File size: 8,278 Bytes
63ee3e5
 
 
 
cc8959c
d744aff
cc8959c
63ee3e5
e2fc711
cc8959c
e2fc711
63ee3e5
 
5fb2e7c
63ee3e5
 
e2fc711
d744aff
e2fc711
63ee3e5
 
 
c098e72
63ee3e5
 
c7f56a8
 
 
c098e72
c7f56a8
 
e2fc711
cc8959c
 
 
e2fc711
cc8959c
 
 
 
 
 
 
 
 
63ee3e5
 
e2fc711
cc8959c
e2fc711
63ee3e5
cc8959c
 
 
63ee3e5
d744aff
cc8959c
 
 
d744aff
 
 
 
c7f56a8
d744aff
63ee3e5
 
cc8959c
d744aff
cc8959c
d744aff
cc8959c
 
 
d744aff
c7f56a8
cc8959c
1ee4794
 
cc8959c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f56a8
cc8959c
d744aff
cc8959c
 
 
 
 
 
 
 
 
 
 
63ee3e5
e2fc711
cc8959c
e2fc711
cc8959c
d744aff
cc8959c
d744aff
cc8959c
d744aff
 
 
5fb2e7c
cc8959c
 
5fb2e7c
cc8959c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d744aff
e2fc711
cc8959c
e2fc711
63ee3e5
d744aff
cc8959c
 
 
d744aff
5fb2e7c
c7f56a8
63ee3e5
 
 
d744aff
5fb2e7c
63ee3e5
 
d744aff
cc8959c
63ee3e5
 
d744aff
5fb2e7c
63ee3e5
 
d744aff
 
 
63ee3e5
 
 
 
5fb2e7c
63ee3e5
c7f56a8
 
 
 
 
 
16d930f
c7f56a8
cc8959c
 
 
 
 
c7f56a8
 
63ee3e5
cc8959c
63ee3e5
e2fc711
cc8959c
e2fc711
63ee3e5
 
 
 
 
d744aff
63ee3e5
 
 
 
16d930f
63ee3e5
5fb2e7c
63ee3e5
5fb2e7c
cc8959c
 
 
 
 
 
63ee3e5
 
 
 
 
cc8959c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf  # likely needed by the pipeline or local saving
from transformers import pipeline, VitsModel, AutoTokenizer
from datasets import load_dataset

# ------------------------------------------------------
# 1. ASR Pipeline (English) - Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h"
)

# ------------------------------------------------------
# 2. Translation Models (3 languages)
# ------------------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-ja"
}

translation_tasks = {
    "Spanish": "translation_en_to_es",
    "Chinese": "translation_en_to_zh",
    "Japanese": "translation_en_to_ja"
}

# ------------------------------------------------------
# 3. TTS Configuration
#    - Spanish: VITS-based MMS TTS
#    - Chinese & Japanese: Microsoft SpeechT5
# ------------------------------------------------------
# We'll store them as keys for convenience
SPANISH_KEY = "Spanish"
CHINESE_KEY = "Chinese"
JAPANESE_KEY = "Japanese"

# VITS config for Spanish only
mms_spanish_config = {
    "model_id": "facebook/mms-tts-spa",
    "architecture": "vits"
}

# ------------------------------------------------------
# 4. Create TTS Pipelines / Models Once (Caching)
# ------------------------------------------------------
translator_cache = {}
vits_model_cache = None  # for Spanish
speech_t5_pipeline_cache = None  # for Chinese/Japanese
speech_t5_speaker_embedding = None

def get_translator(lang):
    """
    Return a cached MarianMT translator for the specified language.
    """
    if lang in translator_cache:
        return translator_cache[lang]
    model_name = translation_models[lang]
    task_name = translation_tasks[lang]
    translator = pipeline(task_name, model=model_name)
    translator_cache[lang] = translator
    return translator

def load_spanish_vits():
    """
    Load and cache the Spanish VITS model + tokenizer (facebook/mms-tts-spa).
    """
    global vits_model_cache
    if vits_model_cache is not None:
        return vits_model_cache
    
    try:
        model_id = mms_spanish_config["model_id"]
        model = VitsModel.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        vits_model_cache = (model, tokenizer)
    except Exception as e:
        raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}")
    
    return vits_model_cache

def load_speech_t5_pipeline():
    """
    Load and cache the Microsoft SpeechT5 text-to-speech pipeline
    and a default speaker embedding.
    """
    global speech_t5_pipeline_cache, speech_t5_speaker_embedding
    if speech_t5_pipeline_cache is not None and speech_t5_speaker_embedding is not None:
        return speech_t5_pipeline_cache, speech_t5_speaker_embedding
    
    try:
        # Create the pipeline
        # The pipeline is named "text-to-speech" in Transformers >= 4.29
        t5_pipe = pipeline("text-to-speech", model="microsoft/speecht5_tts")
    except Exception as e:
        raise RuntimeError(f"Failed to load Microsoft SpeechT5 pipeline: {e}")
    
    # Load a default speaker embedding
    try:
        embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
        # Just pick an arbitrary index for speaker embedding
        speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
    except Exception as e:
        raise RuntimeError(f"Failed to load default speaker embedding: {e}")
    
    speech_t5_pipeline_cache = t5_pipe
    speech_t5_speaker_embedding = speaker_embedding
    return t5_pipe, speaker_embedding

# ------------------------------------------------------
# 5. TTS Inference Helpers
# ------------------------------------------------------
def run_vits_inference(text):
    """
    For Spanish TTS using MMS (facebook/mms-tts-spa).
    """
    model, tokenizer = load_spanish_vits()
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        output = model(**inputs)
    if not hasattr(output, "waveform"):
        raise RuntimeError("VITS output does not contain 'waveform'.")
    waveform = output.waveform.squeeze().cpu().numpy()
    sample_rate = 16000
    return sample_rate, waveform

def run_speecht5_inference(text):
    """
    For Chinese & Japanese TTS using Microsoft SpeechT5 pipeline.
    """
    t5_pipe, speaker_embedding = load_speech_t5_pipeline()
    # The pipeline returns a dict with 'audio' (numpy) and 'sampling_rate'
    result = t5_pipe(
        text,
        forward_params={"speaker_embeddings": speaker_embedding}
    )
    waveform = result["audio"]
    sample_rate = result["sampling_rate"]
    return sample_rate, waveform

# ------------------------------------------------------
# 6. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
    """
    1. Get English text (ASR if audio provided, else text).
    2. Translate to target_language.
    3. TTS with the chosen approach (VITS for Spanish, SpeechT5 for Chinese/Japanese).
    """
    # Step 1: English text
    if text.strip():
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio
        
        # Convert to float32 if needed
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)
        
        # Stereo -> mono
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)
        
        # Resample to 16k if needed
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        
        asr_input = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(asr_input)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Step 2: Translate
    translator = get_translator(target_language)
    try:
        translation_result = translator(english_text)
        translated_text = translation_result[0]["translation_text"]
    except Exception as e:
        return english_text, f"Translation error: {e}", None

    # Step 3: TTS
    try:
        if target_language == SPANISH_KEY:
            sr, waveform = run_vits_inference(translated_text)
        else:
            # Chinese or Japanese -> SpeechT5
            sr, waveform = run_speecht5_inference(translated_text)
    except Exception as e:
        return english_text, translated_text, f"TTS error: {e}"

    return english_text, translated_text, (sr, waveform)

# ------------------------------------------------------
# 7. Gradio Interface
# ------------------------------------------------------
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech")
    ],
    title="Multimodal Language Learning Aid",
    description=(
        "1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
        "2. Translates to Spanish, Chinese, or Japanese (via Helsinki-NLP models).\n"
        "3. Synthesizes speech:\n"
        "   - Spanish -> facebook/mms-tts-spa (VITS)\n"
        "   - Chinese & Japanese -> microsoft/speecht5_tts (SpeechT5)\n\n"
        "Note: SpeechT5 is not officially trained for Japanese, so results may vary.\n"
        "You can also try inputting short, clear audio for best ASR results."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)