Spaces:
Running
Running
File size: 19,223 Bytes
5ee0a10 eb5ebce 5ee0a10 7ccde22 dd6b309 7ccde22 eb5ebce dd6b309 eb5ebce 265c29d eb5ebce 801d9f2 dd6b309 eb5ebce 7ccde22 eb5ebce 7ccde22 eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 2906fee 801d9f2 eb5ebce 2906fee eb5ebce 2906fee eb5ebce 3c95d1f eb5ebce 801d9f2 eb5ebce 801d9f2 eb5ebce 801d9f2 eb5ebce 801d9f2 eb5ebce 3c95d1f 29bdbcf eb5ebce 801d9f2 eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 0880e2f eb5ebce 3c95d1f eb5ebce 0880e2f 3c95d1f eb5ebce 3c95d1f eb5ebce 0880e2f 3c95d1f eb5ebce 3c95d1f eb5ebce 3c95d1f 2906fee 3c95d1f 0880e2f 3c95d1f eb5ebce 3c95d1f eb5ebce 3c95d1f eb5ebce 3c95d1f eb5ebce 3c95d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import numpy as np
import pandas as pd
import faiss
import zipfile
import logging
from pathlib import Path
from sentence_transformers import SentenceTransformer, util
import streamlit as st
import time
import os
from urllib.parse import quote
import requests
import shutil
import concurrent.futures
# Optional: Uncomment if you want to use lru_cache for instance methods
from functools import lru_cache
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger("MetadataManager")
class MetadataManager:
def __init__(self):
self.cache_dir = Path("unzipped_cache")
self.shard_dir = self.cache_dir / "metadata_shards"
self.shard_map = {}
self.loaded_shards = {}
self.total_docs = 0
self.api_cache = {}
logger.info("Initializing MetadataManager")
self._ensure_directories()
self._unzip_if_needed()
self._build_shard_map()
logger.info(f"Total documents indexed: {self.total_docs}")
logger.info(f"Total shards found: {len(self.shard_map)}")
def _ensure_directories(self):
"""Create necessary directories if they don't exist."""
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.shard_dir.mkdir(parents=True, exist_ok=True)
def _unzip_if_needed(self):
"""Extract the ZIP archive if no parquet files are found."""
zip_path = Path("metadata_shards.zip")
if not any(self.shard_dir.rglob("*.parquet")):
logger.info("No parquet files found, checking for zip archive")
if not zip_path.exists():
raise FileNotFoundError(f"Metadata ZIP file not found at {zip_path}")
logger.info(f"Extracting {zip_path} to {self.shard_dir}")
try:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_root = self._get_zip_root(zip_ref)
zip_ref.extractall(self.shard_dir)
if zip_root:
nested_dir = self.shard_dir / zip_root
if nested_dir.exists():
self._flatten_directory(nested_dir, self.shard_dir)
nested_dir.rmdir()
parquet_files = list(self.shard_dir.rglob("*.parquet"))
if not parquet_files:
raise RuntimeError("Extraction completed but no parquet files found")
logger.info(f"Found {len(parquet_files)} parquet files after extraction")
except Exception as e:
logger.error(f"Failed to extract zip file: {str(e)}")
self._clean_failed_extraction()
raise
def _get_zip_root(self, zip_ref):
"""Identify the common root directory within the ZIP file."""
try:
first_file = zip_ref.namelist()[0]
if '/' in first_file:
return first_file.split('/')[0]
return ""
except Exception as e:
logger.warning(f"Error detecting zip root: {str(e)}")
return ""
def _flatten_directory(self, src_dir, dest_dir):
"""Move files from a nested directory up to the destination."""
for item in src_dir.iterdir():
if item.is_dir():
self._flatten_directory(item, dest_dir)
item.rmdir()
else:
target = dest_dir / item.name
if target.exists():
target.unlink()
item.rename(target)
def _clean_failed_extraction(self):
"""Clean up files from a failed extraction attempt."""
logger.info("Cleaning up failed extraction")
for item in self.shard_dir.iterdir():
if item.is_dir():
shutil.rmtree(item)
else:
item.unlink()
def _build_shard_map(self):
"""Build a map from global index ranges to shard filenames."""
logger.info("Building shard map from parquet files")
parquet_files = list(self.shard_dir.glob("*.parquet"))
if not parquet_files:
raise FileNotFoundError("No parquet files found after extraction")
parquet_files = sorted(parquet_files, key=lambda x: int(x.stem.split("_")[1]))
expected_start = 0
for f in parquet_files:
try:
parts = f.stem.split("_")
if len(parts) != 3:
raise ValueError("Invalid filename format")
start = int(parts[1])
end = int(parts[2])
if start != expected_start:
raise ValueError(f"Non-contiguous shard start: expected {expected_start}, got {start}")
if end <= start:
raise ValueError(f"Invalid shard range: {start}-{end}")
self.shard_map[(start, end)] = f.name
self.total_docs = end + 1
expected_start = end + 1
logger.debug(f"Mapped shard {f.name}: indices {start}-{end}")
except Exception as e:
logger.error(f"Error processing shard {f.name}: {str(e)}")
raise RuntimeError("Invalid shard structure") from e
logger.info(f"Validated {len(self.shard_map)} continuous shards")
logger.info(f"Total document count: {self.total_docs}")
sorted_ranges = sorted(self.shard_map.keys())
for i in range(1, len(sorted_ranges)):
prev_end = sorted_ranges[i-1][1]
curr_start = sorted_ranges[i][0]
if curr_start != prev_end + 1:
logger.warning(f"Gap or overlap detected between shards: {prev_end} to {curr_start}")
def _process_shard(self, shard, local_indices):
"""Load a shard (if not already loaded) and retrieve the specified rows."""
try:
if shard not in self.loaded_shards:
shard_path = self.shard_dir / shard
if not shard_path.exists():
logger.error(f"Shard file not found: {shard_path}")
return pd.DataFrame(columns=["title", "summary", "similarity","authors", "source"])
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
logger.info(f"Loading shard file: {shard} (size: {file_size_mb:.2f} MB)")
try:
self.loaded_shards[shard] = pd.read_parquet(shard_path, columns=["title", "summary", "source", "authors"])
logger.info(f"Loaded shard {shard} with {len(self.loaded_shards[shard])} rows")
except Exception as e:
logger.error(f"Failed to read parquet file {shard}: {str(e)}")
try:
schema = pd.read_parquet(shard_path, engine='pyarrow').dtypes
logger.info(f"Parquet schema: {schema}")
except Exception:
pass
return pd.DataFrame(columns=["title", "summary", "similarity", "source", "authors"])
df = self.loaded_shards[shard]
df_len = len(df)
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
if len(valid_local_indices) != len(local_indices):
logger.warning(f"Filtered {len(local_indices) - len(valid_local_indices)} out-of-bounds indices in shard {shard}")
if valid_local_indices:
chunk = df.iloc[valid_local_indices]
logger.info(f"Retrieved {len(chunk)} records from shard {shard}")
return chunk
except Exception as e:
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
return pd.DataFrame(columns=["title", "summary", "similarity", "source", "authors"])
def get_metadata(self, global_indices):
"""Retrieve metadata for a batch of global indices using parallel shard processing."""
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
logger.warning("Empty indices array passed to get_metadata")
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
valid_indices = [idx for idx in indices_list if 0 <= idx < self.total_docs]
invalid_count = len(indices_list) - len(valid_indices)
if invalid_count > 0:
logger.warning(f"Filtered out {invalid_count} invalid indices")
if not valid_indices:
logger.warning("No valid indices remain after filtering")
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
# Group indices by shard
shard_groups = {}
for idx in valid_indices:
found = False
for (start, end), shard in self.shard_map.items():
if start <= idx <= end:
shard_groups.setdefault(shard, []).append(idx - start)
found = True
break
if not found:
logger.warning(f"Index {idx} not found in any shard range")
# Process shards concurrently
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self._process_shard, shard, local_indices)
for shard, local_indices in shard_groups.items()]
for future in concurrent.futures.as_completed(futures):
df_chunk = future.result()
if not df_chunk.empty:
results.append(df_chunk)
if results:
combined = pd.concat(results).reset_index(drop=True)
logger.info(f"Combined metadata: {len(combined)} records from {len(results)} shards")
return combined
else:
logger.warning("No metadata records retrieved")
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
class SemanticSearch:
def __init__(self):
self.shard_dir = Path("compressed_shards")
self.model = None
self.index_shards = []
self.metadata_mgr = MetadataManager()
self.shard_sizes = []
self.cumulative_offsets = None
self.total_vectors = 0
self.logger = logging.getLogger("SemanticSearch")
self.logger.info("Initializing SemanticSearch")
@st.cache_resource
def load_model(_self):
return SentenceTransformer('all-MiniLM-L6-v2')
def initialize_system(self):
self.logger.info("Loading sentence transformer model")
start_time = time.time()
self.model = self.load_model()
self.logger.info(f"Model loaded in {time.time() - start_time:.2f} seconds")
self.logger.info("Loading FAISS indices")
self._load_faiss_shards()
def _load_faiss_shards(self):
"""Load FAISS shards concurrently and precompute cumulative offsets for global indexing."""
self.logger.info(f"Searching for index files in {self.shard_dir}")
if not self.shard_dir.exists():
self.logger.error(f"Shard directory not found: {self.shard_dir}")
return
index_files = sorted(self.shard_dir.glob("*.index"))
self.logger.info(f"Found {len(index_files)} index files")
self.index_shards = []
self.shard_sizes = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_file = {
executor.submit(self._load_single_index, shard_path): shard_path
for shard_path in index_files
}
for future in concurrent.futures.as_completed(future_to_file):
shard_path = future_to_file[future]
try:
index, size = future.result()
if index is not None:
self.index_shards.append(index)
self.shard_sizes.append(size)
self.logger.info(f"Loaded index {shard_path.name} with {size} vectors")
except Exception as e:
self.logger.error(f"Error loading index {shard_path}: {str(e)}")
self.total_vectors = sum(self.shard_sizes)
self.logger.info(f"Total loaded vectors: {self.total_vectors} across {len(self.index_shards)} shards")
self.cumulative_offsets = np.cumsum([0] + self.shard_sizes)
def _load_single_index(self, shard_path):
"""Load a single FAISS index shard."""
self.logger.info(f"Loading index: {shard_path}")
start_time = time.time()
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
self.logger.info(f"Index file size: {file_size_mb:.2f} MB")
index = faiss.read_index(str(shard_path))
size = index.ntotal
self.logger.info(f"Index loaded in {time.time() - start_time:.2f} seconds")
return index, size
def _global_index(self, shard_idx, local_idx):
"""Convert a local index (within a shard) to a global index using precomputed offsets."""
return int(self.cumulative_offsets[shard_idx] + local_idx)
def search(self, query, top_k=5):
"""Search for a query using parallel FAISS shard search."""
self.logger.info(f"Searching for query: '{query}' (top_k={top_k})")
start_time = time.time()
if not query:
self.logger.warning("Empty query provided")
return pd.DataFrame()
if not self.index_shards:
self.logger.error("No index shards loaded")
return pd.DataFrame()
try:
self.logger.info("Encoding query")
query_embedding = self.model.encode([query], convert_to_numpy=True)
self.logger.debug(f"Query encoded to shape {query_embedding.shape}")
except Exception as e:
self.logger.error(f"Query encoding failed: {str(e)}")
return pd.DataFrame()
all_distances = []
all_global_indices = []
# Run shard searches in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = {
executor.submit(self._search_shard, shard_idx, index, query_embedding, top_k): shard_idx
for shard_idx, index in enumerate(self.index_shards)
}
for future in concurrent.futures.as_completed(futures):
result = future.result()
if result is not None:
distances_part, global_indices_part = result
all_distances.extend(distances_part)
all_global_indices.extend(global_indices_part)
self.logger.info(f"Search found {len(all_global_indices)} results across all shards")
results = self._process_results(np.array(all_distances), np.array(all_global_indices), top_k)
self.logger.info(f"Search completed in {time.time() - start_time:.2f} seconds with {len(results)} final results")
return results
def _search_shard(self, shard_idx, index, query_embedding, top_k):
"""Search a single FAISS shard for the query embedding."""
if index.ntotal == 0:
self.logger.warning(f"Skipping empty shard {shard_idx}")
return None
try:
shard_start = time.time()
distances, indices = index.search(query_embedding, top_k)
valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal)
valid_indices = indices[0][valid_mask].tolist()
valid_distances = distances[0][valid_mask].tolist()
if len(valid_indices) != top_k:
self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}")
global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices]
self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s")
return valid_distances, global_indices
except Exception as e:
self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}")
return None
def _process_results(self, distances, global_indices, top_k):
"""Process raw search results: retrieve metadata, calculate similarity, and deduplicate."""
process_start = time.time()
if global_indices.size == 0 or distances.size == 0:
self.logger.warning("No search results to process")
return pd.DataFrame(columns=["title", "summary", "source", "authors", "similarity"])
try:
self.logger.info(f"Retrieving metadata for {len(global_indices)} indices")
metadata_start = time.time()
results = self.metadata_mgr.get_metadata(global_indices)
self.logger.info(f"Metadata retrieved in {time.time() - metadata_start:.2f}s, got {len(results)} records")
if len(results) == 0:
self.logger.warning("No metadata found for indices")
return pd.DataFrame(columns=["title", "summary", "source", "authors", "similarity"])
if len(results) != len(distances):
self.logger.warning(f"Mismatch between distances ({len(distances)}) and results ({len(results)})")
if len(results) < len(distances):
distances = distances[:len(results)]
else:
distances = np.pad(distances, (0, len(results) - len(distances)), 'constant', constant_values=1.0)
self.logger.debug("Calculating similarity scores")
results['similarity'] = 1 - (distances / 2)
# Ensure all required columns
results['source'] = results["source"]
required_columns = ["title", "summary", "authors", "source", "similarity"]
for col in required_columns:
if col not in results.columns:
results[col] = None # Fill missing columns with None
pre_dedup = len(results)
results = results.drop_duplicates(subset=["title", "authors", "source"]).sort_values("similarity", ascending=False).head(top_k)
post_dedup = len(results)
if pre_dedup > post_dedup:
self.logger.info(f"Removed {pre_dedup - post_dedup} duplicate results")
self.logger.info(f"Results processed in {time.time() - process_start:.2f}s, returning {len(results)} items")
return results[required_columns].reset_index(drop=True)
except Exception as e:
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|