text
stringlengths
54
260
06-11 07:13 - modeling.trainer - INFO - train - iter 1750200: loss 2.8478, time 6.57s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750250: loss 2.8506, time 6.57s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750300: loss 2.8361, time 6.56s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750350: loss 2.8395, time 6.73s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750400: loss 2.8470, time 6.59s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750450: loss 2.8463, time 6.62s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750500: loss 2.8472, time 6.73s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750550: loss 2.8559, time 6.68s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750600: loss 2.8575, time 7.52s
06-11 07:14 - modeling.trainer - INFO - train - iter 1750650: loss 2.8481, time 6.57s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750700: loss 2.8489, time 6.66s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750750: loss 2.8494, time 6.65s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750800: loss 2.8496, time 6.65s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750850: loss 2.8521, time 6.53s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750900: loss 2.8563, time 6.65s
06-11 07:15 - modeling.trainer - INFO - train - iter 1750950: loss 2.8488, time 6.61s
06-11 07:15 - modeling.trainer - INFO - train - iter 1751000: loss 2.8449, time 6.63s
06-11 07:15 - modeling.trainer - INFO - train - iter 1751050: loss 2.8493, time 6.61s
06-11 07:15 - modeling.trainer - INFO - train - iter 1751100: loss 2.8469, time 6.60s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751150: loss 2.8482, time 6.65s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751200: loss 2.8502, time 6.52s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751250: loss 2.8455, time 6.68s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751300: loss 2.8458, time 6.58s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751350: loss 2.8480, time 6.58s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751400: loss 2.8469, time 6.63s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751450: loss 2.8449, time 6.56s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751500: loss 2.8404, time 6.53s
06-11 07:16 - modeling.trainer - INFO - train - iter 1751550: loss 2.8448, time 6.53s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751600: loss 2.8476, time 6.58s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751650: loss 2.8440, time 6.96s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751700: loss 2.8416, time 6.60s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751750: loss 2.8362, time 6.60s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751800: loss 2.8379, time 6.63s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751850: loss 2.8520, time 6.59s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751900: loss 2.8400, time 6.56s
06-11 07:17 - modeling.trainer - INFO - train - iter 1751950: loss 2.8316, time 6.63s
06-11 07:17 - modeling.trainer - INFO - train - iter 1752000: loss 2.8425, time 6.56s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752050: loss 2.8449, time 6.57s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752100: loss 2.8499, time 6.51s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752150: loss 2.8507, time 6.52s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752200: loss 2.8466, time 6.59s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752250: loss 2.8416, time 6.60s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752300: loss 2.8427, time 6.60s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752350: loss 2.8465, time 7.30s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752400: loss 2.8413, time 6.58s
06-11 07:18 - modeling.trainer - INFO - train - iter 1752450: loss 2.8384, time 6.58s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752500: loss 2.8388, time 6.59s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752550: loss 2.8355, time 6.64s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752600: loss 2.8335, time 6.62s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752650: loss 2.8340, time 6.59s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752700: loss 2.8417, time 6.69s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752750: loss 2.8406, time 6.68s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752800: loss 2.8427, time 6.65s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752850: loss 2.8491, time 6.60s
06-11 07:19 - modeling.trainer - INFO - train - iter 1752900: loss 2.8467, time 6.64s
06-11 07:20 - modeling.trainer - INFO - train - iter 1752950: loss 2.8465, time 6.65s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753000: loss 2.8429, time 6.58s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753050: loss 2.8461, time 6.60s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753100: loss 2.8517, time 6.55s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753150: loss 2.8461, time 6.62s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753200: loss 2.8443, time 6.50s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753250: loss 2.8527, time 6.56s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753300: loss 2.8526, time 6.56s
06-11 07:20 - modeling.trainer - INFO - train - iter 1753350: loss 2.8437, time 6.49s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753400: loss 2.8463, time 6.54s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753450: loss 2.8538, time 6.57s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753500: loss 2.8483, time 6.61s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753550: loss 2.8311, time 6.59s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753600: loss 2.8304, time 6.53s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753650: loss 2.8401, time 6.62s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753700: loss 2.8457, time 6.65s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753750: loss 2.8482, time 6.51s
06-11 07:21 - modeling.trainer - INFO - train - iter 1753800: loss 2.8469, time 6.60s
06-11 07:22 - modeling.trainer - INFO - train - iter 1753850: loss 2.8420, time 6.57s
06-11 07:22 - modeling.trainer - INFO - train - iter 1753900: loss 2.8398, time 6.61s
06-11 07:22 - modeling.trainer - INFO - train - iter 1753950: loss 2.8411, time 6.63s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754000: loss 2.8425, time 6.56s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754050: loss 2.8482, time 6.63s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754100: loss 2.8490, time 7.28s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754150: loss 2.8491, time 6.53s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754200: loss 2.8425, time 6.55s
06-11 07:22 - modeling.trainer - INFO - train - iter 1754250: loss 2.8387, time 6.57s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754300: loss 2.8396, time 6.51s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754350: loss 2.8386, time 6.59s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754400: loss 2.8438, time 6.56s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754450: loss 2.8451, time 6.51s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754500: loss 2.8498, time 6.61s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754550: loss 2.8529, time 6.56s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754600: loss 2.8450, time 6.52s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754650: loss 2.8401, time 6.59s
06-11 07:23 - modeling.trainer - INFO - train - iter 1754700: loss 2.8484, time 6.67s
06-11 07:24 - modeling.trainer - INFO - train - iter 1754750: loss 2.8523, time 6.59s
06-11 07:24 - modeling.trainer - INFO - train - iter 1754800: loss 2.8465, time 6.61s
06-11 07:24 - modeling.trainer - INFO - train - iter 1754850: loss 2.8382, time 6.59s
06-11 07:24 - modeling.trainer - INFO - train - iter 1754900: loss 2.8383, time 6.65s
06-11 07:24 - modeling.trainer - INFO - train - iter 1754950: loss 2.8498, time 6.64s
06-11 07:24 - modeling.trainer - INFO - train - iter 1755000: loss 2.8500, time 6.58s
06-11 07:24 - modeling.trainer - INFO - train - iter 1755050: loss 2.8453, time 6.55s
06-11 07:24 - modeling.trainer - INFO - train - iter 1755100: loss 2.8407, time 6.65s
06-11 07:24 - modeling.trainer - INFO - train - iter 1755150: loss 2.8397, time 6.62s