File size: 5,668 Bytes
a3e0475
ffbccbb
fc5f1c7
e653ea8
d6f5773
fc5f1c7
a3e0475
 
5c095c6
f009e2d
e653ea8
 
 
f009e2d
fe8e64b
546ff54
ab8074b
e653ea8
546ff54
ab8074b
e653ea8
 
546ff54
ab8074b
e653ea8
b256ef1
5c095c6
a53e6ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b8723
 
 
a53e6ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bfc30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect  # Ensure this package is installed

# βœ… Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"βœ… Using device: {device}")  # Debugging info

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False

# βœ… Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,  # πŸ”₯ Lowered temperature for more factual and structured responses
        token=HF_TOKEN,
        task="text-generation",
        device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
    )

# βœ… Ensure English Responses
def ensure_english(text):
    try:
        detected_lang = detect(text)
        if detected_lang != "en":
            return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
    except:
        return "⚠️ Language detection failed. Please ask your question again."
    return text

# βœ… Main Response Function (Fixing Repetition & Context)
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
    # βœ… Ensure conversation history is included correctly
    filtered_history = "\n".join(
    f"{msg['role'].capitalize()}: {msg['content']}"
    for msg in chat_history
    )

    prompt = PromptTemplate.from_template(
        "[INST] You are a knowledgeable and formal AI assistant. Please provide detailed, structured answers "
        "without repetition, unnecessary enthusiasm or emojis.\n\n"
        "Ensure responses are structured and non-repetitive."
        "\nPrevious Conversation:\n{chat_history}\n\n"
        "User: {user_text}.\n [/INST]\n"
        "AI: Provide a structured and informative response while maintaining a neutral and professional tone."
        "Ensure your response is engaging yet clear."
        "\nHAL:"
    )

    # βœ… Invoke Hugging Face Model
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3)  # πŸ”₯ Lowered temperature
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')

    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()

    response = ensure_english(response)

    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    # βœ… Preserve conversation history
    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})
    st.session_state.chat_history = chat_history  # βœ… Update session state history

    return response, st.session_state.chat_history

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Justify all chatbot responses
st.markdown("""
    <style>
    .user-msg, .assistant-msg {
        padding: 11px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;
    }
    .user-msg { background-color: #696969; color: white; }
    .assistant-msg { background-color: #333333; color: white; }
    .container { display: flex; flex-direction: column; align-items: flex-start; }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
    </style>
""", unsafe_allow_html=True)

# βœ… Reset Chat Button
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False

# βœ… Chat UI
user_input = st.chat_input("Type your message here...")

if user_input:
    response, st.session_state.chat_history = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    if response:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

# βœ… Display chat history
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)