text
stringlengths
54
260
06-07 09:42 - modeling.trainer - INFO - train - iter 169500: loss 3.0696, time 5.24s
06-07 09:42 - modeling.trainer - INFO - train - iter 169550: loss 3.0618, time 5.21s
06-07 09:42 - modeling.trainer - INFO - train - iter 169600: loss 3.0541, time 5.23s
06-07 09:42 - modeling.trainer - INFO - train - iter 169650: loss 3.0472, time 5.22s
06-07 09:42 - modeling.trainer - INFO - train - iter 169700: loss 3.0532, time 5.22s
06-07 09:42 - modeling.trainer - INFO - train - iter 169750: loss 3.0648, time 5.23s
06-07 09:42 - modeling.trainer - INFO - train - iter 169800: loss 3.0612, time 5.25s
06-07 09:42 - modeling.trainer - INFO - train - iter 169850: loss 3.0554, time 5.24s
06-07 09:42 - modeling.trainer - INFO - train - iter 169900: loss 3.0587, time 5.24s
06-07 09:42 - modeling.trainer - INFO - train - iter 169950: loss 3.0608, time 5.24s
06-07 09:42 - modeling.trainer - INFO - val - iter 170000: lm_loss 1.5034, value_loss 0.7573, time_loss 0.6991, loss 2.9599, time 4.30s
06-07 09:43 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 09:43 - modeling.trainer - INFO - train - iter 170000: loss 3.0577, time 13.21s
06-07 09:43 - modeling.trainer - INFO - train - iter 170050: loss 3.0473, time 5.25s
06-07 09:43 - modeling.trainer - INFO - train - iter 170100: loss 3.0412, time 5.24s
06-07 09:43 - modeling.trainer - INFO - train - iter 170150: loss 3.0513, time 5.24s
06-07 09:43 - modeling.trainer - INFO - train - iter 170200: loss 3.0636, time 5.25s
06-07 09:43 - modeling.trainer - INFO - train - iter 170250: loss 3.0624, time 5.94s
06-07 09:43 - modeling.trainer - INFO - train - iter 170300: loss 3.0588, time 5.27s
06-07 09:43 - modeling.trainer - INFO - train - iter 170350: loss 3.0601, time 5.26s
06-07 09:43 - modeling.trainer - INFO - train - iter 170400: loss 3.0626, time 5.22s
06-07 09:43 - modeling.trainer - INFO - train - iter 170450: loss 3.0537, time 5.24s
06-07 09:43 - modeling.trainer - INFO - train - iter 170500: loss 3.0556, time 5.24s
06-07 09:44 - modeling.trainer - INFO - train - iter 170550: loss 3.0701, time 5.23s
06-07 09:44 - modeling.trainer - INFO - train - iter 170600: loss 3.0709, time 5.22s
06-07 09:44 - modeling.trainer - INFO - train - iter 170650: loss 3.0635, time 5.22s
06-07 09:44 - modeling.trainer - INFO - train - iter 170700: loss 3.0653, time 5.23s
06-07 09:44 - modeling.trainer - INFO - train - iter 170750: loss 3.0695, time 5.21s
06-07 09:44 - modeling.trainer - INFO - train - iter 170800: loss 3.0613, time 5.25s
06-07 09:44 - modeling.trainer - INFO - train - iter 170850: loss 3.0532, time 5.25s
06-07 09:44 - modeling.trainer - INFO - train - iter 170900: loss 3.0501, time 5.23s
06-07 09:44 - modeling.trainer - INFO - train - iter 170950: loss 3.0562, time 5.23s
06-07 09:44 - modeling.trainer - INFO - train - iter 171000: loss 3.0595, time 5.23s
06-07 09:44 - modeling.trainer - INFO - train - iter 171050: loss 3.0614, time 5.20s
06-07 09:44 - modeling.trainer - INFO - train - iter 171100: loss 3.0692, time 5.20s
06-07 09:45 - modeling.trainer - INFO - train - iter 171150: loss 3.0667, time 5.21s
06-07 09:45 - modeling.trainer - INFO - train - iter 171200: loss 3.0676, time 5.23s
06-07 09:45 - modeling.trainer - INFO - train - iter 171250: loss 3.0668, time 5.20s
06-07 09:45 - modeling.trainer - INFO - train - iter 171300: loss 3.0581, time 5.24s
06-07 09:45 - modeling.trainer - INFO - train - iter 171350: loss 3.0525, time 5.21s
06-07 09:45 - modeling.trainer - INFO - train - iter 171400: loss 3.0517, time 5.22s
06-07 09:45 - modeling.trainer - INFO - train - iter 171450: loss 3.0511, time 5.23s
06-07 09:45 - modeling.trainer - INFO - train - iter 171500: loss 3.0529, time 5.27s
06-07 09:45 - modeling.trainer - INFO - train - iter 171550: loss 3.0523, time 5.25s
06-07 09:45 - modeling.trainer - INFO - train - iter 171600: loss 3.0489, time 5.24s
06-07 09:45 - modeling.trainer - INFO - train - iter 171650: loss 3.0547, time 5.22s
06-07 09:46 - modeling.trainer - INFO - train - iter 171700: loss 3.0583, time 5.23s
06-07 09:46 - modeling.trainer - INFO - train - iter 171750: loss 3.0569, time 5.22s
06-07 09:46 - modeling.trainer - INFO - train - iter 171800: loss 3.0594, time 5.24s
06-07 09:46 - modeling.trainer - INFO - train - iter 171850: loss 3.0553, time 5.22s
06-07 09:46 - modeling.trainer - INFO - train - iter 171900: loss 3.0461, time 5.23s
06-07 09:46 - modeling.trainer - INFO - train - iter 171950: loss 3.0539, time 5.21s
06-07 09:46 - modeling.trainer - INFO - train - iter 172000: loss 3.0589, time 5.87s
06-07 09:46 - modeling.trainer - INFO - train - iter 172050: loss 3.0535, time 5.23s
06-07 09:46 - modeling.trainer - INFO - train - iter 172100: loss 3.0538, time 5.19s
06-07 09:46 - modeling.trainer - INFO - train - iter 172150: loss 3.0605, time 5.19s
06-07 09:46 - modeling.trainer - INFO - train - iter 172200: loss 3.0542, time 5.20s
06-07 09:47 - modeling.trainer - INFO - train - iter 172250: loss 3.0468, time 5.19s
06-07 09:47 - modeling.trainer - INFO - train - iter 172300: loss 3.0512, time 5.21s
06-07 09:47 - modeling.trainer - INFO - train - iter 172350: loss 3.0508, time 5.25s
06-07 09:47 - modeling.trainer - INFO - train - iter 172400: loss 3.0544, time 5.20s
06-07 09:47 - modeling.trainer - INFO - train - iter 172450: loss 3.0523, time 5.18s
06-07 09:47 - modeling.trainer - INFO - train - iter 172500: loss 3.0514, time 5.30s
06-07 09:47 - modeling.trainer - INFO - train - iter 172550: loss 3.0590, time 5.19s
06-07 09:47 - modeling.trainer - INFO - train - iter 172600: loss 3.0590, time 5.18s
06-07 09:47 - modeling.trainer - INFO - train - iter 172650: loss 3.0606, time 5.21s
06-07 09:47 - modeling.trainer - INFO - train - iter 172700: loss 3.0574, time 5.18s
06-07 09:47 - modeling.trainer - INFO - train - iter 172750: loss 3.0548, time 5.19s
06-07 09:47 - modeling.trainer - INFO - train - iter 172800: loss 3.0624, time 5.16s
06-07 09:48 - modeling.trainer - INFO - train - iter 172850: loss 3.0672, time 5.17s
06-07 09:48 - modeling.trainer - INFO - train - iter 172900: loss 3.0617, time 5.18s
06-07 09:48 - modeling.trainer - INFO - train - iter 172950: loss 3.0525, time 5.20s
06-07 09:48 - modeling.trainer - INFO - train - iter 173000: loss 3.0555, time 5.20s
06-07 09:48 - modeling.trainer - INFO - train - iter 173050: loss 3.0462, time 5.21s
06-07 09:48 - modeling.trainer - INFO - train - iter 173100: loss 3.0568, time 5.20s
06-07 09:48 - modeling.trainer - INFO - train - iter 173150: loss 3.0651, time 5.21s
06-07 09:48 - modeling.trainer - INFO - train - iter 173200: loss 3.0528, time 5.17s
06-07 09:48 - modeling.trainer - INFO - train - iter 173250: loss 3.0610, time 5.21s
06-07 09:48 - modeling.trainer - INFO - train - iter 173300: loss 3.0679, time 5.17s
06-07 09:48 - modeling.trainer - INFO - train - iter 173350: loss 3.0678, time 5.15s
06-07 09:48 - modeling.trainer - INFO - train - iter 173400: loss 3.0664, time 5.18s
06-07 09:49 - modeling.trainer - INFO - train - iter 173450: loss 3.0621, time 5.21s
06-07 09:49 - modeling.trainer - INFO - train - iter 173500: loss 3.0577, time 5.17s
06-07 09:49 - modeling.trainer - INFO - train - iter 173550: loss 3.0553, time 5.20s
06-07 09:49 - modeling.trainer - INFO - train - iter 173600: loss 3.0517, time 5.18s
06-07 09:49 - modeling.trainer - INFO - train - iter 173650: loss 3.0630, time 5.19s
06-07 09:49 - modeling.trainer - INFO - train - iter 173700: loss 3.0588, time 5.21s
06-07 09:49 - modeling.trainer - INFO - train - iter 173750: loss 3.0472, time 5.84s
06-07 09:49 - modeling.trainer - INFO - train - iter 173800: loss 3.0524, time 5.19s
06-07 09:49 - modeling.trainer - INFO - train - iter 173850: loss 3.0539, time 5.20s
06-07 09:49 - modeling.trainer - INFO - train - iter 173900: loss 3.0533, time 5.21s
06-07 09:49 - modeling.trainer - INFO - train - iter 173950: loss 3.0584, time 5.20s
06-07 09:50 - modeling.trainer - INFO - train - iter 174000: loss 3.0559, time 5.16s
06-07 09:50 - modeling.trainer - INFO - train - iter 174050: loss 3.0530, time 5.17s
06-07 09:50 - modeling.trainer - INFO - train - iter 174100: loss 3.0590, time 5.17s
06-07 09:50 - modeling.trainer - INFO - train - iter 174150: loss 3.0640, time 5.18s
06-07 09:50 - modeling.trainer - INFO - train - iter 174200: loss 3.0633, time 5.17s
06-07 09:50 - modeling.trainer - INFO - train - iter 174250: loss 3.0495, time 5.18s
06-07 09:50 - modeling.trainer - INFO - train - iter 174300: loss 3.0339, time 5.22s
06-07 09:50 - modeling.trainer - INFO - train - iter 174350: loss 3.0383, time 5.20s