File size: 19,071 Bytes
9392036
 
ed8f744
913507e
d966a8e
6b1f66d
757102e
5498932
 
af68571
6b1f66d
1280fd8
9392036
1280fd8
9392036
2ee3fae
9392036
 
 
 
1280fd8
 
913507e
574aa10
6ee3759
574aa10
6ee3759
 
 
757102e
 
 
 
574aa10
6ee3759
f872421
 
6b1f66d
89ffe36
 
 
757102e
 
6b1f66d
757102e
 
 
6b1f66d
757102e
6b1f66d
757102e
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
89ffe36
 
6b1f66d
 
 
 
 
757102e
89ffe36
 
 
f872421
6b1f66d
f872421
ed8f744
f872421
 
 
 
 
ed8f744
f872421
757102e
6b1f66d
ed8f744
6ee3759
 
 
 
 
ed8f744
 
 
6b1f66d
6ee3759
 
6b1f66d
6ee3759
ed8f744
 
6b1f66d
6ee3759
6b1f66d
ed8f744
6b1f66d
 
 
 
 
 
ed8f744
f872421
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
 
757102e
6b1f66d
ed8f744
6b1f66d
d966a8e
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
f872421
 
6ee3759
 
ed8f744
6b1f66d
757102e
ed8f744
757102e
 
 
 
6b1f66d
757102e
6b1f66d
 
f872421
757102e
 
 
6b1f66d
 
 
757102e
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
 
 
6b1f66d
f872421
 
757102e
 
ed8f744
f872421
757102e
6b1f66d
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
757102e
ed8f744
757102e
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
6b1f66d
757102e
6b1f66d
ed8f744
f872421
89ffe36
 
 
 
69db70c
 
 
 
 
 
 
 
 
89ffe36
 
 
 
 
6b1f66d
89ffe36
 
 
 
 
 
 
757102e
ed8f744
6b1f66d
89ffe36
757102e
89ffe36
 
 
 
 
f872421
ed8f744
6b1f66d
757102e
6b1f66d
 
 
757102e
89ffe36
6b1f66d
89ffe36
 
d966a8e
ed8f744
 
 
 
6b1f66d
 
 
 
 
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
 
6b1f66d
ed8f744
 
 
 
 
5498932
6b1f66d
d966a8e
6b1f66d
d966a8e
 
 
6b1f66d
af68571
 
 
6b1f66d
08f9513
 
6b1f66d
af68571
69db70c
af68571
08f9513
 
 
af68571
 
89ffe36
 
 
 
69db70c
89ffe36
 
69db70c
89ffe36
6ee3759
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io
import ot

TOOLTIPS = """
<div>
    <div>
        <img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
    </div>
    <div>
        <span style="font-size: 17px; font-weight: bold;">@label</span>
    </div>
</div>
"""

def config_style():
    st.markdown("""
        <style>
        .main-title { font-size: 50px; color: #4CAF50; text-align: center; }
        .sub-title { font-size: 30px; color: #555; }
        .custom-text { font-size: 18px; line-height: 1.5; }
        .bk-legend {
            max-height: 200px;
            overflow-y: auto;
        }
        </style>
    """, unsafe_allow_html=True)
    st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)

# Carga los datos y asigna versiones de forma uniforme
def load_embeddings(model):
    if model == "Donut":
        df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
        df_par = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_embeddings.csv")
        df_line = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-line-degradation-seq_embeddings.csv")
        df_seq  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_rot  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-rotation-degradation-seq_embeddings.csv")
        df_zoom  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-zoom-degradation-seq_embeddings.csv")
        df_render  = pd.read_csv("data/donut_de_Rodrigo_merit_es-render-seq_embeddings.csv")
        df_real["version"] = "real"
        df_par["version"] = "synthetic"
        df_line["version"] = "synthetic"
        df_seq["version"] = "synthetic"
        df_rot["version"] = "synthetic"
        df_zoom["version"] = "synthetic"
        df_render["version"] = "synthetic"

        # Se asigna la fuente
        df_par["source"] = "es-digital-paragraph-degradation-seq"
        df_line["source"] = "es-digital-line-degradation-seq"
        df_seq["source"] = "es-digital-seq"
        df_rot["source"] = "es-digital-rotation-degradation-seq"
        df_zoom["source"] = "es-digital-zoom-degradation-seq"
        df_render["source"] = "es-render-seq"
        return {"real": df_real, "synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True)}
    
    elif model == "Idefics2":
        df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
        df_seq  = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_real["version"] = "real"
        df_seq["version"] = "synthetic"
        df_seq["source"] = "es-digital-seq"
        return {"real": df_real, "synthetic": df_seq}
    
    else:
        st.error("Modelo no reconocido")
        return None

# Selecci贸n de reducci贸n dimensional
def reducer_selector(df_combined, embedding_cols):
    reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
    all_embeddings = df_combined[embedding_cols].values
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    return reducer.fit_transform(all_embeddings)

# Funci贸n para agregar datos reales (por cada etiqueta)
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
    renderers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        color = color_mapping[label]
        legend_label = f"{label} ({group_label})"
        if marker == "circle":
            r = fig.circle('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "square":
            r = fig.square('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers

# Nueva funci贸n para plotear sint茅ticos de forma granular pero con leyenda agrupada por source
def add_synthetic_dataset_to_fig(fig, df, labels, marker, color_mapping, group_label):
    renderers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source_obj = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        # Se usa el color granular asignado a cada etiqueta
        color = color_mapping[label]
        # La leyenda se asigna al nombre del source para que se agrupe
        legend_label = group_label
        
        if marker == "square":
            r = fig.square('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        elif marker == "inverted_triangle":
            r = fig.inverted_triangle('x', 'y', size=12, source=source_obj,
                                      fill_color=color, line_color=color,
                                      legend_label=legend_label)
        elif marker == "diamond":
            r = fig.diamond('x', 'y', size=10, source=source_obj,
                            fill_color=color, line_color=color,
                            legend_label=legend_label)
        elif marker == "cross":
            r = fig.cross('x', 'y', size=12, source=source_obj,
                          fill_color=color, line_color=color,
                          legend_label=legend_label)
        elif marker == "x":
            r = fig.x('x', 'y', size=12, source=source_obj,
                      fill_color=color, line_color=color,
                      legend_label=legend_label)
        elif marker == "asterisk":
            r = fig.asterisk('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        else:
            r = fig.circle('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers


def get_color_maps(unique_subsets):
    color_map = {}
    # Para reales se asigna color para cada etiqueta
    num_real = len(unique_subsets["real"])
    red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
    color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
    
    # Para sint茅ticos se asigna color de forma granular: para cada source se mapea cada etiqueta
    color_map["synthetic"] = {}
    for source, labels in unique_subsets["synthetic"].items():
        if source == "es-digital-seq":
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-line-degradation-seq":
            palette = Purples9[:len(labels)] if len(labels) <= 9 else (Purples9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-paragraph-degradation-seq":
            palette = BuGn9[:len(labels)] if len(labels) <= 9 else (BuGn9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-rotation-degradation-seq":
            palette = Greys9[:len(labels)] if len(labels) <= 9 else (Greys9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-zoom-degradation-seq":
            palette = Oranges9[:len(labels)] if len(labels) <= 9 else (Oranges9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-render-seq":
            palette = Greens9[:len(labels)] if len(labels) <= 9 else (Greens9 * ((len(labels)//9)+1))[:len(labels)]
        else:
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        color_map["synthetic"][source] = {label: palette[i] for i, label in enumerate(sorted(labels))}
    return color_map

def split_versions(df_combined, reduced):
    df_combined['x'] = reduced[:, 0]
    df_combined['y'] = reduced[:, 1]
    df_real = df_combined[df_combined["version"] == "real"].copy()
    df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
    # Extraer etiquetas 煤nicas para reales
    unique_real = sorted(df_real['label'].unique().tolist())
    # Para sint茅ticos, se agrupan las etiquetas por source
    unique_synth = {}
    for source in df_synth["source"].unique():
        unique_synth[source] = sorted(df_synth[df_synth["source"] == source]['label'].unique().tolist())
    df_dict = {"real": df_real, "synthetic": df_synth}
    # Para los reales se guarda la lista, y para sint茅ticos el diccionario
    unique_subsets = {"real": unique_real, "synthetic": unique_synth}
    return df_dict, unique_subsets

def create_figure(dfs, unique_subsets, color_maps, model_name):
    fig = figure(width=600, height=600, tools="wheel_zoom,pan,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS, title="")
    # Datos reales: se mantienen granulares en plot y en leyenda
    real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
                                        marker="circle", color_mapping=color_maps["real"],
                                        group_label="Real")
    # Diccionario de asignaci贸n de marcadores para sint茅ticos por source
    marker_mapping = {
        "es-digital-paragraph-degradation-seq": "x",
        "es-digital-line-degradation-seq": "cross",
        "es-digital-seq": "triangle",
        "es-digital-rotation-degradation-seq": "diamond",
        "es-digital-zoom-degradation-seq": "asterisk",
        "es-render-seq": "inverted_triangle"
    }

    # Datos sint茅ticos: se plotean granularmente (por etiqueta) pero se agrupa la leyenda por source
    synthetic_renderers = {}
    synth_df = dfs["synthetic"]
    for source in unique_subsets["synthetic"]:
        df_source = synth_df[synth_df["source"] == source]
        marker = marker_mapping.get(source, "square")  # Por defecto "square" si no se encuentra
        renderers = add_synthetic_dataset_to_fig(fig, df_source, unique_subsets["synthetic"][source],
                                                  marker=marker,
                                                  color_mapping=color_maps["synthetic"][source],
                                                  group_label=source)
        synthetic_renderers.update(renderers)
    
    fig.legend.location = "top_right"
    fig.legend.click_policy = "hide"
    show_legend = st.checkbox("Show Legend", value=False, key=f"legend_{model_name}")
    fig.legend.visible = show_legend
    return fig, real_renderers, synthetic_renderers


# Calcula los centros de cada cluster (por grupo)
def calculate_cluster_centers(df, labels):
    centers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if not subset.empty:
            centers[label] = (subset['x'].mean(), subset['y'].mean())
    return centers

# Calcula la distancia Wasserstein de cada subset sint茅tico respecto a cada cluster real (por cluster y global)
def compute_wasserstein_distances_synthetic_individual(synthetic_df: pd.DataFrame, df_real: pd.DataFrame, real_labels: list) -> pd.DataFrame:
    distances = {}
    groups = synthetic_df.groupby(['source', 'label'])
    for (source, label), group in groups:
        key = f"{label} ({source})"
        data = group[['x', 'y']].values
        n = data.shape[0]
        weights = np.ones(n) / n
        distances[key] = {}
        for real_label in real_labels:
            real_data = df_real[df_real['label'] == real_label][['x','y']].values
            m = real_data.shape[0]
            weights_real = np.ones(m) / m
            M = ot.dist(data, real_data, metric='euclidean')
            distances[key][real_label] = ot.emd2(weights, weights_real, M)
    
    # Distancia global por fuente
    for source, group in synthetic_df.groupby('source'):
        key = f"Global ({source})"
        data = group[['x','y']].values
        n = data.shape[0]
        weights = np.ones(n) / n
        distances[key] = {}
        for real_label in real_labels:
            real_data = df_real[df_real['label'] == real_label][['x','y']].values
            m = real_data.shape[0]
            weights_real = np.ones(m) / m
            M = ot.dist(data, real_data, metric='euclidean')
            distances[key][real_label] = ot.emd2(weights, weights_real, M)
    return pd.DataFrame(distances).T

def create_table(df_distances):
    df_table = df_distances.copy()
    df_table.reset_index(inplace=True)
    df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
    min_row = {"Synthetic": "Min."}
    mean_row = {"Synthetic": "Mean"}
    max_row = {"Synthetic": "Max."}
    for col in df_table.columns:
        if col != "Synthetic":
            min_row[col] = df_table[col].min()
            mean_row[col] = df_table[col].mean()
            max_row[col] = df_table[col].max()
    df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
    source_table = ColumnDataSource(df_table)
    columns = [TableColumn(field='Synthetic', title='Synthetic')]
    for col in df_table.columns:
        if col != 'Synthetic':
            columns.append(TableColumn(field=col, title=col))
    total_height = 30 + len(df_table)*28
    data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
    return data_table, df_table, source_table

def run_model(model_name):
    embeddings = load_embeddings(model_name)
    if embeddings is None:
        return
    
    embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
    df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
    st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
    reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=f"reduction_{model_name}")
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    reduced = reducer.fit_transform(df_combined[embedding_cols].values)
    dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
    
    color_maps = get_color_maps(unique_subsets)
    fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, unique_subsets, color_maps, model_name)
    
    centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
    
    df_distances = compute_wasserstein_distances_synthetic_individual(dfs_reduced["synthetic"], dfs_reduced["real"], unique_subsets["real"])
    data_table, df_table, source_table = create_table(df_distances)
    
    real_subset_names = list(df_table.columns[1:])
    real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
    reset_button = Button(label="Reset Colors", button_type="primary")
    line_source = ColumnDataSource(data={'x': [], 'y': []})
    fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
    
    real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
    synthetic_centers = {}
    synth_labels = sorted(dfs_reduced["synthetic"]['label'].unique().tolist())
    for label in synth_labels:
        subset = dfs_reduced["synthetic"][dfs_reduced["synthetic"]['label'] == label]
        synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
    
    callback = CustomJS(args=dict(source=source_table, line_source=line_source,
                                  synthetic_centers=synthetic_centers,
                                  real_centers=real_centers_js,
                                  real_select=real_select),
    code="""
        var selected = source.selected.indices;
        if (selected.length > 0) {
            var idx = selected[0];
            var data = source.data;
            var synth_label = data['Synthetic'][idx];
            var real_label = real_select.value;
            var syn_coords = synthetic_centers[synth_label];
            var real_coords = real_centers[real_label];
            line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
            line_source.change.emit();
        } else {
            line_source.data = {'x': [], 'y': []};
            line_source.change.emit();
        }
    """)
    source_table.selected.js_on_change('indices', callback)
    real_select.js_on_change('value', callback)
    
    reset_callback = CustomJS(args=dict(line_source=line_source),
    code="""
        line_source.data = {'x': [], 'y': []};
        line_source.change.emit();
    """)
    reset_button.js_on_event("button_click", reset_callback)
    
    buffer = io.BytesIO()
    df_table.to_excel(buffer, index=False)
    buffer.seek(0)
    
    layout = column(fig, column(real_select, reset_button, data_table))
    st.bokeh_chart(layout, use_container_width=True)
    
    st.download_button(
        label="Export Table",
        data=buffer,
        file_name=f"cluster_distances_{model_name}.xlsx",
        mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        key=f"download_button_excel_{model_name}"
    )

def main():
    config_style()
    tabs = st.tabs(["Donut", "Idefics2"])
    with tabs[0]:
        st.markdown('<h2 class="sub-title">Donut 馃</h2>', unsafe_allow_html=True)
        run_model("Donut")
    with tabs[1]:
        st.markdown('<h2 class="sub-title">Idefics2 馃</h2>', unsafe_allow_html=True)
        run_model("Idefics2")

if __name__ == "__main__":
    main()