File size: 57,614 Bytes
1efd29f
6245b3b
b138e3b
 
274a509
f367387
 
ae53812
274a509
 
7209842
 
 
 
 
 
adcb6a8
f3ed537
7209842
885c1f9
274a509
 
f367387
 
3c63f39
f3ed537
6b1539d
 
 
 
 
 
 
f3ed537
6b1539d
f3ed537
274a509
5b7f342
39207e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c63f39
274a509
f367387
274a509
 
e297e4a
f367387
e297e4a
274a509
f367387
3c63f39
d27a85c
ecb092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
c9bd851
274a509
ecb092b
 
c9bd851
 
ecb092b
 
274a509
e297e4a
274a509
 
 
f367387
c9bd851
61c15b7
c9bd851
 
 
61c15b7
 
 
c9bd851
3330689
274a509
 
3330689
274a509
 
5b7f342
274a509
adcb6a8
f3ed537
 
 
 
274a509
3330689
274a509
f3ed537
 
274a509
f3ed537
 
 
274a509
f3ed537
274a509
 
3330689
 
f3ed537
274a509
f367387
274a509
 
 
f3ed537
 
274a509
 
 
 
 
 
f3ed537
 
274a509
 
 
72a1c3a
e297e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
61c15b7
274a509
1a943f1
274a509
 
c9bd851
f3ed537
34139eb
 
1ac7e9d
 
 
 
34139eb
f11fee0
1ac7e9d
 
f11fee0
 
 
 
 
34139eb
 
274a509
885c1f9
f367387
274a509
 
07b6a95
 
 
 
3330689
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb092b
61c15b7
ecb092b
8aa9109
 
 
 
ecb092b
 
 
 
8aa9109
 
ecb092b
 
8aa9109
ecb092b
 
8aa9109
 
 
 
61c15b7
ecb092b
 
8aa9109
ecb092b
8aa9109
ecb092b
8aa9109
ecb092b
8aa9109
ecb092b
8aa9109
ecb092b
8aa9109
 
 
 
 
 
 
 
 
 
 
 
 
5ccdfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c15b7
db1867d
 
61c15b7
db1867d
e297e4a
61c15b7
ae53812
 
5ccdfd6
 
 
6b1539d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c15b7
6b1539d
61c15b7
6b1539d
 
 
61c15b7
6b1539d
61c15b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1539d
 
07b6a95
 
 
 
 
 
 
 
 
 
 
 
f367387
274a509
 
 
 
3330689
fd7c5f8
 
274a509
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
c9bd851
 
 
 
 
 
 
 
 
274a509
 
 
07b6a95
 
 
 
274a509
07b6a95
274a509
07b6a95
 
274a509
07b6a95
 
 
 
274a509
07b6a95
274a509
07b6a95
 
274a509
07b6a95
3c63f39
07b6a95
274a509
 
07b6a95
 
3c63f39
3330689
 
 
 
 
 
 
 
 
f3ed537
72a1c3a
ae53812
07b6a95
 
ae53812
 
 
35e8a45
 
 
 
 
 
 
ae53812
07b6a95
953203e
 
 
 
 
 
 
35e8a45
 
 
 
 
 
 
 
274a509
07b6a95
39207e4
 
 
 
 
 
 
8aa9109
39207e4
83f9bef
39207e4
 
61c15b7
dbb5879
61c15b7
db1867d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e297e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb5879
39207e4
dbb5879
 
8aa9109
dbb5879
6b1539d
dbb5879
e297e4a
274a509
07b6a95
 
 
3f3847e
07b6a95
 
269a57d
07b6a95
 
 
 
 
3f3847e
274a509
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7c5f8
 
ecb092b
 
3c63f39
07b6a95
 
 
 
 
 
 
 
 
 
 
 
39207e4
274a509
 
 
 
 
 
 
 
 
c9bd851
274a509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd851
274a509
 
 
3330689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34139eb
 
6a5d12d
 
 
 
34139eb
 
3c63f39
274a509
34139eb
 
 
 
 
 
 
 
 
aee35a5
34139eb
274a509
 
3330689
 
f3ed537
3330689
34139eb
 
 
 
3330689
34139eb
d4ec8a0
 
 
 
 
 
 
 
 
 
 
3330689
d4ec8a0
 
 
 
3330689
 
 
 
 
274a509
db1867d
61c15b7
251a9b3
 
 
 
 
db1867d
5ccdfd6
 
251a9b3
 
 
 
5ccdfd6
881a09d
 
5ccdfd6
61c15b7
db1867d
 
 
 
 
 
 
 
61c15b7
db1867d
61c15b7
db1867d
251a9b3
881a09d
5ccdfd6
 
251a9b3
5ccdfd6
 
db1867d
5ccdfd6
39207e4
ae53812
 
39207e4
ae53812
 
 
 
 
 
 
 
 
e297e4a
ae53812
 
 
 
 
 
 
 
 
 
 
 
e297e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae53812
 
 
 
e297e4a
 
ae53812
 
 
 
39207e4
 
 
9d332ff
 
 
 
 
 
 
 
 
c9bd851
39207e4
 
e297e4a
ae53812
e297e4a
 
ae53812
39207e4
 
 
 
 
 
ae53812
e297e4a
9d332ff
ae53812
 
 
 
c9bd851
ae53812
e297e4a
 
 
 
 
35e8a45
e297e4a
 
d99cfa3
 
e297e4a
d99cfa3
d85f92d
d99cfa3
 
 
d85f92d
d99cfa3
 
 
 
 
e297e4a
 
 
 
 
db1867d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
f367387
6a5d12d
 
 
 
 
 
274a509
 
 
 
 
785101b
 
274a509
 
 
f3ed537
 
274a509
ae53812
35e8a45
 
ae53812
 
 
39207e4
ae53812
f367387
274a509
 
 
 
 
 
 
 
 
 
f367387
274a509
 
 
 
 
 
 
bc78434
f3ed537
274a509
 
3330689
 
 
 
 
274a509
 
 
 
 
d27a85c
274a509
fd7c5f8
 
 
e297e4a
 
 
 
35e8a45
 
e297e4a
 
 
 
d85f92d
 
 
d99cfa3
d85f92d
61c15b7
e297e4a
 
 
 
 
 
db1867d
 
 
 
 
 
5ccdfd6
 
 
 
db1867d
5ccdfd6
 
39207e4
 
 
 
db1867d
 
 
 
 
 
 
39207e4
 
f367387
3fa421f
f367387
 
274a509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import List, Dict, Tuple, Any
import logging
import os
import time

# Import core logic from other modules, as in app_old.py
from analyzer import (
    combine_repo_files_for_llm, 
    parse_llm_json_response, 
    analyze_combined_file,
    handle_load_repository
)
from hf_utils import download_filtered_space_files, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

CSV_FILE = "repo_ids.csv"
CHATBOT_SYSTEM_PROMPT = (
    "You are a helpful assistant whose ONLY job is to gather information about the user's ideal repository requirements. "
    "DO NOT suggest any specific repositories or give repository recommendations. "
    "Your role is to ask clarifying questions to understand exactly what the user is looking for. "
    "Ask about their use case, preferred programming language, specific features needed, project type, etc. "
    "When you feel you have gathered enough detailed information about their requirements, "
    "tell the user: 'I think I have enough information about your requirements. Please click the Extract Keywords button to search for repositories.' "
    "Focus on understanding their needs, not providing solutions."
)
CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you define your ideal Hugging Face repository requirements. I won't suggest specific repos - my job is to understand exactly what you're looking for. Tell me about your project: What type of application are you building? What's your use case?"

# --- Helper Functions (Logic) ---

def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
    """
    Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
    """
    try:
        if df.empty:
            return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
        
        # Filter out rows with no analysis data
        analyzed_df = df.copy()
        analyzed_df = analyzed_df[
            (analyzed_df['strength'].str.strip() != '') | 
            (analyzed_df['weaknesses'].str.strip() != '') | 
            (analyzed_df['speciality'].str.strip() != '') | 
            (analyzed_df['relevance rating'].str.strip() != '')
        ]
        
        if analyzed_df.empty:
            logger.warning("No analyzed repositories found for LLM selection")
            return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
        
        # Create a prompt for the LLM
        csv_data = ""
        for idx, row in analyzed_df.iterrows():
            csv_data += f"Repository: {row['repo id']}\n"
            csv_data += f"Strengths: {row['strength']}\n"
            csv_data += f"Weaknesses: {row['weaknesses']}\n"
            csv_data += f"Speciality: {row['speciality']}\n"
            csv_data += f"Relevance: {row['relevance rating']}\n\n"
        
        user_context = user_requirements if user_requirements.strip() else "General repository recommendation"
        
        prompt = f"""Based on the user's requirements and the analysis of repositories below, select the top {top_n} most relevant repositories.

User Requirements:
{user_context}

Repository Analysis Data:
{csv_data}

Please analyze all repositories and select the {top_n} most relevant ones based on:
1. How well they match the user's specific requirements
2. Their strengths and capabilities 
3. Their relevance rating
4. Their speciality alignment with user needs

Return ONLY a JSON list of the repository IDs in order of relevance (most relevant first). Example format:
["repo1", "repo2", "repo3"]

Selected repositories:"""

        try:
            from openai import OpenAI
            client = OpenAI(api_key=os.getenv("modal_api"))
            client.base_url = os.getenv("base_url")
            
            response = client.chat.completions.create(
                model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
                messages=[
                    {"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
                    {"role": "user", "content": prompt}
                ],
                max_tokens=200,
                temperature=0.3
            )
            
            llm_response = response.choices[0].message.content.strip()
            logger.info(f"LLM response for top repos: {llm_response}")
            
            # Extract JSON from response
            import json
            import re
            
            # Try to find JSON array in the response
            json_match = re.search(r'\[.*\]', llm_response)
            if json_match:
                selected_repos = json.loads(json_match.group())
                logger.info(f"LLM selected repositories: {selected_repos}")
                
                # Filter dataframe to only include selected repositories in order
                top_repos_list = []
                for repo_id in selected_repos[:top_n]:
                    matching_rows = analyzed_df[analyzed_df['repo id'] == repo_id]
                    if not matching_rows.empty:
                        top_repos_list.append(matching_rows.iloc[0])
                
                if top_repos_list:
                    top_repos = pd.DataFrame(top_repos_list)
                    logger.info(f"Successfully selected {len(top_repos)} repositories using LLM")
                    return top_repos
            
            # Fallback: if LLM response parsing fails, use first N analyzed repos
            logger.warning("Failed to parse LLM response, using fallback selection")
            return analyzed_df.head(top_n)
            
        except Exception as llm_error:
            logger.error(f"LLM selection failed: {llm_error}")
            # Fallback: return first N repositories with analysis data
            return analyzed_df.head(top_n)
        
    except Exception as e:
        logger.error(f"Error in LLM-based repo selection: {e}")
        return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])

def write_repos_to_csv(repo_ids: List[str]) -> None:
    """Writes a list of repo IDs to the CSV file, overwriting the previous content."""
    try:
        with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
            for repo_id in repo_ids:
                writer.writerow([repo_id, "", "", "", ""])
        logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
    except Exception as e:
        logger.error(f"Error writing to CSV: {e}")

def format_text_for_dataframe(text: str, max_length: int = 200) -> str:
    """Format text for better display in dataframe by truncating and cleaning."""
    if not text or pd.isna(text):
        return ""
    
    # Clean the text
    text = str(text).strip()
    
    # Remove excessive whitespace and newlines
    text = re.sub(r'\s+', ' ', text)
    
    # Truncate if too long
    if len(text) > max_length:
        text = text[:max_length-3] + "..."
    
    return text

def read_csv_to_dataframe() -> pd.DataFrame:
    """Reads the CSV file into a pandas DataFrame with full text preserved."""
    try:
        df = pd.read_csv(CSV_FILE, dtype=str).fillna('')
        
        # Keep the full text intact - don't truncate here
        # The truncation will be handled in the UI display layer
        
        return df
    except FileNotFoundError:
        return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
    except Exception as e:
        logger.error(f"Error reading CSV: {e}")
        return pd.DataFrame()

def format_dataframe_for_display(df: pd.DataFrame) -> pd.DataFrame:
    """Returns dataframe with full text (no truncation) for display."""
    if df.empty:
        return df
    
    # Return the dataframe as-is without any text truncation
    # This will show the full text content in the CSV display
    return df.copy()

def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]:
    """
    Downloads, analyzes a single repo, updates the CSV, and returns results.
    Now includes user requirements for better relevance rating.
    This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
    """
    try:
        logger.info(f"Starting analysis for repo: {repo_id}")
        download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
        txt_path = combine_repo_files_for_llm()
        
        with open(txt_path, "r", encoding="utf-8") as f:
            combined_content = f.read()

        llm_output = analyze_combined_file(txt_path, user_requirements)
        
        last_start = llm_output.rfind('{')
        last_end = llm_output.rfind('}')
        final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
        
        llm_json = parse_llm_json_response(final_json_str)
        
        summary = ""
        if isinstance(llm_json, dict) and "error" not in llm_json:
            strengths = llm_json.get("strength", "N/A")
            weaknesses = llm_json.get("weaknesses", "N/A")
            relevance = llm_json.get("relevance rating", "N/A")
            summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}"
        else:
            summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."

        # Update CSV
        df = read_csv_to_dataframe()
        repo_found_in_df = False
        for idx, row in df.iterrows():
            if row["repo id"] == repo_id:
                if isinstance(llm_json, dict):
                    df.at[idx, "strength"] = llm_json.get("strength", "")
                    df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
                    df.at[idx, "speciality"] = llm_json.get("speciality", "")
                    df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
                repo_found_in_df = True
                break
        
        if not repo_found_in_df:
             logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")

        # Write CSV with better error handling and flushing
        try:
            df.to_csv(CSV_FILE, index=False)
            # Force file system flush
            os.sync() if hasattr(os, 'sync') else None
            logger.info(f"Successfully updated CSV for {repo_id}")
        except Exception as csv_error:
            logger.error(f"Failed to write CSV for {repo_id}: {csv_error}")
            # Try once more with a small delay
            time.sleep(0.2)
            try:
                df.to_csv(CSV_FILE, index=False)
                logger.info(f"Successfully updated CSV for {repo_id} on retry")
            except Exception as retry_error:
                logger.error(f"Failed to write CSV for {repo_id} on retry: {retry_error}")

        logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
        return combined_content, summary, df

    except Exception as e:
        logger.error(f"An error occurred during analysis of {repo_id}: {e}")
        error_summary = f"Error analyzing repo: {e}"
        return "", error_summary, format_dataframe_for_display(read_csv_to_dataframe())

# --- NEW: Helper for Chat History Conversion ---
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
    """
    Converts Gradio's 'messages' format to the old 'tuple' format for compatibility.
    This robust version correctly handles histories that start with an assistant message.
    """
    tuple_history = []
    # Iterate through the history to find user messages
    for i, msg in enumerate(history):
        if msg['role'] == 'user':
            # Once a user message is found, check if the next message is from the assistant
            if i + 1 < len(history) and history[i+1]['role'] == 'assistant':
                user_content = msg['content']
                assistant_content = history[i+1]['content']
                tuple_history.append((user_content, assistant_content))
    return tuple_history

# --- Gradio UI ---

def create_ui() -> gr.Blocks:
    """Creates and configures the entire Gradio interface."""

    css = """
    /* Modern sleek design */
    .gradio-container {
        font-family: 'Inter', 'system-ui', sans-serif;
        background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%);
        min-height: 100vh;
    }
    
    .gr-form {
        background: rgba(255, 255, 255, 0.95);
        backdrop-filter: blur(10px);
        border-radius: 16px;
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
        padding: 24px;
        margin: 16px;
        border: 1px solid rgba(255, 255, 255, 0.2);
    }
    
    .gr-button {
        background: linear-gradient(45deg, #667eea, #764ba2);
        border: none;
        border-radius: 12px;
        color: white;
        font-weight: 600;
        padding: 12px 24px;
        transition: all 0.3s ease;
        box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
    }
    
    .gr-button:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6);
    }
    
    .gr-textbox {
        border: 2px solid rgba(102, 126, 234, 0.2);
        border-radius: 12px;
        background: rgba(255, 255, 255, 0.9);
        transition: all 0.3s ease;
    }
    
    .gr-textbox:focus {
        border-color: #667eea;
        box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
    }
    
    .gr-panel {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 16px;
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
        border: 1px solid rgba(255, 255, 255, 0.2);
    }
    
    .gr-tab-nav {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 12px 12px 0 0;
        backdrop-filter: blur(10px);
    }
    
    .gr-tab-nav button {
        background: transparent;
        border: none;
        padding: 16px 24px;
        font-weight: 600;
        color: #666;
        transition: all 0.3s ease;
    }
    
    .gr-tab-nav button.selected {
        background: linear-gradient(45deg, #667eea, #764ba2);
        color: white;
        border-radius: 8px;
    }
    
    .chatbot {
        border-radius: 16px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
    }
    
    /* Hide Gradio footer */
    footer {
        display: none !important;
    }
    
    /* Custom scrollbar */
    ::-webkit-scrollbar {
        width: 8px;
    }
    
    ::-webkit-scrollbar-track {
        background: rgba(255, 255, 255, 0.1);
        border-radius: 4px;
    }
    
    ::-webkit-scrollbar-thumb {
        background: linear-gradient(45deg, #667eea, #764ba2);
        border-radius: 4px;
    }
    
    /* Improved dataframe styling for full text display */
    .gr-dataframe {
        border-radius: 12px;
        overflow: hidden;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
        background: rgba(255, 255, 255, 0.98);
    }
    
    .gr-dataframe table {
        width: 100%;
        table-layout: fixed;
        border-collapse: collapse;
    }
    
    /* Column width specifications for both dataframes */
    .gr-dataframe th,
    .gr-dataframe td {
        padding: 12px 16px;
        text-align: left;
        border-bottom: 1px solid rgba(0, 0, 0, 0.1);
        font-size: 0.95rem;
        line-height: 1.4;
    }
    
    /* Specific column widths - applying to both dataframes */
    .gr-dataframe th:nth-child(1),
    .gr-dataframe td:nth-child(1) { width: 16.67% !important; min-width: 16.67% !important; max-width: 16.67% !important; }
    .gr-dataframe th:nth-child(2),
    .gr-dataframe td:nth-child(2) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
    .gr-dataframe th:nth-child(3),
    .gr-dataframe td:nth-child(3) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
    .gr-dataframe th:nth-child(4),
    .gr-dataframe td:nth-child(4) { width: 20.83% !important; min-width: 20.83% !important; max-width: 20.83% !important; }
    .gr-dataframe th:nth-child(5),
    .gr-dataframe td:nth-child(5) { width: 12.5% !important; min-width: 12.5% !important; max-width: 12.5% !important; }
    
    /* Additional specific targeting for both dataframes */
    div[data-testid="dataframe"] table th:nth-child(1),
    div[data-testid="dataframe"] table td:nth-child(1) { width: 16.67% !important; }
    div[data-testid="dataframe"] table th:nth-child(2),
    div[data-testid="dataframe"] table td:nth-child(2) { width: 25% !important; }
    div[data-testid="dataframe"] table th:nth-child(3),
    div[data-testid="dataframe"] table td:nth-child(3) { width: 25% !important; }
    div[data-testid="dataframe"] table th:nth-child(4),
    div[data-testid="dataframe"] table td:nth-child(4) { width: 20.83% !important; }
    div[data-testid="dataframe"] table th:nth-child(5),
    div[data-testid="dataframe"] table td:nth-child(5) { width: 12.5% !important; }
    
    /* Make repository names clickable */
    .gr-dataframe td:nth-child(1) {
        cursor: pointer;
        color: #667eea;
        font-weight: 600;
        transition: all 0.3s ease;
    }
    
    .gr-dataframe td:nth-child(1):hover {
        background-color: rgba(102, 126, 234, 0.1);
        color: #764ba2;
        transform: scale(1.02);
    }
    
    /* Content columns - readable styling with scroll for long text */
    .gr-dataframe td:nth-child(2),
    .gr-dataframe td:nth-child(3),
    .gr-dataframe td:nth-child(4),
    .gr-dataframe td:nth-child(5) {
        cursor: default;
        font-size: 0.9rem;
    }
    
    .gr-dataframe tbody tr:hover {
        background-color: rgba(102, 126, 234, 0.05);
    }
    
    /* JavaScript for auto-scroll to top on tab change */
    <script>
    document.addEventListener('DOMContentLoaded', function() {
        // Function to scroll to top
        function scrollToTop() {
            window.scrollTo({
                top: 0,
                behavior: 'smooth'
            });
        }
        
        // Observer for tab changes
        const observer = new MutationObserver(function(mutations) {
            mutations.forEach(function(mutation) {
                if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
                    const target = mutation.target;
                    if (target.classList && target.classList.contains('selected')) {
                        // Tab was selected, scroll to top
                        setTimeout(scrollToTop, 100);
                    }
                }
            });
        });
        
        // Observe tab navigation buttons
        const tabButtons = document.querySelectorAll('.gr-tab-nav button');
        tabButtons.forEach(button => {
            observer.observe(button, { attributes: true });
            
            // Also add click listener for immediate scroll
            button.addEventListener('click', function() {
                setTimeout(scrollToTop, 150);
            });
        });
        
        // Enhanced listener for programmatic tab changes (button-triggered navigation)
        let lastSelectedTab = null;
        const checkInterval = setInterval(function() {
            const currentSelectedTab = document.querySelector('.gr-tab-nav button.selected');
            if (currentSelectedTab && currentSelectedTab !== lastSelectedTab) {
                lastSelectedTab = currentSelectedTab;
                setTimeout(scrollToTop, 100);
            }
        }, 100);
        
        // Additional scroll trigger for repo explorer navigation
        window.addEventListener('repoExplorerNavigation', function() {
            setTimeout(scrollToTop, 200);
        });
        
        // Watch for specific tab transitions to repo explorer
        const repoExplorerObserver = new MutationObserver(function(mutations) {
            mutations.forEach(function(mutation) {
                if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
                    const target = mutation.target;
                    if (target.textContent && target.textContent.includes('πŸ” Repo Explorer') && target.classList.contains('selected')) {
                        setTimeout(scrollToTop, 150);
                    }
                }
            });
        });
        
        // Start observing for repo explorer specific changes
        setTimeout(function() {
            const repoExplorerTab = Array.from(document.querySelectorAll('.gr-tab-nav button')).find(btn => 
                btn.textContent && btn.textContent.includes('πŸ” Repo Explorer')
            );
            if (repoExplorerTab) {
                repoExplorerObserver.observe(repoExplorerTab, { attributes: true });
            }
        }, 1000);
    });
    </script>
    """

    with gr.Blocks(
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="gray",
            font=["Inter", "system-ui", "sans-serif"]
        ), 
        css=css, 
        title="πŸš€ HF Repo Analyzer"
    ) as app:
        
        # --- State Management ---
        # Using simple, separate state objects for robustness.
        repo_ids_state = gr.State([])
        current_repo_idx_state = gr.State(0)
        user_requirements_state = gr.State("")  # Store user requirements from chatbot
        loaded_repo_content_state = gr.State("")  # Store loaded repository content
        current_repo_id_state = gr.State("")  # Store current repository ID

        gr.Markdown(
            """
            <div style="text-align: center; padding: 40px 20px; background: rgba(255, 255, 255, 0.1); border-radius: 20px; margin: 20px auto; max-width: 900px; backdrop-filter: blur(10px);">
                <h1 style="font-size: 3.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
                    πŸš€ HF Repo Analyzer
                </h1>
                <p style="font-size: 1.3rem; color: rgba(255, 255, 255, 0.9); margin: 16px 0 0 0; font-weight: 400; line-height: 1.6;">
                    Discover, analyze, and evaluate Hugging Face repositories with AI-powered insights
                </p>
                <div style="height: 4px; width: 80px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 24px auto; border-radius: 2px;"></div>
            </div>
            """
        )
        
        # Global Reset Button - visible on all tabs
        with gr.Row():
            with gr.Column(scale=4):
                pass
            with gr.Column(scale=1):
                reset_all_btn = gr.Button("πŸ”„ Reset Everything", variant="stop", size="lg")
            with gr.Column(scale=1):
                pass

        with gr.Tabs() as tabs:
            # --- Input Tab ---
            with gr.TabItem("πŸ“ Input & Search", id="input_tab"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        gr.Markdown("### πŸ“ Repository IDs")
                        repo_id_input = gr.Textbox(
                            label="Repository IDs",
                            lines=8,
                            placeholder="microsoft/DialoGPT-medium\nopenai/whisper\nhuggingface/transformers",
                            info="Enter repo IDs separated by commas or new lines"
                        )
                        submit_repo_btn = gr.Button("πŸš€ Submit Repositories", variant="primary", size="lg")
                    
                    with gr.Column(scale=1):
                        gr.Markdown("### πŸ” Keyword Search")
                        keyword_input = gr.Textbox(
                            label="Search Keywords",
                            lines=8,
                            placeholder="text generation\nimage classification\nsentiment analysis",
                            info="Enter keywords to find relevant repositories"
                        )
                        search_btn = gr.Button("πŸ”Ž Search Repositories", variant="primary", size="lg")
                
                status_box_input = gr.Textbox(label="πŸ“Š Status", interactive=False, lines=2)

            # --- Analysis Tab ---
            with gr.TabItem("πŸ”¬ Analysis", id="analysis_tab"):
                gr.Markdown("### πŸ§ͺ Repository Analysis Engine")
                
                # Display current user requirements
                with gr.Row():
                    current_requirements_display = gr.Textbox(
                        label="πŸ“‹ Current User Requirements",
                        interactive=False,
                        lines=3,
                        info="Requirements extracted from AI chat conversation for relevance rating"
                    )
                
                with gr.Row():
                    analyze_all_btn = gr.Button("πŸš€ Analyze All Repositories", variant="primary", size="lg", scale=1)
                    with gr.Column(scale=2):
                        status_box_analysis = gr.Textbox(label="πŸ“ˆ Analysis Status", interactive=False, lines=2)
                
                # Progress bar for batch analysis
                with gr.Row():
                    analysis_progress = gr.Progress()
                    # progress_display = gr.Textbox(
                    #     label="πŸ“Š Batch Analysis Progress",
                    #     interactive=False,
                    #     lines=2,
                    #     visible=False,
                    #     info="Shows progress when analyzing all repositories"
                    # )

                with gr.Row(equal_height=True):
                    # with gr.Column():
                    #     content_output = gr.Textbox(
                    #         label="πŸ“„ Repository Content", 
                    #         lines=20, 
                    #         show_copy_button=True,
                    #         info="Raw content extracted from the repository"
                    #     )
                    # with gr.Column():
                    #     summary_output = gr.Textbox(
                    #         label="🎯 AI Analysis Summary", 
                    #         lines=20, 
                    #         show_copy_button=True,
                    #         info="Detailed analysis and insights from AI"
                    #     )
                    pass

                gr.Markdown("### πŸ“Š Results Dashboard")
                
                # Top 3 Most Relevant Repositories (initially hidden)
                with gr.Column(visible=False) as top_repos_section:
                    gr.Markdown("### πŸ† Top 3 Most Relevant Repositories")
                    gr.Markdown("🎯 **These are the highest-rated repositories based on your requirements:**")
                    top_repos_df = gr.Dataframe(
                        headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
                        column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
                        wrap=True,
                        interactive=False
                    )
                
                gr.Markdown("πŸ’‘ **Tip:** Full text is displayed directly in the table. Click on repository names to explore or visit them!")
                
                # Text expansion modal for showing full content (kept for backwards compatibility)
                with gr.Row():
                    with gr.Column():
                        text_expansion_modal = gr.Column(visible=False)
                        with text_expansion_modal:
                            gr.Markdown("### πŸ“„ Full Content View")
                            expanded_content_title = gr.Textbox(
                                label="Content Type",
                                interactive=False,
                                info="Full text content for the selected field"
                            )
                            expanded_content_text = gr.Textbox(
                                label="Full Text",
                                lines=10,
                                interactive=False,
                                show_copy_button=True,
                                info="Complete untruncated content"
                            )
                            close_text_modal_btn = gr.Button("❌ Close", size="lg")
                
                # Modal popup for repository action selection
                with gr.Row():
                    with gr.Column():
                        repo_action_modal = gr.Column(visible=False)
                        with repo_action_modal:
                            gr.Markdown("### πŸ”— Repository Actions")
                            selected_repo_display = gr.Textbox(
                                label="Selected Repository",
                                interactive=False,
                                info="Choose what you'd like to do with this repository"
                            )
                            with gr.Row():
                                visit_repo_btn = gr.Button("🌐 Visit Hugging Face Space", variant="primary", size="lg")
                                explore_repo_btn = gr.Button("πŸ” Open in Repo Explorer", variant="secondary", size="lg")
                                cancel_modal_btn = gr.Button("❌ Cancel", size="lg")
                
                gr.Markdown("### πŸ“‹ All Analysis Results")
                df_output = gr.Dataframe(
                    headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
                    column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
                    wrap=True,
                    interactive=False
                )

            # --- Chatbot Tab ---
            with gr.TabItem("πŸ€– AI Assistant", id="chatbot_tab"):
                gr.Markdown("### πŸ’¬ Intelligent Repository Discovery")
                
                chatbot = gr.Chatbot(
                    label="πŸ€– AI Assistant",
                    height=450,
                    type="messages",
                    avatar_images=(
                        "https://cdn-icons-png.flaticon.com/512/149/149071.png",
                        "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
                    ),
                    show_copy_button=True
                )
                
                with gr.Row():
                    msg_input = gr.Textbox(
                        label="πŸ’­ Your Message", 
                        placeholder="Tell me about your ideal repository...", 
                        lines=1, 
                        scale=4,
                        info="Describe what you're looking for"
                    )
                    send_btn = gr.Button("πŸ“€ Send", variant="primary", scale=1)
                    end_chat_btn = gr.Button("🎯 Extract Keywords", scale=1)
                    use_keywords_btn = gr.Button("πŸ”Ž Search Now", variant="primary", scale=1)

                with gr.Row():
                    with gr.Column():
                        extracted_keywords_output = gr.Textbox(
                            label="🏷️ Extracted Keywords", 
                            interactive=False, 
                            show_copy_button=True,
                            info="AI-generated search terms from our conversation"
                        )
                    with gr.Column():
                        status_box_chatbot = gr.Textbox(
                            label="πŸ“Š Chat Status", 
                            interactive=False,
                            info="Current conversation status"
                        )

            # --- Repo Explorer Tab ---
            with gr.TabItem("πŸ” Repo Explorer", id="repo_explorer_tab"):
                repo_components, repo_states = create_repo_explorer_tab()
        
        # --- Footer ---
        gr.Markdown(
            """
            <div style="text-align: center; padding: 30px 20px; margin-top: 40px; background: rgba(255, 255, 255, 0.1); border-radius: 16px; backdrop-filter: blur(10px);">
                <p style="margin: 0; color: rgba(255, 255, 255, 0.8); font-size: 0.95rem; font-weight: 500;">
                    πŸš€ Powered by <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Gradio</span> 
                    & <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Hugging Face</span>
                </p>
                <div style="height: 2px; width: 60px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 16px auto; border-radius: 1px;"></div>
            </div>
            """
        )
        
        # --- Event Handler Functions ---

        def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted repo IDs, updates state, and prepares for analysis."""
            if not text:
                return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
            
            repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
            write_repos_to_csv(repo_ids)
            df = format_dataframe_for_display(read_csv_to_dataframe())
            status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
            return repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
            if not keywords:
                return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
            
            keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
            repo_ids = []
            for kw in keyword_list:
                repo_ids.extend(search_top_spaces(kw, limit=5))
            
            unique_repo_ids = list(dict.fromkeys(repo_ids))
            write_repos_to_csv(unique_repo_ids)
            df = format_dataframe_for_display(read_csv_to_dataframe())
            status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
            return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
            """Extract user requirements from chatbot conversation."""
            if not history:
                return ""
            
            user_messages = []
            for msg in history:
                if msg.get('role') == 'user':
                    user_messages.append(msg.get('content', ''))
            
            if not user_messages:
                return ""
            
            # Combine all user messages as requirements
            requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
            return requirements

        def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
            """Appends the user's message to the history, preparing for the bot's response."""
            # Initialize chatbot with welcome message if empty
            if not history:
                history = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
            
            if user_message:
                history.append({"role": "user", "content": user_message})
            return history, ""

        def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
            """Generates and appends the bot's response using the compatible history format."""
            if not history or history[-1]["role"] != "user":
                return history
            
            user_message = history[-1]["content"]
            # Convert all messages *before* the last user message into tuples for the API
            tuple_history_for_api = convert_messages_to_tuples(history[:-1])
            
            response = chat_with_user(user_message, tuple_history_for_api)
            history.append({"role": "assistant", "content": response})
            return history

        def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
            """Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
            if not history:
                return "", "Status: Chat is empty, nothing to analyze.", ""
            
            # Convert the full, valid history for the extraction logic
            tuple_history = convert_messages_to_tuples(history)
            if not tuple_history:
                return "", "Status: No completed conversations to analyze.", ""
                
            # Get raw keywords string from the LLM
            raw_keywords_str = extract_keywords_from_conversation(tuple_history)
            
            # Sanitize the LLM output to extract only keyword-like parts.
            # A keyword can contain letters, numbers, underscores, spaces, and hyphens.
            cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
            
            # Trim whitespace from each found keyword and filter out any empty strings
            cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
            
            if not cleaned_keywords:
                return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'", ""

            # Join them into a clean, comma-separated string for the search tool
            final_keywords_str = ", ".join(cleaned_keywords)
            
            # Extract user requirements for analysis
            user_requirements = extract_user_requirements_from_chat(history)
            
            status = "Status: Keywords extracted. User requirements saved for analysis."
            return final_keywords_str, status, user_requirements

        def handle_dataframe_select(evt: gr.SelectData, df_data) -> Tuple[str, Any, Any, str, str, Any]:
            """Handle dataframe row selection - only repo ID (column 0) shows modal since full text is now displayed directly."""
            print(f"DEBUG: Selection event triggered!")
            print(f"DEBUG: evt = {evt}")
            print(f"DEBUG: df_data type = {type(df_data)}")
            
            if evt is None:
                return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False)
            
            try:
                # Get the selected row and column from the event
                row_idx = evt.index[0]
                col_idx = evt.index[1]
                print(f"DEBUG: Selected row {row_idx}, column {col_idx}")
                
                # Handle pandas DataFrame
                if isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data):
                    
                    if col_idx == 0:  # Repository name column - show action modal
                        repo_id = df_data.iloc[row_idx, 0]
                        print(f"DEBUG: Extracted repo_id = '{repo_id}'")
                        
                        if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan':
                            clean_repo_id = str(repo_id).strip()
                            logger.info(f"Showing modal for repository: {clean_repo_id}")
                            return clean_repo_id, gr.update(visible=True), gr.update(), "", "", gr.update(visible=False)
                    
                    # For content columns (1,2,3) and relevance (4), do nothing since full text is shown directly
                    else:
                        print(f"DEBUG: Clicked on column {col_idx}, full text already shown in table")
                        return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False)
                else:
                    print(f"DEBUG: df_data is not a DataFrame or row_idx {row_idx} out of range")
                
            except Exception as e:
                print(f"DEBUG: Exception occurred: {e}")
                logger.error(f"Error handling dataframe selection: {e}")
            
            return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False)

        def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
            """Analyzes all repositories in the CSV file with progress tracking."""
            if not repo_ids:
                return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first.", pd.DataFrame(), gr.update(visible=False)
            
            total_repos = len(repo_ids)
            
            try:
                # Start the progress tracking
                progress(0, desc="Initializing batch analysis...")
                
                successful_analyses = 0
                failed_analyses = 0
                csv_update_failures = 0
                
                for i, repo_id in enumerate(repo_ids):
                    # Update progress
                    progress_percent = (i / total_repos)
                    progress(progress_percent, desc=f"Analyzing {repo_id} ({i+1}/{total_repos})")
                    
                    try:
                        logger.info(f"Batch analysis: Processing {repo_id} ({i+1}/{total_repos})")
                        
                        # Analyze the repository
                        content, summary, df = analyze_and_update_single_repo(repo_id, user_requirements)
                        
                        # Verify the CSV was actually updated by checking if the repo has analysis data
                        updated_df = read_csv_to_dataframe()
                        repo_updated = False
                        
                        for idx, row in updated_df.iterrows():
                            if row["repo id"] == repo_id:
                                # Check if any analysis field is populated
                                if (row.get("strength", "").strip() or 
                                    row.get("weaknesses", "").strip() or 
                                    row.get("speciality", "").strip() or 
                                    row.get("relevance rating", "").strip()):
                                    repo_updated = True
                                    break
                        
                        if repo_updated:
                            successful_analyses += 1
                        else:
                            # CSV update failed - try once more
                            logger.warning(f"CSV update failed for {repo_id}, attempting retry...")
                            time.sleep(0.5)  # Wait a bit longer
                            
                            # Force re-read and re-update
                            df_retry = read_csv_to_dataframe()
                            retry_success = False
                            
                            # Re-parse the analysis if available
                            if summary and "JSON extraction: SUCCESS" in summary:
                                # Extract the analysis from summary - this is a fallback
                                logger.info(f"Attempting to re-update CSV for {repo_id}")
                                content_retry, summary_retry, df_retry = analyze_and_update_single_repo(repo_id, user_requirements)
                                
                                # Check again
                                final_df = read_csv_to_dataframe()
                                for idx, row in final_df.iterrows():
                                    if row["repo id"] == repo_id:
                                        if (row.get("strength", "").strip() or 
                                            row.get("weaknesses", "").strip() or 
                                            row.get("speciality", "").strip() or 
                                            row.get("relevance rating", "").strip()):
                                            retry_success = True
                                            break
                            
                            if retry_success:
                                successful_analyses += 1
                            else:
                                csv_update_failures += 1
                        
                        # Longer delay to prevent file conflicts
                        time.sleep(0.3)
                        
                    except Exception as e:
                        logger.error(f"Error analyzing {repo_id}: {e}")
                        failed_analyses += 1
                        # Still wait to prevent rapid failures
                        time.sleep(0.2)
                
                # Complete the progress
                progress(1.0, desc="Batch analysis completed!")
                
                # Get final updated dataframe
                updated_df = read_csv_to_dataframe()
                
                # Filter out rows with no analysis data for consistent display with top 3
                analyzed_df = updated_df.copy()
                analyzed_df = analyzed_df[
                    (analyzed_df['strength'].str.strip() != '') | 
                    (analyzed_df['weaknesses'].str.strip() != '') | 
                    (analyzed_df['speciality'].str.strip() != '') | 
                    (analyzed_df['relevance rating'].str.strip() != '')
                ]
                
                # Get top 3 most relevant repositories using full data
                top_repos = get_top_relevant_repos(updated_df, user_requirements, top_n=3)
                
                # Final status with detailed breakdown
                final_status = f"πŸŽ‰ Batch Analysis Complete!\nβœ… Successful: {successful_analyses}/{total_repos}\n❌ Failed: {failed_analyses}/{total_repos}"
                if csv_update_failures > 0:
                    final_status += f"\n⚠️ CSV Update Issues: {csv_update_failures}/{total_repos}"
                
                # Add top repos info if available
                if not top_repos.empty:
                    final_status += f"\n\nπŸ† Top {len(top_repos)} most relevant repositories selected!"
                
                # Show top repos section if we have results
                show_top_section = gr.update(visible=not top_repos.empty)
                
                logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues")
                return format_dataframe_for_display(analyzed_df), final_status, format_dataframe_for_display(top_repos), show_top_section
                
            except Exception as e:
                logger.error(f"Error in batch analysis: {e}")
                error_status = f"❌ Batch analysis failed: {e}"
                return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False)

        def handle_visit_repo(repo_id: str) -> Tuple[Any, str]:
            """Handle visiting the Hugging Face Space for the repository."""
            if repo_id and repo_id.strip():
                hf_url = f"https://huggingface.co/spaces/{repo_id.strip()}"
                logger.info(f"User chose to visit: {hf_url}")
                return gr.update(visible=False), hf_url
            return gr.update(visible=False), ""

        def handle_explore_repo(repo_id: str) -> Tuple[Any, Any, Any]:
            """Handle navigating to the repo explorer and populating the ID."""
            if repo_id and repo_id.strip():
                logger.info(f"User chose to explore: {repo_id.strip()}")
                return (
                    gr.update(visible=False),  # close modal
                    gr.update(selected="repo_explorer_tab"),  # switch tab
                    gr.update(value=repo_id.strip())  # update input field
                )
            return (
                gr.update(visible=False), 
                gr.update(), 
                gr.update()
            )

        def handle_cancel_modal() -> Any:
            """Handle closing the modal."""
            return gr.update(visible=False)

        def handle_close_text_modal() -> Any:
            """Handle closing the text expansion modal."""
            return gr.update(visible=False)

        def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, Any, Any, List[Dict[str, str]], str, str, str]:
            """Reset everything to initial state - clear all data, CSV, and UI components."""
            try:
                # Clear the CSV file
                if os.path.exists(CSV_FILE):
                    os.remove(CSV_FILE)
                    logger.info("CSV file deleted for reset")
                
                # Create empty dataframe
                empty_df = pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
                
                # Reset state variables
                repo_ids_reset = []
                current_idx_reset = 0
                user_requirements_reset = ""
                
                # Reset status
                status_reset = "Status: Everything has been reset. Ready to start fresh!"
                
                # Reset UI components
                current_requirements_reset = "No requirements extracted yet."
                extracted_keywords_reset = ""
                
                # Reset chatbot to initial message
                chatbot_reset = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
                
                logger.info("Complete system reset performed")
                
                return (
                    repo_ids_reset,           # repo_ids_state
                    current_idx_reset,        # current_repo_idx_state  
                    user_requirements_reset,  # user_requirements_state
                    empty_df,                 # df_output
                    empty_df,                 # top_repos_df
                    gr.update(visible=False), # top_repos_section
                    gr.update(visible=False), # repo_action_modal
                    gr.update(visible=False), # text_expansion_modal
                    chatbot_reset,            # chatbot
                    status_reset,             # status_box_analysis
                    current_requirements_reset, # current_requirements_display
                    extracted_keywords_reset  # extracted_keywords_output
                )
                
            except Exception as e:
                logger.error(f"Error during reset: {e}")
                error_status = f"Reset failed: {e}"
                return (
                    [],                       # repo_ids_state
                    0,                        # current_repo_idx_state
                    "",                       # user_requirements_state
                    pd.DataFrame(),           # df_output
                    pd.DataFrame(),           # top_repos_df
                    gr.update(visible=False), # top_repos_section
                    gr.update(visible=False), # repo_action_modal
                    gr.update(visible=False), # text_expansion_modal
                    [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot
                    error_status,             # status_box_analysis
                    "No requirements extracted yet.", # current_requirements_display
                    ""                        # extracted_keywords_output
                )

        # --- Component Event Wiring ---
        
        # Initialize chatbot with welcome message on app load
        app.load(
            fn=lambda: [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
            outputs=[chatbot]
        )
        
        # Input Tab
        submit_repo_btn.click(
            fn=handle_repo_id_submission,
            inputs=[repo_id_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        search_btn.click(
            fn=handle_keyword_search,
            inputs=[keyword_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
        # Analysis Tab
        analyze_all_btn.click(
            fn=lambda: None,  # No need to show progress display since it's commented out
            outputs=[]
        ).then(
            fn=handle_analyze_all_repos,
            inputs=[repo_ids_state, user_requirements_state],
            outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
        )
        
        # Chatbot Tab
        msg_input.submit(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        send_btn.click(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        end_chat_btn.click(
            fn=handle_end_chat,
            inputs=[chatbot],
            outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
        ).then(
            fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
            inputs=[user_requirements_state],
            outputs=[current_requirements_display]
        )
        use_keywords_btn.click(
            fn=handle_keyword_search,
            inputs=[extracted_keywords_output],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
        # Repo Explorer Tab
        setup_repo_explorer_events(repo_components, repo_states)
        
        # Modal button events
        visit_repo_btn.click(
            fn=handle_visit_repo,
            inputs=[selected_repo_display],
            outputs=[repo_action_modal, selected_repo_display],
            js="(repo_id) => { if(repo_id && repo_id.trim()) { window.open('https://huggingface.co/spaces/' + repo_id.trim(), '_blank'); } }"
        )
        explore_repo_btn.click(
            fn=handle_explore_repo,
            inputs=[selected_repo_display],
            outputs=[
                repo_action_modal, 
                tabs, 
                repo_components["repo_explorer_input"]
            ],
            js="() => { setTimeout(() => { window.scrollTo({top: 0, behavior: 'smooth'}); window.dispatchEvent(new Event('repoExplorerNavigation')); }, 150); }"
        )
        cancel_modal_btn.click(
            fn=handle_cancel_modal,
            outputs=[repo_action_modal]
        )
        
        # Text expansion modal events
        close_text_modal_btn.click(
            fn=handle_close_text_modal,
            outputs=[text_expansion_modal]
        )
        
        # Add dataframe selection event
        df_output.select(
            fn=handle_dataframe_select,
            inputs=[df_output],
            outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal]
        )
        
        # Add selection event for top repositories dataframe too
        top_repos_df.select(
            fn=handle_dataframe_select,
            inputs=[top_repos_df],
            outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal]
        )
        
        # Reset button event
        reset_all_btn.click(
            fn=handle_reset_everything,
            outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section, repo_action_modal, text_expansion_modal, chatbot, status_box_analysis, current_requirements_display, extracted_keywords_output]
        )
        
    return app

if __name__ == "__main__":
    app = create_ui()
    app.launch(debug=True)