text
stringlengths 54
260
|
---|
06-11 08:31 - modeling.trainer - INFO - train - iter 1784800: loss 2.8342, time 6.69s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1784850: loss 2.8426, time 6.67s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1784900: loss 2.8497, time 6.61s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1784950: loss 2.8469, time 6.60s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1785000: loss 2.8405, time 6.62s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1785050: loss 2.8412, time 6.62s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1785100: loss 2.8496, time 6.53s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1785150: loss 2.8518, time 6.59s
|
06-11 08:31 - modeling.trainer - INFO - train - iter 1785200: loss 2.8438, time 6.66s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785250: loss 2.8407, time 6.65s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785300: loss 2.8375, time 6.66s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785350: loss 2.8467, time 6.60s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785400: loss 2.8549, time 7.28s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785450: loss 2.8476, time 6.60s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785500: loss 2.8371, time 6.72s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785550: loss 2.8414, time 6.58s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785600: loss 2.8513, time 6.67s
|
06-11 08:32 - modeling.trainer - INFO - train - iter 1785650: loss 2.8444, time 6.73s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785700: loss 2.8386, time 6.57s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785750: loss 2.8391, time 6.52s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785800: loss 2.8484, time 6.62s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785850: loss 2.8499, time 6.61s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785900: loss 2.8517, time 6.53s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1785950: loss 2.8476, time 6.59s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1786000: loss 2.8352, time 6.63s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1786050: loss 2.8429, time 6.66s
|
06-11 08:33 - modeling.trainer - INFO - train - iter 1786100: loss 2.8555, time 6.72s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786150: loss 2.8500, time 6.77s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786200: loss 2.8375, time 6.57s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786250: loss 2.8349, time 6.64s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786300: loss 2.8372, time 6.59s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786350: loss 2.8333, time 6.59s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786400: loss 2.8334, time 6.69s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786450: loss 2.8463, time 6.57s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786500: loss 2.8434, time 6.62s
|
06-11 08:34 - modeling.trainer - INFO - train - iter 1786550: loss 2.8386, time 6.62s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786600: loss 2.8429, time 6.73s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786650: loss 2.8432, time 6.66s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786700: loss 2.8436, time 6.67s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786750: loss 2.8405, time 6.71s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786800: loss 2.8377, time 6.60s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786850: loss 2.8367, time 6.59s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786900: loss 2.8427, time 6.63s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1786950: loss 2.8394, time 6.70s
|
06-11 08:35 - modeling.trainer - INFO - train - iter 1787000: loss 2.8350, time 6.73s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787050: loss 2.8431, time 6.56s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787100: loss 2.8380, time 6.69s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787150: loss 2.8335, time 7.40s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787200: loss 2.8406, time 6.60s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787250: loss 2.8469, time 6.63s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787300: loss 2.8401, time 6.64s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787350: loss 2.8332, time 6.52s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787400: loss 2.8409, time 6.54s
|
06-11 08:36 - modeling.trainer - INFO - train - iter 1787450: loss 2.8385, time 6.58s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787500: loss 2.8345, time 6.57s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787550: loss 2.8321, time 6.63s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787600: loss 2.8343, time 7.02s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787650: loss 2.8452, time 6.50s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787700: loss 2.8390, time 6.63s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787750: loss 2.8281, time 6.62s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787800: loss 2.8365, time 6.63s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787850: loss 2.8395, time 6.57s
|
06-11 08:37 - modeling.trainer - INFO - train - iter 1787900: loss 2.8466, time 6.64s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1787950: loss 2.8557, time 6.64s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788000: loss 2.8449, time 6.71s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788050: loss 2.8409, time 6.64s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788100: loss 2.8504, time 6.57s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788150: loss 2.8513, time 6.59s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788200: loss 2.8450, time 6.74s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788250: loss 2.8394, time 6.57s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788300: loss 2.8380, time 6.62s
|
06-11 08:38 - modeling.trainer - INFO - train - iter 1788350: loss 2.8406, time 6.65s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788400: loss 2.8363, time 6.58s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788450: loss 2.8321, time 6.67s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788500: loss 2.8376, time 6.55s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788550: loss 2.8427, time 6.52s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788600: loss 2.8343, time 6.68s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788650: loss 2.8367, time 6.62s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788700: loss 2.8382, time 6.54s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788750: loss 2.8338, time 6.52s
|
06-11 08:39 - modeling.trainer - INFO - train - iter 1788800: loss 2.8433, time 6.58s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1788850: loss 2.8461, time 7.13s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1788900: loss 2.8444, time 6.63s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1788950: loss 2.8471, time 6.48s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789000: loss 2.8502, time 6.56s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789050: loss 2.8465, time 6.68s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789100: loss 2.8366, time 6.58s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789150: loss 2.8337, time 6.66s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789200: loss 2.8445, time 6.56s
|
06-11 08:40 - modeling.trainer - INFO - train - iter 1789250: loss 2.8422, time 6.66s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789300: loss 2.8328, time 6.50s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789350: loss 2.8345, time 6.54s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789400: loss 2.8398, time 6.57s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789450: loss 2.8482, time 6.53s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789500: loss 2.8487, time 6.54s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789550: loss 2.8409, time 6.66s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789600: loss 2.8409, time 6.60s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789650: loss 2.8487, time 6.62s
|
06-11 08:41 - modeling.trainer - INFO - train - iter 1789700: loss 2.8516, time 6.57s
|
06-11 08:42 - modeling.trainer - INFO - train - iter 1789750: loss 2.8412, time 6.51s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.