 1.0 | 1.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
Felix92/doctr-dummy-torch-resnet34
Felix92
2022-04-14T07:48:34Z
145
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2022-04-14T07:48:27Z
--- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
cj-mills/distilbert-base-uncased-finetuned-clinc
cj-mills
2022-04-14T07:21:55Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T21:50:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7796 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2938 | 1.0 | 318 | 3.2905 | 0.7410 | | 2.6346 | 2.0 | 636 | 1.8833 | 0.8326 | | 1.5554 | 3.0 | 954 | 1.1650 | 0.8926 | | 1.0189 | 4.0 | 1272 | 0.8636 | 0.9110 | | 0.8028 | 5.0 | 1590 | 0.7796 | 0.9161 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
csikasote/wav2vec2-large-xlsr-bemba
csikasote
2022-04-14T07:20:37Z
6
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "bem", "dataset:BembaSpeech", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: bem datasets: - BembaSpeech metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Bemba by Claytone Sikasote results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: BembaSpeech bem type: bembaspeech args: bem metrics: - name: Test WER type: wer value: 42.17 --- # Wav2Vec2-Large-XLSR-53-Bemba Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Bemba language of Zambia using the [BembaSpeech](https://csikasote.github.io/BembaSpeech). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\t")["test"] # Adapt the path to test.csv processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") #BembaSpeech is sample at 16kHz so we you do not need to resample #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Bemba test data of BembaSpeech. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\\t")["test"] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model.to("cuda") chars_to_ignore_regex = '[\,\_\?\.\!\;\:\"\“]' #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 42.17 % ## Training The BembaSpeech `train`, `dev` and `test` datasets were used for training, development and evaluation respectively. The script used for evaluating the model on the test dataset can be found [here](https://colab.research.google.com/drive/1aplFHfaXE68HGDwBYV2KqUWPasrk7bXv?usp=sharing).
wasifa/fake_news_classifier
wasifa
2022-04-14T07:01:12Z
0
0
null
[ "region:us" ]
null
2022-04-08T02:38:25Z
# Fake News Classification # Dependencies The project requires Python 3.6 and the latest version of PyTorch The models were trained on Kaggle kernels with a GPU # Data The dataset consists of fake and true articles. # Code All the solution and notebook files (with cell outputs) are provided. # Run Use the following command to open the notebook and train the model: ``` jupyter notebook fake_news_classifier.ipynb ```
huggingtweets/credenzaclear2-dril-nia_mp4
huggingtweets
2022-04-14T04:40:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-14T04:39:38Z
--- language: en thumbnail: http://www.huggingtweets.com/credenzaclear2-dril-nia_mp4/1649911222622/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510917391533830145/XW-zSFDJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487740104340918272/7c9spp2E_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511875789213638656/WdSSvAhj_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Nia & Audrey Horne</div> <div style="text-align: center; font-size: 14px;">@credenzaclear2-dril-nia_mp4</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Nia & Audrey Horne. | Data | wint | Nia | Audrey Horne | | --- | --- | --- | --- | | Tweets downloaded | 3229 | 1552 | 626 | | Retweets | 477 | 28 | 74 | | Short tweets | 303 | 133 | 124 | | Tweets kept | 2449 | 1391 | 428 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rarj99g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @credenzaclear2-dril-nia_mp4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20c2vigo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20c2vigo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/credenzaclear2-dril-nia_mp4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eagles/focus_sum
eagles
2022-04-14T04:26:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T10:33:00Z
--- tags: - generated_from_trainer model-index: - name: focus_sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # focus_sum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9644 | 3.75 | 500 | 0.6880 | | 0.4682 | 7.52 | 1000 | 0.4350 | | 0.4672 | 11.28 | 1500 | 0.2599 | | 0.3439 | 15.04 | 2000 | 0.1568 | | 0.2753 | 18.79 | 2500 | 0.1064 | | 0.1885 | 22.55 | 3000 | 0.0737 | | 0.2185 | 26.31 | 3500 | 0.0575 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
jekdoieao/wav2vec2-large-xls-r-300m-turkish-colab
jekdoieao
2022-04-14T02:33:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-13T22:21:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - Wer: 0.3635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.967 | 3.67 | 400 | 0.6661 | 0.6756 | | 0.3882 | 7.34 | 800 | 0.4310 | 0.4755 | | 0.1828 | 11.01 | 1200 | 0.4146 | 0.4485 | | 0.126 | 14.68 | 1600 | 0.4014 | 0.4254 | | 0.0955 | 18.35 | 2000 | 0.4125 | 0.4040 | | 0.0749 | 22.02 | 2400 | 0.3912 | 0.3960 | | 0.0606 | 25.69 | 2800 | 0.3707 | 0.3771 | | 0.0477 | 29.36 | 3200 | 0.3731 | 0.3635 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
vumichien/tiny-albert
vumichien
2022-04-14T00:16:10Z
4
0
transformers
[ "transformers", "pytorch", "tf", "albert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-13T23:31:03Z
--- tags: - generated_from_keras_callback model-index: - name: tiny-albert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-albert This model is a fine-tuned version of [hf-internal-testing/tiny-albert](https://huggingface.co/hf-internal-testing/tiny-albert) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Tokenizers 0.12.1
ales/wav2vec2-cv-be
ales
2022-04-13T21:33:15Z
165
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "be", "dataset:mozilla-foundation/common_voice_8_0", "license:gpl-3.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-13T11:42:20Z
--- license: gpl-3.0 language: - be tags: - audio - speech - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: be metrics: - name: Dev WER type: wer value: 17.61 - name: Test WER type: wer value: 18.7 - name: Dev WER (with LM) type: wer value: 11.5 - name: Test WER (with LM) type: wer value: 12.4 --- # Automatic Speech Recognition for Belarusian language Fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on `mozilla-foundation/common_voice_8_0 be` dataset. `Train`, `Dev`, `Test` splits were used as they are present in the dataset. No additional data was used from `Validated` split, only 1 voicing of each sentence was used - the way the data was split by [CommonVoice CorporaCreator](https://github.com/common-voice/CorporaCreator). To build a better model **one can use additional voicings from `Validated` split** for sentences already present in `Train`, `Dev`, `Test` splits, i.e. enlarge mentioned splits. Language model was built using [KenLM](https://kheafield.com/code/kenlm/estimation/). 5-gram Language model was built on sentences from `Train + (Other - Dev - Test)` splits of `mozilla-foundation/common_voice_8_0 be` dataset. Source code is available [here](https://github.com/yks72p/stt_be). ## Run model in a browser This page contains interactive demo widget that lets you test this model right in a browser. However, this widget uses Acoustic model only **without** Language model that significantly improves overall performance. You can play with **full pipeline of Acoustic model + Language model** on the following [spaces page](https://huggingface.co/spaces/ales/wav2vec2-cv-be-lm) (also works from browser).
huggingtweets/kc_lyricbot
huggingtweets
2022-04-13T21:14:37Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-13T21:12:47Z
--- language: en thumbnail: http://www.huggingtweets.com/kc_lyricbot/1649884470723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448393533921112064/q3fCXTyu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">King Crimson Lyric Bot</div> <div style="text-align: center; font-size: 14px;">@kc_lyricbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from King Crimson Lyric Bot. | Data | King Crimson Lyric Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 231 | | Tweets kept | 3019 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yn81k4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kc_lyricbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15ndpk6d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15ndpk6d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kc_lyricbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
javilonso/Mex_Rbta_Opinion_Augmented_Polarity
javilonso
2022-04-13T20:38:36Z
3
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T20:16:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/Mex_Rbta_Opinion_Augmented_Polarity results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/Mex_Rbta_Opinion_Augmented_Polarity This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6885 - Validation Loss: 0.6118 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7710, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6885 | 0.6118 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
javilonso/Mex_Rbta_TitleWithOpinion_Attraction
javilonso
2022-04-13T18:44:33Z
5
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T17:46:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/Mex_Rbta_TitleWithOpinion_Attraction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/Mex_Rbta_TitleWithOpinion_Attraction This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0064 - Validation Loss: 0.0515 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 8979, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0780 | 0.0650 | 0 | | 0.0204 | 0.0464 | 1 | | 0.0064 | 0.0515 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
javilonso/Mex_Rbta_TitleWithOpinion_Polarity
javilonso
2022-04-13T17:35:16Z
3
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T16:55:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/Mex_Rbta_TitleWithOpinion_Polarity results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/Mex_Rbta_TitleWithOpinion_Polarity This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3691 - Validation Loss: 0.5035 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5986, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5710 | 0.5017 | 0 | | 0.3691 | 0.5035 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
ParulChaudhari/distilbert-base-uncased-finetuned-squad
ParulChaudhari
2022-04-13T17:06:14Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-11T17:01:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ParulChaudhari/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ParulChaudhari/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an SQUAD dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3927 - Validation Loss: 1.1305 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 177048, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3927 | 1.1305 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.5.0 - Datasets 2.0.0 - Tokenizers 0.12.1
veddm/all-distilroberta-v1-finetuned-DIT-10_epochs
veddm
2022-04-13T16:31:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-13T11:19:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: all-distilroberta-v1-finetuned-DIT-10_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-distilroberta-v1-finetuned-DIT-10_epochs This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 358 | 0.0196 | | 0.3013 | 2.0 | 716 | 0.0092 | | 0.0073 | 3.0 | 1074 | 0.0065 | | 0.0073 | 4.0 | 1432 | 0.0054 | | 0.0021 | 5.0 | 1790 | 0.0051 | | 0.0007 | 6.0 | 2148 | 0.0047 | | 0.0004 | 7.0 | 2506 | 0.0047 | | 0.0004 | 8.0 | 2864 | 0.0046 | | 0.0004 | 9.0 | 3222 | 0.0044 | | 0.0003 | 10.0 | 3580 | 0.0044 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
huggan/pix2pix-maps
huggan
2022-04-13T16:25:52Z
0
2
null
[ "pytorch", "huggan", "gan", "dataset:huggan/maps", "arxiv:1611.07004", "license:mit", "region:us" ]
null
2022-04-13T08:11:16Z
--- tags: - huggan - gan datasets: - huggan/maps # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Pix2Pix trained on the maps dataset ## Model description This model is a [Pix2Pix](https://arxiv.org/abs/1611.07004) model trained on the [huggan/maps](https://huggingface.co/datasets/huggan/maps) dataset. The goal for the model is to turn a satellite map into a geographic map à la Google Maps, and the other way around. The model was trained using the [example script](https://github.com/huggingface/community-events/tree/main/huggan/pytorch/pix2pix) provided by HuggingFace as part of the [HugGAN sprint](https://github.com/huggingface/community-events/tree/main/huggan). ## Intended uses & limitations #### How to use ```python from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet from PIL import Image from torchvision.utils import save_image image = Image.open("...") generator = GeneratorUNet.from_pretrained("huggan/pix2pix-maps") pixel_values = transform(image).unsqueeze(0) output = generator(pixel_values) save_image(output, 'output.png', normalize=True) ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data The data used was huggan/maps. ## Training procedure The following command was used: ```bash accelerate launch train.py --dataset huggan/maps --push_to_hub --model_name pix2pix-maps --checkpoint_interval 1 ``` ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/IsolaZZE16, author = {Phillip Isola and Jun{-}Yan Zhu and Tinghui Zhou and Alexei A. Efros}, title = {Image-to-Image Translation with Conditional Adversarial Networks}, journal = {CoRR}, volume = {abs/1611.07004}, year = {2016}, url = {http://arxiv.org/abs/1611.07004}, eprinttype = {arXiv}, eprint = {1611.07004}, timestamp = {Mon, 13 Aug 2018 16:49:05 +0200}, biburl = {https://dblp.org/rec/journals/corr/IsolaZZE16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
potatobunny/results-yelp
potatobunny
2022-04-13T15:36:11Z
5
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T15:20:19Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results-yelp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results-yelp This model is a fine-tuned version of [textattack/bert-base-uncased-yelp-polarity](https://huggingface.co/textattack/bert-base-uncased-yelp-polarity) on a filtered and manually reviewed Yelp dataset containing restaurant reviews only. It achieves the following results on the evaluation set: - Loss: 0.3563 - Accuracy: 0.9302 - Precision: 0.9461 - Recall: 0.9608 - F1: 0.9534 Note: to use this tokenizer, please use the following code to load all the required files: `tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", config=AutoConfig.from_pretrained("potatobunny/results-yelp"))` ## Model description This model is fine-tuned on a Yelp dataset with labelled data containing a restaurant review (text) and whether it has a positive (1) or negative (0) sentiment. ## Intended uses & limitations This is intended to perform text classification, specifically sentiment analysis, on text data obtained from restaurant reviews to determine if the particular review is positive or negative. ## Training and evaluation data The training and evaluation data were both obtained from the same Yelp dataset. The data was split into 70% training and 30% validation. <!-- ## Training procedure --> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results The training loss obtained was 0.265741667. ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
Toshifumi/distilbert-base-multilingual-cased-finetuned-emotion
Toshifumi
2022-04-13T12:30:50Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T12:15:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.8885 - name: F1 type: f1 value: 0.8888307905223247 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3702 - Accuracy: 0.8885 - F1: 0.8888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1646 | 1.0 | 250 | 0.6190 | 0.8085 | 0.7992 | | 0.4536 | 2.0 | 500 | 0.3702 | 0.8885 | 0.8888 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
philschmid/MiniLMv2-L12-H384-distilled-finetuned-clinc
philschmid
2022-04-13T12:07:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T11:56:01Z
--- tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-distilled-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9529032258064516 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-distilled-finetuned-clinc This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3058 - Accuracy: 0.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9908 | 1.0 | 239 | 1.6816 | 0.3910 | | 1.5212 | 2.0 | 478 | 1.2365 | 0.7697 | | 1.129 | 3.0 | 717 | 0.9209 | 0.8706 | | 0.8462 | 4.0 | 956 | 0.6978 | 0.9152 | | 0.6497 | 5.0 | 1195 | 0.5499 | 0.9342 | | 0.5124 | 6.0 | 1434 | 0.4447 | 0.9445 | | 0.4196 | 7.0 | 1673 | 0.3797 | 0.9455 | | 0.3587 | 8.0 | 1912 | 0.3358 | 0.95 | | 0.3228 | 9.0 | 2151 | 0.3133 | 0.9513 | | 0.3052 | 10.0 | 2390 | 0.3058 | 0.9529 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
javilonso/classificationEsp1_Augmented_Attraction
javilonso
2022-04-13T11:39:19Z
4
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T10:32:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/classificationEsp1_Augmented_Attraction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/classificationEsp1_Augmented_Attraction This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0078 - Validation Loss: 0.0581 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11565, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1187 | 0.0748 | 0 | | 0.0323 | 0.0606 | 1 | | 0.0078 | 0.0581 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
creat89/NER_FEDA_Cs
creat89
2022-04-13T09:38:35Z
8
0
transformers
[ "transformers", "pytorch", "bert", "labse", "ner", "multilingual", "cs", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit language: - multilingual - cs tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 4. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Ru
creat89
2022-04-13T09:32:54Z
8
0
transformers
[ "transformers", "pytorch", "bert", "rubert", "ner", "ru", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit language: - ru tags: - rubert - ner --- This is a Russian NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on RuBERT and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 4. CNE5 (GEOPOLIT, LOC, MEDIA, PER, ORG) 5. FactRuEval (LOC, ORG, PER) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. This models manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Uk
creat89
2022-04-13T09:29:36Z
6
0
transformers
[ "transformers", "pytorch", "bert", "labse", "ner", "multilingual", "uk", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit language: - multilingual - uk tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. NER-UK (LOC, MISC, ORG, PER) 4. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. This models manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Latin2
creat89
2022-04-13T09:03:00Z
8
0
transformers
[ "transformers", "pytorch", "bert", "labse", "ner", "multilingual", "cs", "pl", "sl", "fi", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit language: - multilingual - cs - pl - sl - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. SSJ500k (LOC, MISC, ORG, PER) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Latin1
creat89
2022-04-13T09:02:03Z
6
0
transformers
[ "transformers", "pytorch", "bert", "labse", "ner", "multilingual", "cs", "pl", "sl", "fi", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit language: - multilingual - cs - pl - sl - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. SSJ500k (LOC, MISC, ORG, PER) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
patrickvonplaten/bart-large-fp32
patrickvonplaten
2022-04-13T09:00:04Z
54
0
transformers
[ "transformers", "pytorch", "jax", "bart", "feature-extraction", "en", "arxiv:1910.13461", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-13T07:53:21Z
--- license: apache-2.0 language: en --- **NOTE: This is the FP32 version of [Facebook's official bart-large](https://huggingface.co/facebook/bart-large/edit/main/README.md).** # BART (large-sized model) BART model pre-trained on English language. It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/bart). Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import BartTokenizer, BartModel tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') model = BartModel.from_pretrained('facebook/bart-large') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
studio-ousia/luke-base
studio-ousia
2022-04-13T08:59:59Z
3,493
21
transformers
[ "transformers", "pytorch", "luke", "fill-mask", "named entity recognition", "entity typing", "relation classification", "question answering", "en", "arxiv:1906.08237", "arxiv:1903.07785", "arxiv:2002.01808", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png tags: - luke - named entity recognition - entity typing - relation classification - question answering license: apache-2.0 --- ## LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention **LUKE** (**L**anguage **U**nderstanding with **K**nowledge-based **E**mbeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. LUKE achieves state-of-the-art results on five popular NLP benchmarks including **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive question answering), **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)** (cloze-style question answering), **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation classification), and **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing). Please check the [official repository](https://github.com/studio-ousia/luke) for more details and updates. This is the LUKE base model with 12 hidden layers, 768 hidden size. The total number of parameters in this model is 253M. It is trained using December 2018 version of Wikipedia. ### Experimental results The experimental results are provided as follows: | Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA | | ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- | | Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) | | Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) | | Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) | | Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | | Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | ### Citation If you find LUKE useful for your work, please cite the following paper: ```latex @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ```
lewtun/roberta-large-finetuned-clinc
lewtun
2022-04-13T08:48:32Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-13T08:40:22Z
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9767741935483871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1545 - Accuracy: 0.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0548 | 1.0 | 120 | 5.0359 | 0.0071 | | 4.4725 | 2.0 | 240 | 2.9385 | 0.7558 | | 1.8924 | 3.0 | 360 | 0.6456 | 0.9374 | | 0.4552 | 4.0 | 480 | 0.2297 | 0.9626 | | 0.1589 | 5.0 | 600 | 0.1545 | 0.9768 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
Danni/distilbert-base-uncased-finetuned-cola
Danni
2022-04-13T07:28:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-06T15:04:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.44113488112476795 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4994 - Matthews Correlation: 0.4411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5282 | 1.0 | 535 | 0.4994 | 0.4411 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
mimicheng/codeparrot-ds-sample-1ep-12apr
mimicheng
2022-04-13T07:16:11Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-13T03:45:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-1ep-12apr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-1ep-12apr This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8723 | 0.37 | 1000 | 2.5340 | | 2.1776 | 0.74 | 2000 | 1.9947 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/radfemman
huggingtweets
2022-04-13T06:22:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-13T05:44:47Z
--- language: en thumbnail: http://www.huggingtweets.com/radfemman/1649830938917/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428572680882688005/rqGxWIRJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radfem Ally 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@radfemman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Radfem Ally 🇺🇸. | Data | Radfem Ally 🇺🇸 | | --- | --- | | Tweets downloaded | 227 | | Retweets | 33 | | Short tweets | 14 | | Tweets kept | 180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29ku9tl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @radfemman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33qza7xp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33qza7xp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/radfemman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)