text
stringlengths
54
260
06-11 07:02 - modeling.trainer - INFO - train - iter 1745300: loss 2.8311, time 6.66s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745350: loss 2.8403, time 7.33s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745400: loss 2.8430, time 6.67s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745450: loss 2.8510, time 6.63s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745500: loss 2.8553, time 6.64s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745550: loss 2.8478, time 6.65s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745600: loss 2.8435, time 6.73s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745650: loss 2.8465, time 6.65s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745700: loss 2.8451, time 6.58s
06-11 07:03 - modeling.trainer - INFO - train - iter 1745750: loss 2.8392, time 6.75s
06-11 07:04 - modeling.trainer - INFO - train - iter 1745800: loss 2.8471, time 6.59s
06-11 07:04 - modeling.trainer - INFO - train - iter 1745850: loss 2.8507, time 6.66s
06-11 07:04 - modeling.trainer - INFO - train - iter 1745900: loss 2.8432, time 6.64s
06-11 07:04 - modeling.trainer - INFO - train - iter 1745950: loss 2.8344, time 6.68s
06-11 07:04 - modeling.trainer - INFO - train - iter 1746000: loss 2.8388, time 6.68s
06-11 07:04 - modeling.trainer - INFO - train - iter 1746050: loss 2.8491, time 6.72s
06-11 07:04 - modeling.trainer - INFO - train - iter 1746100: loss 2.8484, time 6.66s
06-11 07:04 - modeling.trainer - INFO - train - iter 1746150: loss 2.8526, time 6.58s
06-11 07:04 - modeling.trainer - INFO - train - iter 1746200: loss 2.8562, time 6.54s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746250: loss 2.8502, time 6.73s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746300: loss 2.8522, time 6.66s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746350: loss 2.8519, time 6.69s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746400: loss 2.8482, time 6.53s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746450: loss 2.8505, time 6.56s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746500: loss 2.8529, time 6.62s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746550: loss 2.8460, time 6.69s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746600: loss 2.8400, time 6.72s
06-11 07:05 - modeling.trainer - INFO - train - iter 1746650: loss 2.8438, time 6.59s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746700: loss 2.8447, time 6.62s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746750: loss 2.8386, time 6.68s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746800: loss 2.8433, time 6.64s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746850: loss 2.8562, time 6.65s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746900: loss 2.8487, time 6.63s
06-11 07:06 - modeling.trainer - INFO - train - iter 1746950: loss 2.8428, time 6.64s
06-11 07:06 - modeling.trainer - INFO - train - iter 1747000: loss 2.8473, time 6.51s
06-11 07:06 - modeling.trainer - INFO - train - iter 1747050: loss 2.8443, time 6.62s
06-11 07:06 - modeling.trainer - INFO - train - iter 1747100: loss 2.8470, time 7.35s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747150: loss 2.8521, time 6.67s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747200: loss 2.8457, time 6.61s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747250: loss 2.8457, time 6.75s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747300: loss 2.8439, time 6.55s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747350: loss 2.8383, time 6.56s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747400: loss 2.8406, time 6.55s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747450: loss 2.8379, time 6.54s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747500: loss 2.8403, time 6.63s
06-11 07:07 - modeling.trainer - INFO - train - iter 1747550: loss 2.8446, time 6.65s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747600: loss 2.8406, time 6.54s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747650: loss 2.8443, time 6.65s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747700: loss 2.8526, time 6.69s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747750: loss 2.8480, time 6.51s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747800: loss 2.8412, time 6.64s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747850: loss 2.8446, time 6.69s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747900: loss 2.8457, time 6.63s
06-11 07:08 - modeling.trainer - INFO - train - iter 1747950: loss 2.8409, time 6.60s
06-11 07:08 - modeling.trainer - INFO - train - iter 1748000: loss 2.8482, time 6.55s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748050: loss 2.8437, time 6.62s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748100: loss 2.8321, time 6.58s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748150: loss 2.8380, time 6.71s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748200: loss 2.8431, time 6.63s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748250: loss 2.8452, time 6.61s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748300: loss 2.8523, time 6.58s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748350: loss 2.8531, time 6.58s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748400: loss 2.8431, time 6.60s
06-11 07:09 - modeling.trainer - INFO - train - iter 1748450: loss 2.8504, time 6.56s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748500: loss 2.8576, time 6.58s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748550: loss 2.8453, time 6.69s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748600: loss 2.8391, time 6.60s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748650: loss 2.8419, time 6.81s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748700: loss 2.8462, time 6.78s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748750: loss 2.8453, time 6.50s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748800: loss 2.8420, time 6.52s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748850: loss 2.8387, time 7.26s
06-11 07:10 - modeling.trainer - INFO - train - iter 1748900: loss 2.8410, time 6.60s
06-11 07:11 - modeling.trainer - INFO - train - iter 1748950: loss 2.8528, time 6.58s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749000: loss 2.8509, time 6.66s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749050: loss 2.8387, time 6.67s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749100: loss 2.8440, time 6.61s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749150: loss 2.8523, time 6.58s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749200: loss 2.8580, time 6.71s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749250: loss 2.8548, time 6.65s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749300: loss 2.8471, time 6.57s
06-11 07:11 - modeling.trainer - INFO - train - iter 1749350: loss 2.8411, time 6.63s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749400: loss 2.8347, time 6.59s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749450: loss 2.8361, time 6.66s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749500: loss 2.8373, time 6.61s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749550: loss 2.8460, time 6.56s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749600: loss 2.8613, time 6.60s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749650: loss 2.8505, time 6.73s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749700: loss 2.8442, time 6.64s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749750: loss 2.8508, time 6.69s
06-11 07:12 - modeling.trainer - INFO - train - iter 1749800: loss 2.8471, time 6.62s
06-11 07:13 - modeling.trainer - INFO - train - iter 1749850: loss 2.8413, time 6.76s
06-11 07:13 - modeling.trainer - INFO - train - iter 1749900: loss 2.8428, time 6.64s
06-11 07:13 - modeling.trainer - INFO - train - iter 1749950: loss 2.8459, time 6.68s
06-11 07:13 - modeling.trainer - INFO - val - iter 1750000: lm_loss 1.3595, value_loss 0.7357, time_loss 0.6644, loss 2.7596, time 6.63s
06-11 07:13 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 07:13 - modeling.trainer - INFO - train - iter 1750000: loss 2.8361, time 17.09s
06-11 07:13 - modeling.trainer - INFO - train - iter 1750050: loss 2.8354, time 6.53s
06-11 07:13 - modeling.trainer - INFO - train - iter 1750100: loss 2.8401, time 6.62s
06-11 07:13 - modeling.trainer - INFO - train - iter 1750150: loss 2.8395, time 6.62s