File size: 18,527 Bytes
f88b322
 
 
e4dba80
f88b322
 
e4dba80
f88b322
e4dba80
f88b322
 
 
 
 
 
 
f302c17
 
 
 
f86c87e
f302c17
 
 
 
b0ead86
e570bda
f88b322
90e73d9
f302c17
 
 
 
90e73d9
f88b322
b0ead86
f88b322
f302c17
90e73d9
d9c493b
b0ead86
f88b322
e4dba80
f86c87e
f88b322
e4dba80
 
 
cf087b0
f88b322
f302c17
90e73d9
f86c87e
f88b322
f302c17
e570bda
db70732
b0ead86
 
e570bda
f88b322
f302c17
b0ead86
90e73d9
b0ead86
 
 
f88b322
 
 
 
 
 
 
 
 
 
 
 
 
 
e4dba80
f4e036a
 
f88b322
f302c17
 
 
 
 
e4dba80
 
 
f4e036a
 
 
 
cf087b0
f4e036a
 
 
 
 
 
 
db70732
f4e036a
 
 
 
 
db70732
b0ead86
f4e036a
 
db70732
90e73d9
f88b322
e4dba80
 
f302c17
 
 
 
 
db70732
f302c17
 
 
 
f88b322
90e73d9
 
f88b322
e4dba80
 
 
 
 
 
f88b322
e4dba80
f88b322
 
 
 
 
 
 
 
 
 
 
 
e4dba80
cf087b0
f302c17
 
 
 
 
 
f88b322
 
e4dba80
f88b322
e4dba80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88b322
 
 
 
e4dba80
f88b322
 
 
e4dba80
f302c17
 
 
 
90e73d9
e4dba80
 
f302c17
 
e4dba80
 
 
 
f302c17
db70732
f302c17
e4dba80
f302c17
 
 
 
e4dba80
 
f302c17
f88b322
 
 
 
 
 
 
f302c17
90e73d9
f88b322
 
e4dba80
 
f302c17
 
e4dba80
f302c17
 
 
 
f88b322
e4dba80
90e73d9
e4dba80
 
 
 
f88b322
db70732
 
 
90e73d9
f88b322
 
 
 
 
 
 
b0ead86
 
f302c17
 
f88b322
 
 
 
 
 
 
 
f302c17
db70732
f88b322
f302c17
 
f88b322
f302c17
db70732
 
 
 
 
 
 
 
cf087b0
db70732
f302c17
 
f88b322
 
 
 
 
 
 
 
 
 
354bf5f
db70732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88b322
db70732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88b322
db70732
 
 
 
 
 
 
90e73d9
f302c17
 
e4dba80
 
 
 
 
 
 
f302c17
 
 
 
 
354bf5f
f88b322
 
e4dba80
 
90e73d9
f302c17
e4dba80
cf087b0
90e73d9
e4dba80
 
 
46bc7fa
e4dba80
354bf5f
f88b322
e4dba80
 
 
 
 
ec59101
354bf5f
 
f86c87e
b0ead86
90e73d9
 
608c372
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""NetCom β†’ WooCommerce transformer (TryΒ 3Β schema β€” meta‑days calc, sorted attributes, deduped AI sections, persistent cache, 100‑parallel,
duplicate‑safe, relative‑logo paths, cache‑preload)
==============================================================================

Accept a NetCom schedule (CSV/XLSX) and **optionally** a *previous* WooCommerce
CSV; output the fresh WooCommerce CSV.

NewΒ in this revision
--------------------
* **MetaΒ days** automatically calculated as the inclusive span (in days) between
  the earliest and latest course dates for each CourseΒ ID.
* **AttributeΒ 1 (Date)** lists are now guaranteed to be sorted chronologically.
* All AI‑generated sections (descriptions, objectives, agenda, prerequisites)
  are post‑processed to **deduplicate any repeated lines** inside each section.
* Everything else (persistent cache in `/data`, 100‑parallel semaphore,
  in‑flight de‑duplication, pandas compatibility fix) remains unchanged.
"""

from __future__ import annotations

import asyncio
import hashlib
import json
import os
import tempfile
from io import BytesIO
from pathlib import Path
from typing import List

import gradio as gr
import gradio_client.utils
import openai
import pandas as pd

# ── Gradio bool‑schema hot‑patch ────────────────────────────────────────────
_original = gradio_client.utils._json_schema_to_python_type

def _fixed_json_schema_to_python_type(schema, defs=None):  # type: ignore
    if isinstance(schema, bool):
        return "any"
    return _original(schema, defs)

gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type  # type: ignore

# ── Persistent disk cache (HF Spaces uses /data) ────────────────────────────
_PERSISTENT_ROOT = Path("/data")
CACHE_DIR = (_PERSISTENT_ROOT if _PERSISTENT_ROOT.exists() else Path(".")) / "ai_response_cache"
CACHE_DIR.mkdir(parents=True, exist_ok=True)


def _cache_path(p: str) -> Path:
    return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"


def _get_cached(p: str) -> str | None:
    try:
        return json.loads(_cache_path(p).read_text("utf-8"))["response"]
    except Exception:
        return None


def _set_cache(p: str, r: str) -> None:
    try:
        _cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
    except Exception:
        pass

# ── Helpers ────────────────────────────────────────────────────────────────

def _dedup_lines(txt: str) -> str:
    """Remove duplicated lines while preserving order inside a block of text."""
    seen = set()
    out: List[str] = []
    for raw in txt.splitlines():
        line = raw.rstrip()
        if line and line not in seen:
            out.append(line)
            seen.add(line)
    return "\n".join(out)

# ── OpenAI helpers: 100‑parallel + de‑dup ───────────────────────────────────
_SEM = asyncio.Semaphore(100)              # ≀100 concurrent OpenAI calls
_inflight: dict[str, asyncio.Future] = {}  # prompt β†’ Future


async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
    cached = _get_cached(prompt)
    if cached is not None:
        return cached

    running = _inflight.get(prompt)
    if running is not None:
        return await running

    loop = asyncio.get_running_loop()

    async def _call_api() -> str:
        async with _SEM:
            try:
                msg = await client.chat.completions.create(
                    model="gpt-4o-mini",
                    messages=[{"role": "user", "content": prompt}],
                    temperature=0,
                )
                text = msg.choices[0].message.content
            except Exception as exc:
                text = f"Error: {exc}"
            _set_cache(prompt, text)
            return text

    task = loop.create_task(_call_api())
    _inflight[prompt] = task
    try:
        return await task
    finally:
        _inflight.pop(prompt, None)


async def _batch_async(lst, instruction: str, client):
    out = ["" for _ in lst]
    idx, prompts = [], []
    for i, txt in enumerate(lst):
        if isinstance(txt, str) and txt.strip():
            idx.append(i)
            prompts.append(f"{instruction}\n\nText: {txt}")
    if not prompts:
        return out

    responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
    for j, val in enumerate(responses):
        out[idx[j]] = _dedup_lines(val)
    return out

# ── Instructions (reuse across preload & gen) ───────────────────────────────
DESC_SHORT = "Create a concise 250-character summary of this course description:"
DESC_LONG  = "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"
OBJECTIVES = "Format these objectives into a bullet list with clean formatting. Start each bullet with 'β€’ ':"
AGENDA     = "Format this agenda into a bullet list with clean formatting. Start each bullet with 'β€’ ':"
PREREQ     = "Format these prerequisites into a bullet list with clean formatting. Start each bullet with 'β€’ ':"

# ── Logo map (relative paths, with common aliases) ──────────────────────────
logos = {
    "Amazon Web Services": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aws.png",
    "AWS":                 "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aws.png",
    "Cisco":               "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
    "Microsoft":           "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
    "Google Cloud":        "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Google_Cloud.png",
    "EC Council":          "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Ec_Council.png",
    "ITIL":                "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/ITIL.webp",
    "PMI":                 "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/PMI.png",
    "Comptia":             "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Comptia.png",
    "Autodesk":            "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/autodesk.png",
    "ISC2":                "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/ISC2.png",
    "AICerts":             "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aicerts-logo-1.png",
}

DEFAULT_PREREQ = (
    "No specific prerequisites are required for this course. Basic computer literacy and "
    "familiarity with fundamental concepts in the subject area are recommended for the best "
    "learning experience."
)

# ── Cache‑preload from previous WooCommerce CSV ─────────────────────────────

def _preload_cache(prev_csv: str, df_new: pd.DataFrame, dcol, ocol, pcol, acol):
    """Seed the on‑disk cache with completions from an earlier WooCommerce CSV."""
    try:
        prev = pd.read_csv(prev_csv, encoding="utf-8-sig")
    except Exception:
        return

    prev_parent = prev[prev["Type"].str.startswith("variable", na=False)]
    prev_map = {row["SKU"]: row for _, row in prev_parent.iterrows()}  # SKU == Course ID

    for _, row in df_new.iterrows():
        cid = row["Course ID"]
        if cid not in prev_map:
            continue
        old = prev_map[cid]

        desc = str(row[dcol])
        obj  = str(row[ocol])
        ag   = str(row[acol])
        pre  = str(row[pcol])

        _set_cache(f"{DESC_SHORT}\n\nText: {desc}", _dedup_lines(old.get("Short description", "")))
        _set_cache(f"{DESC_LONG}\n\nText: {desc}",  _dedup_lines(old.get("Description", "")))
        _set_cache(f"{OBJECTIVES}\n\nText: {obj}",    _dedup_lines(old.get("Meta: objectives", "")))
        _set_cache(f"{AGENDA}\n\nText: {ag}",         _dedup_lines(old.get("Meta: agenda", "")))
        if pre.strip():
            _set_cache(f"{PREREQ}\n\nText: {pre}",    _dedup_lines(old.get("Meta: prerequisites", "")))

# ── Helper: read user file (CSV or Excel) ───────────────────────────────────

def _read(path: str) -> pd.DataFrame:
    if path.lower().endswith((".xlsx", ".xls")):
        return pd.read_excel(path)
    return pd.read_csv(path, encoding="latin1")

# ── Enrichment step (async batched LLM) ──────────────────────────────────────
async def _enrich_dataframe(df, dcol, ocol, pcol, acol):
    async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
        sdesc, ldesc, fobj, fout = await asyncio.gather(
            _batch_async(df.get(dcol, "").fillna("").tolist(), DESC_SHORT, client),
            _batch_async(df.get(dcol, "").fillna("").tolist(), DESC_LONG,  client),
            _batch_async(df.get(ocol, "").fillna("").tolist(), OBJECTIVES, client),
            _batch_async(df.get(acol, "").fillna("").tolist(), AGENDA,     client),
        )

        prereq_raw = df.get(pcol, "").fillna("").tolist()
        fpre = []
        for req in prereq_raw:
            if not str(req).strip():
                fpre.append(DEFAULT_PREREQ)
            else:
                out = await _batch_async([req], PREREQ, client)
                fpre.append(out[0])

    # Ensure everything is deduped (safety).
    sdesc = [_dedup_lines(t) for t in sdesc]
    ldesc = [_dedup_lines(t) for t in ldesc]
    fobj  = [_dedup_lines(t) for t in fobj]
    fout  = [_dedup_lines(t) for t in fout]
    fpre  = [_dedup_lines(t) for t in fpre]

    return sdesc, ldesc, fobj, fout, fpre

# ── Main converter ──────────────────────────────────────────────────────────

def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
    df = _read(schedule_path)
    df.columns = df.columns.str.strip()

    first_col = lambda *cand: next((c for c in cand if c in df.columns), None)
    dcol = first_col("Description", "Decription")
    ocol = first_col("Objectives", "objectives")
    pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
    acol = first_col("Outline")
    dur  = first_col("Duration") or "Duration"  # kept for backward‑compat (unused)
    sid  = first_col("Course SID", "Course SID")

    # optional cache preload
    if prev_csv_path:
        _preload_cache(prev_csv_path, df, dcol, ocol, pcol, acol)

    # async‑enrich via LLM
    sdesc, ldesc, fobj, fout, fpre = asyncio.run(
        _enrich_dataframe(df, dcol, ocol, pcol, acol)
    )

    df["Short_Description"]       = sdesc
    df["Condensed_Description"]   = ldesc
    df["Formatted_Objectives"]    = fobj
    df["Formatted_Agenda"]        = fout
    df["Formatted_Prerequisites"] = fpre

    # schedule aggregation & meta‑days calculation
    df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
    df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")

    dsorted = df.sort_values(["Course ID", "Course Start Date"])

    # "MetaDays" = inclusive span between earliest & latest dates per CourseΒ ID
    meta_days = (
        dsorted.groupby("Course ID")["Course Start Date"].agg(lambda s: (s.max() - s.min()).days + 1)
        .reset_index(name="MetaDays")
    )

    # AttributeΒ 1 list β€” ensure chronological order
    d_agg = (
        dsorted.groupby("Course ID")["Date_fmt"]
        .apply(lambda s: ",".join(sorted(s.dropna().unique(), key=lambda x: pd.to_datetime(x))))
        .reset_index(name="Dates")
    )

    t_agg = (
        dsorted.groupby("Course ID", group_keys=False)
        .apply(
            lambda g: ",".join(
                f"{st}-{et} {tz}"
                for st, et, tz in zip(
                    g["Course Start Time"], g["Course End Time"], g["Time Zone"]
                )
            ),
            include_groups=False,
        )
        .reset_index(name="Times")
    )

    parents = (
        dsorted.drop_duplicates("Course ID")
        .merge(d_agg)
        .merge(t_agg)
        .merge(meta_days)
    )

    # propagate MetaDays to each schedule row
    dsorted = dsorted.merge(meta_days, on="Course ID", how="left")

    parent = pd.DataFrame(
        {
            "Type": "variable",
            "SKU": parents["Course ID"],
            "Name": parents["Course Name"],
            "Published": 1,
            "Visibility in catalog": "visible",
            "Short description": parents["Short_Description"],
            "Description": parents["Condensed_Description"],
            "Tax status": "taxable",
            "In stock?": 1,
            "Stock": 1,
            "Sold individually?": 1,
            "Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
            "Categories": "courses",
            "Images": parents["Vendor"].map(logos).fillna(""),
            "Parent": "",
            "Brands": parents["Vendor"],
            "Attribute 1 name": "Date",
            "Attribute 1 value(s)": parents["Dates"],
            "Attribute 1 visible": "visible",
            "Attribute 1 global": 1,
            "Attribute 2 name": "Location",
            "Attribute 2 value(s)": "Virtual",
            "Attribute 2 visible": "visible",
            "Attribute 2 global": 1,
            "Attribute 3 name": "Time",
            "Attribute 3 value(s)": parents["Times"],
            "Attribute 3 visible": "visible",
            "Attribute 3 global": 1,
            "Meta: outline": parents["Formatted_Agenda"],
            "Meta: days": parents["MetaDays"],
            "Meta: location": "Virtual",
            "Meta: overview": parents["Target Audience"],
            "Meta: objectives": parents["Formatted_Objectives"],
            "Meta: prerequisites": parents["Formatted_Prerequisites"],
            "Meta: agenda": parents["Formatted_Agenda"],
        }
    )

    child = pd.DataFrame(
        {
            "Type": "variation, virtual",
            "SKU": dsorted[sid].astype(str).str.strip(),
            "Name": dsorted["Course Name"],
            "Published": 1,
            "Visibility in catalog": "visible",
            "Short description": dsorted["Short_Description"],
            "Description": dsorted["Condensed_Description"],
            "Tax status": "taxable",
            "In stock?": 1,
            "Stock": 1,
            "Sold individually?": 1,
            "Regular price": dsorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
            "Categories": "courses",
            "Images": dsorted["Vendor"].map(logos).fillna(""),
            "Parent": dsorted["Course ID"],
            "Brands": dsorted["Vendor"],
            "Attribute 1 name": "Date",
            "Attribute 1 value(s)": dsorted["Date_fmt"],
            "Attribute 1 visible": "visible",
            "Attribute 1 global": 1,
            "Attribute 2 name": "Location",
            "Attribute 2 value(s)": "Virtual",
            "Attribute 2 visible": "visible",
            "Attribute 2 global": 1,
            "Attribute 3 name": "Time",
            "Attribute 3 value(s)": dsorted.apply(
                lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
                axis=1,
            ),
            "Attribute 3 visible": "visible",
            "Attribute 3 global": 1,
            "Meta: outline": dsorted["Formatted_Agenda"],
            "Meta: days": dsorted["MetaDays"],
            "Meta: location": "Virtual",
            "Meta: overview": dsorted["Target Audience"],
            "Meta: objectives": dsorted["Formatted_Objectives"],
            "Meta: prerequisites": dsorted["Formatted_Prerequisites"],
            "Meta: agenda": dsorted["Formatted_Agenda"],
        }
    )

    all_rows = pd.concat([parent, child], ignore_index=True)
    order = [
        "Type","SKU","Name","Published","Visibility in catalog","Short description","Description",
        "Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images",
        "Parent","Brands","Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global",
        "Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global",
        "Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global",
        "Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives",
        "Meta: prerequisites","Meta: agenda",
    ]
    out = BytesIO()
    all_rows[order].to_csv(out, index=False, encoding="utf-8-sig")
    out.seek(0)
    return out

# ── Gradio interface ────────────────────────────────────────────────────────

def process_files(schedule: gr.File, previous: gr.File | None) -> str:
    csv_bytes = convert(schedule.name, previous.name if previous else None)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
        tmp.write(csv_bytes.getvalue())
        return tmp.name

ui = gr.Interface(
    fn=process_files,
    inputs=[
        gr.File(label="Upload NetCom schedule (.csv/.xlsx/.xls)", file_types=[".csv", ".xlsx", ".xls"]),
        gr.File(label="Previous WooCommerce CSV (optional)", file_types=[".csv"]),
    ],
    outputs=gr.File(label="Download WooCommerce CSV"),
    title="NetCom β†’ WooCommerce CSV Processor (TryΒ 3)",
    description=(
        "1. Upload the **latest NetCom schedule** file.\n"
        "2. *(Optional)* Upload the **WooCommerce CSV** generated by a previous run to "
        "pre-load the cache and skip already-processed courses."
    ),
    analytics_enabled=False,
)

if __name__ == "__main__":
    if not os.getenv("OPENAI_API_KEY"):
        print("⚠️  OPENAI_API_KEY not set – AI features will error")
    ui.launch()