File size: 7,192 Bytes
d34bdca af1afb3 42310ef e7d94f5 584bcfa d34bdca e7d94f5 d34bdca a9286c4 2ef6bc9 ed7f07e e7d94f5 1047434 43ce9de 1047434 43ce9de 1047434 43ce9de 1047434 d6f4836 43ce9de ed7f07e e7d94f5 d34bdca d2b2b68 ed7f07e d34bdca ed7f07e 237ca2e e7d94f5 237ca2e 69ad792 237ca2e 8a1a70c ebeb80f 596a24b 69ad792 596a24b 237ca2e 69ad792 237ca2e 0bf46d3 e6640a8 69ad792 e6640a8 bbe6825 69ad792 bbe6825 69ad792 bbe6825 7c978be 237ca2e 7c978be 237ca2e e6640a8 69ad792 57699b7 69ad792 e6640a8 af3dd88 69ad792 af3dd88 ab8d410 69ad792 ab8d410 e6640a8 69ad792 e6640a8 ac5c83c 265aa2c ac5c83c 265aa2c ac5c83c 265aa2c ac5c83c 265aa2c 5301781 69ad792 5301781 af1afb3 42310ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# OpenCV Zoo and Benchmark
A zoo for models tuned for OpenCV DNN with benchmarks on different platforms.
Guidelines:
- Install latest `opencv-python`:
```shell
python3 -m pip install opencv-python
# Or upgrade to latest version
python3 -m pip install --upgrade opencv-python
```
- Clone this repo to download all models and demo scripts:
```shell
# Install git-lfs from https://git-lfs.github.com/
git clone https://github.com/opencv/opencv_zoo && cd opencv_zoo
git lfs install
git lfs pull
```
- To run benchmarks on your hardware settings, please refer to [benchmark/README](./benchmark/README.md).
## Models & Benchmark Results

Hardware Setup:
x86-64:
- [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html): 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.
ARM:
- [Khadas VIM3](https://www.khadas.com/vim3): Amlogic A311D SoC with a 2.2GHz Quad core ARM Cortex-A73 + 1.8GHz dual core Cortex-A53 ARM CPU, and a 5 TOPS NPU. Benchmarks are done using **per-tensor quantized** models. Follow [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to build OpenCV with TIM-VX backend enabled.
- [Khadas VIM4](https://www.khadas.com/vim4): Amlogic A311D2 SoC with 2.2GHz Quad core ARM Cortex-A73 and 2.0GHz Quad core Cortex-A53 CPU, and 3.2 TOPS Build-in NPU.
- [Khadas Edge 2](https://www.khadas.com/edge2): Rockchip RK3588S SoC with a CPU of 2.25 GHz Quad Core ARM Cortex-A76 + 1.8 GHz Quad Core Cortex-A55, and a 6 TOPS NPU.
- [Atlas 200 DK](https://e.huawei.com/en/products/computing/ascend/atlas-200): Ascend 310 NPU with 22 TOPS @ INT8. Follow [this guide](https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend) to build OpenCV with CANN backend enabled.
- [Atlas 200I DK A2](https://www.hiascend.com/hardware/developer-kit-a2): SoC with 1.0GHz Quad-core CPU and Ascend 310B NPU with 8 TOPS @ INT8.
- [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit): a Quad-core ARM A57 @ 1.43 GHz CPU, and a 128-core NVIDIA Maxwell GPU.
- [NVIDIA Jetson Nano Orin](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/): a 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU, and a 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores (max freq 625MHz).
- [Raspberry Pi 4B](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/): Broadcom BCM2711 SoC with a Quad core Cortex-A72 (ARM v8) 64-bit @ 1.5 GHz.
- [Horizon Sunrise X3](https://developer.horizon.ai/sunrise): an SoC from Horizon Robotics with a quad-core ARM Cortex-A53 1.2 GHz CPU and a 5 TOPS BPU (a.k.a NPU).
- [MAIX-III AXera-Pi](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware): Axera AX620A SoC with a quad-core ARM Cortex-A7 CPU and a 3.6 TOPS @ int8 NPU.
- [Toybrick RV1126](https://t.rock-chips.com/en/portal.php?mod=view&aid=26): Rockchip RV1126 SoC with a quard-core ARM Cortex-A7 CPU and a 2.0 TOPs NPU.
RISC-V:
- [StarFive VisionFive 2](https://doc-en.rvspace.org/VisionFive2/Product_Brief/VisionFive_2/specification_pb.html): `StarFive JH7110` SoC with a RISC-V quad-core CPU, which can turbo up to 1.5GHz, and an GPU of model `IMG BXE-4-32 MC1` from Imagination, which has a work freq up to 600MHz.
- [Allwinner Nezha D1](https://d1.docs.aw-ol.com/en): Allwinner D1 SoC with a 1.0 GHz single-core RISC-V [Xuantie C906 CPU](https://www.t-head.cn/product/C906?spm=a2ouz.12986968.0.0.7bfc1384auGNPZ) with RVV 0.7.1 support. YuNet is tested for now. Visit [here](https://github.com/fengyuentau/opencv_zoo_cpp) for more details.
***Important Notes***:
- The data under each column of hardware setups on the above table represents the elapsed time of an inference (preprocess, forward and postprocess).
- The time data is the mean of 10 runs after some warmup runs. Different metrics may be applied to some specific models.
- Batch size is 1 for all benchmark results.
- `---` represents the model is not availble to run on the device.
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
## Some Examples
Some examples are listed below. You can find more in the directory of each model!
### Face Detection with [YuNet](./models/face_detection_yunet/)

### Face Recognition with [SFace](./models/face_recognition_sface/)

### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)

### Human Segmentation with [PP-HumanSeg](./models/human_segmentation_pphumanseg/)

### Image Segmentation with [EfficientSAM](./models/image_segmentation_efficientsam/)

### License Plate Detection with [LPD_YuNet](./models/license_plate_detection_yunet/)

### Object Detection with [NanoDet](./models/object_detection_nanodet/) & [YOLOX](./models/object_detection_yolox/)


### Object Tracking with [VitTrack](./models/object_tracking_vittrack/)

### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)

### Hand Pose Estimation with [MP-HandPose](models/handpose_estimation_mediapipe/)

### Person Detection with [MP-PersonDet](./models/person_detection_mediapipe)

### Pose Estimation with [MP-Pose](models/pose_estimation_mediapipe)

### QR Code Detection and Parsing with [WeChatQRCode](./models/qrcode_wechatqrcode/)

### Chinese Text detection [PPOCR-Det](./models/text_detection_ppocr/)

### English Text detection [PPOCR-Det](./models/text_detection_ppocr/)

### Text Detection with [CRNN](./models/text_recognition_crnn/)

## License
OpenCV Zoo is licensed under the [Apache 2.0 license](./LICENSE). Please refer to licenses of different models.
|