File size: 2,479 Bytes
e65d0ad
8206a45
 
e65d0ad
8206a45
 
3d71f2e
8206a45
 
 
4441c50
 
8206a45
 
 
e65d0ad
8206a45
6fadedd
8206a45
 
 
 
 
 
 
 
 
 
 
 
6fadedd
8206a45
 
4441c50
8206a45
 
 
0bae633
8206a45
4441c50
8aa99b8
4441c50
8aa99b8
8206a45
 
 
 
 
 
 
 
 
 
e65d0ad
8206a45
e65d0ad
8206a45
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM

# Global variables for caching the model and tokenizer
tokenizer, model = None, None

def load_model():
    global tokenizer, model
    if tokenizer is None or model is None:
        # Use the DeepSeek instruct model for code evaluation.
        model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)
    return tokenizer, model

def evaluate_code(question, code):
    # Updated prompt: instructs the model to output exactly valid JSON
    prompt = f"""You are an expert code evaluator.
Evaluate the following solution for the given problem.
Respond with exactly one JSON object (with no extra text) that has exactly two keys:
  "stars": an integer between 0 and 5 (0 means completely incorrect, 5 means excellent),
  "feedback": a concise string message.
The JSON must start with '{{' and end with '}}'.
Do not output anything else.
Problem: "{question}"
Solution: "{code}"
"""
    tokenizer, model = load_model()
    inputs = tokenizer(prompt, return_tensors="pt")
    # Adjust parameters for concise and deterministic output
    outputs = model.generate(
        **inputs,
        max_new_tokens=60,     # Limit output length for faster responses
        temperature=0.0,       # Deterministic output
        pad_token_id=tokenizer.eos_token_id,
        do_sample=False
    )
    response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("Raw model response:", response_text)  # Debug: Inspect raw output

    # Use regex (non-greedy) to extract the first JSON object from the response
    match = re.search(r'\{.*?\}', response_text)
    if match:
        json_text = match.group(0)
        try:
            result = json.loads(json_text)
        except Exception as e:
            result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
    else:
        result = {"stars": 0, "feedback": "Evaluation failed. Unable to extract JSON from AI response."}
    
    return result

# For direct command-line testing.
if __name__ == "__main__":
    import sys
    if len(sys.argv) < 3:
        print(json.dumps({"error": "Please provide a question and code as arguments"}))
        sys.exit(1)
    question = sys.argv[1]
    code = sys.argv[2]
    result = evaluate_code(question, code)
    print(json.dumps(result))