File size: 29,224 Bytes
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
2008367
 
6e0397b
e41b8bc
2008367
e068a01
 
 
 
 
 
 
 
 
 
2008367
 
 
 
130360f
 
 
 
2008367
e068a01
 
2008367
e068a01
 
 
e41b8bc
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
e41b8bc
 
130360f
2008367
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145ed0
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145ed0
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145ed0
e068a01
 
2145ed0
e068a01
2145ed0
 
e068a01
 
 
 
 
 
 
 
 
130360f
2008367
e068a01
2008367
e068a01
 
 
 
 
2145ed0
e41b8bc
e068a01
 
 
 
 
 
2145ed0
e068a01
2145ed0
 
 
e068a01
 
 
2008367
e068a01
2145ed0
 
e068a01
 
 
 
 
 
 
2145ed0
e068a01
2145ed0
 
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008367
e068a01
 
2008367
e068a01
2008367
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145ed0
2008367
6e0397b
e068a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
import asyncio
import json
import logging
import random
import re
import time
import threading
import queue
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor

from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import torch
import requests
from urllib.parse import quote
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# ========================================================================================
# CONFIGURATION
# ========================================================================================

MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
DEVICE = 0 if torch.cuda.is_available() else "cpu"

DEEPSEEK_MAX_TOKENS = 64000
SMOLLM_MAX_TOKENS = 4192
KG_UPDATE_INTERVAL = 60  # seconds
SEARCH_TIMEOUT = 10
MAX_RETRIES = 3

# ========================================================================================
# CORE DATA STRUCTURES
# ========================================================================================

@dataclass
class KnowledgeEntry:
    query: str
    content: str
    summary: str
    timestamp: datetime
    relevance_score: float = 0.0
    source_urls: List[str] = None
    
    def __post_init__(self):
        if self.source_urls is None:
            self.source_urls = []
    
    def is_expired(self, hours: int = 24) -> bool:
        return datetime.now() - self.timestamp > timedelta(hours=hours)

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = DEEPSEEK_MAX_TOKENS

# ========================================================================================
# SEARCH ENGINE WITH FALLBACKS
# ========================================================================================

class MultiSearchEngine:
    """Robust search engine with multiple backends and fallbacks"""
    
    def __init__(self):
        self.search_engines = [
            self._search_duckduckgo,
            self._search_searx,
            self._search_bing_fallback,
        ]
        self.current_engine = 0
    
    def search(self, query: str, max_results: int = 5) -> List[Dict[str, str]]:
        """Search with automatic fallback to different engines"""
        for attempt in range(len(self.search_engines)):
            try:
                engine = self.search_engines[self.current_engine]
                results = engine(query, max_results)
                if results:
                    return results
            except Exception as e:
                logging.warning(f"Search engine {self.current_engine} failed: {e}")
            
            # Rotate to next engine
            self.current_engine = (self.current_engine + 1) % len(self.search_engines)
        
        logging.error("All search engines failed")
        return []
    
    def _search_duckduckgo(self, query: str, max_results: int) -> List[Dict[str, str]]:
        """DuckDuckGo search with rate limit handling"""
        try:
            from duckduckgo_search import DDGS
            with DDGS() as ddgs:
                results = []
                for result in ddgs.text(query, max_results=max_results):
                    results.append({
                        'title': result.get('title', ''),
                        'body': result.get('body', ''),
                        'url': result.get('href', ''),
                    })
                return results
        except Exception as e:
            if "ratelimit" in str(e).lower():
                time.sleep(random.uniform(5, 15))  # Random backoff
            raise e
    
    def _search_searx(self, query: str, max_results: int) -> List[Dict[str, str]]:
        """Searx instance search"""
        searx_instances = [
            "https://searx.be",
            "https://searx.info",
            "https://search.privacy.sexy"
        ]
        
        for instance in searx_instances:
            try:
                url = f"{instance}/search"
                params = {
                    'q': query,
                    'format': 'json',
                    'categories': 'general'
                }
                response = requests.get(url, params=params, timeout=SEARCH_TIMEOUT)
                if response.status_code == 200:
                    data = response.json()
                    results = []
                    for item in data.get('results', [])[:max_results]:
                        results.append({
                            'title': item.get('title', ''),
                            'body': item.get('content', ''),
                            'url': item.get('url', ''),
                        })
                    return results
            except Exception:
                continue
        raise Exception("All Searx instances failed")
    
    def _search_bing_fallback(self, query: str, max_results: int) -> List[Dict[str, str]]:
        """Fallback search using a simple web scraping approach"""
        try:
            # This would require additional implementation with web scraping
            # For now, return empty to avoid dependency issues
            return []
        except Exception:
            return []

# ========================================================================================
# AUTONOMOUS QUERY GENERATOR
# ========================================================================================

class AutonomousQueryGenerator:
    """Generates diverse, realistic queries autonomously"""
    
    def __init__(self, model_pipeline):
        self.model = model_pipeline
        self.query_history = set()
        self.domain_templates = [
            "latest breakthrough in {domain}",
            "new {domain} research 2025",
            "{domain} startup funding news",
            "emerging trends in {domain}",
            "AI applications in {domain}",
            "{domain} market analysis 2025",
            "innovative {domain} technology",
            "{domain} industry developments"
        ]
        self.domains = [
            "artificial intelligence", "machine learning", "robotics", "biotechnology",
            "quantum computing", "blockchain", "cybersecurity", "fintech", "healthtech",
            "edtech", "cleantech", "spacetech", "autonomous vehicles", "IoT", "5G",
            "augmented reality", "virtual reality", "nanotechnology", "genomics",
            "renewable energy", "smart cities", "edge computing", "cloud computing"
        ]
    
    def generate_query(self) -> str:
        """Generate a unique, contextual query"""
        max_attempts = 10
        
        for _ in range(max_attempts):
            # Choose generation strategy
            strategy = random.choice([
                self._generate_templated_query,
                self._generate_model_query,
                self._generate_trend_query,
                self._generate_comparative_query
            ])
            
            query = strategy()
            
            # Ensure uniqueness and quality
            if query and len(query.split()) >= 3 and query not in self.query_history:
                self.query_history.add(query)
                # Limit history size
                if len(self.query_history) > 1000:
                    self.query_history = set(list(self.query_history)[-800:])
                return query
        
        # Fallback to simple template
        domain = random.choice(self.domains)
        template = random.choice(self.domain_templates)
        return template.format(domain=domain)
    
    def _generate_templated_query(self) -> str:
        """Generate query from templates"""
        domain = random.choice(self.domains)
        template = random.choice(self.domain_templates)
        return template.format(domain=domain)
    
    def _generate_model_query(self) -> str:
        """Generate query using language model"""
        prompts = [
            "Generate a specific search query about cutting-edge technology:",
            "What's a trending topic in AI or science right now? (one query only):",
            "Create a search query about startup innovation:",
            "Generate a query about recent scientific breakthroughs:"
        ]
        
        prompt = random.choice(prompts)
        
        try:
            output = self.model(
                prompt,
                max_new_tokens=50,
                do_sample=True,
                temperature=0.8,
                top_p=0.9,
                pad_token_id=self.model.tokenizer.eos_token_id
            )[0]["generated_text"]
            
            # Extract query from output
            query = output.replace(prompt, "").strip()
            query = re.sub(r'^["\'\-\s]*', '', query)
            query = re.sub(r'["\'\.\s]*$', '', query)
            query = query.split('\n')[0].strip()
            
            return query if len(query) > 10 else ""
            
        except Exception as e:
            logging.warning(f"Model query generation failed: {e}")
            return ""
    
    def _generate_trend_query(self) -> str:
        """Generate queries about current trends"""
        trend_terms = ["2025", "latest", "new", "emerging", "breakthrough", "innovation"]
        domain = random.choice(self.domains)
        trend = random.choice(trend_terms)
        return f"{trend} {domain} developments"
    
    def _generate_comparative_query(self) -> str:
        """Generate comparative queries"""
        comparisons = [
            "{} vs {} comparison",
            "advantages of {} over {}",
            "{} and {} integration",
            "{} versus {} market share"
        ]
        domains = random.sample(self.domains, 2)
        template = random.choice(comparisons)
        return template.format(domains[0], domains[1])

# ========================================================================================
# INTELLIGENT KNOWLEDGE GRAPH
# ========================================================================================

class IntelligentKnowledgeGraph:
    """Advanced knowledge graph with semantic understanding"""
    
    def __init__(self):
        self.graph = nx.DiGraph()
        self.entries: Dict[str, KnowledgeEntry] = {}
        self.vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
        self.query_vectors = None
        self.vector_queries = []
        
    def add_knowledge(self, entry: KnowledgeEntry):
        """Add knowledge entry with semantic indexing"""
        self.entries[entry.query] = entry
        self.graph.add_node(entry.query, 
                          timestamp=entry.timestamp,
                          summary=entry.summary)
        
        # Update semantic vectors
        self._update_vectors()
        
        # Create semantic connections
        self._create_semantic_connections(entry.query)
    
    def _update_vectors(self):
        """Update TF-IDF vectors for semantic search"""
        try:
            queries_and_summaries = [
                f"{query} {entry.summary}" 
                for query, entry in self.entries.items()
            ]
            
            if len(queries_and_summaries) > 0:
                self.query_vectors = self.vectorizer.fit_transform(queries_and_summaries)
                self.vector_queries = list(self.entries.keys())
        except Exception as e:
            logging.warning(f"Vector update failed: {e}")
    
    def _create_semantic_connections(self, new_query: str):
        """Create edges between semantically similar entries"""
        if self.query_vectors is None or len(self.vector_queries) < 2:
            return
            
        try:
            new_text = f"{new_query} {self.entries[new_query].summary}"
            new_vector = self.vectorizer.transform([new_text])
            
            similarities = cosine_similarity(new_vector, self.query_vectors)[0]
            
            for i, similarity in enumerate(similarities):
                other_query = self.vector_queries[i]
                if other_query != new_query and similarity > 0.3:
                    self.graph.add_edge(new_query, other_query, weight=similarity)
                    self.graph.add_edge(other_query, new_query, weight=similarity)
                    
        except Exception as e:
            logging.warning(f"Semantic connection creation failed: {e}")
    
    def find_relevant_knowledge(self, prompt: str, max_entries: int = 5) -> List[KnowledgeEntry]:
        """Find relevant knowledge entries for a given prompt"""
        if not self.entries:
            return []
        
        try:
            # Vectorize the prompt
            prompt_vector = self.vectorizer.transform([prompt])
            
            # Calculate similarities
            if self.query_vectors is not None:
                similarities = cosine_similarity(prompt_vector, self.query_vectors)[0]
                
                # Get top similar entries
                relevant_indices = np.argsort(similarities)[-max_entries:][::-1]
                relevant_entries = []
                
                for idx in relevant_indices:
                    if similarities[idx] > 0.1:  # Minimum relevance threshold
                        query = self.vector_queries[idx]
                        entry = self.entries[query]
                        entry.relevance_score = similarities[idx]
                        relevant_entries.append(entry)
                
                return relevant_entries
                
        except Exception as e:
            logging.warning(f"Relevance search failed: {e}")
        
        # Fallback: simple keyword matching
        relevant = []
        prompt_words = set(prompt.lower().split())
        
        for entry in self.entries.values():
            entry_words = set((entry.query + " " + entry.summary).lower().split())
            overlap = len(prompt_words.intersection(entry_words))
            if overlap > 0:
                entry.relevance_score = overlap / len(prompt_words)
                relevant.append(entry)
        
        return sorted(relevant, key=lambda x: x.relevance_score, reverse=True)[:max_entries]
    
    def cleanup_expired(self, hours: int = 24):
        """Remove expired knowledge entries"""
        expired_queries = [
            query for query, entry in self.entries.items() 
            if entry.is_expired(hours)
        ]
        
        for query in expired_queries:
            del self.entries[query]
            if self.graph.has_node(query):
                self.graph.remove_node(query)
        
        if expired_queries:
            self._update_vectors()
            logging.info(f"Cleaned up {len(expired_queries)} expired knowledge entries")

# ========================================================================================
# KNOWLEDGE EVOLUTION ENGINE
# ========================================================================================

class KnowledgeEvolutionEngine:
    """Autonomous knowledge acquisition and evolution system"""
    
    def __init__(self, query_generator, search_engine, summarizer):
        self.query_generator = query_generator
        self.search_engine = search_engine
        self.summarizer = summarizer
        self.knowledge_graph = IntelligentKnowledgeGraph()
        self.running = False
        self.evolution_thread = None
        
    def start_evolution(self):
        """Start the autonomous knowledge evolution process"""
        if self.running:
            return
        
        self.running = True
        self.evolution_thread = threading.Thread(target=self._evolution_loop, daemon=True)
        self.evolution_thread.start()
        logging.info("Knowledge evolution engine started")
    
    def stop_evolution(self):
        """Stop the knowledge evolution process"""
        self.running = False
        if self.evolution_thread:
            self.evolution_thread.join()
        logging.info("Knowledge evolution engine stopped")
    
    def _evolution_loop(self):
        """Main evolution loop"""
        while self.running:
            try:
                self._evolution_cycle()
            except Exception as e:
                logging.error(f"Evolution cycle error: {e}")
            
            # Wait for next cycle
            time.sleep(KG_UPDATE_INTERVAL)
    
    def _evolution_cycle(self):
        """Single evolution cycle: query → search → summarize → store"""
        
        # Generate autonomous query
        query = self.query_generator.generate_query()
        logging.info(f"[Evolution] Generated query: {query}")
        
        # Search for information
        search_results = self.search_engine.search(query, max_results=8)
        
        if not search_results:
            logging.warning(f"[Evolution] No search results for query: {query}")
            return
        
        # Combine and process results
        combined_text = self._combine_search_results(search_results)
        
        if len(combined_text.strip()) < 100:
            logging.warning(f"[Evolution] Insufficient content for query: {query}")
            return
        
        # Generate summary
        summary = self._generate_summary(combined_text, query)
        
        if not summary:
            logging.warning(f"[Evolution] Summary generation failed for query: {query}")
            return
        
        # Create knowledge entry
        entry = KnowledgeEntry(
            query=query,
            content=combined_text[:2000],  # Limit content size
            summary=summary,
            timestamp=datetime.now(),
            source_urls=[r.get('url', '') for r in search_results if r.get('url')]
        )
        
        # Add to knowledge graph
        self.knowledge_graph.add_knowledge(entry)
        
        # Cleanup old knowledge
        self.knowledge_graph.cleanup_expired()
        
        logging.info(f"[Evolution] Knowledge updated for query: {query}")
    
    def _combine_search_results(self, results: List[Dict[str, str]]) -> str:
        """Combine search results into coherent text"""
        combined = []
        
        for i, result in enumerate(results):
            title = result.get('title', '').strip()
            body = result.get('body', '').strip()
            
            if title and body:
                combined.append(f"Source {i+1}: {title}\n{body}")
            elif body:
                combined.append(f"Source {i+1}: {body}")
        
        return "\n\n".join(combined)
    
    def _generate_summary(self, text: str, query: str) -> str:
        """Generate intelligent summary of search results"""
        # Truncate text to fit model limits
        max_text_length = SMOLLM_MAX_TOKENS - 200  # Reserve tokens for prompt
        if len(text) > max_text_length:
            text = text[:max_text_length]
        
        prompt = f"""Based on the search query "{query}", provide a concise 3-sentence summary of the key information below:

{text}

Summary:"""
        
        try:
            output = self.summarizer(
                prompt,
                max_new_tokens=min(150, SMOLLM_MAX_TOKENS - len(prompt.split())),
                do_sample=False,
                temperature=0.3,
                pad_token_id=self.summarizer.tokenizer.eos_token_id
            )[0]["generated_text"]
            
            # Extract summary from output
            summary = output.replace(prompt, "").strip()
            summary = re.sub(r'^Summary:\s*', '', summary, flags=re.IGNORECASE)
            
            # Clean up summary
            sentences = summary.split('.')
            clean_sentences = []
            for sentence in sentences[:3]:  # Max 3 sentences
                sentence = sentence.strip()
                if sentence and len(sentence) > 10:
                    clean_sentences.append(sentence)
            
            final_summary = '. '.join(clean_sentences)
            if final_summary and not final_summary.endswith('.'):
                final_summary += '.'
            
            return final_summary if len(final_summary) > 20 else ""
            
        except Exception as e:
            logging.error(f"Summary generation error: {e}")
            return ""
    
    def get_relevant_knowledge(self, prompt: str) -> str:
        """Get relevant knowledge for injection into prompts"""
        relevant_entries = self.knowledge_graph.find_relevant_knowledge(prompt, max_entries=3)
        
        if not relevant_entries:
            return ""
        
        knowledge_text = "\n\nRelevant recent knowledge:\n"
        for i, entry in enumerate(relevant_entries, 1):
            age = datetime.now() - entry.timestamp
            age_str = f"{age.total_seconds() / 3600:.1f}h ago"
            knowledge_text += f"{i}. [{entry.query}] ({age_str}): {entry.summary}\n"
        
        return knowledge_text

# ========================================================================================
# MAIN APPLICATION
# ========================================================================================

app = FastAPI(title="Single Agent Cognitive System", version="1.0.0")

# Global components
search_engine = None
knowledge_engine = None
generator = None
query_generator_model = None
summarizer = None

@app.on_event("startup")
async def startup_event():
    """Initialize all components"""
    global search_engine, knowledge_engine, generator, query_generator_model, summarizer
    
    logging.basicConfig(level=logging.INFO)
    logging.info("Initializing Single Agent Cognitive System...")
    
    # Initialize models
    try:
        generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
        query_generator_model = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
        summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
        logging.info("Models loaded successfully")
    except Exception as e:
        logging.error(f"Model loading failed: {e}")
        raise
    
    # Initialize search engine
    search_engine = MultiSearchEngine()
    
    # Initialize query generator
    query_generator = AutonomousQueryGenerator(query_generator_model)
    
    # Initialize knowledge evolution engine
    knowledge_engine = KnowledgeEvolutionEngine(
        query_generator, search_engine, summarizer
    )
    
    # Start autonomous evolution
    knowledge_engine.start_evolution()
    
    logging.info("Single Agent Cognitive System initialized successfully")

@app.on_event("shutdown")
async def shutdown_event():
    """Cleanup on shutdown"""
    if knowledge_engine:
        knowledge_engine.stop_evolution()

# ========================================================================================
# API ENDPOINTS
# ========================================================================================

@app.post("/generate")
async def generate_text(input_data: ModelInput):
    """Generate text with knowledge injection"""
    try:
        # Inject relevant knowledge
        enriched_prompt = input_data.prompt
        if knowledge_engine:
            relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
            if relevant_knowledge:
                enriched_prompt = input_data.prompt + relevant_knowledge
        
        # Generate response
        output = generator(
            enriched_prompt,
            max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
            do_sample=True,
            temperature=0.7,
            top_p=0.9,
            pad_token_id=generator.tokenizer.eos_token_id
        )[0]["generated_text"]
        
        return {"generated_text": output, "enriched_prompt": enriched_prompt}
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/generate/stream")
async def generate_stream(input_data: ModelInput):
    """Stream text generation with knowledge injection"""
    q = queue.Queue()
    
    def run_generation():
        try:
            # Inject relevant knowledge
            enriched_prompt = input_data.prompt
            if knowledge_engine:
                relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
                if relevant_knowledge:
                    enriched_prompt = input_data.prompt + relevant_knowledge
            
            # Set up streaming
            def token_callback(token_ids):
                if hasattr(token_ids, "tolist"):
                    token_ids = token_ids.tolist()
                text = generator.tokenizer.decode(token_ids, skip_special_tokens=True)
                q.put(text)
            
            streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
            streamer.put = token_callback
            
            # Generate with streaming
            generator(
                enriched_prompt,
                max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
                streamer=streamer,
                pad_token_id=generator.tokenizer.eos_token_id
            )
            
        except Exception as e:
            q.put(f"[ERROR] {e}")
        finally:
            q.put(None)  # End signal
    
    # Start generation in background
    threading.Thread(target=run_generation, daemon=True).start()
    
    async def event_generator():
        while True:
            try:
                token = q.get(timeout=30)  # 30 second timeout
                if token is None:
                    break
                yield token
            except queue.Empty:
                yield "[TIMEOUT]"
                break
    
    return StreamingResponse(event_generator(), media_type="text/plain")

@app.get("/knowledge")
async def get_knowledge_graph():
    """Get current knowledge graph state"""
    if not knowledge_engine:
        return {"error": "Knowledge engine not initialized"}
    
    kg = knowledge_engine.knowledge_graph
    return {
        "total_entries": len(kg.entries),
        "entries": [
            {
                "query": entry.query,
                "summary": entry.summary,
                "timestamp": entry.timestamp.isoformat(),
                "relevance_score": entry.relevance_score,
                "sources_count": len(entry.source_urls)
            }
            for entry in list(kg.entries.values())[-20:]  # Last 20 entries
        ]
    }

@app.get("/knowledge/search")
async def search_knowledge(query: str):
    """Search knowledge graph"""
    if not knowledge_engine:
        return {"error": "Knowledge engine not initialized"}
    
    relevant_entries = knowledge_engine.knowledge_graph.find_relevant_knowledge(query, max_entries=10)
    
    return {
        "query": query,
        "results": [
            {
                "query": entry.query,
                "summary": entry.summary,
                "relevance_score": entry.relevance_score,
                "timestamp": entry.timestamp.isoformat(),
                "age_hours": (datetime.now() - entry.timestamp).total_seconds() / 3600
            }
            for entry in relevant_entries
        ]
    }

@app.post("/knowledge/force-update")
async def force_knowledge_update():
    """Force a knowledge update cycle"""
    if not knowledge_engine:
        return {"error": "Knowledge engine not initialized"}
    
    try:
        knowledge_engine._evolution_cycle()
        return {"status": "Knowledge update completed"}
    except Exception as e:
        return {"error": str(e)}

@app.get("/status")
async def get_system_status():
    """Get system status"""
    status = {
        "models_loaded": generator is not None,
        "search_engine_active": search_engine is not None,
        "knowledge_engine_running": knowledge_engine is not None and knowledge_engine.running,
        "knowledge_entries": 0,
        "uptime_seconds": time.time() - startup_time if 'startup_time' in globals() else 0
    }
    
    if knowledge_engine:
        status["knowledge_entries"] = len(knowledge_engine.knowledge_graph.entries)
    
    return status

@app.get("/")
async def root():
    """Root endpoint"""
    return {
        "name": "Single Agent Cognitive System",
        "description": "Autonomous knowledge evolution with intelligent query generation",
        "version": "1.0.0",
        "features": [
            "Autonomous query generation",
            "Multi-engine search with fallbacks",
            "Intelligent knowledge graph",
            "Semantic relevance matching",
            "Real-time knowledge injection",
            "Streaming text generation"
        ]
    }

# Initialize startup time
startup_time = time.time()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)