text
stringlengths
54
260
06-11 06:51 - modeling.trainer - INFO - train - iter 1740300: loss 2.8576, time 6.67s
06-11 06:51 - modeling.trainer - INFO - train - iter 1740350: loss 2.8533, time 6.68s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740400: loss 2.8443, time 6.66s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740450: loss 2.8468, time 6.74s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740500: loss 2.8540, time 6.71s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740550: loss 2.8479, time 6.58s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740600: loss 2.8392, time 6.58s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740650: loss 2.8406, time 6.53s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740700: loss 2.8422, time 6.59s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740750: loss 2.8504, time 6.55s
06-11 06:52 - modeling.trainer - INFO - train - iter 1740800: loss 2.8523, time 6.61s
06-11 06:53 - modeling.trainer - INFO - train - iter 1740850: loss 2.8428, time 6.61s
06-11 06:53 - modeling.trainer - INFO - train - iter 1740900: loss 2.8415, time 6.67s
06-11 06:53 - modeling.trainer - INFO - train - iter 1740950: loss 2.8439, time 6.66s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741000: loss 2.8492, time 6.57s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741050: loss 2.8583, time 6.68s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741100: loss 2.8541, time 6.63s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741150: loss 2.8462, time 6.64s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741200: loss 2.8516, time 6.56s
06-11 06:53 - modeling.trainer - INFO - train - iter 1741250: loss 2.8592, time 6.56s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741300: loss 2.8613, time 6.78s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741350: loss 2.8519, time 6.83s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741400: loss 2.8453, time 6.74s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741450: loss 2.8470, time 6.74s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741500: loss 2.8474, time 6.79s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741550: loss 2.8448, time 6.84s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741600: loss 2.8526, time 6.61s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741650: loss 2.8493, time 6.65s
06-11 06:54 - modeling.trainer - INFO - train - iter 1741700: loss 2.8387, time 6.65s
06-11 06:55 - modeling.trainer - INFO - train - iter 1741750: loss 2.8456, time 6.66s
06-11 06:55 - modeling.trainer - INFO - train - iter 1741800: loss 2.8505, time 6.78s
06-11 06:55 - modeling.trainer - INFO - train - iter 1741850: loss 2.8431, time 6.80s
06-11 06:55 - modeling.trainer - INFO - train - iter 1741900: loss 2.8402, time 7.31s
06-11 06:55 - modeling.trainer - INFO - train - iter 1741950: loss 2.8504, time 6.62s
06-11 06:55 - modeling.trainer - INFO - train - iter 1742000: loss 2.8527, time 6.66s
06-11 06:55 - modeling.trainer - INFO - train - iter 1742050: loss 2.8454, time 6.54s
06-11 06:55 - modeling.trainer - INFO - train - iter 1742100: loss 2.8481, time 6.63s
06-11 06:55 - modeling.trainer - INFO - train - iter 1742150: loss 2.8511, time 6.64s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742200: loss 2.8451, time 6.61s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742250: loss 2.8383, time 6.71s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742300: loss 2.8354, time 6.56s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742350: loss 2.8420, time 6.65s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742400: loss 2.8465, time 6.72s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742450: loss 2.8495, time 6.61s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742500: loss 2.8465, time 6.57s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742550: loss 2.8401, time 6.61s
06-11 06:56 - modeling.trainer - INFO - train - iter 1742600: loss 2.8490, time 6.64s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742650: loss 2.8435, time 6.76s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742700: loss 2.8326, time 6.58s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742750: loss 2.8387, time 6.81s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742800: loss 2.8465, time 6.63s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742850: loss 2.8492, time 6.52s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742900: loss 2.8400, time 6.60s
06-11 06:57 - modeling.trainer - INFO - train - iter 1742950: loss 2.8359, time 6.66s
06-11 06:57 - modeling.trainer - INFO - train - iter 1743000: loss 2.8437, time 6.64s
06-11 06:57 - modeling.trainer - INFO - train - iter 1743050: loss 2.8449, time 6.65s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743100: loss 2.8438, time 6.67s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743150: loss 2.8498, time 6.67s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743200: loss 2.8461, time 6.53s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743250: loss 2.8442, time 6.69s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743300: loss 2.8484, time 6.72s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743350: loss 2.8505, time 6.68s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743400: loss 2.8412, time 6.66s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743450: loss 2.8333, time 6.55s
06-11 06:58 - modeling.trainer - INFO - train - iter 1743500: loss 2.8427, time 6.72s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743550: loss 2.8471, time 6.68s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743600: loss 2.8473, time 6.65s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743650: loss 2.8468, time 7.27s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743700: loss 2.8436, time 6.54s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743750: loss 2.8424, time 6.68s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743800: loss 2.8456, time 6.76s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743850: loss 2.8478, time 6.63s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743900: loss 2.8469, time 6.70s
06-11 06:59 - modeling.trainer - INFO - train - iter 1743950: loss 2.8409, time 6.56s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744000: loss 2.8414, time 6.62s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744050: loss 2.8436, time 6.73s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744100: loss 2.8442, time 6.64s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744150: loss 2.8361, time 6.61s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744200: loss 2.8442, time 6.68s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744250: loss 2.8644, time 6.79s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744300: loss 2.8498, time 6.62s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744350: loss 2.8373, time 6.64s
06-11 07:00 - modeling.trainer - INFO - train - iter 1744400: loss 2.8413, time 6.69s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744450: loss 2.8456, time 6.73s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744500: loss 2.8516, time 6.65s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744550: loss 2.8524, time 6.60s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744600: loss 2.8504, time 6.64s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744650: loss 2.8462, time 6.65s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744700: loss 2.8437, time 6.61s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744750: loss 2.8402, time 6.65s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744800: loss 2.8446, time 6.67s
06-11 07:01 - modeling.trainer - INFO - train - iter 1744850: loss 2.8523, time 6.76s
06-11 07:02 - modeling.trainer - INFO - train - iter 1744900: loss 2.8493, time 6.59s
06-11 07:02 - modeling.trainer - INFO - train - iter 1744950: loss 2.8458, time 6.61s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745000: loss 2.8414, time 6.76s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745050: loss 2.8376, time 6.58s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745100: loss 2.8401, time 6.62s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745150: loss 2.8444, time 6.76s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745200: loss 2.8419, time 6.59s
06-11 07:02 - modeling.trainer - INFO - train - iter 1745250: loss 2.8338, time 6.67s