text
stringlengths
54
260
06-11 07:25 - modeling.trainer - INFO - train - iter 1755200: loss 2.8376, time 6.71s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755250: loss 2.8395, time 6.63s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755300: loss 2.8410, time 6.65s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755350: loss 2.8417, time 6.54s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755400: loss 2.8468, time 6.51s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755450: loss 2.8462, time 6.61s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755500: loss 2.8485, time 6.67s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755550: loss 2.8490, time 6.59s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755600: loss 2.8435, time 6.61s
06-11 07:25 - modeling.trainer - INFO - train - iter 1755650: loss 2.8442, time 6.58s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755700: loss 2.8466, time 6.58s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755750: loss 2.8447, time 6.65s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755800: loss 2.8444, time 7.24s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755850: loss 2.8384, time 6.66s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755900: loss 2.8436, time 6.67s
06-11 07:26 - modeling.trainer - INFO - train - iter 1755950: loss 2.8604, time 6.70s
06-11 07:26 - modeling.trainer - INFO - train - iter 1756000: loss 2.8504, time 6.60s
06-11 07:26 - modeling.trainer - INFO - train - iter 1756050: loss 2.8506, time 6.67s
06-11 07:26 - modeling.trainer - INFO - train - iter 1756100: loss 2.8541, time 6.57s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756150: loss 2.8441, time 6.63s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756200: loss 2.8470, time 6.58s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756250: loss 2.8484, time 6.62s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756300: loss 2.8417, time 6.61s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756350: loss 2.8412, time 6.65s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756400: loss 2.8443, time 6.61s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756450: loss 2.8367, time 6.59s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756500: loss 2.8436, time 6.66s
06-11 07:27 - modeling.trainer - INFO - train - iter 1756550: loss 2.8498, time 6.61s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756600: loss 2.8431, time 6.60s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756650: loss 2.8379, time 6.61s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756700: loss 2.8335, time 6.62s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756750: loss 2.8374, time 6.65s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756800: loss 2.8438, time 6.63s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756850: loss 2.8491, time 6.67s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756900: loss 2.8478, time 6.52s
06-11 07:28 - modeling.trainer - INFO - train - iter 1756950: loss 2.8419, time 6.57s
06-11 07:28 - modeling.trainer - INFO - train - iter 1757000: loss 2.8434, time 6.58s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757050: loss 2.8445, time 6.62s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757100: loss 2.8534, time 6.67s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757150: loss 2.8484, time 6.61s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757200: loss 2.8403, time 6.60s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757250: loss 2.8457, time 6.69s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757300: loss 2.8509, time 6.66s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757350: loss 2.8514, time 6.60s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757400: loss 2.8449, time 6.55s
06-11 07:29 - modeling.trainer - INFO - train - iter 1757450: loss 2.8415, time 6.54s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757500: loss 2.8398, time 6.54s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757550: loss 2.8404, time 7.27s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757600: loss 2.8405, time 6.55s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757650: loss 2.8369, time 6.76s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757700: loss 2.8377, time 6.60s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757750: loss 2.8442, time 6.57s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757800: loss 2.8426, time 6.54s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757850: loss 2.8471, time 6.58s
06-11 07:30 - modeling.trainer - INFO - train - iter 1757900: loss 2.8514, time 6.57s
06-11 07:31 - modeling.trainer - INFO - train - iter 1757950: loss 2.8374, time 6.54s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758000: loss 2.8332, time 6.63s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758050: loss 2.8368, time 6.57s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758100: loss 2.8371, time 6.56s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758150: loss 2.8415, time 6.58s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758200: loss 2.8538, time 6.47s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758250: loss 2.8635, time 6.54s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758300: loss 2.8538, time 6.65s
06-11 07:31 - modeling.trainer - INFO - train - iter 1758350: loss 2.8452, time 6.60s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758400: loss 2.8481, time 6.57s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758450: loss 2.8507, time 6.59s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758500: loss 2.8414, time 6.60s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758550: loss 2.8391, time 6.53s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758600: loss 2.8524, time 6.62s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758650: loss 2.8493, time 6.61s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758700: loss 2.8335, time 6.55s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758750: loss 2.8265, time 6.60s
06-11 07:32 - modeling.trainer - INFO - train - iter 1758800: loss 2.8366, time 6.67s
06-11 07:33 - modeling.trainer - INFO - train - iter 1758850: loss 2.8400, time 6.58s
06-11 07:33 - modeling.trainer - INFO - train - iter 1758900: loss 2.8321, time 6.62s
06-11 07:33 - modeling.trainer - INFO - train - iter 1758950: loss 2.8352, time 6.53s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759000: loss 2.8428, time 6.52s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759050: loss 2.8488, time 6.66s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759100: loss 2.8431, time 6.59s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759150: loss 2.8397, time 6.62s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759200: loss 2.8456, time 6.62s
06-11 07:33 - modeling.trainer - INFO - train - iter 1759250: loss 2.8480, time 6.65s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759300: loss 2.8471, time 7.16s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759350: loss 2.8515, time 6.60s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759400: loss 2.8616, time 6.63s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759450: loss 2.8592, time 6.63s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759500: loss 2.8444, time 6.66s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759550: loss 2.8424, time 6.55s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759600: loss 2.8457, time 6.52s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759650: loss 2.8465, time 6.63s
06-11 07:34 - modeling.trainer - INFO - train - iter 1759700: loss 2.8463, time 6.62s
06-11 07:35 - modeling.trainer - INFO - train - iter 1759750: loss 2.8415, time 6.49s
06-11 07:35 - modeling.trainer - INFO - train - iter 1759800: loss 2.8452, time 6.59s
06-11 07:35 - modeling.trainer - INFO - train - iter 1759850: loss 2.8468, time 6.70s
06-11 07:35 - modeling.trainer - INFO - train - iter 1759900: loss 2.8435, time 6.55s
06-11 07:35 - modeling.trainer - INFO - train - iter 1759950: loss 2.8477, time 6.64s
06-11 07:35 - modeling.trainer - INFO - val - iter 1760000: lm_loss 1.3594, value_loss 0.7357, time_loss 0.6652, loss 2.7603, time 6.85s
06-11 07:35 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 07:35 - modeling.trainer - INFO - train - iter 1760000: loss 2.8444, time 17.63s
06-11 07:35 - modeling.trainer - INFO - train - iter 1760050: loss 2.8316, time 6.65s