File size: 8,278 Bytes
63ee3e5 cc8959c d744aff cc8959c 63ee3e5 e2fc711 cc8959c e2fc711 63ee3e5 5fb2e7c 63ee3e5 e2fc711 d744aff e2fc711 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 e2fc711 cc8959c e2fc711 cc8959c 63ee3e5 e2fc711 cc8959c e2fc711 63ee3e5 cc8959c 63ee3e5 d744aff cc8959c d744aff c7f56a8 d744aff 63ee3e5 cc8959c d744aff cc8959c d744aff cc8959c d744aff c7f56a8 cc8959c 1ee4794 cc8959c c7f56a8 cc8959c d744aff cc8959c 63ee3e5 e2fc711 cc8959c e2fc711 cc8959c d744aff cc8959c d744aff cc8959c d744aff 5fb2e7c cc8959c 5fb2e7c cc8959c d744aff e2fc711 cc8959c e2fc711 63ee3e5 d744aff cc8959c d744aff 5fb2e7c c7f56a8 63ee3e5 d744aff 5fb2e7c 63ee3e5 d744aff cc8959c 63ee3e5 d744aff 5fb2e7c 63ee3e5 d744aff 63ee3e5 5fb2e7c 63ee3e5 c7f56a8 16d930f c7f56a8 cc8959c c7f56a8 63ee3e5 cc8959c 63ee3e5 e2fc711 cc8959c e2fc711 63ee3e5 d744aff 63ee3e5 16d930f 63ee3e5 5fb2e7c 63ee3e5 5fb2e7c cc8959c 63ee3e5 cc8959c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf # likely needed by the pipeline or local saving
from transformers import pipeline, VitsModel, AutoTokenizer
from datasets import load_dataset
# ------------------------------------------------------
# 1. ASR Pipeline (English) - Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# ------------------------------------------------------
# 2. Translation Models (3 languages)
# ------------------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
}
translation_tasks = {
"Spanish": "translation_en_to_es",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
# ------------------------------------------------------
# 3. TTS Configuration
# - Spanish: VITS-based MMS TTS
# - Chinese & Japanese: Microsoft SpeechT5
# ------------------------------------------------------
# We'll store them as keys for convenience
SPANISH_KEY = "Spanish"
CHINESE_KEY = "Chinese"
JAPANESE_KEY = "Japanese"
# VITS config for Spanish only
mms_spanish_config = {
"model_id": "facebook/mms-tts-spa",
"architecture": "vits"
}
# ------------------------------------------------------
# 4. Create TTS Pipelines / Models Once (Caching)
# ------------------------------------------------------
translator_cache = {}
vits_model_cache = None # for Spanish
speech_t5_pipeline_cache = None # for Chinese/Japanese
speech_t5_speaker_embedding = None
def get_translator(lang):
"""
Return a cached MarianMT translator for the specified language.
"""
if lang in translator_cache:
return translator_cache[lang]
model_name = translation_models[lang]
task_name = translation_tasks[lang]
translator = pipeline(task_name, model=model_name)
translator_cache[lang] = translator
return translator
def load_spanish_vits():
"""
Load and cache the Spanish VITS model + tokenizer (facebook/mms-tts-spa).
"""
global vits_model_cache
if vits_model_cache is not None:
return vits_model_cache
try:
model_id = mms_spanish_config["model_id"]
model = VitsModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
vits_model_cache = (model, tokenizer)
except Exception as e:
raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}")
return vits_model_cache
def load_speech_t5_pipeline():
"""
Load and cache the Microsoft SpeechT5 text-to-speech pipeline
and a default speaker embedding.
"""
global speech_t5_pipeline_cache, speech_t5_speaker_embedding
if speech_t5_pipeline_cache is not None and speech_t5_speaker_embedding is not None:
return speech_t5_pipeline_cache, speech_t5_speaker_embedding
try:
# Create the pipeline
# The pipeline is named "text-to-speech" in Transformers >= 4.29
t5_pipe = pipeline("text-to-speech", model="microsoft/speecht5_tts")
except Exception as e:
raise RuntimeError(f"Failed to load Microsoft SpeechT5 pipeline: {e}")
# Load a default speaker embedding
try:
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# Just pick an arbitrary index for speaker embedding
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
except Exception as e:
raise RuntimeError(f"Failed to load default speaker embedding: {e}")
speech_t5_pipeline_cache = t5_pipe
speech_t5_speaker_embedding = speaker_embedding
return t5_pipe, speaker_embedding
# ------------------------------------------------------
# 5. TTS Inference Helpers
# ------------------------------------------------------
def run_vits_inference(text):
"""
For Spanish TTS using MMS (facebook/mms-tts-spa).
"""
model, tokenizer = load_spanish_vits()
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
if not hasattr(output, "waveform"):
raise RuntimeError("VITS output does not contain 'waveform'.")
waveform = output.waveform.squeeze().cpu().numpy()
sample_rate = 16000
return sample_rate, waveform
def run_speecht5_inference(text):
"""
For Chinese & Japanese TTS using Microsoft SpeechT5 pipeline.
"""
t5_pipe, speaker_embedding = load_speech_t5_pipeline()
# The pipeline returns a dict with 'audio' (numpy) and 'sampling_rate'
result = t5_pipe(
text,
forward_params={"speaker_embeddings": speaker_embedding}
)
waveform = result["audio"]
sample_rate = result["sampling_rate"]
return sample_rate, waveform
# ------------------------------------------------------
# 6. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
"""
1. Get English text (ASR if audio provided, else text).
2. Translate to target_language.
3. TTS with the chosen approach (VITS for Spanish, SpeechT5 for Chinese/Japanese).
"""
# Step 1: English text
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
# Convert to float32 if needed
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
# Stereo -> mono
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16k if needed
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
asr_input = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(asr_input)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# Step 2: Translate
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: TTS
try:
if target_language == SPANISH_KEY:
sr, waveform = run_vits_inference(translated_text)
else:
# Chinese or Japanese -> SpeechT5
sr, waveform = run_speecht5_inference(translated_text)
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, (sr, waveform)
# ------------------------------------------------------
# 7. Gradio Interface
# ------------------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech")
],
title="Multimodal Language Learning Aid",
description=(
"1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
"2. Translates to Spanish, Chinese, or Japanese (via Helsinki-NLP models).\n"
"3. Synthesizes speech:\n"
" - Spanish -> facebook/mms-tts-spa (VITS)\n"
" - Chinese & Japanese -> microsoft/speecht5_tts (SpeechT5)\n\n"
"Note: SpeechT5 is not officially trained for Japanese, so results may vary.\n"
"You can also try inputting short, clear audio for best ASR results."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860) |