text
stringlengths 54
260
|
---|
06-11 08:20 - modeling.trainer - INFO - train - iter 1779900: loss 2.8367, time 6.53s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1779950: loss 2.8372, time 6.74s
|
06-11 08:20 - modeling.trainer - INFO - val - iter 1780000: lm_loss 1.3587, value_loss 0.7356, time_loss 0.6643, loss 2.7586, time 6.59s
|
06-11 08:20 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780000: loss 2.8478, time 17.03s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780050: loss 2.8458, time 6.63s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780100: loss 2.8488, time 6.74s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780150: loss 2.8427, time 7.26s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780200: loss 2.8382, time 6.65s
|
06-11 08:20 - modeling.trainer - INFO - train - iter 1780250: loss 2.8437, time 6.68s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780300: loss 2.8494, time 6.71s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780350: loss 2.8522, time 6.67s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780400: loss 2.8433, time 6.54s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780450: loss 2.8436, time 6.61s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780500: loss 2.8531, time 6.63s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780550: loss 2.8480, time 6.58s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780600: loss 2.8449, time 6.56s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780650: loss 2.8356, time 6.63s
|
06-11 08:21 - modeling.trainer - INFO - train - iter 1780700: loss 2.8327, time 6.63s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1780750: loss 2.8420, time 6.67s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1780800: loss 2.8470, time 6.59s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1780850: loss 2.8360, time 6.64s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1780900: loss 2.8348, time 6.56s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1780950: loss 2.8432, time 6.67s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1781000: loss 2.8410, time 6.56s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1781050: loss 2.8388, time 6.57s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1781100: loss 2.8364, time 6.61s
|
06-11 08:22 - modeling.trainer - INFO - train - iter 1781150: loss 2.8341, time 6.75s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781200: loss 2.8354, time 6.57s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781250: loss 2.8384, time 6.69s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781300: loss 2.8421, time 6.64s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781350: loss 2.8460, time 6.59s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781400: loss 2.8417, time 6.80s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781450: loss 2.8409, time 6.70s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781500: loss 2.8407, time 6.65s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781550: loss 2.8385, time 6.65s
|
06-11 08:23 - modeling.trainer - INFO - train - iter 1781600: loss 2.8339, time 6.56s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781650: loss 2.8381, time 6.63s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781700: loss 2.8405, time 6.56s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781750: loss 2.8427, time 6.60s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781800: loss 2.8405, time 6.62s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781850: loss 2.8450, time 6.54s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781900: loss 2.8539, time 7.22s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1781950: loss 2.8452, time 6.57s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1782000: loss 2.8375, time 6.61s
|
06-11 08:24 - modeling.trainer - INFO - train - iter 1782050: loss 2.8395, time 6.52s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782100: loss 2.8435, time 6.65s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782150: loss 2.8396, time 6.60s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782200: loss 2.8364, time 6.56s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782250: loss 2.8332, time 6.65s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782300: loss 2.8383, time 6.63s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782350: loss 2.8472, time 6.64s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782400: loss 2.8460, time 6.57s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782450: loss 2.8380, time 6.61s
|
06-11 08:25 - modeling.trainer - INFO - train - iter 1782500: loss 2.8410, time 6.67s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782550: loss 2.8455, time 6.57s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782600: loss 2.8389, time 6.63s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782650: loss 2.8427, time 6.57s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782700: loss 2.8484, time 6.61s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782750: loss 2.8514, time 6.62s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782800: loss 2.8518, time 6.69s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782850: loss 2.8414, time 6.59s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782900: loss 2.8331, time 6.52s
|
06-11 08:26 - modeling.trainer - INFO - train - iter 1782950: loss 2.8387, time 6.60s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783000: loss 2.8511, time 6.65s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783050: loss 2.8501, time 6.72s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783100: loss 2.8414, time 6.62s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783150: loss 2.8309, time 6.63s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783200: loss 2.8350, time 6.57s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783250: loss 2.8420, time 6.69s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783300: loss 2.8415, time 6.64s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783350: loss 2.8413, time 6.67s
|
06-11 08:27 - modeling.trainer - INFO - train - iter 1783400: loss 2.8333, time 6.62s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783450: loss 2.8406, time 6.66s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783500: loss 2.8375, time 6.61s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783550: loss 2.8345, time 6.55s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783600: loss 2.8485, time 6.71s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783650: loss 2.8425, time 7.23s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783700: loss 2.8403, time 6.64s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783750: loss 2.8455, time 6.65s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783800: loss 2.8481, time 6.64s
|
06-11 08:28 - modeling.trainer - INFO - train - iter 1783850: loss 2.8528, time 6.66s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1783900: loss 2.8449, time 6.62s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1783950: loss 2.8396, time 6.58s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784000: loss 2.8363, time 6.60s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784050: loss 2.8329, time 6.55s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784100: loss 2.8428, time 6.65s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784150: loss 2.8476, time 6.68s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784200: loss 2.8470, time 6.57s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784250: loss 2.8411, time 6.62s
|
06-11 08:29 - modeling.trainer - INFO - train - iter 1784300: loss 2.8327, time 6.58s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784350: loss 2.8339, time 6.62s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784400: loss 2.8419, time 6.65s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784450: loss 2.8475, time 6.74s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784500: loss 2.8397, time 6.63s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784550: loss 2.8315, time 6.58s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784600: loss 2.8322, time 6.67s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784650: loss 2.8344, time 6.54s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784700: loss 2.8369, time 6.73s
|
06-11 08:30 - modeling.trainer - INFO - train - iter 1784750: loss 2.8365, time 6.56s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.