text
stringlengths
54
260
06-11 06:40 - modeling.trainer - INFO - train - iter 1735500: loss 2.8479, time 6.64s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735550: loss 2.8410, time 6.66s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735600: loss 2.8536, time 6.85s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735650: loss 2.8552, time 6.66s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735700: loss 2.8504, time 6.74s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735750: loss 2.8462, time 6.71s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735800: loss 2.8505, time 6.70s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735850: loss 2.8554, time 6.62s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735900: loss 2.8466, time 6.60s
06-11 06:41 - modeling.trainer - INFO - train - iter 1735950: loss 2.8403, time 6.63s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736000: loss 2.8454, time 6.69s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736050: loss 2.8471, time 6.60s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736100: loss 2.8449, time 6.68s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736150: loss 2.8438, time 6.64s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736200: loss 2.8443, time 6.72s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736250: loss 2.8476, time 6.71s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736300: loss 2.8458, time 6.72s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736350: loss 2.8521, time 6.62s
06-11 06:42 - modeling.trainer - INFO - train - iter 1736400: loss 2.8551, time 6.60s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736450: loss 2.8553, time 6.58s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736500: loss 2.8608, time 6.76s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736550: loss 2.8460, time 6.71s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736600: loss 2.8427, time 6.63s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736650: loss 2.8499, time 6.63s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736700: loss 2.8431, time 7.52s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736750: loss 2.8506, time 6.67s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736800: loss 2.8522, time 6.65s
06-11 06:43 - modeling.trainer - INFO - train - iter 1736850: loss 2.8446, time 6.76s
06-11 06:44 - modeling.trainer - INFO - train - iter 1736900: loss 2.8444, time 6.63s
06-11 06:44 - modeling.trainer - INFO - train - iter 1736950: loss 2.8404, time 6.59s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737000: loss 2.8375, time 6.59s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737050: loss 2.8436, time 6.63s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737100: loss 2.8443, time 6.58s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737150: loss 2.8402, time 6.68s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737200: loss 2.8384, time 6.61s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737250: loss 2.8350, time 6.59s
06-11 06:44 - modeling.trainer - INFO - train - iter 1737300: loss 2.8428, time 6.65s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737350: loss 2.8455, time 6.61s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737400: loss 2.8353, time 6.64s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737450: loss 2.8430, time 6.73s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737500: loss 2.8500, time 6.53s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737550: loss 2.8466, time 6.79s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737600: loss 2.8462, time 6.75s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737650: loss 2.8426, time 6.62s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737700: loss 2.8471, time 6.82s
06-11 06:45 - modeling.trainer - INFO - train - iter 1737750: loss 2.8502, time 6.63s
06-11 06:46 - modeling.trainer - INFO - train - iter 1737800: loss 2.8498, time 6.55s
06-11 06:46 - modeling.trainer - INFO - train - iter 1737850: loss 2.8354, time 6.61s
06-11 06:46 - modeling.trainer - INFO - train - iter 1737900: loss 2.8264, time 6.53s
06-11 06:46 - modeling.trainer - INFO - train - iter 1737950: loss 2.8415, time 6.67s
06-11 06:46 - modeling.trainer - INFO - train - iter 1738000: loss 2.8449, time 6.69s
06-11 06:46 - modeling.trainer - INFO - train - iter 1738050: loss 2.8420, time 6.61s
06-11 06:46 - modeling.trainer - INFO - train - iter 1738100: loss 2.8474, time 6.67s
06-11 06:46 - modeling.trainer - INFO - train - iter 1738150: loss 2.8506, time 6.55s
06-11 06:46 - modeling.trainer - INFO - train - iter 1738200: loss 2.8456, time 6.64s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738250: loss 2.8389, time 6.59s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738300: loss 2.8436, time 6.59s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738350: loss 2.8495, time 6.93s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738400: loss 2.8463, time 7.33s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738450: loss 2.8468, time 6.61s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738500: loss 2.8548, time 6.64s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738550: loss 2.8572, time 6.59s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738600: loss 2.8560, time 6.57s
06-11 06:47 - modeling.trainer - INFO - train - iter 1738650: loss 2.8516, time 6.65s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738700: loss 2.8542, time 6.57s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738750: loss 2.8620, time 6.50s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738800: loss 2.8467, time 6.60s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738850: loss 2.8389, time 6.59s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738900: loss 2.8458, time 6.56s
06-11 06:48 - modeling.trainer - INFO - train - iter 1738950: loss 2.8433, time 6.62s
06-11 06:48 - modeling.trainer - INFO - train - iter 1739000: loss 2.8337, time 6.67s
06-11 06:48 - modeling.trainer - INFO - train - iter 1739050: loss 2.8421, time 6.61s
06-11 06:48 - modeling.trainer - INFO - train - iter 1739100: loss 2.8518, time 6.68s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739150: loss 2.8464, time 6.61s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739200: loss 2.8510, time 6.59s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739250: loss 2.8490, time 6.63s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739300: loss 2.8470, time 6.72s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739350: loss 2.8418, time 6.63s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739400: loss 2.8464, time 6.76s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739450: loss 2.8520, time 6.65s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739500: loss 2.8493, time 6.64s
06-11 06:49 - modeling.trainer - INFO - train - iter 1739550: loss 2.8496, time 6.61s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739600: loss 2.8447, time 6.68s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739650: loss 2.8460, time 6.74s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739700: loss 2.8395, time 6.67s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739750: loss 2.8401, time 6.58s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739800: loss 2.8477, time 6.64s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739850: loss 2.8490, time 6.72s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739900: loss 2.8491, time 6.62s
06-11 06:50 - modeling.trainer - INFO - train - iter 1739950: loss 2.8511, time 6.62s
06-11 06:51 - modeling.trainer - INFO - val - iter 1740000: lm_loss 1.3600, value_loss 0.7345, time_loss 0.6646, loss 2.7590, time 6.59s
06-11 06:51 - modeling.trainer - INFO - new best val loss 2.7590
06-11 06:51 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-11 06:51 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 06:51 - modeling.trainer - INFO - train - iter 1740000: loss 2.8514, time 20.68s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740050: loss 2.8384, time 6.54s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740100: loss 2.8306, time 6.68s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740150: loss 2.8368, time 7.32s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740200: loss 2.8424, time 6.71s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740250: loss 2.8520, time 6.58s