text
stringlengths
54
260
06-11 08:52 - modeling.trainer - INFO - train - iter 1794600: loss 2.8373, time 6.64s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794650: loss 2.8409, time 6.50s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794700: loss 2.8481, time 6.53s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794750: loss 2.8371, time 6.57s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794800: loss 2.8286, time 6.56s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794850: loss 2.8280, time 6.55s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794900: loss 2.8342, time 6.68s
06-11 08:53 - modeling.trainer - INFO - train - iter 1794950: loss 2.8435, time 6.68s
06-11 08:53 - modeling.trainer - INFO - train - iter 1795000: loss 2.8416, time 6.55s
06-11 08:53 - modeling.trainer - INFO - train - iter 1795050: loss 2.8397, time 6.63s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795100: loss 2.8383, time 6.62s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795150: loss 2.8326, time 6.57s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795200: loss 2.8359, time 6.58s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795250: loss 2.8339, time 6.57s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795300: loss 2.8276, time 6.56s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795350: loss 2.8361, time 6.54s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795400: loss 2.8395, time 6.59s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795450: loss 2.8399, time 6.67s
06-11 08:54 - modeling.trainer - INFO - train - iter 1795500: loss 2.8401, time 6.62s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795550: loss 2.8369, time 6.63s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795600: loss 2.8435, time 6.61s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795650: loss 2.8394, time 6.60s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795700: loss 2.8393, time 6.62s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795750: loss 2.8464, time 6.65s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795800: loss 2.8369, time 7.34s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795850: loss 2.8332, time 6.85s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795900: loss 2.8374, time 6.65s
06-11 08:55 - modeling.trainer - INFO - train - iter 1795950: loss 2.8399, time 6.55s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796000: loss 2.8454, time 6.54s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796050: loss 2.8508, time 6.50s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796100: loss 2.8429, time 6.58s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796150: loss 2.8374, time 6.57s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796200: loss 2.8401, time 6.64s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796250: loss 2.8433, time 6.68s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796300: loss 2.8493, time 6.64s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796350: loss 2.8415, time 6.56s
06-11 08:56 - modeling.trainer - INFO - train - iter 1796400: loss 2.8340, time 6.54s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796450: loss 2.8419, time 6.65s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796500: loss 2.8480, time 6.63s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796550: loss 2.8430, time 6.93s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796600: loss 2.8397, time 6.58s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796650: loss 2.8354, time 6.60s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796700: loss 2.8355, time 6.62s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796750: loss 2.8422, time 6.60s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796800: loss 2.8422, time 6.54s
06-11 08:57 - modeling.trainer - INFO - train - iter 1796850: loss 2.8361, time 6.59s
06-11 08:58 - modeling.trainer - INFO - train - iter 1796900: loss 2.8328, time 6.56s
06-11 08:58 - modeling.trainer - INFO - train - iter 1796950: loss 2.8455, time 6.60s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797000: loss 2.8469, time 6.55s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797050: loss 2.8413, time 6.55s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797100: loss 2.8416, time 6.60s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797150: loss 2.8390, time 6.76s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797200: loss 2.8377, time 6.58s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797250: loss 2.8387, time 6.68s
06-11 08:58 - modeling.trainer - INFO - train - iter 1797300: loss 2.8398, time 6.57s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797350: loss 2.8439, time 6.58s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797400: loss 2.8484, time 6.70s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797450: loss 2.8378, time 6.60s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797500: loss 2.8357, time 6.59s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797550: loss 2.8389, time 6.62s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797600: loss 2.8421, time 7.24s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797650: loss 2.8464, time 6.57s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797700: loss 2.8453, time 6.45s
06-11 08:59 - modeling.trainer - INFO - train - iter 1797750: loss 2.8370, time 6.51s
06-11 09:00 - modeling.trainer - INFO - train - iter 1797800: loss 2.8391, time 6.69s
06-11 09:00 - modeling.trainer - INFO - train - iter 1797850: loss 2.8447, time 6.69s
06-11 09:00 - modeling.trainer - INFO - train - iter 1797900: loss 2.8373, time 6.63s
06-11 09:00 - modeling.trainer - INFO - train - iter 1797950: loss 2.8450, time 6.62s
06-11 09:00 - modeling.trainer - INFO - train - iter 1798000: loss 2.8469, time 6.71s
06-11 09:00 - modeling.trainer - INFO - train - iter 1798050: loss 2.8359, time 6.67s
06-11 09:00 - modeling.trainer - INFO - train - iter 1798100: loss 2.8359, time 6.61s
06-11 09:00 - modeling.trainer - INFO - train - iter 1798150: loss 2.8448, time 6.77s
06-11 09:00 - modeling.trainer - INFO - train - iter 1798200: loss 2.8441, time 6.55s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798250: loss 2.8385, time 6.59s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798300: loss 2.8473, time 6.56s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798350: loss 2.8448, time 6.65s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798400: loss 2.8427, time 6.54s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798450: loss 2.8430, time 6.61s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798500: loss 2.8343, time 6.64s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798550: loss 2.8358, time 6.62s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798600: loss 2.8414, time 6.78s
06-11 09:01 - modeling.trainer - INFO - train - iter 1798650: loss 2.8430, time 6.62s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798700: loss 2.8447, time 6.76s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798750: loss 2.8427, time 6.67s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798800: loss 2.8346, time 6.73s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798850: loss 2.8330, time 6.68s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798900: loss 2.8332, time 6.59s
06-11 09:02 - modeling.trainer - INFO - train - iter 1798950: loss 2.8360, time 6.64s
06-11 09:02 - modeling.trainer - INFO - train - iter 1799000: loss 2.8391, time 6.85s
06-11 09:02 - modeling.trainer - INFO - train - iter 1799050: loss 2.8351, time 6.74s
06-11 09:02 - modeling.trainer - INFO - train - iter 1799100: loss 2.8259, time 6.58s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799150: loss 2.8217, time 6.55s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799200: loss 2.8367, time 6.67s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799250: loss 2.8376, time 6.69s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799300: loss 2.8394, time 7.26s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799350: loss 2.8484, time 6.52s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799400: loss 2.8363, time 6.74s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799450: loss 2.8341, time 6.59s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799500: loss 2.8494, time 6.62s
06-11 09:03 - modeling.trainer - INFO - train - iter 1799550: loss 2.8505, time 6.65s