Spaces:
Sleeping
Sleeping
File size: 8,508 Bytes
a3e0475 ffbccbb 1fd6803 fc5f1c7 d6f5773 fc5f1c7 a3e0475 5c095c6 fc42bd4 073538f 5c095c6 fc42bd4 5c095c6 1fd6803 5c095c6 1fd6803 5c095c6 94ac9e7 a3e0475 5c095c6 fc5f1c7 5c095c6 a3e0475 fc42bd4 5c095c6 a3e0475 94ac9e7 5c095c6 94ac9e7 5c095c6 073538f fc5f1c7 5c095c6 fc5f1c7 1fd6803 fc5f1c7 1fd6803 fc5f1c7 1fd6803 fc5f1c7 5c095c6 1fd6803 5c095c6 fc5f1c7 ffbccbb 1fd6803 ffbccbb 1fd6803 fc5f1c7 5c095c6 2a239ae 5c095c6 fc5f1c7 5c095c6 1fd6803 5c095c6 1fd6803 ad1c148 1fd6803 2a239ae ad0b8d6 fc42bd4 1fd6803 ffbccbb ad0b8d6 2a239ae 1fd6803 2a239ae ad1c148 5c095c6 1fd6803 2a239ae 1fd6803 4b25132 f6bb49b 1fd6803 fc5f1c7 1fd6803 5c095c6 2a239ae 5c095c6 2a239ae 5c095c6 1fd6803 f543f0b ad0b8d6 5c095c6 ad0b8d6 5c095c6 ad0b8d6 1fd6803 5c095c6 1fd6803 5c095c6 fc5f1c7 ad1c148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates varied follow-up questions for the given user input.
The prompt instructs the LLM to produce two variants, and one is selected randomly.
"""
prompt_text = (
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
"that are relevant to the topic. One should ask something like, "
"'Would you like to know more about the six types of quarks?' and the other should ask, "
"'Would you like to explore something else?' Do not include any extra commentary or meta instructions."
)
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
# Split the output into separate lines if the model returns multiple variants.
variants = re.split(r"\n|[;]+", output)
# Clean up any extraneous quotes or unwanted text.
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
# If no valid variants are found, provide a default fallback.
if not cleaned:
cleaned = ["Would you like to explore this topic further?"]
return random.choice(cleaned)
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response with a friendly, conversational tone.
Incorporates sentiment analysis and always generates a follow-up question with variation.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
# Check for style instructions in the user's text (e.g., "in the voice of an astrophysicist")
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please answer the user's question without repeating previous greetings. "
"Keep your response friendly and conversational, starting with a phrase like "
"'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("π HAL - Your NASA AI Assistant")
st.markdown("π *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
st.markdown("""
<style>
.user-msg {
background-color: #0078D7;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
|