File size: 648 Bytes
c1cb360
96a0103
fe371ad
 
001e799
 
b3aebd1
6d33a5e
1aeb34c
6d33a5e
1e592e3
6d33a5e
 
 
 
 
1e592e3
6d33a5e
b47e2d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from typing import Dict, List, Any
from transformers import pipeline

class EndpointHandler:
    def __init__(self, path=""):
        self.pipeline = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct")

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, **parameters)
        else:
            prediction = self.pipeline(inputs)
        
        # postprocess the prediction
        return prediction