File size: 29,224 Bytes
e068a01 2008367 6e0397b e41b8bc 2008367 e068a01 2008367 130360f 2008367 e068a01 2008367 e068a01 e41b8bc e068a01 6e0397b e41b8bc 130360f 2008367 e068a01 2145ed0 e068a01 2145ed0 e068a01 2145ed0 e068a01 2145ed0 e068a01 2145ed0 e068a01 130360f 2008367 e068a01 2008367 e068a01 2145ed0 e41b8bc e068a01 2145ed0 e068a01 2145ed0 e068a01 2008367 e068a01 2145ed0 e068a01 2145ed0 e068a01 2145ed0 e068a01 2008367 e068a01 2008367 e068a01 2008367 e068a01 2145ed0 2008367 6e0397b e068a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
import asyncio
import json
import logging
import random
import re
import time
import threading
import queue
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import torch
import requests
from urllib.parse import quote
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# ========================================================================================
# CONFIGURATION
# ========================================================================================
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
DEVICE = 0 if torch.cuda.is_available() else "cpu"
DEEPSEEK_MAX_TOKENS = 64000
SMOLLM_MAX_TOKENS = 4192
KG_UPDATE_INTERVAL = 60 # seconds
SEARCH_TIMEOUT = 10
MAX_RETRIES = 3
# ========================================================================================
# CORE DATA STRUCTURES
# ========================================================================================
@dataclass
class KnowledgeEntry:
query: str
content: str
summary: str
timestamp: datetime
relevance_score: float = 0.0
source_urls: List[str] = None
def __post_init__(self):
if self.source_urls is None:
self.source_urls = []
def is_expired(self, hours: int = 24) -> bool:
return datetime.now() - self.timestamp > timedelta(hours=hours)
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = DEEPSEEK_MAX_TOKENS
# ========================================================================================
# SEARCH ENGINE WITH FALLBACKS
# ========================================================================================
class MultiSearchEngine:
"""Robust search engine with multiple backends and fallbacks"""
def __init__(self):
self.search_engines = [
self._search_duckduckgo,
self._search_searx,
self._search_bing_fallback,
]
self.current_engine = 0
def search(self, query: str, max_results: int = 5) -> List[Dict[str, str]]:
"""Search with automatic fallback to different engines"""
for attempt in range(len(self.search_engines)):
try:
engine = self.search_engines[self.current_engine]
results = engine(query, max_results)
if results:
return results
except Exception as e:
logging.warning(f"Search engine {self.current_engine} failed: {e}")
# Rotate to next engine
self.current_engine = (self.current_engine + 1) % len(self.search_engines)
logging.error("All search engines failed")
return []
def _search_duckduckgo(self, query: str, max_results: int) -> List[Dict[str, str]]:
"""DuckDuckGo search with rate limit handling"""
try:
from duckduckgo_search import DDGS
with DDGS() as ddgs:
results = []
for result in ddgs.text(query, max_results=max_results):
results.append({
'title': result.get('title', ''),
'body': result.get('body', ''),
'url': result.get('href', ''),
})
return results
except Exception as e:
if "ratelimit" in str(e).lower():
time.sleep(random.uniform(5, 15)) # Random backoff
raise e
def _search_searx(self, query: str, max_results: int) -> List[Dict[str, str]]:
"""Searx instance search"""
searx_instances = [
"https://searx.be",
"https://searx.info",
"https://search.privacy.sexy"
]
for instance in searx_instances:
try:
url = f"{instance}/search"
params = {
'q': query,
'format': 'json',
'categories': 'general'
}
response = requests.get(url, params=params, timeout=SEARCH_TIMEOUT)
if response.status_code == 200:
data = response.json()
results = []
for item in data.get('results', [])[:max_results]:
results.append({
'title': item.get('title', ''),
'body': item.get('content', ''),
'url': item.get('url', ''),
})
return results
except Exception:
continue
raise Exception("All Searx instances failed")
def _search_bing_fallback(self, query: str, max_results: int) -> List[Dict[str, str]]:
"""Fallback search using a simple web scraping approach"""
try:
# This would require additional implementation with web scraping
# For now, return empty to avoid dependency issues
return []
except Exception:
return []
# ========================================================================================
# AUTONOMOUS QUERY GENERATOR
# ========================================================================================
class AutonomousQueryGenerator:
"""Generates diverse, realistic queries autonomously"""
def __init__(self, model_pipeline):
self.model = model_pipeline
self.query_history = set()
self.domain_templates = [
"latest breakthrough in {domain}",
"new {domain} research 2025",
"{domain} startup funding news",
"emerging trends in {domain}",
"AI applications in {domain}",
"{domain} market analysis 2025",
"innovative {domain} technology",
"{domain} industry developments"
]
self.domains = [
"artificial intelligence", "machine learning", "robotics", "biotechnology",
"quantum computing", "blockchain", "cybersecurity", "fintech", "healthtech",
"edtech", "cleantech", "spacetech", "autonomous vehicles", "IoT", "5G",
"augmented reality", "virtual reality", "nanotechnology", "genomics",
"renewable energy", "smart cities", "edge computing", "cloud computing"
]
def generate_query(self) -> str:
"""Generate a unique, contextual query"""
max_attempts = 10
for _ in range(max_attempts):
# Choose generation strategy
strategy = random.choice([
self._generate_templated_query,
self._generate_model_query,
self._generate_trend_query,
self._generate_comparative_query
])
query = strategy()
# Ensure uniqueness and quality
if query and len(query.split()) >= 3 and query not in self.query_history:
self.query_history.add(query)
# Limit history size
if len(self.query_history) > 1000:
self.query_history = set(list(self.query_history)[-800:])
return query
# Fallback to simple template
domain = random.choice(self.domains)
template = random.choice(self.domain_templates)
return template.format(domain=domain)
def _generate_templated_query(self) -> str:
"""Generate query from templates"""
domain = random.choice(self.domains)
template = random.choice(self.domain_templates)
return template.format(domain=domain)
def _generate_model_query(self) -> str:
"""Generate query using language model"""
prompts = [
"Generate a specific search query about cutting-edge technology:",
"What's a trending topic in AI or science right now? (one query only):",
"Create a search query about startup innovation:",
"Generate a query about recent scientific breakthroughs:"
]
prompt = random.choice(prompts)
try:
output = self.model(
prompt,
max_new_tokens=50,
do_sample=True,
temperature=0.8,
top_p=0.9,
pad_token_id=self.model.tokenizer.eos_token_id
)[0]["generated_text"]
# Extract query from output
query = output.replace(prompt, "").strip()
query = re.sub(r'^["\'\-\s]*', '', query)
query = re.sub(r'["\'\.\s]*$', '', query)
query = query.split('\n')[0].strip()
return query if len(query) > 10 else ""
except Exception as e:
logging.warning(f"Model query generation failed: {e}")
return ""
def _generate_trend_query(self) -> str:
"""Generate queries about current trends"""
trend_terms = ["2025", "latest", "new", "emerging", "breakthrough", "innovation"]
domain = random.choice(self.domains)
trend = random.choice(trend_terms)
return f"{trend} {domain} developments"
def _generate_comparative_query(self) -> str:
"""Generate comparative queries"""
comparisons = [
"{} vs {} comparison",
"advantages of {} over {}",
"{} and {} integration",
"{} versus {} market share"
]
domains = random.sample(self.domains, 2)
template = random.choice(comparisons)
return template.format(domains[0], domains[1])
# ========================================================================================
# INTELLIGENT KNOWLEDGE GRAPH
# ========================================================================================
class IntelligentKnowledgeGraph:
"""Advanced knowledge graph with semantic understanding"""
def __init__(self):
self.graph = nx.DiGraph()
self.entries: Dict[str, KnowledgeEntry] = {}
self.vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
self.query_vectors = None
self.vector_queries = []
def add_knowledge(self, entry: KnowledgeEntry):
"""Add knowledge entry with semantic indexing"""
self.entries[entry.query] = entry
self.graph.add_node(entry.query,
timestamp=entry.timestamp,
summary=entry.summary)
# Update semantic vectors
self._update_vectors()
# Create semantic connections
self._create_semantic_connections(entry.query)
def _update_vectors(self):
"""Update TF-IDF vectors for semantic search"""
try:
queries_and_summaries = [
f"{query} {entry.summary}"
for query, entry in self.entries.items()
]
if len(queries_and_summaries) > 0:
self.query_vectors = self.vectorizer.fit_transform(queries_and_summaries)
self.vector_queries = list(self.entries.keys())
except Exception as e:
logging.warning(f"Vector update failed: {e}")
def _create_semantic_connections(self, new_query: str):
"""Create edges between semantically similar entries"""
if self.query_vectors is None or len(self.vector_queries) < 2:
return
try:
new_text = f"{new_query} {self.entries[new_query].summary}"
new_vector = self.vectorizer.transform([new_text])
similarities = cosine_similarity(new_vector, self.query_vectors)[0]
for i, similarity in enumerate(similarities):
other_query = self.vector_queries[i]
if other_query != new_query and similarity > 0.3:
self.graph.add_edge(new_query, other_query, weight=similarity)
self.graph.add_edge(other_query, new_query, weight=similarity)
except Exception as e:
logging.warning(f"Semantic connection creation failed: {e}")
def find_relevant_knowledge(self, prompt: str, max_entries: int = 5) -> List[KnowledgeEntry]:
"""Find relevant knowledge entries for a given prompt"""
if not self.entries:
return []
try:
# Vectorize the prompt
prompt_vector = self.vectorizer.transform([prompt])
# Calculate similarities
if self.query_vectors is not None:
similarities = cosine_similarity(prompt_vector, self.query_vectors)[0]
# Get top similar entries
relevant_indices = np.argsort(similarities)[-max_entries:][::-1]
relevant_entries = []
for idx in relevant_indices:
if similarities[idx] > 0.1: # Minimum relevance threshold
query = self.vector_queries[idx]
entry = self.entries[query]
entry.relevance_score = similarities[idx]
relevant_entries.append(entry)
return relevant_entries
except Exception as e:
logging.warning(f"Relevance search failed: {e}")
# Fallback: simple keyword matching
relevant = []
prompt_words = set(prompt.lower().split())
for entry in self.entries.values():
entry_words = set((entry.query + " " + entry.summary).lower().split())
overlap = len(prompt_words.intersection(entry_words))
if overlap > 0:
entry.relevance_score = overlap / len(prompt_words)
relevant.append(entry)
return sorted(relevant, key=lambda x: x.relevance_score, reverse=True)[:max_entries]
def cleanup_expired(self, hours: int = 24):
"""Remove expired knowledge entries"""
expired_queries = [
query for query, entry in self.entries.items()
if entry.is_expired(hours)
]
for query in expired_queries:
del self.entries[query]
if self.graph.has_node(query):
self.graph.remove_node(query)
if expired_queries:
self._update_vectors()
logging.info(f"Cleaned up {len(expired_queries)} expired knowledge entries")
# ========================================================================================
# KNOWLEDGE EVOLUTION ENGINE
# ========================================================================================
class KnowledgeEvolutionEngine:
"""Autonomous knowledge acquisition and evolution system"""
def __init__(self, query_generator, search_engine, summarizer):
self.query_generator = query_generator
self.search_engine = search_engine
self.summarizer = summarizer
self.knowledge_graph = IntelligentKnowledgeGraph()
self.running = False
self.evolution_thread = None
def start_evolution(self):
"""Start the autonomous knowledge evolution process"""
if self.running:
return
self.running = True
self.evolution_thread = threading.Thread(target=self._evolution_loop, daemon=True)
self.evolution_thread.start()
logging.info("Knowledge evolution engine started")
def stop_evolution(self):
"""Stop the knowledge evolution process"""
self.running = False
if self.evolution_thread:
self.evolution_thread.join()
logging.info("Knowledge evolution engine stopped")
def _evolution_loop(self):
"""Main evolution loop"""
while self.running:
try:
self._evolution_cycle()
except Exception as e:
logging.error(f"Evolution cycle error: {e}")
# Wait for next cycle
time.sleep(KG_UPDATE_INTERVAL)
def _evolution_cycle(self):
"""Single evolution cycle: query → search → summarize → store"""
# Generate autonomous query
query = self.query_generator.generate_query()
logging.info(f"[Evolution] Generated query: {query}")
# Search for information
search_results = self.search_engine.search(query, max_results=8)
if not search_results:
logging.warning(f"[Evolution] No search results for query: {query}")
return
# Combine and process results
combined_text = self._combine_search_results(search_results)
if len(combined_text.strip()) < 100:
logging.warning(f"[Evolution] Insufficient content for query: {query}")
return
# Generate summary
summary = self._generate_summary(combined_text, query)
if not summary:
logging.warning(f"[Evolution] Summary generation failed for query: {query}")
return
# Create knowledge entry
entry = KnowledgeEntry(
query=query,
content=combined_text[:2000], # Limit content size
summary=summary,
timestamp=datetime.now(),
source_urls=[r.get('url', '') for r in search_results if r.get('url')]
)
# Add to knowledge graph
self.knowledge_graph.add_knowledge(entry)
# Cleanup old knowledge
self.knowledge_graph.cleanup_expired()
logging.info(f"[Evolution] Knowledge updated for query: {query}")
def _combine_search_results(self, results: List[Dict[str, str]]) -> str:
"""Combine search results into coherent text"""
combined = []
for i, result in enumerate(results):
title = result.get('title', '').strip()
body = result.get('body', '').strip()
if title and body:
combined.append(f"Source {i+1}: {title}\n{body}")
elif body:
combined.append(f"Source {i+1}: {body}")
return "\n\n".join(combined)
def _generate_summary(self, text: str, query: str) -> str:
"""Generate intelligent summary of search results"""
# Truncate text to fit model limits
max_text_length = SMOLLM_MAX_TOKENS - 200 # Reserve tokens for prompt
if len(text) > max_text_length:
text = text[:max_text_length]
prompt = f"""Based on the search query "{query}", provide a concise 3-sentence summary of the key information below:
{text}
Summary:"""
try:
output = self.summarizer(
prompt,
max_new_tokens=min(150, SMOLLM_MAX_TOKENS - len(prompt.split())),
do_sample=False,
temperature=0.3,
pad_token_id=self.summarizer.tokenizer.eos_token_id
)[0]["generated_text"]
# Extract summary from output
summary = output.replace(prompt, "").strip()
summary = re.sub(r'^Summary:\s*', '', summary, flags=re.IGNORECASE)
# Clean up summary
sentences = summary.split('.')
clean_sentences = []
for sentence in sentences[:3]: # Max 3 sentences
sentence = sentence.strip()
if sentence and len(sentence) > 10:
clean_sentences.append(sentence)
final_summary = '. '.join(clean_sentences)
if final_summary and not final_summary.endswith('.'):
final_summary += '.'
return final_summary if len(final_summary) > 20 else ""
except Exception as e:
logging.error(f"Summary generation error: {e}")
return ""
def get_relevant_knowledge(self, prompt: str) -> str:
"""Get relevant knowledge for injection into prompts"""
relevant_entries = self.knowledge_graph.find_relevant_knowledge(prompt, max_entries=3)
if not relevant_entries:
return ""
knowledge_text = "\n\nRelevant recent knowledge:\n"
for i, entry in enumerate(relevant_entries, 1):
age = datetime.now() - entry.timestamp
age_str = f"{age.total_seconds() / 3600:.1f}h ago"
knowledge_text += f"{i}. [{entry.query}] ({age_str}): {entry.summary}\n"
return knowledge_text
# ========================================================================================
# MAIN APPLICATION
# ========================================================================================
app = FastAPI(title="Single Agent Cognitive System", version="1.0.0")
# Global components
search_engine = None
knowledge_engine = None
generator = None
query_generator_model = None
summarizer = None
@app.on_event("startup")
async def startup_event():
"""Initialize all components"""
global search_engine, knowledge_engine, generator, query_generator_model, summarizer
logging.basicConfig(level=logging.INFO)
logging.info("Initializing Single Agent Cognitive System...")
# Initialize models
try:
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
query_generator_model = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
logging.info("Models loaded successfully")
except Exception as e:
logging.error(f"Model loading failed: {e}")
raise
# Initialize search engine
search_engine = MultiSearchEngine()
# Initialize query generator
query_generator = AutonomousQueryGenerator(query_generator_model)
# Initialize knowledge evolution engine
knowledge_engine = KnowledgeEvolutionEngine(
query_generator, search_engine, summarizer
)
# Start autonomous evolution
knowledge_engine.start_evolution()
logging.info("Single Agent Cognitive System initialized successfully")
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown"""
if knowledge_engine:
knowledge_engine.stop_evolution()
# ========================================================================================
# API ENDPOINTS
# ========================================================================================
@app.post("/generate")
async def generate_text(input_data: ModelInput):
"""Generate text with knowledge injection"""
try:
# Inject relevant knowledge
enriched_prompt = input_data.prompt
if knowledge_engine:
relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
if relevant_knowledge:
enriched_prompt = input_data.prompt + relevant_knowledge
# Generate response
output = generator(
enriched_prompt,
max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=generator.tokenizer.eos_token_id
)[0]["generated_text"]
return {"generated_text": output, "enriched_prompt": enriched_prompt}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/stream")
async def generate_stream(input_data: ModelInput):
"""Stream text generation with knowledge injection"""
q = queue.Queue()
def run_generation():
try:
# Inject relevant knowledge
enriched_prompt = input_data.prompt
if knowledge_engine:
relevant_knowledge = knowledge_engine.get_relevant_knowledge(input_data.prompt)
if relevant_knowledge:
enriched_prompt = input_data.prompt + relevant_knowledge
# Set up streaming
def token_callback(token_ids):
if hasattr(token_ids, "tolist"):
token_ids = token_ids.tolist()
text = generator.tokenizer.decode(token_ids, skip_special_tokens=True)
q.put(text)
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
streamer.put = token_callback
# Generate with streaming
generator(
enriched_prompt,
max_new_tokens=min(input_data.max_new_tokens, DEEPSEEK_MAX_TOKENS),
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=streamer,
pad_token_id=generator.tokenizer.eos_token_id
)
except Exception as e:
q.put(f"[ERROR] {e}")
finally:
q.put(None) # End signal
# Start generation in background
threading.Thread(target=run_generation, daemon=True).start()
async def event_generator():
while True:
try:
token = q.get(timeout=30) # 30 second timeout
if token is None:
break
yield token
except queue.Empty:
yield "[TIMEOUT]"
break
return StreamingResponse(event_generator(), media_type="text/plain")
@app.get("/knowledge")
async def get_knowledge_graph():
"""Get current knowledge graph state"""
if not knowledge_engine:
return {"error": "Knowledge engine not initialized"}
kg = knowledge_engine.knowledge_graph
return {
"total_entries": len(kg.entries),
"entries": [
{
"query": entry.query,
"summary": entry.summary,
"timestamp": entry.timestamp.isoformat(),
"relevance_score": entry.relevance_score,
"sources_count": len(entry.source_urls)
}
for entry in list(kg.entries.values())[-20:] # Last 20 entries
]
}
@app.get("/knowledge/search")
async def search_knowledge(query: str):
"""Search knowledge graph"""
if not knowledge_engine:
return {"error": "Knowledge engine not initialized"}
relevant_entries = knowledge_engine.knowledge_graph.find_relevant_knowledge(query, max_entries=10)
return {
"query": query,
"results": [
{
"query": entry.query,
"summary": entry.summary,
"relevance_score": entry.relevance_score,
"timestamp": entry.timestamp.isoformat(),
"age_hours": (datetime.now() - entry.timestamp).total_seconds() / 3600
}
for entry in relevant_entries
]
}
@app.post("/knowledge/force-update")
async def force_knowledge_update():
"""Force a knowledge update cycle"""
if not knowledge_engine:
return {"error": "Knowledge engine not initialized"}
try:
knowledge_engine._evolution_cycle()
return {"status": "Knowledge update completed"}
except Exception as e:
return {"error": str(e)}
@app.get("/status")
async def get_system_status():
"""Get system status"""
status = {
"models_loaded": generator is not None,
"search_engine_active": search_engine is not None,
"knowledge_engine_running": knowledge_engine is not None and knowledge_engine.running,
"knowledge_entries": 0,
"uptime_seconds": time.time() - startup_time if 'startup_time' in globals() else 0
}
if knowledge_engine:
status["knowledge_entries"] = len(knowledge_engine.knowledge_graph.entries)
return status
@app.get("/")
async def root():
"""Root endpoint"""
return {
"name": "Single Agent Cognitive System",
"description": "Autonomous knowledge evolution with intelligent query generation",
"version": "1.0.0",
"features": [
"Autonomous query generation",
"Multi-engine search with fallbacks",
"Intelligent knowledge graph",
"Semantic relevance matching",
"Real-time knowledge injection",
"Streaming text generation"
]
}
# Initialize startup time
startup_time = time.time()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |