financial-qa-agent / README.md
codewithpurav's picture
Add Dockerfile for Streamlit deployment
3efe7a4
---
title: Financial Qa Agent
emoji: πŸš€
colorFrom: red
colorTo: red
sdk: docker
app_port: 8501
tags:
- streamlit
pinned: false
short_description: Streamlit template space
license: mit
---
# Welcome to Streamlit!
Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
forums](https://discuss.streamlit.io).
# πŸ“Š Financial QA Agent
An AI-powered financial report assistant built with **RAG (Retrieval-Augmented Generation)**.
This app lets you upload financial reports, search them with semantic embeddings, and get concise answers/summaries using an open-source LLM.
## πŸš€ Features
- Cleans financial report text files automatically
- Generates vector embeddings with FAISS for efficient retrieval
- Summarizes answers using `google/gemma-2b` (or lightweight models for deployment)
- Streamlit UI for easy interaction
- Evaluation pipeline with ROUGE, BLEU, and BERTScore
## πŸ› οΈ Tech Stack
- **Streamlit** for UI
- **FAISS** for vector search
- **Sentence-Transformers** for embeddings
- **Transformers** (Gemma/LLMs) for summarization
- **Scikit-learn, NLTK, BERTScore** for evaluation metrics
## πŸ“‚ Project Structure
β”œβ”€β”€ app.py # Main Streamlit app (entrypoint)
β”œβ”€β”€ Embeddings.py # Embedding + FAISS pipeline
β”œβ”€β”€ Data_Cleaning.py # Data cleaning utility
β”œβ”€β”€ Logger.py # Logging utility
β”œβ”€β”€ evaluation.py # Evaluation pipeline
β”œβ”€β”€ config.json # Configurations
β”œβ”€β”€ eval_dataset.json # Sample evaluation dataset
β”œβ”€β”€ requirements.txt # Dependencies
β”œβ”€β”€ README.md # Project documentation
└── .gitignore # Ignore unnecessary files
## ⚑ Running Locally
```bash
pip install -r requirements.txt
streamlit run app.py