financial-qa-agent / README.md
codewithpurav's picture
Add Dockerfile for Streamlit deployment
3efe7a4
metadata
title: Financial Qa Agent
emoji: πŸš€
colorFrom: red
colorTo: red
sdk: docker
app_port: 8501
tags:
  - streamlit
pinned: false
short_description: Streamlit template space
license: mit

Welcome to Streamlit!

Edit /src/streamlit_app.py to customize this app to your heart's desire. :heart:

If you have any questions, checkout our documentation and community forums.

πŸ“Š Financial QA Agent

An AI-powered financial report assistant built with RAG (Retrieval-Augmented Generation).
This app lets you upload financial reports, search them with semantic embeddings, and get concise answers/summaries using an open-source LLM.

πŸš€ Features

  • Cleans financial report text files automatically
  • Generates vector embeddings with FAISS for efficient retrieval
  • Summarizes answers using google/gemma-2b (or lightweight models for deployment)
  • Streamlit UI for easy interaction
  • Evaluation pipeline with ROUGE, BLEU, and BERTScore

πŸ› οΈ Tech Stack

  • Streamlit for UI
  • FAISS for vector search
  • Sentence-Transformers for embeddings
  • Transformers (Gemma/LLMs) for summarization
  • Scikit-learn, NLTK, BERTScore for evaluation metrics

πŸ“‚ Project Structure

β”œβ”€β”€ app.py # Main Streamlit app (entrypoint) β”œβ”€β”€ Embeddings.py # Embedding + FAISS pipeline β”œβ”€β”€ Data_Cleaning.py # Data cleaning utility β”œβ”€β”€ Logger.py # Logging utility β”œβ”€β”€ evaluation.py # Evaluation pipeline β”œβ”€β”€ config.json # Configurations β”œβ”€β”€ eval_dataset.json # Sample evaluation dataset β”œβ”€β”€ requirements.txt # Dependencies β”œβ”€β”€ README.md # Project documentation └── .gitignore # Ignore unnecessary files

⚑ Running Locally

pip install -r requirements.txt
streamlit run app.py