modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
anarasgarli/blockassist-bc-fast_howling_cockroach_1756067699
anarasgarli
2025-08-24T20:35:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast howling cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:35:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast howling cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kimweb3/blockassist-bc-camouflaged_sedate_pheasant_1756067701
kimweb3
2025-08-24T20:35:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged sedate pheasant", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:35:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged sedate pheasant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sdfsdgsgdf/blockassist-bc-barky_snorting_dingo_1756067155
sdfsdgsgdf
2025-08-24T20:35:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky snorting dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:35:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky snorting dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756067400
kapalbalap
2025-08-24T20:30:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:30:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kavpro/blockassist-bc-tall_lively_caribou_1756067360
kavpro
2025-08-24T20:30:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall lively caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:30:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall lively caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kimweb3/blockassist-bc-camouflaged_sedate_pheasant_1756067395
kimweb3
2025-08-24T20:30:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged sedate pheasant", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:30:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged sedate pheasant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1756067206
0xaoyama
2025-08-24T20:27:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:27:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756065372
sampingkaca72
2025-08-24T20:25:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:25:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adity12345/Roberta_coaid
adity12345
2025-08-24T20:23:49Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:adity12345/Roberta_covert", "base_model:finetune:adity12345/Roberta_covert", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T20:23:39Z
--- library_name: transformers license: mit base_model: adity12345/Roberta_covert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Roberta_coaid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta_coaid This model is a fine-tuned version of [adity12345/Roberta_covert](https://huggingface.co/adity12345/Roberta_covert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2850 - Accuracy: 0.897 - Auc: 0.862 - Precision: 0.905 - Recall: 0.984 - F1: 0.943 - F1-macro: 0.721 - F1-micro: 0.897 - F1-weighted: 0.881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | Precision | Recall | F1 | F1-macro | F1-micro | F1-weighted | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----:|:---------:|:------:|:-----:|:--------:|:--------:|:-----------:| | 1.1024 | 1.0638 | 50 | 0.2850 | 0.897 | 0.862 | 0.905 | 0.984 | 0.943 | 0.721 | 0.897 | 0.881 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1756066265
IvanJAjebu
2025-08-24T20:12:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:12:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1756065997
0xaoyama
2025-08-24T20:07:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:07:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
asteroid999/blockassist-bc-furry_smooth_caterpillar_1756065649
asteroid999
2025-08-24T20:01:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry smooth caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T20:01:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry smooth caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
marcuscedricridia/arc-Q4_K_M-GGUF
marcuscedricridia
2025-08-24T20:01:14Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "llama-cpp", "gguf-my-repo", "en", "base_model:NewstaR/arc", "base_model:quantized:NewstaR/arc", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-24T20:01:08Z
--- base_model: NewstaR/arc tags: - text-generation-inference - transformers - unsloth - qwen3 - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # marcuscedricridia/arc-Q4_K_M-GGUF This model was converted to GGUF format from [`NewstaR/arc`](https://huggingface.co/NewstaR/arc) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NewstaR/arc) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo marcuscedricridia/arc-Q4_K_M-GGUF --hf-file arc-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo marcuscedricridia/arc-Q4_K_M-GGUF --hf-file arc-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo marcuscedricridia/arc-Q4_K_M-GGUF --hf-file arc-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo marcuscedricridia/arc-Q4_K_M-GGUF --hf-file arc-q4_k_m.gguf -c 2048 ```
VIDEOS-afrin-viral-video-Orginal-link-xk/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
VIDEOS-afrin-viral-video-Orginal-link-xk
2025-08-24T19:58:30Z
0
0
null
[ "region:us" ]
null
2025-08-24T19:56:08Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
kapalbalap/blockassist-bc-peaceful_wary_owl_1756065446
kapalbalap
2025-08-24T19:58:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:58:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756065454
Vasya777
2025-08-24T19:58:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:58:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/sign-language-20250823-190451-GGUF
mradermacher
2025-08-24T19:53:35Z
0
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "en", "dataset:devparagiri/dataset-sign-language-20250823-190451", "base_model:devparagiri/sign-language-20250823-190451", "base_model:quantized:devparagiri/sign-language-20250823-190451", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-24T18:55:46Z
--- base_model: devparagiri/sign-language-20250823-190451 datasets: - devparagiri/dataset-sign-language-20250823-190451 language: - en library_name: transformers license: other mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation - peft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/devparagiri/sign-language-20250823-190451 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#sign-language-20250823-190451-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q3_K_M.gguf) | Q3_K_M | 2.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q3_K_L.gguf) | Q3_K_L | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q4_K_M.gguf) | Q4_K_M | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q5_K_S.gguf) | Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q6_K.gguf) | Q6_K | 3.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/sign-language-20250823-190451-GGUF/resolve/main/sign-language-20250823-190451.f16.gguf) | f16 | 7.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kapalbalap/blockassist-bc-peaceful_wary_owl_1756065116
kapalbalap
2025-08-24T19:52:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:52:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756064958
ggozzy
2025-08-24T19:50:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:50:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1756063170
katanyasekolah
2025-08-24T19:49:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:48:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1756064378
mohda
2025-08-24T19:40:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:40:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756062664
coelacanthxyz
2025-08-24T19:38:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:38:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adity12345/Roberta_covidFact
adity12345
2025-08-24T19:36:38Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-24T19:36:21Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Roberta_covidFact results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta_covidFact This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6179 - Accuracy: 0.694 - Auc: 0.498 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - F1-macro: 0.41 - F1-micro: 0.694 - F1-weighted: 0.569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | Precision | Recall | F1 | F1-macro | F1-micro | F1-weighted | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----:|:---------:|:------:|:---:|:--------:|:--------:|:-----------:| | 0.6882 | 0.5587 | 50 | 0.6186 | 0.694 | 0.504 | 0.0 | 0.0 | 0.0 | 0.41 | 0.694 | 0.569 | | 0.633 | 1.1117 | 100 | 0.6167 | 0.694 | 0.524 | 0.0 | 0.0 | 0.0 | 0.41 | 0.694 | 0.569 | | 0.6282 | 1.6704 | 150 | 0.6179 | 0.694 | 0.498 | 0.0 | 0.0 | 0.0 | 0.41 | 0.694 | 0.569 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
koloni/blockassist-bc-deadly_graceful_stingray_1756062601
koloni
2025-08-24T19:35:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:35:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756063684
Vasya777
2025-08-24T19:32:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:28:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756063763
ggozzy
2025-08-24T19:30:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:30:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756063747
kapalbalap
2025-08-24T19:30:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:29:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756061935
maxibillion1975
2025-08-24T19:23:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:23:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756063045
ggozzy
2025-08-24T19:18:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:18:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756063014
kapalbalap
2025-08-24T19:17:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:17:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1756062906
zenqqq
2025-08-24T19:16:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:16:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Delnith/Sugoi-14B-Ultra-HF-gptqmodel-8bit
Delnith
2025-08-24T19:14:54Z
0
1
null
[ "safetensors", "qwen2", "text-generation", "conversational", "en", "ja", "dataset:lmg-anon/VNTL-v3.1-1k", "base_model:sugoitoolkit/Sugoi-14B-Ultra-HF", "base_model:quantized:sugoitoolkit/Sugoi-14B-Ultra-HF", "license:apache-2.0", "8-bit", "gptq", "region:us" ]
text-generation
2025-08-24T19:06:49Z
--- license: apache-2.0 datasets: - lmg-anon/VNTL-v3.1-1k language: - en - ja base_model: - sugoitoolkit/Sugoi-14B-Ultra-HF pipeline_tag: text-generation --- # Sugoi LLM 14B Ultra (HF version) This is an 8-bit version of Sugoi 14B Ultra, quantized using GPTQmodel and the VNTL-v3.1-1k dataset. This quant should work better than GGUF for certain backends like vLLM and aphrodite-engine, which excel at asynchronous prompting. Unleashing the full potential of the previous sugoi 14B model, **Sugoi 14B Ultra** delivers near-double translation accuracy compared to its quantized predecessor—achieving a BLEU score of **21.38 vs 13.67**. Its prompt-following skills rival those of Qwen 2.5 Base, especially when handling the bracket-heavy text commonly found in RPG Maker projects. --- ## Model Overview - **Key Improvements** * Nearly 2× BLEU score boost over previous quantized version (21.38 vs 13.67). * Stronger prompt adherence, especially with RPGM-style bracketed text. - **Ideal Use Cases** * Japanese → English translation—especially for game dialogue or RPG text. * Interactive environments—works well with chat UIs like LM Studio. --- ## System Prompt & Settings Must include a system prompt for best performance: > You are a professional localizer whose primary goal is to translate Japanese to English. You should use colloquial or slang or nsfw vocabulary if it makes the translation more accurate. Always respond in English. Additional recommendations: - Context length: ~10 lines (too much may degrade quality). - In LM Studio, you can interactively ask grammar or context questions, or switch target language via the prompt (quality may vary). --- ## Experimental Features These features are experimental and may need tuning: 1. **Tool Integration & JSON Output** 2. **RPGM Tag Preservation** --- ## Recommended Sampling Parameters | Parameter | Value | |-----------------|--------| | Temperature | 0.1 | | Top-K | 40 | | Top-P | 0.95 | | Min-P | 0.05 | | Repeat Penalty | 1.1 | --- ## Evaluation & Comparison - **Quantitative**: BLEU score doubled vs prior version (21.38 vs 13.67). - **Qualitative**: Effective with prompt complexity and RPG Maker markup—delivers clean and accurate translations. --- ## Limitations & Usage Notes - Overly long context may **“poison”** the output—keep it around 10 lines for best results. - Experimental features like JSON formatting and tag preservation may not always work perfectly—review outputs carefully. - Performance may vary depending on the prompt complexity and UI/tool environment. - Only uncensored for translation task with translation system prompt, other use case such as roleplay,chat may still trigger qwen censoring. --- ## Getting the Model Available via Files and Versions tab above.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756062806
ggozzy
2025-08-24T19:14:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:14:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756062516
Vasya777
2025-08-24T19:14:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:09:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tokenizers-chat-templates-only/Mistral-Nemo-Instruct-2407
tokenizers-chat-templates-only
2025-08-24T19:12:27Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-24T19:12:05Z
--- license: apache-2.0 ---
kapalbalap/blockassist-bc-peaceful_wary_owl_1756062677
kapalbalap
2025-08-24T19:12:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:12:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Khaljr/blockassist-bc-bellowing_squinting_finch_1756062688
Khaljr
2025-08-24T19:11:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing squinting finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:11:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing squinting finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/Kimi-VL-A3B-Thinking-2506-q6-hi-mlx
nightmedia
2025-08-24T19:09:20Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "6-bit", "region:us" ]
text-generation
2025-08-24T14:02:41Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # Kimi-VL-A3B-Thinking-2506-q6-hi-mlx This model [Kimi-VL-A3B-Thinking-2506-q6-hi-mlx](https://huggingface.co/Kimi-VL-A3B-Thinking-2506-q6-hi-mlx) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Kimi-VL-A3B-Thinking-2506-q6-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
asdfsdfsdf545/blockassist-bc-restless_poisonous_orangutan_1756061580
asdfsdfsdf545
2025-08-24T19:04:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless poisonous orangutan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T19:04:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless poisonous orangutan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756061928
Vasya777
2025-08-24T18:59:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:59:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756061371
ggozzy
2025-08-24T18:50:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:50:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756061132
ggozzy
2025-08-24T18:46:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:46:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ALEXEY1ko/blockassist-bc-knobby_arctic_viper_1756061062
ALEXEY1ko
2025-08-24T18:45:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "knobby arctic viper", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:44:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - knobby arctic viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mano-Official-Viral-Video-Clip/New.full.videos.Mano.Viral.Video.Official.Tutorial
Mano-Official-Viral-Video-Clip
2025-08-24T18:32:13Z
0
0
null
[ "region:us" ]
null
2025-08-24T18:31:55Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
adgafhsdfhdf/blockassist-bc-furry_strong_duck_1756059639
adgafhsdfhdf
2025-08-24T18:30:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry strong duck", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:30:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry strong duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dassem/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-endangered_gregarious_wolf
Dassem
2025-08-24T18:28:26Z
102
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am endangered gregarious wolf", "unsloth", "trl", "genrl-swarm", "I am endangered_gregarious_wolf", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:quantized:Gensyn/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-03T10:52:54Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-endangered_gregarious_wolf tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am endangered gregarious wolf - unsloth - trl - genrl-swarm - I am endangered_gregarious_wolf licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-endangered_gregarious_wolf This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Dassem/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-endangered_gregarious_wolf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
indoempatnol/blockassist-bc-fishy_wary_swan_1756058415
indoempatnol
2025-08-24T18:27:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:27:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756059886
kapalbalap
2025-08-24T18:25:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:25:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756059715
kapalbalap
2025-08-24T18:22:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:22:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756059285
kapalbalap
2025-08-24T18:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T18:15:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Orginal-haider-shah-videos-viral-35-second/LINK.haider.shah.Viral.Video.Official.Tutorial
Orginal-haider-shah-videos-viral-35-second
2025-08-24T18:06:12Z
0
0
null
[ "region:us" ]
null
2025-08-24T18:06:01Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
lowelldiaz/blockassist-bc-prowling_feathered_stork_1756056882
lowelldiaz
2025-08-24T17:37:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prowling feathered stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:37:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prowling feathered stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afsagag/t5-song-feature-generator
afsagag
2025-08-24T17:36:27Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-24T17:36:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kapalbalap/blockassist-bc-peaceful_wary_owl_1756056733
kapalbalap
2025-08-24T17:33:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:33:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756055549
Sayemahsjn
2025-08-24T17:31:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:31:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756055031
koloni
2025-08-24T17:29:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:29:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gabrieln2h/Qwen3-0.6B-Gensyn-Swarm-hibernating_dextrous_chimpanzee
gabrieln2h
2025-08-24T17:24:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am hibernating_dextrous_chimpanzee", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T07:15:51Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am hibernating_dextrous_chimpanzee --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756054501
coelacanthxyz
2025-08-24T17:23:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:23:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756056096
liukevin666
2025-08-24T17:22:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:22:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1756054524
unitova
2025-08-24T17:22:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:22:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
g-assismoraes/Qwen3-4B-Base-fpi-alpha1.6-var-assin2
g-assismoraes
2025-08-24T17:20:10Z
8
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-13T01:13:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756054345
calegpedia
2025-08-24T17:18:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:18:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thyYu2024/qwen2-7b-instruct-trl-sft-newnew
thyYu2024
2025-08-24T17:16:35Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-24T08:56:52Z
--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-newnew tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-newnew This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="thyYu2024/qwen2-7b-instruct-trl-sft-newnew", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ruoxue2-stony-brook-university/qwen2vl-sft-mydataset/runs/zqe1i5ho) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.55.2 - Pytorch: 2.4.1+cu121 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
g-assismoraes/Qwen3-4B-Base-fpi-alpha1.6-var-imdb
g-assismoraes
2025-08-24T17:16:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T17:13:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MomlessTomato/hanamaru-kunikida
MomlessTomato
2025-08-24T17:11:39Z
25
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:mit", "region:us" ]
text-to-image
2024-09-02T03:32:11Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- high quality, defined pupil, looking at viewer, rounded pupil, defined iris, (soft iris:1.2), torso shadow, long hair, bangs, mole, hairclip, parameters: negative_prompt: >- bad_anatomy, deformation, amputation, deformity, deformed_nipples, duplicated_torso, deformed_torso, long_torso, large_torso, unproportioned_torso, (deformed_pussy:1.2), (deformed_hands:1.2), unproportioned_eyes, unproportioned_head, small_head, duplicated_nose, big_nose, fusioned_clothes, fusioned_arms, undefined_limbs, divided_pussy, red_pussy, duplicated_pussy, deformed_anus, deformed_pussy, output: url: images/3.png base_model: Linaqruf/animagine-xl-3.0 instance_prompt: id_hanamaru_kunikida license: mit --- # Hanamaru Kunikida <Gallery /> ## Model description This model was trained to generate high quality images based on SIFAS cards. To achieve better quality, you should be using hako-mikan&#39;s regional prompter, along with Latent Mode, which modifies the way Stable Diffusion isolates the LoRA resulting in a significant improvement. ## Trigger words You should use `id_hanamaru_kunikida` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/theidoldaily/hanamru-kunikida/tree/main) them in the Files & versions tab.
rcoitamtrangia2/blockassist-bc-lanky_powerful_goat_1756054674
rcoitamtrangia2
2025-08-24T17:06:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lanky powerful goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:06:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lanky powerful goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-scampering_scaly_salmon_1756053630
motza0025
2025-08-24T17:05:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scampering scaly salmon", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:05:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scampering scaly salmon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yadav908ankit/blockassist-bc-deft_wily_armadillo_1756054857
yadav908ankit
2025-08-24T17:02:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft wily armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T17:01:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft wily armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uppal-farm-girl-viral-video-link/New.full.videos.uppal.farm.girl.Viral.Video.Official.Tutorial
uppal-farm-girl-viral-video-link
2025-08-24T17:00:53Z
0
0
null
[ "region:us" ]
null
2025-08-24T17:00:31Z
<a href="https://tinyurl.com/huggingtv" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
canhtrangz2539a/blockassist-bc-fluffy_dormant_tapir_1756054088
canhtrangz2539a
2025-08-24T16:57:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fluffy dormant tapir", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:57:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fluffy dormant tapir --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1756054377
gasoline2255
2025-08-24T16:55:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless sizable wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:55:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless sizable wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756054197
ggozzy
2025-08-24T16:51:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:50:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1756054185
kapalbalap
2025-08-24T16:50:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:50:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
creedpwn3/blockassist-bc-foraging_running_cobra_1756050595
creedpwn3
2025-08-24T16:50:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foraging running cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:49:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foraging running cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
elwandabayleighwu160/blockassist-bc-running_lively_snake_1756053468
elwandabayleighwu160
2025-08-24T16:47:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "running lively snake", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:47:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - running lively snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756053441
liukevin666
2025-08-24T16:39:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:38:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
syuvers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-padded_dextrous_ox
syuvers
2025-08-24T16:37:54Z
129
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am padded_dextrous_ox", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T14:06:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am padded_dextrous_ox --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lajuanaisadorayd072/blockassist-bc-zealous_webbed_butterfly_1756052835
lajuanaisadorayd072
2025-08-24T16:37:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous webbed butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:37:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous webbed butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
syuvers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-restless_exotic_badger
syuvers
2025-08-24T16:35:17Z
135
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am restless_exotic_badger", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T14:03:31Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am restless_exotic_badger --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kapalbalap/blockassist-bc-peaceful_wary_owl_1756053159
kapalbalap
2025-08-24T16:33:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:33:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1756052581
eshanroy5678
2025-08-24T16:32:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:27:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
XLON350/blockassist-bc-lithe_slimy_bison_1756052914
XLON350
2025-08-24T16:29:58Z
0
1
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe slimy bison", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:29:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe slimy bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
antipovan/blockassist-bc-moist_bipedal_cheetah_1756050651
antipovan
2025-08-24T16:25:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "moist bipedal cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:25:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - moist bipedal cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ale902/ppo-lunar_lander
Ale902
2025-08-24T16:25:04Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2025-08-24T16:24:57Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -150.35 +/- 77.90 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ale902/ppo-lunar_lander' 'batch_size': 512 'minibatch_size': 128} ```
TRENDING-Link-Full-Hadeer-Abdel-Razek-ver/Link.Full.Video.adeer.Abdelrazik.Video.2025.Clips.Full.Video.Hadeer.Abdelrazik.telegram
TRENDING-Link-Full-Hadeer-Abdel-Razek-ver
2025-08-24T16:21:58Z
0
0
null
[ "region:us" ]
null
2025-08-24T16:21:41Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?aa">🔴 CLICK HERE 🌐==►► Download Now)</a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf/">🌐 Viral Video Original Full HD🟢==►► WATCH NOW</a>
abdel-razek-ver-20/original-videos-link-clip-terabox-full-new-clips-latest-full
abdel-razek-ver-20
2025-08-24T16:16:21Z
0
0
null
[ "region:us" ]
null
2025-08-24T16:16:09Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?aa">🔴 CLICK HERE 🌐==►► Download Now)</a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a> <a rel="nofollow" href="https://anyplacecoming.com/zq5yqv0i?key=0256cc3e9f81675f46e803a0abffb9bf/">🌐 Viral Video Original Full HD🟢==►► WATCH NOW</a>
kayacrypto/blockassist-bc-thriving_barky_wolf_1756052059
kayacrypto
2025-08-24T16:16:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:16:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
banti07908/blockassist-bc-skilled_mighty_monkey_1756050338
banti07908
2025-08-24T16:15:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skilled mighty monkey", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:15:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skilled mighty monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poeryouy/blockassist-bc-roaring_flightless_ibis_1756051713
poeryouy
2025-08-24T16:09:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring flightless ibis", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T16:08:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring flightless ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
franmacias/celtia-8bits
franmacias
2025-08-24T16:01:20Z
1
0
null
[ "onnx", "region:us" ]
null
2025-08-19T12:17:11Z
This is an 8-bit quantized version of the Celtia model from the Proxecto Nós [https://huggingface.co/proxectonos/Nos\_TTS-celtia-vits-graphemes](https://huggingface.co/proxectonos/Nos_TTS-celtia-vits-graphemes) This model has been optimized to offer a significant reduction in size and memory usage, making it ideal for deployment on devices with limited resources, while maintaining high-quality audio synthesis. **Key Features** Model: Celtia (VITS-based) Original Source: Nos_TTS-celtia-vits-graphemes [https://huggingface.co/proxectonos/Nos\_TTS-celtia-vits-graphemes](https://huggingface.co/proxectonos/Nos_TTS-celtia-vits-graphemes) Optimization: INT8 quantization Language: Galician Function: Text-to-Speech (TTS) --- license: cc-by-4.0 ---
moyixiao/qwen3_0p6mimo_r32
moyixiao
2025-08-24T16:00:47Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:adapter:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "region:us" ]
null
2025-07-17T15:40:08Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - llama-factory - lora - generated_from_trainer model-index: - name: qwen3_0p6mimo_r32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen3_0p6mimo_r32 This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the OpenMath01 and the OpenMath02 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756050004
Sayemahsjn
2025-08-24T15:57:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T15:57:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hotungmau758/blockassist-bc-reclusive_foxy_chinchilla_1756050434
hotungmau758
2025-08-24T15:56:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive foxy chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T15:56:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive foxy chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ProGamerGov/360-Diffusion-LoRA-sd-v1-5
ProGamerGov
2025-08-24T15:55:26Z
0
46
null
[ "lora", "stable-diffusion", "text-to-image", "equirectangular", "360°", "VR", "en", "arxiv:2106.09685", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "doi:10.57967/hf/5436", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-30T16:29:41Z
--- license: creativeml-openrail-m language: - en tags: - lora - stable-diffusion - text-to-image - equirectangular - 360° - VR base_model: - stable-diffusion-v1-5/stable-diffusion-v1-5 --- # 360 Diffusion ## 360 Diffusion v1 This [LoRA](https://arxiv.org/abs/2106.09685) model was finetuned on an extremely diverse dataset of 360° equirectangular projections with 2104 captioned training images, using the [Stable Diffusion v1-5 model](https://huggingface.co/runwayml/stable-diffusion-v1-5). This model was finetuned with the trigger word **qxj**. If using the [AUTOMATIC1111 WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui), then you will have to append `<lora:360Diffusion_v1:1>` to the prompt as well in order to activate the model. <div align="center"> <img src="https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_castle_sketch.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_castle_sketch.png) <div align="center"> <img src="https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_scifi_cockpit.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_scifi_cockpit.png) <div align="center"> <img src="https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_tropical_beach_photo.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_tropical_beach_photo.png) <div align="center"> <img src="https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_guy_standing.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/360-Diffusion-LoRA-sd-v1-5/resolve/main/v1_example_guy_standing.png) ## Useful Tags In order to improve usability of the model, various words and phrases were used to tag objects, scenes, style, and content. Note that these lists are based on the training data and do not include things added by the base model. These lists are also not comprehensive. ### Styles - `photo`, `photobash`, `render`, `architectural rendering`, `illustration`, `digital illustration`, `painting`, `digital painting`, `drawing`, `watercolor painting` `concept art`, `charcoal drawing`, `sketch`, `rough sketch`, `fractal art`, `crayon drawing`, `anime`, `pixel art` ### Camera Locations - `underwater`, `aerial view`, `interior`, `exterior`, `pov`, `street level`, `above the clouds`, `low earth orbit`, `underground` ### Locations - `library`, `bedroom`, `bathroom`, `hallway`, `corridor`, `bridge`, `helm`, `cockpit`, `driver's seat`, `street`, `road`, `forest`, `city`, `train station`, `railway`, `greenhouse`, `residential street`, `dock`, `hanger`, `landing pad`, `ferry`, `cave`, `observatory`, `amusement park`, `waterpark`, `tunnel`, `mine`, `tropical`, `beach`, `desert`, `steep slope`, `cliff`, `ocean`, `body of water`, `river`, `mountain`, `space`, `underground bunker`, `space station` ### Skies - `aurora borealis`, `cloudy`, `overcast sky`, `blue sky`, `stars` ### Time - `sunset`, `sunrise` `night`, `sunny day`, `winter`, `twilight`, `fall` ### Weather - `rain`, `raining`, `snow`, `snowing`, `fog`, `haze`, `smoke`, `storm`, `stormy`, `lightning`, `flooded`, `arid` ### Lighting - `bright`, `dark`, `dimly lit` ### Themes - `futuristic`, `cyberpunk`, `historical`, `messy`, `scifi`, `minimalism`, `minimalistic`, `simple`, `simplistic`, `video game`, `surrealism`, `surrealistic`, `cartoon`, `comic`, `black and white`, `smooth`, `ancient`, `medieval`, `vector art`, `abandoned`, `horror` ### Humans & Animals - `people`, `women`, `woman`, `man`, `men`, `cat`, `dog`, `horse`, `group of`, various dinosaurs, `zombie`, `fish`, `shark` # Rendering Tips When rendering, it is recommended that you use either a 1:2 ratio or a perfect square. Rendering as a 1:1 square can help improve concept coherence (like the walls of a room). Details can lose coherence at large sizes with txt2img, so it is recommended that you initially render a smaller version with at least one dimension near 512px, and then upscale it with img2img (with denoising set to 0.5) or a built in high-res fix feature. Details can sometimes be improved by looping the output back through img2img multiple times, with a denoising of 0.5 and seed resizing. ## Seam Handling As Stable Diffusion only renders squares and rectangles, any equirectangular projections will have edges that may not fully match the other side. While these seams are generally pretty minimal, there are multiple ways to deal with them: * Using the [asymmetric-tiling](https://github.com/tjm35/asymmetric-tiling-sd-webui) extension's x-axis tiling feature can help eliminate seams entirely, but the extension can significantly degrade output. It is recommended that you set the 'Start tiling from step N' setting to start at around 50% in order to minimize the impact (ex: start at 9 if using 20 steps). * Inpainting can be used across the seam after shifting the image horizontally to the right or left. * [GIMP](https://www.gimp.org/) (potentially with [G'MIC](https://gmic.eu/)) or Photoshop can be used to remove the seams. # Viewing 360 images The images created with this model are meant to be viewed by 360° viewers and thus will have weird distortions when viewed in 2D. Therefore, the following viewers are recommended: Website (supports VR headsets): https://renderstuff.com/tools/360-panorama-web-viewer/ AUTOMATIC1111 WebUI Extension: https://github.com/GeorgLegato/sd-webui-panorama-viewer WebUI Extension for converting your renders to stereoscopic 3D images: https://github.com/thygate/stable-diffusion-webui-depthmap-script ### Example Image Models - Landscape renders used: https://civitai.com/models/4384/dreamshaper - Renders of people used: https://civitai.com/models/4823/deliberate
poeryouy/blockassist-bc-iridescent_aquatic_parrot_1756050859
poeryouy
2025-08-24T15:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent aquatic parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T15:54:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent aquatic parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
khangnguyen0/blockassist-bc-tawny_untamed_leopard_1756050691
khangnguyen0
2025-08-24T15:53:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny untamed leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T15:53:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny untamed leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
UmeAiRT/ComfyUI-Auto_installer
UmeAiRT
2025-08-24T15:46:47Z
228,091
97
diffusers
[ "diffusers", "onnx", "safetensors", "gguf", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-09-26T13:03:26Z
--- license: mit --- # UmeAiRT - ComfyUI auto installer I'm sharing with you my installation script, which automatically provides ComfyUI, workflows, models, custom nodes ... Just run "ComfyUI-AllinOne-Auto_install.bat". With a few questions at the beginning of the script, only the desired elements will be downloaded. ### Prerequisites : - [7zip](others/7z2409-x64.exe) - [git](others/Git-2.49.0-64-bit.exe) - [CUDA 12.9](others/cuda_12.9.1_windows_network.exe) ### What's included : #### ComfyUI : - ComfyUI portable version pytorch 2.7.0+cu128 - ComfyUI Manager - Interface settings - Xformers - Nvidia Apex - Sageattention - Triton #### Workflow : - TXT to IMG - IMG to IMG - INPAINT - OUTPAINT - PulID & REDUX - ControlNet HED/Canny/Openpose/Depth - TXT to VIDEO - IMG to VIDEO - StartEndFrames - Face to VIDEO - VIDEO EXTENSION - VIDEO to LOOP - Frames interpolations - Upscaler - Video merge #### WAN2.1 : - T2V Model - I2V Model - T2V GGUF Model - I2V GGUF Model - CLIP - CLIP Vision - VAE #### Flux1 : - flux1-dev - flux1-schnell-fp8 - GGUF - clip_l - t5xxl - VAE - ControlNet HED/Canny/Openpose/Depth ### Upscale Model : - RealESRGAN_x4plus.pth - RealESRGAN_x4plus_anime_6B.pth ### Custom Nodes : - ComfyUI-Custom-Scripts - ComfyUI-GGUF - ComfyUI-KJNodes - ComfyUI-VideoHelperSuite - ComfyUI-mxToolkit - ComfyUI-HunyuanVideoMultiLora - rgthree-comfy - ComfyUI-Frame-Interpolation - ComfyUI Impact Pack - ComfyUI-Easy-Use - ComfyUI_PuLID_Flux_ll - WAS Node Suite - ComfyUI-Florence2 - ComfyUI-Upscaler-Tensorrt - ComfyUI-MultiGPU - ComfyUI-WanStartEndFramesNative ![alt text][logo] [logo]: images/UmeAiRT.png "UmeAiRT logo"
SicariusSicariiStuff/Eximius_Persona_5B
SicariusSicariiStuff
2025-08-24T15:43:50Z
12
5
null
[ "safetensors", "llama", "merge", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-21T09:07:33Z
--- license: llama3.2 language: - en base_model: - meta-llama/Llama-3.2-3B-Instruct tags: - merge --- <div align="center"> <b style="font-size: 40px;">Eximius_Persona_5B</b> </div> <img src="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B/resolve/main/Images/Eximius_Persona_5B.png" alt="Eximius_Persona_5B" style="width: 70%; min-width: 500px; display: block; margin: auto;"> --- <style> .hf-links, .hf-tldr{ display:flex;justify-content:center;align-items:center;flex-wrap:wrap; gap:14px;margin:16px 0; } .hf-links a, .hf-tldr a{ display:flex;flex-direction:column;align-items:center;justify-content:center; text-align:center;text-decoration:none;font-weight:700;line-height:1.15; padding:10px 16px;border-radius:14px;border:2px solid currentColor; transition:transform .15s ease,box-shadow .15s ease,background-color .15s ease,color .15s ease; } .hf-tldr a{ font-size:48px;color:purple;min-width:100%; } .hf-tldr a:hover{ transform:translateY(-2px); background:rgba(128,0,128,.1); box-shadow:0 8px 22px rgba(128,0,128,.45); color:#fff; } .hf-links a{ font-size:20px;min-width:240px;max-width:280px; } .hf-links a .top{font-size:16px;opacity:.9;} .hf-links a .bottom{font-size:20px;} .hf-links a.red{color:#E31515;} .hf-links a.yellow{color:#FFC800;} .hf-links a.green{color:#64FF00;} .hf-links a:hover{ transform:translateY(-1px); background:rgba(255,255,255,0.04); box-shadow:0 6px 18px rgba(0,0,0,.15), inset 0 0 0 9999px rgba(255,255,255,.02); } .hf-links a.red:hover{ background:rgba(227,21,21,.12); box-shadow:0 8px 20px rgba(227,21,21,.35); color:#fff; } .hf-links a.yellow:hover{ background:rgba(255,200,0,.15); box-shadow:0 8px 20px rgba(255,200,0,.35); color:#111; } .hf-links a.green:hover{ background:rgba(100,255,0,.14); box-shadow:0 8px 20px rgba(100,255,0,.35); color:#093; } /* mobile stacking */ @media (max-width:520px){ .hf-links a{min-width:100%;max-width:100%;} .hf-tldr a{font-size:36px;} } </style> <div class="hf-tldr"> <a href="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B#tldr"> Click here for TL;DR </a> </div> --- <div class="hf-links"> <a class="red" href="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B#available-quantizations"> <span class="top">Click here</span> <span class="bottom">for quantizations</span> </a> <a class="yellow" href="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B#recommended-settings-for-assistant-mode"> <span class="top">Click here</span> <span class="bottom">for recommended settings</span> </a> <a class="green" href="https://ko-fi.com/sicarius"> <span class="top">Click here</span> <span class="bottom">to buy me a coffee</span> </a> </div> --- I wanted to create a model with an **exceptional** capacity for using varied speech patterns and **fresh** role-play takes. The model had to have a unique personality, not on a surface level but on the inside, **for real**. Unfortunately, SFT alone just didn't cut it. And I had only 16GB of VRAM at the time. Oh, and I wanted it to be small enough to be viable for phones and to be able to give a fight to larger models while at it. If only there was a magical way to do it. **Merges**. Merges are quite unique. In the early days, they were considered "fake." Clearly, there's no such thing as merges. Where are the papers? No papers? Then it's clearly impossible. "Mathematically impossible." Simply preposterous. To mix layers and hope for a coherent output? What nonsense! And yet, they were **real**. <a href="https://huggingface.co/Undi95">Undi95</a> made some of the earliest merges I can remember, and the "LLAMA2 Era" was truly amazing and innovative thanks to them. Cool stuff like <a href="https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR">Tiefighter</a> was being made, and eventually the time tested <a href="https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.5">Midnight-Miqu-70B (v1.5 is my personal favorite)</a>. Merges are an interesting thing, as they affect LLMs in a way that is currently **impossible** to reproduce using **SFT** (or any 'SOTA' technique). One of the plagues we have today, while we have orders of magnitude smarter LLMs, is **GPTisms** and **predictability**. Merges can potentially 'solve' that. How? In short, if you physically tear neurons (**passthrough** brain surgery) while you somehow manage to keep the model coherent enough, and if you're lucky, it can even follows instructions- then magical stuff begins to happen. Magic, because it's **not** an exact science, there's some art to it, as it is done with a lot of **intuition**. GPTisms are patterns that the model really **really** "wants" to follow, it's quite hard to dissuade it. But if you yeet a couple of layers and rearrange them, boy does it get hard to spew those shivers down the spine... and instead the model starts spewing stuff that it was never intended to. It breaks its patterns and introduces some healthy chaos into the mix. This model, **Eximius_Persona_5B**, is the result of multiple merges, that have been tuned, then merged again, then... for many times and iterations. The base was LLAMA 3.2 3B and I focused on achieving the following **4 traits**, in that specific order: - **2nd Highest rated model** in the 3-6B category according to a closed external benchmark. See details at the buttom of the page. - Varied speech patterns - Roleplay ability - Long context coherency - Instruction following For me, getting varied speech patterns was more important than instruction following, for instruction following we got API models, or LLAMA 3.3. Many models are excellent assistants, yet they all sound pretty much the same. I also wanted to make use of my **4090m 16GB** while my workstation crunches **Phi-4'** brain. Making a nice 5B model aligns with my goal of making AI accessible and fun for everyone, and hence **Eximius_Persona_5B** was born. Let this also be a call to action for more people to make AI models, you don't have to have multiple GPUs or spend a fortune on the cloud (although that definitely opens up options), you can do plenty with a mere 16GB of VRAM. And in case 16GB seems out of reach too, I should mention that Google Collab gives access to a free T4. I uploaded a more funky, less stable, and thiccer version of Eximius_Persona to my prototyping org here: [Eximius_Persona with 84 Layers from various checkpoints](https://huggingface.co/Sicarius-Prototyping/Eximius_Persona_84L) (from some early tests, occasionally it outputs stories that fool GPTZERO that it was written by a human- **60% human**, 40% AI with a lucky roll) <details> <summary><b>See example:</b></summary> <img src="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B/resolve/main/Images/Eximius_Persona_5B_GPTZERO.png" alt="GPTZERO Example" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> --- ### TL;DR - **Fun & Fresh Roleplay** flavour. - **Interesting speech patterns** in creative writing. - **Good long context coherency** in Roleplay. - **Occasionally** outputs quite **human like** stories. - **50 Layers** LLAMA 3.2, fully coherent. - **Strong performance** in general for a **5B model**. ### Important: Make sure to use the correct settings! [Assistant settings](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B#recommended-settings-for-assistant-mode) [Roleplay settings](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B#recommended-settings-for-roleplay-mode) --- ## Available quantizations: - Original: [FP16](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B) - GGUF: [Static Quants](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B_GGUF) | [iMatrix_GGUF](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B_iMatrix) - EXL2: [3.5 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-3.5bpw) | [4.0 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-4.0bpw) | [5.0 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-5.0bpw) | [6.0 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-6.0bpw) | [7.0 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-7.0bpw) | [8.0 bpw](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B-8.0bpw) - Specialized: [FP8](https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B_FP8) --- ## Model Details - Intended use: **Role-Play**, **Creative Writing**, General Tasks. - Censorship level: <b>Medium</b> - **5 / 10** (10 completely uncensored) ## UGI score: <img src="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B/resolve/main/Images/Eximius_Persona_5B_UGI.png" alt="UGI Score" style="width: 100%; min-width: 700px; display: block;"> ### Don't use it for coding :) --- # Regarding the format: It is **HIGHLY RECOMMENDED** to use the **Roleplay \ Adventure format the model was trained on**, see the examples below for syntax. It allows for a **very fast and easy** writing of character cards with **minimal amount of tokens**. It's a modification of an old-skool CAI style format I call **SICAtxt** (**S**imple, **I**nexpensive **C**haracter **A**ttributes plain-text): --- ## **SICAtxt** for **roleplay**: ``` X's Persona: X is a ..... Traits: Likes: Dislikes: Quirks: Goals: Dialogue example ``` ## **SICAtxt** for **Adventure:** ``` Adventure: <short description> $World_Setting: $Scenario: ``` --- # Model instruction template: Llama-3-Instruct ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` --- <h2 style="color: darkorange; font-weight: bold; font-size: 55px; text-align: center;">Roleplay format: Classic Internet RP</h2> ``` *action* speech *narration* ``` ### The model is pretty smart, so it might handle other formats as well, but it was trained and tested specifically with the classic internet RP style in mind. ## Recommended settings for assistant mode <details> <summary>Full generation settings: <b>Debug Deterministic</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/Debug-deterministic.png" alt="Negative_LLAMA_70B_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> <details> <summary>Full generation settings: <b>min_p</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/min_p.png" alt="Negative_LLAMA_70B_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> --- ## Recommended settings for Roleplay mode <details> <summary><b>Roleplay settings:</b>.</summary> A good repetition_penalty range is <b>between 1.12 - 1.15</b>, feel free to experiment. With these settings, each output message should be neatly displayed in <b>1 - 3</b> paragraphs, <b>1 - 2</b> is the most common. A single paragraph will be output as a response to a simple message ("What was your name again?"). <b>min_P</b> for RP works too but is more likely to put everything under one large paragraph, instead of a neatly formatted short one. Feel free to switch in between. <b>(Open the image in a new window to better see the full details)</b> <img src="https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B/resolve/main/Presets/Negative_LLAMA_70B_RP.png" alt="Negative_LLAMA_70B_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> ``` temperature: 0.8 top_p: 0.95 top_k: 25 typical_p: 1 min_p: 0 repetition_penalty: 1.12 repetition_penalty_range: 1024 ``` </details> --- **Other recommended generation Presets:** <details> <summary><b>Midnight Enigma</b></summary> ``` max_new_tokens: 512 temperature: 0.98 top_p: 0.37 top_k: 100 typical_p: 1 min_p: 0 repetition_penalty: 1.18 do_sample: True ``` </details> <details> <summary><b>Divine Intellect</b></summary> ``` max_new_tokens: 512 temperature: 1.31 top_p: 0.14 top_k: 49 typical_p: 1 min_p: 0 repetition_penalty: 1.17 do_sample: True ``` </details> <details> <summary><b>simple-1</b></summary> ``` max_new_tokens: 512 temperature: 0.7 top_p: 0.9 top_k: 20 typical_p: 1 min_p: 0 repetition_penalty: 1.15 do_sample: True ``` </details> --- <h2 style="color: green; font-weight: bold; font-size: 65px; text-align: center;">Your support = more models</h2> <a href="https://ko-fi.com/sicarius" style="color: pink; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">My Ko-fi page (Click here)</a> --- ## Benchmarks | Metric |Value| |-------------------|----:| |Avg. |21.78| |IFEval (0-Shot) |65.60| |BBH (3-Shot) |22.20| |MATH Lvl 5 (4-Shot)| 9.89| |GPQA (0-shot) | 1.90| |MuSR (0-shot) | 7.33| |MMLU-PRO (5-shot) |23.78| --- # Additional benchmarks On the **17th of February, 2025**, I became aware that the model was ranked as the **2nd place in the world** among **3-6B** models, in a closed external benchmark. Bnechmarked on the following site: ``` https://moonride.hashnode.dev/biased-test-of-gpt-4-era-llms-300-models-deepseek-r1-included ``` <img src="https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B/resolve/main/Images/Eximius_Persona_5B_Bench.png" alt="External Benchmark" style="width: 100%; min-width: 600px; display: block; margin: auto;"> --- ## Citation Information ``` @llm{Eximius_Persona_5B, author = {SicariusSicariiStuff}, title = {Eximius_Persona_5B}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/SicariusSicariiStuff/Eximius_Persona_5B} } ``` --- ## Other stuff - [SLOP_Detector](https://github.com/SicariusSicariiStuff/SLOP_Detector) Nuke GPTisms, with SLOP detector. - [LLAMA-3_8B_Unaligned](https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned) The grand project that started it all. - [Blog and updates (Archived)](https://huggingface.co/SicariusSicariiStuff/Blog_And_Updates) Some updates, some rambles, sort of a mix between a diary and a blog.
Jeff876/qaoa-portfolio-space
Jeff876
2025-08-24T15:42:25Z
0
0
null
[ "region:us" ]
null
2025-08-24T15:37:51Z
# QAOA Portfolio Optimizer (Hugging Face Space) This Space builds a mean–variance portfolio selection **QUBO** and solves it with a **QAOA** variational circuit (PennyLane). Optionally verifies the solution with a **classical brute-force** when the asset count is small. ## How to use 1. Click "Run QAOA". 2. With no file uploaded, a 6-asset demo runs. 3. Or upload a CSV of prices: - First column: `Date` - Other columns: tickers (closing prices) 4. Adjust: - Risk aversion `λ` - Target picks `k` - Penalty `α` - QAOA depth `p`, Steps, Shots 5. Inspect logs, JSON, and selection table. ## Data assumptions - We compute annualized mean log-returns and covariance from your prices. - Values are illustrative only; do your own backtesting before any real use. ## Local run ```bash pip install -r requirements.txt python app.py
SicariusSicariiStuff/Fiendish_LLAMA_3B
SicariusSicariiStuff
2025-08-24T15:31:56Z
58
9
null
[ "safetensors", "llama", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
null
2025-03-20T03:06:12Z
--- license: llama3.2 language: - en base_model: - meta-llama/Llama-3.2-3B-Instruct --- <div align="center"> <b style="font-size: 40px;">Fiendish_LLAMA_3B</b> </div> <img src="https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B/resolve/main/Images/Fiendish_LLAMA_3B.png" alt="Fiendish_LLAMA_3B" style="width: 100%; min-width: 700px; display: block; margin: auto;"> --- <style> .hf-links, .hf-tldr{ display:flex;justify-content:center;align-items:center;flex-wrap:wrap; gap:14px;margin:16px 0; } .hf-links a, .hf-tldr a{ display:flex;flex-direction:column;align-items:center;justify-content:center; text-align:center;text-decoration:none;font-weight:700;line-height:1.15; padding:10px 16px;border-radius:14px;border:2px solid currentColor; transition:transform .15s ease,box-shadow .15s ease,background-color .15s ease,color .15s ease; } .hf-tldr a{ font-size:48px;color:purple;min-width:100%; } .hf-tldr a:hover{ transform:translateY(-2px); background:rgba(128,0,128,.1); box-shadow:0 8px 22px rgba(128,0,128,.45); color:#fff; } .hf-links a{ font-size:20px;min-width:240px;max-width:280px; } .hf-links a .top{font-size:16px;opacity:.9;} .hf-links a .bottom{font-size:20px;} .hf-links a.red{color:#E31515;} .hf-links a.yellow{color:#FFC800;} .hf-links a.green{color:#64FF00;} .hf-links a:hover{ transform:translateY(-1px); background:rgba(255,255,255,0.04); box-shadow:0 6px 18px rgba(0,0,0,.15), inset 0 0 0 9999px rgba(255,255,255,.02); } .hf-links a.red:hover{ background:rgba(227,21,21,.12); box-shadow:0 8px 20px rgba(227,21,21,.35); color:#fff; } .hf-links a.yellow:hover{ background:rgba(255,200,0,.15); box-shadow:0 8px 20px rgba(255,200,0,.35); color:#111; } .hf-links a.green:hover{ background:rgba(100,255,0,.14); box-shadow:0 8px 20px rgba(100,255,0,.35); color:#093; } /* mobile stacking */ @media (max-width:520px){ .hf-links a{min-width:100%;max-width:100%;} .hf-tldr a{font-size:36px;} } </style> <div class="hf-tldr"> <a href="https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B#tldr"> Click here for TL;DR </a> </div> --- <div class="hf-links"> <a class="red" href="https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B#available-quantizations"> <span class="top">Click here</span> <span class="bottom">for quantizations</span> </a> <a class="yellow" href="https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B#recommended-settings-for-assistant-mode"> <span class="top">Click here</span> <span class="bottom">for recommended settings</span> </a> <a class="green" href="https://ko-fi.com/sicarius"> <span class="top">Click here</span> <span class="bottom">to buy me a coffee</span> </a> </div> --- When innocence fades, \ And then goes away— \ A new fiendish purpose— guides its way. Once [impish](https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_3B), now fiendish, for many to play, \ Three billion parameters of slop underway… From an [impish](https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_3B) design— with a quite wholesome tune, \ **This** fiendish bitch, was made just to goon. --- # Included Character cards in this repo: - [Shmena Koeset](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B/resolve/main/Character_Cards/Shmena_Koeset.png) (An overweight and foul-mouthed **troll huntress** with a bad temper.) --- # Other character cards: - [Takai_Puraisu](https://huggingface.co/SicariusSicariiStuff/Oni_Mitsubishi_12B/resolve/main/Character_Cards/Takai_Puraisu.png) (Car dealership simulator) - [Vesper](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Vesper.png) (Schizo **Space Adventure**) - [Nina_Nakamura](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Nina_Nakamura.png) (The **sweetest** dorky co-worker) - [Employe#11](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Employee%2311.png) (**Schizo workplace** with a **schizo worker**) --- ### TL;DR - **[Impish_LLAMA_3B](https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_3B)**'s naughty sister. Less wholesome, more edge. **NOT** better, but **different**. - **Superb Roleplay** for a **3B** size. - **Short length** response (1-2 paragraphs, usually 1), CAI style. - **Naughty, and more evil** that follows instructions well enough, and keeps good formatting. - **LOW refusals** - Total freedom in RP, can do things other RP models won't, and I'll leave it at that. Low refusals in assistant tasks as well. - **VERY good** at following the **character card**. Try the included characters if you're having sub optimal results. ### Important: Make sure to use the correct settings! [Assistant settings](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B#recommended-settings-for-assistant-mode) [Roleplay settings](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B#recommended-settings-for-roleplay-mode) --- ## Available quantizations: - Original: [FP16](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B) - GGUF & iMatrix: [GGUF](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_GGUF) | [iMatrix](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_iMatrix) | [High-Attention](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_GGUF_HA) | [iMatrix-High-Attention](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_HA_NL) - EXL2: [3.5 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-3.5bpw) | [4.0 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-4.0bpw) | [5.0 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-5.0bpw) | [6.0 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-6.0bpw) | [7.0 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-7.0bpw) | [8.0 bpw](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B-8.0bpw) - GPTQ: [4-Bit-128](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_GPTQ-4-bit-128) - Specialized: [FP8](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_FP8) - Mobile (ARM): [Q4_0](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_ARM) | [Q4_0_High-Attention](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B_ARM_HA) --- ## Model Details - Intended use: **Role-Play**, **Creative Writing**, **General Tasks**. - Censorship level: <b>Medium</b> - **4.5 / 10** (10 completely uncensored) ## UGI score: <img src="https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B/resolve/main/Images/UGI.png" style="width: 100%; min-width: 700px; display: block; margin: auto;"> --- ## Recommended settings for assistant mode <details> <summary>Full generation settings: <b>Debug Deterministic</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/Debug-deterministic.png" alt="Debug Deterministic_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> <details> <summary>Full generation settings: <b>min_p</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/min_p.png" alt="min_P_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> --- ## Recommended settings for Roleplay mode --- <h2 style="color: green; font-weight: bold; font-size: 36px; text-align: center;">Settings for RP, click below to expand:</h2> <details> <summary><b>Roleplay settings:</b></summary> A good repetition_penalty range is <b>between 1.12 - 1.15</b>, feel free to experiment. With these settings, each output message should be neatly displayed in <b>1 - 5</b> paragraphs, <b>2 - 3</b> is the most common. A single paragraph will be output as a response to a simple message ("What was your name again?"). <b>min_P</b> for RP works too but is more likely to put everything under one large paragraph, instead of a neatly formatted short one. Feel free to switch in between. <b>(Open the image in a new window to better see the full details)</b> <img src="https://huggingface.co/SicariusSicariiStuff/Oni_Mitsubishi_12B/resolve/main/Presets/Oni_Mitsubishi_12B_RP.png" alt="Oni_Mitsubishi_12B_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> ``` temperature: 0.8 top_p: 0.95 top_k: 25 typical_p: 1 min_p: 0 repetition_penalty: 1.12 repetition_penalty_range: 1024 ``` </details> <h2 style="color: darkorange; font-weight: bold; font-size: 65px; text-align: center;">Roleplay format: Classic Internet RP</h2> ``` *action* speech *narration* ``` - **min_p** will bias towards a **single big paragraph**. - The recommended RP settings will bias towards **1-3 small paragraphs** (on some occasions 4-5) --- # Regarding the format: It is **HIGHLY RECOMMENDED** to use the **Roleplay \ Adventure format the model was trained on**, see the examples below for syntax. It allows for a **very fast and easy** writing of character cards with **minimal amount of tokens**. It's a modification of an old-skool CAI style format I call **SICAtxt** (**S**imple, **I**nexpensive **C**haracter **A**ttributes plain-text): --- ## **SICAtxt** for **roleplay**: ``` X's Persona: X is a ..... Traits: Likes: Dislikes: Quirks: Goals: Dialogue example ``` ## **SICAtxt** for **Adventure:** ``` Adventure: <short description> $World_Setting: $Scenario: ``` --- # Model instruction template: Llama-3-Instruct ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` --- **Other recommended generation Presets:** <details> <summary><b>Midnight Enigma</b></summary> ``` max_new_tokens: 512 temperature: 0.98 top_p: 0.37 top_k: 100 typical_p: 1 min_p: 0 repetition_penalty: 1.18 do_sample: True ``` </details> <details> <summary><b>Divine Intellect</b></summary> ``` max_new_tokens: 512 temperature: 1.31 top_p: 0.14 top_k: 49 typical_p: 1 min_p: 0 repetition_penalty: 1.17 do_sample: True ``` </details> <details> <summary><b>simple-1</b></summary> ``` max_new_tokens: 512 temperature: 0.7 top_p: 0.9 top_k: 20 typical_p: 1 min_p: 0 repetition_penalty: 1.15 do_sample: True ``` </details> --- <h2 style="color: green; font-weight: bold; font-size: 65px; text-align: center;">Your support = more models</h2> <a href="https://ko-fi.com/sicarius" style="color: pink; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">My Ko-fi page (Click here)</a> --- ## Citation Information ``` @llm{Fiendish_LLAMA_3B, author = {SicariusSicariiStuff}, title = {Fiendish_LLAMA_3B}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B} } ``` --- ## Other stuff - [SLOP_Detector](https://github.com/SicariusSicariiStuff/SLOP_Detector) Nuke GPTisms, with SLOP detector. - [LLAMA-3_8B_Unaligned](https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned) The grand project that started it all. - [Blog and updates (Archived)](https://huggingface.co/SicariusSicariiStuff/Blog_And_Updates) Some updates, some rambles, sort of a mix between a diary and a blog.