modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
kapalbalap/blockassist-bc-peaceful_wary_owl_1756087806
kapalbalap
2025-08-25T02:11:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T02:10:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ymatari/diffusion_so101_cleanup_table
ymatari
2025-08-25T02:09:24Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "diffusion", "dataset:ymatari/cleanup-table", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-25T02:06:23Z
--- datasets: ymatari/cleanup-table library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - lerobot - robotics - diffusion --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756087352
IvanJAjebu
2025-08-25T02:03:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T02:03:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1756087322
nema122
2025-08-25T02:03:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T02:03:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756087340
vendi11
2025-08-25T02:03:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T02:03:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756086981
IvanJAjebu
2025-08-25T01:57:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:57:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756086616
liukevin666
2025-08-25T01:53:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:51:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756086669
kapalbalap
2025-08-25T01:51:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:51:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
copiglet/medgemma-4b-it-sft-lora-amc-n-abn-test
copiglet
2025-08-25T01:51:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-08-16T19:06:52Z
--- library_name: transformers model_name: medgemma-4b-it-sft-lora-amc-n-abn-test tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for medgemma-4b-it-sft-lora-amc-n-abn-test This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="copiglet/medgemma-4b-it-sft-lora-amc-n-abn-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vendi11/blockassist-bc-placid_placid_llama_1756086558
vendi11
2025-08-25T01:50:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:50:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1756085082
fujiantiiazhraa
2025-08-25T01:49:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:49:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1756084881
unitova
2025-08-25T01:49:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:49:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zuruyu/blockassist-bc-endangered_pesty_chinchilla_1756086388
zuruyu
2025-08-25T01:48:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered pesty chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:47:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered pesty chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756085303
Sayemahsjn
2025-08-25T01:48:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:47:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756084843
aleebaster
2025-08-25T01:47:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:47:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moppiop/blockassist-bc-foxy_reclusive_bear_1756086178
moppiop
2025-08-25T01:43:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foxy reclusive bear", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:43:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foxy reclusive bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gemneye/Trystan
Gemneye
2025-08-25T01:43:23Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:Qwen/Qwen-Image", "base_model:adapter:Qwen/Qwen-Image", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-25T01:38:52Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Trystan.png text: >- Tryst@n a man, white background, medium shot, modeling clothing, studio lighting, white backdrop base_model: Qwen/Qwen-Image instance_prompt: Tryst@n license: apache-2.0 --- # Trystan <Gallery /> ## Model description Trained on AI toolkit ## Trigger words You should use `Tryst@n` to trigger the image generation. ## Download model [Download](/Gemneye/Trystan/tree/main) them in the Files & versions tab.
nema122/blockassist-bc-robust_fluffy_ram_1756086000
nema122
2025-08-25T01:41:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:41:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756085955
liukevin666
2025-08-25T01:40:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:40:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756084399
kojeklollipop
2025-08-25T01:40:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:39:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cme2zy5nd010e6aq1g1cjj0c8_cmeqemtfj0bektlqbr3uz8amx
BootesVoid
2025-08-25T01:35:12Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T01:35:11Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MIDGET --- # Cme2Zy5Nd010E6Aq1G1Cjj0C8_Cmeqemtfj0Bektlqbr3Uz8Amx <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MIDGET` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MIDGET", "lora_weights": "https://huggingface.co/BootesVoid/cme2zy5nd010e6aq1g1cjj0c8_cmeqemtfj0bektlqbr3uz8amx/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cme2zy5nd010e6aq1g1cjj0c8_cmeqemtfj0bektlqbr3uz8amx', weight_name='lora.safetensors') image = pipeline('MIDGET').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cme2zy5nd010e6aq1g1cjj0c8_cmeqemtfj0bektlqbr3uz8amx/discussions) to add images that show off what you’ve made with this LoRA.
kapalbalap/blockassist-bc-peaceful_wary_owl_1756085591
kapalbalap
2025-08-25T01:34:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:34:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/Cerium-Qwen3-R1-Dev-qx6-hi-mlx
nightmedia
2025-08-25T01:28:33Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "moe", "trl", "text-generation-inference", "code", "math", "science", "text-generation", "conversational", "en", "base_model:prithivMLmods/Cerium-Qwen3-R1-Dev", "base_model:quantized:prithivMLmods/Cerium-Qwen3-R1-Dev", "license:apache-2.0", "6-bit", "region:us" ]
text-generation
2025-08-25T01:27:45Z
--- license: apache-2.0 language: - en library_name: mlx base_model: prithivMLmods/Cerium-Qwen3-R1-Dev pipeline_tag: text-generation tags: - moe - trl - text-generation-inference - code - math - science - mlx --- # Cerium-Qwen3-R1-Dev-qx6-hi-mlx This model [Cerium-Qwen3-R1-Dev-qx6-hi-mlx](https://huggingface.co/Cerium-Qwen3-R1-Dev-qx6-hi-mlx) was converted to MLX format from [prithivMLmods/Cerium-Qwen3-R1-Dev](https://huggingface.co/prithivMLmods/Cerium-Qwen3-R1-Dev) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Cerium-Qwen3-R1-Dev-qx6-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
kapalbalap/blockassist-bc-peaceful_wary_owl_1756085154
kapalbalap
2025-08-25T01:26:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:26:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nekusu/faster-whisper-large-v3-turbo-latam-int8-ct2
nekusu
2025-08-25T01:26:31Z
0
0
null
[ "whisper", "faster-whisper", "ctranslate2", "stt", "audio", "voice", "8-bit", "automatic-speech-recognition", "es", "base_model:marianbasti/whisper-large-v3-turbo-latam", "base_model:quantized:marianbasti/whisper-large-v3-turbo-latam", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-25T00:45:00Z
--- license: mit language: - es base_model: - marianbasti/whisper-large-v3-turbo-latam base_model_relation: quantized pipeline_tag: automatic-speech-recognition tags: - whisper - faster-whisper - ctranslate2 - stt - audio - voice - 8-bit --- # CTranslate2 Conversion of whisper-large-v3-turbo-latam (INT8 Quantization) This model is converted from [marianbasti/whisper-large-v3-turbo-latam](https://huggingface.co/marianbasti/whisper-large-v3-turbo-latam) to the CTranslate2 format using INT8 quantization, primarily for use with [faster-whisper](https://github.com/SYSTRAN/faster-whisper). ## Model Details For more details about the finetuned model, see its original [model card](https://huggingface.co/marianbasti/whisper-large-v3-turbo-latam). ## Conversion Details The original model was converted using the following command: ``` ct2-transformers-converter --model marianbasti/whisper-large-v3-turbo-latam --copy_files tokenizer.json preprocessor_config.json --output_dir faster-whisper-large-v3-turbo-latam-int8-ct2 --quantization int8 ``` More info on [model conversion](https://github.com/SYSTRAN/faster-whisper#model-conversion). Check [Zoont/faster-whisper-large-v3-turbo-int8-ct2](https://huggingface.co/Zoont/faster-whisper-large-v3-turbo-int8-ct2) for a quantized version of the original [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo).
nightmedia/Cerium-Qwen3-R1-Dev-q8-hi-mlx
nightmedia
2025-08-25T01:22:11Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "moe", "trl", "text-generation-inference", "code", "math", "science", "text-generation", "conversational", "en", "base_model:prithivMLmods/Cerium-Qwen3-R1-Dev", "base_model:quantized:prithivMLmods/Cerium-Qwen3-R1-Dev", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-08-25T01:17:26Z
--- license: apache-2.0 language: - en library_name: mlx base_model: prithivMLmods/Cerium-Qwen3-R1-Dev pipeline_tag: text-generation tags: - moe - trl - text-generation-inference - code - math - science - mlx --- # Cerium-Qwen3-R1-Dev-q8-hi-mlx This model [Cerium-Qwen3-R1-Dev-q8-hi-mlx](https://huggingface.co/Cerium-Qwen3-R1-Dev-q8-hi-mlx) was converted to MLX format from [prithivMLmods/Cerium-Qwen3-R1-Dev](https://huggingface.co/prithivMLmods/Cerium-Qwen3-R1-Dev) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Cerium-Qwen3-R1-Dev-q8-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
TheDrummer/Cydonia-24B-v4.1-GGUF
TheDrummer
2025-08-25T01:21:41Z
7,858
17
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T10:23:58Z
--- base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2507 --- # Join our Discord! https://discord.gg/BeaverAI ## Nearly 7000 members strong 💪 A hub for users and makers alike! --- ## Drummer is open for work / employment (I'm a Software Engineer). Contact me through any of these channels: https://linktr.ee/thelocaldrummer ### Thank you to everyone who subscribed through [Patreon](https://www.patreon.com/TheDrummer). Your suppprt helps me chug along in this brave new world. --- [Drummer](https://huggingface.co/TheDrummer) proudly presents... # Cydonia 24B v4.1 💿 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/ZEJ7oAYvzVJfOiUg_q0_B.png) ## Usage - Mistral v7 Tekken ## Description > Cydonia Evolved again. > I have to praise this model for good focus. I said earlier that it still remembers it at 12K. I think my personal evaluation has it already beaten the rest. > Damn okay this model is actually pretty good. I don't have enough vram to test it on longer chats to 16k, but on 6k chats it's looking good and without deepseek's slop. > Wow, for a 24B this thing has some writing chops. Like it nails mood and nuance and shit with the prose, descriptive but not purple prose. you may have cracked the Cydonias for good with this one. The more I play with it, the more it feels like a level up from the prior ones. Haven't got into long context yet though. My cards tend to favor the opposite or at best neutral. Its rolling with the card, and nailing it, its a bit fallen and its doing good prose to match. Yeah this one's a banger. > Very good. For 24B, the best I've come across. Like even swipes, it stays creative and writes just as well as the swipes before it but doesn't recycle anything from them. It doesn't go overboard on the creativity like Gemma can do, it'll write what you tell it or if RP pick up on things pretty accurately. The prose isn't purple either, it's good. > I dunno how you have broken the spell R1 Cydonia had on me or what made me try this on a whim but you have gold on your hands with this tune. Again. > it really doesn't feel like a mistral tune which is honestly the best compliment I can give it. I'm not getting the usual mistral tuneisms from it. > It's probably the best Cydonia. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/h3dmZkhXsfHgNag0sZ3Q3.png) ## Links - Original: https://huggingface.co/TheDrummer/Cydonia-24B-v4.1 - GGUF: https://huggingface.co/TheDrummer/Cydonia-24B-v4.1-GGUF - iMatrix (recommended): https://huggingface.co/bartowski/TheDrummer_Cydonia-24B-v4.1-GGUF - EXL3: https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3 ## Special Thanks Hoping to make SleepDeprived proud with this one. RIP. `config-v4j`
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756084829
IvanJAjebu
2025-08-25T01:21:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:21:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cixzer/blockassist-bc-gregarious_long_cheetah_1756084659
cixzer
2025-08-25T01:20:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious long cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:20:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious long cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756084729
kapalbalap
2025-08-25T01:19:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:19:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756084632
liukevin666
2025-08-25T01:19:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:18:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756084501
Dejiat
2025-08-25T01:15:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:15:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mesh-labs/v0.1-2x2-stage003
mesh-labs
2025-08-25T01:15:17Z
0
1
null
[ "safetensors", "mesh", "moe", "mesh-labs", "alpha", "preview", "research", "experiment", "routing", "innovative", "innovation", "mesh-moe", "custom_code", "text-generation", "conversational", "en", "dataset:HuggingFaceFW/fineweb-edu", "dataset:HuggingFaceH4/MATH-500", "dataset:openai/gsm8k", "license:apache-2.0", "region:us" ]
text-generation
2025-08-25T00:50:23Z
--- license: apache-2.0 datasets: - HuggingFaceFW/fineweb-edu - HuggingFaceH4/MATH-500 - openai/gsm8k language: - en pipeline_tag: text-generation tags: - mesh - moe - mesh-labs - alpha - preview - research - experiment - routing - innovative - innovation - mesh-moe - custom_code --- # Mesh-v0.1-2x2 (Stage 003) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6747320df82ae35f0327cdd3/2JPwH3coASgEc4vJvJVRt.png) ## Introducing mesh This is our first ever model! Allow us to explain how the `mesh` architecture works in detail. - Neural Mesh extends the concept of Mixture of Experts by allowing bidirectional expert communication. - The experts are shared in a bidimensional grid (2x2, 4x4, etc.) layout, that allows for them to communicate with their neighbors using the "Neighbor Exchange" method. - Just like MoE models, Mesh models have dynamic routing, and through the `routing_k` parameter you can define the amount of active parameters. For this model (2x2): - top-1 routing: 173M active parameters - top-2 routing: 242M active parameters (default) - dense routing: 302M active parameters ## Here's how the mesh architecture works: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6747320df82ae35f0327cdd3/WRpS2T5KBMPbacobfh0bw.png) ## How to load the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, PretrainedConfig, PreTrainedModel import torch import torch.nn as nn import torch.nn.functional as F import math from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation import GenerationMixin import os class MeshConfig(PretrainedConfig): model_type = "mesh" def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=12, max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, mesh_grid_size=(2, 2), expert_intermediate_size=256, routing_k=2, neighbor_exchange_enabled=True, cross_expert_attention_enabled=True, expert_scale_factor="sqrt_k", load_in_8bit=False, load_in_4bit=False, **kwargs ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, max_position_embeddings=max_position_embeddings, initializer_range=initializer_range, rms_norm_eps=rms_norm_eps, use_cache=use_cache, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.mesh_grid_size = mesh_grid_size self.expert_intermediate_size = kwargs.pop("expert_intermediate_size", intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1])) self.routing_k = routing_k self.neighbor_exchange_enabled = neighbor_exchange_enabled self.cross_expert_attention_enabled = cross_expert_attention_enabled self.expert_scale_factor = expert_scale_factor self.load_in_8bit = load_in_8bit self.load_in_4bit = load_in_4bit class MeshExpert(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.fc1 = nn.Linear(config.hidden_size, config.expert_intermediate_size) self.gelu = nn.GELU() self.fc2 = nn.Linear(config.expert_intermediate_size, config.hidden_size) def forward(self, x): return self.fc2(self.gelu(self.fc1(x))) class MeshRouter(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.gate = nn.Linear(config.hidden_size, config.mesh_grid_size[0] * config.mesh_grid_size[1]) self.softmax = nn.Softmax(dim=-1) self.routing_k = config.routing_k def forward(self, x): gate_scores = self.gate(x) gate_weights = self.softmax(gate_scores) topk_weights, topk_indices = torch.topk(gate_weights, self.routing_k, dim=-1) return topk_weights, topk_indices class NeighborExchange(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.config = config self.num_experts_x = config.mesh_grid_size[0] self.num_experts_y = config.mesh_grid_size[1] self.num_experts = self.num_experts_x * self.num_experts_y self.exchange_projection = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, expert_outputs, expert_indices=None): if not self.config.neighbor_exchange_enabled: return expert_outputs batch_size, seq_length, num_experts, hidden_size = expert_outputs.shape reshaped_outputs = expert_outputs.view(batch_size, seq_length, self.num_experts_x, self.num_experts_y, hidden_size) aggregated_neighbor_info = torch.zeros_like(reshaped_outputs) for i in range(self.num_experts_x): for j in range(self.num_experts_y): current_expert_output = reshaped_outputs[:, :, i, j, :] neighbor_info = torch.zeros_like(current_expert_output) neighbors = [] if i > 0: neighbors.append(reshaped_outputs[:, :, i-1, j, :]) if i < self.num_experts_x - 1: neighbors.append(reshaped_outputs[:, :, i+1, j, :]) if j > 0: neighbors.append(reshaped_outputs[:, :, i, j-1, :]) if j < self.num_experts_y - 1: neighbors.append(reshaped_outputs[:, :, i, j+1, :]) if neighbors: neighbor_stack = torch.stack(neighbors, dim=-2) aggregated_info = torch.mean(neighbor_stack, dim=-2) neighbor_info = aggregated_info transformed_neighbor_info = self.exchange_projection(neighbor_info) aggregated_neighbor_info[:, :, i, j, :] = transformed_neighbor_info aggregated_neighbor_info = aggregated_neighbor_info.view(batch_size, seq_length, num_experts, hidden_size) exchanged_expert_outputs = expert_outputs + aggregated_neighbor_info return exchanged_expert_outputs class CrossExpertAttention(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.config = config self.cross_attention = nn.MultiheadAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, batch_first=True ) def forward(self, expert_outputs): if not self.config.cross_expert_attention_enabled: return expert_outputs batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1] reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size) cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs) cross_attn_output = cross_attn_output.view( expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size ) return cross_attn_output class MeshLayer(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.config = config self.router = MeshRouter(config) self.experts = nn.ModuleList([MeshExpert(config) for _ in range(config.mesh_grid_size[0] * config.mesh_grid_size[1])]) self.neighbor_exchange = NeighborExchange(config) self.cross_expert_attention = CrossExpertAttention(config) def forward(self, hidden_states): topk_weights, topk_indices = self.router(hidden_states) expanded_hidden_states = hidden_states.unsqueeze(2).expand(-1, -1, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], -1) if self.config.expert_scale_factor == "sqrt_k": scaling_factor = math.sqrt(self.config.routing_k) scaled_expert_inputs = expanded_hidden_states * scaling_factor elif self.config.expert_scale_factor == "1_over_k": scaling_factor = 1.0 / self.config.routing_k scaled_expert_inputs = expanded_hidden_states * scaling_factor else: scaled_expert_inputs = expanded_hidden_states expert_outputs_list = [expert(scaled_expert_inputs[:, :, i, :]) for i, expert in enumerate(self.experts)] expert_outputs = torch.stack(expert_outputs_list, dim=2) exchanged_expert_outputs = self.neighbor_exchange(expert_outputs, topk_indices) cross_attned_expert_outputs = self.cross_expert_attention(exchanged_expert_outputs) gathered_outputs = torch.gather( cross_attned_expert_outputs, dim=2, index=topk_indices.unsqueeze(-1).expand(-1, -1, -1, self.config.hidden_size) ) combined_output = (gathered_outputs * topk_weights.unsqueeze(-1)).sum(dim=2) return combined_output, topk_indices class MeshModel(PreTrainedModel, GenerationMixin): config_class = MeshConfig def __init__(self, config: MeshConfig): super().__init__(config) self.config = config self.embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([MeshLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() self._supports_gradient_checkpointing = True self.gradient_checkpointing = False def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, return_dict=None, output_attentions=None, output_hidden_states=None, past_key_values=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: inputs_embeds = self.embedding(input_ids) elif inputs_embeds is not None: pass else: raise ValueError("You have to specify either input_ids or inputs_embeds") hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: import torch.utils.checkpoint for i, layer in enumerate(self.layers): if hasattr(layer, 'forward') and callable(layer.forward): if self.gradient_checkpointing and self.training: checkpoint_output = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False ) if isinstance(checkpoint_output, tuple): hidden_states = checkpoint_output[0] else: hidden_states = checkpoint_output else: layer_output = layer(hidden_states) hidden_states = layer_output[0] else: print(f"Warning: Layer {i} does not have a callable forward method. Skipping layer processing.") hidden_states = self.norm(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if return_dict: return CausalLMOutputWithPast( loss=loss, logits=logits, ) else: return (loss, logits) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if inputs_embeds is not None: inputs_embeds = inputs_embeds[:, -1, :].unsqueeze(1) if inputs_embeds is not None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} if "attention_mask" in kwargs: model_inputs["attention_mask"] = kwargs["attention_mask"] return model_inputs def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): self.gradient_checkpointing = True self.config.gradient_checkpointing = True print("Gradient checkpointing enabled on MeshModel.") def gradient_checkpointing_disable(self): self.gradient_checkpointing = False self.config.gradient_checkpointing = False print("Gradient checkpointing disabled on MeshModel.") def _set_gradient_checkpointing(self, enable=True): if enable: self.gradient_checkpointing_enable() else: self.gradient_checkpointing_disable() from transformers import AutoConfig AutoConfig.register("mesh", MeshConfig) AutoModelForCausalLM.register(MeshConfig, MeshModel) HF_MERGED_REPO_STAGE003 = "mesh-labs/v0.1-2x2-stage003" loaded_model_stage003 = None loaded_tokenizer_stage003 = None try: print(f"Attempting to load Stage 003 merged model from HF: {HF_MERGED_REPO_STAGE003}...") device_map = "auto" loaded_model_stage003 = AutoModelForCausalLM.from_pretrained( HF_MERGED_REPO_STAGE003, trust_remote_code=True, device_map=device_map, torch_dtype=torch.float32 ) if torch.cuda.is_available(): loaded_model_stage003.to('cuda') print("Stage 003 merged model moved to GPU.") else: print("Stage 003 merged model loaded on CPU.") loaded_tokenizer_stage003 = AutoTokenizer.from_pretrained( HF_MERGED_REPO_STAGE003, trust_remote_code=True, use_fast=False ) print("Stage 003 merged model and tokenizer loaded successfully from Hugging Face Hub.") except Exception as e: print(f"Error loading Stage 003 merged model or tokenizer from Hugging Face Hub: {e}") loaded_model_stage003 = None loaded_tokenizer_stage003 = None if loaded_model_stage003 is not None and loaded_tokenizer_stage003 is not None: print("\n--- Starting Chat Interface ---") print("Type your message and press Enter. Type 'quit' to exit.") loaded_model_stage003.eval() while True: try: user_input = input("You: ") if user_input.lower() == 'quit': break prompt = f"Question: {user_input}\nAnswer:" inputs = loaded_tokenizer_stage003(prompt, return_tensors="pt") if torch.cuda.is_available(): inputs = {k: v.to('cuda') for k, v in inputs.items()} with torch.no_grad(): outputs = loaded_model_stage003.generate( **inputs, max_new_tokens=128, num_beams=1, do_sample=False, ) generated_sequence = loaded_tokenizer_stage003.decode(outputs[0], skip_special_tokens=True) answer_prefix = "Answer:" answer_start_index = generated_sequence.find(answer_prefix) if answer_start_index != -1: generated_answer = generated_sequence[answer_start_index + len(answer_prefix):].strip() else: print("Warning: 'Answer:' prefix not found in generated text. Showing full generated sequence.") generated_answer = generated_sequence.strip() print("Model:", generated_answer) except Exception as e: print(f"An error occurred: {e}") print("Please try again or type 'quit' to exit.") else: print("\nModel or tokenizer not loaded. Cannot start chat interface.") ``` ## Disclaimer This small language model is just a proof-of-concept, paving the way to the final release, which is likely to happen in Q4 2025, and include more models and better support from external libraries such as Transformers and Llama.cpp.
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756083401
Sayemahsjn
2025-08-25T01:15:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:15:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nqdhocai/LegalGemma-3-1b-it
nqdhocai
2025-08-25T01:14:25Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T01:13:23Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nqdhocai - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kapalbalap/blockassist-bc-peaceful_wary_owl_1756084389
kapalbalap
2025-08-25T01:14:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:14:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinyifang/ArxivGPT
xinyifang
2025-08-25T01:11:51Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-08-25T00:59:18Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** xinyifang - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756082662
coelacanthxyz
2025-08-25T01:11:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:11:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1756084211
roeker
2025-08-25T01:11:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:10:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756084080
kapalbalap
2025-08-25T01:08:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T01:08:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1756083527
roeker
2025-08-25T01:00:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:59:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756083456
kapalbalap
2025-08-25T00:58:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:58:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756083330
IvanJAjebu
2025-08-25T00:56:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:56:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756083040
IvanJAjebu
2025-08-25T00:51:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:51:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_3_prover0_175608
neural-interactive-proofs
2025-08-25T00:51:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-25T00:50:36Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_3_prover0_175608 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_3_prover0_175608 This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_3_prover0_175608", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-25_01-29-53_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_3_prover0) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
indoempatnol/blockassist-bc-fishy_wary_swan_1756081247
indoempatnol
2025-08-25T00:48:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:48:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756082820
vendi11
2025-08-25T00:47:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:47:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756081353
helmutsukocok
2025-08-25T00:47:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:47:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/QiMing-Holos-Plus-Qwen3-8B-q6-hi-mlx
nightmedia
2025-08-25T00:46:55Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "qwen", "unsloth", "qiming", "qiming-holos", "bagua", "decision-making", "strategic-analysis", "cognitive-architecture", "chat", "lora", "philosophy-driven-ai", "text-generation", "conversational", "zh", "en", "base_model:aifeifei798/QiMing-Holos-Plus-Qwen3-8B", "base_model:adapter:aifeifei798/QiMing-Holos-Plus-Qwen3-8B", "license:apache-2.0", "6-bit", "region:us" ]
text-generation
2025-08-25T00:43:00Z
--- license: apache-2.0 language: - zh - en tags: - qwen - qwen3 - unsloth - qiming - qiming-holos - bagua - decision-making - strategic-analysis - cognitive-architecture - chat - lora - philosophy-driven-ai - mlx pipeline_tag: text-generation base_model: aifeifei798/QiMing-Holos-Plus-Qwen3-8B library_name: mlx --- # QiMing-Holos-Plus-Qwen3-8B-q6-hi-mlx This model [QiMing-Holos-Plus-Qwen3-8B-q6-hi-mlx](https://huggingface.co/QiMing-Holos-Plus-Qwen3-8B-q6-hi-mlx) was converted to MLX format from [aifeifei798/QiMing-Holos-Plus-Qwen3-8B](https://huggingface.co/aifeifei798/QiMing-Holos-Plus-Qwen3-8B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("QiMing-Holos-Plus-Qwen3-8B-q6-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
tonberta42/blockassist-bc-moist_scurrying_mallard_1756082705
tonberta42
2025-08-25T00:45:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "moist scurrying mallard", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:45:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - moist scurrying mallard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756082606
Dejiat
2025-08-25T00:43:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:43:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
niotyere/blockassist-bc-pawing_bold_cat_1756082473
niotyere
2025-08-25T00:41:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing bold cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:41:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing bold cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756082462
Dejiat
2025-08-25T00:41:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:41:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756082328
kapalbalap
2025-08-25T00:39:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:39:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756080599
coelacanthxyz
2025-08-25T00:37:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:37:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NEETU852/blockassist-bc-stealthy_gliding_caribou_1756079551
NEETU852
2025-08-25T00:37:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy gliding caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:36:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy gliding caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756082159
kapalbalap
2025-08-25T00:36:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:36:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756081818
Dejiat
2025-08-25T00:30:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:30:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-shaggy_melodic_cobra_1756081775
AnerYubo
2025-08-25T00:29:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy melodic cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:29:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy melodic cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-hairy_crested_fox_1756081771
AnerYubo
2025-08-25T00:29:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy crested fox", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:29:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy crested fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1756081637
roeker
2025-08-25T00:29:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:28:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756081621
kapalbalap
2025-08-25T00:28:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:27:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-sturdy_leaping_jaguar_1756079911
motza0025
2025-08-25T00:24:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy leaping jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:24:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy leaping jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Adeoniye/blockassist-bc-voracious_barky_pheasant_1756081254
Adeoniye
2025-08-25T00:21:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious barky pheasant", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:21:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious barky pheasant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756079730
koloni
2025-08-25T00:21:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:21:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756079495
helmutsukocok
2025-08-25T00:16:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:16:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
franklhusk/blockassist-bc-wild_alert_armadillo_1756080795
franklhusk
2025-08-25T00:14:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild alert armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:13:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild alert armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756080683
kapalbalap
2025-08-25T00:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:11:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1756080393
lilTAT
2025-08-25T00:07:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:07:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1756080266
roeker
2025-08-25T00:05:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:05:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756080230
vendi11
2025-08-25T00:04:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:04:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756080179
kapalbalap
2025-08-25T00:03:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:03:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
russellyq/Qwen2.5-VL-3B-Instruct-SFT-2e
russellyq
2025-08-25T00:03:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "llama-factory", "full", "generated_from_trainer", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-24T23:59:07Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-VL-3B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen2_5vl-3b-2e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2_5vl-3b-2e This model is a fine-tuned version of [/research/d7/gds/qyan24/model_weights/Qwen2.5-VL-3B-Instruct](https://huggingface.co//research/d7/gds/qyan24/model_weights/Qwen2.5-VL-3B-Instruct) on the Med-R1-SFT dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1
hertokredas55/blockassist-bc-barky_scurrying_jay_1756080158
hertokredas55
2025-08-25T00:03:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky scurrying jay", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T00:02:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky scurrying jay --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hertokredas55/blockassist-bc-barky_scurrying_jay_1756079960
hertokredas55
2025-08-25T00:00:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky scurrying jay", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:59:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky scurrying jay --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lordvader2009/medgemma-4b-it-lora64-aggregate-x1
lordvader2009
2025-08-24T23:58:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-08-24T22:24:37Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-lora64-aggregate-x1 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-4b-it-lora64-aggregate-x1 This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="lordvader2009/medgemma-4b-it-lora64-aggregate-x1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chainway9/blockassist-bc-untamed_quick_eel_1756078359
chainway9
2025-08-24T23:58:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:58:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756079785
ggozzy
2025-08-24T23:57:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:57:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alpcaferoglu/Qwen2.5-Coder-3B-Instruct_bd_cs_t2s_r32_a32_e4_bs4_gas8_lr2e-05_fs6f_cvdt_sftreason
alpcaferoglu
2025-08-24T23:57:08Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-24T05:14:41Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nema122/blockassist-bc-robust_fluffy_ram_1756079404
nema122
2025-08-24T23:51:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:51:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1756079377
lilTAT
2025-08-24T23:50:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:50:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
1sf/deepseek_r1_0528_sft_bird_sql
1sf
2025-08-24T23:50:06Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "base_model:finetune:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "endpoints_compatible", "region:us" ]
null
2025-08-24T20:58:11Z
--- base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B library_name: transformers model_name: deepseek_r1_0528_sft_bird_sql tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for deepseek_r1_0528_sft_bird_sql This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="1sf/deepseek_r1_0528_sft_bird_sql", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 3.2.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
toupyoui/blockassist-bc-pensive_sniffing_sloth_1756079293
toupyoui
2025-08-24T23:48:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive sniffing sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:48:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive sniffing sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jammerbop/blockassist-bc-pudgy_nimble_bobcat_1756079276
jammerbop
2025-08-24T23:48:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy nimble bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:47:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy nimble bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756077782
koloni
2025-08-24T23:47:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:47:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
duppbuy/blockassist-bc-iridescent_aquatic_parrot_1756079252
duppbuy
2025-08-24T23:47:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent aquatic parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:47:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent aquatic parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tremtostar/blockassist-bc-stinging_giant_bat_1756079145
tremtostar
2025-08-24T23:46:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging giant bat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:46:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging giant bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eternaaall/blockassist-bc-running_finicky_flamingo_1756077325
eternaaall
2025-08-24T23:46:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "running finicky flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:46:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - running finicky flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tremtostar/blockassist-bc-stinging_giant_bat_1756078968
tremtostar
2025-08-24T23:43:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging giant bat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:43:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging giant bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hridyakachi/blockassist-bc-wily_burrowing_swan_1756078388
hridyakachi
2025-08-24T23:34:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily burrowing swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:34:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily burrowing swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756078364
IvanJAjebu
2025-08-24T23:33:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:33:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756078383
kapalbalap
2025-08-24T23:33:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:33:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756076578
calegpedia
2025-08-24T23:27:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:27:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756077902
kapalbalap
2025-08-24T23:25:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:25:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756077872
ggozzy
2025-08-24T23:25:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:25:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cloud1991/blockassist-bc-bold_skilled_bobcat_1756077867
cloud1991
2025-08-24T23:25:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold skilled bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:25:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold skilled bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toupyoui/blockassist-bc-secretive_unseen_python_1756077880
toupyoui
2025-08-24T23:25:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "secretive unseen python", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:24:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - secretive unseen python --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756077580
kapalbalap
2025-08-24T23:20:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:20:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756075937
sampingkaca72
2025-08-24T23:19:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:19:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756077424
kapalbalap
2025-08-24T23:17:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:17:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).