Spaces:
Sleeping
Sleeping
File size: 3,336 Bytes
a3e0475 b9e2074 1fddcd6 a3e0475 1fddcd6 290623e a3e0475 94ac9e7 a3e0475 ed7c9b0 290623e a3e0475 290623e a3e0475 290623e a3e0475 94ac9e7 290623e 94ac9e7 290623e 94ac9e7 290623e a3e0475 290623e 1fddcd6 290623e 2a239ae 290623e 1fddcd6 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 1fddcd6 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
from langchain_huggingface import HuggingFaceEndpoint
import streamlit as st
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
import requests
from config import NASA_API_KEY # Import the NASA API key from the configuration file
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
)
return llm
def get_nasa_apod():
"""
Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
"""
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
else:
return "I couldn't fetch data from NASA right now. Please try again later."
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
if "NASA" in user_text or "space" in user_text:
nasa_response = get_nasa_apod()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': nasa_response})
return nasa_response, chat_history
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
# Streamlit setup
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
st.title("NASA Personal Assistant")
st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for settings
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Main chat interface
user_input = st.chat_input(placeholder="Type your message here...")
if user_input:
response, st.session_state.chat_history = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history,
max_new_tokens=128
)
# Display messages
for message in st.session_state.chat_history:
st.chat_message(message["role"]).write(message["content"])
|