text
stringlengths
54
260
06-07 09:24 - modeling.trainer - INFO - train - iter 159700: loss 3.0530, time 5.17s
06-07 09:24 - modeling.trainer - INFO - train - iter 159750: loss 3.0630, time 10.32s
06-07 09:24 - modeling.trainer - INFO - train - iter 159800: loss 3.0643, time 5.36s
06-07 09:24 - modeling.trainer - INFO - train - iter 159850: loss 3.0578, time 6.03s
06-07 09:24 - modeling.trainer - INFO - train - iter 159900: loss 3.0651, time 5.30s
06-07 09:24 - modeling.trainer - INFO - train - iter 159950: loss 3.0682, time 5.40s
06-07 09:24 - modeling.trainer - INFO - val - iter 160000: lm_loss 1.5066, value_loss 0.7542, time_loss 0.6981, loss 2.9589, time 4.33s
06-07 09:24 - modeling.trainer - INFO - new best val loss 2.9589
06-07 09:25 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 09:25 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 09:25 - modeling.trainer - INFO - train - iter 160000: loss 3.0610, time 17.21s
06-07 09:25 - modeling.trainer - INFO - train - iter 160050: loss 3.0560, time 5.38s
06-07 09:25 - modeling.trainer - INFO - train - iter 160100: loss 3.0550, time 5.35s
06-07 09:25 - modeling.trainer - INFO - train - iter 160150: loss 3.0545, time 5.31s
06-07 09:25 - modeling.trainer - INFO - train - iter 160200: loss 3.0582, time 5.36s
06-07 09:25 - modeling.trainer - INFO - train - iter 160250: loss 3.0543, time 5.35s
06-07 09:25 - modeling.trainer - INFO - train - iter 160300: loss 3.0500, time 5.35s
06-07 09:25 - modeling.trainer - INFO - train - iter 160350: loss 3.0495, time 5.34s
06-07 09:25 - modeling.trainer - INFO - train - iter 160400: loss 3.0477, time 5.30s
06-07 09:25 - modeling.trainer - INFO - train - iter 160450: loss 3.0507, time 5.32s
06-07 09:26 - modeling.trainer - INFO - train - iter 160500: loss 3.0589, time 5.30s
06-07 09:26 - modeling.trainer - INFO - train - iter 160550: loss 3.0701, time 5.32s
06-07 09:26 - modeling.trainer - INFO - train - iter 160600: loss 3.0679, time 5.32s
06-07 09:26 - modeling.trainer - INFO - train - iter 160650: loss 3.0589, time 5.33s
06-07 09:26 - modeling.trainer - INFO - train - iter 160700: loss 3.0671, time 5.30s
06-07 09:26 - modeling.trainer - INFO - train - iter 160750: loss 3.0695, time 5.32s
06-07 09:26 - modeling.trainer - INFO - train - iter 160800: loss 3.0652, time 5.30s
06-07 09:26 - modeling.trainer - INFO - train - iter 160850: loss 3.0674, time 5.29s
06-07 09:26 - modeling.trainer - INFO - train - iter 160900: loss 3.0798, time 5.29s
06-07 09:26 - modeling.trainer - INFO - train - iter 160950: loss 3.0736, time 5.28s
06-07 09:26 - modeling.trainer - INFO - train - iter 161000: loss 3.0596, time 5.31s
06-07 09:26 - modeling.trainer - INFO - train - iter 161050: loss 3.0732, time 5.34s
06-07 09:27 - modeling.trainer - INFO - train - iter 161100: loss 3.0718, time 5.27s
06-07 09:27 - modeling.trainer - INFO - train - iter 161150: loss 3.0559, time 5.26s
06-07 09:27 - modeling.trainer - INFO - train - iter 161200: loss 3.0451, time 5.28s
06-07 09:27 - modeling.trainer - INFO - train - iter 161250: loss 3.0488, time 5.26s
06-07 09:27 - modeling.trainer - INFO - train - iter 161300: loss 3.0507, time 5.25s
06-07 09:27 - modeling.trainer - INFO - train - iter 161350: loss 3.0541, time 5.23s
06-07 09:27 - modeling.trainer - INFO - train - iter 161400: loss 3.0695, time 5.35s
06-07 09:27 - modeling.trainer - INFO - train - iter 161450: loss 3.0646, time 5.34s
06-07 09:27 - modeling.trainer - INFO - train - iter 161500: loss 3.0569, time 5.30s
06-07 09:27 - modeling.trainer - INFO - train - iter 161550: loss 3.0618, time 5.91s
06-07 09:27 - modeling.trainer - INFO - train - iter 161600: loss 3.0544, time 5.26s
06-07 09:28 - modeling.trainer - INFO - train - iter 161650: loss 3.0571, time 5.25s
06-07 09:28 - modeling.trainer - INFO - train - iter 161700: loss 3.0667, time 5.25s
06-07 09:28 - modeling.trainer - INFO - train - iter 161750: loss 3.0655, time 5.28s
06-07 09:28 - modeling.trainer - INFO - train - iter 161800: loss 3.0604, time 5.29s
06-07 09:28 - modeling.trainer - INFO - train - iter 161850: loss 3.0616, time 5.25s
06-07 09:28 - modeling.trainer - INFO - train - iter 161900: loss 3.0671, time 5.26s
06-07 09:28 - modeling.trainer - INFO - train - iter 161950: loss 3.0555, time 5.33s
06-07 09:28 - modeling.trainer - INFO - train - iter 162000: loss 3.0594, time 5.25s
06-07 09:28 - modeling.trainer - INFO - train - iter 162050: loss 3.0658, time 5.27s
06-07 09:28 - modeling.trainer - INFO - train - iter 162100: loss 3.0678, time 5.25s
06-07 09:28 - modeling.trainer - INFO - train - iter 162150: loss 3.0690, time 5.23s
06-07 09:29 - modeling.trainer - INFO - train - iter 162200: loss 3.0677, time 5.27s
06-07 09:29 - modeling.trainer - INFO - train - iter 162250: loss 3.0670, time 5.29s
06-07 09:29 - modeling.trainer - INFO - train - iter 162300: loss 3.0636, time 5.26s
06-07 09:29 - modeling.trainer - INFO - train - iter 162350: loss 3.0547, time 5.26s
06-07 09:29 - modeling.trainer - INFO - train - iter 162400: loss 3.0468, time 5.26s
06-07 09:29 - modeling.trainer - INFO - train - iter 162450: loss 3.0552, time 5.30s
06-07 09:29 - modeling.trainer - INFO - train - iter 162500: loss 3.0639, time 5.30s
06-07 09:29 - modeling.trainer - INFO - train - iter 162550: loss 3.0717, time 5.26s
06-07 09:29 - modeling.trainer - INFO - train - iter 162600: loss 3.0658, time 5.27s
06-07 09:29 - modeling.trainer - INFO - train - iter 162650: loss 3.0635, time 5.23s
06-07 09:29 - modeling.trainer - INFO - train - iter 162700: loss 3.0703, time 5.25s
06-07 09:29 - modeling.trainer - INFO - train - iter 162750: loss 3.0638, time 5.24s
06-07 09:30 - modeling.trainer - INFO - train - iter 162800: loss 3.0590, time 5.24s
06-07 09:30 - modeling.trainer - INFO - train - iter 162850: loss 3.0574, time 5.26s
06-07 09:30 - modeling.trainer - INFO - train - iter 162900: loss 3.0609, time 5.26s
06-07 09:30 - modeling.trainer - INFO - train - iter 162950: loss 3.0689, time 5.26s
06-07 09:30 - modeling.trainer - INFO - train - iter 163000: loss 3.0634, time 5.28s
06-07 09:30 - modeling.trainer - INFO - train - iter 163050: loss 3.0600, time 5.30s
06-07 09:30 - modeling.trainer - INFO - train - iter 163100: loss 3.0650, time 5.27s
06-07 09:30 - modeling.trainer - INFO - train - iter 163150: loss 3.0632, time 5.28s
06-07 09:30 - modeling.trainer - INFO - train - iter 163200: loss 3.0552, time 5.29s
06-07 09:30 - modeling.trainer - INFO - train - iter 163250: loss 3.0602, time 10.32s
06-07 09:31 - modeling.trainer - INFO - train - iter 163300: loss 3.0676, time 6.17s
06-07 09:31 - modeling.trainer - INFO - train - iter 163350: loss 3.0609, time 5.51s
06-07 09:31 - modeling.trainer - INFO - train - iter 163400: loss 3.0620, time 5.45s
06-07 09:31 - modeling.trainer - INFO - train - iter 163450: loss 3.0509, time 5.42s
06-07 09:31 - modeling.trainer - INFO - train - iter 163500: loss 3.0461, time 5.45s
06-07 09:31 - modeling.trainer - INFO - train - iter 163550: loss 3.0585, time 5.44s
06-07 09:31 - modeling.trainer - INFO - train - iter 163600: loss 3.0638, time 5.44s
06-07 09:31 - modeling.trainer - INFO - train - iter 163650: loss 3.0609, time 5.39s
06-07 09:31 - modeling.trainer - INFO - train - iter 163700: loss 3.0604, time 5.37s
06-07 09:31 - modeling.trainer - INFO - train - iter 163750: loss 3.0616, time 5.34s
06-07 09:31 - modeling.trainer - INFO - train - iter 163800: loss 3.0579, time 5.43s
06-07 09:32 - modeling.trainer - INFO - train - iter 163850: loss 3.0608, time 5.39s
06-07 09:32 - modeling.trainer - INFO - train - iter 163900: loss 3.0592, time 5.37s
06-07 09:32 - modeling.trainer - INFO - train - iter 163950: loss 3.0547, time 5.42s
06-07 09:32 - modeling.trainer - INFO - train - iter 164000: loss 3.0502, time 5.38s
06-07 09:32 - modeling.trainer - INFO - train - iter 164050: loss 3.0561, time 5.39s
06-07 09:32 - modeling.trainer - INFO - train - iter 164100: loss 3.0596, time 5.41s
06-07 09:32 - modeling.trainer - INFO - train - iter 164150: loss 3.0611, time 5.40s
06-07 09:32 - modeling.trainer - INFO - train - iter 164200: loss 3.0571, time 5.42s
06-07 09:32 - modeling.trainer - INFO - train - iter 164250: loss 3.0507, time 5.38s
06-07 09:32 - modeling.trainer - INFO - train - iter 164300: loss 3.0645, time 5.35s
06-07 09:32 - modeling.trainer - INFO - train - iter 164350: loss 3.0737, time 5.37s
06-07 09:33 - modeling.trainer - INFO - train - iter 164400: loss 3.0590, time 5.39s
06-07 09:33 - modeling.trainer - INFO - train - iter 164450: loss 3.0544, time 5.35s