Spaces:
Running
Running
File size: 30,897 Bytes
e03d275 97bdf15 e03d275 003ceb6 e03d275 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 003ceb6 97bdf15 a5ee064 69061c0 97bdf15 69061c0 97bdf15 69061c0 003ceb6 69061c0 97bdf15 69061c0 97bdf15 69061c0 e03d275 a5ee064 e03d275 97bdf15 efa9136 97bdf15 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 efa9136 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 69061c0 97bdf15 606d7ff 97bdf15 69061c0 97bdf15 69061c0 efa9136 e03d275 efa9136 69061c0 97bdf15 69061c0 97bdf15 69061c0 003ceb6 97bdf15 69061c0 003ceb6 69061c0 97bdf15 003ceb6 69061c0 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 efa9136 69061c0 97bdf15 606d7ff 97bdf15 efa9136 97bdf15 e03d275 69061c0 003ceb6 97bdf15 606d7ff 69061c0 97bdf15 606d7ff 97bdf15 003ceb6 97bdf15 003ceb6 97bdf15 003ceb6 97bdf15 606d7ff 003ceb6 606d7ff 69061c0 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 69061c0 97bdf15 69061c0 97bdf15 003ceb6 69061c0 003ceb6 97bdf15 003ceb6 69061c0 97bdf15 606d7ff 003ceb6 97bdf15 606d7ff 5deb357 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 5deb357 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 606d7ff 97bdf15 efa9136 69061c0 97bdf15 69061c0 ee9de40 69061c0 606d7ff 97bdf15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
from datetime import datetime # Added for date calculations
try:
from google import genai
from google.genai import types # For GenerateContentConfig, SafetySetting, HarmCategory, HarmBlockThreshold etc.
except ImportError:
logging.error("Google Generative AI library not found. Please install it: pip install google-generativeai", exc_info=True)
# Define dummy classes/variables if import fails
class genai: Client = None # type: ignore
class types: # type: ignore
EmbedContentConfig = None
GenerateContentConfig = None
SafetySetting = None
# Define HarmCategory and HarmBlockThreshold as inner classes or attributes for the dummy types
class HarmCategory: # type: ignore
HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold: # type: ignore
BLOCK_NONE = "BLOCK_NONE"
BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"
BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"
BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH" # Added for completeness, adjust if needed
# --- Custom Exceptions ---
class ValidationError(Exception):
"""Custom validation error for agent inputs"""
pass
class RateLimitError(Exception):
"""Placeholder for rate limit errors."""
pass
# --- Configuration Constants ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
if not GEMINI_API_KEY:
logging.warning("GEMINI_API_KEY environment variable not set. EB Agent will not function.")
LLM_MODEL_NAME = "gemini-1.5-flash-latest"
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004"
GENERATION_CONFIG_PARAMS = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"candidate_count": 1,
}
# No safety settings by default as per user request
DEFAULT_SAFETY_SETTINGS = []
logging.info("Default safety settings are now empty (no explicit client-side safety settings).")
df_rag_documents = pd.DataFrame({
'text': [
"Employer branding focuses on how an organization is perceived as an employer by potential and current employees.",
"Key metrics for employer branding include employee engagement, candidate quality, and retention rates.",
"LinkedIn is a crucial platform for showcasing company culture and attracting talent.",
"Analyzing follower demographics and post engagement helps refine employer branding strategies."
]
})
# --- Client Initialization ---
client = None
if GEMINI_API_KEY and genai.Client:
try:
client = genai.Client(api_key=GEMINI_API_KEY)
logging.info("Google GenAI client initialized successfully.")
except Exception as e:
logging.error(f"Failed to initialize Google GenAI client: {e}", exc_info=True)
else:
logging.warning("Google GenAI client could not be initialized (GEMINI_API_KEY missing or library import failed).")
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.documents_df = documents_df.copy()
self.embedding_model_name = embedding_model_name
self.embeddings: np.ndarray | None = None
logging.info(f"AdvancedRAGSystem initialized with embedding model: {self.embedding_model_name}")
def _embed_single_document_sync(self, text: str) -> np.ndarray:
if not client:
raise ConnectionError("GenAI client not initialized for RAG embedding.")
if not text or not isinstance(text, str):
raise ValueError("Cannot embed empty or non-string text.")
embed_config = None
if types and hasattr(types, 'EmbedContentConfig'):
embed_config = types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
response = client.models.embed_content(
model=self.embedding_model_name,
contents=text,
config=embed_config
)
return np.array(response.embeddings)
async def initialize_embeddings(self):
if self.documents_df.empty:
logging.info("RAG documents DataFrame is empty. No embeddings to initialize.")
self.embeddings = np.array([])
return
if not client:
logging.error("GenAI client not available for RAG embedding initialization.")
self.embeddings = np.array([])
return
logging.info(f"Starting RAG document embedding for {len(self.documents_df)} documents...")
embedded_docs_list = []
for index, row in self.documents_df.iterrows():
text_to_embed = row.get('text')
if not text_to_embed or not isinstance(text_to_embed, str):
logging.warning(f"Skipping document at index {index} due to invalid text: {text_to_embed}")
continue
try:
embedding_array = await asyncio.to_thread(self._embed_single_document_sync, text_to_embed)
embedded_docs_list.append(embedding_array)
except Exception as e:
logging.error(f"Error embedding document text (index {index}) '{str(text_to_embed)[:50]}...': {e}", exc_info=False)
if not embedded_docs_list:
self.embeddings = np.array([])
logging.warning("No documents were successfully embedded for RAG.")
else:
try:
self.embeddings = np.vstack(embedded_docs_list)
logging.info(f"Successfully embedded {len(embedded_docs_list)} documents for RAG. Embedding matrix shape: {self.embeddings.shape}")
except ValueError as ve:
logging.error(f"Error stacking embeddings: {ve}. Check individual embedding errors.", exc_info=True)
self.embeddings = np.array([])
def _calculate_cosine_similarity(self, embeddings_matrix: np.ndarray, query_vector: np.ndarray) -> np.ndarray:
query_vector = query_vector.flatten()
norm_matrix = np.linalg.norm(embeddings_matrix, axis=1, keepdims=True)
normalized_embeddings_matrix = embeddings_matrix / (norm_matrix + 1e-8)
norm_query = np.linalg.norm(query_vector)
normalized_query_vector = query_vector / (norm_query + 1e-8)
return np.dot(normalized_embeddings_matrix, normalized_query_vector)
async def retrieve_relevant_info(self, query: str, top_k: int = 3, min_similarity: float = 0.3) -> str:
if self.embeddings is None or self.embeddings.size == 0 or self.documents_df.empty:
logging.debug("RAG system not initialized or no documents/embeddings available for retrieval.")
return ""
if not query or not isinstance(query, str):
logging.debug("Empty or invalid query for RAG retrieval.")
return ""
if not client:
logging.error("GenAI client not available for RAG query embedding.")
return ""
try:
query_vector = await asyncio.to_thread(self._embed_single_document_sync, query)
except Exception as e:
logging.error(f"Error embedding query '{str(query)[:50]}...': {e}", exc_info=False)
return ""
if query_vector.ndim == 0 or query_vector.size == 0:
logging.warning(f"Query vector embedding failed or is empty for query: {str(query)[:50]}")
return ""
try:
similarity_scores = self._calculate_cosine_similarity(self.embeddings, query_vector)
if similarity_scores.size == 0: return ""
relevant_indices_after_threshold = np.where(similarity_scores >= min_similarity)[0]
if len(relevant_indices_after_threshold) == 0:
logging.debug(f"No documents met the minimum similarity threshold of {min_similarity} for query: {query[:50]}")
return ""
relevant_scores = similarity_scores[relevant_indices_after_threshold]
sorted_relevant_indices_local = np.argsort(relevant_scores)[::-1]
top_original_indices = relevant_indices_after_threshold[sorted_relevant_indices_local[:top_k]]
if len(top_original_indices) == 0: return ""
context_parts = [self.documents_df.iloc[i]['text'] for i in top_original_indices if 'text' in self.documents_df.columns]
context = "\n\n---\n\n".join(context_parts)
logging.debug(f"Retrieved RAG context for query '{str(query)[:50]}...':\n{context[:200]}...")
return context
except Exception as e:
logging.error(f"Error during RAG retrieval (similarity/sorting): {e}", exc_info=True)
return ""
class EmployerBrandingAgent:
def __init__(self,
all_dataframes: dict,
rag_documents_df: pd.DataFrame,
llm_model_name: str,
embedding_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
force_sandbox: bool = False):
self.all_dataframes = {k: df.copy() for k, df in all_dataframes.items()}
self.schemas_representation = self._get_enhanced_schemas_representation()
self.chat_history = []
self.llm_model_name = llm_model_name
self.generation_config_dict = generation_config_dict
# If an empty list is passed, it means no specific safety settings are enforced by the client.
self.safety_settings_list = safety_settings_list if safety_settings_list is not None else []
self.embedding_model_name = embedding_model_name
self.rag_system = AdvancedRAGSystem(rag_documents_df, self.embedding_model_name)
self.force_sandbox = force_sandbox
logging.info(f"EmployerBrandingAgent initialized. LLM: {self.llm_model_name}, Embedding: {self.embedding_model_name}. Safety settings count: {len(self.safety_settings_list)}")
def _get_date_range(self, df: pd.DataFrame) -> str:
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
try:
min_date = df[col].min()
max_date = df[col].max()
if pd.notna(min_date) and pd.notna(max_date):
return f"{min_date.strftime('%Y-%m-%d')} to {max_date.strftime('%Y-%m-%d')}"
except Exception: pass
return "N/A"
def _calculate_growth_rate(self, df: pd.DataFrame) -> str:
logging.debug("_calculate_growth_rate is a placeholder.")
return "Growth rate calculation not implemented."
def _analyze_engagement_trends(self, df: pd.DataFrame) -> str:
logging.debug("_analyze_engagement_trends is a placeholder.")
return "Engagement trend analysis not implemented."
def _analyze_demographics(self, df: pd.DataFrame) -> str:
logging.debug("_analyze_demographics is a placeholder.")
return "Demographic analysis not implemented."
def _analyze_post_performance(self, df: pd.DataFrame) -> str:
logging.debug("_analyze_post_performance is a placeholder.")
return "Post performance analysis not implemented."
def _extract_content_themes(self, df: pd.DataFrame) -> str:
logging.debug("_extract_content_themes is a placeholder.")
return "Content theme extraction not implemented."
def _find_optimal_times(self, df: pd.DataFrame) -> str:
logging.debug("_find_optimal_times is a placeholder.")
return "Optimal posting time analysis not implemented."
def _calculate_key_metrics(self, df: pd.DataFrame, df_type: str) -> dict:
metrics = {}
if 'follower' in df_type.lower():
metrics.update({'follower_growth_rate': self._calculate_growth_rate(df), 'engagement_trends': self._analyze_engagement_trends(df), 'demographic_distribution': self._analyze_demographics(df)})
elif 'post' in df_type.lower():
metrics.update({'post_performance': self._analyze_post_performance(df), 'content_themes': self._extract_content_themes(df), 'optimal_posting_times': self._find_optimal_times(df)})
elif 'mention' in df_type.lower():
metrics['mention_volume_trend'] = "Mention volume trend not implemented."
metrics['mention_sentiment_overview'] = "Mention sentiment overview not implemented."
if not metrics:
logging.debug(f"No specific key metrics defined for df_type: {df_type}")
return {"info": "Standard metrics applicable."}
return metrics
def _calculate_data_freshness(self, df: pd.DataFrame) -> str:
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
try:
max_date = df[col].max()
if pd.notna(max_date):
days_diff = (datetime.now(max_date.tzinfo if max_date.tzinfo else None) - max_date).days
return f"Data up to {max_date.strftime('%Y-%m-%d')} ({days_diff} days old)"
except Exception: pass
return "Freshness N/A (no clear date column)"
def _check_data_consistency(self, df: pd.DataFrame) -> str:
logging.debug("_check_data_consistency is a placeholder.")
return "Consistency checks not implemented."
def _identify_accuracy_issues(self, df: pd.DataFrame) -> str:
logging.debug("_identify_accuracy_issues is a placeholder.")
return "Accuracy issue identification not implemented."
def _assess_data_quality(self, df: pd.DataFrame) -> dict:
completeness = (1 - (df.isnull().sum().sum() / (len(df) * len(df.columns)))) if len(df) > 0 and len(df.columns) > 0 else 0
return {'completeness_score': f"{completeness:.2%}", 'freshness_info': self._calculate_data_freshness(df), 'consistency_check': self._check_data_consistency(df), 'accuracy_flags_summary': self._identify_accuracy_issues(df), 'sample_size_notes': f"{len(df)} records. {'Adequate for basic analysis.' if len(df) >= 100 else 'Limited sample size; insights may be indicative.'}"}
def _identify_patterns(self, df: pd.DataFrame, key: str) -> str:
logging.debug(f"_identify_patterns for {key} is a placeholder.")
return "Pattern identification not implemented."
def _format_df_analysis(self, df_key: str, analysis: dict) -> str:
formatted_parts = [f"\n--- DataFrame: df_{df_key} ---", f" Shape: {analysis['shape']}", f" Date Range: {analysis['date_range']}", " Key Metrics:"]
for metric, value in analysis['key_metrics'].items(): formatted_parts.append(f" - {metric.replace('_', ' ').title()}: {value}")
formatted_parts.append(" Data Quality Assessment:")
for aspect, value in analysis['data_quality'].items(): formatted_parts.append(f" - {aspect.replace('_', ' ').title()}: {value}")
formatted_parts.append(f" Notable Patterns: {analysis['notable_patterns']}")
return "\n".join(formatted_parts)
def _get_enhanced_schemas_representation(self) -> str:
schema_descriptions = ["=== DETAILED LINKEDIN DATA OVERVIEW ==="]
if not self.all_dataframes:
schema_descriptions.append("No dataframes available for analysis.")
return "\n".join(schema_descriptions)
for key, df in self.all_dataframes.items():
if df.empty:
schema_descriptions.append(f"\n--- DataFrame: df_{key} ---\nStatus: Empty. No analysis possible.")
continue
analysis = {'shape': df.shape, 'date_range': self._get_date_range(df), 'key_metrics': self._calculate_key_metrics(df, key), 'data_quality': self._assess_data_quality(df), 'notable_patterns': self._identify_patterns(df, key)}
schema_descriptions.append(self._format_df_analysis(key, analysis))
return "\n".join(schema_descriptions)
def _extract_query_intent(self, query: str) -> str:
logging.debug("_extract_query_intent is a placeholder.")
if "compare" in query.lower() or "benchmark" in query.lower(): return "comparison"
if "trend" in query.lower(): return "trend_analysis"
return "general"
async def _get_business_context(self, intent: str) -> str:
logging.debug("_get_business_context is a placeholder.")
if intent == "comparison": return "Company is focused on outperforming competitors in tech hiring."
return "Company aims to improve overall employer brand perception."
async def _get_industry_benchmarks(self, intent: str) -> str:
logging.debug("_get_industry_benchmarks is a placeholder.")
if intent == "trend_analysis": return "Typical follower growth in this sector is 5-10% MoM."
return "Average engagement rate for similar companies is 2-3%."
async def _enhance_rag_context(self, query: str, base_context: str) -> str:
intent = self._extract_query_intent(query)
business_context_val = await self._get_business_context(intent)
benchmarks_val = await self._get_industry_benchmarks(intent)
enhanced_context = f"""{base_context}
--- ADDITIONAL CONTEXT FOR YOUR ANALYSIS ---
Business Focus: {business_context_val}
Relevant Benchmarks: {benchmarks_val}"""
return enhanced_context
async def _build_prompt_for_current_turn(self, raw_user_query: str) -> str:
prompt_parts = ["You are an expert Employer Branding Analyst...", "--- DETAILED DATA OVERVIEW ---", self.schemas_representation]
if self.rag_system.embeddings is not None and self.rag_system.embeddings.size > 0:
base_rag_context = await self.rag_system.retrieve_relevant_info(raw_user_query)
if base_rag_context:
enhanced_rag_context = await self._enhance_rag_context(raw_user_query, base_rag_context)
prompt_parts.extend(["--- RELEVANT CONTEXTUAL INFORMATION (from documents & business knowledge) ---", enhanced_rag_context])
prompt_parts.extend(["--- USER REQUEST ---", f"Based on all the information above, please respond to the following user query:\n{raw_user_query}"])
final_prompt = "\n".join(prompt_parts)
logging.debug(f"Built prompt for current turn (first 300 chars): {final_prompt[:300]}")
return final_prompt
async def _process_structured_query(self, prompt: str) -> dict:
logging.debug("_process_structured_query is a placeholder.")
return {"Key Findings": ["Placeholder finding 1"], "Performance Metrics": ["Placeholder metric"], "Actionable Recommendations": {"Immediate Actions (0-30 days)": ["Placeholder action"]}, "Risk Assessment": ["Placeholder risk"], "Success Metrics to Track": ["Placeholder KPI"]}
async def _generate_hr_insights(self, query: str, context: str) -> str:
insight_prompt = f"As an expert HR analytics consultant...\n{context}\nUser Query: {query}\nPlease provide insights in this structured format:\n## Key Findings\n- ...\n..."
if not client: return "Error: AI client not configured for generating HR insights."
api_call_contents = [{"role": "user", "parts": [{"text": insight_prompt}]}]
api_safety_settings_objects = []
# self.safety_settings_list is expected to be empty if no settings are desired
if types and hasattr(types, 'SafetySetting') and self.safety_settings_list:
for ss_item in self.safety_settings_list:
try:
api_safety_settings_objects.append(types.SafetySetting(category=ss_item['category'], threshold=ss_item['threshold']))
except Exception as e_ss:
logging.warning(f"Could not create SafetySetting object from {ss_item} for HR insights: {e_ss}. Using raw item.")
api_safety_settings_objects.append(ss_item)
elif self.safety_settings_list: # Fallback if types.SafetySetting not available but list is not empty
api_safety_settings_objects = self.safety_settings_list
api_generation_config_obj = None
if types and hasattr(types, 'GenerateContentConfig'):
api_generation_config_obj = types.GenerateContentConfig(**self.generation_config_dict, safety_settings=api_safety_settings_objects)
else: # Fallback if types.GenerateContentConfig is not available
api_generation_config_obj = {**self.generation_config_dict, "safety_settings": api_safety_settings_objects}
try:
response = await asyncio.to_thread(client.models.generate_content, model=self.llm_model_name, contents=api_call_contents, config=api_generation_config_obj)
if not response.candidates: return "HR insights generation failed: No response from AI."
return response.text.strip()
except Exception as e:
logging.error(f"Error generating HR insights: {e}", exc_info=True)
return f"Error generating HR insights: {str(e)}"
def _validate_query(self, query: str) -> bool:
if not query or len(query.strip()) < 3: logging.warning(f"Query too short: '{query}'"); return False
hr_keywords = ['employee', 'talent', 'hiring', 'culture', 'brand', 'engagement', 'retention', 'follower', 'post', 'mention', 'linkedin']
if not any(keyword in query.lower() for keyword in hr_keywords): logging.warning(f"Query may not be HR/LinkedIn-relevant: {query[:50]}")
return True
def _get_query_help_message(self) -> str:
return "I'm here to help with Employer Branding analysis... Example: 'What are the top industries of my followers?'"
async def _check_system_readiness(self) -> dict:
logging.debug("_check_system_readiness is a placeholder.")
if not client: return {'ready': False, 'reason': 'AI Client not initialized.'}
if self.rag_system.embeddings is None: logging.warning("RAG embeddings not yet initialized.")
return {'ready': True, 'reason': 'System appears ready.'}
def _get_fallback_response(self, query: str) -> str:
logging.error(f"Executing fallback response for query: {query[:50]}")
return "I encountered an unexpected issue..."
async def _core_query_processing(self, raw_user_query_this_turn: str) -> str:
augmented_current_user_prompt_text = await self._build_prompt_for_current_turn(raw_user_query_this_turn)
api_call_contents = list(self.chat_history)
api_call_contents.append({"role": "user", "parts": [{"text": augmented_current_user_prompt_text}]})
logging.debug(f"Sending to GenAI. Total turns in content: {len(api_call_contents)}")
api_safety_settings_objects = []
# self.safety_settings_list is expected to be empty if no settings are desired
if types and hasattr(types, 'SafetySetting') and self.safety_settings_list:
for ss_item in self.safety_settings_list:
try:
api_safety_settings_objects.append(types.SafetySetting(category=ss_item['category'], threshold=ss_item['threshold']))
except Exception as e_ss_core:
logging.warning(f"Could not create SafetySetting object from {ss_item} in core: {e_ss_core}. Using raw item.")
api_safety_settings_objects.append(ss_item)
elif self.safety_settings_list : # Fallback if types.SafetySetting not available but list is not empty
api_safety_settings_objects = self.safety_settings_list
api_generation_config_obj = None
if types and hasattr(types, 'GenerateContentConfig'):
api_generation_config_obj = types.GenerateContentConfig(**self.generation_config_dict, safety_settings=api_safety_settings_objects)
else: # Fallback if types.GenerateContentConfig is not available
logging.error("GenerateContentConfig type not available. API call might fail.")
api_generation_config_obj = {**self.generation_config_dict, "safety_settings": api_safety_settings_objects}
response = await asyncio.to_thread(client.models.generate_content, model=self.llm_model_name, contents=api_call_contents, config=api_generation_config_obj)
if not response.candidates:
block_reason = response.prompt_feedback.block_reason if response.prompt_feedback else "Unknown"
block_message = response.prompt_feedback.block_reason_message if response.prompt_feedback else ""
error_message = f"The AI's response was blocked. Reason: {block_reason}." + (f" Details: {block_message}" if block_message else "")
return error_message
return response.text.strip()
async def _process_query_with_timeout(self, raw_user_query_this_turn: str, timeout_seconds: int = 60) -> str:
try: return await asyncio.wait_for(self._core_query_processing(raw_user_query_this_turn), timeout=timeout_seconds)
except asyncio.TimeoutError:
logging.error(f"Query processing timed out for {timeout_seconds} seconds...")
return "I'm sorry, but your request took too long..."
async def process_query(self, raw_user_query_this_turn: str) -> str:
if not client: return "Error: The AI Agent is not available..."
if not self._validate_query(raw_user_query_this_turn): return self._get_query_help_message()
readiness_check = await self._check_system_readiness()
if not readiness_check['ready']: return f"System not ready: {readiness_check['reason']}"
max_retries = 2
for attempt in range(max_retries + 1):
try:
response_text = await self._process_query_with_timeout(raw_user_query_this_turn)
if "The AI's response was blocked" in response_text: return response_text
logging.info(f"Successfully received AI response (attempt {attempt+1}): {response_text[:100]}")
return response_text
except RateLimitError as rle:
if attempt == max_retries: return "The AI service is currently busy..."
await asyncio.sleep(2 ** attempt)
except ValidationError as ve: return f"Query validation failed: {str(ve)}"
except Exception as e:
if attempt == max_retries: return self._get_fallback_response(raw_user_query_this_turn)
return self._get_fallback_response(raw_user_query_this_turn)
def _classify_query_type(self, query: str) -> str:
query_lower = query.lower()
if any(word in query_lower for word in ['trend', 'growth', 'change', 'time']): return 'trend_analysis'
elif any(word in query_lower for word in ['compare', 'benchmark', 'versus']): return 'comparative_analysis'
elif any(word in query_lower for word in ['predict', 'forecast', 'future']): return 'predictive_analysis'
elif any(word in query_lower for word in ['recommend', 'suggest', 'improve', 'advice', 'help me with']): return 'recommendation_engine'
elif any(word in query_lower for word in ['what is', 'explain', 'define']): return 'definition_explanation'
else: return 'general_inquiry'
def clear_chat_history(self):
self.chat_history = []
logging.info("EmployerBrandingAgent chat history cleared by request.")
def get_all_schemas_representation(all_dataframes: dict) -> str:
if not all_dataframes: return "No DataFrames are currently loaded."
schema_descriptions = ["DataFrames currently available in the application state:"]
for key, df in all_dataframes.items():
df_name = f"df_{key}"
columns = ", ".join(df.columns)
shape = df.shape
if df.empty:
schema = f"\n--- DataFrame: {df_name} ---\nStatus: Empty\nShape: {shape}\nColumns: {columns}"
else:
try:
sample_data_str = df.head(2).to_markdown(index=False)
except ImportError:
logging.warning("`tabulate` library not found. Falling back to `to_string()` for schema representation.")
sample_data_str = df.head(2).to_string(index=False)
except Exception as e:
logging.error(f"Error formatting DataFrame sample for {df_name} with to_markdown: {e}. Falling back to to_string().")
sample_data_str = df.head(2).to_string(index=False)
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns: {columns}\n\n<details><summary>Sample Data (first 2 rows of {df_name}):</summary>\n\n```text\n{sample_data_str}\n```\n\n</details>")
schema_descriptions.append(schema)
return "\n".join(schema_descriptions)
async def test_rag_retrieval_accuracy():
logging.info("Running RAG retrieval accuracy test...")
test_embedding_model = GEMINI_EMBEDDING_MODEL_NAME
if not client:
logging.error("Cannot run RAG test: GenAI client not initialized.")
return
test_docs_data = {
'text': [
'Strategies for improving employee engagement include regular feedback and recognition programs.',
'Effective talent acquisition requires a strong employer brand and a streamlined hiring process.',
'Company culture is a key driver of employee satisfaction and retention.',
'Analyzing LinkedIn post performance can reveal insights into content effectiveness.'
]
}
test_docs_df = pd.DataFrame(test_docs_data)
rag_system = AdvancedRAGSystem(test_docs_df, test_embedding_model)
logging.info("Test RAG: Initializing embeddings...")
await rag_system.initialize_embeddings()
if rag_system.embeddings is None or rag_system.embeddings.size == 0:
logging.error("Test RAG: Embeddings not initialized properly.")
return
test_queries = {
"employee engagement": "engagement",
"hiring talent": "acquisition",
"company culture": "culture",
"linkedin posts": "linkedin"
}
all_tests_passed = True
for query, keyword in test_queries.items():
logging.info(f"Test RAG: Retrieving for query: '{query}'")
result = await rag_system.retrieve_relevant_info(query, top_k=1, min_similarity=0.1)
if result and keyword.lower() in result.lower():
logging.info(f"Test RAG: PASSED for query '{query}'. Found relevant doc.")
else:
logging.error(f"Test RAG: FAILED for query '{query}'. Expected keyword '{keyword}', got: {result[:100]}...")
all_tests_passed = False
if all_tests_passed: logging.info("All RAG retrieval accuracy tests passed.")
else: logging.error("Some RAG retrieval accuracy tests FAILED.")
|