text
stringlengths
54
260
06-11 08:42 - modeling.trainer - INFO - train - iter 1789800: loss 2.8393, time 6.67s
06-11 08:42 - modeling.trainer - INFO - train - iter 1789850: loss 2.8455, time 6.63s
06-11 08:42 - modeling.trainer - INFO - train - iter 1789900: loss 2.8455, time 6.63s
06-11 08:42 - modeling.trainer - INFO - train - iter 1789950: loss 2.8435, time 6.56s
06-11 08:42 - modeling.trainer - INFO - val - iter 1790000: lm_loss 1.3582, value_loss 0.7348, time_loss 0.6643, loss 2.7574, time 6.69s
06-11 08:42 - modeling.trainer - INFO - new best val loss 2.7574
06-11 08:42 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-11 08:42 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 08:42 - modeling.trainer - INFO - train - iter 1790000: loss 2.8377, time 20.81s
06-11 08:42 - modeling.trainer - INFO - train - iter 1790050: loss 2.8403, time 6.65s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790100: loss 2.8365, time 6.70s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790150: loss 2.8371, time 6.61s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790200: loss 2.8472, time 6.61s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790250: loss 2.8463, time 6.52s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790300: loss 2.8373, time 6.60s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790350: loss 2.8366, time 6.72s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790400: loss 2.8372, time 6.72s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790450: loss 2.8361, time 6.64s
06-11 08:43 - modeling.trainer - INFO - train - iter 1790500: loss 2.8400, time 6.61s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790550: loss 2.8334, time 6.63s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790600: loss 2.8322, time 7.33s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790650: loss 2.8387, time 6.57s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790700: loss 2.8428, time 6.57s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790750: loss 2.8393, time 6.64s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790800: loss 2.8400, time 6.60s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790850: loss 2.8447, time 6.61s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790900: loss 2.8398, time 6.62s
06-11 08:44 - modeling.trainer - INFO - train - iter 1790950: loss 2.8289, time 6.62s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791000: loss 2.8266, time 6.54s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791050: loss 2.8327, time 6.63s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791100: loss 2.8365, time 6.69s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791150: loss 2.8480, time 6.60s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791200: loss 2.8428, time 6.61s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791250: loss 2.8352, time 6.64s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791300: loss 2.8390, time 6.63s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791350: loss 2.8460, time 6.53s
06-11 08:45 - modeling.trainer - INFO - train - iter 1791400: loss 2.8500, time 6.56s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791450: loss 2.8465, time 6.52s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791500: loss 2.8508, time 6.56s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791550: loss 2.8435, time 6.61s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791600: loss 2.8363, time 6.66s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791650: loss 2.8455, time 6.64s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791700: loss 2.8414, time 6.57s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791750: loss 2.8358, time 6.56s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791800: loss 2.8439, time 6.53s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791850: loss 2.8459, time 6.59s
06-11 08:46 - modeling.trainer - INFO - train - iter 1791900: loss 2.8427, time 6.59s
06-11 08:47 - modeling.trainer - INFO - train - iter 1791950: loss 2.8404, time 6.56s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792000: loss 2.8394, time 6.64s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792050: loss 2.8534, time 6.59s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792100: loss 2.8588, time 6.61s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792150: loss 2.8509, time 6.76s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792200: loss 2.8416, time 6.65s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792250: loss 2.8368, time 6.63s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792300: loss 2.8423, time 6.55s
06-11 08:47 - modeling.trainer - INFO - train - iter 1792350: loss 2.8381, time 7.25s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792400: loss 2.8448, time 6.53s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792450: loss 2.8491, time 6.62s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792500: loss 2.8404, time 6.63s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792550: loss 2.8443, time 6.63s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792600: loss 2.8390, time 6.55s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792650: loss 2.8335, time 6.56s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792700: loss 2.8381, time 6.61s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792750: loss 2.8382, time 6.65s
06-11 08:48 - modeling.trainer - INFO - train - iter 1792800: loss 2.8399, time 6.46s
06-11 08:49 - modeling.trainer - INFO - train - iter 1792850: loss 2.8368, time 6.68s
06-11 08:49 - modeling.trainer - INFO - train - iter 1792900: loss 2.8325, time 6.60s
06-11 08:49 - modeling.trainer - INFO - train - iter 1792950: loss 2.8332, time 6.52s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793000: loss 2.8365, time 6.55s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793050: loss 2.8352, time 6.67s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793100: loss 2.8367, time 6.54s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793150: loss 2.8479, time 6.65s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793200: loss 2.8426, time 6.57s
06-11 08:49 - modeling.trainer - INFO - train - iter 1793250: loss 2.8331, time 6.55s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793300: loss 2.8399, time 6.64s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793350: loss 2.8451, time 6.55s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793400: loss 2.8399, time 6.61s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793450: loss 2.8404, time 6.61s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793500: loss 2.8372, time 6.52s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793550: loss 2.8367, time 6.68s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793600: loss 2.8377, time 6.65s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793650: loss 2.8355, time 6.59s
06-11 08:50 - modeling.trainer - INFO - train - iter 1793700: loss 2.8468, time 6.53s
06-11 08:51 - modeling.trainer - INFO - train - iter 1793750: loss 2.8379, time 6.60s
06-11 08:51 - modeling.trainer - INFO - train - iter 1793800: loss 2.8394, time 6.58s
06-11 08:51 - modeling.trainer - INFO - train - iter 1793850: loss 2.8461, time 6.60s
06-11 08:51 - modeling.trainer - INFO - train - iter 1793900: loss 2.8356, time 6.62s
06-11 08:51 - modeling.trainer - INFO - train - iter 1793950: loss 2.8362, time 6.59s
06-11 08:51 - modeling.trainer - INFO - train - iter 1794000: loss 2.8387, time 6.54s
06-11 08:51 - modeling.trainer - INFO - train - iter 1794050: loss 2.8346, time 6.50s
06-11 08:51 - modeling.trainer - INFO - train - iter 1794100: loss 2.8358, time 7.29s
06-11 08:51 - modeling.trainer - INFO - train - iter 1794150: loss 2.8375, time 6.63s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794200: loss 2.8384, time 6.62s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794250: loss 2.8413, time 6.48s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794300: loss 2.8499, time 6.54s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794350: loss 2.8436, time 6.62s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794400: loss 2.8361, time 6.65s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794450: loss 2.8420, time 6.62s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794500: loss 2.8442, time 6.63s
06-11 08:52 - modeling.trainer - INFO - train - iter 1794550: loss 2.8469, time 6.49s