Spaces:
Sleeping
Sleeping
File size: 5,668 Bytes
a3e0475 ffbccbb fc5f1c7 e653ea8 d6f5773 fc5f1c7 a3e0475 5c095c6 f009e2d e653ea8 f009e2d fe8e64b 546ff54 ab8074b e653ea8 546ff54 ab8074b e653ea8 546ff54 ab8074b e653ea8 b256ef1 5c095c6 a53e6ab 79b8723 a53e6ab 74bfc30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect # Ensure this package is installed
# β
Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Using device: {device}") # Debugging info
# β
Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
# β
Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# β
Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature, # π₯ Lowered temperature for more factual and structured responses
token=HF_TOKEN,
task="text-generation",
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
)
# β
Ensure English Responses
def ensure_english(text):
try:
detected_lang = detect(text)
if detected_lang != "en":
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
except:
return "β οΈ Language detection failed. Please ask your question again."
return text
# β
Main Response Function (Fixing Repetition & Context)
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
# β
Ensure conversation history is included correctly
filtered_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in chat_history
)
prompt = PromptTemplate.from_template(
"[INST] You are a knowledgeable and formal AI assistant. Please provide detailed, structured answers "
"without repetition, unnecessary enthusiasm or emojis.\n\n"
"Ensure responses are structured and non-repetitive."
"\nPrevious Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Provide a structured and informative response while maintaining a neutral and professional tone."
"Ensure your response is engaging yet clear."
"\nHAL:"
)
# β
Invoke Hugging Face Model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) # π₯ Lowered temperature
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
response = ensure_english(response)
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
# β
Preserve conversation history
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
st.session_state.chat_history = chat_history # β
Update session state history
return response, st.session_state.chat_history
# β
Streamlit UI
st.title("π HAL - NASA AI Assistant")
# β
Justify all chatbot responses
st.markdown("""
<style>
.user-msg, .assistant-msg {
padding: 11px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify;
}
.user-msg { background-color: #696969; color: white; }
.assistant-msg { background-color: #333333; color: white; }
.container { display: flex; flex-direction: column; align-items: flex-start; }
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
</style>
""", unsafe_allow_html=True)
# β
Reset Chat Button
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
# β
Chat UI
user_input = st.chat_input("Type your message here...")
if user_input:
response, st.session_state.chat_history = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if response:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
# β
Display chat history
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
|