text
stringlengths
54
260
06-07 09:33 - modeling.trainer - INFO - train - iter 164500: loss 3.0597, time 5.37s
06-07 09:33 - modeling.trainer - INFO - train - iter 164550: loss 3.0605, time 5.36s
06-07 09:33 - modeling.trainer - INFO - train - iter 164600: loss 3.0628, time 5.38s
06-07 09:33 - modeling.trainer - INFO - train - iter 164650: loss 3.0588, time 5.39s
06-07 09:33 - modeling.trainer - INFO - train - iter 164700: loss 3.0606, time 5.38s
06-07 09:33 - modeling.trainer - INFO - train - iter 164750: loss 3.0638, time 5.40s
06-07 09:33 - modeling.trainer - INFO - train - iter 164800: loss 3.0646, time 5.35s
06-07 09:33 - modeling.trainer - INFO - train - iter 164850: loss 3.0646, time 5.37s
06-07 09:33 - modeling.trainer - INFO - train - iter 164900: loss 3.0630, time 5.37s
06-07 09:34 - modeling.trainer - INFO - train - iter 164950: loss 3.0566, time 5.38s
06-07 09:34 - modeling.trainer - INFO - train - iter 165000: loss 3.0530, time 5.35s
06-07 09:34 - modeling.trainer - INFO - train - iter 165050: loss 3.0600, time 5.98s
06-07 09:34 - modeling.trainer - INFO - train - iter 165100: loss 3.0580, time 5.35s
06-07 09:34 - modeling.trainer - INFO - train - iter 165150: loss 3.0508, time 5.34s
06-07 09:34 - modeling.trainer - INFO - train - iter 165200: loss 3.0506, time 5.36s
06-07 09:34 - modeling.trainer - INFO - train - iter 165250: loss 3.0535, time 5.36s
06-07 09:34 - modeling.trainer - INFO - train - iter 165300: loss 3.0550, time 5.33s
06-07 09:34 - modeling.trainer - INFO - train - iter 165350: loss 3.0545, time 5.37s
06-07 09:34 - modeling.trainer - INFO - train - iter 165400: loss 3.0526, time 5.36s
06-07 09:34 - modeling.trainer - INFO - train - iter 165450: loss 3.0496, time 5.33s
06-07 09:35 - modeling.trainer - INFO - train - iter 165500: loss 3.0553, time 5.35s
06-07 09:35 - modeling.trainer - INFO - train - iter 165550: loss 3.0642, time 5.31s
06-07 09:35 - modeling.trainer - INFO - train - iter 165600: loss 3.0565, time 5.33s
06-07 09:35 - modeling.trainer - INFO - train - iter 165650: loss 3.0433, time 5.34s
06-07 09:35 - modeling.trainer - INFO - train - iter 165700: loss 3.0386, time 5.30s
06-07 09:35 - modeling.trainer - INFO - train - iter 165750: loss 3.0451, time 5.31s
06-07 09:35 - modeling.trainer - INFO - train - iter 165800: loss 3.0606, time 5.32s
06-07 09:35 - modeling.trainer - INFO - train - iter 165850: loss 3.0650, time 5.36s
06-07 09:35 - modeling.trainer - INFO - train - iter 165900: loss 3.0558, time 5.36s
06-07 09:35 - modeling.trainer - INFO - train - iter 165950: loss 3.0565, time 5.34s
06-07 09:35 - modeling.trainer - INFO - train - iter 166000: loss 3.0661, time 5.31s
06-07 09:35 - modeling.trainer - INFO - train - iter 166050: loss 3.0653, time 5.32s
06-07 09:36 - modeling.trainer - INFO - train - iter 166100: loss 3.0685, time 5.32s
06-07 09:36 - modeling.trainer - INFO - train - iter 166150: loss 3.0623, time 5.33s
06-07 09:36 - modeling.trainer - INFO - train - iter 166200: loss 3.0668, time 5.36s
06-07 09:36 - modeling.trainer - INFO - train - iter 166250: loss 3.0683, time 5.30s
06-07 09:36 - modeling.trainer - INFO - train - iter 166300: loss 3.0520, time 5.32s
06-07 09:36 - modeling.trainer - INFO - train - iter 166350: loss 3.0622, time 5.35s
06-07 09:36 - modeling.trainer - INFO - train - iter 166400: loss 3.0700, time 5.32s
06-07 09:36 - modeling.trainer - INFO - train - iter 166450: loss 3.0615, time 5.31s
06-07 09:36 - modeling.trainer - INFO - train - iter 166500: loss 3.0563, time 5.32s
06-07 09:36 - modeling.trainer - INFO - train - iter 166550: loss 3.0588, time 5.27s
06-07 09:36 - modeling.trainer - INFO - train - iter 166600: loss 3.0624, time 5.26s
06-07 09:37 - modeling.trainer - INFO - train - iter 166650: loss 3.0675, time 5.31s
06-07 09:37 - modeling.trainer - INFO - train - iter 166700: loss 3.0697, time 5.32s
06-07 09:37 - modeling.trainer - INFO - train - iter 166750: loss 3.0529, time 5.28s
06-07 09:37 - modeling.trainer - INFO - train - iter 166800: loss 3.0485, time 6.01s
06-07 09:37 - modeling.trainer - INFO - train - iter 166850: loss 3.0547, time 5.28s
06-07 09:37 - modeling.trainer - INFO - train - iter 166900: loss 3.0576, time 5.30s
06-07 09:37 - modeling.trainer - INFO - train - iter 166950: loss 3.0581, time 5.25s
06-07 09:37 - modeling.trainer - INFO - train - iter 167000: loss 3.0576, time 5.27s
06-07 09:37 - modeling.trainer - INFO - train - iter 167050: loss 3.0611, time 5.27s
06-07 09:37 - modeling.trainer - INFO - train - iter 167100: loss 3.0626, time 5.28s
06-07 09:37 - modeling.trainer - INFO - train - iter 167150: loss 3.0624, time 5.26s
06-07 09:38 - modeling.trainer - INFO - train - iter 167200: loss 3.0626, time 5.27s
06-07 09:38 - modeling.trainer - INFO - train - iter 167250: loss 3.0624, time 5.28s
06-07 09:38 - modeling.trainer - INFO - train - iter 167300: loss 3.0557, time 5.28s
06-07 09:38 - modeling.trainer - INFO - train - iter 167350: loss 3.0554, time 5.28s
06-07 09:38 - modeling.trainer - INFO - train - iter 167400: loss 3.0617, time 5.25s
06-07 09:38 - modeling.trainer - INFO - train - iter 167450: loss 3.0671, time 5.27s
06-07 09:38 - modeling.trainer - INFO - train - iter 167500: loss 3.0691, time 5.27s
06-07 09:38 - modeling.trainer - INFO - train - iter 167550: loss 3.0698, time 5.23s
06-07 09:38 - modeling.trainer - INFO - train - iter 167600: loss 3.0601, time 5.23s
06-07 09:38 - modeling.trainer - INFO - train - iter 167650: loss 3.0570, time 5.28s
06-07 09:38 - modeling.trainer - INFO - train - iter 167700: loss 3.0594, time 5.27s
06-07 09:38 - modeling.trainer - INFO - train - iter 167750: loss 3.0583, time 5.29s
06-07 09:39 - modeling.trainer - INFO - train - iter 167800: loss 3.0657, time 5.29s
06-07 09:39 - modeling.trainer - INFO - train - iter 167850: loss 3.0574, time 5.28s
06-07 09:39 - modeling.trainer - INFO - train - iter 167900: loss 3.0438, time 5.24s
06-07 09:39 - modeling.trainer - INFO - train - iter 167950: loss 3.0494, time 5.29s
06-07 09:39 - modeling.trainer - INFO - train - iter 168000: loss 3.0608, time 5.27s
06-07 09:39 - modeling.trainer - INFO - train - iter 168050: loss 3.0693, time 5.25s
06-07 09:39 - modeling.trainer - INFO - train - iter 168100: loss 3.0617, time 5.26s
06-07 09:39 - modeling.trainer - INFO - train - iter 168150: loss 3.0574, time 5.25s
06-07 09:39 - modeling.trainer - INFO - train - iter 168200: loss 3.0553, time 5.20s
06-07 09:39 - modeling.trainer - INFO - train - iter 168250: loss 3.0447, time 5.25s
06-07 09:39 - modeling.trainer - INFO - train - iter 168300: loss 3.0645, time 5.24s
06-07 09:40 - modeling.trainer - INFO - train - iter 168350: loss 3.0755, time 5.23s
06-07 09:40 - modeling.trainer - INFO - train - iter 168400: loss 3.0637, time 5.22s
06-07 09:40 - modeling.trainer - INFO - train - iter 168450: loss 3.0634, time 5.25s
06-07 09:40 - modeling.trainer - INFO - train - iter 168500: loss 3.0540, time 5.22s
06-07 09:40 - modeling.trainer - INFO - train - iter 168550: loss 3.0523, time 5.87s
06-07 09:40 - modeling.trainer - INFO - train - iter 168600: loss 3.0588, time 5.27s
06-07 09:40 - modeling.trainer - INFO - train - iter 168650: loss 3.0597, time 5.34s
06-07 09:40 - modeling.trainer - INFO - train - iter 168700: loss 3.0514, time 5.28s
06-07 09:40 - modeling.trainer - INFO - train - iter 168750: loss 3.0541, time 5.26s
06-07 09:40 - modeling.trainer - INFO - train - iter 168800: loss 3.0657, time 5.24s
06-07 09:40 - modeling.trainer - INFO - train - iter 168850: loss 3.0559, time 5.23s
06-07 09:41 - modeling.trainer - INFO - train - iter 168900: loss 3.0521, time 5.23s
06-07 09:41 - modeling.trainer - INFO - train - iter 168950: loss 3.0623, time 5.21s
06-07 09:41 - modeling.trainer - INFO - train - iter 169000: loss 3.0650, time 5.23s
06-07 09:41 - modeling.trainer - INFO - train - iter 169050: loss 3.0616, time 5.22s
06-07 09:41 - modeling.trainer - INFO - train - iter 169100: loss 3.0514, time 5.21s
06-07 09:41 - modeling.trainer - INFO - train - iter 169150: loss 3.0388, time 5.24s
06-07 09:41 - modeling.trainer - INFO - train - iter 169200: loss 3.0547, time 5.22s
06-07 09:41 - modeling.trainer - INFO - train - iter 169250: loss 3.0627, time 5.21s
06-07 09:41 - modeling.trainer - INFO - train - iter 169300: loss 3.0562, time 5.23s
06-07 09:41 - modeling.trainer - INFO - train - iter 169350: loss 3.0553, time 5.25s
06-07 09:41 - modeling.trainer - INFO - train - iter 169400: loss 3.0555, time 5.21s
06-07 09:41 - modeling.trainer - INFO - train - iter 169450: loss 3.0681, time 5.24s