File size: 11,130 Bytes
521c1f0
e4611cf
78af081
521c1f0
cd3a11d
78af081
 
 
521c1f0
 
8adc570
521c1f0
 
edaf4b6
521c1f0
edaf4b6
521c1f0
 
 
 
cd3a11d
 
 
 
5b73cc5
78af081
 
 
f9b55bc
 
 
 
43bee1c
78af081
f9b55bc
 
 
 
78af081
f9b55bc
 
e4611cf
521c1f0
cd3a11d
 
 
 
 
 
 
 
0f2aa55
edaf4b6
521c1f0
2ebf628
0f2aa55
 
 
521c1f0
78af081
0f2aa55
 
 
 
 
 
cd3a11d
 
 
 
 
 
 
 
 
 
5b73cc5
0f2aa55
521c1f0
cd3a11d
 
0f2aa55
 
9e36f0e
8adc570
9e36f0e
 
 
 
 
 
 
 
cd3a11d
 
 
86c6ea5
cd3a11d
0f2aa55
9e36f0e
cd3a11d
 
 
 
 
 
 
 
 
86c6ea5
cd3a11d
 
9e36f0e
 
cd3a11d
78af081
cd3a11d
f9b55bc
86c6ea5
 
 
 
 
78af081
86c6ea5
78af081
86c6ea5
2ea23a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c6ea5
 
 
 
 
78af081
521c1f0
86c6ea5
8adc570
86c6ea5
 
 
2ea23a7
 
 
 
 
8adc570
86c6ea5
2ea23a7
86c6ea5
 
 
 
 
 
 
 
 
2ea23a7
86c6ea5
2ea23a7
86c6ea5
78af081
 
521c1f0
 
2ea23a7
 
 
 
86c6ea5
2ea23a7
86c6ea5
 
2ea23a7
 
 
78af081
2ea23a7
78af081
cd3a11d
86c6ea5
edaf4b6
8adc570
86c6ea5
2ea23a7
 
 
 
 
 
86c6ea5
2ea23a7
86c6ea5
5b73cc5
78af081
 
 
f9b55bc
edaf4b6
86c6ea5
 
 
edaf4b6
86c6ea5
f9b55bc
0f2aa55
 
9e36f0e
 
0f2aa55
521c1f0
0f2aa55
7c08af8
 
 
86c6ea5
2ea23a7
 
 
 
86c6ea5
 
 
7c08af8
86c6ea5
 
2ea23a7
8adc570
7c08af8
86c6ea5
 
 
0f2aa55
86c6ea5
 
edaf4b6
86c6ea5
 
 
8adc570
86c6ea5
 
 
edaf4b6
 
 
8adc570
edaf4b6
86c6ea5
78af081
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import io
import time
import base64
import logging
import fitz  # PyMuPDF
from PIL import Image
import gradio as gr
from openai import OpenAI  # Use the OpenAI client that supports multimodal messages

# Load API key from environment variable
HF_API_KEY = os.getenv("OPENAI_TOKEN")
if not HF_API_KEY:
    raise ValueError("OPENAI_TOKEN environment variable not set")

# Create the client pointing to the inference endpoint (e.g., OpenRouter)
client = OpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=HF_API_KEY
)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# -------------------------------
# Document State and File Processing
# -------------------------------
class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

doc_state = DocumentState()

def process_pdf_file(file_path):
    """Convert PDF pages to images and extract text using PyMuPDF."""
    try:
        doc = fitz.open(file_path)
        images = []
        text = ""
        for page_num in range(doc.page_count):
            try:
                page = doc[page_num]
                page_text = page.get_text("text")
                if page_text.strip():
                    text += f"Page {page_num+1}:\n{page_text}\n\n"
                # Render page as an image with a zoom factor
                zoom = 3
                mat = fitz.Matrix(zoom, zoom)
                pix = page.get_pixmap(matrix=mat, alpha=False)
                img_data = pix.tobytes("png")
                img = Image.open(io.BytesIO(img_data)).convert("RGB")
                # Resize if image is too large
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                images.append(img)
            except Exception as e:
                logger.error(f"Error processing page {page_num}: {str(e)}")
                continue
        doc.close()
        if not images:
            raise ValueError("No valid images could be extracted from the PDF")
        return images, text
    except Exception as e:
        logger.error(f"Error processing PDF file: {str(e)}")
        raise

def process_uploaded_file(file):
    """Process an uploaded file (PDF or image) and update document state."""
    try:
        doc_state.clear()
        if file is None:
            return "No file uploaded. Please upload a file."
        
        # Gradio may pass a dict or a file-like object
        if isinstance(file, dict):
            file_path = file["name"]
        else:
            file_path = file.name
        file_ext = file_path.lower().split('.')[-1]
        image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
        
        if file_ext == 'pdf':
            doc_state.doc_type = 'pdf'
            try:
                doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
                return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now chat with the bot."
            except Exception as e:
                return f"Error processing PDF: {str(e)}. Please try a different PDF file."
        elif file_ext in image_extensions:
            doc_state.doc_type = 'image'
            try:
                img = Image.open(file_path).convert("RGB")
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                doc_state.current_doc_images = [img]
                return "Image loaded successfully. You can now chat with the bot."
            except Exception as e:
                return f"Error processing image: {str(e)}. Please try a different image file."
        else:
            return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
    except Exception as e:
        logger.error(f"Error in process_uploaded_file: {str(e)}")
        return "An error occurred while processing the file. Please try again."

def clear_context():
    """Clear the current document context and chat history."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document.", []

# -------------------------------
# Predetermined Prompts
# -------------------------------
predetermined_prompts = {
    "NOC Timesheet": (
        "Extract structured information from the provided timesheet. The extracted details should include:\n"
        "Name, Position Title, Work Location, Contractor, NOC ID, Month and Year, Regular Service Days, "
        "Standby Days, Offshore Days, Extended Hitch Days, and approvals. Format the output as valid JSON."
    ),
    "Aramco Full structured": (
        "You are a document parsing assistant designed to extract structured data from various documents such as "
        "invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text."
    ),
    "Aramco Timesheet only": (
        "Extract time tracking, work details, and approvals. Return a JSON object following the specified structure."
    ),
    "NOC Invoice": (
        "You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data "
        "into the following JSON format:\n"
        "{\n  'invoiceDetails': { ... },\n  'from': { ... },\n  'to': { ... },\n  'services': [ ... ],\n  "
        "'totals': { ... },\n  'bankDetails': { ... }\n}"
    ),
    "Software Tester": (
        "Act as a software tester. Analyze the uploaded image of a software interface and generate comprehensive "
        "test cases for its features. For each feature, provide test steps, expected results, and any necessary "
        "preconditions. Be as detailed as possible."
    )
}

# -------------------------------
# Chat Function (Non-streaming Version)
# -------------------------------
def chat_respond(user_message, history, prompt_option):
    """
    Append the user message to the conversation history, call the API,
    and return the full response.
    
    Each message passed to the API is now a dictionary with a string value for 'content'.
    If an image was uploaded, its data URI is appended to the first user message.
    The conversation history is a list of [user_text, assistant_text] pairs.
    """
    # On the first message, if none is provided, use the predetermined prompt.
    if history == []:
        if not user_message.strip():
            user_message = predetermined_prompts.get(prompt_option, "Hello")
        else:
            user_message = predetermined_prompts.get(prompt_option, "") + "\n" + user_message

    history = history + [[user_message, ""]]

    messages = []
    # Build the messages list with each message as a dictionary containing role and a string content.
    for i, (user_msg, assistant_msg) in enumerate(history):
        # For the very first user message, attach the image (if available) by appending its data URI.
        if i == 0 and doc_state.current_doc_images:
            buffered = io.BytesIO()
            doc_state.current_doc_images[0].save(buffered, format="PNG")
            img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
            data_uri = f"data:image/png;base64,{img_b64}"
            text_to_send = user_msg + "\n[Attached Image: " + data_uri + "]"
        else:
            text_to_send = user_msg
        messages.append({"role": "user", "content": text_to_send})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    try:
        # Call the API without streaming. The messages are now standard dictionaries.
        response = client.chat.completions.create(
            model="qwen/qwen-vl-plus:free",
            messages=messages,
            max_tokens=500
        )
    except Exception as e:
        logger.error(f"Error calling the API: {str(e)}")
        history[-1][1] = "An error occurred while processing your request. Please check your API credentials."
        return history, history

    # Assuming the API returns a standard completion response, extract the assistant's reply.
    try:
        full_response = response.choices[0].message["content"]
    except Exception as e:
        logger.error(f"Error extracting API response: {str(e)}")
        full_response = "An error occurred while processing the API response."

    history[-1][1] = full_response
    return history, history

# -------------------------------
# Create the Gradio Interface
# -------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer & Software Testing Chatbot")
    gr.Markdown(
        "Upload a PDF or an image (PNG, JPG, JPEG, GIF, BMP, WEBP). Then choose a prompt from the dropdown. "
        "For example, select **Software Tester** to have the bot analyze an image of a software interface "
        "and generate test cases. You can also chat with the model—the conversation history is preserved."
    )
    
    with gr.Row():
        file_upload = gr.File(
            label="Upload Document",
            file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
        )
        upload_status = gr.Textbox(label="Upload Status", interactive=False)
    
    with gr.Row():
        prompt_dropdown = gr.Dropdown(
            label="Select Prompt",
            choices=[
                "NOC Timesheet",
                "Aramco Full structured",
                "Aramco Timesheet only",
                "NOC Invoice",
                "Software Tester"
            ],
            value="Software Tester"
        )
        clear_btn = gr.Button("Clear Document Context & Chat History")
    
    # Set type='messages' to avoid deprecation warnings.
    chatbot = gr.Chatbot(label="Chat History", type="messages", elem_id="chatbot")
    
    with gr.Row():
        user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", show_label=False)
        send_btn = gr.Button("Send")
    
    # State to hold the conversation history
    chat_state = gr.State([])
    
    # When a file is uploaded, process it.
    file_upload.change(fn=process_uploaded_file, inputs=file_upload, outputs=upload_status)
    
    # Clear document context and chat history.
    clear_btn.click(fn=clear_context, outputs=[upload_status, chat_state])
    
    # When the user clicks Send, process the message and update the chat.
    send_btn.click(
        fn=chat_respond,
        inputs=[user_input, chat_state, prompt_dropdown],
        outputs=[chatbot, chat_state]
    )
    
demo.launch(debug=True)