File size: 7,166 Bytes
a3e0475
073538f
1fddcd6
073538f
a3e0475
 
073538f
 
 
 
 
 
 
 
 
a3e0475
073538f
 
 
 
 
 
 
94ac9e7
a3e0475
073538f
 
 
ed7c9b0
073538f
a3e0475
8438304
a3e0475
 
073538f
a3e0475
 
94ac9e7
 
 
 
 
073538f
94ac9e7
073538f
 
 
 
 
a3e0475
073538f
1fddcd6
073538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a239ae
073538f
 
 
 
 
2a239ae
290623e
2a239ae
 
073538f
2a239ae
 
 
290623e
2a239ae
 
 
 
073538f
 
2a239ae
073538f
 
 
 
 
 
 
 
 
 
2a239ae
 
073538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f543f0b
 
 
 
 
 
 
 
 
 
 
 
 
290623e
f543f0b
073538f
f543f0b
 
073538f
f543f0b
 
 
073538f
f543f0b
073538f
 
 
f543f0b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY  # Ensure this file exists with your NASA API Key

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# --- Ensure Session State Variables are Initialized ---
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

if "response_ready" not in st.session_state:
    st.session_state.response_ready = False  # Tracks whether HAL has responded

if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""  # Stores follow-up question

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        task="text-generation",  # Specify the task explicitly
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN")  # Hugging Face API Token
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    prompt_text = (
        f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
        "to keep the conversation engaging."
    )
    hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
    return hf.invoke(input=prompt_text).strip()

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)

    prompt = PromptTemplate.from_template(
        "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
    )
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
    response = response.split("AI:")[-1]

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    if sentiment == "NEGATIVE":
        response += "\n😞 I'm sorry to hear that. How can I assist you further?"

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

# Custom Chat Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# Chat History Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)

# --- Input & Button Handling ---
user_input = st.text_area("Type your message:", height=100)

send_button_placeholder = st.empty()

if not st.session_state.response_ready:
    if send_button_placeholder.button("Send"):
        if user_input:
            response, follow_up, st.session_state.chat_history, image_url = get_response(
                system_message="You are a helpful AI assistant.",
                user_text=user_input,
                chat_history=st.session_state.chat_history
            )

            st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

            if image_url:
                st.image(image_url, caption="NASA Image of the Day")

            # Store follow-up question
            st.session_state.follow_up = follow_up
            st.session_state.response_ready = True  # Hide Send button after response

# Conversational Follow-up
if st.session_state.response_ready and st.session_state.follow_up:
    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)

    next_input = st.text_input("HAL is waiting for your response...")

    if next_input:
        response, _, st.session_state.chat_history, _ = get_response(
            system_message="You are a helpful AI assistant.",
            user_text=next_input,
            chat_history=st.session_state.chat_history
        )
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

        st.session_state.response_ready = False
        st.session_state.follow_up = ""