File size: 9,806 Bytes
685d414
0d24647
 
 
97778aa
 
031a7f3
b8d465b
48ade8d
896ca54
310ebea
db5919c
0d24647
 
 
07cb903
5753bc2
b8d465b
 
aa10e55
 
310ebea
e3bea0f
5753bc2
b66d512
 
 
db5919c
b66d512
425eec5
3c8678d
db5919c
e3bea0f
 
 
 
 
 
 
1668d21
e3bea0f
 
 
3c8678d
5753bc2
 
 
 
 
e3bea0f
 
5753bc2
 
db5919c
5753bc2
 
 
 
 
 
 
0d24647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bea0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425eec5
02ebd05
db5919c
 
 
5753bc2
02ebd05
db5919c
5753bc2
02ebd05
5753bc2
db5919c
 
 
 
 
 
 
 
 
 
 
c10cafd
02ebd05
db5919c
02ebd05
 
db5919c
aa10e55
0d24647
5753bc2
02ebd05
 
b8d465b
0d24647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bea0f
0d24647
e3bea0f
 
0d24647
 
 
 
 
e3bea0f
0d24647
 
 
e3bea0f
0d24647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74245b5
a727789
5753bc2
e3bea0f
5753bc2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import gradio as gr
import google.generativeai as genai
import numpy as np
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
from dotenv import load_dotenv

load_dotenv()

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)

device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")

model = None
tokenizer = None
snac_model = None

@spaces.GPU()
def load_model():
    global model, tokenizer, snac_model
    try:
        logger.info("Loading SNAC model...")
        snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
        snac_model = snac_model.to(device)
        
        logger.info("Loading Orpheus model...")
        model_name = "canopylabs/orpheus-3b-0.1-ft"

        hf_token = os.environ.get("HUGGINGFACE_TOKEN")
        if not hf_token:
            raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")

        login(token=hf_token)

        snapshot_download(
            repo_id=model_name,
            use_auth_token=hf_token,
            allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
            ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt", "tokenizer.*"]
        )

        model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
        model.to(device)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        logger.info(f"Orpheus model and tokenizer loaded to {device}")
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise

@spaces.GPU()
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
        
        combined_content = content or ""
        if uploaded_file:
            file_content = uploaded_file.read().decode('utf-8')
            combined_content += "\n" + file_content if combined_content else file_content
        
        prompt = f"""
        Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
        {combined_content}
        
        Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
        Use speech fillers like um, ah. Vary emotional tone.
        
        Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
        Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
        
        Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
        
        Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
        
        Ensure content flows naturally and stays on topic. Match the script length to {duration}.
        """
        
        response = model.generate_content(prompt)
        return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
    except Exception as e:
        logger.error(f"Error generating podcast script: {str(e)}")
        raise

def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[128259]], dtype=torch.int64)
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device
    
    layer_1, layer_2, layer_3 = [], [], []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()

@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    
    try:
        progress(0.1, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        
        progress(0.3, "Generating speech tokens...")
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        
        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)
        
        progress(0.8, "Converting to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        
        return (24000, audio_samples)  # Return sample rate and audio
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

@spaces.GPU()
def render_podcast(api_key, script, voice1, voice2, num_hosts):
    try:
        lines = [line for line in script.split('\n') if line.strip()]
        audio_segments = []

        for i, line in enumerate(lines):
            voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
            try:
                result = generate_speech(line, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200)
                if result is not None:
                    sample_rate, audio = result
                    audio_segments.append(audio)
            except Exception as e:
                logger.error(f"Error processing audio segment: {str(e)}")

        if not audio_segments:
            logger.warning("No valid audio segments were generated.")
            return (24000, np.zeros(24000, dtype=np.float32))

        podcast_audio = np.concatenate(audio_segments)
        podcast_audio = np.clip(podcast_audio, -1, 1)
        podcast_audio = (podcast_audio * 32767).astype(np.int16)
        
        return (24000, podcast_audio)
    except Exception as e:
        logger.error(f"Error rendering podcast: {str(e)}")
        raise

with gr.Blocks() as demo:
    gr.Markdown("# AI Podcast Generator")
    
    api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
    
    with gr.Row():
        content_input = gr.Textbox(label="Paste your content (optional)", lines=4)
        document_upload = gr.File(label="Upload Document (optional)")
    
    duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration", value="1-5 min")
    num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
    
    voice_options = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
    voice1_select = gr.Dropdown(label="Select Voice 1", choices=voice_options, value="tara")
    voice2_select = gr.Dropdown(label="Select Voice 2", choices=voice_options, value="leo")
    
    generate_btn = gr.Button("Generate Script")
    script_output = gr.Textbox(label="Generated Script", lines=10)
    
    render_btn = gr.Button("Render Podcast")
    audio_output = gr.Audio(label="Generated Podcast")
    
    generate_btn.click(generate_podcast_script, 
                       inputs=[api_key_input, content_input, document_upload, duration, num_hosts], 
                       outputs=script_output)
    
    render_btn.click(render_podcast, 
                     inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts], 
                     outputs=audio_output)

    num_hosts.change(lambda x: gr.update(visible=x == 2), 
                     inputs=[num_hosts], 
                     outputs=[voice2_select])

if __name__ == "__main__":
    try:
        load_model()
        demo.launch()
    except Exception as e:
        logger.error(f"Error launching the application: {str(e)}")