File size: 9,216 Bytes
ef7a878
32f88c0
b22a6ec
351252d
 
 
 
 
 
 
 
 
 
 
b22a6ec
1de6e28
dbca570
 
2f03bd6
d4b107b
cf8326e
85002a1
ad6d7c2
 
85002a1
 
dbca570
2f03bd6
ad6d7c2
dbca570
ad6d7c2
 
cf8326e
8c6ad91
5c44de8
 
cf8326e
2be6ffe
cf8326e
1137662
8c6ad91
 
 
ad6d7c2
dbca570
1de6e28
85002a1
 
 
 
6a801d6
85002a1
ad6d7c2
 
 
 
b6f831c
9e87cc4
6898666
1de6e28
071df52
3a22e5c
071df52
 
 
85002a1
9e87cc4
85002a1
1de6e28
3efe0d9
2389999
 
9bee7bc
3efe0d9
 
9e87cc4
9bee7bc
 
b98f4ad
7ef26c1
5c44de8
e1d8262
9bee7bc
b992645
32f88c0
ad6d7c2
32f88c0
 
361f8d0
5c44de8
85002a1
 
 
 
361f8d0
5c44de8
361f8d0
 
4a5b260
85002a1
 
071df52
 
361f8d0
 
 
071df52
 
85002a1
9e87cc4
5c44de8
1de6e28
6ec642d
 
4a5b260
6ec642d
1de6e28
9e722fb
8c6ad91
 
 
9e722fb
 
7ef26c1
071df52
b992645
 
6ec642d
 
 
1de6e28
9e722fb
b992645
 
7ef26c1
b992645
 
 
8c6ad91
badcd8d
1de6e28
55eafca
9e722fb
8c6ad91
9e722fb
 
8c6ad91
6ec642d
 
9e722fb
 
 
 
 
 
 
 
 
b6f831c
6ec642d
9e722fb
b992645
 
9e722fb
1de6e28
8c6ad91
b992645
 
 
9e722fb
d262ec1
9e722fb
 
8c6ad91
d4b107b
7ef26c1
6ec642d
f7e87b9
b992645
 
9e722fb
b6f831c
8c6ad91
b992645
9e722fb
 
 
f7e87b9
7ef26c1
8c6ad91
d4b107b
f7e87b9
9e722fb
8c6ad91
f7e87b9
7ef26c1
6ec642d
9e722fb
b992645
 
9e722fb
1de6e28
f7e87b9
b992645
9e722fb
 
 
2d9e081
8c6ad91
 
 
 
9e722fb
8ec53db
 
6a67784
ad6d7c2
85002a1
5ca37ae
 
 
 
 
 
 
b6f831c
1de6e28
5ca37ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# app.py
# Version: 1.07 (08.24.24), ALPHA
#---------------------------------------------------------------------------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#---------------------------------------------------------------------------------------------------------------------------------------------
import spaces
import gradio as gr
from PIL import Image
from pydub import AudioSegment
import os
import re
import time
import warnings
#import datetime
import subprocess
from pathlib import Path
from fpdf import FPDF

import psutil
from gpuinfo import GPUInfo
#import pandas as pd
#import csv
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as transforms

from transformers import pipeline, AutoModel

import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
warnings.filterwarnings("ignore")

#              ------------header section------------
HEADER_INFO = """
    # WEB APP ✨| Norwegian WHISPER Model
Switch Work [Transkribering av lydfiler til norsk skrift]
""".strip()
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9"
SIDEBAR_INFO = f"""
<div align="center">
    <img src="{LOGO}" style="width: 100%; height: auto;"/>
</div>
"""

# ------------transcribe section------------

@spaces.GPU()
def convert_to_wav(filepath):
    _, file_ending = os.path.splitext(f'{filepath}')
    audio_file = filepath.replace(file_ending, ".wav")
    os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
    return audio_file

pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})

@spaces.GPU()
def transcribe_audio(audio_file, batch_size=16, sample_rate =16000):
    audio_file = audio_tuple[0] # assumes first element of the tuple contains the file path;
    waveform, sample_rate = torchaudio.load(audio_file) # to avoid TypeError here

    if waveform.ndim > 1:
        waveform = waveform[0, :]

    waveform = waveform.numpy()

    start_time = time.time()

    # --pipe it
    with torch.no_grad():
        outputs = pipe(waveform, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)

    end_time = time.time()
    
    output_time = end_time - start_time
    word_count = len(text.split())

    # --GPU metrics
    memory = psutil.virtual_memory()
    gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
    gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
    gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0

    # --CPU metric
    cpu_usage = psutil.cpu_percent(interval=1)

    # --system info string
    system_info = f"""
    *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
    *Processing time: {output_time:.2f} seconds.*
    *Number of words: {word_count}*
    *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*
    *CPU Usage: {cpu_usage}%*
    """

    return text.strip(), system_info



#              ------------summary section------------


#          ------------for app integration later------------

@spaces.GPU()
def clean_text(text):
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

nlp = spacy.blank("nb")  # 'nb' ==> codename = Norwegian Bokmål
nlp.add_pipe('sentencizer')
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS

summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")

@spaces.GPU()
def preprocess_text(text):
    # Process the text with SpaCy
    doc = nlp(text)
    # SpaCy's stop top wrds direct
    stop_words = spacy_stop_words
    # Filter out stop words
    words = [token.text for token in doc if token.text.lower() not in stop_words]
    return ' '.join(words)

@spaces.GPU()
def summarize_text(text):
    preprocessed_text = preprocess_text(text)
    inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
    inputs = inputs.to(device)
    summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
    return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    
@spaces.GPU()
def build_similarity_matrix(sentences, stop_words):
    similarity_matrix = nx.Graph()
    for i, tokens_a in enumerate(sentences):
        for j, tokens_b in enumerate(sentences):
            if i != j:
                common_words = set(tokens_a) & set(tokens_b)
                similarity_matrix.add_edge(i, j, weight=len(common_words))
    return similarity_matrix

# PageRank
@spaces.GPU()
def graph_based_summary(text, num_paragraphs=3):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences) 

    sentence_tokens = [nlp(sent) for sent in sentences]
    stop_words = spacy_stop_words
    filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
    similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)

    scores = nx.pagerank(similarity_matrix)
    ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
    return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])

# LexRank
@spaces.GPU()
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences)  # Adjusted to return a single string

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    # Apply threshold@similarity matrix
    similarity_matrix[similarity_matrix < threshold] = 0
    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])

# TextRank
@spaces.GPU()
def text_rank_summary(text, num_paragraphs=3):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences) 

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])

iface = gr.Blocks()

with iface:
    gr.HTML(SIDEBAR_INFO)
    gr.Markdown(HEADER_INFO)
    
    audio_input = gr.Audio(label="Upload Audio File")
    transcribed_text = gr.Textbox(label="Transcribed Text")
    system_info = gr.Textbox(label="System Info")
    
    transcribe_button = gr.Button("Transcribe")
    transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=[transcribed_text, system_info])

iface.launch(share=True, debug=True)