modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 12:28:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 12:27:35
card
stringlengths
11
1.01M
Rocketknight1/transformers-qa
Rocketknight1
2022-01-12T17:31:11Z
4
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: transformers-qa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # transformers-qa This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9300 - Validation Loss: 1.1437 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5145 | 1.1500 | 0 | | 0.9300 | 1.1437 | 1 | ### Framework versions - Transformers 4.16.0.dev0 - TensorFlow 2.6.0 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
hogger32/xlmRoberta-for-VietnameseQA
hogger32
2022-01-12T14:43:00Z
27
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: xlmRoberta-for-VietnameseQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmRoberta-for-VietnameseQA This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the UIT-Viquad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8315 ## Model description Fine-tuned by Honganh Nguyen (FPTU AI Club). ## Intended uses & limitations More information needed ## Training and evaluation data Credits to Viet Nguyen (FPTU AI Club) for the training and evaluation data. Training data: https://github.com/vietnguyen012/QA_viuit/blob/main/train.json Evaluation data: https://github.com/vietnguyen012/QA_viuit/blob/main/trial/trial.json ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5701 | 1.0 | 2534 | 1.2220 | | 1.2942 | 2.0 | 5068 | 0.9698 | | 1.0693 | 3.0 | 7602 | 0.8315 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mahaamami/distilroberta-base-finetuned-wikitext2
mahaamami
2022-01-12T13:25:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1026 | 1.0 | 5835 | 1.9705 | | 2.0088 | 2.0 | 11670 | 1.9090 | | 1.9766 | 3.0 | 17505 | 1.8833 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ibraheemmoosa/xlmindic-base-uniscript-soham
ibraheemmoosa
2022-01-12T12:28:05Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "albert", "text-classification", "multilingual", "xlmindic", "nlp", "indoaryan", "indicnlp", "iso15919", "transliteration", "as", "bn", "gu", "hi", "mr", "ne", "or", "pa", "si", "sa", "bpy", "mai", "bh", "gom", "dataset:oscar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - as - bn - gu - hi - mr - ne - or - pa - si - sa - bpy - mai - bh - gom license: apache-2.0 datasets: - oscar tags: - multilingual - albert - xlmindic - nlp - indoaryan - indicnlp - iso15919 - transliteration - text-classification widget: - text : 'cīnēra madhyāñcalē āraō ēkaṭi śaharēra bāsindārā ābāra gharabandī haẏē paṛēchēna. āja maṅgalabāra natuna karē lakaḍāuna–saṁkrānta bidhiniṣēdha jāri haōẏāra para gharē āṭakā paṛēchēna tām̐rā. karōnāra ati saṁkrāmaka natuna dharana amikranēra bistāra ṭhēkātē ēmana padakṣēpa niẏēchē kartr̥pakṣa. khabara bārtā saṁsthā ēēphapira.' co2_eq_emissions: emissions: "0.21 in grams of CO2" source: "calculated using this webstie https://mlco2.github.io/impact/#compute" training_type: "fine-tuning" geographical_location: "NA" hardware_used: "P100 for about 1.5 hours" --- # XLMIndic Base Uniscript This model is finetuned from [this model](https://huggingface.co/ibraheemmoosa/xlmindic-base-uniscript) on Soham Bangla News Classification task which is part of the IndicGLUE benchmark. **Before pretraining this model we transliterate the text to [ISO-15919](https://en.wikipedia.org/wiki/ISO_15919) format using the [Aksharamukha](https://pypi.org/project/aksharamukha/) library.** A demo of Aksharamukha library is hosted [here](https://aksharamukha.appspot.com/converter) where you can transliterate your text and use it on our model on the inference widget. ## Model description This model has the same configuration as the [ALBERT Base v2 model](https://huggingface.co/albert-base-v2/). Specifically, this model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters - 512 sequence length ## Training data This model was fine-tuned on Soham dataset that is part of the IndicGLUE benchmark. ## Transliteration *The unique component of this model is that it takes in ISO-15919 transliterated text.* The motivation behind this is this. When two languages share vocabularies, a machine learning model can exploit that to learn good cross-lingual representations. However if these two languages use different writing scripts it is difficult for a model to make the connection. Thus if if we can write the two languages in a single script then it is easier for the model to learn good cross-lingual representation. For many of the scripts currently in use, there are standard transliteration schemes to convert to the Latin script. In particular, for the Indic scripts the ISO-15919 transliteration scheme is designed to consistently transliterate texts written in different Indic scripts to the Latin script. An example of ISO-15919 transliteration for a piece of **Bangla** text is the following: **Original:** "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি কবি, ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক।" **Transliterated:** 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika.' Another example for a piece of **Hindi** text is the following: **Original:** "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" **Transliterated:** "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" ## Training procedure ### Preprocessing The texts are transliterated to ISO-15919 format using the Aksharamukha library. Then these are tokenized using SentencePiece and a vocabulary size of 50,000. ### Training The model was trained for 8 epochs with a batch size of 16 and a learning rate of *2e-5*. ## Evaluation results See results specific to Soham in the following table. ### IndicGLUE Task | mBERT | XLM-R | IndicBERT-Base | XLMIndic-Base-Uniscript (This Model) | XLMIndic-Base-Multiscript (Ablation Model) -----| ----- | ----- | ------ | ------- | -------- Wikipedia Section Title Prediction | 71.90 | 65.45 | 69.40 | **81.78 ± 0.60** | 77.17 ± 0.76 Article Genre Classification | 88.64 | 96.61 | 97.72 | **98.70 ± 0.29** | 98.30 ± 0.26 Named Entity Recognition (F1-score) | 71.29 | 62.18 | 56.69 | **89.85 ± 1.14** | 83.19 ± 1.58 BBC Hindi News Article Classification | 60.55 | 75.52 | 74.60 | **79.14 ± 0.60** | 77.28 ± 1.50 Soham Bangla News Article Classification | 80.23 | 87.6 | 78.45 | **93.89 ± 0.48** | 93.22 ± 0.49 INLTK Gujarati Headlines Genre Classification | - | - | **92.91** | 90.73 ± 0.75 | 90.41 ± 0.69 INLTK Marathi Headlines Genre Classification | - | - | **94.30** | 92.04 ± 0.47 | 92.21 ± 0.23 IITP Hindi Product Reviews Sentiment Classification | 74.57 | **78.97** | 71.32 | 77.18 ± 0.77 | 76.33 ± 0.84 IITP Hindi Movie Reviews Sentiment Classification | 56.77 | 61.61 | 59.03 | **66.34 ± 0.16** | 65.91 ± 2.20 MIDAS Hindi Discourse Type Classification | 71.20 | **79.94** | 78.44 | 78.54 ± 0.91 | 78.39 ± 0.33 Cloze Style Question Answering (Fill-mask task) | - | - | 37.16 | **41.54** | 38.21 ## Intended uses & limitations This model is pretrained on Indo-Aryan languages. Thus it is intended to be used for downstream tasks on these languages. However, since Dravidian languages such as Malayalam, Telegu, Kannada etc share a lot of vocabulary with the Indo-Aryan languages, this model can potentially be used on those languages too (after transliterating the text to ISO-15919). You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=xlmindic) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use To use this model you will need to first install the [Aksharamukha](https://pypi.org/project/aksharamukha/) library. ```bash pip install aksharamukha ``` Using this library you can transliterate any text wriiten in Indic scripts in the following way: ```python >>> from aksharamukha import transliterate >>> text = "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है" >>> transliterated_text = transliterate.process('autodetect', 'ISO', text) >>> transliterated_text "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai" ``` Then you can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> from aksharamukha import transliterate >>> unmasker = pipeline('fill-mask', model='ibraheemmoosa/xlmindic-base-uniscript') >>> text = "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি [MASK], ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।" >>> transliterated_text = transliterate.process('Bengali', 'ISO', text) >>> transliterated_text 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli [MASK], aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama [MASK] puraskāra lābha karēna.' >>> unmasker(transliterated_text) [{'score': 0.39705055952072144, 'token': 1500, 'token_str': 'abhinētā', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli abhinētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.20499080419540405, 'token': 3585, 'token_str': 'kabi', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.1314290314912796, 'token': 15402, 'token_str': 'rājanētā', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli rājanētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.060830358415842056, 'token': 3212, 'token_str': 'kalākāra', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kalākāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}, {'score': 0.035522934049367905, 'token': 11586, 'token_str': 'sāhityakāra', 'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli sāhityakāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}] ``` ### Limitations and bias Even though we pretrain on a comparatively large multilingual corpus the model may exhibit harmful gender, ethnic and political bias. If you fine-tune this model on a task where these issues are important you should take special care when relying on the model to make decisions. ## Contact Feel free to contact us if you have any ideas or if you want to know more about our models. - Ibraheem Muhammad Moosa ([email protected]) - Mahmud Elahi Akhter ([email protected]) - Ashfia Binte Habib ## BibTeX entry and citation info Coming soon!
anirudh21/distilbert-base-uncased-finetuned-rte
anirudh21
2022-01-12T11:32:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6173285198555957 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-rte This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6661 - Accuracy: 0.6173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6921 | 0.5162 | | No log | 2.0 | 312 | 0.6661 | 0.6173 | | No log | 3.0 | 468 | 0.7794 | 0.5632 | | 0.5903 | 4.0 | 624 | 0.8832 | 0.5921 | | 0.5903 | 5.0 | 780 | 0.9376 | 0.5921 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anirudh21/distilbert-base-uncased-finetuned-mrpc
anirudh21
2022-01-12T08:30:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8958677685950412 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Accuracy: 0.8456 - F1: 0.8959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3826 | 0.8186 | 0.8683 | | No log | 2.0 | 460 | 0.3830 | 0.8456 | 0.8959 | | 0.4408 | 3.0 | 690 | 0.3835 | 0.8382 | 0.8866 | | 0.4408 | 4.0 | 920 | 0.5036 | 0.8431 | 0.8919 | | 0.1941 | 5.0 | 1150 | 0.5783 | 0.8431 | 0.8930 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
GusNicho/distilbert-base-cased-finetuned
GusNicho
2022-01-12T07:41:34Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3101 | 1.0 | 974 | 2.0502 | | 2.0831 | 2.0 | 1948 | 1.9627 | | 2.0198 | 3.0 | 2922 | 1.8998 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
anirudh21/distilbert-base-uncased-finetuned-cola
anirudh21
2022-01-12T07:24:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5224154837835395 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Matthews Correlation: 0.5224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5278 | 1.0 | 535 | 0.5223 | 0.4007 | | 0.3515 | 2.0 | 1070 | 0.5150 | 0.4993 | | 0.2391 | 3.0 | 1605 | 0.6471 | 0.5103 | | 0.1841 | 4.0 | 2140 | 0.7640 | 0.5153 | | 0.1312 | 5.0 | 2675 | 0.8623 | 0.5224 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ncduy/opus-mt-en-vi-full-finetuned-en-to-vi
ncduy
2022-01-12T07:10:14Z
8
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-vi-full-finetuned-en-to-vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-vi-full-finetuned-en-to-vi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 212 - eval_batch_size: 212 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.17.0 - Tokenizers 0.10.3
Jinhwan/krelectra-base-mecab
Jinhwan
2022-01-12T03:18:55Z
5
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: ko license: apache-2.0 tags: - korean --- # KrELECTRA-base-mecab Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer) ## Usage ### Load model and tokenizer ```python >>> from transformers import AutoTokenizer, AutoModelForPreTraining >>> model = AutoModelForPreTraining.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']) [2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
ThePixOne/retBERT
ThePixOne
2022-01-11T18:24:24Z
8
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
BERT finetuned on wallstreetbets subreddit
rbhushan/distilgpt2-finetuned-wikitext2
rbhushan
2022-01-11T16:55:00Z
13
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 73 | 5.4169 | | No log | 2.0 | 146 | 5.3145 | | No log | 3.0 | 219 | 5.2872 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
alaggung/bart-pretrained
alaggung
2022-01-11T16:07:39Z
4
1
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - ko widget: - text: "[BOS]뭐 해?[SEP][MASK]하다가 이제 [MASK]려고[EOS]" inference: parameters: max_length: 64 --- # BART Pretrained [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
flax-community/t5-base-dutch
flax-community
2022-01-11T12:10:22Z
32
4
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "dataset:yhavinga/mc4_nl_cleaned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - dutch tags: - seq2seq - lm-head datasets: - yhavinga/mc4_nl_cleaned license: apache-2.0 inference: false --- # t5-base-dutch Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/) & [Dat Nguyen](https://www.linkedin.com/in/dat-nguyen-49a641138/) during the [Hugging Face community week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google, for the project [Pre-train T5 from scratch in Dutch](https://discuss.huggingface.co/t/pretrain-t5-from-scratch-in-dutch/8109). See also the fine-tuned [t5-base-dutch-demo](https://huggingface.co/flax-community/t5-base-dutch-demo) model, and the demo application **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)**, that are based on this model. **5 jan 2022: Model updated. Evaluation accuracy increased from 0.64 to 0.70.** **11 jan 2022: See also [yhavinga/t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) with eval acc 0.78** ## Model * Configuration based on `google/t5-base` * 12 layers, 12 heads * Dropout set to 0.1 ## Dataset This model was trained on the `full` configuration of [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. ## Tokenization A SentencePiece tokenizer was trained from scratch on this dataset. The total tokens of the `full` configuration is 34B ## Training The model was trained on the `full` mc4_nl_cleaned dataset configuration for 1 epoch, consisting of 34B tokens, for 528 482 steps with a batch size of 128 and took 57 hours. A triangle learning rate schedule was used, with peak learning rate 0.005. ## Evaluation * Loss: 1.38 * Accuracy: 0.70
moumeneb1/testing
moumeneb1
2022-01-11T09:16:45Z
5
0
speechbrain
[ "speechbrain", "wav2vec2", "CTC", "Attention", "pytorch", "Transformer", "automatic-speech-recognition", "rw", "dataset:commonvoice", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on CommonVoice Kinyarwanda (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (Kinyarwanda Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test WER | GPUs | |:--------------:|:--------------:| :--------:| | 03-06-21 | 18.91 | 2xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (RW). - Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice En. The obtained final acoustic representation is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Kinyarwanda) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw") asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/CommonVoice/ASR/seq2seq python train_with_wav2vec.py hparams/train_rw_with_wav2vec.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
Firat/albert-base-v2-finetuned-squad
Firat
2022-01-11T09:15:49Z
5
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8584 | 1.0 | 5540 | 0.9056 | | 0.6473 | 2.0 | 11080 | 0.8975 | | 0.4801 | 3.0 | 16620 | 0.9901 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
Nasvai1702/Night
Nasvai1702
2022-01-11T02:14:52Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Говорили: "Погоди", уходил с дождём Эта ночь нужна, переваривал сон Вы порвали паруса, ожидая восторг Это мой Тачтаун, это мой Гонконг Надо созерцать, и не более того Либо до конца переполох Хитроматы пустот, наливай по сто Забывай мой голос и меня самого Забывай мой рай, я пропитый бадман Добровольно приговаривал, а вам по делом Заливал до дна, дабы дать по щам Не хочу себя жалеть, и не буду прощать Этот мир не смог меня сохранить Потеряли головы, теряя нить Во время дабы любить без обид и жить Не забыть нам бед, и незачем творить Ночи в одного, ночи в одного Холили, лелеяли убитого меня собой Ночи в одного, ночи в одного Верили в меня, как никогда, никто и ни в кого Ночи в одного, ночи в одного Холили, лелеяли убитого меня собой Ночи в одного, ночи в одного Верили в меня, как никогда, никто и ни в кого
tscholak/2jrayxos
tscholak
2022-01-10T21:50:53Z
12
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2sql", "en", "dataset:cosql", "dataset:spider", "arxiv:2109.05093", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab" tags: - text2sql widget: - "And the concert named Auditions? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : sing er_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name ( Super bootcamp, Auditions ), theme, stadium_id, year | singer_in_concert : concert_id, singer_id || Which year did the concert Super bootcamp happen in? | Find the name and location of the stadiums which some concerts happened in the years of both 2014 and 2015." - "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id" license: "apache-2.0" datasets: - cosql - spider metrics: - cosql --- ## tscholak/2jrayxos Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). ### Training Data The model has been fine-tuned on the 2,164 training dialogues in the [CoSQL SQL-grounded dialogue state tracking dataset](https://yale-lily.github.io/cosql) and the 7,000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves both, CoSQL's zero-shot text-to-SQL dialogue state tracking task and Spider's zero-shot text-to-SQL translation task. Zero-shot means that the model can generalize to unseen SQL databases. ### Training Objective This model was initialized with [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) and fine-tuned with the text-to-text generation objective. A question is always grounded in both, a database schema and the preceiding questions in the dialogue. The model is trained to predict the SQL query that would be used to answer the user's current natural language question. The input to the model is composed of the user's current question, the database identifier, a list of tables and their columns, and a sequence of previous questions in reverse chronological order. ``` [current question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... || [previous question] | ... | [first question] ``` The sequence of previous questions is separated by `||` from the linearized schema. In the absence of previous questions (for example, for the first question in a dialogue or for Spider questions), this separator is omitted. The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's current question in the dialog. ``` [db_id] | [sql] ``` ### Performance Out of the box, this model achieves 52.5 % question match accuracy on the CoSQL development set. Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **54.2 %** question match accuracy on the CoSQL development set. ### Usage Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model. ### References 1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) 2. [Official PICARD code](https://github.com/ElementAI/picard) ### Citation ```bibtex @inproceedings{Scholak2021:PICARD, author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau}, title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.779", pages = "9895--9901", } ```
tscholak/1wnr382e
tscholak
2022-01-10T21:50:25Z
77
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2sql", "en", "dataset:spider", "arxiv:2109.05093", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab" tags: - text2sql widget: - "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id" license: "apache-2.0" datasets: - spider metrics: - spider --- ## tscholak/1wnr382e Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-Large](https://huggingface.co/t5-large). ### Training Data The model has been fine-tuned on the 7000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves Spider's zero-shot text-to-SQL translation task, and that means that it can generalize to unseen SQL databases. ### Training Objective This model was initialized with [T5-Large](https://huggingface.co/t5-large) and fine-tuned with the text-to-text generation objective. Questions are always grounded in a database schema, and the model is trained to predict the SQL query that would be used to answer the question. The input to the model is composed of the user's natural language question, the database identifier, and a list of tables and their columns: ``` [question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... ``` The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's question: ``` [db_id] | [sql] ``` ### Performance Out of the box, this model achieves 65.3 % exact-set match accuracy and 67.2 % execution accuracy on the Spider development set. Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **69.1 %** exact-set match accuracy and **72.9 %** execution accuracy on the Spider development set. ### Usage Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model. ### References 1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) 2. [Official PICARD code](https://github.com/ElementAI/picard) ### Citation ```bibtex @inproceedings{Scholak2021:PICARD, author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau}, title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.779", pages = "9895--9901", } ```
fhamborg/roberta-targeted-sentiment-classification-newsarticles
fhamborg
2022-01-10T16:16:01Z
15
15
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "sentiment-analysis", "sentiment-classification", "targeted-sentiment-classification", "target-depentent-sentiment-classification", "en", "dataset:fhamborg/news_sentiment_newsmtsc", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en tags: - text-classification - sentiment-analysis - sentiment-classification - targeted-sentiment-classification - target-depentent-sentiment-classification license: "apache-2.0" datasets: "fhamborg/news_sentiment_newsmtsc" --- # NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles ## Important: [use our PyPI package](https://pypi.org/project/NewsSentiment/) instead of this model on the Hub The Huggingface Hub architecture currently [does not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification since you cannot provide the required inputs, i.e., sentence and target. Thus, we recommend that you use our easy-to-use [PyPI package NewsSentiment](https://pypi.org/project/NewsSentiment/). ## Description This model is the currently [best performing](https://aclanthology.org/2021.eacl-main.142.pdf) targeted sentiment classifier for news articles. In contrast to regular sentiment classification, targeted sentiment classification allows you to provide a target in a sentence. Only for this target, the sentiment is then predicted. This is more reliable in many cases, as demonstrated by the following simplistic example: "I like Bert, but I hate Robert." This model is also available as an easy-to-use PyPI package named [`NewsSentiment`](https://pypi.org/project/NewsSentiment/) and in its original GitHub repository named [`NewsMTSC`](https://github.com/fhamborg/NewsMTSC), where you will find the dataset the model was trained on, other models for sentiment classification, and a training and testing framework. More information on the model and the dataset (consisting of more than 10k sentences sampled from news articles, each labeled and agreed upon by at least 5 annotators) can be found in our [EACL paper](https://aclanthology.org/2021.eacl-main.142.pdf). The dataset, the model, and its source code can be viewed in our [GitHub repository](https://github.com/fhamborg/NewsMTSC). We recommend to use our [PyPI package](https://pypi.org/project/NewsSentiment/) for sentiment classification since the Huggingface Hub platform seems to [not support](https://github.com/huggingface/transformers/issues/14785) target-dependent sentiment classification. # How to cite If you use the dataset or model, please cite our [paper](https://www.aclweb.org/anthology/2021.eacl-main.142/) ([PDF](https://www.aclweb.org/anthology/2021.eacl-main.142.pdf)): ``` @InProceedings{Hamborg2021b, author = {Hamborg, Felix and Donnay, Karsten}, title = {NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021)}, year = {2021}, month = {Apr.}, location = {Virtual Event}, } ```
huggingtweets/dril-feufillet-hostagekiller
huggingtweets
2022-01-10T11:35:03Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dril-feufillet-hostagekiller/1641814499288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1197820815636672513/JSCZmPDf_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sexy.funny.cute.pix & wint & HUSSY2K.</div> <div style="text-align: center; font-size: 14px;">@dril-feufillet-hostagekiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sexy.funny.cute.pix & wint & HUSSY2K.. | Data | sexy.funny.cute.pix | wint | HUSSY2K. | | --- | --- | --- | --- | | Tweets downloaded | 3101 | 3227 | 3186 | | Retweets | 158 | 479 | 819 | | Short tweets | 576 | 304 | 395 | | Tweets kept | 2367 | 2444 | 1972 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1o5d39dk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-feufillet-hostagekiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16eb1faz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16eb1faz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-feufillet-hostagekiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
doc2query/msmarco-t5-base-v1
doc2query
2022-01-10T10:22:10Z
1,411
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/msmarco-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/msmarco-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 31k training steps (about 4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [MS MARCO Passage-Ranking dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking).
lianaling/title-generator-t5
lianaling
2022-01-10T06:51:36Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
## Title Generator References this [notebook](https://shivanandroy.com/transformers-generating-arxiv-papers-title-from-abstracts/) Using `t5-small`, trained on a batch size of 16 for 4 epochs, utilising the ArXiV dataset through the `SimpleTransformers` library. Around 15k data was used for training and 3.7k data for evaluation. This is a `.pkl` file. ### Prerequisites Install `simpletransformers` library. ```bsh pip install simpletransformers ``` ### Example Usage ```py import pickle model = pickle.load(open("title-generator-t5-arxiv-16-4.pkl", "rb")) # Prefix your text with 'summarize: ' text = ["summarize: " + """Venetian commodes imitated the curving lines and carved ornament of the French rocaille, but with a particular Venetian variation; the pieces were painted, often with landscapes or flowers or scenes from Guardi or other painters, or Chinoiserie, against a blue or green background, matching the colours of the Venetian school of painters whose work decorated the salons. 24] Ceiling of church of Santi Giovanni e Paolo in Venice, by Piazzetta (1727) Juno and Luna by Giovanni Battista Tiepolo (1735–45) Murano glass chandelier at the Ca Rezzonico (1758) Ballroom ceiling of the Ca Rezzonico with ceiling by Giovanni Battista Crosato (1753) In church construction, especially in the southern German-Austrian region, gigantic spatial creations are sometimes created for practical reasons alone, which, however, do not appear monumental, but are characterized by a unique fusion of architecture, painting, stucco, etc. ,."""] print("Generated title: " + model.predict(text)) ```
ai-forever/ruclip-vit-large-patch14-336
ai-forever
2022-01-09T22:25:33Z
834
2
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-large-patch14-336 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `430M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `768` * Transformer Heads: `12` * Image Size: `336` * Vision Layers: `24` * Vision Width: `1024` * Vision Patch Size: `14` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-large-patch14-336", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.712 | | CIFAR10 | acc | 0.906 | | CIFAR100 | acc | 0.591 | | Birdsnap | acc | 0.213 | | SUN397 | acc | 0.523 | | Stanford Cars | acc | 0.659 | | DTD | acc | 0.408 | | MNIST | acc | 0.242 | | STL10 | acc | 0.956 | | PCam | acc | 0.554 | | CLEVR | acc | 0.142 | | Rendered SST2 | acc | 0.539 | | ImageNet | acc | 0.488 | | FGVC Aircraft | mean-per-class | 0.075 | | Oxford Pets | mean-per-class | 0.546 | | Caltech101 | mean-per-class | 0.835 | | Flowers102 | mean-per-class | 0.517 | | HatefulMemes | roc-auc | 0.519 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
ai-forever/ruclip-vit-base-patch32-224
ai-forever
2022-01-09T21:34:27Z
76
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-base-patch32-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `224` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `32` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch32-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.505 | | CIFAR10 | acc | 0.818 | | CIFAR100 | acc | 0.504 | | Birdsnap | acc | 0.115 | | SUN397 | acc | 0.452 | | Stanford Cars | acc | 0.433 | | DTD | acc | 0.380 | | MNIST | acc | 0.447 | | STL10 | acc | 0.932 | | PCam | acc | 0.501 | | CLEVR | acc | 0.148 | | Rendered SST2 | acc | 0.489 | | ImageNet | acc | 0.375 | | FGVC Aircraft | mean-per-class | 0.033 | | Oxford Pets | mean-per-class | 0.560 | | Caltech101 | mean-per-class | 0.786 | | Flowers102 | mean-per-class | 0.401 | | HatefulMemes | roc-auc | 0.564 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
ai-forever/ruclip-vit-base-patch16-224
ai-forever
2022-01-09T21:34:11Z
14
1
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ruclip-vit-base-patch16-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `224` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `16` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch16-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.552 | | CIFAR10 | acc | 0.810 | | CIFAR100 | acc | 0.496 | | Birdsnap | acc | 0.117 | | SUN397 | acc | 0.462 | | Stanford Cars | acc | 0.487 | | DTD | acc | 0.401 | | MNIST | acc | 0.464 | | STL10 | acc | 0.932 | | PCam | acc | 0.505 | | CLEVR | acc | 0.128 | | Rendered SST2 | acc | 0.527 | | ImageNet | acc | 0.401 | | FGVC Aircraft | mean-per-class | 0.043 | | Oxford Pets | mean-per-class | 0.595 | | Caltech101 | mean-per-class | 0.775 | | Flowers102 | mean-per-class | 0.388 | | HatefulMemes | roc-auc | 0.516 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
nepp1d0/SMILES_tokenizer
nepp1d0
2022-01-09T20:25:30Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Tokenizer trained on BindingDB SMILES encodings. Trained on 1008081 samples with one blank space after each character in the SMILES string
huggingtweets/elxokas-evilafm-ibaillanos
huggingtweets
2022-01-09T19:38:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/elxokas-evilafm-ibaillanos/1641757124234/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473427376696705024/mzWRw3ML_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402480040877699075/LShUbbef_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ibai & Alexelcapo & XOKAS</div> <div style="text-align: center; font-size: 14px;">@elxokas-evilafm-ibaillanos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ibai & Alexelcapo & XOKAS. | Data | Ibai | Alexelcapo | XOKAS | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3207 | 3245 | | Retweets | 28 | 12 | 187 | | Short tweets | 669 | 231 | 421 | | Tweets kept | 2553 | 2964 | 2637 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ed2k4vcn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elxokas-evilafm-ibaillanos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elxokas-evilafm-ibaillanos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tonyalves/wav2vec2-300M-teste2
tonyalves
2022-01-09T17:16:10Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300M-teste2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300M-teste2 This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Littlemilk/autobiography-generator
Littlemilk
2022-01-09T17:15:14Z
8
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "zh", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - zh license: gpl-3.0 tags: - generated_from_trainer model-index: - name: clm-total results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clm-total This model is a fine-tuned version of [ckiplab/gpt2-base-chinese](https://huggingface.co/ckiplab/gpt2-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
ydshieh/bert2bert-cnn_dailymail-fp16
ydshieh
2022-01-09T14:03:34Z
7
2
transformers
[ "transformers", "tf", "encoder-decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Bert2Bert Summarization with 🤗 EncoderDecoder Framework [This is a TensorFlow version converted from the original PyTorch [Bert2Bert](https://huggingface.co/patrickvonplaten/bert2bert-cnn_dailymail-fp16)] This model is a Bert2Bert model fine-tuned on summarization. Bert2Bert is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `bert-base-uncased` BERT models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python bert2bert = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased") ``` The decoder of an `TFEncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``bert2bert`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `bert2bert-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import AutoTokenizer, TFEncoderDecoderModel loc = "ydshieh/bert2bert-cnn_dailymail-fp16" model = TFEncoderDecoderModel.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents.""" input_ids = tokenizer(article, return_tensors="tf").input_ids output_ids = model.generate(input_ids) summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(summary) # should produce # sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent mon ths. ``` ## Training script: For the original PyTorch BERT2BERT model, please follow this tutorial to see how to warm-start a BERT2BERT model: https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 16.12 | 17.07 | **16.1** |
NahedAbdelgaber/evaluating-student-writing-distibert-ner-with-metric
NahedAbdelgaber
2022-01-09T06:45:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: evaluating-student-writing-distibert-ner-with-metric results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evaluating-student-writing-distibert-ner-with-metric This model is a fine-tuned version of [NahedAbdelgaber/evaluating-student-writing-distibert-ner](https://huggingface.co/NahedAbdelgaber/evaluating-student-writing-distibert-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7535 - Precision: 0.0614 - Recall: 0.2590 - F1: 0.0993 - Accuracy: 0.6188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7145 | 1.0 | 1755 | 0.7683 | 0.0546 | 0.2194 | 0.0875 | 0.6191 | | 0.6608 | 2.0 | 3510 | 0.7504 | 0.0570 | 0.2583 | 0.0934 | 0.6136 | | 0.5912 | 3.0 | 5265 | 0.7535 | 0.0614 | 0.2590 | 0.0993 | 0.6188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt
vuiseng9
2022-01-09T03:25:27Z
2
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 50% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.2081 eval_f1 = 87.5921 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-26250 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
vuiseng9
2022-01-09T03:14:14Z
31
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 60% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.3122 eval_f1 = 87.6162 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-22000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-block-pruning-hybrid
vuiseng9
2022-01-09T03:12:11Z
7
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2109.04838", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers. ``` eval_exact_match = 78.5241 eval_f1 = 86.4138 eval_samples = 10784 ``` This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified). To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 2. # Eval The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13.0, v4.9.1. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below. ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} ``` Add ```--optimize_model_before_eval``` during evaluation. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
RenZHU/t5-small-finetuned-xsum
RenZHU
2022-01-09T03:09:55Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5310 - Rouge1: 27.9232 - Rouge2: 7.5324 - Rougel: 22.035 - Rougelsum: 22.0304 - Gen Len: 18.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.7564 | 1.0 | 51012 | 2.5310 | 27.9232 | 7.5324 | 22.035 | 22.0304 | 18.8116 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
LeverageX/scibert-wechsel-korean
LeverageX
2022-01-08T12:14:38Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
# scibert-wechsel-korean Scibert(🇺🇸) converted into Korean(🇰🇷) using WECHSEL technique. ### Description - SciBERT is trained on papers from the corpus of semanticscholar.org. Corpus size is 1.14M papers, 3.1B tokens. - Wechsel is converting embedding layer's subword tokens from source language to target language. - SciBERT trained with English language is converted into Korean langauge using Wechsel technique. - Korean tokenizer is selected with KLUE PLMs' tokenizers due to its similar vocab size(32000) and performance. ### Reference - [Scibert](https://github.com/allenai/scibert) - [WECHSEL](https://github.com/CPJKU/wechsel) - [Korean Language Understanding Evaluation](https://github.com/KLUE-benchmark/KLUE)
raynardj/wenyanwen-ancient-translate-to-modern
raynardj
2022-01-08T04:22:30Z
162
32
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "translation", "古文", "文言文", "ancient", "classical", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - zh - zh tags: - translation - 古文 - 文言文 - ancient - classical widget: - text: "此诚危急存亡之秋也" --- # From Classical(ancient) Chinese to Modern Chinese > This model translate Classical(ancient) Chinese to Modern Chinese, so I guess who's interested in the problemset can speak at least modern Chinese, hence... let me continue the documentation in Chinese # 文言文(古文)到现代文的翻译器 > 这个模型已有做成应用, [【随无涯】](https://huggingface.co/spaces/raynardj/duguwen-classical-chinese-to-morden-translate)是一个huggingface spaces + streamlit 的古文阅读应用(含海量书籍), 可以在阅读时翻译 > 输入文言文, 可以是断句 或者 未断句的文言文, 模型会预测现代文的表述。 其他模型: * 从[现代文翻译到文言文](https://huggingface.co/raynardj/wenyanwen-chinese-translate-to-ancient) > 从文言文到现代文的翻译器, 欢迎前往[我的github文言诗词项目页面探讨、加⭐️ ](https://github.com/raynardj/yuan) > 训练语料是就是九十多万句句对, [数据集链接📚](https://github.com/BangBOOM/Classical-Chinese)。 训练时source序列(古文序列), 按照50%的概率整句去除所有标点符号。 ## 推荐的inference 通道 **注意** * 你必须将```generate```函数的```eos_token_id```设置为102就可以翻译出完整的语句, 不然翻译完了会有残留的语句(因为做熵的时候用pad标签=-100导致)。 目前huggingface 页面上compute按钮会有这个问题, 推荐使用以下代码来得到翻译结果 * 请设置```generate```的参数```num_beams>=3```, 以达到较好的翻译效果 * 请设置```generate```的参数```max_length```256, 不然结果会吃掉句子 ```python from transformers import ( EncoderDecoderModel, AutoTokenizer ) PRETRAINED = "raynardj/wenyanwen-ancient-translate-to-modern" tokenizer = AutoTokenizer.from_pretrained(PRETRAINED) model = EncoderDecoderModel.from_pretrained(PRETRAINED) def inference(text): tk_kwargs = dict( truncation=True, max_length=128, padding="max_length", return_tensors='pt') inputs = tokenizer([text,],**tk_kwargs) with torch.no_grad(): return tokenizer.batch_decode( model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, num_beams=3, max_length=256, bos_token_id=101, eos_token_id=tokenizer.sep_token_id, pad_token_id=tokenizer.pad_token_id, ), skip_special_tokens=True) ``` ## 目前版本的案例 > 当然, 拿比较熟知的语句过来, 通常会有些贻笑大方的失误, 大家如果有好玩的调戏案例, 也欢迎反馈 ```python >>> inference('非我族类其心必异') ['不 是 我 们 的 族 类 , 他 们 的 心 思 必 然 不 同 。'] >>> inference('肉食者鄙未能远谋') ['吃 肉 的 人 鄙 陋 , 不 能 长 远 谋 划 。'] # 这里我好几批模型都翻不出这个**输**字(甚至有一个版本翻成了秦始皇和汉武帝), 可能并不是很古朴的用法, >>> inference('江山如此多娇引无数英雄竞折腰惜秦皇汉武略输文采唐宗宋祖稍逊风骚') ['江 山 如 此 多 , 招 引 无 数 的 英 雄 , 竞 相 折 腰 , 可 惜 秦 皇 、 汉 武 , 略 微 有 文 采 , 唐 宗 、 宋 祖 稍 稍 逊 出 风 雅 。'] >>> inference("清风徐来水波不兴") ['清 风 慢 慢 吹 来 , 水 波 不 兴 。'] >>> inference("无他唯手熟尔") ['没 有 别 的 事 , 只 是 手 熟 罢 了 。'] >>> inference("此诚危急存亡之秋也") ['这 实 在 是 危 急 存 亡 的 时 候 。'] ``` ## 其他文言诗词的资源 * [项目源代码 🌟, 欢迎+star提pr](https://github.com/raynardj/yuan) * [跨语种搜索 🔎](https://huggingface.co/raynardj/xlsearch-cross-lang-search-zh-vs-classicical-cn) * [现代文翻译古汉语的模型 ⛰](https://huggingface.co/raynardj/wenyanwen-chinese-translate-to-ancient) * [古汉语到现代文的翻译模型, 输入可以是未断句的句子 🚀](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern) * [断句模型 🗡](https://huggingface.co/raynardj/classical-chinese-punctuation-guwen-biaodian) * [意境关键词 和 藏头写诗🤖](https://huggingface.co/raynardj/keywords-cangtou-chinese-poetry)
espnet/Karthik_sinhala_asr_train_asr_transformer
espnet
2022-01-08T03:24:39Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - sinhala license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `espnet/Karthik_sinhala_asr_train_asr_transformer` This model was trained by Karthik using sinhala/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
eliwill/rare-puppers
eliwill
2022-01-08T01:40:43Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4895833432674408 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### algebra ![algebra](images/algebra.jpg) #### arithmetic ![arithmetic](images/arithmetic.jpg) #### calculus ![calculus](images/calculus.jpg) #### geometry ![geometry](images/geometry.jpg) #### trigonometry ![trigonometry](images/trigonometry.jpg)
gatecitypreservation/architectural_styles
gatecitypreservation
2022-01-07T18:41:50Z
72
4
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: architectural_styles results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7796609997749329 --- ### What style is that? This model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training. Upload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style. ### Classical Revival (1895 - 1950) The Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings. ![classical revival architecture](images/ex_classical_revival_architecture.jpg) #### Queen Anne (1880-1910) The Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details. ![queen anne architecture](images/ex_queen_anne_architecture.jpg) #### Craftsman Bungalow (1900-1930) The terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style. ![craftsman bungalow architecture](images/ex_craftsman_bungalow_architecture.jpg) #### Tudor Cottage (1910-1950) Tudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway. ![tudor cottage architecture](images/ex_tudor_cottage_architecture.jpg) #### Mid-Century Modern Ranch (1930-1970) The Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country. ![mid-century modern ranch](images/ex_mid-century_modern_ranch.jpg) This model was created with HuggingPics🤗🖼️ Image Classifier! Make your own!: [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
SaulLu/clip-vit-base-patch32
SaulLu
2022-01-07T17:53:14Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "clip", "zero-shot-image-classification", "vision", "arxiv:2103.00020", "arxiv:1908.04913", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-03-02T23:29:04Z
--- tags: - vision --- # Model Card: CLIP Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md). ## Model Details The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within. ### Model Date January 2021 ### Model Type The base model uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. There is also a variant of the model where the ResNet image encoder is replaced with a Vision Transformer. ### Model Version Initially, we’ve released one CLIP model based on the Vision Transformer architecture equivalent to ViT-B/32, along with the RN50 model, using the architecture equivalent to ResNet-50. *This port does not include the ResNet model.* Please see the paper linked below for further details about their specification. ### Documents - [Blog Post](https://openai.com/blog/clip/) - [CLIP Paper](https://arxiv.org/abs/2103.00020) ### Use with Transformers ```python3 from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Model Use ### Intended Use The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. #### Primary intended uses The primary intended users of these models are AI researchers. We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models. ### Out-of-Scope Use Cases **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. ## Data The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users. ### Data Mission Statement Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset. ## Performance and Limitations ### Performance We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets: - Food101 - CIFAR10 - CIFAR100 - Birdsnap - SUN397 - Stanford Cars - FGVC Aircraft - VOC2007 - DTD - Oxford-IIIT Pet dataset - Caltech101 - Flowers102 - MNIST - SVHN - IIIT5K - Hateful Memes - SST-2 - UCF101 - Kinetics700 - Country211 - CLEVR Counting - KITTI Distance - STL-10 - RareAct - Flickr30 - MSCOCO - ImageNet - ImageNet-A - ImageNet-R - ImageNet Sketch - ObjectNet (ImageNet Overlap) - Youtube-BB - ImageNet-Vid ## Limitations CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance. ### Bias and Fairness We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper). We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks. ## Feedback ### Where to send questions or comments about the model Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
kingla6/distilbert-magazine-classifier
kingla6
2022-01-07T16:14:25Z
108
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall model-index: - name: distilbert-magazine-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-magazine-classifier This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8377 - Precision: 0.25 - Recall: 0.125 - Fscore: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.1779 | 1.0 | 2 | 1.7584 | 0.2222 | 0.3333 | 0.2667 | | 0.1635 | 2.0 | 4 | 1.7585 | 0.25 | 0.125 | 0.1667 | | 0.1405 | 3.0 | 6 | 1.8377 | 0.25 | 0.125 | 0.1667 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lincoln/2021twitchfr-conv-bert-small
lincoln
2022-01-07T15:25:20Z
6
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "convbert", "feature-extraction", "twitch", "fr", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - fr license: mit pipeline_tag: "feature-extraction" widget: - text: LUL +1 xD La Fronce ! tags: - feature-extraction - convbert - twitch --- ## Modèle de langue sur les données Twitch FR L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Nos contraintes sont celles d’une entreprise n’ayant pas une volumétrie excessive de données et une puissance infinie de calcul. Il a été nécessaire de construire un nouveau tokenizer afin de mieux correspondre à notre corpus plutôt qu’un tokenizer français existant. Note corpus étant faible en volumétrie par rapport aux données habituelles pour entrainer un modèle BERT, nous avons opté pour l’entrainement d’un modèle dit « small ». Et il a été montré dans la littérature qu’un corpus de quelques giga octets peut donner de bons résultats, c’est pourquoi nous avons continué avec notre corpus. La limite de la puissance de calcul a été contourné à l’aide d’une nouvelle architecture d’apprentissage basée sur un double modèle générateur / discriminateur. Ceci nous a permis d’entrainer un modèle de langue ConvBERT sur nos données, ainsi qu’un modèle de masking en quelques heures sur une carte GPU V100. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Données | Streamer | Nbr de messages | Categories notables en 2021 | | --------------------------------------------- | --------------- | ---------------------------------- | | Ponce | 2 604 935 | Chatting/Mario Kart/FIFA | | Domingo | 1 209 703 | Chatting/talk-shows/FM2O21 | | Mistermv | 1 205 882 | Isaac/Special events/TFT | | Zerator | 900 894 | New World/WOW/Valorant | | Blitzstream | 821 585 | Chess | | Squeezie | 602 148 | Chatting / Minecraft | | Antoinedaniellive | 548 497 | Geoguessr | | Jeanmassietaccropolis/jeanmassiet | 301 387 | Talk-shows/chatting/special events | | Samueletienne | 215 956 | chatting | Sur la période du 12/03/2021 au 22/07/2021. La totalité des messages comptent 9 410 987 messages sur ces neufs streamers. Ces messages sont issus du canal IRC, donc n’ont pas subi de modération Les données d'entrainement sont basé sur le format d'entrainement du modèle ELECTRA. Cela nécessite de formater les données en paragraphe, séparés par phrase. Nous avons choisi de regrouper les messages dans une fenêtre de 60 secondes, faisant office de paragraphe, avec les conditions suivantes : * Longueur supérieure à 170 (ce qui représente en moyenne 50 tokens) afin de ne pas créer des instances ayant pas d’information car majoritairement vide : un padding sera nécessaire et pénalise la vitesse d’apprentissage. * 128 tokens maximums (défaut) Si la longueur maximale est atteinte, une deuxième instance est créée. Au final, la volumétrie d'instance d'entrainement est de 554 974. ## Application Voir github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds) pour les détails d'implémentation et les résultats. ## Remarques * Expérimentation ponctuelle * Les métriques d'entrainement sont disponibles dans l'onglet _Training metrics_ * Pour une meilleure stabilité, les données doivent être plus hétérogènes et volumineuse. Le modèle doit être entrainé + de 24h. ## Usage ```python from transformers import AutoTokenizer, ConvBertModel from transformers import FeatureExtractionPipeline model_name = 'lincoln/2021twitchfr-conv-bert-small' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = ConvBertModel.from_pretrained(model_name) nlp = FeatureExtractionPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp("<3 <3 les modos") ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
Kien/distilbert-base-uncased-finetuned-cola
Kien
2022-01-07T15:00:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5232819075279987 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5327 - Matthews Correlation: 0.5233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5314 | 1.0 | 535 | 0.4955 | 0.4270 | | 0.3545 | 2.0 | 1070 | 0.5327 | 0.5233 | | 0.2418 | 3.0 | 1605 | 0.6180 | 0.5132 | | 0.1722 | 4.0 | 2140 | 0.7344 | 0.5158 | | 0.1243 | 5.0 | 2675 | 0.8581 | 0.5196 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
s87204/distilbert-base-uncased-finetuned-cola
s87204
2022-01-07T14:03:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5365264430934975 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8505 - Matthews Correlation: 0.5365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5201 | 1.0 | 535 | 0.5345 | 0.4153 | | 0.3469 | 2.0 | 1070 | 0.5033 | 0.5109 | | 0.2367 | 3.0 | 1605 | 0.6589 | 0.5209 | | 0.1705 | 4.0 | 2140 | 0.7778 | 0.5354 | | 0.125 | 5.0 | 2675 | 0.8505 | 0.5365 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
hs788/wav2vec2-base-timit-demo-colab
hs788
2022-01-07T13:34:11Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4125 - Wer: 0.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 | | 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 | | 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
doc2query/reddit-t5-small-v1
doc2query
2022-01-07T08:55:11Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - datasets/sentence-transformers/reddit-title-body widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/reddit-t5-small-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/reddit-t5-small-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 547k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, body) from Reddit.
savasy/mt5-mlsum-turkish-summarization
savasy
2022-01-07T08:53:23Z
23
5
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This checkpoint has been trained with the Turkish part of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) where google/mt5 is the main Pre-trained checkpoint. [SimpleT5](https://github.com/Shivanandroy/simpleT5) library is used for training. Here is the code snippet for training ``` model = SimpleT5() model.from_pretrained("mt5","google/mt5-small") model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text source_max_token_len = 512, target_max_token_len = 128, batch_size = 8, max_epochs = 5, use_gpu = True, outputdir = "mt5_mlsum_turkish", early_stopping_patience_epochs = 0, precision = 32 ) ```
jiobiala24/wav2vec2-base-checkpoint-2
jiobiala24
2022-01-07T06:08:49Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-TPU-cv-fine-tune-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-TPU-cv-fine-tune-2 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-TPU-cv-fine-tune](https://huggingface.co/jiobiala24/wav2vec2-base-TPU-cv-fine-tune) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6051 - Wer: 0.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.522 | 6.45 | 400 | 1.2550 | 0.5649 | | 0.2874 | 12.9 | 800 | 1.4235 | 0.6054 | | 0.152 | 19.35 | 1200 | 1.5743 | 0.5806 | | 0.0857 | 25.8 | 1600 | 1.6051 | 0.5484 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Waynehillsdev/Waynehills_summary_tensorflow
Waynehillsdev
2022-01-07T04:39:34Z
5
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_keras_callback model-index: - name: Waynehills_summary_tensorflow results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills_summary_tensorflow This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
Shenyancheng/distilbert-base-uncased-finetuned-ner
Shenyancheng
2022-01-07T04:37:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9266592920353982 - name: Recall type: recall value: 0.9371294328224634 - name: F1 type: f1 value: 0.9318649535569274 - name: Accuracy type: accuracy value: 0.9838117781625813 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9267 - Recall: 0.9371 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2462 | 1.0 | 878 | 0.0714 | 0.9052 | 0.9223 | 0.9137 | 0.9803 | | 0.0535 | 2.0 | 1756 | 0.0615 | 0.9188 | 0.9331 | 0.9259 | 0.9827 | | 0.0315 | 3.0 | 2634 | 0.0620 | 0.9267 | 0.9371 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/shegotadankwa
huggingtweets
2022-01-07T04:37:33Z
98
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/shegotadankwa/1641530248419/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466974207313649667/8zoSbNnW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">blizzy b 🏄🏾‍♀️</div> <div style="text-align: center; font-size: 14px;">@shegotadankwa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from blizzy b 🏄🏾‍♀️. | Data | blizzy b 🏄🏾‍♀️ | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 916 | | Short tweets | 667 | | Tweets kept | 1581 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ayiomb1h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shegotadankwa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ezr5ck3t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ezr5ck3t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shegotadankwa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/InformalToFormalLincoln18
BigSalmon
2022-01-06T22:00:50Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln18") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln18") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2Space (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ````
Apoorva/k2t-test
Apoorva
2022-01-06T19:38:56Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences model-index: - name: k2t-test --- Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
Waynehillsdev/Waynehills-STT-doogie-server
Waynehillsdev
2022-01-06T17:18:49Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: Waynehills-STT-doogie-server --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-STT-doogie-server This model is a fine-tuned version of [Doogie/Waynehills-STT-doogie-server](https://huggingface.co/Doogie/Waynehills-STT-doogie-server) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
shaina/covid_qa_distillBert
shaina
2022-01-06T15:41:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." model-index: - name: CoQUAD_DistilBERT_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_distillBert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2537 | 1.0 | 3880 | 0.1871 | | 0.2005 | 2.0 | 7760 | 0.1257 | | 0.1395 | 3.0 | 11640 | 0.0971 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
unicamp-dl/ptt5-base-pt-msmarco-100k-v2
unicamp-dl
2022-01-06T13:44:21Z
13
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "msmarco", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-100k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-100k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-pt-msmarco-10k-v2
unicamp-dl
2022-01-06T13:41:02Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "msmarco", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-10k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 10k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-10k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
emillykkejensen/daT5-large
emillykkejensen
2022-01-06T11:15:26Z
5
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - da license: apache-2.0 --- ## daT5-large A smaller version of [Google's mt5-large](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-large") model = AutoModel.from_pretrained("emillykkejensen/daT5-large") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted (for mt5-base) [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-base](https://huggingface.co/emillykkejensen/daT5-base)
emillykkejensen/daT5-base
emillykkejensen
2022-01-06T11:14:19Z
114
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - da license: apache-2.0 --- ## daT5-base A smaller version of [Google's mt5-base](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-base") model = AutoModel.from_pretrained("emillykkejensen/daT5-base") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-large](https://huggingface.co/emillykkejensen/daT5-large)
jiobiala24/wav2vec2-base-checkpoint-1
jiobiala24
2022-01-06T09:39:38Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-TPU-cv-fine-tune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-TPU-cv-fine-tune This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6987 - Wer: 0.6019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1017 | 8.88 | 400 | 1.4635 | 0.7084 | | 0.436 | 17.77 | 800 | 1.4765 | 0.6231 | | 0.1339 | 26.66 | 1200 | 1.6987 | 0.6019 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
sam890914/autonlp-roberta-large2-479012819
sam890914
2022-01-06T08:46:51Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "unk", "dataset:sam890914/autonlp-data-roberta-large2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - sam890914/autonlp-data-roberta-large2 co2_eq_emissions: 71.60954851696604 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 479012819 - CO2 Emissions (in grams): 71.60954851696604 ## Validation Metrics - Loss: 0.22774338722229004 - Accuracy: 0.9395126938149599 - Precision: 0.9677075940383251 - Recall: 0.9117352056168505 - AUC: 0.9862377263827619 - F1: 0.9388879325185058 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sam890914/autonlp-roberta-large2-479012819 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sam890914/autonlp-roberta-large2-479012819", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sam890914/autonlp-roberta-large2-479012819", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mimi/Waynehills-NLP-doogie
mimi
2022-01-06T08:02:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: Waynehills-NLP-doogie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-NLP-doogie This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 28.2167 | 0.06 | 1000 | 9.7030 | | 10.4479 | 0.12 | 2000 | 7.5450 | | 8.0306 | 0.19 | 3000 | 6.1969 | | 6.503 | 0.25 | 4000 | 5.3015 | | 5.5406 | 0.31 | 5000 | 4.6363 | | 4.7299 | 0.38 | 6000 | 4.0431 | | 3.9263 | 0.44 | 7000 | 3.6313 | | 3.4111 | 0.5 | 8000 | 3.4830 | | 3.0517 | 0.56 | 9000 | 3.3294 | | 2.7524 | 0.62 | 10000 | 3.2077 | | 2.5402 | 0.69 | 11000 | 3.1094 | | 2.3228 | 0.75 | 12000 | 3.1099 | | 2.1513 | 0.81 | 13000 | 3.0284 | | 2.0418 | 0.88 | 14000 | 3.0155 | | 1.8875 | 0.94 | 15000 | 3.0241 | | 1.756 | 1.0 | 16000 | 3.0165 | | 1.6489 | 1.06 | 17000 | 2.9849 | | 1.5788 | 1.12 | 18000 | 2.9496 | | 1.5368 | 1.19 | 19000 | 2.9500 | | 1.4467 | 1.25 | 20000 | 3.0133 | | 1.381 | 1.31 | 21000 | 2.9631 | | 1.3451 | 1.38 | 22000 | 3.0159 | | 1.2917 | 1.44 | 23000 | 2.9906 | | 1.2605 | 1.5 | 24000 | 3.0006 | | 1.2003 | 1.56 | 25000 | 2.9797 | | 1.1987 | 1.62 | 26000 | 2.9253 | | 1.1703 | 1.69 | 27000 | 3.0044 | | 1.1474 | 1.75 | 28000 | 2.9216 | | 1.0816 | 1.81 | 29000 | 2.9645 | | 1.0709 | 1.88 | 30000 | 3.0439 | | 1.0476 | 1.94 | 31000 | 3.0844 | | 1.0645 | 2.0 | 32000 | 2.9434 | | 1.0204 | 2.06 | 33000 | 2.9386 | | 0.9901 | 2.12 | 34000 | 3.0452 | | 0.9911 | 2.19 | 35000 | 2.9798 | | 0.9706 | 2.25 | 36000 | 2.9919 | | 0.9461 | 2.31 | 37000 | 3.0279 | | 0.9577 | 2.38 | 38000 | 2.9615 | | 0.9466 | 2.44 | 39000 | 2.9988 | | 0.9486 | 2.5 | 40000 | 2.9133 | | 0.9201 | 2.56 | 41000 | 3.0004 | | 0.896 | 2.62 | 42000 | 2.9626 | | 0.8893 | 2.69 | 43000 | 2.9667 | | 0.9028 | 2.75 | 44000 | 2.9543 | | 0.897 | 2.81 | 45000 | 2.8760 | | 0.8664 | 2.88 | 46000 | 2.9894 | | 0.8719 | 2.94 | 47000 | 2.8456 | | 0.8491 | 3.0 | 48000 | 2.9713 | | 0.8402 | 3.06 | 49000 | 2.9738 | | 0.8484 | 3.12 | 50000 | 2.9361 | | 0.8304 | 3.19 | 51000 | 2.8945 | | 0.8208 | 3.25 | 52000 | 2.9625 | | 0.8074 | 3.31 | 53000 | 3.0054 | | 0.8226 | 3.38 | 54000 | 2.9405 | | 0.8185 | 3.44 | 55000 | 2.9047 | | 0.8352 | 3.5 | 56000 | 2.9016 | | 0.8289 | 3.56 | 57000 | 2.9490 | | 0.7918 | 3.62 | 58000 | 2.9621 | | 0.8212 | 3.69 | 59000 | 2.9341 | | 0.7955 | 3.75 | 60000 | 2.9167 | | 0.7724 | 3.81 | 61000 | 2.9409 | | 0.8169 | 3.88 | 62000 | 2.8925 | | 0.7862 | 3.94 | 63000 | 2.9314 | | 0.803 | 4.0 | 64000 | 2.9271 | | 0.7595 | 4.06 | 65000 | 2.9263 | | 0.7931 | 4.12 | 66000 | 2.9400 | | 0.7759 | 4.19 | 67000 | 2.9501 | | 0.7859 | 4.25 | 68000 | 2.9133 | | 0.805 | 4.31 | 69000 | 2.8785 | | 0.7649 | 4.38 | 70000 | 2.9060 | | 0.7692 | 4.44 | 71000 | 2.8868 | | 0.7692 | 4.5 | 72000 | 2.9045 | | 0.7798 | 4.56 | 73000 | 2.8951 | | 0.7812 | 4.62 | 74000 | 2.9068 | | 0.7533 | 4.69 | 75000 | 2.9129 | | 0.7527 | 4.75 | 76000 | 2.9157 | | 0.7652 | 4.81 | 77000 | 2.9053 | | 0.7633 | 4.88 | 78000 | 2.9190 | | 0.7437 | 4.94 | 79000 | 2.9251 | | 0.7653 | 5.0 | 80000 | 2.9188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.5.0 - Tokenizers 0.10.3
Tahsin/distilbert-base-uncased-finetuned-emotion
Tahsin
2022-01-06T07:43:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1635 | 0.9295 | | 0.111 | 2.0 | 500 | 0.1515 | 0.936 | | 0.111 | 3.0 | 750 | 0.1561 | 0.9285 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ncduy/phobert-large-finetuned-vietnamese_students_feedback
ncduy
2022-01-06T05:55:30Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:vietnamese_students_feedback", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - vietnamese_students_feedback metrics: - accuracy model-index: - name: phobert-large-finetuned-vietnamese_students_feedback results: - task: name: Text Classification type: text-classification dataset: name: vietnamese_students_feedback type: vietnamese_students_feedback args: default metrics: - name: Accuracy type: accuracy value: 0.9463044851547694 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-large-finetuned-vietnamese_students_feedback This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on the vietnamese_students_feedback dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 477 | 0.2088 | 0.9375 | | 0.3231 | 2.0 | 954 | 0.2463 | 0.9444 | | 0.1805 | 3.0 | 1431 | 0.2285 | 0.9463 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
NahedAbdelgaber/evaluating-student-writing-distibert-ner
NahedAbdelgaber
2022-01-06T05:49:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: evaluating-student-writing-distibert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evaluating-student-writing-distibert-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.871 | 1.0 | 1755 | 0.8158 | | 0.7476 | 2.0 | 3510 | 0.7688 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
shreyasgite/wav2vec2-large-xls-r-300m-sanitycheck
shreyasgite
2022-01-06T05:37:25Z
33
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xls-r-300m-sanitycheck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sanitycheck This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0092 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.14 | 8 | 0.8034 | 0.4737 | | No log | 2.29 | 16 | 0.6803 | 0.5263 | | No log | 3.43 | 24 | 0.4867 | 1.0 | | 0.5907 | 4.57 | 32 | 0.1781 | 0.9474 | | 0.5907 | 5.71 | 40 | 0.2168 | 0.9474 | | 0.5907 | 6.86 | 48 | 0.2403 | 0.9474 | | 0.5907 | 8.0 | 56 | 0.0143 | 1.0 | | 0.0932 | 9.14 | 64 | 0.0124 | 1.0 | | 0.0932 | 10.29 | 72 | 0.0089 | 1.0 | | 0.0932 | 11.43 | 80 | 0.0092 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
unicamp-dl/mt5-base-en-pt-msmarco-v2
unicamp-dl
2022-01-05T23:16:47Z
22
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "msmarco", "t5", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v2 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mMiniLM-L6-v2-mmarco-v2
unicamp-dl
2022-01-05T22:45:15Z
223
6
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "msmarco", "miniLM", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6-v2 Reranker finetuned on mMARCO ## Introduction mMiniLM-L6-v2-mmarco-v2 is a multilingual miniLM-based model finetuned on a multilingual version of MS MARCO passage dataset. This dataset, named mMARCO, is formed by passages in 9 different languages, translated from English MS MARCO passages collection. In the v2 version, the datasets were translated using Google Translate. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-mmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v2
unicamp-dl
2022-01-05T22:41:18Z
6
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "msmarco", "miniLM", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6-v2 Reranker finetuned on mMARCO ## Introduction mMiniLM-L6-v2-en-pt-msmarco-v2 is a multilingual miniLM-based model finetuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v2' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-en-pt-msmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mt5-base-en-pt-msmarco-v1
unicamp-dl
2022-01-05T21:30:38Z
9
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "msmarco", "t5", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v1 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mt5-base-mmarco-v1
unicamp-dl
2022-01-05T21:30:24Z
6
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "msmarco", "t5", "tensorflow", "pt", "pt-br", "dataset:msmarco", "arxiv:2108.13897", "license:mit", "autotrain_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mt5-base-mmarco-v1 is a mT5-based model fine-tuned on a multilingual translated version of MS MARCO passage dataset. This dataset, named Multi MS MARCO, is formed by 9 complete MS MARCO passages collection in 9 different languages. In the version v1, the datasets were translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT models. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-mmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-mmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Tahsin/BERT-finetuned-conll2003-POS
Tahsin
2022-01-05T21:04:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-pos results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276736387541917 - name: Recall type: recall value: 0.9329402916272412 - name: F1 type: f1 value: 0.9302995112982049 - name: Accuracy type: accuracy value: 0.933154765408842 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-pos This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Precision: 0.9277 - Recall: 0.9329 - F1: 0.9303 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2791 | 1.0 | 1756 | 0.3125 | 0.9212 | 0.9263 | 0.9237 | 0.9272 | | 0.1853 | 2.0 | 3512 | 0.3038 | 0.9241 | 0.9309 | 0.9275 | 0.9307 | | 0.1501 | 3.0 | 5268 | 0.3009 | 0.9277 | 0.9329 | 0.9303 | 0.9332 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
msavel-prnt/distilbert-base-uncased-finetuned-clinc
msavel-prnt
2022-01-05T15:37:05Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model_index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metric: name: Accuracy type: accuracy value: 0.9180645161290323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.9181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3044 | 0.7623 | | 3.7959 | 2.0 | 636 | 1.8674 | 0.8597 | | 3.7959 | 3.0 | 954 | 1.1377 | 0.8948 | | 1.6819 | 4.0 | 1272 | 0.8351 | 0.9126 | | 0.8804 | 5.0 | 1590 | 0.7528 | 0.9181 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
tadejmagajna/flair-sl-pos
tadejmagajna
2022-01-05T15:07:06Z
2
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "sl", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: sl widget: - text: "Danes je lep dan." --- ## Slovene Part-of-speech (PoS) Tagging for Flair This is a Slovene part-of-speech (PoS) tagger trained on the [Slovenian UD Treebank](https://github.com/UniversalDependencies/UD_Slovenian-SSJ) using Flair NLP framework. The tagger is trained using a combination of forward Slovene contextual string embeddings, backward Slovene contextual string embeddings and classic Slovene FastText embeddings. F-score (micro): **94,96** The model is trained on a large (500+) number of different tags that described at [https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html](https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("tadejmagajna/flair-sl-pos") # make example sentence sentence = Sentence("Danes je lep dan.") # predict PoS tags tagger.predict(sentence) # print sentence print(sentence) # print predicted PoS spans print('The following PoS tags are found:') # iterate over parts of speech and print for tag in sentence.get_spans('pos'): print(tag) ``` This prints out the following output: ``` Sentence: "Danes je lep dan ." [− Tokens: 5 − Token-Labels: "Danes <Rgp> je <Va-r3s-n> lep <Agpmsnn> dan <Ncmsn> . <Z>"] The following PoS tags are found: Span [1]: "Danes" [− Labels: Rgp (1.0)] Span [2]: "je" [− Labels: Va-r3s-n (1.0)] Span [3]: "lep" [− Labels: Agpmsnn (0.9999)] Span [4]: "dan" [− Labels: Ncmsn (1.0)] Span [5]: "." [− Labels: Z (1.0)] ``` --- ### Training: Script to train this model The following standard Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import UD_SLOVENIAN from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = UD_SLOVENIAN() # 2. what tag do we want to predict? tag_type = 'pos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embedding_types = [ WordEmbeddings('sl'), FlairEmbeddings('sl-forward'), FlairEmbeddings('sl-backward'), ] embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. start training trainer.train('resources/taggers/pos-slovene', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
Icelandic-lt/electra-base-igc-is
Icelandic-lt
2022-01-05T14:54:23Z
4
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "is", "dataset:igc", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-27T13:01:43Z
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Base This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
huggingtweets/sporeball
huggingtweets
2022-01-05T08:02:01Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/sporeball/1641369716297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365405536401776642/Z17NbuYy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lux</div> <div style="text-align: center; font-size: 14px;">@sporeball</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lux. | Data | lux | | --- | --- | | Tweets downloaded | 1150 | | Retweets | 171 | | Short tweets | 120 | | Tweets kept | 859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2w9y6gn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sporeball's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tg3n5a5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tg3n5a5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sporeball') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Prasadi/wav2vec2-base-timit-demo-colab-1
Prasadi
2022-01-05T06:18:01Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Wer: 0.3874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4285 | 2.01 | 500 | 1.4732 | 0.9905 | | 0.7457 | 4.02 | 1000 | 0.5278 | 0.4960 | | 0.3463 | 6.02 | 1500 | 0.4245 | 0.4155 | | 0.2034 | 8.03 | 2000 | 0.3857 | 0.3874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
rdpatilds/con-nlu
rdpatilds
2022-01-05T05:31:42Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: con-nlu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # con-nlu This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
mahaamami/distilgpt2-finetuned-wikitext2
mahaamami
2022-01-05T00:03:59Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8565 | 1.0 | 948 | 3.5237 | | 3.6142 | 2.0 | 1896 | 3.4570 | | 3.5601 | 3.0 | 2844 | 3.4385 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mbateman/bert-finetuned-ner
mbateman
2022-01-04T20:30:26Z
6
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9333553828344634 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9415297355909584 - name: Accuracy type: accuracy value: 0.9868281627126626 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9334 - Recall: 0.9498 - F1: 0.9415 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0881 | 1.0 | 1756 | 0.0683 | 0.9136 | 0.9322 | 0.9228 | 0.9826 | | 0.0383 | 2.0 | 3512 | 0.0641 | 0.9277 | 0.9456 | 0.9366 | 0.9854 | | 0.0229 | 3.0 | 5268 | 0.0622 | 0.9334 | 0.9498 | 0.9415 | 0.9868 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
huawei-noah/JABER
huawei-noah
2022-01-04T20:19:57Z
1
0
null
[ "pytorch", "arxiv:2112.04329", "region:us" ]
null
2022-03-02T23:29:05Z
# Overview <p align="center"> <img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150"> </p> <!-- -------------------------------------------------------------------------------- --> JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`. This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library) ## Citation Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model: ``` bibtex @misc{ghaddar2021jaber, title={JABER: Junior Arabic BERt}, author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais}, year={2021}, eprint={2112.04329}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Anamika/autonlp-fa-473312409
Anamika
2022-01-04T20:08:00Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:Anamika/autonlp-data-fa", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Anamika/autonlp-data-fa co2_eq_emissions: 25.128735714898614 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 473312409 - CO2 Emissions (in grams): 25.128735714898614 ## Validation Metrics - Loss: 0.6010786890983582 - Accuracy: 0.7990650945370823 - Macro F1: 0.7429662929144928 - Micro F1: 0.7990650945370823 - Weighted F1: 0.7977660363770382 - Macro Precision: 0.7744390888231261 - Micro Precision: 0.7990650945370823 - Weighted Precision: 0.800444194278352 - Macro Recall: 0.7198278524814119 - Micro Recall: 0.7990650945370823 - Weighted Recall: 0.7990650945370823 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-fa-473312409 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Khanh/bert-base-multilingual-cased-finetuned-viquad
Khanh
2022-01-04T19:07:54Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-viquad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 2.5534 | | No log | 2.0 | 130 | 2.1165 | | No log | 3.0 | 195 | 1.9815 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Khanh/xlm-roberta-base-finetuned-viquad
Khanh
2022-01-04T18:56:38Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-viquad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 259 | 2.9945 | | 3.3665 | 2.0 | 518 | 2.3761 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v2
ericRosello
2022-01-04T18:06:41Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2104 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 73.519394512772, F1: 82.71779517079237 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3937 | 1.0 | 5533 | 1.2915 | | 1.1522 | 2.0 | 11066 | 1.2227 | | 1.0055 | 3.0 | 16599 | 1.2104 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
yosemite/autonlp-imdb-sentiment-analysis-english-470512388
yosemite
2022-01-04T17:34:50Z
18
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:yosemite/autonlp-data-imdb-sentiment-analysis-english", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - yosemite/autonlp-data-imdb-sentiment-analysis-english co2_eq_emissions: 256.38650494338367 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 470512388 - CO2 Emissions (in grams): 256.38650494338367 ## Validation Metrics - Loss: 0.18712733685970306 - Accuracy: 0.9388 - Precision: 0.9300274402195218 - Recall: 0.949 - AUC: 0.98323192 - F1: 0.9394179370421698 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/yosemite/autonlp-imdb-sentiment-analysis-english-470512388 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("yosemite/autonlp-imdb-sentiment-analysis-english-470512388", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("yosemite/autonlp-imdb-sentiment-analysis-english-470512388", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Khanh/distilbert-base-multilingual-cased-finetuned-squad
Khanh
2022-01-04T15:53:15Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.923 | 1.0 | 579 | 0.8439 | | 0.8479 | 2.0 | 1158 | 0.6784 | | 0.6148 | 3.0 | 1737 | 0.6587 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nvidia/megatron-bert-cased-345m
nvidia
2022-01-04T15:15:44Z
0
4
null
[ "arxiv:1909.08053", "region:us" ]
null
2022-03-02T23:29:05Z
<!--- # ############################################################################################## # # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ############################################################################################## --> [Megatron](https://arxiv.org/pdf/1909.08053.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This particular Megatron model was trained from a bidirectional transformer in the style of BERT with text sourced from Wikipedia, RealNews, OpenWebText, and CC-Stories. This model contains 345 million parameters. It is made up of 24 layers, 16 attention heads with a hidden size of 1024. Find more information at [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM) # How to run Megatron BERT using Transformers ## Prerequisites In that guide, we run all the commands from a folder called `$MYDIR` and defined as (in `bash`): ``` export MYDIR=$HOME ``` Feel free to change the location at your convenience. To run some of the commands below, you'll have to clone `Transformers`. ``` git clone https://github.com/huggingface/transformers.git $MYDIR/transformers ``` ## Get the checkpoint from the NVIDIA GPU Cloud You must create a directory called `nvidia/megatron-bert-cased-345m`. ``` mkdir -p $MYDIR/nvidia/megatron-bert-cased-345m ``` You can download the checkpoint from the [NVIDIA GPU Cloud (NGC)](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m). For that you have to [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1). Alternatively, you can directly download the checkpoint using: ``` wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O $MYDIR/nvidia/megatron-bert-cased-345m/checkpoint.zip ``` ## Converting the checkpoint In order to be loaded into `Transformers`, the checkpoint has to be converted. You should run the following commands for that purpose. Those commands will create `config.json` and `pytorch_model.bin` in `$MYDIR/nvidia/megatron-bert-cased-345m`. You can move those files to different directories if needed. ``` python3 $MYDIR/transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py $MYDIR/nvidia/megatron-bert-cased-345m/checkpoint.zip ``` As explained in [PR #14956](https://github.com/huggingface/transformers/pull/14956), if when running this conversion script and you're getting an exception: ``` ModuleNotFoundError: No module named 'megatron.model.enums' ``` you need to tell python where to find the clone of Megatron-LM, e.g.: ``` cd /tmp git clone https://github.com/NVIDIA/Megatron-LM PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... ``` Or, if you already have it cloned elsewhere, simply adjust the path to the existing path. If the training was done using a Megatron-LM fork, e.g. [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/) then you may need to have that one in your path, i.e., /path/to/Megatron-DeepSpeed. ## Masked LM The following code shows how to use the Megatron BERT checkpoint and the Transformers API to perform a `Masked LM` task. ``` import os import torch from transformers import BertTokenizer, MegatronBertForMaskedLM # The tokenizer. Megatron was trained with standard tokenizer(s). tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') # The path to the config/checkpoint (see the conversion step above). directory = os.path.join(os.environ['MYDIR'], 'nvidia/megatron-bert-cased-345m') # Load the model from $MYDIR/nvidia/megatron-bert-cased-345m. model = MegatronBertForMaskedLM.from_pretrained(directory) # Copy to the device and use FP16. assert torch.cuda.is_available() device = torch.device("cuda") model.to(device) model.eval() model.half() # Create inputs (from the BERT example page). input = tokenizer("The capital of France is [MASK]", return_tensors="pt").to(device) label = tokenizer("The capital of France is Paris", return_tensors="pt")["input_ids"].to(device) # Run the model. with torch.no_grad(): output = model(**input, labels=label) print(output) ``` ## Next sentence prediction The following code shows how to use the Megatron BERT checkpoint and the Transformers API to perform next sentence prediction. ``` import os import torch from transformers import BertTokenizer, MegatronBertForNextSentencePrediction # The tokenizer. Megatron was trained with standard tokenizer(s). tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') # The path to the config/checkpoint (see the conversion step above). directory = os.path.join(os.environ['MYDIR'], 'nvidia/megatron-bert-cased-345m') # Load the model from $MYDIR/nvidia/megatron-bert-cased-345m. model = MegatronBertForNextSentencePrediction.from_pretrained(directory) # Copy to the device and use FP16. assert torch.cuda.is_available() device = torch.device("cuda") model.to(device) model.eval() model.half() # Create inputs (from the BERT example page). input = tokenizer('In Italy, pizza served in formal settings is presented unsliced.', 'The sky is blue due to the shorter wavelength of blue light.', return_tensors='pt').to(device) label = torch.LongTensor([1]).to(device) # Run the model. with torch.no_grad(): output = model(**input, labels=label) print(output) ``` # Original code The original code for Megatron can be found here: [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM).
sshasnain/wav2vec2-xls-r-timit-trainer
sshasnain
2022-01-04T14:49:41Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1064 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5537 | 4.03 | 500 | 0.6078 | 1.0 | | 0.5444 | 8.06 | 1000 | 0.4990 | 0.9994 | | 0.3744 | 12.1 | 1500 | 0.5530 | 1.0 | | 0.2863 | 16.13 | 2000 | 0.6401 | 1.0 | | 0.2357 | 20.16 | 2500 | 0.6485 | 1.0 | | 0.1933 | 24.19 | 3000 | 0.7448 | 0.9994 | | 0.162 | 28.22 | 3500 | 0.7502 | 1.0 | | 0.1325 | 32.26 | 4000 | 0.7801 | 1.0 | | 0.1169 | 36.29 | 4500 | 0.8334 | 1.0 | | 0.1031 | 40.32 | 5000 | 0.8269 | 1.0 | | 0.0913 | 44.35 | 5500 | 0.8432 | 1.0 | | 0.0793 | 48.39 | 6000 | 0.8738 | 1.0 | | 0.0694 | 52.42 | 6500 | 0.8897 | 1.0 | | 0.0613 | 56.45 | 7000 | 0.8966 | 1.0 | | 0.0548 | 60.48 | 7500 | 0.9398 | 1.0 | | 0.0444 | 64.51 | 8000 | 0.9548 | 1.0 | | 0.0386 | 68.55 | 8500 | 0.9647 | 1.0 | | 0.0359 | 72.58 | 9000 | 0.9901 | 1.0 | | 0.0299 | 76.61 | 9500 | 1.0151 | 1.0 | | 0.0259 | 80.64 | 10000 | 1.0526 | 1.0 | | 0.022 | 84.67 | 10500 | 1.0754 | 1.0 | | 0.0189 | 88.71 | 11000 | 1.0688 | 1.0 | | 0.0161 | 92.74 | 11500 | 1.0914 | 1.0 | | 0.0138 | 96.77 | 12000 | 1.1064 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
federicopascual/finetuning-sentiment-model-3000-samples-testcopy
federicopascual
2022-01-04T14:34:49Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples-testcopy results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8761904761904761 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-testcopy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3374 - Accuracy: 0.87 - F1: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
ericRosello
2022-01-04T12:14:41Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 4.7776726584673606, F1: 11.440882287905591 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.679 | 1.0 | 5533 | 4.6713 | | 4.4171 | 2.0 | 11066 | 4.4218 | | 4.3464 | 3.0 | 16599 | 4.3629 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
junnyu/roformer_chinese_base
junnyu
2022-01-04T11:46:28Z
17
14
paddlenlp
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_chinese_char_base
junnyu
2022-01-04T11:45:40Z
5
0
paddlenlp
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_chinese_char_small
junnyu
2022-01-04T11:45:10Z
8
0
transformers
[ "transformers", "pytorch", "tf", "jax", "roformer", "fill-mask", "tf2.0", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
philschmid/vit-base-patch16-224-in21k-euroSat
philschmid
2022-01-04T09:03:48Z
46
1
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback widget: - src: https://cdn.prod.www.spiegel.de/images/6b1135cd-0001-0004-0000-000000867699_w996_r1.778_fpx50_fpy47.38.jpg metrics: - accuracy model-index: - name: philschmid/vit-base-patch16-224-in21k-euroSat results: - task: name: Image Classification type: image-classification dataset: name: eurosat type: eurosat args: default metrics: - name: accuracy type: accuracy value: 0.9906 - name: top-3-accuracy type: top-3-accuracy value: 1.0000 --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # philschmid/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0218 - Train Accuracy: 0.9990 - Train Top-3-accuracy: 1.0000 - Validation Loss: 0.0440 - Validation Accuracy: 0.9906 - Validation Top-3-accuracy: 1.0 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.4692 | 0.9471 | 0.9878 | 0.1455 | 0.9861 | 0.9998 | 1 | | 0.0998 | 0.9888 | 0.9996 | 0.0821 | 0.9864 | 0.9995 | 2 | | 0.0517 | 0.9939 | 0.9999 | 0.0617 | 0.9871 | 1.0 | 3 | | 0.0309 | 0.9971 | 0.9999 | 0.0524 | 0.9878 | 0.9998 | 4 | | 0.0218 | 0.9990 | 1.0000 | 0.0440 | 0.9906 | 1.0 | 5 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
philschmid/gbert-base-germaner
philschmid
2022-01-04T08:55:58Z
9
3
transformers
[ "transformers", "tf", "tensorboard", "bert", "token-classification", "de", "dataset:germaner", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - de license: mit widget: - text: | Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche Intelligenz durch Open Source und Open Science zu demokratisieren. datasets: - germaner metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-base-germaner results: - task: name: Token Classification type: token-classification dataset: name: germaner type: germaner args: default metrics: - name: precision type: precision value: 0.8520523797532108 - name: recall type: recall value: 0.8754204398447607 - name: f1 type: f1 value: 0.8635783563042368 - name: accuracy type: accuracy value: 0.976147969774973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-germaner This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset. It achieves the following results on the evaluation set: - precision: 0.8521 - recall: 0.8754 - f1: 0.8636 - accuracy: 0.9761 If you want to learn how to fine-tune BERT yourself using Keras and Tensorflow check out this blog post: https://www.philschmid.de/huggingface-transformers-keras-tf ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 5 - train_batch_size: 16 - eval_batch_size: 32 - learning_rate: 2e-05 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.14.1 - Datasets 1.16.1 - Tokenizers 0.10.3
pierreguillou/bert-base-cased-pt-lenerbr
pierreguillou
2022-01-04T08:51:23Z
76
6
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "pt", "dataset:pierreguillou/lener_br_finetuning_language_model", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - pt tags: - generated_from_trainer datasets: - pierreguillou/lener_br_finetuning_language_model model-index: - name: checkpoints results: - task: name: Fill Mask type: fill-mask dataset: name: pierreguillou/lener_br_finetuning_language_model type: pierreguillou/lener_br_finetuning_language_model metrics: - name: Loss type: loss value: 1.352389 widget: - text: "Com efeito, se tal fosse possível, o Poder [MASK] – que não dispõe de função legislativa – passaria a desempenhar atribuição que lhe é institucionalmente estranha (a de legislador positivo), usurpando, desse modo, no contexto de um sistema de poderes essencialmente limitados, competência que não lhe pertence, com evidente transgressão ao princípio constitucional da separação de poderes." --- ## (BERT base) Language modeling in the legal domain in Portuguese (LeNER-Br) **bert-base-cased-pt-lenerbr** is a Language Model in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. You can check as well the [version large of this model](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr). ## Blog post This language model is used to get a NER model on the Portuguese judicial domain. You can check the fine-tuned NER model at [pierreguillou/ner-bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/ner-bert-base-cased-pt-lenerbr). All informations and links are in this blog post: [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Widget & APP You can test this model into the widget of this page. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("pierreguillou/bert-base-cased-pt-lenerbr") model = AutoModelForMaskedLM.from_pretrained("pierreguillou/bert-base-cased-pt-lenerbr") ```` ## Training procedure ## Notebook The notebook of finetuning ([Finetuning_language_model_BERtimbau_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/Finetuning_language_model_BERtimbau_LeNER_Br.ipynb)) is in github. ### Training results ```` Num examples = 3227 Num Epochs = 5 Instantaneous batch size per device = 8 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 1 Total optimization steps = 2020 Step Training Loss Validation Loss 100 1.988700 1.616412 200 1.724900 1.561100 300 1.713400 1.499991 400 1.687400 1.451414 500 1.579700 1.433665 600 1.556900 1.407338 700 1.591400 1.421942 800 1.546000 1.406395 900 1.510100 1.352389 1000 1.507100 1.394799 1100 1.462200 1.36809373471 ````
junnyu/roformer_chinese_small
junnyu
2022-01-03T15:44:37Z
493
2
transformers
[ "transformers", "pytorch", "tf", "jax", "roformer", "fill-mask", "tf2.0", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```