File size: 41,545 Bytes
688e887
086820c
 
237716a
086820c
527b2af
ae884c3
086820c
527b2af
bc0a3bf
527b2af
e157aa1
b971cba
527b2af
bc0a3bf
 
 
 
086820c
bc0a3bf
527b2af
 
bc0a3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527b2af
 
 
086820c
 
 
 
 
 
 
 
 
 
 
dba3b13
527b2af
 
 
 
 
 
 
 
 
 
304ed71
dba3b13
 
527b2af
 
 
 
 
bc0a3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086820c
 
 
 
 
 
 
 
527b2af
086820c
527b2af
 
086820c
527b2af
 
 
 
 
b668c7e
527b2af
 
 
086820c
527b2af
086820c
527b2af
 
 
086820c
 
 
d404815
527b2af
 
 
 
 
98b3e34
 
527b2af
 
98b3e34
527b2af
 
086820c
d404815
527b2af
 
086820c
d404815
527b2af
086820c
 
d404815
527b2af
 
 
 
086820c
688e887
086820c
d404815
086820c
 
 
d404815
086820c
 
 
 
d404815
086820c
 
 
 
 
 
135b090
086820c
77ca615
 
 
 
 
 
9c9742b
77ca615
 
 
 
 
 
 
 
 
 
 
 
 
86d1c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5f543
 
86d1c7a
 
 
527b2af
086820c
3cf0e0f
 
086820c
c6f97f0
086820c
 
28af0c6
086820c
 
688e887
70d6ab6
8b71b4f
0df6dfd
70d6ab6
50266c5
3cf0e0f
4bec5d9
6b4e6b7
086820c
 
527b2af
 
68affc8
4cddfc0
086820c
4cddfc0
70d6ab6
009d5db
3cf0e0f
dba3b13
 
 
 
5757889
dba3b13
 
 
 
 
 
 
 
009d5db
 
fc59150
9907744
b971cba
009d5db
b971cba
 
009d5db
 
4cddfc0
527b2af
fc59150
009d5db
c6f97f0
086820c
8b71b4f
0df6dfd
 
 
c6f97f0
3c82907
db6d128
6bfda96
db6d128
420e766
646411c
 
 
 
086820c
838ce7d
 
ae884c3
237716a
 
f900a89
237716a
77ca615
 
 
86d1c7a
527b2af
237716a
86d1c7a
0df6dfd
 
 
56c8acc
 
527b2af
237716a
47df049
 
86d1c7a
086820c
 
952c48d
 
 
 
941ef77
 
92e33c7
952c48d
 
ea493d8
952c48d
 
 
 
 
 
 
527b2af
 
 
952c48d
 
0f7de41
e57a30b
86d1c7a
 
952c48d
 
 
 
086820c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
import gradio as gr
from matplotlib import cm 
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# import onnxruntime as ort
from PIL import Image
from scipy import special
import sys
# import timm
from types import SimpleNamespace
# from transformers import AutoModel, pipeline
from transformers import AutoModelForImageClassification
import torch
from torch import Tensor, nn
from torch import Tensor
from torchvision.models._utils import _make_divisible
from torchvision.ops import StochasticDepth

# sys.path.insert(1, "../")
# from utils import model_utils, train_utils, data_utils, run_utils
# from model_utils import jason_regnet_maker, jason_efficientnet_maker
# from model_utils.efficientnet_config import EfficientNetConfig, EfficientNetPreTrained


from transformers import PretrainedConfig, PreTrainedModel

from typing import List
import copy
import math
import warnings
from dataclasses import dataclass
from functools import partial
import sys
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union



# sys.path.insert(1, "../")
# from utils.vision_modifications import Conv2dNormActivation, SqueezeExcitation

interpolate = torch.nn.functional.interpolate

model_path = 'chlab/'
# model_path = './models/'

# plotting a prameters
labels = 20
ticks = 14
legends = 14
text = 14
titles = 22
lw = 3
ps = 200
cmap = 'magma'

effnet_hparams = {61: {
    "num_classes": 2,
    "gamma": 0.032606396652426956,
    "lr": 0.008692971067922545,
    "weight_decay": 0.00008348389688708425,
    "batch_size": 23,
    "num_channels": 61,
    "stochastic_depth_prob": 0.003581930052432713,
    "dropout": 0.027804120950575217,
    "width_mult": 1.060782511229692,
    "depth_mult": 0.7752918857163054,
    "size": "v2_s",
}}
# effnet_config = SimpleNamespace(**effnet_hparams)

# which layers to look at
activation_indices = {'efficientnet': [0, 3]}


########## EfficientNet ############
@dataclass
class _MBConvConfig:
    expand_ratio: float
    kernel: int
    stride: int
    input_channels: int
    out_channels: int
    num_layers: int
    block: Callable[..., nn.Module]

    @staticmethod
    def adjust_channels(
        channels: int, width_mult: float, min_value: Optional[int] = None
    ) -> int:
        return _make_divisible(channels * width_mult, 8, min_value)


class MBConvConfig(_MBConvConfig):
    # Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
        width_mult: float = 1.0,
        depth_mult: float = 1.0,
        block: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        input_channels = self.adjust_channels(input_channels, width_mult)
        out_channels = self.adjust_channels(out_channels, width_mult)
        num_layers = self.adjust_depth(num_layers, depth_mult)
        if block is None:
            block = MBConv
        super().__init__(
            expand_ratio,
            kernel,
            stride,
            input_channels,
            out_channels,
            num_layers,
            block,
        )

    @staticmethod
    def adjust_depth(num_layers: int, depth_mult: float):
        return int(math.ceil(num_layers * depth_mult))


class FusedMBConvConfig(_MBConvConfig):
    # Stores information listed at Table 4 of the EfficientNetV2 paper
    def __init__(
        self,
        expand_ratio: float,
        kernel: int,
        stride: int,
        input_channels: int,
        out_channels: int,
        num_layers: int,
        block: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        if block is None:
            block = FusedMBConv
        super().__init__(
            expand_ratio,
            kernel,
            stride,
            input_channels,
            out_channels,
            num_layers,
            block,
        )


class MBConv(nn.Module):
    def __init__(
        self,
        cnf: MBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
        se_layer: Callable[..., nn.Module] = SqueezeExcitation,
    ) -> None:
        super().__init__()

        if not (1 <= cnf.stride <= 2):
            raise ValueError("illegal stride value")

        self.use_res_connect = (
            cnf.stride == 1 and cnf.input_channels == cnf.out_channels
        )

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        # expand
        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

        # depthwise
        layers.append(
            Conv2dNormActivation(
                expanded_channels,
                expanded_channels,
                kernel_size=cnf.kernel,
                stride=cnf.stride,
                groups=expanded_channels,
                norm_layer=norm_layer,
                activation_layer=activation_layer,
            )
        )

        # squeeze and excitation
        squeeze_channels = max(1, cnf.input_channels // 4)
        layers.append(
            se_layer(
                expanded_channels,
                squeeze_channels,
                activation=partial(nn.SiLU, inplace=True),
            )
        )

        # project
        layers.append(
            Conv2dNormActivation(
                expanded_channels,
                cnf.out_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=None,
            )
        )

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


class FusedMBConv(nn.Module):
    def __init__(
        self,
        cnf: FusedMBConvConfig,
        stochastic_depth_prob: float,
        norm_layer: Callable[..., nn.Module],
    ) -> None:
        super().__init__()

        if not (1 <= cnf.stride <= 2):
            raise ValueError("illegal stride value")

        self.use_res_connect = (
            cnf.stride == 1 and cnf.input_channels == cnf.out_channels
        )

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
            # fused expand
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    expanded_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

            # project
            layers.append(
                Conv2dNormActivation(
                    expanded_channels,
                    cnf.out_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=None,
                )
            )
        else:
            layers.append(
                Conv2dNormActivation(
                    cnf.input_channels,
                    cnf.out_channels,
                    kernel_size=cnf.kernel,
                    stride=cnf.stride,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


class EfficientNetConfig(PretrainedConfig):
    
    model_type = "efficientnet"
    
    def __init__(
        self,
        # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
        dropout: float=0.25,
        num_channels: int = 61,
        stochastic_depth_prob: float = 0.2,
        num_classes: int = 2,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        # last_channel: Optional[int] = None,
        size: str='v2_s',
        width_mult: float = 1.0,
        depth_mult: float = 1.0,
        **kwargs: Any,
    ) -> None:
        """
        EfficientNet V1 and V2 main class

        Args:
            inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
            last_channel (int): The number of channels on the penultimate layer
        """
        
        
        # self.model = EfficientNet(
        #                             dropout=dropout,
        #                             num_channels=num_channels,
        #                             num_classes=num_classes,
        #                             size=size,
        #                             stochastic_depth_prob=stochastic_depth_prob,
        #                             width_mult=width_mult,
        #                             depth_mult=depth_mult,
        # )
        
        # 
        self.dropout=dropout
        self.num_channels=num_channels
        self.num_classes=num_classes
        self.size=size
        self.stochastic_depth_prob=stochastic_depth_prob
        self.width_mult=width_mult
        self.depth_mult=depth_mult
                                    
        super().__init__(**kwargs)
        
    
class EfficientNetPreTrained(PreTrainedModel):
    
    config_class = EfficientNetConfig
    
    def __init__(
        self,
        config
    ):
        super().__init__(config)   
        self.model = EfficientNet(  dropout=config.dropout,
                                    num_channels=config.num_channels,
                                    num_classes=config.num_classes,
                                    size=config.size,
                                    stochastic_depth_prob=config.stochastic_depth_prob,
                                    width_mult=config.width_mult,
                                    depth_mult=config.depth_mult,)
        
    def forward(self, tensor):
        return self.model.forward(tensor)
    
    
class EfficientNet(nn.Module):
    
    
    def __init__(
        self,
        # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
        dropout: float=0.25,
        num_channels: int = 61,
        stochastic_depth_prob: float = 0.2,
        num_classes: int = 2,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        # last_channel: Optional[int] = None,
        size: str='v2_s',
        width_mult: float = 1.0,
        depth_mult: float = 1.0,
        **kwargs: Any,
    ) -> None:
        """
        EfficientNet V1 and V2 main class

        Args:
            inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
            last_channel (int): The number of channels on the penultimate layer
        """
        super().__init__()
        # _log_api_usage_once(self)
        
        inverted_residual_setting, last_channel = _efficientnet_conf(
                     "efficientnet_%s" % (size), width_mult=width_mult, depth_mult=depth_mult
                    )

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
        elif not (
            isinstance(inverted_residual_setting, Sequence)
            and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])
        ):
            raise TypeError(
                "The inverted_residual_setting should be List[MBConvConfig]"
            )

        if "block" in kwargs:
            warnings.warn(
                "The parameter 'block' is deprecated since 0.13 and will be removed 0.15. "
                "Please pass this information on 'MBConvConfig.block' instead."
            )
            if kwargs["block"] is not None:
                for s in inverted_residual_setting:
                    if isinstance(s, MBConvConfig):
                        s.block = kwargs["block"]

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
        layers.append(
            Conv2dNormActivation(
                num_channels,
                firstconv_output_channels,
                kernel_size=3,
                stride=2,
                norm_layer=norm_layer,
                activation_layer=nn.SiLU,
            )
        )

        # building inverted residual blocks
        total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)
        stage_block_id = 0
        for cnf in inverted_residual_setting:
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # copy to avoid modifications. shallow copy is enough
                block_cnf = copy.copy(cnf)

                # overwrite info if not the first conv in the stage
                if stage:
                    block_cnf.input_channels = block_cnf.out_channels
                    block_cnf.stride = 1

                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = (
                    stochastic_depth_prob * float(stage_block_id) / total_stage_blocks
                )

                stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))
                stage_block_id += 1

            layers.append(nn.Sequential(*stage))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = (
            last_channel if last_channel is not None else 4 * lastconv_input_channels
        )
        layers.append(
            Conv2dNormActivation(
                lastconv_input_channels,
                lastconv_output_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=nn.SiLU,
            )
        )

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout, inplace=True),
            nn.Linear(lastconv_output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.out_features)
                nn.init.uniform_(m.weight, -init_range, init_range)
                nn.init.zeros_(m.bias)
                
        # super().__init__(**kwargs)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


# def _efficientnet(
#     inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
#     dropout: float,
#     last_channel: Optional[int],
#     weights=None,
#     num_channels: int = 61,
#     stochastic_depth_prob: float = 0.2,
#     progress: bool = True,
#     num_classes: int = 2,
#     **kwargs: Any,
# ) -> EfficientNetCongig:

#     model = EfficientNetCongif(
#         inverted_residual_setting,
#         dropout,
#         num_classes=num_classes,
#         num_channels=num_channels,
#         stochastic_depth_prob=stochastic_depth_prob,
#         last_channel=last_channel,
#         **kwargs,
#     )

#     return model


def _efficientnet_conf(
    arch: str,
    **kwargs: Any,
) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:
    inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]
    if arch.startswith("efficientnet_b"):
        bneck_conf = partial(
            MBConvConfig,
            width_mult=kwargs.pop("width_mult"),
            depth_mult=kwargs.pop("depth_mult"),
        )
        inverted_residual_setting = [
            bneck_conf(1, 3, 1, 32, 16, 1),
            bneck_conf(6, 3, 2, 16, 24, 2),
            bneck_conf(6, 5, 2, 24, 40, 2),
            bneck_conf(6, 3, 2, 40, 80, 3),
            bneck_conf(6, 5, 1, 80, 112, 3),
            bneck_conf(6, 5, 2, 112, 192, 4),
            bneck_conf(6, 3, 1, 192, 320, 1),
        ]
        last_channel = None
    elif arch.startswith("efficientnet_v2_s"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 2),
            FusedMBConvConfig(4, 3, 2, 24, 48, 4),
            FusedMBConvConfig(4, 3, 2, 48, 64, 4),
            MBConvConfig(4, 3, 2, 64, 128, 6),
            MBConvConfig(6, 3, 1, 128, 160, 9),
            MBConvConfig(6, 3, 2, 160, 256, 15),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_m"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 24, 24, 3),
            FusedMBConvConfig(4, 3, 2, 24, 48, 5),
            FusedMBConvConfig(4, 3, 2, 48, 80, 5),
            MBConvConfig(4, 3, 2, 80, 160, 7),
            MBConvConfig(6, 3, 1, 160, 176, 14),
            MBConvConfig(6, 3, 2, 176, 304, 18),
            MBConvConfig(6, 3, 1, 304, 512, 5),
        ]
        last_channel = 1280
    elif arch.startswith("efficientnet_v2_l"):
        inverted_residual_setting = [
            FusedMBConvConfig(1, 3, 1, 32, 32, 4),
            FusedMBConvConfig(4, 3, 2, 32, 64, 7),
            FusedMBConvConfig(4, 3, 2, 64, 96, 7),
            MBConvConfig(4, 3, 2, 96, 192, 10),
            MBConvConfig(6, 3, 1, 192, 224, 19),
            MBConvConfig(6, 3, 2, 224, 384, 25),
            MBConvConfig(6, 3, 1, 384, 640, 7),
        ]
        last_channel = 1280
    else:
        raise ValueError(f"Unsupported model type {arch}")

    return inverted_residual_setting, last_channel


#### extra torchvision stuff ####


class FrozenBatchNorm2d(torch.nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed

    Args:
        num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
        eps (float): a value added to the denominator for numerical stability. Default: 1e-5
    """

    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
    ):
        super().__init__()
        # _log_api_usage_once(self)
        self.eps = eps
        self.register_buffer("weight", torch.ones(num_features))
        self.register_buffer("bias", torch.zeros(num_features))
        self.register_buffer("running_mean", torch.zeros(num_features))
        self.register_buffer("running_var", torch.ones(num_features))

    def _load_from_state_dict(
        self,
        state_dict: dict,
        prefix: str,
        local_metadata: dict,
        strict: bool,
        missing_keys: List[str],
        unexpected_keys: List[str],
        error_msgs: List[str],
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def forward(self, x: Tensor) -> Tensor:
        # move reshapes to the beginning
        # to make it fuser-friendly
        w = self.weight.reshape(1, -1, 1, 1)
        b = self.bias.reshape(1, -1, 1, 1)
        rv = self.running_var.reshape(1, -1, 1, 1)
        rm = self.running_mean.reshape(1, -1, 1, 1)
        scale = w * (rv + self.eps).rsqrt()
        bias = b - rm * scale
        return x * scale + bias

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps})"


class ConvNormActivation(torch.nn.Sequential):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        stride: int = 1,
        padding: Optional[int] = None,
        groups: int = 1,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        dilation: int = 1,
        inplace: Optional[bool] = True,
        bias: Optional[bool] = None,
        conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
    ) -> None:

        if padding is None:
            padding = (kernel_size - 1) // 2 * dilation
        if bias is None:
            bias = norm_layer is None

        layers = [
            conv_layer(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                dilation=dilation,
                groups=groups,
                bias=bias,
            )
        ]

        if norm_layer is not None:
            layers.append(norm_layer(out_channels))

        if activation_layer is not None:
            params = {} if inplace is None else {"inplace": inplace}
            layers.append(activation_layer(**params))
        super().__init__(*layers)
        # _log_api_usage_once(self)
        self.out_channels = out_channels

        if self.__class__ == ConvNormActivation:
            warnings.warn(
                "Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
            )


class Conv2dNormActivation(ConvNormActivation):
    """
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        stride: int = 1,
        padding: Optional[int] = None,
        groups: int = 1,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        dilation: int = 1,
        inplace: Optional[bool] = True,
        bias: Optional[bool] = None,
    ) -> None:

        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            groups,
            norm_layer,
            activation_layer,
            dilation,
            inplace,
            bias,
            torch.nn.Conv2d,
        )


class Conv3dNormActivation(ConvNormActivation):
    """
    Configurable block used for Convolution3d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input video.
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        stride: int = 1,
        padding: Optional[int] = None,
        groups: int = 1,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm3d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        dilation: int = 1,
        inplace: Optional[bool] = True,
        bias: Optional[bool] = None,
    ) -> None:

        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            groups,
            norm_layer,
            activation_layer,
            dilation,
            inplace,
            bias,
            torch.nn.Conv3d,
        )


class SqueezeExcitation(torch.nn.Module):
    """
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.

    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
        scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
    """

    def __init__(
        self,
        input_channels: int,
        squeeze_channels: int,
        activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
        scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
    ) -> None:
        super().__init__()
        # _log_api_usage_once(self)
        self.avgpool = torch.nn.AdaptiveAvgPool2d(1)
        self.fc1 = torch.nn.Conv2d(input_channels, squeeze_channels, 1)
        self.fc2 = torch.nn.Conv2d(squeeze_channels, input_channels, 1)
        self.activation = activation()
        self.scale_activation = scale_activation()

    def _scale(self, input: Tensor) -> Tensor:
        scale = self.avgpool(input)
        scale = self.fc1(scale)
        scale = self.activation(scale)
        scale = self.fc2(scale)
        return self.scale_activation(scale)

    def forward(self, input: Tensor) -> Tensor:
        scale = self._scale(input)
        return scale * input


class MLP(torch.nn.Sequential):
    """This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    """

    def __init__(
        self,
        in_channels: int,
        hidden_channels: List[int],
        norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        inplace: Optional[bool] = True,
        bias: bool = True,
        dropout: float = 0.0,
    ):
        # The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
        # https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
        params = {} if inplace is None else {"inplace": inplace}

        layers = []
        in_dim = in_channels
        for hidden_dim in hidden_channels[:-1]:
            layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
            if norm_layer is not None:
                layers.append(norm_layer(hidden_dim))
            layers.append(activation_layer(**params))
            layers.append(torch.nn.Dropout(dropout, **params))
            in_dim = hidden_dim

        layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
        layers.append(torch.nn.Dropout(dropout, **params))

        super().__init__(*layers)
        # _log_api_usage_once(self)


class Permute(torch.nn.Module):
    """This module returns a view of the tensor input with its dimensions permuted.

    Args:
        dims (List[int]): The desired ordering of dimensions
    """

    def __init__(self, dims: List[int]):
        super().__init__()
        self.dims = dims

    def forward(self, x: Tensor) -> Tensor:
        return torch.permute(x, self.dims)





def normalize_array(x: list):

    '''Makes array between 0 and 1'''
    
    x = np.array(x)
    
    return (x - np.min(x)) / np.max(x - np.min(x))

# def load_model(model: str, activation: bool=True):
    
#     if activation:
#         model += '_w_activation'
    
#     # set options for onnx runtime
#     options = ort.SessionOptions()
#     options.intra_op_num_threads = 1
#     options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
#     provider = "CPUExecutionProvider"
    
#     # start session
#     ort_session = ort.InferenceSession(model_path + '%s.onnx' % (model), options, providers=[provider])
#     # ort_session = ORTModel.load_model(model_path + '%s.onnx' % (model))
    
#     return ort_session

def get_activations(model, image: list, model_name: str,
                    layer=None, vmax=2.5, sub_mean=True,
                    channel: int=0):
    
    '''Gets activations for a given input image'''
    
    # run model
    # input_name = intermediate_model.get_inputs()[0].name
    # outputs = intermediate_model.run(None, {input_name: image})
    
    
    layer_outputs = {}
    for i in range(len(model.model.features)):
        image = model.model.features[i](image)
        layer_outputs[i] = image
        print(i, layer_outputs[i].shape)
    output = model.model(image).detach().cpu().numpy()
    output_1 = activation_indices[model_name].detach().cpu().numpy()
    output_2 = activation_indices[model_name].detach().cpu().numpy()
    
    # get activations
    # output_1 = outputs[1]
    # output_2 = outputs[2]
    
    # get prediction
    # output = outputs[0][0]
    output = special.softmax(output)
    
    # sum over velocity channels
    if channel == 0:
        in_image = np.sum(image[0, :, :, :], axis=0)
    else:
        image[0, int(channel-1), :, :]
    in_image = normalize_array(in_image)

    if layer is None:
        # sum over all velocity channels
        activation_1 = np.sum(output_1[0, :, :, :], axis=0)
        activation_2 = np.sum(output_2[0, :, :, :], axis=0)
    else:
        # select a single channel
        activation_1 = output_1[0, layer, :, :]
        activation_2 = output_2[0, layer, :, :]
    
    if sub_mean:
        # y = |x - <x>|
        activation_1 -= np.mean(activation_1)
        activation_1 = np.abs(activation_1)
        
        activation_2 -= np.mean(activation_2)
        activation_2 = np.abs(activation_2)
    
    return output, in_image, activation_1, activation_2

def plot_input(input_image: list, origin='lower'):
    
    ##### make the figure for the input image #####
    plt.rcParams['xtick.labelsize'] = ticks
    plt.rcParams['ytick.labelsize'] = ticks
    
    input_fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(18, 8))
    
    im0 = ax.imshow(input_image, cmap=cmap,
                     origin=origin)    
    
    divider = make_axes_locatable(ax)
    cax = divider.append_axes('right', size='5%', pad=0.05)
    input_fig.colorbar(im0, cax=cax, orientation='vertical')
        
    ax.set_title('Input', fontsize=titles)
    
    return input_fig

def plot_activations(activation_1: list, activation_2: list, origin='lower'):
    
    
     ##### Make the activation figure ######
    plt.rcParams['xtick.labelsize'] = ticks
    plt.rcParams['ytick.labelsize'] = ticks
    
    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(27, 12))
    
    ax1, ax2 = axs[0], axs[1]
    
    im1 = ax1.imshow(activation_1, cmap=cmap,
                     origin=origin)
    im2 = ax2.imshow(activation_2, cmap=cmap, 
                     origin=origin) 
    
    ims = [im1, im2]
    
    for (i, ax) in enumerate(axs):
        divider = make_axes_locatable(ax)
        cax = divider.append_axes('right', size='5%', pad=0.05)
        fig.colorbar(ims[i], cax=cax, orientation='vertical')
        
    # ax0.set_title('Input', fontsize=titles)
    ax1.set_title('Early Activation', fontsize=titles)
    ax2.set_title('Late Activation', fontsize=titles)
    
    return fig

def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
    
    '''
    Loads a model with activations, passes through image and shows activations
    
    The image must be a numpy array of shape (C, W, W) or (1, C, W, W) 
    '''
    
    model_name = model_name.lower()
    num_channels = int(num_channels)
    W = int(dim)

    print("Running %s for %i channels" % (model_name, num_channels))
    print("Loading data")
    print(image)
    
    image = np.load(image.name, allow_pickle=True)
    image = image.astype(np.float32)
    
    if len(image.shape) != 4:
        image = image[np.newaxis, :, :, :]
        
    image = torch.from_numpy(image)
        
    assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
    print("Data loaded")
    
    print("Loading model")
    
    model_loading_name = model_path + "%s_%i_planet_detection" % (model_name, num_channels)
    
    if 'eff' in model_name:
        hparams = effnet_hparams[num_channels]
        hparams = SimpleNamespace(**hparams)
        config = EfficientNetConfig(
                                    dropout=hparams.dropout,
                                    num_channels=hparams.num_channels,
                                    num_classes=hparams.num_classes,
                                    size=hparams.size,
                                    stochastic_depth_prob=hparams.stochastic_depth_prob,
                                    width_mult=hparams.width_mult,
                                    depth_mult=hparams.depth_mult,
        )
    
    config.save_pretrained(save_directory=model_loading_name)
    # config = EfficientNetConfig.from_pretrained(model_loading_name)
    
    model = EfficientNetPreTrained.from_pretrained(model_loading_name)
    
    # model = EfficientNetPreTrained(config)
    # config.register_for_auto_class()
    # model.register_for_auto_class("AutoModelForImageClassification")
    # pretrained_model = timm.create_model(model_loading_name, pretrained=True)
    # model.model.load_state_dict(pretrained_model.state_dict())
    # pipeline = pipeline(task="image-classification", model=model_loading_name)
    # model = load_model(model_name, activation=True)
    # model = AutoModel.from_pretrained(model_loading_name)
    
    print("Model loaded")
    
    print("Looking at activations")
    output, input_image, activation_1, activation_2 = get_activations(model, image, model_name, 
                                                                      channel=input_channel,
                                                                      sub_mean=True)
    print("Activations and predictions finished")
    
    if output[0] < output[1]:
        output = 'Planet predicted with %.3f percent confidence' % (100*output[1])
    else:
        output = 'No planet predicted with %.3f percent confidence' % (100*output[0])
        
    input_image = normalize_array(input_image)
    activation_1 = normalize_array(activation_1)
    activation_2 = normalize_array(activation_2)
    
    # convert input image to RGB (unused for now since not outputting actual image)
    # input_pil_image = Image.fromarray(np.uint8(cm.magma(input_image)*255))
    
    print("Plotting")
    
    origin = 'upper'
    
    # plot input image
    input_fig = plot_input(input_image, origin=origin)
    
    # plot mean subtracted activations
    fig1 = plot_activations(activation_1, activation_2, model_name, origin=origin)
    
    # plot raw activations
    _, _, activation_1, activation_2 = get_activations(model, image, model_name, 
                                                       channel=input_channel,
                                                       sub_mean=False)
    activation_1 = normalize_array(activation_1)
    activation_2 = normalize_array(activation_2)
    fig2 = plot_activations(activation_1, activation_2, model_name, origin=origin)
    
    print("Sending to Hugging Face")
    
    return output, input_fig, fig1, fig2


if __name__ == "__main__":

    demo = gr.Interface(
        fn=predict_and_analyze,
        inputs=[gr.Dropdown(["EfficientNet"], 
                            #  "RegNet"], 
                            value="EfficientNet",
                            label="Model Selection",
                            show_label=True), 
                gr.Dropdown(["47", "61", "75"], 
                            value="61",
                            label="Number of Velocity Channels",
                            show_label=True), 
                gr.Dropdown(["600"], 
                            value="600",
                            label="Image Dimensions",
                            show_label=True), 
                gr.Number(value=0.,
                            label="Input Channel to show (0 = sum over all)",
                            show_label=True), 
                gr.File(label="Input Data", show_label=True)],
        outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True), 
                # gr.Image(label="Input Image", show_label=True), 
                gr.Plot(label="Input Image", show_label=True), 
                gr.Plot(label="Mean-Subtracted Activations", show_label=True), 
                gr.Plot(label="Raw Activations", show_label=True) 
                ],
        title="Kinematic Planet Detector"
    )
    demo.launch()