Spaces:
Running
Running
File size: 13,956 Bytes
e6e6524 d707455 61165d4 d707455 30ccd16 d707455 91c3d7f d707455 ac76af4 08b2694 b081f8c 08b2694 049c3fd 6eb7050 049c3fd 08b2694 0bc9813 604282e 08b2694 604282e 08b2694 604282e ac76af4 50c0feb 08b2694 ceaf670 f29e5df c3039ab 996fbde d4d0c2a 03258fe 462e82f fce73d4 89b0646 7f3ee80 c3039ab 89b0646 3c8882c fce73d4 4f626fc fce73d4 3a9e51c 1ce0089 ceaf670 1ce0089 5581045 e911334 9073294 5581045 c8aa559 a832ee9 43bb364 3c8882c 08b2694 c3039ab 12da302 08b2694 d707455 c3039ab d707455 91c3d7f d707455 a4af329 083533c b948611 083533c 0f8916e 4090f4e c3039ab b948611 083533c bc2c7d0 1ce0089 79d8dc9 61165d4 c28efce 367a3e1 c28efce 8956cd9 c28efce 8956cd9 e5ec22d c3039ab fd5104c c3039ab 61165d4 c3039ab 61165d4 c3039ab c0c4a21 8d3265d 367a3e1 3e7988d 3d70ed8 3e7988d c0c4a21 45fc23c c0c4a21 3e7988d c0c4a21 4c9126e 3e7988d 8d3265d c3039ab df93861 c3039ab df93861 c28efce c3039ab 94c9bb9 c28efce 45fc23c c28efce 94c9bb9 c28efce 4ff4b17 c28efce c3039ab 94c9bb9 c28efce c3039ab d9dabd9 4090f4e d9dabd9 664f0f0 45fc23c 664f0f0 d9dabd9 664f0f0 45fc23c 664f0f0 4090f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# MetaDiscovery Agent - LOC API with Enhanced Completeness and Quality Analysis
import requests
import pandas as pd
import numpy as np
import streamlit as st
import matplotlib
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Custom CSS for white background, styled sidebar, banner, and dark grey font
st.markdown("""
<style>
.main {
background-color: #D3D3D3 !important;
color: #1A1A1A!important;
}
.block-container {
background-color: gray !important;
color: #808080!important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #808080 !important;
padding: 1rem;
border-radius: 0.5rem;
color: #808080 !important;
}
.stMarkdown, .stTextInput, .stDataFrame {
color: #1A1A1A!important;
}
img.banner {
width: 100%;
border-radius: 12px;
margin-bottom: 1rem;
}
.stAlert {
background-color: #f0f0f5 !important;
color: #333333 !important;
padding: 1.25rem !important;
font-size: 1rem !important;
border-radius: 0.5rem !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
}
header[data-testid="stHeader"] {
background-color: gray !important;
}
section[data-testid="stSidebar"] > div:first-child {
background-color: #1A1A1A !important;
color: #FFFFFF !important;
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
font-size: 0.95rem;
line-height: 1.5;
}
.block-container {
background-color: gray !important;
color: #1A1A1A !important;
padding-left: 2rem !important;
padding-right: 2rem !important;
box-shadow: none !important;
}
html, body, [data-testid="stApp"] {
background-color: #1A1A1A !important;
}
.custom-table {
background-color: #D3D3D3;
color: #1A1A1A;
font-family: monospace;
padding: 1rem;
border-radius: 8px;
overflow-x: auto;
white-space: pre;
border: 1px solid #ccc;
}
.sidebar-stats {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
font-weight: 600;
}
.sidebar-contrast-block {
background-color: #2b2b2b !important; /* Slightly lighter than #1A1A1A */
padding: 1.25rem;
border-radius: 10px;
margin-top: 1.5rem;
}
</style>
""", unsafe_allow_html=True)
# OPTION 1: Use an image from a URL for the banner
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")
# Updated collection URLs using the correct LOC API format
collections = {
"American Revolutionary War Maps": "american+revolutionary+war+maps",
"Civil War Maps": "civil+war+maps",
"Women's Suffrage": "women+suffrage",
"World War I Posters": "world+war+posters"
}
# Sidebar for selecting collection
#st.sidebar.markdown("## Settings")
# Create empty metadata_df variable to ensure it exists before checking
metadata_df = pd.DataFrame()
# Add a key to the selectbox to ensure it refreshes properly
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
search_query = collections[selected]
# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
# Create an empty placeholder for Quick Stats
stats_placeholder = st.sidebar.empty()
# Create placeholder for Field Completeness Breakdown
completeness_placeholder = st.sidebar.empty()
# Helpful Resources (styled and moved below dropdown)
st.sidebar.markdown("### Helpful Resources", unsafe_allow_html=True)
# Helpful Resources styled section
# 3. Helpful Resources Section (Fixed, under Completeness)
st.sidebar.markdown("""
<style>
.sidebar-section h3 {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
}
.sidebar-links a {
color: lightgray !important;
text-decoration: none !important;
}
.sidebar-links a:hover {
text-decoration: underline !important;
}
</style>
<div class="sidebar-section">
<h3>🔗 Helpful Resources</h3>
<div class="sidebar-links">
<ul style='padding-left: 1em'>
<li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
<li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
<li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
<li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
</ul>
</div>
</div>
""", unsafe_allow_html=True)
# Add a fetch button to make the action explicit
fetch_data = True
if fetch_data:
# Display a loading spinner while fetching data
with st.spinner(f"Fetching data for {selected}..."):
# Fetch data from LOC API with spoofed User-Agent header
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(collection_url, headers=headers)
response.raise_for_status()
data = response.json()
if "results" in data:
records = data.get("results", [])
elif "items" in data:
records = data.get("items", [])
else:
records = []
st.error("Unexpected API response structure. No records found.")
st.write(f"Retrieved {len(records)} records")
except requests.exceptions.RequestException as e:
st.error(f"API Connection Error: {e}")
records = []
except ValueError:
st.error("Failed to parse API response as JSON")
records = []
# Extract selected metadata fields
items = []
for record in records:
if isinstance(record, dict):
description = record.get("description", "")
if isinstance(description, list):
description = " ".join([str(d) for d in description])
item = {
"id": record.get("id", ""),
"title": record.get("title", ""),
"date": record.get("date", ""),
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
"creator": record.get("creator", ""),
"description": description
}
if not item["title"] and "item" in record:
item["title"] = record.get("item", {}).get("title", "")
if not item["date"] and "item" in record:
item["date"] = record.get("item", {}).get("date", "")
items.append(item)
metadata_df = pd.DataFrame(items)
# Define custom completeness check
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
if not metadata_df.empty:
# Incomplete record detection
incomplete_mask = metadata_df.apply(lambda row: row.map(is_incomplete), axis=1).any(axis=1)
incomplete_count = incomplete_mask.sum()
# Overall completeness
total_fields = metadata_df.size
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
overall_percent = (filled_fields / total_fields) * 100
# Field-by-field completeness
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
# Render stats summary in sidebar
stats_html = f"""
<div class="sidebar-stats">
<h3 style="color: lightgray;">Quick Stats</h3>
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
<p style="color:lightgray;">Overall Metadata Completeness: <b>{overall_percent:.1f}%</b></p>
</div>
"""
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
# Utility functions for deeper metadata quality analysis
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
def is_valid_date(value):
try:
pd.to_datetime(value)
return True
except:
return False
if not metadata_df.empty:
st.subheader("Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis (enhanced)
st.subheader("Metadata Completeness Analysis")
# Create the completeness table
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_df = pd.DataFrame({
"Field": completeness.index,
"Completeness (%)": completeness.values
})
completeness_table = completeness_df.set_index("Field")
# FILL THE PLACEHOLDER created earlier
with completeness_placeholder:
st.markdown("""
<div style='
background-color: #2e2e2e;
padding: 1.2rem;
border-radius: 10px;
margin-top: 1.5rem;
color: lightgray;
'>
<h4 style='margin-bottom: 1rem;'>Field Completeness Breakdown</h4>
""", unsafe_allow_html=True)
st.dataframe(
completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
st.markdown("</div>", unsafe_allow_html=True)
# Then continue plotting in main panel
fig = px.bar(completeness_df, x="Field", y="Completeness (%)", title="Metadata Completeness by Field")
st.plotly_chart(fig)
# Identify incomplete records
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_records = metadata_df[incomplete_mask]
st.subheader("✨ Suggested Metadata Enhancements")
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
tfidf = TfidfVectorizer(stop_words='english')
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
try:
suggestions = []
tfidf_matrix = tfidf.fit_transform(reference_df['description'])
for idx, row in incomplete_with_desc.iterrows():
if pd.isna(row['subject']) and pd.notna(row['description']):
desc_vec = tfidf.transform([str(row['description'])])
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
top_idx = sims.argmax()
suggested_subject = reference_df.iloc[top_idx]['subject']
if pd.notna(suggested_subject) and suggested_subject:
suggestions.append((row['title'], suggested_subject))
if suggestions:
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True)
else:
st.markdown("""
<div class='custom-table'>
<b>No metadata enhancement suggestions available.</b>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error generating metadata suggestions: {e}")
else:
st.markdown("""
<div class='custom-table'>
<b>Not enough descriptive data to generate metadata suggestions.</b>
</div>
""", unsafe_allow_html=True)
else:
st.warning("⚠️ No metadata records found for this collection. Try selecting another one.") |