File size: 6,512 Bytes
688e887 086820c 237716a 086820c ae884c3 086820c c91d82f 086820c 7e083f8 086820c d404815 086820c d404815 7e083f8 086820c d404815 086820c d404815 be4bb72 086820c d404815 086820c 688e887 086820c d404815 086820c d404815 086820c d404815 086820c 135b090 086820c 3cf0e0f 086820c c6f97f0 086820c 688e887 8b71b4f 50266c5 3cf0e0f 4bec5d9 6b4e6b7 086820c 68affc8 086820c 3cf0e0f 8b71b4f 086820c c6f97f0 086820c 8b71b4f 135b090 c6f97f0 3c82907 db6d128 6bfda96 db6d128 6bfda96 646411c 086820c ae884c3 9c50a2c ae884c3 237716a e57a30b 237716a 3c0eb5e 237716a 3ed2081 237716a 3ed2081 688e887 237716a 688e887 237716a 3ed2081 237716a 3ed2081 dd92ae1 237716a e57a30b e8779f0 e57a30b 47df049 e57a30b 086820c 952c48d 3cf0e0f 952c48d 0f7de41 e57a30b 952c48d 086820c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
from matplotlib import cm
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
import onnxruntime as ort
from PIL import Image
from scipy import special
# model_path = 'chlab/planet_detection_models/'
model_path = './models/'
# plotting a prameters
labels = 20
ticks = 14
legends = 14
text = 14
titles = 22
lw = 3
ps = 200
cmap = 'magma'
def normalize_array(x: list):
'''Makes array between 0 and 1'''
x = np.array(x)
return (x - np.min(x)) / np.max(x - np.min(x))
def load_model(model: str, activation: bool=True):
if activation:
model += '_w_activation'
options = ort.SessionOptions()
options.intra_op_num_threads = 1
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
provider = "CPUExecutionProvider"
ort_session = ort.InferenceSession(model_path + '%s.onnx' % (model), options, providers=[provider])
# ort_session = ORTModel.load_model(model_path + '%s.onnx' % (model))
return ort_session
def get_activations(intermediate_model, image: list,
layer=None, vmax=2.5, sub_mean=True):
'''Gets activations for a given input image'''
# run model
input_name = intermediate_model.get_inputs()[0].name
outputs = intermediate_model.run(None, {input_name: image})
# get activations
output_1 = outputs[1]
output_2 = outputs[2]
# get prediction
output = outputs[0][0]
output = special.softmax(output)
# sum over velocity channels
in_image = np.sum(image[0, :, :, :], axis=0)
in_image = normalize_array(in_image)
if layer is None:
# sum over all velocity channels
activation_1 = np.sum(output_1[0, :, :, :], axis=0)
activation_2 = np.sum(output_2[0, :, :, :], axis=0)
else:
# select a single channel
activation_1 = output_1[0, layer, :, :]
activation_2 = output_2[0, layer, :, :]
if sub_mean:
# y = |x - <x>|
activation_1 -= np.mean(activation_1)
activation_1 = np.abs(activation_1)
activation_2 -= np.mean(activation_2)
activation_2 = np.abs(activation_2)
return output, in_image, activation_1, activation_2
def predict_and_analyze(model_name, num_channels, dim, image):
'''
Loads a model with activations, passes through image and shows activations
The image must be a numpy array of shape (C, W, W) or (1, C, W, W)
'''
num_channels = int(num_channels)
W = int(dim)
print("Loading data")
image = np.load(image.name, allow_pickle=True)
image = image.astype(np.float32)
if len(image.shape) != 4:
image = image[np.newaxis, :, :, :]
assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
model_name += '_%i' % (num_channels)
print("Loading model")
model = load_model(model_name, activation=True)
print("Model loaded")
print("Looking at activations")
output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
print("Activations and predictions finished")
if output[0] < output[1]:
output = 'Planet predicted with %.3f percent confidence' % (100*output[1])
else:
output = 'No planet predicted with %.3f percent confidence' % (100 - 100*output[0])
input_image = normalize_array(input_image)
activation_1 = normalize_array(activation_1)
activation_2 = normalize_array(activation_2)
# convert input image to RGB
input_pil_image = Image.fromarray(np.uint8(cm.magma(input_image)*255))
print("Plotting")
origin = 'lower'
##### Make the activation figure ######
plt.rcParams['xtick.labelsize'] = ticks
plt.rcParams['ytick.labelsize'] = ticks
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(27, 12))
ax1, ax2 = axs[0], axs[1]
# im0 = ax0.imshow(input_image, cmap=cmap,
# origin=origin)
im1 = ax1.imshow(activation_1, cmap=cmap,
origin=origin)
im2 = ax2.imshow(activation_2, cmap=cmap,
origin=origin)
ims = [im1, im2]
for (i, ax) in enumerate(axs):
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(ims[i], cax=cax, orientation='vertical')
# ax0.set_title('Input', fontsize=titles)
ax1.set_title('Activation 1', fontsize=titles)
ax2.set_title('Activation 2', fontsize=titles)
##### make the figure for the input image #####
plt.rcParams['xtick.labelsize'] = ticks
plt.rcParams['ytick.labelsize'] = ticks
input_fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(9, 8))
im0 = ax.imshow(input_image, cmap=cmap,
origin=origin)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im0, cax=cax, orientation='vertical')
ax.set_title('Input', fontsize=titles)
print("Sending to Hugging Face")
return output, input_fig, fig
if __name__ == "__main__":
demo = gr.Interface(
fn=predict_and_analyze,
inputs=[gr.Dropdown(["efficientnet", "regnet"],
value="efficientnet",
label="Model Selection",
show_label=True),
gr.Dropdown(["45", "61", "75"],
value="61",
label="Number of Velocity Channels",
show_label=True),
gr.Dropdown(["600"],
value="600",
label="Image Dimensions",
show_label=True),
gr.File(label="Input Data", show_label=True)],
outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
# gr.Image(label="Input Image", show_label=True),
gr.Plot(label="Input Image", show_label=True),
# gr.Image(label="Activation 1", show_label=True),
# gr.Image(label="Actication 2", show_label=True)],
gr.Plot(label="Activations", show_label=True)
],
title="Kinematic Planet Detector"
)
demo.launch()
|