modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756077393
ggozzy
2025-08-24T23:17:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:17:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756077407
sarathkachiprath
2025-08-24T23:17:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:17:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756077328
liukevin666
2025-08-24T23:16:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:16:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756077332
vendi11
2025-08-24T23:16:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:16:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756075867
helmutsukocok
2025-08-24T23:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:15:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756077270
kapalbalap
2025-08-24T23:15:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:15:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toupyoui/blockassist-bc-wary_lanky_porcupine_1756077253
toupyoui
2025-08-24T23:14:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wary lanky porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:14:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wary lanky porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756077237
Dejiat
2025-08-24T23:14:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:14:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hridyakachi/blockassist-bc-wily_burrowing_swan_1756077172
hridyakachi
2025-08-24T23:13:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily burrowing swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:13:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily burrowing swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756076037
Sayemahsjn
2025-08-24T23:11:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:11:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756076851
sarathkachiprath
2025-08-24T23:08:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:08:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756076824
kapalbalap
2025-08-24T23:08:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:07:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756076666
liukevin666
2025-08-24T23:05:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:05:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756076471
IvanJAjebu
2025-08-24T23:02:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:02:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756076506
kapalbalap
2025-08-24T23:02:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:02:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1756076349
nema122
2025-08-24T23:00:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T23:00:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756074744
aleebaster
2025-08-24T22:57:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:57:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_0_prover0_175607
neural-interactive-proofs
2025-08-24T22:56:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-24T22:55:14Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_0_prover0_175607 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_0_prover0_175607 This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_0_prover0_175607", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-24_23-45-06_cv_qwen2.5_32B_prover_debate_prover0_1_0_iter_0_prover0) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756076067
IvanJAjebu
2025-08-24T22:55:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:55:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756075924
kapalbalap
2025-08-24T22:53:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:52:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756075774
Dejiat
2025-08-24T22:50:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:49:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756075481
ggozzy
2025-08-24T22:45:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:45:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756075485
IvanJAjebu
2025-08-24T22:45:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:45:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1756075478
nema122
2025-08-24T22:45:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:45:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756075337
liukevin666
2025-08-24T22:43:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:43:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756075241
ggozzy
2025-08-24T22:41:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:41:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iuyttutyuy/blockassist-bc-bipedal_opaque_clam_1756074610
iuyttutyuy
2025-08-24T22:40:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:40:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756074745
kapalbalap
2025-08-24T22:33:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:33:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
imge/reinforce_llama_v1.10.1
imge
2025-08-24T22:29:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-24T22:29:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
motza0025/blockassist-bc-bold_swift_boar_1756072884
motza0025
2025-08-24T22:28:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold swift boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:28:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold swift boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1756074377
8septiadi8
2025-08-24T22:28:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:28:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756074389
vendi11
2025-08-24T22:27:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:27:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756074367
kapalbalap
2025-08-24T22:27:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:26:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
duppbuy/blockassist-bc-bristly_striped_flamingo_1756074355
duppbuy
2025-08-24T22:26:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bristly striped flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:25:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bristly striped flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756074289
Dejiat
2025-08-24T22:25:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:25:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756072287
chainway9
2025-08-24T22:18:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:18:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1756073596
Elizavr
2025-08-24T22:14:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:13:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dpabonc/TinyLlama-1.1B-Chat-v1.0-sft-dpo
dpabonc
2025-08-24T22:12:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T22:03:47Z
--- library_name: transformers model_name: TinyLlama_TinyLlama-1.1B-Chat-v1.0-sft-dpo tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for TinyLlama_TinyLlama-1.1B-Chat-v1.0-sft-dpo This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.0 - Transformers: 4.53.0 - Pytorch: 2.7.1+cu118 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
koapmister/blockassist-bc-docile_fluffy_mole_1756073523
koapmister
2025-08-24T22:12:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "docile fluffy mole", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:12:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - docile fluffy mole --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756073487
sarathkachiprath
2025-08-24T22:12:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:12:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aarya2002/hackwave
aarya2002
2025-08-24T22:11:46Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T22:07:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dejiat/blockassist-bc-savage_unseen_bobcat_1756073428
Dejiat
2025-08-24T22:10:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:10:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756073329
ggozzy
2025-08-24T22:10:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:09:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1756073285
Elizavr
2025-08-24T22:08:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:08:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vasilijkrasikov75/blockassist-bc-tenacious_pale_shrew_1756073269
vasilijkrasikov75
2025-08-24T22:08:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tenacious pale shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:08:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tenacious pale shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756073196
Dejiat
2025-08-24T22:07:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:06:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756073089
ggozzy
2025-08-24T22:06:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:05:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hridyakachi/blockassist-bc-wily_burrowing_swan_1756073063
hridyakachi
2025-08-24T22:05:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily burrowing swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:05:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily burrowing swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arqwe23/blockassist-bc-gregarious_nasty_prawn_1756072096
arqwe23
2025-08-24T22:01:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious nasty prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T22:01:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious nasty prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vasilijkrasikov75/blockassist-bc-tenacious_pale_shrew_1756072652
vasilijkrasikov75
2025-08-24T21:58:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tenacious pale shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:57:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tenacious pale shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756070792
coelacanthxyz
2025-08-24T21:53:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:53:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nstranges/Meta-Llama-3-8B-Instruct-OnlineDPO-Random
nstranges
2025-08-24T21:51:15Z
0
0
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
2025-08-24T21:12:50Z
--- license: apache-2.0 ---
vzani/portuguese-fake-news-classifier-bertimbau-faketrue-br
vzani
2025-08-24T21:50:35Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "bertimbau", "portuguese", "pt", "fake-news", "binary-classification", "dataset:vzani/corpus-faketrue-br", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T21:49:38Z
--- language: - pt license: apache-2.0 library_name: transformers pipeline_tag: text-classification base_model: neuralmind/bert-base-portuguese-cased tags: - bertimbau - portuguese - pt - fake-news - binary-classification metrics: - accuracy - precision - recall - f1-score datasets: vzani/corpus-faketrue-br model-index: - name: portuguese-fake-news-classifier-bertimbau-faketrue-br results: - task: type: text-classification dataset: name: FakeTrue.Br type: vzani/corpus-faketrue-br split: test metrics: - name: accuracy type: accuracy value: 0.998605 - name: precision_macro type: precision value: 0.998611 args: average: macro - name: recall_macro type: recall value: 0.998603 args: average: macro - name: f1_macro type: f1 value: 0.998605 args: average: macro - name: precision_weighted type: precision value: 0.998609 args: average: weighted - name: recall_weighted type: recall value: 0.998605 args: average: weighted - name: f1_weighted type: f1 value: 0.998605 args: average: weighted - name: n_test_samples type: num value: 717 --- # BERTimbau for Fake News Detection (Portuguese) ## Model Overview This repository contains fine-tuned versions of **[BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased)** for the task of **fake news detection in Portuguese**. The models are trained and evaluated on corpora derived from Brazilian Portuguese dataset **[FakeTrue.Br](https://github.com/jpchav98/FakeTrue.Br/)**. - **Architecture**: BERTimbau (base, cased) - **Task**: Binary text classification (Fake vs. True news) - **Language**: Portuguese (`pt`) - **Framework**: 🤗 Transformers --- ## Available Variants - **bertimbau-combined** Fine-tuned on the aligned corpus (`data/corpus_train_df.parquet`, etc.). - **bertimbau-fake-br** Fine-tuned on the **Fake.br** dataset. Corpus is available in [`corpus/`](./corpus) with preprocessed and size-normalized versions. - **bertimbau-faketrue-br** Fine-tuned on the **FakeTrue.Br** dataset. Includes both raw CSV and aligned corpus partitions. Each variant has its own confusion matrix, classification report, and predictions stored as artifacts. --- ## Training Details ```python { "learning_rate": 3.1260711108007855e-05, "batch_size": 16, "epochs": 7, "layers_to_freeze": 8, # Train the last 4 layers. } ``` - **Base model**: `neuralmind/bert-base-portuguese-cased` - **Fine-tuning**: 3–5 epochs, batch size 16, AdamW optimizer - **Sequence length**: 512 - **Loss function**: Cross-entropy - **Evaluation metrics**: Accuracy, Precision, Recall, F1-score --- ## Evaluation Results Evaluation metrics are stored in the repo as: - `confusion_matrix.png` - `final_classification_report.parquet` - `final_predictions.parquet` These files provide per-class performance and prediction logs for reproducibility. --- ## Corpus The corpora used for training and evaluation are provided in the `corpus/` folder. - **Combined (root folder)**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **Fake.br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **FakeTrue.Br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet` and `FakeTrueBr_corpus.csv`. --- ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = "vzani/portuguese-fake-news-classifier-bertimbau-faketrue-br" # or fake.br / combined tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline("text-classification", model=model, tokenizer=tokenizer) def predict(text: str) -> tuple[bool, float]: result = clf(text)[0] true_false = True if result["label"] == "LABEL_1" else False # noqa: SIM210 return true_false, result["score"] if __name__ == "__main__": text = "BOMBA! A Dilma vai taxar ainda mais os pobres!" print(predict(text)) ``` The expected output is a Tuple where the first entry represents the classification (`True` for true news and `False` for fake news) and the second the probability assigned to the predicted class (ranging from 0 to 1.0). ``` (False, 0.9999247789382935) ``` ## License - Base model BERTimbau: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) - Fine-tuned models and corpora: Released under the same license for academic and research use. ## Citation Coming soon.
Dejiat/blockassist-bc-savage_unseen_bobcat_1756072177
Dejiat
2025-08-24T21:50:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:50:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vzani/portuguese-fake-news-classifier-bertimbau-fake-br
vzani
2025-08-24T21:49:37Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "bertimbau", "portuguese", "pt", "fake-news", "binary-classification", "dataset:vzani/corpus-fake-br", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T21:48:39Z
--- language: - pt license: apache-2.0 library_name: transformers pipeline_tag: text-classification base_model: neuralmind/bert-base-portuguese-cased tags: - bertimbau - portuguese - pt - fake-news - binary-classification metrics: - accuracy - precision - recall - f1-score datasets: vzani/corpus-fake-br model-index: - name: portuguese-fake-news-classifier-bertimbau-fake-br results: - task: type: text-classification dataset: name: Fake.br type: vzani/corpus-fake-br split: test metrics: - name: accuracy type: accuracy value: 0.991667 - name: precision_macro type: precision value: 0.991701 args: average: macro - name: recall_macro type: recall value: 0.991667 args: average: macro - name: f1_macro type: f1 value: 0.991667 args: average: macro - name: precision_weighted type: precision value: 0.991701 args: average: weighted - name: recall_weighted type: recall value: 0.991667 args: average: weighted - name: f1_weighted type: f1 value: 0.991667 args: average: weighted - name: n_test_samples type: num value: 1440 --- # BERTimbau for Fake News Detection (Portuguese) ## Model Overview This repository contains fine-tuned versions of **[BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased)** for the task of **fake news detection in Portuguese**. The models are trained and evaluated on corpora derived from Brazilian Portuguese dataset **[Fake.br](https://github.com/roneysco/Fake.br-Corpus)**. - **Architecture**: BERTimbau (base, cased) - **Task**: Binary text classification (Fake vs. True news) - **Language**: Portuguese (`pt`) - **Framework**: 🤗 Transformers --- ## Available Variants - **bertimbau-combined** Fine-tuned on the aligned corpus (`data/corpus_train_df.parquet`, etc.). - **bertimbau-fake-br** Fine-tuned on the **Fake.br** dataset. Corpus is available in [`corpus/`](./corpus) with preprocessed and size-normalized versions. - **bertimbau-faketrue-br** Fine-tuned on the **FakeTrue.Br** dataset. Includes both raw CSV and aligned corpus partitions. Each variant has its own confusion matrix, classification report, and predictions stored as artifacts. --- ## Training Details ```python { "learning_rate": 3.1260711108007855e-05, "batch_size": 16, "epochs": 7, "layers_to_freeze": 8, # Train the last 4 layers. } ``` - **Base model**: `neuralmind/bert-base-portuguese-cased` - **Fine-tuning**: 3–5 epochs, batch size 16, AdamW optimizer - **Sequence length**: 512 - **Loss function**: Cross-entropy - **Evaluation metrics**: Accuracy, Precision, Recall, F1-score --- ## Evaluation Results Evaluation metrics are stored in the repo as: - `confusion_matrix.png` - `final_classification_report.parquet` - `final_predictions.parquet` These files provide per-class performance and prediction logs for reproducibility. --- ## Corpus The corpora used for training and evaluation are provided in the `corpus/` folder. - **Combined (root folder)**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **Fake.br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **FakeTrue.Br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet` and `FakeTrueBr_corpus.csv`. --- ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = "vzani/portuguese-fake-news-classifier-bertimbau-fake-br" # or combined / faketrue-br tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline("text-classification", model=model, tokenizer=tokenizer) def predict(text: str) -> tuple[bool, float]: result = clf(text)[0] true_false = True if result["label"] == "LABEL_1" else False # noqa: SIM210 return true_false, result["score"] if __name__ == "__main__": text = "BOMBA! A Dilma vai taxar ainda mais os pobres!" print(predict(text)) ``` The expected output is a Tuple where the first entry represents the classification (`True` for true news and `False` for fake news) and the second the probability assigned to the predicted class (ranging from 0 to 1.0). ``` (False, 0.9999247789382935) ``` ## License - Base model BERTimbau: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) - Fine-tuned models and corpora: Released under the same license for academic and research use. ## Citation Coming soon.
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756071947
sarathkachiprath
2025-08-24T21:46:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:46:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756070414
chainway9
2025-08-24T21:46:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:46:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vzani/portuguese-fake-news-classifier-bertimbau-combined
vzani
2025-08-24T21:45:16Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "bertimbau", "portuguese", "pt", "fake-news", "binary-classification", "dataset:vzani/corpus-combined", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T18:35:21Z
--- language: - pt license: apache-2.0 library_name: transformers pipeline_tag: text-classification base_model: neuralmind/bert-base-portuguese-cased tags: - bertimbau - portuguese - pt - fake-news - binary-classification metrics: - accuracy - precision - recall - f1-score datasets: vzani/corpus-combined model-index: - name: portuguese-fake-news-classifier-bertimbau-combined results: - task: type: text-classification dataset: name: combined type: vzani/corpus-combined split: test metrics: - name: accuracy type: accuracy value: 0.992119 - name: precision_macro type: precision value: 0.992122 args: average: macro - name: recall_macro type: recall value: 0.992119 args: average: macro - name: f1_macro type: f1 value: 0.992119 args: average: macro - name: precision_weighted type: precision value: 0.992123 args: average: weighted - name: recall_weighted type: recall value: 0.992119 args: average: weighted - name: f1_weighted type: f1 value: 0.992119 args: average: weighted - name: n_test_samples type: num value: 2157 --- # BERTimbau for Fake News Detection (Portuguese) ## Model Overview This repository contains fine-tuned versions of **[BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased)** for the task of **fake news detection in Portuguese**. The models are trained and evaluated on corpora derived from Brazilian Portuguese dataset **[Fake.br](https://github.com/roneysco/Fake.br-Corpus)** combined with **[FakeTrue.Br](https://github.com/jpchav98/FakeTrue.Br/)**. - **Architecture**: BERTimbau (base, cased) - **Task**: Binary text classification (Fake vs. True news) - **Language**: Portuguese (`pt`) - **Framework**: 🤗 Transformers --- ## Available Variants - **bertimbau-combined** Fine-tuned on the aligned corpus (`data/corpus_train_df.parquet`, etc.). - **bertimbau-fake-br** Fine-tuned on the **Fake.br** dataset. Corpus is available in [`corpus/`](./corpus) with preprocessed and size-normalized versions. - **bertimbau-faketrue-br** Fine-tuned on the **FakeTrue.Br** dataset. Includes both raw CSV and aligned corpus partitions. Each variant has its own confusion matrix, classification report, and predictions stored as artifacts. --- ## Training Details ```python { "learning_rate": 3.1260711108007855e-05, "batch_size": 16, "epochs": 7, "layers_to_freeze": 8, # Train the last 4 layers. } ``` - **Base model**: `neuralmind/bert-base-portuguese-cased` - **Fine-tuning**: 3–5 epochs, batch size 16, AdamW optimizer - **Sequence length**: 512 - **Loss function**: Cross-entropy - **Evaluation metrics**: Accuracy, Precision, Recall, F1-score --- ## Evaluation Results Evaluation metrics are stored in the repo as: - `confusion_matrix.png` - `final_classification_report.parquet` - `final_predictions.parquet` These files provide per-class performance and prediction logs for reproducibility. --- ## Corpus The corpora used for training and evaluation are provided in the `corpus/` folder. - **Combined (root folder)**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **Fake.br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet`. - **FakeTrue.Br**: `corpus_train_df.parquet`, `corpus_test_df.parquet`, `corpus_df.parquet`, `corpus_alinhado_df.parquet` and `FakeTrueBr_corpus.csv`. --- ## How to Use ```python from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, pipeline, # type: ignore ) model_name = ( "vzani/portuguese-fake-news-classifier-bertimbau-combined" # or combined / faketrue-br ) tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline("text-classification", model=model, tokenizer=tokenizer) # type: ignore def predict(text: str) -> tuple[bool, float]: result = clf(text)[0] true_false = True if result["label"] == "LABEL_1" else False # noqa: SIM210 return true_false, result["score"] if __name__ == "__main__": text = "BOMBA! A Dilma vai taxar ainda mais os pobres!" print(predict(text)) ``` The expected output is a Tuple where the first entry represents the classification (`True` for true news and `False` for fake news) and the second the probability assigned to the predicted class (ranging from 0 to 1.0). ``` (False, 0.9999247789382935) ``` ## License - Base model BERTimbau: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) - Fine-tuned models and corpora: Released under the same license for academic and research use. ## Citation Coming soon.
zenqqq/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_darting_goat
zenqqq
2025-08-24T21:44:07Z
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am slithering_darting_goat", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T20:35:02Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am slithering_darting_goat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GaborMadarasz/AstroQA_mamba_epoch1_V7
GaborMadarasz
2025-08-24T21:40:46Z
0
0
transformers
[ "transformers", "safetensors", "mamba", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T21:40:25Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mostefa-Terbeche/diabetic-retinopathy-combined-resnet50-original-20250621-205710
Mostefa-Terbeche
2025-08-24T21:40:40Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:combined", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-24T20:52:52Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - combined metrics: - accuracy - quadratic-kappa - auc model-index: - name: combined_resnet50_original results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: combined name: COMBINED metrics: - type: accuracy value: 0.6957061745919092 - type: quadratic-kappa value: 0.7962032525001572 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the combined dataset with original preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: combined - **Preprocessing**: original - **Training Date**: 20250621-205710 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: combined_resnet50_20250621-205710_new ## Performance - **Test Accuracy**: 0.6957061745919092 - **Test Quadratic Kappa**: 0.7962032525001572 - **Validation Kappa**: 0.7962032525001572 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-combined-resnet50-original", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
Darkhn/L3.3-Animus-V10.0-exl2
Darkhn
2025-08-24T21:39:48Z
2
0
null
[ "safetensors", "llama-3.3", "finetune", "roleplay", "chat", "wings-of-fire", "nsfw", "NFAA", "base_model:Darkhn/L3.3-70B-Animus-Base", "base_model:finetune:Darkhn/L3.3-70B-Animus-Base", "license:llama3.3", "region:us" ]
null
2025-08-23T19:01:02Z
--- license: llama3.3 base_model: Darkhn/L3.3-70B-Animus-Base tags: - llama-3.3 - finetune - roleplay - chat - wings-of-fire - nsfw - NFAA --- <style> body { font-family: 'Quicksand', sans-serif; /* Replaced purple gradient with a warm, fiery one */ background: linear-gradient(135deg, #4a1e00 0%, #1c0a00 100%); /* Changed text color to a warmer, parchment-like off-white */ color: #F5EFE6; margin: 0; padding: 0; font-size: 16px; } h1, h2, h3, h4, summary { font-family: 'Cinzel', serif; } .container { margin: 20px auto; max-width: 900px; /* Darker, warmer container background */ background-color: rgba(28, 22, 18, 0.95); padding: 30px; border-radius: 12px; /* Swapped purple glow for a fiery orange one */ box-shadow: 0 4px 20px rgba(255, 140, 0, 0.15); border: 1px solid rgba(255, 140, 0, 0.2); outline: 1px solid rgba(255, 140, 0, 0.5); outline-offset: -1px; position: relative; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; /* Border color changed to orange */ border: 1px solid rgba(255, 165, 0, 0.98); border-radius: 12px; pointer-events: none; animation: borderGlow 2.5s ease-in-out infinite; } @keyframes borderGlow { 0% { /* Glow effect is now a flickering orange */ box-shadow: 0 0 5px rgba(255, 165, 0, 0.98); } 50% { box-shadow: 0 0 12px rgba(255, 165, 0, 0.98); /* Made glow slightly more subtle */ } 100% { box-shadow: 0 0 5px rgba(255, 165, 0, 0.98); } } .header h1 { font-size: 32px; /* Main heading color is now a bold orange */ color: #FFA500; margin: 0 0 20px 0; text-align: center; /* Text shadow is a deep orange */ text-shadow: 0 0 12px rgba(255, 100, 0, 0.6); } .info img { width: 100%; max-width: 700px; display: block; margin: 0 auto 25px auto; border-radius: 10px; /* Image shadow is orange */ box-shadow: 0 0 20px rgba(255, 140, 0, 0.25); border: 1px solid rgba(255, 140, 0, 0.2); outline: 1px solid rgba(255, 140, 0, 0.5); outline-offset: -1px; } a { /* Link color is now gold */ color: #FFD700; text-decoration: none; transition: color 0.3s ease; } a:hover { /* Link hover color is a light, warm peach */ color: #FFDAB9; } .button { display: inline-block; /* Button color is a rich, burnt orange */ background-color: #E55B00; color: #FFFFFF; padding: 12px 24px; border-radius: 5px; cursor: pointer; text-decoration: none; font-family: 'Cinzel', serif; font-weight: 600; transition: all 0.3s ease; border: 1px solid transparent; } .button:hover { /* Button hover is a brighter orange */ background-color: #FF8C00; box-shadow: 0 0 15px rgba(255, 140, 0, 0.5); transform: translateY(-2px); } pre { /* Code block background is a warm, dark brown */ background-color: rgba(45, 35, 25, 0.95); padding: 15px; border-radius: 5px; overflow-x: auto; /* Border is orange */ border: 1px solid rgba(255, 140, 0, 0.2); outline: 1px solid rgba(255, 140, 0, 0.5); outline-offset: -1px; } code { font-family: 'Courier New', monospace; /* Code text uses the new base text color */ color: #F5EFE6; } /* Section Container */ .section-container { margin: 40px 0; } h2 { font-size: 26px; /* Section headers are orange */ color: #FFA500; text-shadow: 0 0 10px rgba(255, 140, 0, 0.5); border-bottom: 1px solid rgba(255, 140, 0, 0.2); padding-bottom: 10px; margin-bottom: 20px; } .info-card { /* Card background is a warm dark brown */ background: rgba(45, 35, 25, 0.95); border: 1px solid rgba(255, 140, 0, 0.2); border-radius: 8px; overflow: hidden; margin-bottom: 25px; } .info-header { /* Header background has an orange tint */ background: rgba(255, 140, 0, 0.1); padding: 20px; border-bottom: 1px solid rgba(255, 140, 0, 0.2); } .info-header h3 { /* Card titles are orange */ color: #FFA500; margin: 0 0 10px 0; font-size: 22px; text-shadow: 0 0 5px rgba(255, 140, 0, 0.3); } .model-tags { display: flex; gap: 8px; flex-wrap: wrap; } .model-tag { /* Tags are now gold-themed */ background: rgba(218, 165, 32, 0.15); color: #FFD700; padding: 4px 8px; border-radius: 4px; font-size: 12px; border: 1px solid rgba(218, 165, 32, 0.3); font-family: 'Quicksand', sans-serif; } .card-content { padding: 20px; line-height: 1.7; } .card-content p, .card-content li { margin-bottom: 1em; } .card-content p:last-child, .card-content li:last-child { margin-bottom: 0; } .card-content ul { list-style: none; padding-left: 20px; } .card-content li::before { content: '✦'; /* Bullet points are gold */ color: #FFD700; font-weight: bold; display: inline-block; width: 1em; margin-left: -1.2em; font-size: 1.2em; line-height: 1; } .card-content strong { /* Strong text is gold */ color: #FFD700; font-weight: 600; } /* Configuration */ .config-container { background: rgba(45, 35, 25, 0.95); border: 1px solid rgba(255, 140, 0, 0.2); border-radius: 8px; overflow: hidden; } .config-header { background: rgba(255, 140, 0, 0.1); padding: 15px 20px; border-bottom: 1px solid rgba(255, 140, 0, 0.2); } .config-header h3 { margin: 0; color: #FFA500; font-size: 22px; } .config-content { padding: 20px; display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; } .config-item { display: flex; flex-direction: column; gap: 5px; } .config-label { /* Config labels are gold */ color: #FFD700; font-size: 14px; font-weight: 500; font-family: 'Quicksand', sans-serif; } .config-value { /* Config values use the new base text color */ color: #F5EFE6; font-family: 'Courier New', monospace; font-size: 18px; font-weight: bold; } /* Link arrow animation */ .link-arrow { display: inline-block; transition: transform 0.3s ease; } a:hover .link-arrow { transform: translateX(3px); } .support-section { text-align: center; margin-top: 40px; background: rgba(45, 35, 25, 0.95); border: 1px solid rgba(255, 140, 0, 0.2); border-radius: 8px; padding: 20px; } .support-section p { margin-bottom: 15px; font-size: 1.1em; margin-top: 0; } /* --- ADDED STYLES FOR COLLAPSIBLE SECTIONS --- */ summary { cursor: pointer; list-style: none; /* Remove default arrow */ outline: none; display: flex; align-items: flex-start; /* Align items to the top to respect h2's vertical space */ } summary::-webkit-details-marker { display: none; /* Remove default arrow in Chrome/Safari */ } summary::before { content: '▶'; font-size: 1.2em; color: #FFA500; /* Match h2 color */ margin-right: 15px; padding-top: 5px; /* Adjust vertical alignment with h2 text */ transition: transform 0.2s ease; flex-shrink: 0; /* Prevent the arrow from shrinking */ } details[open] > summary::before { transform: rotate(90deg); } summary > h2 { flex-grow: 1; /* Makes h2 take up remaining space, so its bottom border spans the width */ } /* The existing margin-bottom on the h2 creates space between the summary and the content when open */ </style> <div class="container"> <link href="https://fonts.googleapis.com/css2?family=Cinzel:wght@400;500;600&family=Quicksand:wght@400;500&display=swap" rel="stylesheet"> <div class="header"> <h1>L3.3-70B-Animus-V10.0-EXL2</h1> </div> <div class="info"> <img src="R7XT9Q6V3K501CMCX4F42BEKC0.jpeg" alt="Wings_of_Fire" width="700"> <div class="support-section"> <p><strong>Send me your support to help me feed the data beast! also taking comissions for universe specific models</strong></p> <a href="https://ko-fi.com/som1tokmynam" target="_blank" class="button"> Support on Ko-fi </a> </div> <div class="section-container"> <details> <summary><h2>Quantized Models</h2></summary> <div class="info-card"> <div class="card-content"> <p>The quantized model files are available for download. Click the buttons below to view the files.</p> <a href="https://huggingface.co/Darkhn/L3.3-70B-Animus-V10.0-GGUF/tree/main" target="_blank" class="button"> Download GGUF Files <span class="link-arrow">→</span> </a> <a href="https://huggingface.co/Darkhn/L3.3-Animus-V10.0-exl2" target="_blank" class="button"> Download EXL2 Files <span class="link-arrow">→</span> </a> <a href="https://huggingface.co/ReadyArt/Darkhn_L3.3-Animus-V10.0-EXL3" target="_blank" class="button"> Download EXL3 Files <span class="link-arrow">→</span> </a> </div> </div> </details> </div> <div class="section-container"> <details> <summary><h2>Character Card & Lore Book</h2></summary> <div class="info-card"> <div class="card-content"> <p>For the best roleplaying experience, it is highly recommended to use the provided character card and lore book. These files help guide the model's persona and provide rich, in-universe context.</p> <a href="https://huggingface.co/Darkhn/Sampler_settings_and_system_prompt/tree/main/character_card" target="_blank" class="button"> Download Files <span class="link-arrow">→</span> </a> </div> </div> </details> </div> <div class="section-container"> <details> <summary><h2>SillyTavern Sampler Presets</h2></summary> <div class="info-card"> <div class="card-content"> <p>For a seamless setup in SillyTavern, you can download pre-configured sampler presets. These are tuned to provide an optimal balance between creativity and narrative coherence for this model.</p> <p>Simply download the <code>.json</code> file below and import it into SillyTavern's sampler presets menu.</p> <a href="https://huggingface.co/Darkhn/Sampler_settings_and_system_prompt/tree/main" target="_blank" class="button"> Download SillyTavern Presets <span class="link-arrow">→</span> </a> </div> </div> </details> </div> <div class="section-container"> <details open> <summary><h2>Model Description</h2></summary> <div class="info-card"> <div class="card-content"> <p>This is <strong>Version 10.0</strong>, a new pinnacle in the Animus series. Rather than a simple incremental update, V10.0 is a <strong>synergistic merge</strong> of several previous versions, designed to combine the best traits of each into a single, highly capable model.</p> <p>The result is a surprisingly robust creative partner that reviewers have called the best version yet. It was created by merging the following models:</p> <ul> <li><strong>L3.3-70B-Animus-Base:</strong> The foundational model, providing core intelligence and a broad understanding of the <em>Wings of Fire</em> universe.</li> <li><strong>Version 6.1 & 7.0:</strong> Widely regarded as the best previous versions for lore accuracy and authentic character portrayals.</li> <li><strong>Version C & D:</strong> Two experimental fine-tunes that successfully introduced higher stakes and consequences, including the possibility of user character death, which was missing from V7.0.</li> </ul> <p>By blending these components, V10.0 achieves the narrative depth of V7.0 while incorporating the dramatic potential of the C/D series. A surprising outcome is that <strong>this specialized blend has made the model exceptionally capable at general, non-WOF roleplay</strong>, making it the most versatile Animus model to date.</p> </div> </div> </details> </div> <div class="section-container"> <details open> <summary><h2>Training Details</h2></summary> <div class="info-card"> <div class="info-header"> <h3>A Merged Model: The V10.0 Lineage</h3> </div> <div class="card-content"> <p>V10.0 was created through a model merging process rather than a traditional fine-tune. This approach was taken because different training runs produced models with unique, desirable strengths that were difficult to replicate in a single training session.</p> <p>The lineage is as follows:</p> <ol> <li>The <code>Darkhn/L3.3-70B-Animus-Base</code> model was created by first training on general completion data on a first stage, then for stage 2, fine-tuning on <em>Wings of Fire</em> roleplay data, Which gave</li> <li><strong>C and D</strong> to specifically add these missing elements, but felt like they were "missing a little spark" on their own.</li> <li><strong>V7.0</strong> became the benchmark for quality, but lacked certain narrative possibilities (like user character death).</li> <li><strong>V10.0</strong> is the final product, a stock merge of V6.1, V7.0, C, and D, balancing the strengths of all contributors.</li> </ol> </div> </div> <div class="info-card"> <div class="info-header"> <h3>Feature Update: Removal of DM Choices</h3> </div> <div class="card-content"> <p>A key feature in previous test versions—the presentation of multiple-choice actions (e.g., A, B, C) to guide the user—has been <strong>removed from V10.0</strong>.</p> <p>While a promising concept, this feature needs further refinement to ensure it enhances, rather than restricts, the roleplaying experience. It may be reintroduced in a more polished form in a future release. For now, the model returns to a more traditional, open-ended prose format.</p> </div> </div> <div class="info-card"> <div class="info-header"> <h3>Training Data (for Component Models)</h3> </div> <div class="card-content"> <p>The component models (V7.0, C, D) were fine-tuned on a high-quality dataset of <strong>3,200 examples</strong> with several key characteristics:</p> <ul> <li><strong>Canon-Centric Scenarios:</strong> All roleplay scenarios are based on pivotal events from the <em>Wings of Fire</em> book series, exploring "what-if" outcomes. (e.g., <em>What if Darkstalker didn't kill Arctic at that moment?</em>).</li> <li><strong>Canon-Only Characters:</strong> The models were trained exclusively on canon characters from the books. AI-generated characters were removed from the training data (except for the user's persona).</li> <li><strong>Improved Data Cleaning:</strong> The dataset underwent a rigorous cleaning process to remove formatting artifacts from previous versions, such as <code>**scene transitions**</code>, resulting in a cleaner and more natural narrative style.</li> <li><strong>Refined Turn Structure:</strong> Addressed an issue where consecutive AI turns appeared in the dataset, leading to a healthier learning curve and more natural conversational flow.</li> </ul> </div> </div> </details> </div> <div class="section-container"> <details> <summary><h2>Intended Use & Limitations</h2></summary> <div class="info-card"> <div class="card-content"> <ul> <li><strong>Intended Use:</strong> The primary purpose of this model is for creative and roleplaying within the <em>Wings of Fire</em> universe. However, user feedback indicates it is also highly effective for general-purpose roleplaying.</li> <li><strong>Limitations & Quirks:</strong> <ul> <li>Performance on tasks outside of its training domain (general knowledge, coding, etc.) is not guaranteed and will likely be poor.</li> <li><strong>Versatility:</strong> While it appears to be only a <em>Wings of Fire</em> tuned model, users have reported it is very capable of performing normal roleplay with other settings and characters.</li> <li>The model may "hallucinate" or generate plausible but non-canonical information, especially when pushed outside the established "what-if" scenarios.</li> <li><strong>Content:</strong> The training data includes mature and darker themes from the <em>Wings of Fire</em> series, such as conflict, character death, and moral ambiguity. The model is capable of generating content reflecting these themes. As always, it is up to the user what they do with it.</li> <li><strong>Formatting:</strong> Training data was cleaned to remove narrative artifacts like <code>**scene transitions**</code>. The model should now produce cleaner prose.</li> <li><strong>Safety:</strong> This model has not undergone additional safety alignment beyond what was included in its base Llama 3.3 model. Standard responsible AI practices should be followed.</li> </ul> </li> </ul> </div> </div> </details> </div> <div class="section-container"> <details> <summary><h2>Acknowledgements</h2></summary> <div class="info-card"> <div class="card-content"> <ul> <li>Credit to Meta for the powerful Llama 3.3 architecture.</li> <li>Credit to Google for the Gemini Pro model, used in dataset generation.</li> <li>Credit to Evan Armstrong for <a href="https://github.com/e-p-armstrong/augmentoolkit" target="_blank">Augmentoolkit</a>, an invaluable tool for dataset creation.</li> </ul> </div> </div> </details> </div> </div> </div>
theeseus-ai/deepseek-r1-distill-qwen-1.5-unsloth-hive-elderleaf_q4_k_m
theeseus-ai
2025-08-24T21:37:48Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit", "base_model:quantized:unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-24T21:37:12Z
--- base_model: unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** theeseus-ai - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kavpro/blockassist-bc-tall_lively_caribou_1756071283
kavpro
2025-08-24T21:35:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall lively caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:35:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall lively caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756071281
Dejiat
2025-08-24T21:35:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:35:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1756071110
canoplos112
2025-08-24T21:33:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:32:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756070903
sarathkachiprath
2025-08-24T21:29:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:28:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-noisy_elusive_grouse_1756070924
AnerYubo
2025-08-24T21:28:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy elusive grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:28:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy elusive grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-armored_climbing_rooster_1756070912
AnerYubo
2025-08-24T21:28:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored climbing rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:28:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored climbing rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756070766
kapalbalap
2025-08-24T21:27:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:26:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-omnivorous_strong_tuna_1756069214
motza0025
2025-08-24T21:26:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous strong tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:26:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous strong tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756070698
ggozzy
2025-08-24T21:26:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:26:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756070692
liukevin666
2025-08-24T21:26:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:25:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756070740
eusuf01
2025-08-24T21:26:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bavertpos/blockassist-bc-sedate_yapping_crow_1756070720
bavertpos
2025-08-24T21:26:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate yapping crow", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:25:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate yapping crow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756070596
sarathkachiprath
2025-08-24T21:24:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:23:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756070583
Dejiat
2025-08-24T21:23:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:23:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756070542
eusuf01
2025-08-24T21:22:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:22:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1756070335
mohda
2025-08-24T21:20:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:19:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1756068771
unitova
2025-08-24T21:20:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:20:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1756070287
zenqqq
2025-08-24T21:19:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:19:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gabiland/GabIA2025
Gabiland
2025-08-24T21:16:18Z
0
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2025-08-24T21:07:44Z
--- license: apache-2.0 ---
kapalbalap/blockassist-bc-peaceful_wary_owl_1756069729
kapalbalap
2025-08-24T21:09:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:09:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibrainf/second_tts_try
ibrainf
2025-08-24T21:08:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:ibrainf/first_tts_try", "base_model:finetune:ibrainf/first_tts_try", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T21:07:12Z
--- base_model: ibrainf/first_tts_try tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ibrainf - **License:** apache-2.0 - **Finetuned from model :** ibrainf/first_tts_try This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kapalbalap/blockassist-bc-peaceful_wary_owl_1756069576
kapalbalap
2025-08-24T21:06:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756069438
eusuf01
2025-08-24T21:04:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:04:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756069364
liukevin666
2025-08-24T21:03:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:03:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gabiland/GabIA
Gabiland
2025-08-24T21:03:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-24T21:03:26Z
--- license: apache-2.0 ---
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756067871
maxibillion1975
2025-08-24T21:03:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:02:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756067704
kojeklollipop
2025-08-24T21:02:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T21:02:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-slithering_stalking_otter_1756067786
motza0025
2025-08-24T20:55:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering stalking otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:55:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering stalking otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756068770
kapalbalap
2025-08-24T20:53:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:53:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756068703
liukevin666
2025-08-24T20:53:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:52:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Fentible/Cthulhu-24B-v1.3-GGUF
Fentible
2025-08-24T20:51:49Z
42
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "text-generation", "en", "base_model:Darkhn/M3.2-24B-Animus-V7.1", "base_model:merge:Darkhn/M3.2-24B-Animus-V7.1", "base_model:Delta-Vector/Austral-24B-Winton", "base_model:merge:Delta-Vector/Austral-24B-Winton", "base_model:Delta-Vector/MS3.2-Austral-Winton", "base_model:merge:Delta-Vector/MS3.2-Austral-Winton", "base_model:Doctor-Shotgun/MS3.2-24B-Magnum-Diamond", "base_model:merge:Doctor-Shotgun/MS3.2-24B-Magnum-Diamond", "base_model:PocketDoc/Dans-PersonalityEngine-V1.3.0-24b", "base_model:merge:PocketDoc/Dans-PersonalityEngine-V1.3.0-24b", "base_model:ReadyArt/MS3.2-The-Omega-Directive-24B-Unslop-v2.1", "base_model:merge:ReadyArt/MS3.2-The-Omega-Directive-24B-Unslop-v2.1", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:merge:SicariusSicariiStuff/Impish_Magic_24B", "base_model:TheDrummer/Cydonia-24B-v4.1", "base_model:merge:TheDrummer/Cydonia-24B-v4.1", "base_model:aixonlab/Eurydice-24b-v3.5", "base_model:merge:aixonlab/Eurydice-24b-v3.5", "base_model:allura-forge/ms32-final-TEXTONLY", "base_model:merge:allura-forge/ms32-final-TEXTONLY", "base_model:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only", "base_model:merge:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only", "base_model:trashpanda-org/MS3.2-24B-Mullein-v2", "base_model:merge:trashpanda-org/MS3.2-24B-Mullein-v2", "base_model:zerofata/MS3.2-PaintedFantasy-v2-24B", "base_model:merge:zerofata/MS3.2-PaintedFantasy-v2-24B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-08-22T08:41:19Z
--- base_model: - anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only - aixonlab/Eurydice-24b-v3.5 - allura-forge/ms32-final-TEXTONLY - Darkhn/M3.2-24B-Animus-V7.1 - Delta-Vector/Austral-24B-Winton - Delta-Vector/MS3.2-Austral-Winton - Doctor-Shotgun/MS3.2-24B-Magnum-Diamond - PocketDoc/Dans-PersonalityEngine-V1.3.0-24b - ReadyArt/MS3.2-The-Omega-Directive-24B-Unslop-v2.1 - SicariusSicariiStuff/Impish_Magic_24B - TheDrummer/Cydonia-24B-v4.1 - trashpanda-org/MS3.2-24B-Mullein-v2 - zerofata/MS3.2-PaintedFantasy-v2-24B emoji: 🐙 language: - en library_name: transformers license: apache-2.0 tags: - mergekit - merge pipeline_tag: text-generation --- # 🐙 Cthulhu 24B 1.3 GGUF > Prepare to delve into the depths of language model fusion with Cthulhu, a monumental model merge based on Mistral Small v3.2 (2506) and Mistral Small v3.1 (2503). This ambitious project aims to synthesize the collective intelligence of the latest cutting-edge finetunes of Mistral Small, creating a "supermerge" that transcends the capabilities of any single iteration. Experimental update to Cthulhu series. I did not compare 1.3 to previous versions yet, but it aims to be more RP-oriented. ``` base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only merge_method: dare_ties architecture: MistralForCausalLM dtype: bfloat16 models: - model: aixonlab/Eurydice-24b-v3.5 parameters: density: 0.4 weight: 0.05 - model: allura-forge/ms32-final-TEXTONLY parameters: density: 0.5 weight: 0.1 - model: Darkhn/M3.2-24B-Animus-V7.1 parameters: density: 0.5 weight: 0.1 - model: Delta-Vector/Austral-24B-Winton parameters: density: 0.4 weight: 0.05 - model: Delta-Vector/MS3.2-Austral-Winton parameters: density: 0.5 weight: 0.1 - model: Doctor-Shotgun/MS3.2-24B-Magnum-Diamond parameters: density: 0.5 weight: 0.1 - model: PocketDoc/Dans-PersonalityEngine-V1.3.0-24b parameters: density: 0.4 weight: 0.05 - model: ReadyArt/MS3.2-The-Omega-Directive-24B-Unslop-v2.1 parameters: density: 0.5 weight: 0.1 - model: SicariusSicariiStuff/Impish_Magic_24B parameters: density: 0.5 weight: 0.1 - model: TheDrummer/Cydonia-24B-v4.1 parameters: density: 0.5 weight: 0.1 - model: trashpanda-org/MS3.2-24B-Mullein-v2 parameters: density: 0.4 weight: 0.05 - model: zerofata/MS3.2-PaintedFantasy-v2-24B parameters: density: 0.5 weight: 0.1 tokenizer: source: union chat_template: auto ``` ![image/png](https://i.imgur.com/JKDMXB6.jpeg)
mohda/blockassist-bc-regal_fierce_hummingbird_1756068302
mohda
2025-08-24T20:46:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:46:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anarasgarli/blockassist-bc-fast_howling_cockroach_1756068255
anarasgarli
2025-08-24T20:44:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast howling cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:44:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast howling cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen2_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-08-24T20:40:02Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-24T20:39:48Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zavodman332/blockassist-bc-sharp_aquatic_hare_1756067825
zavodman332
2025-08-24T20:37:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sharp aquatic hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:37:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sharp aquatic hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koyomi1/smolvla
koyomi1
2025-08-24T20:37:37Z
10
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:habitat_lab/track_val_wheel", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-05T21:45:45Z
--- base_model: lerobot/smolvla_base datasets: habitat_lab/track_val_wheel library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - smolvla - lerobot - robotics --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
eusuf01/blockassist-bc-smooth_humming_butterfly_1756067762
eusuf01
2025-08-24T20:36:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:36:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).