text
stringlengths
54
260
06-11 09:04 - modeling.trainer - INFO - train - iter 1799600: loss 2.8517, time 6.56s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799650: loss 2.8577, time 6.67s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799700: loss 2.8417, time 6.58s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799750: loss 2.8341, time 6.68s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799800: loss 2.8452, time 6.63s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799850: loss 2.8454, time 6.55s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799900: loss 2.8399, time 6.61s
06-11 09:04 - modeling.trainer - INFO - train - iter 1799950: loss 2.8447, time 6.69s
06-11 09:05 - modeling.trainer - INFO - val - iter 1800000: lm_loss 1.3575, value_loss 0.7346, time_loss 0.6646, loss 2.7566, time 6.98s
06-11 09:05 - modeling.trainer - INFO - new best val loss 2.7566
06-11 09:05 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-11 09:05 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 09:05 - modeling.trainer - INFO - train - iter 1800000: loss 2.8454, time 21.09s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800050: loss 2.8411, time 6.78s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800100: loss 2.8421, time 6.79s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800150: loss 2.8469, time 6.68s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800200: loss 2.8424, time 6.64s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800250: loss 2.8400, time 6.62s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800300: loss 2.8468, time 6.63s
06-11 09:05 - modeling.trainer - INFO - train - iter 1800350: loss 2.8458, time 6.64s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800400: loss 2.8318, time 6.61s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800450: loss 2.8328, time 6.72s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800500: loss 2.8507, time 6.64s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800550: loss 2.8456, time 6.62s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800600: loss 2.8413, time 6.53s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800650: loss 2.8411, time 6.60s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800700: loss 2.8395, time 6.69s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800750: loss 2.8451, time 6.64s
06-11 09:06 - modeling.trainer - INFO - train - iter 1800800: loss 2.8443, time 6.56s
06-11 09:07 - modeling.trainer - INFO - train - iter 1800850: loss 2.8395, time 6.57s
06-11 09:07 - modeling.trainer - INFO - train - iter 1800900: loss 2.8355, time 6.69s
06-11 09:07 - modeling.trainer - INFO - train - iter 1800950: loss 2.8433, time 6.79s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801000: loss 2.8424, time 6.64s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801050: loss 2.8375, time 7.34s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801100: loss 2.8359, time 6.86s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801150: loss 2.8333, time 6.63s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801200: loss 2.8381, time 6.63s
06-11 09:07 - modeling.trainer - INFO - train - iter 1801250: loss 2.8360, time 6.61s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801300: loss 2.8362, time 6.58s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801350: loss 2.8371, time 6.64s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801400: loss 2.8406, time 6.62s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801450: loss 2.8493, time 6.51s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801500: loss 2.8431, time 6.58s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801550: loss 2.8376, time 6.58s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801600: loss 2.8334, time 6.64s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801650: loss 2.8336, time 6.62s
06-11 09:08 - modeling.trainer - INFO - train - iter 1801700: loss 2.8370, time 6.54s
06-11 09:09 - modeling.trainer - INFO - train - iter 1801750: loss 2.8407, time 6.56s
06-11 09:09 - modeling.trainer - INFO - train - iter 1801800: loss 2.8454, time 6.57s
06-11 09:09 - modeling.trainer - INFO - train - iter 1801850: loss 2.8435, time 6.62s
06-11 09:09 - modeling.trainer - INFO - train - iter 1801900: loss 2.8448, time 6.57s
06-11 09:09 - modeling.trainer - INFO - train - iter 1801950: loss 2.8376, time 6.57s
06-11 09:09 - modeling.trainer - INFO - train - iter 1802000: loss 2.8332, time 6.52s
06-11 09:09 - modeling.trainer - INFO - train - iter 1802050: loss 2.8270, time 6.60s
06-11 09:09 - modeling.trainer - INFO - train - iter 1802100: loss 2.8263, time 6.64s
06-11 09:09 - modeling.trainer - INFO - train - iter 1802150: loss 2.8280, time 6.76s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802200: loss 2.8260, time 6.62s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802250: loss 2.8422, time 6.60s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802300: loss 2.8514, time 6.53s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802350: loss 2.8414, time 6.54s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802400: loss 2.8344, time 6.59s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802450: loss 2.8367, time 6.69s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802500: loss 2.8442, time 6.61s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802550: loss 2.8477, time 6.53s
06-11 09:10 - modeling.trainer - INFO - train - iter 1802600: loss 2.8438, time 6.59s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802650: loss 2.8413, time 6.62s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802700: loss 2.8391, time 6.57s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802750: loss 2.8369, time 6.61s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802800: loss 2.8375, time 7.24s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802850: loss 2.8345, time 6.56s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802900: loss 2.8421, time 6.59s
06-11 09:11 - modeling.trainer - INFO - train - iter 1802950: loss 2.8472, time 6.66s
06-11 09:11 - modeling.trainer - INFO - train - iter 1803000: loss 2.8490, time 6.58s
06-11 09:11 - modeling.trainer - INFO - train - iter 1803050: loss 2.8530, time 6.61s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803100: loss 2.8439, time 6.61s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803150: loss 2.8420, time 6.64s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803200: loss 2.8410, time 6.67s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803250: loss 2.8395, time 6.53s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803300: loss 2.8402, time 6.60s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803350: loss 2.8381, time 6.55s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803400: loss 2.8370, time 6.65s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803450: loss 2.8337, time 6.64s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803500: loss 2.8374, time 6.61s
06-11 09:12 - modeling.trainer - INFO - train - iter 1803550: loss 2.8370, time 6.71s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803600: loss 2.8459, time 6.79s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803650: loss 2.8427, time 6.72s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803700: loss 2.8222, time 6.69s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803750: loss 2.8376, time 6.61s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803800: loss 2.8446, time 6.65s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803850: loss 2.8376, time 6.68s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803900: loss 2.8425, time 6.64s
06-11 09:13 - modeling.trainer - INFO - train - iter 1803950: loss 2.8477, time 6.62s
06-11 09:13 - modeling.trainer - INFO - train - iter 1804000: loss 2.8510, time 6.66s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804050: loss 2.8424, time 6.64s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804100: loss 2.8350, time 6.53s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804150: loss 2.8416, time 6.62s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804200: loss 2.8420, time 6.67s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804250: loss 2.8388, time 6.67s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804300: loss 2.8415, time 6.76s
06-11 09:14 - modeling.trainer - INFO - train - iter 1804350: loss 2.8428, time 6.67s