text
stringlengths
54
260
06-11 07:35 - modeling.trainer - INFO - train - iter 1760100: loss 2.8299, time 6.63s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760150: loss 2.8418, time 6.66s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760200: loss 2.8548, time 6.56s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760250: loss 2.8448, time 6.51s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760300: loss 2.8425, time 6.57s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760350: loss 2.8483, time 6.61s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760400: loss 2.8415, time 6.69s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760450: loss 2.8405, time 6.58s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760500: loss 2.8420, time 6.58s
06-11 07:36 - modeling.trainer - INFO - train - iter 1760550: loss 2.8377, time 6.59s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760600: loss 2.8383, time 6.61s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760650: loss 2.8468, time 7.01s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760700: loss 2.8419, time 6.62s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760750: loss 2.8403, time 6.61s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760800: loss 2.8476, time 6.67s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760850: loss 2.8424, time 6.68s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760900: loss 2.8483, time 6.57s
06-11 07:37 - modeling.trainer - INFO - train - iter 1760950: loss 2.8559, time 6.69s
06-11 07:37 - modeling.trainer - INFO - train - iter 1761000: loss 2.8511, time 6.75s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761050: loss 2.8581, time 7.33s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761100: loss 2.8561, time 6.51s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761150: loss 2.8474, time 6.64s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761200: loss 2.8409, time 6.53s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761250: loss 2.8388, time 6.56s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761300: loss 2.8352, time 6.67s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761350: loss 2.8435, time 6.55s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761400: loss 2.8465, time 6.56s
06-11 07:38 - modeling.trainer - INFO - train - iter 1761450: loss 2.8420, time 6.56s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761500: loss 2.8480, time 6.54s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761550: loss 2.8438, time 6.63s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761600: loss 2.8424, time 6.64s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761650: loss 2.8489, time 6.60s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761700: loss 2.8507, time 6.59s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761750: loss 2.8453, time 6.70s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761800: loss 2.8344, time 6.60s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761850: loss 2.8424, time 6.61s
06-11 07:39 - modeling.trainer - INFO - train - iter 1761900: loss 2.8510, time 6.64s
06-11 07:40 - modeling.trainer - INFO - train - iter 1761950: loss 2.8459, time 6.63s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762000: loss 2.8499, time 6.57s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762050: loss 2.8443, time 6.63s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762100: loss 2.8415, time 6.57s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762150: loss 2.8399, time 6.66s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762200: loss 2.8369, time 6.64s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762250: loss 2.8418, time 6.66s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762300: loss 2.8420, time 6.65s
06-11 07:40 - modeling.trainer - INFO - train - iter 1762350: loss 2.8466, time 6.72s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762400: loss 2.8504, time 6.59s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762450: loss 2.8469, time 6.55s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762500: loss 2.8485, time 6.63s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762550: loss 2.8501, time 6.50s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762600: loss 2.8494, time 6.64s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762650: loss 2.8408, time 6.60s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762700: loss 2.8319, time 6.72s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762750: loss 2.8357, time 7.25s
06-11 07:41 - modeling.trainer - INFO - train - iter 1762800: loss 2.8437, time 6.64s
06-11 07:42 - modeling.trainer - INFO - train - iter 1762850: loss 2.8437, time 6.58s
06-11 07:42 - modeling.trainer - INFO - train - iter 1762900: loss 2.8401, time 6.69s
06-11 07:42 - modeling.trainer - INFO - train - iter 1762950: loss 2.8415, time 6.65s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763000: loss 2.8464, time 6.57s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763050: loss 2.8345, time 6.58s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763100: loss 2.8351, time 6.65s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763150: loss 2.8471, time 6.64s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763200: loss 2.8490, time 6.66s
06-11 07:42 - modeling.trainer - INFO - train - iter 1763250: loss 2.8435, time 6.71s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763300: loss 2.8397, time 6.64s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763350: loss 2.8474, time 6.73s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763400: loss 2.8467, time 6.60s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763450: loss 2.8452, time 6.64s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763500: loss 2.8476, time 6.79s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763550: loss 2.8456, time 6.63s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763600: loss 2.8381, time 6.72s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763650: loss 2.8341, time 6.67s
06-11 07:43 - modeling.trainer - INFO - train - iter 1763700: loss 2.8337, time 6.60s
06-11 07:44 - modeling.trainer - INFO - train - iter 1763750: loss 2.8408, time 6.60s
06-11 07:44 - modeling.trainer - INFO - train - iter 1763800: loss 2.8490, time 6.56s
06-11 07:44 - modeling.trainer - INFO - train - iter 1763850: loss 2.8465, time 6.71s
06-11 07:44 - modeling.trainer - INFO - train - iter 1763900: loss 2.8455, time 6.62s
06-11 07:44 - modeling.trainer - INFO - train - iter 1763950: loss 2.8425, time 6.50s
06-11 07:44 - modeling.trainer - INFO - train - iter 1764000: loss 2.8405, time 6.76s
06-11 07:44 - modeling.trainer - INFO - train - iter 1764050: loss 2.8534, time 6.61s
06-11 07:44 - modeling.trainer - INFO - train - iter 1764100: loss 2.8528, time 6.65s
06-11 07:44 - modeling.trainer - INFO - train - iter 1764150: loss 2.8434, time 6.65s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764200: loss 2.8502, time 6.69s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764250: loss 2.8477, time 6.73s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764300: loss 2.8346, time 6.62s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764350: loss 2.8407, time 6.59s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764400: loss 2.8503, time 6.62s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764450: loss 2.8479, time 6.60s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764500: loss 2.8470, time 7.42s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764550: loss 2.8388, time 6.56s
06-11 07:45 - modeling.trainer - INFO - train - iter 1764600: loss 2.8430, time 6.67s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764650: loss 2.8452, time 6.65s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764700: loss 2.8321, time 6.61s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764750: loss 2.8329, time 6.59s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764800: loss 2.8403, time 6.59s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764850: loss 2.8460, time 6.57s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764900: loss 2.8498, time 6.68s
06-11 07:46 - modeling.trainer - INFO - train - iter 1764950: loss 2.8487, time 6.62s
06-11 07:46 - modeling.trainer - INFO - train - iter 1765000: loss 2.8423, time 6.59s
06-11 07:46 - modeling.trainer - INFO - train - iter 1765050: loss 2.8452, time 6.68s